Sample records for space performance proof

  1. Performance Characteristics of a Kernel-Space Packet Capture Module

    DTIC Science & Technology

    2010-03-01

    Defense, or the United States Government . AFIT/GCO/ENG/10-03 PERFORMANCE CHARACTERISTICS OF A KERNEL-SPACE PACKET CAPTURE MODULE THESIS Presented to the...3.1.2.3 Prototype. The proof of concept for this research is the design, development, and comparative performance analysis of a kernel level N2d capture...changes to kernel code 5. Can be used for both user-space and kernel-space capture applications in order to control comparative performance analysis to

  2. Space network scheduling benchmark: A proof-of-concept process for technology transfer

    NASA Technical Reports Server (NTRS)

    Moe, Karen; Happell, Nadine; Hayden, B. J.; Barclay, Cathy

    1993-01-01

    This paper describes a detailed proof-of-concept activity to evaluate flexible scheduling technology as implemented in the Request Oriented Scheduling Engine (ROSE) and applied to Space Network (SN) scheduling. The criteria developed for an operational evaluation of a reusable scheduling system is addressed including a methodology to prove that the proposed system performs at least as well as the current system in function and performance. The improvement of the new technology must be demonstrated and evaluated against the cost of making changes. Finally, there is a need to show significant improvement in SN operational procedures. Successful completion of a proof-of-concept would eventually lead to an operational concept and implementation transition plan, which is outside the scope of this paper. However, a high-fidelity benchmark using actual SN scheduling requests has been designed to test the ROSE scheduling tool. The benchmark evaluation methodology, scheduling data, and preliminary results are described.

  3. Compactly packaged monolithic four-wavelength VCSEL array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport.

    PubMed

    Lee, Eun-Gu; Mun, Sil-Gu; Lee, Sang Soo; Lee, Jyung Chan; Lee, Jong Hyun

    2015-01-12

    We report a cost-effective transmitter optical sub-assembly using a monolithic four-wavelength vertical-cavity surface-emitting laser (VCSEL) array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport using the data rate of common public radio interface option 6. The wavelength spacing is achieved using selectively etched cavity control layers and fine current adjustment. The differences in operating current and output power for maintaining the wavelength spacing of four VCSELs are <1.4 mA and <1 dB, respectively. Stable operation performance without mode hopping is observed, and error-free transmission under direct modulation is demonstrated over a 20-km single-mode fiber without any dispersion-compensation techniques.

  4. 49 CFR 178.955 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... void space(s) and to prevent significant movement of the inner packagings. (h) Proof of compliance. In... subchapter. Variations are permitted in inner packagings of a tested Large Packaging, without further testing... determine that the inner packaging, including closure, maintains an equivalent level of performance is...

  5. 49 CFR 178.955 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... void space(s) and to prevent significant movement of the inner packagings. (h) Proof of compliance. In... subchapter. Variations are permitted in inner packagings of a tested Large Packaging, without further testing... determine that the inner packaging, including closure, maintains an equivalent level of performance is...

  6. 49 CFR 178.955 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... void space(s) and to prevent significant movement of the inner packagings. (h) Proof of compliance. In... subchapter. Variations are permitted in inner packagings of a tested Large Packaging, without further testing... determine that the inner packaging, including closure, maintains an equivalent level of performance is...

  7. 49 CFR 178.955 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... void space(s) and to prevent significant movement of the inner packagings. (h) Proof of compliance. In... subchapter. Variations are permitted in inner packagings of a tested Large Packaging, without further testing... determine that the inner packaging, including closure, maintains an equivalent level of performance is...

  8. Acceleration Noise Measurements for LISA

    NASA Astrophysics Data System (ADS)

    Schlamminger, Stephan; Gundlach, Jens

    2005-04-01

    The close spacing between the proof mass and the housing in the LISA (Laser Interferometer Space Antenna) spacecraft has been a concern as there may be spurious feeble forces. Such forces may limit the performance of the gravity wave detector at frequencies below 3 mHz and must be studied experimentally. We are performing ultra sensitive torsion balance tests to investigate such effects. Our torsion pendulum and a nearby plate are designed to simulate the LISA proof mass with its adjacent housing surface. We study torque noise on the pendulum as a function of separation between the surfaces. In order to exceed the LISA requirement we are probing the acceleration noise at much closer separations, than those planned for LISA. We have taken data at separations as small as 0.15 mm.

  9. Design-for-reliability (DfR) of aerospace electronics: Attributes and challenges

    NASA Astrophysics Data System (ADS)

    Bensoussan, A.; Suhir, E.

    The next generation of multi-beam satellite systems that would be able to provide effective interactive communication services will have to operate within a highly flexible architecture. One option to develop such flexibility is to employ microwaves and/or optoelectronic components and to make them reliable. The use of optoelectronic devices, equipments and systems will result indeed in significant improvement in the state-of-the-art only provided that the new designs will suggest a novel and effective architecture that will combine the merits of good functional performance, satisfactory mechanical (structural) reliability and high cost effectiveness. The obvious challenge is the ability to design and fabricate equipment based on EEE components that would be able to successfully withstand harsh space environments for the entire duration of the mission. It is imperative that the major players in the space industry, such as manufacturers, industrial users, and space agencies, understand the importance and the limits of the achievable quality and reliability of optoelectronic devices operated in harsh environments. It is equally imperative that the physics of possible failures is well understood and, if necessary, minimized, and that adequate Quality Standards are developed and employed. The space community has to identify and to develop the strategic approach for validating optoelectronic products. This should be done with consideration of numerous intrinsic and extrinsic requirements for the systems' performance. When considering a particular next generation optoelectronic space system, the space community needs to address the following major issues: proof of concept for this system, proof of reliability and proof of performance. This should be done with taking into account the specifics of the anticipated application. High operational reliability cannot be left to the prognostics and health monitoring/management (PHM) effort and stage, no matter how important and - ffective such an effort might be. Reliability should be pursued at all the stages of the equipment lifetime: design, product development, manufacturing, burn-in testing and, of course, subsequent PHM after the space apparatus is launched and operated.

  10. 14 CFR 13.223 - Standard of proof.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Standard of proof. 13.223 Section 13.223 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES... proof. The administrative law judge shall issue an initial decision or shall rule in a party's favor...

  11. 14 CFR 13.223 - Standard of proof.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Standard of proof. 13.223 Section 13.223 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES... proof. The administrative law judge shall issue an initial decision or shall rule in a party's favor...

  12. 14 CFR 23.641 - Proof of strength.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Proof of strength. 23.641 Section 23.641 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS....641 Proof of strength. The strength of stressed-skin wings must be proven by load tests or by combined...

  13. 14 CFR 23.641 - Proof of strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Proof of strength. 23.641 Section 23.641 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS....641 Proof of strength. The strength of stressed-skin wings must be proven by load tests or by combined...

  14. Magnetic Gimbal Proof-of-Concept Hardware performance results

    NASA Technical Reports Server (NTRS)

    Stuart, Keith O.

    1993-01-01

    The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.

  15. Magnetic Gimbal Proof-of-Concept Hardware performance results

    NASA Astrophysics Data System (ADS)

    Stuart, Keith O.

    The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.

  16. Space Environment Stability and Physical Properties of New Materials for Space Power and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    1997-01-01

    To test and evaluate suitability of materials for use in space power systems and related space and commercial applications, and to achieve sufficient understanding of the mechanisms by which, the materials perform in their intended applications. Materials and proposed applications included but were not limited to: Improved anodes for lithium ion batteries, highly-transparent arc-proof solar array coatings, and improved surface materials for solar dynamic concentrators and receivers. Cooperation and interchange of data with industrial companies as appropriate.

  17. Experimental ladder proof of Hardy's nonlocality for high-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Chen, Lixiang; Zhang, Wuhong; Wu, Ziwen; Wang, Jikang; Fickler, Robert; Karimi, Ebrahim

    2017-08-01

    Recent years have witnessed a rapidly growing interest in high-dimensional quantum entanglement for fundamental studies as well as towards novel applications. Therefore, the ability to verify entanglement between physical qudits, d -dimensional quantum systems, is of crucial importance. To show nonclassicality, Hardy's paradox represents "the best version of Bell's theorem" without using inequalities. However, so far it has only been tested experimentally for bidimensional vector spaces. Here, we formulate a theoretical framework to demonstrate the ladder proof of Hardy's paradox for arbitrary high-dimensional systems. Furthermore, we experimentally demonstrate the ladder proof by taking advantage of the orbital angular momentum of high-dimensionally entangled photon pairs. We perform the ladder proof of Hardy's paradox for dimensions 3 and 4, both with the ladder up to the third step. Our paper paves the way towards a deeper understanding of the nature of high-dimensionally entangled quantum states and may find applications in quantum information science.

  18. Efficient proof of ownership for cloud storage systems

    NASA Astrophysics Data System (ADS)

    Zhong, Weiwei; Liu, Zhusong

    2017-08-01

    Cloud storage system through the deduplication technology to save disk space and bandwidth, but the use of this technology has appeared targeted security attacks: the attacker can deceive the server to obtain ownership of the file by get the hash value of original file. In order to solve the above security problems and the different security requirements of the files in the cloud storage system, an efficient and information-theoretical secure proof of ownership sceme is proposed to support the file rating. Through the K-means algorithm to implement file rating, and use random seed technology and pre-calculation method to achieve safe and efficient proof of ownership scheme. Finally, the scheme is information-theoretical secure, and achieve better performance in the most sensitive areas of client-side I/O and computation.

  19. Answers in search of a question: 'proofs' of the tri-dimensionality of space

    NASA Astrophysics Data System (ADS)

    Callender, Craig

    From Kant's first published work to recent articles in the physics literature, philosophers and physicists have long sought an answer to the question: Why does space have three dimensions? In this paper, I will flesh out Kant's claim with a brief detour through Gauss' law. I then describe Büchel's version of the common argument that stable orbits are possible only if space is three dimensional. After examining objections by Russell and van Fraassen, I develop three original criticisms of my own. These criticisms are relevant to both historical and contemporary proofs of the dimensionality of space (in particular, a recent one by Burgbacher, Lämmerzahl, and Macias). In general, I argue that modern "proofs" of the dimensionality of space have gone off track.

  20. A Machine-Checked Proof of A State-Space Construction Algorithm

    NASA Technical Reports Server (NTRS)

    Catano, Nestor; Siminiceanu, Radu I.

    2010-01-01

    This paper presents the correctness proof of Saturation, an algorithm for generating state spaces of concurrent systems, implemented in the SMART tool. Unlike the Breadth First Search exploration algorithm, which is easy to understand and formalise, Saturation is a complex algorithm, employing a mutually-recursive pair of procedures that compute a series of non-trivial, nested local fixed points, corresponding to a chaotic fixed point strategy. A pencil-and-paper proof of Saturation exists, but a machine checked proof had never been attempted. The key element of the proof is the characterisation theorem of saturated nodes in decision diagrams, stating that a saturated node represents a set of states encoding a local fixed-point with respect to firing all events affecting only the node s level and levels below. For our purpose, we have employed the Prototype Verification System (PVS) for formalising the Saturation algorithm, its data structures, and for conducting the proofs.

  1. 14 CFR 16.227 - Standard of proof.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Standard of proof. 16.227 Section 16.227 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... hearing officer shall issue an initial decision or shall rule in a party's favor only if the decision or...

  2. 14 CFR 16.227 - Standard of proof.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Standard of proof. 16.227 Section 16.227 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... hearing officer shall issue an initial decision or shall rule in a party's favor only if the decision or...

  3. 14 CFR 16.227 - Standard of proof.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Standard of proof. 16.227 Section 16.227 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... hearing officer shall issue an initial decision or rule in a party's favor only if the decision or ruling...

  4. 14 CFR 16.227 - Standard of proof.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Standard of proof. 16.227 Section 16.227 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... hearing officer shall issue an initial decision or shall rule in a party's favor only if the decision or...

  5. 14 CFR 16.227 - Standard of proof.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Standard of proof. 16.227 Section 16.227 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... hearing officer shall issue an initial decision or shall rule in a party's favor only if the decision or...

  6. Candidate proof mass actuator control laws for the vibration suppression of a frame

    NASA Technical Reports Server (NTRS)

    Umland, Jeffrey W.; Inman, Daniel J.

    1991-01-01

    The vibration of an experimental flexible space truss is controlled with internal control forces produced by several proof mass actuators. Four candidate control law strategies are evaluated in terms of performance and robustness. These control laws are experimentally implemented on a quasi free-free planar truss. Sensor and actuator dynamics are included in the model such that the final closed loop is self-equilibrated. The first two control laws considered are based on direct output feedback and consist of tuning the actuator feedback gains to the lowest mode intended to receive damping. The first method feeds back only the position and velocity of the proof mass relative to the structure; this results in a traditional vibration absorber. The second method includes the same feedback paths as the first plus feedback of the local structural velocity. The third law is designed with robust H infinity control theory. The fourth strategy is an active implementation of a viscous damper, where the actuator is configured to provide a bending moment at two points on the structure. The vibration control system is then evaluated in terms of how it would benefit the space structure's position control system.

  7. Human Performance Modeling and Simulation for Launch Team Applications

    NASA Technical Reports Server (NTRS)

    Peaden, Cary J.; Payne, Stephen J.; Hoblitzell, Richard M., Jr.; Chandler, Faith T.; LaVine, Nils D.; Bagnall, Timothy M.

    2006-01-01

    This paper describes ongoing research into modeling and simulation of humans for launch team analysis, training, and evaluation. The initial research is sponsored by the National Aeronautics and Space Administration's (NASA)'s Office of Safety and Mission Assurance (OSMA) and NASA's Exploration Program and is focused on current and future launch team operations at Kennedy Space Center (KSC). The paper begins with a description of existing KSC launch team environments and procedures. It then describes the goals of new Simulation and Analysis of Launch Teams (SALT) research. The majority of this paper describes products from the SALT team's initial proof-of-concept effort. These products include a nominal case task analysis and a discrete event model and simulation of launch team performance during the final phase of a shuttle countdown; and a first proof-of-concept training demonstration of launch team communications in which the computer plays most roles, and the trainee plays a role of the trainee's choice. This paper then describes possible next steps for the research team and provides conclusions. This research is expected to have significant value to NASA's Exploration Program.

  8. Microbial Monitoring of Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2012-01-01

    The International Space Station (ISS) is a closed environment wih rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to perform sample-to-answer testing with cell sample concentrations between SO to 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness, sample concentration needs were reviewed, and a competitive procurement of commercially available platforms was initiated.

  9. Assurance of lubricant supply in wet-lubricated space bearings

    NASA Technical Reports Server (NTRS)

    Glassow, F. A.

    1976-01-01

    Conventional lubrication techniques appear to be satisfactory, but rigorous proof of meeting a ten-year life requirement is lacking. One approach provides additional lubricant only when commanded from ground control, while the other passively augments lubrication at all times. Each technique has specific advantages, and selection should be related to the application to obtain optimum performance.

  10. Renormalization group method based on the ionization energy theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulsamy, Andrew Das, E-mail: sadwerdna@gmail.com; School of Physics, University of Sydney, Sydney, New South Wales 2006

    2011-03-15

    Proofs are developed to explicitly show that the ionization energy theory is a renormalized theory, which mathematically exactly satisfies the renormalization group formalisms developed by Gell-Mann-Low, Shankar and Zinn-Justin. However, the cutoff parameter for the ionization energy theory relies on the energy-level spacing, instead of lattice point spacing in k-space. Subsequently, we apply the earlier proofs to prove that the mathematical structure of the ionization-energy dressed electron-electron screened Coulomb potential is exactly the same as the ionization-energy dressed electron-phonon interaction potential. The latter proof is proven by means of the second-order time-independent perturbation theory with the heavier effective mass condition,more » as required by the electron-electron screened Coulomb potential. The outcome of this proof is that we can derive the heat capacity and the Debye frequency as a function of ionization energy, which can be applied in strongly correlated matter and nanostructures.« less

  11. Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Simon, R.; Mukunda, N.; Chaturvedi, S.; Srinivasan, V.

    2008-11-01

    In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.

  12. 14 CFR 23.307 - Proof of structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Proof of structure. 23.307 Section 23.307... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure General § 23.307 Proof of structure. (a) Compliance with the strength and deformation requirements of § 23.305 must be shown for each...

  13. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  14. Low Temperature Shape Memory Alloys for Adaptive, Autonomous Systems Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Williams, Martha; Benafan, Othmane; Fesmire, James

    2015-01-01

    The objective of this joint activity between Kennedy Space Center (KSC) and Glenn Research Center (GRC) is to develop and evaluate the applicability of 2-way SMAs in proof-of-concept, low-temperature adaptive autonomous systems. As part of this low technology readiness (TRL) activity, we will develop and train low-temperature novel, 2-way shape memory alloys (SMAs) with actuation temperatures ranging from 0 C to 150 C. These experimental alloys will also be preliminary tested to evaluate their performance parameters and transformation (actuation) temperatures in low- temperature or cryogenic adaptive proof-of-concept systems. The challenge will be in the development, design, and training of the alloys for 2-way actuation at those temperatures.

  15. Bartnik’s splitting conjecture and Lorentzian Busemann function

    NASA Astrophysics Data System (ADS)

    Amini, Roya; Sharifzadeh, Mehdi; Bahrampour, Yousof

    2018-05-01

    In 1988 Bartnik posed the splitting conjecture about the cosmological space-time. This conjecture has been proved by several people, with different approaches and by using some additional assumptions such as ‘S-ray condition’ and ‘level set condition’. It is known that the ‘S-ray condition’ yields the ‘level set condition’. We have proved that the two are indeed equivalent, by giving a different proof under the assumption of the ‘level set condition’. In addition, we have shown several properties of the cosmological space-time, under the presence of the ‘level set condition’. Finally we have provided a proof of the conjecture under a different assumption on the cosmological space-time. But we first prove some results without the timelike convergence condition which help us to state our proofs.

  16. Design trade-off and proof of concept for LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth.

    PubMed

    Hoeijmakers, H J; Arts, M L J; Snik, F; Keller, C U; Kuiper, J M

    2016-09-19

    We provide a proof of the technical feasibility of LOUPE, the first integral-field snapshot spectropolarimeter, designed to monitor the reflected flux and polarization spectrum of Earth. These are to be used as benchmark data for the retrieval of biomarkers and atmospheric and surface characteristics from future direct observations of exoplanets. We perform a design trade-off for an implementation in which LOUPE performs snapshot integral-field spectropolarimetry at visible wavelengths. We used off-the-shelf optics to construct a polarization modulator, in which polarization information is encoded into the spectrum as a wavelength-dependent modulation, while spatial resolution is maintained using a micro-lens array. The performance of this design concept is validated in a laboratory setup. Our proof-of-concept is capable of measuring a grid of 50 × 50 polarization spectra between 610 and 780 nm of a mock target planet - proving the merit of this design. The measurements are affected by systematic noise on the percent level, and we discuss how to mitigate this in future iterations. We conclude that LOUPE can be small and robust while meeting the science goals of this particular space application, and note the many potential applications that may benefit from our concept for doing snapshot integral-field spectropolarimetry.

  17. 46 CFR 28.845 - General requirements for electrical systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquids. If electrical equipment, such as lighting, is necessary in these spaces, it must be explosion-proof or intrinsically safe. (d) Explosion-proof and intrinsically safe equipment must meet the...

  18. 46 CFR 28.845 - General requirements for electrical systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquids. If electrical equipment, such as lighting, is necessary in these spaces, it must be explosion-proof or intrinsically safe. (d) Explosion-proof and intrinsically safe equipment must meet the...

  19. Micro- and Nano-Scale Electrically Driven Two-Phase Thermal Management

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit receive modules that are severely limited by thermal concerns.

  20. Development of Advanced Spacecraft Thermal Subsystems

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates and embedded thermal management systems. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit/receive modules that are severely limited by thermal concerns.

  1. 46 CFR 183.530 - Hazardous areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... equipment in spaces containing machinery powered by, or fuel tanks for, gasoline or other fuels having a... flammable liquids must be explosion-proof or be part of an intrinsically safe system. (c) Explosion-proof...

  2. 46 CFR 183.530 - Hazardous areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... equipment in spaces containing machinery powered by, or fuel tanks for, gasoline or other fuels having a... flammable liquids must be explosion-proof or be part of an intrinsically safe system. (c) Explosion-proof...

  3. 46 CFR 183.530 - Hazardous areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... equipment in spaces containing machinery powered by, or fuel tanks for, gasoline or other fuels having a... flammable liquids must be explosion-proof or be part of an intrinsically safe system. (c) Explosion-proof...

  4. 46 CFR 183.530 - Hazardous areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... equipment in spaces containing machinery powered by, or fuel tanks for, gasoline or other fuels having a... flammable liquids must be explosion-proof or be part of an intrinsically safe system. (c) Explosion-proof...

  5. Thermal management of instruments on space platforms using a high capacity two-phase heat transport system

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.; Fowle, A.; Almgren, D.

    1981-01-01

    A system utilizing a pumped, two-phase single component working fluid for heat exchange and transport services necessary to meet the temperature control requirements of typical orbiting instrument payloads on space platforms is described. The design characteristics of the system is presented, together with a presentation of a laboratory apparatus for demonstration of proof of concept. Results indicate that the pumped two-phase design concept can meet a wide range of thermal performance requirements with the only penalty being the requirement for a small liquid pump.

  6. Ka-Band Wide-Bandgap Solid-State Power Amplifier: Hardware Validation

    NASA Technical Reports Server (NTRS)

    Epp, L.; Khan, P.; Silva, A.

    2005-01-01

    Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solid-state power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents proof-of-concept hardware used to validate power-combining technologies that may enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results in previous articles [1-3] indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. Previous architecture performance analyses and estimates indicate that the proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This combining efficiency would correspond to MMIC requirements of 5- to 10-W output power and >48 percent PAE. In order to validate the performance estimates of the three proposed architectures, measurements of proof-of-concept hardware are reported here.

  7. 47 CFR 76.1704 - Proof-of-performance test data.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Proof-of-performance test data. 76.1704 Section 76.1704 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1704 Proof-of-performance test data. (a) The proof of...

  8. 47 CFR 76.1704 - Proof-of-performance test data.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Proof-of-performance test data. 76.1704 Section 76.1704 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1704 Proof-of-performance test data. (a) The proof of...

  9. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  10. KSC-2012-6105

    NASA Image and Video Library

    2012-11-01

    CAPE CANAVERAL, Fla. – The Orion Exploration Flight Test 1 crew module is undergoing proof pressure testing at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The test incrementally pressurizes the spacecraft with breathing air and is designed to demonstrate weld strength capability and structural performance at maximum flight operating pressures. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Ben Smegelsky

  11. KSC-2012-6103

    NASA Image and Video Library

    2012-11-01

    CAPE CANAVERAL, Fla. – The Orion Exploration Flight Test 1 crew module is undergoing proof pressure testing at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The test incrementally pressurizes the spacecraft with breathing air and is designed to demonstrate weld strength capability and structural performance at maximum flight operating pressures. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Ben Smegelsky

  12. KSC-2012-6104

    NASA Image and Video Library

    2012-11-01

    CAPE CANAVERAL, Fla. – The Orion Exploration Flight Test 1 crew module is undergoing proof pressure testing at the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The test incrementally pressurizes the spacecraft with breathing air and is designed to demonstrate weld strength capability and structural performance at maximum flight operating pressures. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Ben Smegelsky

  13. Remote surface inspection system. [of large space platforms

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Balaram, J.; Seraji, Homayoun; Kim, Won S.; Tso, Kam S.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  14. Development of a small prototype for a proof-of-concept of OpenPET imaging

    NASA Astrophysics Data System (ADS)

    Yamaya, Taiga; Yoshida, Eiji; Inaniwa, Taku; Sato, Shinji; Nakajima, Yasunori; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Kawai, Hideyuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Haneishi, Hideaki; Suga, Mikio; Kinouchi, Shoko

    2011-02-01

    The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with 11C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with 18F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.

  15. Two alternate proofs of Wang's lune formula for sparse distributed memory and an integral approximation

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1988-01-01

    In Kanerva's Sparse Distributed Memory, writing to and reading from the memory are done in relation to spheres in an n-dimensional binary vector space. Thus it is important to know how many points are in the intersection of two spheres in this space. Two proofs are given of Wang's formula for spheres of unequal radii, and an integral approximation for the intersection in this case.

  16. Remote surface inspection system

    NASA Astrophysics Data System (ADS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-02-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  17. Remote surface inspection system

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  18. Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leverrier, Anthony; Grangier, Philippe; Laboratoire Charles Fabry, Institut d'Optique, CNRS, University Paris-Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau Cedex

    2010-06-15

    In this article, we give a simple proof of the fact that the optimal collective attacks against continuous-variable quantum key distribution with a Gaussian modulation are Gaussian attacks. Our proof, which makes use of symmetry properties of the protocol in phase space, is particularly relevant for the finite-key analysis of the protocol and therefore for practical applications.

  19. Beating heart mitral valve repair with integrated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Moore, John T.; Peters, Terry M.

    2015-03-01

    Beating heart valve therapies rely extensively on image guidance to treat patients who would be considered inoperable with conventional surgery. Mitral valve repair techniques including the MitrClip, NeoChord, and emerging transcatheter mitral valve replacement techniques rely on transesophageal echocardiography for guidance. These images are often difficult to interpret as the tool will cause shadowing artifacts that occlude tissue near the target site. Here, we integrate ultrasound imaging directly into the NeoChord device. This provides an unobstructed imaging plane that can visualize the valve lea ets as they are engaged by the device and can aid in achieving both a proper bite and spacing between the neochordae implants. A proof of concept user study in a phantom environment is performed to provide a proof of concept for this device.

  20. Secure Autonomous Automated Scheduling (SAAS). Rev. 1.1

    NASA Technical Reports Server (NTRS)

    Walke, Jon G.; Dikeman, Larry; Sage, Stephen P.; Miller, Eric M.

    2010-01-01

    This report describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the UK-DMC, is used as the space-based sensor. The UK-DMC's availability is determined via machine-to-machine communications using SSTL's mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL's and Universal Space Network's (USN) ground assets. The availability and scheduling of USN's assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards

  1. Stereotype locally convex spaces

    NASA Astrophysics Data System (ADS)

    Akbarov, S. S.

    2000-08-01

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.

  2. Effect of time spacing on the perceived color

    NASA Astrophysics Data System (ADS)

    Roch, Sylvain; Hardeberg, Jon Y.; Nussbaum, Peter

    2007-01-01

    One of latest developments for pre-press applications is the concept of soft proofing, which aims to provide an accurate preview on a monitor of how the final document will appear once it is printed. At the core of this concept is the problem of identifying, for any printed color, the most similar color the monitor can display. This problem is made difficult by such factors as varying viewing conditions, color gamut limitations, or the less studied time spacing. Color matching experiments are usually done by examining samples viewed simultaneously. However, in soft proofing applications, the proof and the print are not always viewed together. This paper attempts to shed more light on the difference between simultaneous and time-spaced color matching, in order to contribute to improving the accuracy of soft proofs. A color matching experiment setup has been established in which observers were asked to match a color patch displayed on a LCD monitor, by adjusting its RGB values, to another color patch printed out on paper. In the first part of the experiment the two colors were viewed simultaneously. In the second part, the observers were asked to produce the match according to a previously memorized color. According to the obtained results, the color appearance attributes lightness and chroma were the most difficult components for the observers to remember, generating huge differences with the simultaneous match, whereas hue was the component which varied the least. This indicates that for soft proofing, getting the hues right is of primordial importance.

  3. Proof-of-concept automation of propellant processing

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Schallhorn, P. A.

    1989-01-01

    For space-based propellant production, automation of the process is needed. Currently, all phases of terrestrial production have some form of human interaction. A mixer was acquired to help perform the tasks of automation. A heating system to be used with the mixer was designed, built, and installed. Tests performed on the heating system verify design criteria. An IBM PS/2 personal computer was acquired for the future automation work. It is hoped that some the mixing process itself will be automated. This is a concept demonstration task; proving that propellant production can be automated reliably.

  4. Physical limitations in sensors for a drag-free deep space probe

    NASA Technical Reports Server (NTRS)

    Juillerat, R.

    1971-01-01

    The inner perturbing forces acting on sensors were analyzed, taking into account the technological limitations imposed on the proof mass position pickup and proof mass acquisition system. The resulting perturbing accelerations are evaluated as a function of the drag-free sensor parameters. Perturbations included gravitational attraction, electrical action, magnetic action, pressure effects, radiation effects, and action of the position pickup. These data can be used to study the laws of guidance, providing an optimization of the space probe as a whole.

  5. Stokes space modulation format classification based on non-iterative clustering algorithm for coherent optical receivers.

    PubMed

    Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui

    2017-02-06

    A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.

  6. Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott; hide

    2010-01-01

    This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.

  7. Development of a Novel Wireless Electric Power Transfer System for Space Applications

    NASA Technical Reports Server (NTRS)

    VazquezRamos, Gabriel; Yuan, Jiann-Shiun

    2011-01-01

    This paper will introduce a new implementation for wireless electric power transfer systems: space applications. Due to the risks that constitute the use of electrical connector for some space missions/applications, a simple wireless power system design approach will be evaluated as an alternative for the use of electrical connectors. This approach takes into consideration the overall system performance by designing the magnetic resonance elements and by verifying the overall system electrical behavior. System characterization is accomplished by executing circuit and analytical simulations using Matlab(TradeMark) and LTSpiceIV(TradeMark) software packages. The design methodology was validated by two different experiments: frequency consideration (design of three magnetic elements) and a small scale proof-ofconcept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The proof-of-concept prototype provided approx.4 W of wireless power to the load (light bulb) at a separation of 3 cm from the source. In addition. a resonant circuit was designed and installed to the battery terminals of a handheld radio without batteries, making it tum on at a separation of approx.5 cm or less from the source. It was also demonstrated by prototype experimentation that multiple loads can be powered wirelessly at the same time with a single electric power source.

  8. Electronically Integrated Active Compliant Transmission (ACT) Actuation Technologies Proof-of-Concept Investigation of Active Velcro for Smart Attachment Mechanisms

    DTIC Science & Technology

    2003-12-01

    Active Velcro” is a general technology which can be applied at different scales (micro- to macro -) for different required performance by tailoring a...operations (engagement, retention/release, positioning) to provide synthesis and analysis tools. Several different scaled prototypes were fabricated and...necessary foundation for further development of this unique paradigm which is useful for any unstable environment (space, fluidic, moving, vibration

  9. Heat pipe radiator technology for space power systems

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Gustafson, E.; Ercegovic, B. A.

    1986-01-01

    High-reliability high-performance deployable monogroove and dual-slot heat pipe radiator systems to meet the requirements for electric power in future space missions, such as the 300-kW(e) electric powder demand projected for NASA's Space Station, are discussed. Analytical model trade studies of various configurations show the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight reduction potential over the 50-350 F temperature range. The ammonia-aluminum monogroove heat pipe, limited to below-180 F operating temperatures, is under development, and can employ methanol-stainless steel heat pipes to achieve operating temperatures in excess of 300 F. Dual-slot heat pipe configuration proof-of-concept testing was begun in 1985.

  10. 46 CFR 183.530 - Hazardous areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... equipment in spaces containing machinery powered by, or fuel tanks for, gasoline or other fuels having a... intrinsically safe system. (b) Electrical equipment in lockers used to store paint, oil, turpentine, or other flammable liquids must be explosion-proof or be part of an intrinsically safe system. (c) Explosion-proof...

  11. 47 CFR 76.1700 - Records to be maintained by cable system operators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... programming); § 76.1704 (proof-of-performance test data); and § 76.1706 (signal leakage logs and repair... children's programming); § 76.1704 (proof-of-performance test data); and § 76.1706 (signal leakage logs and... programming); § 76.1704 (proof-of-performance test data); and § 76.1706 (signal leakage logs and repair...

  12. Mission Options for an Electric Propulsion Demonstration Flight Test

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1989-01-01

    Several mission options are discussed for an electric propulsion space test which provides operational and performance data for ion and arcjet propulsion systems and testing of APSA arrays and a super power system. The results of these top-level studies are considered preliminary. Ion propulsion system design and architecture for the purposes of performing orbit raising missions for payloads in the range of 2400 to 2700 kg are described. Focus was placed on a design which can be characterized by simplicity, reliability, and performance. Systems of this design are suitable for an electric propulsion precursor flight which would provide proof of principle data necessary for more ambitious and complex missions.

  13. Isogeometric Divergence-conforming B-splines for the Darcy-Stokes-Brinkman Equations

    DTIC Science & Technology

    2012-01-01

    dimensionality ofQ0,h using T-splines [5]. However, a proof of mesh-independent discrete stability remains absent with this choice of pressure space ... the boundary ∂K +/− of element K+/−. With the above notation established, let us define the following bilinear form: a ∗h(w,v) = np∑ i=1 ( (2ν∇sw,∇sv...8.3 Two- Dimensional Problem with a Singular Solution To examine how our discretization performs in

  14. Microgravity

    NASA Image and Video Library

    1998-12-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  15. Velocity feedback control with a flywheel proof mass actuator

    NASA Astrophysics Data System (ADS)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  16. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  17. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  18. Topological Aspects of Information Retrieval.

    ERIC Educational Resources Information Center

    Egghe, Leo; Rousseau, Ronald

    1998-01-01

    Discusses topological aspects of theoretical information retrieval, including retrieval topology; similarity topology; pseudo-metric topology; document spaces as topological spaces; Boolean information retrieval as a subsystem of any topological system; and proofs of theorems. (LRW)

  19. Breakthrough Capability for UVOIR Space Astronomy: Reaching the Darkest Sky

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Benson, Scott W.; Englander, Jacob; Falck, Robert D.; Fixsen, Dale J.; Gardner, Jonathan P.; Kruk, Jeffrey W.; Oleson, Steven R.; Thronson, Harley A.

    2014-01-01

    We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present a proof of concept case study in which SEP is used to enable a 700 kg Explorer-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. We also present flight dynamics analysis which illustrates that this concept can be extended beyond Explorers to substantially improve the sensitivity performance of heavier (7000 kg) flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope by using high power SEP that is being developed for the Asteroid Redirect Robotics Mission.

  20. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  1. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  2. A Short Proof of the Large Time Energy Growth for the Boussinesq System

    NASA Astrophysics Data System (ADS)

    Brandolese, Lorenzo; Mouzouni, Charafeddine

    2017-10-01

    We give a direct proof of the fact that the L^p-norms of global solutions of the Boussinesq system in R^3 grow large as t→ ∞ for 1

  3. The formal de Rham complex

    NASA Astrophysics Data System (ADS)

    Zharinov, V. V.

    2013-02-01

    We propose a formal construction generalizing the classic de Rham complex to a wide class of models in mathematical physics and analysis. The presentation is divided into a sequence of definitions and elementary, easily verified statements; proofs are therefore given only in the key case. Linear operations are everywhere performed over a fixed number field {F} = {R},{C}. All linear spaces, algebras, and modules, although not stipulated explicitly, are by definition or by construction endowed with natural locally convex topologies, and their morphisms are continuous.

  4. Voyager Test Model Configuration

    NASA Image and Video Library

    2017-07-05

    This archival photo shows the Voyager proof test model, which did not fly in space, in the 25-foot space simulator chamber at NASA's Jet Propulsion Laboratory on December 3, 1976. https://photojournal.jpl.nasa.gov/catalog/PIA21735

  5. A toy Penrose inequality and its proof

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar; Jakobsson, Emma

    2016-12-01

    We formulate and prove a toy version of the Penrose inequality. The formulation mimics the original Penrose inequality in which the scenario is the following: a shell of null dust collapses in Minkowski space and a marginally trapped surface forms on it. Through a series of arguments relying on established assumptions, an inequality relating the area of this surface to the total energy of the shell is formulated. Then a further reformulation turns the inequality into a statement relating the area and the outer null expansion of a class of surfaces in Minkowski space itself. The inequality has been proven to hold true in many special cases, but there is no proof in general. In the toy version here presented, an analogous inequality in (2 + 1)-dimensional anti-de Sitter space turns out to hold true.

  6. Study for identification of Beneficial Uses of Space (BUS). Volume 2: Technical report. Book 1: Sections 1 through 4. [with emphasis on space manufacturing and product development

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Consolidated information is presented for the study whose purpose was to identify products, processes, and services to be produced in future spacecraft environments for direct utilization on earth. Discussion of methodology for selecting from among potential space processing approaches, definition of requirements for experiments and tests needed to acquire sufficient knowledge for proof testing of selected processes, formulation of research and development schedules to achieve proof testing, and documentation of the decision processes involved in the programs are presented. Technology and programmatics are reported for the following select studies: (1) surface acoustic wave components; (2) transparent oxides; (3) high purity tungsten X-ray targets; and (4) high specificity isoenzymes.

  7. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Form Domes

    NASA Technical Reports Server (NTRS)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Damage tolerance testing development was required to help qualify a new spin forming dome fabrication process for the Ares 1 program at Marshall Space Flight Center (MSFC). One challenge of the testing was due to the compound curvature of the dome. The testing was developed on a sub-scale dome with a diameter of approximately 40 inches. The simulated service testing performed was based on the EQTP1102 Rev L 2195 Aluminum Lot Acceptance Simulated Service Test and Analysis Procedure generated by Lockheed Martin for the Space Shuttle External Fuel Tank. This testing is performed on a specimen with an induced flaw of elliptical shape generated by Electrical Discharge Machining (EDM) and subsequent fatigue cycling for crack propagation to a predetermined length and depth. The specimen is then loaded in tension at a constant rate of displacement at room temperature until fracture occurs while recording load and strain. An identical specimen with a similar flaw is then proof tested at room temperature to imminent failure based on the critical offset strain achieved by the previous fracture test. If the specimen survives the proof, it is then subjected to cryogenic cycling with loads that are a percentage of the proof load performed at room temperature. If all cryogenic cycles are successful, the specimen is loaded in tension to failure at the end of the test. This standard was generated for flat plate, so a method of translating this to a specimen of compound curvature was required. This was accomplished by fabricating a fixture that maintained the curvature of the specimen rigidly with the exception of approximately one-half inch in the center of the specimen containing the induced flaw. This in conjunction with placing the center of the specimen in the center of the load train allowed for successful testing with a minimal amount of bending introduced into the system. Stress corrosion cracking (SCC) tests were performed using the typical double beam assembly and with 4-point loaded specimens under alternate immersion conditions in a 3.5% NaCl environment for 90 days. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K1SCC) of Al-Li 2195 which to our knowledge has not been determined previously. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication.

  8. Checkout and Standard Use Procedures for the Mark III Space Suit Assembly

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2012-01-01

    The operational pressure range is the range to which the suit can be nominally operated for manned testing. The top end of the nominal operational pressure range is equivalent to 1/2 the proof pressure. Structural pressure is 1.5 times the specified test pressure for any given test. Proof pressure is the maximum unmanned pressure to which the suit was tested by the vendor prior to delivery. The maximum allowable working pressure (MAWP) is 90% of the proof pressure. The pressure systems RVs are set to keep components below their MAWPs. If the suit is pressurized over its MAWP, the suit will be taken out of service and an in-depth inspection/review of the suit will be performed before the suit is put back in service. The procedures outlined in this document should be followed as written. However, the suit test engineer (STE) may make redline changes real-time, provided those changes are recorded in the anomaly section of the test data sheet. If technicians supporting suit build-up, check-out, and/or test execution believe that a procedure can be improved, they should notify their lead. If procedures are incorrect to the point of potentially causing hardware damage or affecting safety, bring the problem to the technician lead and/or STE s attention and stop work until a solution (temporary or permanent) is authorized. Certain steps in the procedure are marked with a DV , for Designated Verifier. The Designated Verifier for this procedure is an Advanced Space Suit Technology Development Laboratory technician, not directly involved in performing the procedural steps, who will verify that the step was performed as stated. The steps to be verified by the DV were selected based on one or more of the following criteria: the step was deemed significant in ensuring the safe performance of the test, the data recorded in the step is of specific interest in monitoring the suit system operation, or the step has a strong influence on the successful completion of test objectives. Prior to all manned test activities, Advanced Suit Test Data Sheet (TDS) Parts A-E shall be completed to verify system and team are ready for test. Advanced Suit TDS Parts F-G shall be completed at the end of the suited activity. Appendix B identifies tha appropriate Mark III suit emergency event procedures.

  9. Regular Decompositions for H(div) Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolev, Tzanio; Vassilevski, Panayot

    We study regular decompositions for H(div) spaces. In particular, we show that such regular decompositions are closely related to a previously studied “inf-sup” condition for parameter-dependent Stokes problems, for which we provide an alternative, more direct, proof.

  10. Cohomologie des Groupes Localement Compacts et Produits Tensoriels Continus de Representations

    ERIC Educational Resources Information Center

    Guichardet, A.

    1976-01-01

    Contains few and sometimes incomplete proofs on continuous tensor products of Hilbert spaces and of group representations, and on the irreducibility of the latter. Theory of continuous tensor products of Hilbert Spaces is closely related to that of conditionally positive definite functions; it relies on the technique of symmetric Hilbert spaces,…

  11. Fracture control methods for space vehicles. Volume 2: Assessment of fracture mechanics technology for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.

    1974-01-01

    The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.

  12. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Borowski, Stanley K.; Mcilwain, Melvin C.; Pellaccio, Dennis G.

    1992-01-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.

  13. A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics

    PubMed Central

    Kaltenbacher, Barbara; Kaltenbacher, Manfred; Sim, Imbo

    2013-01-01

    We consider the second order wave equation in an unbounded domain and propose an advanced perfectly matched layer (PML) technique for its efficient and reliable simulation. In doing so, we concentrate on the time domain case and use the finite-element (FE) method for the space discretization. Our un-split-PML formulation requires four auxiliary variables within the PML region in three space dimensions. For a reduced version (rPML), we present a long time stability proof based on an energy analysis. The numerical case studies and an application example demonstrate the good performance and long time stability of our formulation for treating open domain problems. PMID:23888085

  14. Report on the Stanford/KACST/AMES UVLED small satellite mission to demonstrate charge management of an electrically isolated proof mass for drag-free operation

    NASA Astrophysics Data System (ADS)

    Saraf, Shailendhar

    A spacecraft demonstration of ultra-violet (UV) LEDs and UV LED charge management based on research done at Stanford University is being developed jointly by the King Abdulaziz City for Science and Technology (KACST) Saudi Arabia and NASA Ames Research Center, with an expected launch date of June 2014. This paper will report on the payload design and testing, mission preparation, satellite launch and payload bring -up in space. Mission lifetime is expected to be at least one month, during which time the ability for the UV LEDs to mitigate actual space-based charging and the effects of radiation on the UV LED device performance will be studied. Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. The mission will demonstrate that AlGaN UV LEDs operating at 255 nm are an effective low-cost, low-power and compact substitute for Mercury vapor lamps used in previous missions. The goal of the mission is to increase the UV LED device to TRL-9 and the charge management system to TRL-7.

  15. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    The feasibility of potential reusable thrust chamber concepts is studied. Propellant condidates were examined and analytically combined with potential cooling schemes. A data base of engine data which would assist in a configuration selection was produced. The data base verification was performed by the demonstration of a thrust chamber of a selected coolant scheme design. A full scale insulated columbium thrust chamber was used for propellant coolant configurations. Combustion stability of the injectors and a reduced size thrust chamber were experimentally verified as proof of concept demonstrations of the design and study results.

  16. Ceramic insulation/multifoil composite for thermal protection of reentry spacecraft

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Kourtides, D. A.

    1989-01-01

    A new type of insulation blanket called Composite Flexible Blanket Insulation is proposed for thermal protection of advanced spacecraft in regions where the maximum temperature is not excessive. The blanket is a composite of two proven insulation materials: ceramic insulation blankets from Space Shuttle technology and multilayer insulation blankets from spacecraft thermal control technology. A potential heatshield weight saving of up to 500 g/sq m is predicted. The concept is described; proof of concept experimental data are presented; and a spaceflight experiment to demonstrate its actual performance is discussed.

  17. MSFC crack growth analysis computer program, version 2 (users manual)

    NASA Technical Reports Server (NTRS)

    Creager, M.

    1976-01-01

    An updated version of the George C. Marshall Space Flight Center Crack Growth Analysis Program is described. The updated computer program has significantly expanded capabilities over the original one. This increased capability includes an extensive expansion of the library of stress intensity factors, plotting capability, increased design iteration capability, and the capability of performing proof test logic analysis. The technical approaches used within the computer program are presented, and the input and output formats and options are described. Details of the stress intensity equations, example data, and example problems are presented.

  18. RF Manipulation and Detection of Protons in the High Performance Antiproton Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Pearson, J. Boise; Sims, W. Herb; Chakrabarti, Suman; Fant, Wallace E.; McDonald, Stan

    2003-01-01

    The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter-derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility.

  19. Study of Solid State Drives performance in PROOF distributed analysis system

    NASA Astrophysics Data System (ADS)

    Panitkin, S. Y.; Ernst, M.; Petkus, R.; Rind, O.; Wenaus, T.

    2010-04-01

    Solid State Drives (SSD) is a promising storage technology for High Energy Physics parallel analysis farms. Its combination of low random access time and relatively high read speed is very well suited for situations where multiple jobs concurrently access data located on the same drive. It also has lower energy consumption and higher vibration tolerance than Hard Disk Drive (HDD) which makes it an attractive choice in many applications raging from personal laptops to large analysis farms. The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF is especially efficient together with distributed local storage systems like Xrootd, when data are distributed over computing nodes. In such an architecture the local disk subsystem I/O performance becomes a critical factor, especially when computing nodes use multi-core CPUs. We will discuss our experience with SSDs in PROOF environment. We will compare performance of HDD with SSD in I/O intensive analysis scenarios. In particular we will discuss PROOF system performance scaling with a number of simultaneously running analysis jobs.

  20. NASA Ultra-Sensitive Miniature Accelerometer

    NASA Technical Reports Server (NTRS)

    Zavracky, Paul M.; Hartley, Frank T.

    1994-01-01

    Using micro-machined silicon technology, an ultra-sensitive miniature acce.,rometer can be constructed which meets the requirements for microgravity experiments in the space environment.Such an accelerometer will have a full scale sensitivity of 1C2 g a resolution of lC8 g, low cross axis sensitivity, and low temperature sensitivity. Mass of the device is approximately five grams and its footprint is 2 cm x 2 cm. Innovative features of the accelerometer, which are patented, are: electrostatic caging to withstand handling shock up to 150 g, in-situ calibration, in situ performance characterization, and both static and dynamic compensation. The transducer operates on a force balance principle wherein the displacement of the proof mass is monitored by measuring tunneling electron current flow between a conductive tip, and a fixed platen. The four major parts of the accelerometer are tip die, incorporating the tunneling tip and four field plates for controlling pitch and roll of the proof mass; two proof mass dies, attached to the surrounding frame by sets of four leg" springs; and a force plate die. The four parts are fuse-bonded into a complete assembly. External electrical connections are made at bond pads on the front surface of the force plate die. Materials and processes used in the construction of the transducer are compatible with volume production.

  1. Studies of orbital Eoetvoes experiments

    NASA Technical Reports Server (NTRS)

    Chapman, P. K.

    1977-01-01

    A direct force-balance technique was analyzed for carrying out the Eoetvoes experiment in space, which is intended to give sufficient sensitivity to allow investigation of the gravitational interactions of energy stored in the weak interaction. The heart of experiment is an exceedingly sensitive dual accelerometer, containing two proof masses constructed of the materials whose Eoetvoes ratio is to be compared. For use in development of the accelerometer, a magnetic microbalance is proposed in which the weight of the proof mass is supported by magnetic forces which vary very slowly with the proof mass position. It is shown that at least two different mechanizations of the magnetic suspension may be feasible.

  2. Proof of cipher text ownership based on convergence encryption

    NASA Astrophysics Data System (ADS)

    Zhong, Weiwei; Liu, Zhusong

    2017-08-01

    Cloud storage systems save disk space and bandwidth through deduplication technology, but with the use of this technology has been targeted security attacks: the attacker can get the original file just use hash value to deceive the server to obtain the file ownership. In order to solve the above security problems and the different security requirements of cloud storage system files, an efficient information theory security proof of ownership scheme is proposed. This scheme protects the data through the convergence encryption method, and uses the improved block-level proof of ownership scheme, and can carry out block-level client deduplication to achieve efficient and secure cloud storage deduplication scheme.

  3. Entanglement, space-time and the Mayer-Vietoris theorem

    NASA Astrophysics Data System (ADS)

    Patrascu, Andrei T.

    2017-06-01

    Entanglement appears to be a fundamental building block of quantum gravity leading to new principles underlying the nature of quantum space-time. One such principle is the ER-EPR duality. While supported by our present intuition, a proof is far from obvious. In this article I present a first step towards such a proof, originating in what is known to algebraic topologists as the Mayer-Vietoris theorem. The main result of this work is the re-interpretation of the various morphisms arising when the Mayer-Vietoris theorem is used to assemble a torus-like topology from more basic subspaces on the torus in terms of quantum information theory resulting in a quantum entangler gate (Hadamard and c-NOT).

  4. Rigorous Numerics for ill-posed PDEs: Periodic Orbits in the Boussinesq Equation

    NASA Astrophysics Data System (ADS)

    Castelli, Roberto; Gameiro, Marcio; Lessard, Jean-Philippe

    2018-04-01

    In this paper, we develop computer-assisted techniques for the analysis of periodic orbits of ill-posed partial differential equations. As a case study, our proposed method is applied to the Boussinesq equation, which has been investigated extensively because of its role in the theory of shallow water waves. The idea is to use the symmetry of the solutions and a Newton-Kantorovich type argument (the radii polynomial approach) to obtain rigorous proofs of existence of the periodic orbits in a weighted ℓ1 Banach space of space-time Fourier coefficients with exponential decay. We present several computer-assisted proofs of the existence of periodic orbits at different parameter values.

  5. Statistical Mechanical Proof of the Second Law of Thermodynamics based on Volume Entropy

    NASA Astrophysics Data System (ADS)

    Campisi, Michele

    2007-10-01

    As pointed out in [M. Campisi. Stud. Hist. Phil. M. P. 36 (2005) 275-290] the volume entropy (that is the logarithm of the volume of phase space enclosed by the constant energy hyper-surface) provides a good mechanical analogue of thermodynamic entropy because it satisfies the heat theorem and it is an adiabatic invariant. This property explains the ``equal'' sign in Clausius principle (Sf>=Si) in a purely mechanical way and suggests that the volume entropy might explain the ``larger than'' sign (i.e. the Law of Entropy Increase) if non adiabatic transformations were considered. Based on the principles of quantum mechanics here we prove that, provided the initial equilibrium satisfy the natural condition of decreasing ordering of probabilities, the expectation value of the volume entropy cannot decrease for arbitrary transformations performed by some external sources of work on a insulated system. This can be regarded as a rigorous quantum mechanical proof of the Second Law.

  6. Multi-Objective Reinforcement Learning-based Deep Neural Networks for Cognitive Space Communications

    NASA Technical Reports Server (NTRS)

    Ferreria, Paulo; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy; Bilen, Sven; Reinhart, Richard; Mortensen, Dale

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  7. Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications

    NASA Technical Reports Server (NTRS)

    Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  8. 24-26  GHz radio-over-fiber and free-space optics for fifth-generation systems.

    PubMed

    Bohata, Jan; Komanec, Matěj; Spáčil, Jan; Ghassemlooy, Zabih; Zvánovec, Stanislav; Slavík, Radan

    2018-03-01

    This Letter outlines radio-over-fiber combined with radio-over-free-space optics (RoFSO) and radio frequency free-space transmission, which is of particular relevance for fifth-generation networks. Here, the frequency band of 24-26 GHz is adopted to demonstrate a low-cost, compact, and high-energy-efficient solution based on the direct intensity modulation and direct detection scheme. For our proof-of-concept demonstration, we use 64 quadrature amplitude modulation with a 100 MHz bandwidth. We assess the link performance by exposing the RoFSO section to atmospheric turbulence conditions. Further, we show that the measured minimum error vector magnitude (EVM) is 4.7% and also verify that the proposed system with the free-space-optics link span of 100 m under strong turbulence can deliver an acceptable EVM of <9% with signal-to-noise ratio levels of 22 dB and 10 dB with and without turbulence, respectively.

  9. On Row Rank Equal Column Rank

    ERIC Educational Resources Information Center

    Khalili, Parviz

    2009-01-01

    We will prove a well-known theorem in Linear Algebra, that is, for any "m x n" matrix the dimension of row space and column space are the same. The proof is based on the subject of "elementary matrices" and "reduced row-echelon" form of a matrix.

  10. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Graham, Bart

    2016-01-01

    Dynetics has designed innovative structure assemblies; manufactured them using Friction Stir Welding (FSW) to leverage NASA investments in tools, facilities, and processes; conducted proof and burst testing, demonstrating viability of design/build processes Dynetics/AR has applied state-of-the-art manufacturing and processing techniques to the heritage F-1, reducing risk for engine development Dynetics/AR has also made progress on technology demonstrations for ORSC cycle engine, which offers affordability and performance for both NASA and other launch vehicles Full-scale integrated oxidizer-rich test article. Testing will evaluate performance and combustion stability characteristics. Contributes to technology maturation for ox-rich staged combustion engines.

  11. ORION - Crew Module Side Hatch: Proof Pressure Test Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Evernden, Brent A.; Guzman, Oscar J.

    2018-01-01

    The Orion Multi-Purpose Crew Vehicle program was performing a proof pressure test on an engineering development unit (EDU) of the Orion Crew Module Side Hatch (CMSH) assembly. The purpose of the proof test was to demonstrate structural capability, with margin, at 1.5 times the maximum design pressure, before integrating the CMSH to the Orion Crew Module structural test article for subsequent pressure testing. The pressure test was performed at lower pressures of 3 psig, 10 psig and 15.75 psig with no apparent abnormal behavior or leaking. During pressurization to proof pressure of 23.32 psig, a loud 'pop' was heard at 21.3 psig. Upon review into the test cell, it was noted that the hatch had prematurely separated from the proof test fixture, thus immediately ending the test. The proof pressure test was expected be a simple verification but has since evolved into a significant joint failure investigation from both Lockheed Martin and NASA.

  12. 7. WASTE CALCINING FACILITY, LOOKING AT NORTH END OF BUILDING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WASTE CALCINING FACILITY, LOOKING AT NORTH END OF BUILDING. CAMERA FACING SOUTH. TENT-ROOFED COVER IN RIGHT OF VIEW IS A TEMPORARY WEATHER-PROOFING SHELTER OVER THE BLOWER PIT IN CONNECTION WITH DEMOLITION PROCEDURES. SMALL BUILDING CPP-667 IN CENTER OF VIEW WAS USED FOR SUPPLEMENTARY OFFICE SPACE BY HEALTH PHYSICISTS AND OTHERS. INEEL PROOF SHEET NOT NUMBERED. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  13. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  14. The Cauchy-Schwarz Inequality and the Induced Metrics on Real Vector Spaces Mainly on the Real Line

    ERIC Educational Resources Information Center

    Ramasinghe, W.

    2005-01-01

    It is very well known that the Cauchy-Schwarz inequality is an important property shared by all inner product spaces and the inner product induces a norm on the space. A proof of the Cauchy-Schwarz inequality for real inner product spaces exists, which does not employ the homogeneous property of the inner product. However, it is shown that a real…

  15. The International Space Station Assembly on Schedule

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As engineers continue to prepare the International Space Station (ISS) for in-orbit assembly in the year 2002, ANSYS software has proven instrumental in resolving a structural problem in the project's two primary station modules -- Nodes 1 and 2. Proof pressure tests performed in May revealed "low temperature, post-yield creep" in some of the Nodes' gussets, which were designed to reinforce ports for loads from station keeping and reboost motion of the entire space station. An extensive effort was undertaken to characterize the creep behavior of the 2219-T851 aluminum forging material from which the gussets were made. Engineers at Sverdrup Technology, Inc. (Huntsville, AL) were responsible for conducting a combined elastic-plastic-creep analysis of the gussets to determine the amount of residual compressive stress which existed in the gussets following the proof pressure tests, and to determine the stress-strain history in the gussets while on-orbit. Boeing, NASA's Space Station prime contractor, supplied the Finite Element Analysis (FEA) model geometry and developed the creep equations from the experimental data taken by NASA's Marshall Space Flight Center and Langley Research Center. The goal of this effort was to implement the uniaxial creep equations into a three dimensional finite element program, and to determine analytically whether or not the creep was something that the space station program could live with. The objective was to show analytically that either the creep rate was at an acceptable level, or that the node module had to be modified to lower the stress levels to where creep did not occur. The elastic-plastic-creep analysis was performed using the ANSYS finite element program of ANSYS, Inc. (Houston, PA). The analysis revealed that the gussets encountered a compressive stress of approximately 30,000 pounds per square inch (psi) when unloaded. This compressive residual stress significantly lowered the maximum tension stress in the gussets which decreased the creep strain rate. The analysis also showed that the gussets would not experience a great deal of creep from future pressure tests if braces or struts proposed by Boeing were installed to redistribute stress away from them. Subsequent analysis of on-orbit station keeping and reboost loads convinced Boeing that the gussets should be removed altogether.

  16. Ultrametric properties of the attractor spaces for random iterated linear function systems

    NASA Astrophysics Data System (ADS)

    Buchovets, A. G.; Moskalev, P. V.

    2018-03-01

    We investigate attractors of random iterated linear function systems as independent spaces embedded in the ordinary Euclidean space. The introduction on the set of attractor points of a metric that satisfies the strengthened triangle inequality makes this space ultrametric. Then inherent in ultrametric spaces the properties of disconnectedness and hierarchical self-similarity make it possible to define an attractor as a fractal. We note that a rigorous proof of these properties in the case of an ordinary Euclidean space is very difficult.

  17. Leveraging the NPS Femto Satellite for Alternative Satellite Communication Networks

    DTIC Science & Technology

    2017-09-01

    the next-generation NPSFS. 14. SUBJECT TERMS space , Femto satellite, NPSFS, network, communication , Arduino, RockBlock, Iridium Modem 15. NUMBER...provides a proof of concept for using Naval Postgraduate School Femto Satellites (NPSFS) as an alternative communication space -based network. The...We need several physical and procedural elements to conduct communication through space and using the electromagnetic spectrum. 1. Power Any

  18. Three-Dimensional Printing in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki

    2015-01-01

    The 3D printing in zero-g (3D Print) technology demonstration project is a proof-of-concept test designed to assess the properties of melt deposition modeling additive manufacturing in the microgravity environment experienced on the International Space Station (ISS). This demonstration is the first step towards realizing a 'machine shop' in space, a critical enabling component of any deep space mission.

  19. Harmonizable Processes: Structure.

    DTIC Science & Technology

    1980-11-05

    Grothendieck and Pietsch , for * the work below. Definition 5.2 Let 1,4 be a pair of Banach spaces andas usual, B(1,4) be the space of bounded linear...IP)P P i=l I - (58) xi E 1, 1 i < n , n where x* E 1* , the adjoint space of I The following result of Grothendieck- Pietsch with a short proof may

  20. Microbial Monitoring of Common Opportunistic Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Oubre, Cherie M.; Birmele, Michele N.; Castro, Victoria A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.; Jones, Kathy U.; Singhal, Adesh; Johnston, Angela S.; Roman, Monserrate C.; Ozbolt, Tamra A.; hide

    2013-01-01

    Because the International Space Station is a closed environment with rotations of astronauts and equipment that each introduce their own microbial flora, it is necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor- and time-intensive methods to enumerate total bacterial and fungal cells, with limited characterization, during in-flight testing. Although this culture-based method is sufficient for monitoring the International Space Station, on future long-duration missions more detailed characterization will need to be performed during flight, as sample return and ground characterization may not be available. At a workshop held in 2011 at NASA's Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these long-term exploration missions, molecular-based methodologies such as polymerase chain reaction (PCR) were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for space flight environmental monitoring. The goal was to evaluate quantitative or semi-quantitative PCR approaches for low-cost in-flight rapid identification of microorganisms that could affect crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity. This phase was followed by proof-of-concept testing of the highest qualifying candidates with a universally available challenge organism, Salmonella enterica. The analysis identified two technologies that were able to perform sample-to-answer testing with initial cell sample concentrations between 50 and 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness.

  1. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  2. 47 CFR 76.1704 - Proof-of-performance test data.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-performance test data. (a) The proof of performance tests required by § 76.601 shall be maintained on file at... subscribers, subject to the requirements of § 76.601(d). Note to § 76.1704: If a signal leakage log is being... log must be retained for the period specified in § 76.601(d). ...

  3. 47 CFR 76.1704 - Proof-of-performance test data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-performance test data. (a) The proof of performance tests required by § 76.601 shall be maintained on file at... subscribers, subject to the requirements of § 76.601(d). Note to § 76.1704: If a signal leakage log is being... log must be retained for the period specified in § 76.601(d). ...

  4. Tackling Africa's digital divide

    NASA Astrophysics Data System (ADS)

    Lavery, Martin P. J.; Abadi, Mojtaba Mansour; Bauer, Ralf; Brambilla, Gilberto; Cheng, Ling; Cox, Mitchell A.; Dudley, Angela; Ellis, Andrew D.; Fontaine, Nicolas K.; Kelly, Anthony E.; Marquardt, Christoph; Matlhane, Selaelo; Ndagano, Bienvenu; Petruccione, Francesco; Slavík, Radan; Romanato, Filippo; Rosales-Guzmán, Carmelo; Roux, Filippus S.; Roux, Kobus; Wang, Jian; Forbes, Andrew

    2018-05-01

    Innovations in `sustainable' photonics technologies such as free-space optical links and solar-powered equipment provide developing countries with new cost-effective opportunities for deploying future-proof telecommunication networks.

  5. Temporal profile measurements of relativistic electron bunch based on wakefield generation

    DOE PAGES

    Bettoni, S.; Craievich, P.; Lutman, A. A.; ...

    2016-02-25

    A complete characterization of the time-resolved longitudinal beam phase space is important to optimize the final performances of an accelerator, and in particular this is crucial for Free Electron Laser (FEL) facilities. In this study we propose a novel method to characterize the profile of a relativistic electron bunch by passively streaking the beam using its self-interaction with the transverse wakefield excited by the bunch itself passing off-axis through a dielectric-lined or a corrugated waveguide. Results of a proof-of-principle experiment at the SwissFEL Injector Test Facility are discussed.

  6. Fault-tolerant optimised tracking control for unknown discrete-time linear systems using a combined reinforcement learning and residual compensation methodology

    NASA Astrophysics Data System (ADS)

    Han, Ke-Zhen; Feng, Jian; Cui, Xiaohong

    2017-10-01

    This paper considers the fault-tolerant optimised tracking control (FTOTC) problem for unknown discrete-time linear system. A research scheme is proposed on the basis of data-based parity space identification, reinforcement learning and residual compensation techniques. The main characteristic of this research scheme lies in the parity-space-identification-based simultaneous tracking control and residual compensation. The specific technical line consists of four main contents: apply subspace aided method to design observer-based residual generator; use reinforcement Q-learning approach to solve optimised tracking control policy; rely on robust H∞ theory to achieve noise attenuation; adopt fault estimation triggered by residual generator to perform fault compensation. To clarify the design and implementation procedures, an integrated algorithm is further constructed to link up these four functional units. The detailed analysis and proof are subsequently given to explain the guaranteed FTOTC performance of the proposed conclusions. Finally, a case simulation is provided to verify its effectiveness.

  7. Hybrid Techniques for Quantum Circuit Simulation

    DTIC Science & Technology

    2014-02-01

    Detailed theorems and proofs describing these results are included in our published manuscript [10]. Embedding of stabilizer geometry in the Hilbert ...space. We also describe how the discrete embedding of stabilizer geometry in Hilbert space complicates several natural geometric tasks. As described...the Hilbert space in which they are embedded, and that they are arranged in a fairly uniform pattern. These factors suggest that, if one seeks a

  8. Sharing Data between Mobile Devices, Connected Vehicles and Infrastructure Task 8 : D2X Hub Proof-of-Concept Test Evaluation Report.

    DOT National Transportation Integrated Search

    2017-10-25

    The Task 8 D2X Hub Proof-of-Concept Test Evaluation Report provides results of the experimental data analysis performed in accordance with the experimental plan for the proof-of-concept version of the prototype system. The data set analyzed includes ...

  9. US NDC Modernization: Service Oriented Architecture Proof of Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlet, Benjamin R.; Encarnacao, Andre Villanova; Jackson, Keilan R.

    2014-12-01

    This report is a progress update on the US NDC Modernization Service Oriented Architecture (SOA) study describing results from a proof of concept project completed from May through September 2013. Goals for this proof of concept are 1) gain experience configuring, using, and running an Enterprise Service Bus (ESB), 2) understand the implications of wrapping existing software in standardized interfaces for use as web services, and 3) gather performance metrics for a notional seismic event monitoring pipeline implemented using services with various data access and communication patterns. The proof of concept is a follow on to a previous SOA performancemore » study. Work was performed by four undergraduate summer student interns under the guidance of Sandia staff.« less

  10. Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols

    NASA Technical Reports Server (NTRS)

    Schoolcraft, Joshua; Wilson, Keith

    2011-01-01

    Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of reliably delivering data at relatively high rates. Finally, performance characterizations from this data suggest performance optimizations to configuration and protocols for future optical-specific DTN space link scenarios.

  11. Modeling AWSoM CMEs with EEGGL: A New Approach for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Jin, M.; Manchester, W.; van der Holst, B.; Sokolov, I.; Toth, G.; Vourlidas, A.; de Koning, C. A.; Gombosi, T. I.

    2015-12-01

    The major source of destructive space weather is coronal mass ejections (CMEs). However, our understanding of CMEs and their propagation in the heliosphere is limited by the insufficient observations. Therefore, the development of first-principals numerical models plays a vital role in both theoretical investigation and providing space weather forecasts. Here, we present results of the simulation of CME propagation from the Sun to 1AU by combining the analytical Gibson & Low (GL) flux rope model with the state-of-art solar wind model AWSoM. We also provide an approach for transferring this research model to a space weather forecasting tool by demonstrating how the free parameters of the GL flux rope can be prescribed based on remote observations via the new Eruptive Event Generator by Gibson-Low (EEGGL) toolkit. This capability allows us to predict the long-term evolution of the CME in interplanetary space. We perform proof-of-concept case studies to show the capability of the model to capture physical processes that determine CME evolution while also reproducing many observed features both in the corona and at 1 AU. We discuss the potential and limitations of this model as a future space weather forecasting tool.

  12. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet; Cencer, Daniel

    2015-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for long-duration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  13. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet

    2014-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for longduration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  14. On the nonlinear stability of mKdV breathers

    NASA Astrophysics Data System (ADS)

    Alejo, Miguel A.; Muñoz, Claudio

    2012-11-01

    Breather modes of the mKdV equation on the real line are known to be elastic under collisions with other breathers and solitons. This fact indicates very strong stability properties of breathers. In this communication we describe a rigorous, mathematical proof of the stability of breathers under a class of small perturbations. Our proof involves the existence of a nonlinear equation satisfied by all breather profiles, and a new Lyapunov functional which controls the dynamics of small perturbations and instability modes. In order to construct such a functional, we work in a subspace of the energy one. However, our proof introduces new ideas in order to attack the corresponding stability problem in the energy space. Some remarks about the sine-Gordon case are also considered.

  15. Proof of a Dain inequality with charge

    NASA Astrophysics Data System (ADS)

    Lopes Costa, João

    2010-07-01

    We prove an upper bound for angular momentum and charge in terms of the mass for electro-vacuum asymptotically flat axisymmetric initial data sets with simply connected orbit space. This completes the work started in (Chruściel and Costa 2009 Class. Quantum Grav. 26 235013 (arXiv:gr-qc/0909.5625)) where this charged Dain inequality was first presented but where the proof of the main result, based on the methods of Chruściel et al (Ann. Phys. 2008 323 2591-613 (arXiv:gr-qc/0712.4064v2)), was only sketched. Here we present a complete proof while simplifying the methods suggested by Chruściel and Costa (2009 Class. Quantum Grav. 26 235013 (arXiv:gr-qc/0909.5625)).

  16. Matrix Models and A Proof of the Open Analog of Witten's Conjecture

    NASA Astrophysics Data System (ADS)

    Buryak, Alexandr; Tessler, Ran J.

    2017-08-01

    In a recent work, R. Pandharipande, J. P. Solomon and the second author have initiated a study of the intersection theory on the moduli space of Riemann surfaces with boundary. They conjectured that the generating series of the intersection numbers satisfies the open KdV equations. In this paper we prove this conjecture. Our proof goes through a matrix model and is based on a Kontsevich type combinatorial formula for the intersection numbers that was found by the second author.

  17. Markov Property of the Conformal Field Theory Vacuum and the a Theorem.

    PubMed

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-06-30

    We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.

  18. Security of continuous-variable quantum key distribution against general attacks.

    PubMed

    Leverrier, Anthony; García-Patrón, Raúl; Renner, Renato; Cerf, Nicolas J

    2013-01-18

    We prove the security of Gaussian continuous-variable quantum key distribution with coherent states against arbitrary attacks in the finite-size regime. In contrast to previously known proofs of principle (based on the de Finetti theorem), our result is applicable in the practically relevant finite-size regime. This is achieved using a novel proof approach, which exploits phase-space symmetries of the protocols as well as the postselection technique introduced by Christandl, Koenig, and Renner [Phys. Rev. Lett. 102, 020504 (2009)].

  19. An elementary proof of a criterion for linear disjointness

    NASA Astrophysics Data System (ADS)

    Dobbs, David E.

    2013-06-01

    An elementary proof using matrix theory is given for the following criterion: if F/K and L/K are field extensions, with F and L both contained in a common extension field, then F and L are linearly disjoint over K if (and only if) some K-vector space basis of F is linearly independent over L. The material in this note could serve as enrichment material for the unit on fields in a first course on abstract algebra.

  20. The data distribution satellite system

    NASA Technical Reports Server (NTRS)

    Bruno, Ronald C.; Weinberg, Aaron

    1991-01-01

    The Data Distributed Satellite (DDS) will be capable of providing the space research community with inexpensive and easy access to space payloads and space data. Furthermore, the DDS is shown to be a natural outgrowth of advances and evolution in both NASA's Space Network and commercial satellite communications. The roadmap and timescale for this evolution is described along with key demonstrations, proof-of-concept models, and required technology development that will support the projected system evolution toward the DDS.

  1. Auditory Space Perception in Left- and Right-Handers

    ERIC Educational Resources Information Center

    Ocklenburg, Sebastian; Hirnstein, Marco; Hausmann, Markus; Lewald, Jorg

    2010-01-01

    Several studies have shown that handedness has an impact on visual spatial abilities. Here we investigated the effect of laterality on auditory space perception. Participants (33 right-handers, 20 left-handers) completed two tasks of sound localization. In a dark, anechoic, and sound-proof room, sound stimuli (broadband noise) were presented via…

  2. Fractals and Chaos

    DTIC Science & Technology

    1991-06-01

    22 C. AFFINE TRANSFORMATIONS OF THE PLANE ........................... 25 D. CONTRACTION MAPPINGS OF THE SPACE gi(X...Henri Poincare (1854-1912) knew about chaos in dynamical systems in the late nineteenth century. Additionally, the French mathematicians Pierre Fatou...portion) are presented in the Euclidean plane , with a brief mention of more abstract spaces where applicable. Mathematical proofs that can be

  3. A Characterization of Banach Spaces Containing l1

    PubMed Central

    Rosenthal, Haskell P.

    1974-01-01

    It is proved that a Banach space contains a subspace isomorphic to l1 if (and only if) it has a bounded sequence with no weak-Cauchy subsequence. The proof yields that a sequence of subsets of a given set has a subsequence that is either convergent or Boolean independent. PMID:16592162

  4. Elastic Properties in Tension and Shear of High Strength Nonferrous Metals and Stainless Steel - Effect of Previous Deformation and Heat Treatment

    NASA Technical Reports Server (NTRS)

    Mebs, R W; Mcadam, D J

    1947-01-01

    A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing were removed. Comparison is also obtained between the variation of the several properties, as measured in tension and in shear. The rise of proof stress with extension is studied, and the work-hardening rates of the various metals evaluated. The ratio between the tensile and shear proof stresses for the various annealed and cold-worked tubular metals is likewise calculated. The influence of annealing or tempering temperature on the proof stresses and moduli for the cold-worked metals and for air-hardened 13:2 Cr-Ni steel is investigated. An improvement of elastic strength generally is obtained, without important loss of yield strength, by annealing at suitable temperature. The variation of the proof stress and modulus of elasticity with plastic deformation or annealing temperature is explained in terms of the relative dominance of three important factors: namely, (a) internal stress, (b) lattice-expansion or work-hardening, and (c) crystal reorientation. Effective values of Poisson's ratio were computed from tensile and shear moduli obtained on tubular specimens. The variation of Poisson's ratio with plastic deformation and annealing temperature is explained in terms of the degree of anisotropy produced by changes of (a) internal stress and (b) crystal orientation.

  5. [Growth and development of plants in a row of generations under the conditions of space flight (experiment Greenhouse-5)

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Sychev, V. N.; Derendiaeva, T. A.; Signalova, O. B.; Podol'skii, I. G.; Avdeev, S. V.; Bingheim, G. E.; Campbell, W. F. (Principal Investigator)

    2001-01-01

    Results of the experiment aimed at harvesting a second space generation of wheat var. Apogee in Mir greenhouse Svet (experiment GREENHOUSE-5) are presented. In space flight, germination rate of space seeds from the first crop made up 89% against 100% of the ground seeds. The full biological ripeness was observed in 20 plants grown from the ground seeds and one plant grown from the space seeds following 80- to 90-d vegetation. The plant of the second space generation was morphologically different neither from the species in the first space crop nor from the ground controls. To study the biological characteristics of Apogee seeds gathered in the first and second crops in spaceflight experiment GREENHOUSE-5, the seeds were planted on their return to the laboratory. Morphometric analysis showed that they were essentially similar to the controls. Hence, the space experiments in Mir greenhouse Svet performed during 1998-1999 gave proof that plants cultivated in microgravity can pass the ontogenetic cycle more than once. However, initial results of the investigations into growth and development of plants through several generations are still in-sufficient to speak of possible delayed effects of the spaceflight factors (microgravity, multicomponent radiation, harmful trace contaminants etc.).

  6. Controlled assembly and single electron charging of monolayer protected Au144 clusters: an electrochemistry and scanning tunneling spectroscopy study

    NASA Astrophysics Data System (ADS)

    Bodappa, Nataraju; Fluch, Ulrike; Fu, Yongchun; Mayor, Marcel; Moreno-García, Pavel; Siegenthaler, Hans; Wandlowski, Thomas

    2014-11-01

    Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03793f

  7. Development of the Facet Cryostat

    NASA Technical Reports Server (NTRS)

    Nash, A.; Shields, P.; Jirmanus, M.

    1999-01-01

    A proof of concept prototype cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier on the Space Shuttle.

  8. NASA. Lewis Research Center Advanced Modulation and Coding Project: Introduction and overview

    NASA Technical Reports Server (NTRS)

    Budinger, James M.

    1992-01-01

    The Advanced Modulation and Coding Project at LeRC is sponsored by the Office of Space Science and Applications, Communications Division, Code EC, at NASA Headquarters and conducted by the Digital Systems Technology Branch of the Space Electronics Division. Advanced Modulation and Coding is one of three focused technology development projects within the branch's overall Processing and Switching Program. The program consists of industry contracts for developing proof-of-concept (POC) and demonstration model hardware, university grants for analyzing advanced techniques, and in-house integration and testing of performance verification and systems evaluation. The Advanced Modulation and Coding Project is broken into five elements: (1) bandwidth- and power-efficient modems; (2) high-speed codecs; (3) digital modems; (4) multichannel demodulators; and (5) very high-data-rate modems. At least one contract and one grant were awarded for each element.

  9. Maximum efficiency of state-space models of nanoscale energy conversion devices

    NASA Astrophysics Data System (ADS)

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  10. Maximum efficiency of state-space models of nanoscale energy conversion devices.

    PubMed

    Einax, Mario; Nitzan, Abraham

    2016-07-07

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  11. Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

    NASA Technical Reports Server (NTRS)

    Holder, Don; Fort, James; Barone, Michael; Murdoch, Karen

    2005-01-01

    A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gasfliquid separation and pump the liquid from 10 psia at the gasfliquid interface to 18 psia at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump @SP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor. The innovation of the DSP is the drum shaped rotating assembly that acts as the accumulator and also pumps the liquid at much less power than its predecessors. In the CRA application, the separator will rotate at slow speed while accumulating water. Once full, the separator will increase speed to generate sufficient head to pump the water to the wastewater bus. A proof-of- concept (POC) separator has been designed, fabricated and tested to assess the separation efficiency and pumping head of the design. This proof-of-concept item was flown aboard the KC135 to evaluate the effectiveness of the separator in a microgravity environment. This separator design has exceeded all of the performance requirements. The next step in the separator development is to integrate it into the Sabatier Carbon Dioxide Reduction System. This will be done with the Sabatier Engineering Development Unit at the Johnson Space Center.

  12. Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.

  13. Lightweight Radiator for in Space Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  14. An integrated experimental and computational approach to material selection for sound proof thermally insulted enclosure of a power generation system

    NASA Astrophysics Data System (ADS)

    Waheed, R.; Tarar, W.; Saeed, H. A.

    2016-08-01

    Sound proof canopies for diesel power generators are fabricated with a layer of sound absorbing material applied to all the inner walls. The physical properties of the majority of commercially available sound proofing materials reveal that a material with high sound absorption coefficient has very low thermal conductivity. Consequently a good sound absorbing material is also a good heat insulator. In this research it has been found through various experiments that ordinary sound proofing materials tend to rise the inside temperature of sound proof enclosure in certain turbo engines by capturing the heat produced by engine and not allowing it to be transferred to atmosphere. The same phenomenon is studied by creating a finite element model of the sound proof enclosure and performing a steady state and transient thermal analysis. The prospects of using aluminium foam as sound proofing material has been studied and it is found that inside temperature of sound proof enclosure can be cut down to safe working temperature of power generator engine without compromise on sound proofing.

  15. Space Environment Stability and Physical Properties of New Materials for Space Power and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    1997-01-01

    Useful and informative results were obtained on virtually all materials investigated. For example, the stability of ITO-based arc-proof transparent coatings was greatly improved by substitution of silicon oxide for magnesium fluoride as a dopant. Research on 'air-doped' ITO films has yielded new insight into their conduction mechanism which will help in further development of these coatings. Some air-doped films were found to be extremely pressure sensitive. This work may lead to improved, low-cost gas sensors and vacuum gauges. Work on another promising transparent arc-proof coating (titanium oxide) was initiated in collaboration with industry. Graphite oxide-like materials were synthesized and tested for possible use in high energy-density batteries and other applications. We also started a high-priority project to find the cause of unexpected environmental damage to the exterior of the Hubble Space Telescope (HST) discovered on a recent Shuttle mission. Materials were characterized before and after exposure to soft x-rays and other threats in ground-based simulators.

  16. 47 CFR 73.154 - AM directional antenna partial proof of performance measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... available to the FCC upon request. Maps showing new measurement points, i.e., points not measured in the...) Measurement points shall be selected from the points measured in latest full proof of performance provided..., the licensee shall measure directional field strength for comparison to either the directional or the...

  17. Peer Review of a Formal Verification/Design Proof Methodology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The role of formal verification techniques in system validation was examined. The value and the state of the art of performance proving for fault-tolerant compuers were assessed. The investigation, development, and evaluation of performance proving tools were reviewed. The technical issues related to proof methodologies are examined. The technical issues discussed are summarized.

  18. Deep flaws in weldments of aluminum and titanium

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Engstrom, W. L.; Bixler, W. D.

    1974-01-01

    Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy.

  19. A free-piston Stirling cryocooler using metal diaphragms

    NASA Astrophysics Data System (ADS)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-12-01

    A novel concept for a free-piston Stirling cryocooler has been proposed. The concept uses a pair of metal diaphragms to seal and suspend the displacer of a free-piston Stirling cryocooler. The diaphragms allow the displacer to move without rubbing or moving seals, potentially resulting in a long-life mechanism. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicates the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. Sage predicted the macroscopic behaviour of the prototype well but did not provide sufficient insights to improve performance significantly. This paper presents details of the development, modelling and testing of the proof-of-concept prototype and a second, improved prototype.

  20. An Elementary Treatment of General Inner Products

    ERIC Educational Resources Information Center

    Graver, Jack E.

    2011-01-01

    A typical first course on linear algebra is usually restricted to vector spaces over the real numbers and the usual positive-definite inner product. Hence, the proof that dim(S)+ dim(S[perpendicular]) = dim("V") is not presented in a way that is generalizable to non-positive?definite inner products or to vector spaces over other fields. In this…

  1. KSC-95PC-0239

    NASA Image and Video Library

    1995-11-26

    KENNEDY SPACE CENTER, FLA. - Co-located on the Kennedy Space Center is the Merritt Island National Wildlife Refuge, one of the finest refuges in the world. Here, birds, amphibians, mammals and other wild creatures thrive in a multitude of habitats untouched by the human hand. The refuge is living proof that high technology and nature can successfully co-exist. Photo credit: NASA

  2. Photogrammetric Assessment of the Hubble Space Telescope Solar Arrays During the Second Servicing Mission

    NASA Technical Reports Server (NTRS)

    Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.

    1998-01-01

    This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.

  3. Fluid to fluid contact heat exchanger

    NASA Technical Reports Server (NTRS)

    Clark, W. E.

    1986-01-01

    Heat transfer and pressure drop test results for a fluid to fluid contact heat exchanger are reported. The heat exchanger, fabricated and tested to demonstrate one method of transferring heat between structures in space, had a total contact area of 0.18 sq m. It utilized contact surfaces which were flexible and conformed to the mating contact surfaces upon pressurization of the fluid circulating within the heat exchanger. During proof-of-concept performance tests, the heat exchanger was operated in a typical earth environment. It demonstrated a contact conductance of 3.8 kW/sq m C at contact pressures in the 15 to 70 kPa range.

  4. Development of a Thermal Isolation Structure for Aerospace Cryogenic Instruments

    NASA Technical Reports Server (NTRS)

    Nash, A.; Robeck, L.

    1999-01-01

    A proof of concept prototype cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier on the space shuttle.

  5. Sequential Data Assimilation for Seismicity: a Proof of Concept

    NASA Astrophysics Data System (ADS)

    van Dinther, Y.; Fichtner, A.; Kuensch, H. R.

    2015-12-01

    Our physical understanding and probabilistic forecasting ability of earthquakes is significantly hampered by limited indications of the state of stress and strength on faults and their governing parameters. Using the sequential data assimilation framework developed in meteorology and oceanography (e.g., Evensen, JGR, 1994) and a seismic cycle forward model based on Navier-Stokes Partial Differential Equations (van Dinther et al., JGR, 2013), we show that such information with its uncertainties is within reach, at least for laboratory setups. We aim to provide the first, thorough proof of concept for seismicity related PDE applications via a perfect model test of seismic cycles in a simplified wedge-like subduction setup. By evaluating the performance with respect to known numerical input and output, we aim to answer wether there is any probabilistic forecast value for this laboratory-like setup, which and how many parameters can be constrained, and how much data in both space and time would be needed to do so. Thus far our implementation of an Ensemble Kalman Filter demonstrated that probabilistic estimates of both the state of stress and strength on a megathrust fault can be obtained and utilized even when assimilating surface velocity data at a single point in time and space. An ensemble-based error covariance matrix containing velocities, stresses and pressure links surface velocity observations to fault stresses and strengths well enough to update fault coupling accordingly. Depending on what synthetic data show, coseismic events can then be triggered or inhibited.

  6. Guidelines for Proof Test Analysis

    NASA Technical Reports Server (NTRS)

    Chell, G. G.; McClung, R. C.; Kuhlman, C. J.; Russell, D. A.; Garr, K.; Donnelly, B.

    1999-01-01

    These guidelines integrate state-of-the-art elastic-plastic fracture mechanics (EPFM) and proof test implementation issues into a comprehensive proof test analysis procedure in the form of a road map which identifies the types of data, fracture mechanics based parameters, and calculations needed to perform flaw screening and minimum proof load analyses of fracture critical components. Worked examples are presented to illustrate the application of the road map to proof test analysis. The state-of-the art fracture technology employed in these guidelines is based on the EPFM parameter, J, and a pictorial representation of a J fracture analysis, called the failure assessment diagram (FAD) approach. The recommended fracture technology is validated using finite element J results, and laboratory and hardware fracture test results on the nickel-based superalloy Inconel 718, the aluminum alloy 2024-T3511, and ferritic pressure vessel steels. In all cases the laboratory specimens and hardware failed by ductile mechanisms. Advanced proof test analyses involving probability analysis and multiple-cycle proof testing (MCPT) are addressed. Finally, recommendations are provided on how to account for the effects of the proof test overload on subsequent service fatigue and fracture behaviors.

  7. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  8. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60wt%Ni, 40wt%Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high titanium content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of titanium and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of titanium alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is studied.

  9. The Propulsion Center at MSFC

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold; Schmidt, George R. (Technical Monitor)

    2000-01-01

    The Propulsion Research Center at MSFC serves as a national resource for research of advanced, revolutionary propulsion technologies. Our mission is to move the nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft like access to earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space. Current efforts cover a wide range of exciting areas, including high-energy plasma thrusters, advanced fission and fusion engines, antimatter propulsion systems, beamed energy rockets and sails, and fundamental motive physics. Activities involve concept investigation, proof-of-concept demonstration, and breadboard validation of new propulsion systems. The Propulsion Research Center at MSFC provides an environment where NASA, national laboratories, universities, and industry researchers can pool their skills together to perform landmark propulsion achievements. We offer excellent educational opportunities to students and young researchers-fostering a wellspring of innovation that will revolutionize space transportation.

  10. Stockholder projector analysis: A Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors

    NASA Astrophysics Data System (ADS)

    Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel

    2012-01-01

    A previously introduced partitioning of the molecular one-electron density matrix over atoms and bonds [D. Vanfleteren et al., J. Chem. Phys. 133, 231103 (2010)] is investigated in detail. Orthogonal projection operators are used to define atomic subspaces, as in Natural Population Analysis. The orthogonal projection operators are constructed with a recursive scheme. These operators are chemically relevant and obey a stockholder principle, familiar from the Hirshfeld-I partitioning of the electron density. The stockholder principle is extended to density matrices, where the orthogonal projectors are considered to be atomic fractions of the summed contributions. All calculations are performed as matrix manipulations in one-electron Hilbert space. Mathematical proofs and numerical evidence concerning this recursive scheme are provided in the present paper. The advantages associated with the use of these stockholder projection operators are examined with respect to covalent bond orders, bond polarization, and transferability.

  11. Flow measurements in a water tunnel using a holocinematographic velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.; Beeler, George B.

    1987-01-01

    Dual-view holographic movies were used to examine complex flows with full three-space and time resolution. This approach, which tracks the movement of small tracer particles in water, is termed holocinematographic velocimetry (HCV). A small prototype of a new water tunnel was used to demonstrate proof-of-concept for the HCV. After utilizing a conventional flow visualization apparatus with a laser light sheet to illuminate tracer particles to evaluate flow quality of the prototype tunnel, a simplified version of the HCV was employed to demonstrate the capabilities of the approach. Results indicate that a full-scale version of the water tunnel and a high performance version of the HCV should be able to check theoretical and numerical modeling of complex flows and examine the mechanisms operative in turbulent and vortex flow control concepts, providing an entirely unique instrument capable, for the first time, of simultaneous three-space and time measurements in turbulent flow.

  12. Design and integrated operation of an innovative thermodynamic vent system concept

    NASA Astrophysics Data System (ADS)

    Fazah, Michel M.; Lak, Tibor; Nguyen, Han; Wood, Charles C.

    1993-06-01

    A unique zero-g thermodynamic vent system (TVS) is being developed by NASA's Marshall Space Flight Center (MSFC) and Rockwell International to meet cryogenic propellant management requirements for future space missions. The design is highly innovative in that it integrates the functions of a spray-bar tank mixer and a TVS. This concept not only satisfies the requirement for efficient tank mixing and zero-g venting but also accommodates thermal conditioning requirements for other components (e.g., engine feed lines, turbopumps, and liquid acquisition devices). In addition, operations can be extended to accomplish tank chill-down, no-vent fill, and emergency venting during zero-g propellant transfer. This paper describes the system performance characterization and future test activities that are part of MSFC's Multipurpose Hydrogen Test Bed (MHTB) program. The testing will demonstrate the feasibility and merit of the design, and serve as a proof-of-concept development activity.

  13. Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces

    NASA Astrophysics Data System (ADS)

    Chen, Dongxiang; Wang, Yuxi; Zhang, Zhifei

    2018-05-01

    By using the paralinearization technique, we prove the well-posedness of the Prandtl equation for monotonic data in anisotropic Sobolev space with exponential weight and low regularity. The proof is very elementary, thus is expected to provide a new possible way for the zero-viscosity limit problem of the Navier-Stokes equations with the non-slip boundary condition.

  14. The Concept of General Relativity is not Related to Reality

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald

    2015-04-01

    The concept of general relativity is not related to reality. It is not real or factual Science. GR cannot account for objects falling to earth or for the weight of objects sitting on the earth. The Cavendish demonstration showing the attraction between two masses at right angles to earth's gravity, is not explained by GR. No one can prove the existence of ``space fabric.'' The concept of ``space time'' effects causing gravitational attraction between masses is wrong. Conservation law of energy - momentum does not exist in GR. LIGO fails in detecting ``gravity waves'' because there is no ``space fabric'' to transmit them. The Gravity B Probe data manipulated to show some effects, is not proof of ``space fabric.'' It is Nuclear Quantum Gravitation that provides clear definitive explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and Scientific Logic. Nuclear Quantum Gravitation has 10 clear, Scientific proofs and 21 more good indications. With this theory the Physical Forces are Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli-foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics, by Paul Marmet http://www.newtonphysics.on.ca/einstein/

  15. Space Station propulsion electrolysis system - 'A technology challenge'

    NASA Technical Reports Server (NTRS)

    Le, Michael

    1989-01-01

    The Space Station propulsion system will utilize a water electrolysis system to produce the required eight-to-one ratio of gaseous hydrogen and oxygen propellants. This paper summarizes the state of the art in water electrolysis technologies and the supporting development programs at the NASA Lyndon B. Johnson Space Center. Preliminary proof of concept test data from a fully integrated propulsion testbed are discussed. The technical challenges facing the development of the high-pressure water electrolysis system are discussed.

  16. The SupraThermal Ion Monitor for space weather predictions.

    PubMed

    Allegrini, F; Desai, M I; Livi, S; McComas, D J; Ho, G C

    2014-05-01

    Measurement of suprathermal energy ions in the heliosphere has always been challenging because (1) these ions are situated in the energy regime only a few times higher than the solar wind plasma, where intensities are orders of magnitude higher and (2) ion energies are below or close to the threshold of state-of-art solid-state detectors. Suprathermal ions accelerated at coronal mass ejection-driven shocks propagate out ahead of the shocks. These shocks can cause geomagnetic storms in the Earth's magnetosphere that can affect spacecraft and ground-based power and communication systems. An instrument with sufficient sensitivity to measure these ions can be used to predict the arrival of the shocks and provide an advance warning for potentially geo-effective space weather. In this paper, we present a novel energy analyzer concept, the Suprathermal Ion Monitor (STIM) that is designed to measure suprathermal ions with high sensitivity. We show results from a laboratory prototype and demonstrate the feasibility of the concept. A list of key performances is given, as well as a discussion of various possible detectors at the back end. STIM is an ideal candidate for a future space weather monitor in orbit upstream of the near-earth environment, for example, around L1. A scaled-down version is suitable for a CubeSat mission. Such a platform allows proofing the concept and demonstrating its performance in the space environment.

  17. Free-space optical communication link performance enhancement via modified receiver geometric characteristics

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Kratovil, Patrick T.; Tucker, Sara C.; Vallestero, Neil J.; Khusid, Mark

    2004-01-01

    A free-space, line-of-sight, ground-based optical link at 1.5 microns is attractive for tactical communications because it would provide eye-safety, covertness and jam-proof operation. However, the effects of atmospheric turbulence have to be appropriately mitigated for achieving acceptable bit-error-rate (BER) for reliable dissemination of information. Models to predict achievable BER at 1.5 microns for several beam propagation schemes that include beam scanning have been developed for various turbulence conditions. In this paper, we report performance characterization of free-space, high-data (>1Gb/s) rate beam propagation parameters at 1.5 microns for achieving BER reduction under the presence of turbulence. For standard free-space optical links, the mean SNR limits the achievable BER to lesser than 10-6 for Cn2 (structure constant of refractive index fluctuations) around 10-12 m-2/3. To validate these models, simultaneous measurements of structure constant of refractive index fluctuations, Cn2, and coherence diameter over tactical ranges have been carried out and analyzed. The effect of input beam conditioning to reduce BER levels have been explored. Furthermore, single and multiple transmit beams in conjunction with single and multiple detector arrangements have been examined. Based on these measurements, it is shown that the advantages of input beam conditioning coupled with modified receiver geometric characteristics would provide a path for BER reduction and hence, appreciable enhancements in data link reliability.

  18. Every timelike geodesic in Anti-de Sitter spacetime is a circle of the same radius

    NASA Astrophysics Data System (ADS)

    Sokołowski, Leszek M.; Golda, Zdzisław A.

    2016-10-01

    In this paper, we refine and analytically prove an old proposition due to Calabi and Markus on the shape of timelike geodesics of anti-de Sitter space in the ambient flat space. We prove that each timelike geodesic forms in the ambient space a circle of the radius determined by Λ, lying on a Euclidean two-plane. Then, we outline an alternative proof for AdS4. We also make a comment on the shape of timelike geodesics in de Sitter space.

  19. On the existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space Mp,q (R)

    NASA Astrophysics Data System (ADS)

    Chaichenets, Leonid; Hundertmark, Dirk; Kunstmann, Peer; Pattakos, Nikolaos

    2017-10-01

    We prove global existence for the one-dimensional cubic nonlinear Schrödinger equation in modulation spaces Mp,p‧ for p sufficiently close to 2. In contrast to known results, [9] and [14], our result requires no smallness condition on initial data. The proof adapts a splitting method inspired by work of Vargas-Vega, Hyakuna-Tsutsumi and Grünrock to the modulation space setting and exploits polynomial growth of the free Schrödinger group on modulation spaces.

  20. Games with fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Messaoud, Deghdak

    2010-11-01

    In this paper, we study the existence of equilibrium in non-cooperative game with fuzzy parameters. We generalize te results of Larbani and Kacher(2008, 2009) in infinite dimentional spaces. The proof is based on the Browder-Fan fixed point theorem.

  1. Interferometer for Space Station Windows

    NASA Technical Reports Server (NTRS)

    Hall, Gregory

    2003-01-01

    Inspection of space station windows for micrometeorite damage would be a difficult task insitu using current inspection techniques. Commercially available optical profilometers and inspection systems are relatively large, about the size of a desktop computer tower, and require a stable platform to inspect the test object. Also, many devices currently available are designed for a laboratory or controlled environments requiring external computer control. This paper presents an approach using a highly developed optical interferometer to inspect the windows from inside the space station itself using a self- contained hand held device. The interferometer would be capable as a minimum of detecting damage as small as one ten thousands of an inch in diameter and depth while interrogating a relatively large area. The current developmental state of this device is still in the proof of concept stage. The background section of this paper will discuss the current state of the art of profilometers as well as the desired configuration of the self-contained, hand held device. Then, a discussion of the developments and findings that will allow the configuration change with suggested approaches appearing in the proof of concept section.

  2. Space and Missile Systems Center Standard: Space Flight Pressurized Systems

    DTIC Science & Technology

    2015-02-28

    24 5.7.2 Fire Resistant Fluids ......................................................................................... 24 5.7.3...connections. 5.1.7 Threaded Parts [5.1.7-1] All threaded parts in components shall be securely locked to resist uncoupling forces by acceptable safe... Resistant Fluids [5.7.2-1] Fire resistant or flame proof hydraulic fluid shall be used where the system design can expose hydraulic fluid to potential

  3. A Back-to-Front Derivation: The Equal Spacing of Quantum Levels Is a Proof of Simple Harmonic Oscillator Physics

    ERIC Educational Resources Information Center

    Andrews, David L.; Romero, Luciana C. Davila

    2009-01-01

    The dynamical behaviour of simple harmonic motion can be found in numerous natural phenomena. Within the quantum realm of atomic, molecular and optical systems, two main features are associated with harmonic oscillations: a finite ground-state energy and equally spaced quantum energy levels. Here it is shown that there is in fact a one-to-one…

  4. NASA Contractor Report: Guidelines for Proof Test Analysis

    NASA Technical Reports Server (NTRS)

    Chell, G. G.; McClung, R. C.; Kuhlman, C. J.; Russell, D. A.; Garr, K.; Donnelly, B.

    1997-01-01

    These Guidelines integrate state-of-the-art Elastic-Plastic Fracture Mechanics (EPFM) and proof test implementation issues into a comprehensive proof test analysis procedure in the form of a Road Map which identifies the types of data, fracture mechanics based parameters, and calculations needed to perform flaw screening and minimum proof load analyses of fracture critical components. Worked examples are presented to illustrate the application of the Road Map to proof test analysis. The state-of-the-art fracture technology employed in these Guidelines is based on the EPFM parameter, J, and a pictorial representation of a J fracture analysis, called the Failure Assessment Diagram (FAD) approach. The recommended fracture technology is validated using finite element J results, and laboratory and hardware fracture test results on the nickel-based superalloy IN-718, the aluminum alloy 2024-T351 1, and ferritic pressure vessel steels. In all cases the laboratory specimens and hardware failed by ductile mechanisms. Advanced proof test analyses involving probability analysis and Multiple Cycle Proof Testing (MCPT) are addressed. Finally, recommendations are provided on to how to account for the effects of the proof test overload on subsequent service fatigue and fracture behaviors.

  5. Computer-Supported Feedback Message Tailoring for Healthcare Providers in Malawi: Proof-of-Concept.

    PubMed

    Landis-Lewis, Zach; Douglas, Gerald P; Hochheiser, Harry; Kam, Matthew; Gadabu, Oliver; Bwanali, Mwatha; Jacobson, Rebecca S

    2015-01-01

    Although performance feedback has the potential to help clinicians improve the quality and safety of care, healthcare organizations generally lack knowledge about how this guidance is best provided. In low-resource settings, tools for theory-informed feedback tailoring may enhance limited clinical supervision resources. Our objectives were to establish proof-of-concept for computer-supported feedback message tailoring in Malawi, Africa. We conducted this research in five stages: clinical performance measurement, modeling the influence of feedback on antiretroviral therapy (ART) performance, creating a rule-based message tailoring process, generating tailored messages for recipients, and finally analysis of performance and message tailoring data. We retrospectively generated tailored messages for 7,448 monthly performance reports from 11 ART clinics. We found that tailored feedback could be routinely generated for four guideline-based performance indicators, with 35% of reports having messages prioritized to optimize the effect of feedback. This research establishes proof-of-concept for a novel approach to improving the use of clinical performance feedback in low-resource settings and suggests possible directions for prospective evaluations comparing alternative designs of feedback messages.

  6. Spiral electrode d33 mode piezoelectric diaphragm combined with proof mass as energy harvester

    NASA Astrophysics Data System (ADS)

    Shen, Zhiyuan; Liu, Shuwei; Miao, Jianmin; Woh, Lye Sun; Wang, Zhihong

    2015-03-01

    The paper demonstrates an energy harvester using a freestanding piezoelectric diaphragm combined with a proof mass. The diaphragm bearing double-sided spiral electrodes makes use of the d33 piezoelectric effect to realize energy scavenging. The harvester was fabricated by using a MEMS technique. The energy converting performance of the diaphragm was characterized by a shaker system. Proof masses were combined at the center of the diaphragm to tune the resonance of the harvester for the sake of scavenging low frequency vibrational energy. A receptance model was built to explain the vibrational behavior of the combined system. The resonance tuning and energy harvesting performance of the combination system was experimentally verified.

  7. Anharmonic quantum mechanical systems do not feature phase space trajectories

    NASA Astrophysics Data System (ADS)

    Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole

    2018-07-01

    Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.

  8. Frequency Domain Beamforming for a Deep Space Network Downlink Array

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2012-01-01

    This paper describes a frequency domain beamformer to array up to 8 antennas of NASA's Deep Space Network currently in development. The objective of this array is to replace and enhance the capability of the DSN 70m antennas with multiple 34m antennas for telemetry, navigation and radio science use. The array will coherently combine the entire 500 MHz of usable bandwidth available to DSN receivers. A frequency domain beamforming architecture was chosen over a time domain based architecture to handle the large signal bandwidth and efficiently perform delay and phase calibration. The antennas of the DSN are spaced far enough apart that random atmospheric and phase variations between antennas need to be calibrated out on an ongoing basis in real-time. The calibration is done using measurements obtained from a correlator. This DSN Downlink Array expands upon a proof of concept breadboard array built previously to develop the technology and will become an operational asset of the Deep Space Network. Design parameters for frequency channelization, array calibration and delay corrections will be presented as well a method to efficiently calibrate the array for both wide and narrow bandwidth telemetry.

  9. Experimental Evaluation of the "Polished Panel Optical Receiver" Concept on the Deep Space Network's 34 Meter Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2012-01-01

    The potential development of large aperture ground-based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation proposes to polish the aluminum reflector panels of 34-meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by even state-of-the-art polished aluminum panels. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. A custom designed aluminum panel has been mounted on the 34 meter research antenna at Deep-Space Station 13 (DSS-13), and a remotely controlled CCD camera with a large CCD sensor in a weather-proof container has been installed next to the subreflector, pointed directly at the custom polished panel. Using the planet Jupiter as the optical point-source, the point-spread function (PSF) generated by the polished panel has been characterized, the array data processed to determine the center of the intensity distribution, and expected communications performance of the proposed polished panel optical receiver has been evaluated.

  10. Implementation of rigorous renormalization group method for ground space and low-energy states of local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Roberts, Brenden; Vidick, Thomas; Motrunich, Olexei I.

    2017-12-01

    The success of polynomial-time tensor network methods for computing ground states of certain quantum local Hamiltonians has recently been given a sound theoretical basis by Arad et al. [Math. Phys. 356, 65 (2017), 10.1007/s00220-017-2973-z]. The convergence proof, however, relies on "rigorous renormalization group" (RRG) techniques which differ fundamentally from existing algorithms. We introduce a practical adaptation of the RRG procedure which, while no longer theoretically guaranteed to converge, finds matrix product state ansatz approximations to the ground spaces and low-lying excited spectra of local Hamiltonians in realistic situations. In contrast to other schemes, RRG does not utilize variational methods on tensor networks. Rather, it operates on subsets of the system Hilbert space by constructing approximations to the global ground space in a treelike manner. We evaluate the algorithm numerically, finding similar performance to density matrix renormalization group (DMRG) in the case of a gapped nondegenerate Hamiltonian. Even in challenging situations of criticality, large ground-state degeneracy, or long-range entanglement, RRG remains able to identify candidate states having large overlap with ground and low-energy eigenstates, outperforming DMRG in some cases.

  11. UV LED charge control of an electrically isolated proof mass in a Gravitational Reference Sensor configuration at 255 nm

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Karthik; Sun, Ke-Xun

    2012-07-01

    Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. We show that AlGaN UV LEDs operating at 255 nm are an effective substitute for Mercury vapor lamps used in previous missions because of their ability to withstand space qualification levels of vibration and thermal cycling. After 27 thermal and thermal vacuum cycles and 9 minutes of 14.07 g RMS vibration, there is less than 3% change in current draw, less than 15% change in optical power, and no change in spectral peak or FWHM (full width at half maximum). We also demonstrate UV LED stimulated photoemission from a wide variety of thin film carbide proof mass coating candidates (SiC, Mo2C, TaC, TiC, ZrC) that were applied using electron beam evaporation on an Aluminum 6061-T6 substrate. All tested carbide films have measured quantum efficiencies of 3.8-6.8*10^-7 and reflectivities of 0.11-0.15, which compare favorably with the properties of previously used gold films. We demonstrate the ability to control proof mass potential on an 89 mm diameter spherical proof mass over a 20 mm gap in a GRS-like configuration. Proof mass potential was measured via a non-contact DC probe, which would allow control without introducing dynamic forcing of the spacecraft. Finally we provide a look ahead to an upcoming technology demonstration mission of UV LEDs and future applications toward charge control of electrically isolated proof masses.

  12. 14 CFR 29.307 - Proof of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  13. 14 CFR 27.307 - Proof of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  14. 14 CFR 27.307 - Proof of structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  15. 14 CFR 29.307 - Proof of structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  16. 14 CFR 29.307 - Proof of structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  17. 14 CFR 27.307 - Proof of structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  18. 14 CFR 27.307 - Proof of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  19. 14 CFR 29.307 - Proof of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.

    This report is the final deliverable of a 3 year project whose purpose was to investigate the possibility of using simulations of X-ray spectra generated inside a scanning electron microscope (SEM) as a means to perform quantitative analysis of the sample imaged in the SEM via an inverse analysis methodology. Using the nine point Technology Readiness Levels (TRL) typically used by the US Department of Defense (DOD) and the National Aeronautics and Space Administration (NASA), this concept is now at a TRL of 3. In other words, this work has proven the feasibility of this concept and is ready tomore » be further investigated to address some of the issues highlighted by this initial proof of concept.« less

  1. 20 kHz, 25 kVA node power transformer

    NASA Technical Reports Server (NTRS)

    Hussey, S.

    1989-01-01

    The electrical and mechanical design information and the electrical and thermal testing performed on the 440-208-V rms, 20-kHz, 25-kVa prototype node transformer are summarized. The calculated efficiency of the node transformer is 99.3 percent based on core loss and copper loss test data, and its maximum calculated load regulation is 0.7 percent. The node transformer has a weight of 19.7 lb and has a power density of 0.8 lb/kW. The hot-spot temperature rise is estimated to be 33 C above the cold plate mounting base. This proof-of-concept transformer design is a viable candidate for the space station Freedom application.

  2. Results of hydrotreating the kerosene fraction of HTI`S first proof of concept run

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohl, F.V.; Lott, S.E.; Diegert, K.V.

    1996-06-01

    The objective of Sandia`s hydrotreating study is to determine the relationships between hydrotreating conditions and product characteristics for coal liquids produced using current technologies. The coal-derived liquid used in the current work is the kerosene fraction of the product from Hydrocarbon Technologies Inc.`s first proof-of-concept run for it`s Catalytic Two-Stage Liquefaction Technology. Sandia`s hydrotreating experiments were performed in a continuous operation, microflow reactor system using aged HDN-60 catalyst. A factorial experimental design with three variables (temperature, pressure, liquid hourly space velocity) was used in this work. Nitrogen and sulfur contents of the feed and hydrotreated products were determined using anmore » Antek 7000 Sulfur and Nitrogen Analyzer. Multiple samples were collected at each set of reaction conditions to ensure that each condition was lined out. Hydrotreating at each set of reaction conditions was repeated so that results could be normalized for catalyst deactivation. The normalized results were statistically analyzed. Increases in temperature and pressure had the greatest effects on nitrogen removal. The highest severity condition (388{degrees}C, 1500 psig H{sub 2}, 1.5g/h/g(cat)) gave a measured nitrogen value of <5 ppm.« less

  3. Results of hydrotreating the kerosene fraction of HTI`S first proof of concept run

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohl, F.V.; Lott, S.E.; Diegert, K.V.

    1996-12-31

    The objective of Sandia`s hydrotreating study is to determine the relationships between hydrotreating conditions and product characteristics for coal liquids produced using current technologies. The coal-derived liquid used in the current work is the kerosene fraction of the product from Hydrocarbon Technologies Inc.`s first proof-of-concept run for it`s Catalytic Two-Stage Liquefaction Technology. Sandia`s hydrotreating experiments were performed in a continuous operation, microflow reactor system using aged HDN-60 catalyst. A factorial experimental design with three variables (temperature, pressure, liquid hourly space velocity) was used in this work. Nitrogen and sulfur contents of the feed and hydrotreated products were determined using anmore » Antek 7000 Sulfur and Nitrogen Analyzer. Multiple samples were collected at each set of reaction conditions to ensure that each condition was lined out. Hydrotreating at each set of reaction conditions was repeated so that results could be normalized for catalyst deactivation. The normalized results were statistically analyzed. Increases in temperature and pressure had the greatest effects on nitrogen removal. The highest severity condition (388{degrees}C, 1500 psig H{sub 2}, 1.5g/h/g(cat)) gave a measured nitrogen value of <5 ppm.« less

  4. Estimating Highway Volumes Using Vehicle Probe Data - Proof of Concept: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yi; Young, Stanley E; Sadabadi, Kaveh

    This paper examines the feasibility of using sampled commercial probe data in combination with validated continuous counter data to accurately estimate vehicle volume across the entire roadway network, for any hour during the year. Currently either real time or archived volume data for roadways at specific times are extremely sparse. Most volume data are average annual daily traffic (AADT) measures derived from the Highway Performance Monitoring System (HPMS). Although methods to factor the AADT to hourly averages for typical day of week exist, actual volume data is limited to a sparse collection of locations in which volumes are continuously recorded.more » This paper explores the use of commercial probe data to generate accurate volume measures that span the highway network providing ubiquitous coverage in space, and specific point-in-time measures for a specific date and time. The paper examines the need for the data, fundamental accuracy limitations based on a basic statistical model that take into account the sampling nature of probe data, and early results from a proof of concept exercise revealing the potential of probe type data calibrated with public continuous count data to meet end user expectations in terms of accuracy of volume estimates.« less

  5. Performance of the Satellite Test Assistant Robot in JPL's Space Simulation Facility

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Long, Mark; Johnson, Ken; Siebes, Georg

    1995-01-01

    An innovative new telerobotic inspection system called STAR (the Satellite Test Assistant Robot) has been developed to assist engineers as they test new spacecraft designs in simulated space environments. STAR operates inside the ultra-cold, high-vacuum, test chambers and provides engineers seated at a remote Operator Control Station (OCS) with high resolution video and infrared (IR) images of the flight articles under test. STAR was successfully proof tested in JPL's 25-ft (7.6-m) Space Simulation Chamber where temperatures ranged from +85 C to -190 C and vacuum levels reached 5.1 x 10(exp -6) torr. STAR's IR Camera was used to thermally map the entire interior of the chamber for the first time. STAR also made several unexpected and important discoveries about the thermal processes occurring within the chamber. Using a calibrated test fixture arrayed with ten sample spacecraft materials, the IR camera was shown to produce highly accurate surface temperature data. This paper outlines STAR's design and reports on significant results from the thermal vacuum chamber test.

  6. Why Does Trigonometric Substitution Work?

    ERIC Educational Resources Information Center

    Cunningham, Daniel W.

    2018-01-01

    Modern calculus textbooks carefully illustrate how to perform integration by trigonometric substitution. Unfortunately, most of these books do not adequately justify this powerful technique of integration. In this article, we present an accessible proof that establishes the validity of integration by trigonometric substitution. The proof offers…

  7. Soldier’s and Sailors’ Civil Relief Act.

    DTIC Science & Technology

    1998-06-01

    insurance company .102 (2) Who has the burden of proof to show "material effect ." In discussing the question of burden of proof, the Supreme...Charlottesville, VA 22903-1781 5. FUNDING NUMBERS NA 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) The Judge Advocate General’ School...U.S. Army 600 Massie Road Charlottesville, VA 22903- 1781 8. PERFORMING ORGANIZATION REPORT NUMBER JA 260 (April 1998) 9. SPONSORING

  8. Control of a flexible planar truss using proof mass actuators

    NASA Technical Reports Server (NTRS)

    Minas, Constantinos; Garcia, Ephrahim; Inman, Daniel J.

    1989-01-01

    A flexible structure was modeled and actively controlled by using a single space realizable linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss structure at an optimal location and it was considered as both passive and active device. The placement of the actuator was specified by examining the eigenvalues of the modified model that included the actuator dynamics, and the frequency response functions of the modified system. The electronic stiffness of the actuator was specified, such that the proof mass actuator system was tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The active control law was limited to velocity feedback by integrating of the signals of two accelerometers attached to the structure. The two lower modes of the closed-loop structure were placed further in the LHS of the complex plane. The theoretically predicted passive and active control law was experimentally verified.

  9. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.

  10. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    NASA Technical Reports Server (NTRS)

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.

  11. Development of intersection performance measures for timing plan maintenance using an actuated controller : Phase 1.

    DOT National Transportation Integrated Search

    2012-11-01

    "This proof-of-concept study is to develop an automated data collection module for collection and management of : traffic data at signalized intersections controlled by the Arizona Department of Transportation (ADOT). The : objective of this proof-of...

  12. LED deep UV source for charge management of gravitational reference sensors

    NASA Astrophysics Data System (ADS)

    Sun, Ke-Xun; Allard, Brett; Buchman, Saps; Williams, Scott; Byer, Robert L.

    2006-04-01

    Proof mass electrical charge management is an important functionality for the ST-7-LTP technology demonstration flight and for LISA. Photoemission for charge control is accomplished by using deep ultraviolet (UV) light to excite photoelectron emission from an Au alloy. The conventional UV source is a mercury vapour lamp. We propose and demonstrate charge management using a deep UV light emitting diode (LED) source. We have acquired selected AlGaN UV LEDs, characterized their performance and successfully used them to realize charge management. The UV LEDs emit at a 257 nm central wavelength with a bandwidth of ~12 nm. The UV power for a free-space LED is ~120 µW, and after fibre coupling is ~16 µW, more than sufficient for LISA applications. We have directly observed the LED UV light-induced photocurrent response from an Au photocathode and an Au-coated GRS/ST-7 proof mass. We demonstrated fast switching of UV LEDs and associated fast changes in photocurrent. This allows modulation and continuous discharge to meet stringent LISA disturbance reduction requirements. We propose and demonstrate AC charge management outside the gravitational wave signal band. Further, the megahertz bandwidth for UV LED switching allows for up to six orders of magnitude dynamic power range and a number of novel modes of operations. The UV LED based charge management system offers the advantages of small-size, lightweight, fibre-coupled operation with very low power consumption. Presented at 'Amaldi6', Poster 73, Space Detector, 6th Edoardo Almadi Conference on Gravitational Waves, 20-24 June 2005.

  13. Multiflash X ray with Image Detanglement for Single Image Isolation

    DTIC Science & Technology

    2017-08-31

    known and separated into individual images. A proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes...Popular Science article.2 For decades, that basic concept dominated the color television market . Those were the days when a large color television...proof-of- principle study was performed using 4 X-ray flashes and copper masks with sub-millimeter holes that allowed development of the required image

  14. Dynamic Stability and Gravitational Balancing of Multiple Extended Bodies

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco

    2008-01-01

    Feasibility of a non-invasive compensation scheme was analyzed for precise positioning of a massive extended body in free fall using gravitational forces influenced by surrounding source masses in close proximity. The N-body problem of classical mechanics is a paradigm used to gain insight into the physics of the equivalent N-body problem subject to control forces. The analysis addressed how a number of control masses move around the proof mass so that the proof mass position can be accurately and remotely compensated when exogenous disturbances are acting on it, while its sensitivity to gravitational waves remains unaffected. Past methods to correct the dynamics of the proof mass have considered active electrostatic or capacitive methods, but the possibility of stray capacitances on the surfaces of the proof mass have prompted the investigation of other alternatives, such as the method presented in this paper. While more rigorous analyses of the problem should be carried out, the data show that, by means of a combined feedback and feed-forward control approach, the control masses succeeded in driving the proof mass along the specified trajectory, which implies that the proof mass can, in principle, be balanced via gravitational forces only while external perturbations are acting on it. This concept involves the dynamic stability of a group of massive objects interacting gravitationally under active control, and can apply to drag-free control of spacecraft during missions, to successor gravitational wave space borne sensors, or to any application requiring flying objects to be precisely controlled in position and attitude relative to another body via gravitational interactions only.

  15. On-Orbit Gradiometry with the scientific instrument of the French Space Mission MICROSCOPE

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Baghi, Q.; Panet, I.; Rodrigues, M.; Metris, G.; Touboul, P.

    2017-12-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the universality of free fall, the so-called Weak Equivalence Principle (WEP). Based on a CNES Myriade microsatellite launched on the 25th of April 2016, MICROSCOPE is a CNES-ESA-ONERA-CNRS-OCA mission, the scientific objective of which is to test of the Equivalence Principle with an extraordinary accuracy at the level of 10-15. The measurement will be obtained from the T-SAGE (Twin Space Accelerometer for Gravitational Experimentation) instrument constituted by two ultrasensitive differential accelerometers. One differential electrostatic accelerometer, labeled SU-EP, contains, at its center, two proof masses made of Titanium and Platinum and is used for the test. The twin accelerometer, labeled SU-REF, contains two Platinum proof masses and is used as a reference instrument. Separated by a 17 cm-length arm, they are embarked in a very stable and soft environment on board a satellite equipped with a drag-free control system and orbiting on a sun synchronous circular orbit at 710 km above the Earth. In addition to the WEP test, this configuration can be interesting for various applications, and one of the proposed ideas is to use MICROSCOPE data for the measurement of Earth's gravitational gradient. Considering the gradiometer formed by the inner Platinum proof-masses of the two differential accelerometers and the arm along the Y-axis of the instrument which is perpendicular to the orbital plane, possibly 3 components of the gradient can be measured: Txy, Tyy and Tzy. Preliminary studies suggest that the errors can be lower than 10mE. Taking advantage of its higher altitude with respect to GOCE, the low frequency signature of Earth's potential seen by MICROSCOPE could provide an additional observable in gradiometry to discriminate between different models describing the large scales of the mass distribution in the Earth's deep mantle. The poster will shortly present the MICROSCOPE mission configuration. It will detail the actual in-flight performances of the accelerometers and of the attitude and position control, in order to evaluate the gradiometer error budget according to the satellite pointing mode configuration.

  16. 20 CFR 901.40 - Proof; variance; amendment of pleadings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Proof; variance; amendment of pleadings. 901.40 Section 901.40 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES REGULATIONS GOVERNING THE PERFORMANCE OF ACTUARIAL SERVICES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974...

  17. 20 CFR 901.40 - Proof; variance; amendment of pleadings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Proof; variance; amendment of pleadings. 901.40 Section 901.40 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES REGULATIONS GOVERNING THE PERFORMANCE OF ACTUARIAL SERVICES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974...

  18. 20 CFR 901.40 - Proof; variance; amendment of pleadings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Proof; variance; amendment of pleadings. 901.40 Section 901.40 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES REGULATIONS GOVERNING THE PERFORMANCE OF ACTUARIAL SERVICES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974...

  19. 20 CFR 901.40 - Proof; variance; amendment of pleadings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Proof; variance; amendment of pleadings. 901.40 Section 901.40 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES REGULATIONS GOVERNING THE PERFORMANCE OF ACTUARIAL SERVICES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974...

  20. 20 CFR 901.40 - Proof; variance; amendment of pleadings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Proof; variance; amendment of pleadings. 901.40 Section 901.40 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES REGULATIONS GOVERNING THE PERFORMANCE OF ACTUARIAL SERVICES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974...

  1. Minimally Invasive Direct Lateral Interbody Fusion (MIS-DLIF): Proof of Concept and Perioperative Results.

    PubMed

    Abbasi, Hamid; Abbasi, Ali

    2017-01-14

    Minimally invasive direct lateral interbody fusion (MIS-DLIF) is a novel approach for fusions of the lumbar spine. In this proof of concept study, we describe the surgical technique and report our experience and the perioperative outcomes of the first nine patients who underwent this procedure. In this study we establish the safety and efficacy of this approach. MIS-DLIF was performed on 15 spinal levels in nine patients who failed to respond to conservative therapy for the treatment of a re-herniated disk, spondylolisthesis, or other severe disk disease of the lumbar spine. We recorded surgery time, blood loss, fluoroscopy time, patient-reported pain, and complications. Throughout the MIS-DLIF procedure, the surgeon is aided by biplanar fluoroscopic imaging to place an interbody graft or cage into the disc space through the interpleural space. A discectomy is performed in the same minimally invasive fashion. The procedure is usually completed with posterior pedicle screw fixation. MIS-DLIF took 44/85 minutes, on average, for 1/2 levels, with 54/112 ml of blood loss, and 0.3/1.7 days of hospital stay. Four of nine patients did not require overnight hospitalization and were discharged two to four hours after surgery. We did not encounter any clinically significant complications. At more than ninety days post surgery, the patients reported a statistically significant reduction of 4.5 points on a 10-point sliding pain scale. MIS-DLIF with pedicle screw fixation is a safe and clinically effective procedure for fusions of the lumbar spine. The procedure overcomes many of the limitations of the current minimally invasive approaches to the lumbar spine and is technically straightforward. MIS-DLIF has the potential to improve patient outcomes and reduce costs relative to the current standard of care and therefore warrants further investigation. We are currently expanding this study to a larger cohort and documenting long-term outcome data.

  2. A Comprehensive Study of Three Delay Compensation Algorithms for Flight Simulators

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Houck, Jacob A.; Kelly, Lon C.; Wolters, Thomas E.

    2005-01-01

    This paper summarizes a comprehensive study of three predictors used for compensating the transport delay in a flight simulator; The McFarland, Adaptive and State Space Predictors. The paper presents proof that the stochastic approximation algorithm can achieve the best compensation among all four adaptive predictors, and intensively investigates the relationship between the state space predictor s compensation quality and its reference model. Piloted simulation tests show that the adaptive predictor and state space predictor can achieve better compensation of transport delay than the McFarland predictor.

  3. Studies on proofing of yeasted bread dough using near- and mid-infrared spectroscopy.

    PubMed

    Sinelli, Nicoletta; Casiraghi, Ernestina; Downey, Gerard

    2008-02-13

    Dough proofing is the resting period after mixing during which fermentation commences. Optimum dough proofing is important for production of high quality bread. Near- and mid-infrared spectroscopies have been used with some success to investigate macromolecular changes during dough mixing. In this work, both techniques were applied to a preliminary study of flour doughs during proofing. Spectra were collected contemporaneously by NIR (750-1100 nm) and MIR (4000-600 cm(-1)) instruments using a fiberoptic surface interactance probe and horizontal ATR cell, respectively. Studies were performed on flours of differing baking quality; these included strong baker's flour, retail flour, and gluten-free flour. Following principal component analysis, changes in the recorded spectral signals could be followed over time. It is apparent from the results that both vibrational spectroscopic techniques can identify changes in flour doughs during proofing and that it is possible to suggest which macromolecular species are involved.

  4. The LISA benchtop simulator at the University of Florida

    NASA Astrophysics Data System (ADS)

    Thorpe, James; Cruz, Rachel; Guntaka, Sridhar; Mueller, Guido

    2006-11-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA-ESA mission to detect gravitational radiation in space. The detector is designed to see gravitational waves from various exciting sources in the frequency range of 3x10-5 to 1 Hz. LISA consists of three spacecraft forming a triangle with 5x10^9 m long arms. The spacecraft house proof masses and act to shield the proof masses from external forces so that they act as freely-falling test particles of the gravitational radiation. Laser interferometry is used to monitor the distance between proof masses on different spacecraft and will be designed to see variations on the order of 10 pm. Pre-stabilization, arm-locking, and time delay interferometry (TDI) will be employed to meet this sensitivity. At the University of Florida, we are developing an experimental LISA simulator to test aspects of LISA interferometry. The foundation of the simulator is a pair of cavity-stabilized lasers that provide realistic, LISA-like phase noise for our measurements. The light travel time between spacecraft is recreated in the lab by use of an electronic phase delay technique. Initial tests of the simulator have focused on phasemeter implementation, first-generation TDI, and arm-locking. We will present results from these experiments as well as discuss current and future upgrades in the effort to make the LISA simulator as realistic as possible.

  5. Well-posedness of the plasma-vacuum interface problem

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo; Trakhinin, Yuri

    2014-01-01

    We consider the free-boundary problem for the plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the pre-Maxwell dynamics for the magnetic field. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. The plasma-vacuum system is not isolated from the outside world, because of a given surface current on the fixed boundary that forces oscillations. Under a suitable stability condition satisfied at each point of the initial interface, stating that the magnetic fields on either side of the interface are not collinear, we show the existence and uniqueness of the solution to the nonlinear plasma-vacuum interface problem in suitable anisotropic Sobolev spaces. The proof is based on the results proved in the companion paper (Secchi and Trakhinin 2013 Interfaces Free Boundaries 15 323-57), about the well-posedness of the homogeneous linearized problem and the proof of a basic a priori energy estimate. The proof of the resolution of the nonlinear problem given in the present paper follows from the analysis of the elliptic system for the vacuum magnetic field, a suitable tame estimate in Sobolev spaces for the full linearized equations, and a Nash-Moser iteration.

  6. Use of the Blom Tracheotomy Tube with Suction Inner Cannula to Decontaminate Microorganisms from the Subglottic Space. A Proof of Concept.

    PubMed

    Rabach, Lesley; Siegel, Mark D; Puchalski, Jonathan T; Towle, Dana; Follert, Michelle; Johnson, Kelsey M; Rademaker, Alfred W; Leder, Steven B

    2015-06-01

    Preventing pulmonary complications during mechanical ventilation via tracheotomy is a high priority. To investigate if the Blom tracheotomy tube with suction-above-the-cuff inner cannula reduced the quantity of normal flora and pathogens in supra- versus subglottic spaces. We enrolled 20 consecutive medical ICU adults requiring tracheostomy for mechanical ventilation in this proof-of-concept, prospective, single-center study. All participants received a Blom tracheotomy tube with suction-above-the-cuff inner cannula to decontaminate microorganisms from the supra- and subglottic spaces. Supra- and subglottic sputum samples were obtained for microbiologic analysis while an endotracheal tube was in place before tracheotomy and once per week for up to 4 weeks of mechanical ventilation after tracheotomy. Demographics, duration of endotracheal tube intubation, and duration of mechanical ventilation post-tracheotomy were recorded. There was a significant reduction for supraglottic (2.86 ± 1.11 [mean ± SD]) versus subglottic suction samples (2.48 ± 1.07) (paired t test, P = 0.048; Wilcoxon test, P = 0.045) when all data pairs for normal flora and pathogens were combined across times. There was a significant reduction of normal flora pooled across times in 19 data pairs for supraglottic (3.00 ± 1.05) versus subglottic suction samples (2.00 ± 0.94) (paired t test, P = 0.0004; Wilcoxon test, P = 0.0007). There was no significant reduction of pathogens pooled across times in 25 data pairs for supraglottic (2.76 ± 1.16) versus subglottic suction samples (2.84 ± 1.03) (paired t test, P = 0.75; Wilcoxon test, P = 0.83). Proof-of-concept was confirmed. The Blom tracheotomy tube with disposable suction-above-the-cuff inner cannula decontaminated microorganisms from the subglottic space when normal flora and pathogens were combined. Future research should investigate if decreased quantity of normal flora and pathogens in the subglottic space reduces the incidence of ventilator-associated pulmonary complications in critically ill patients requiring ongoing mechanical ventilation via tracheotomy.

  7. ATI SAA Annex 3 Button Tensile Test Report I

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.

    2013-01-01

    This report documents the results of a study carried out under Splace Act Agreement SAA-EA-10-004 between the National Aeronautics and Space Administration (NASA) and Astro Technology Incorpporated (ATI). NASA and ATI have entered into this agreement to collaborate on the development of technologies that can benefit both the US government space programs and the oil and gas industry. The report documents the results of a test done on an adnesive system for attaching new monitoring sensor devices to pipelines under Annex III of SAA-EA-10-004: "Proof-of-Concept Design and Testing of a Post Installed Sensing Device on Subsea Risers and Pipelines". The tasks of Annex III are to design and test a proof-of-concept sensing device for in-situ installation on pipelines, risers, or other structures deployed in deep water. The function of the sensor device is to measure various signals such as strain, stress and temperature. This study complements the work done, in Annex I of the SAA, on attaching a fiber optic sensing device to pipe via adhesive bonding. Both Annex I and Annex III studies were conducted in the Crew and Thermal System Division (CTSD) at the Johnson Space Center (JSC) in collaboration with ATI.

  8. On infinite-dimensional state spaces

    NASA Astrophysics Data System (ADS)

    Fritz, Tobias

    2013-05-01

    It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.

  9. Viking heat sterilization - Progress and problems

    NASA Technical Reports Server (NTRS)

    Daspit, L. P.; Cortright, E. M.; Stern, J. A.

    1974-01-01

    The Viking Mars landers to be launched in 1975 will carry experiments in biology, planetology, and atmospheric physics. A terminal dry-heat sterilization process using an inert gas was chosen to meet planetary quarantine requirements and preclude contamination of the biology experiment by terrestrial organisms. Deep sterilization is performed at the component level and terminal surface sterilization at the system level. Solutions to certain component problems relating to sterilization are discussed, involving the gyroscope, tape recorder, battery, electronic circuitry, and outgassing. Heat treatment placed special requirements on electronic packaging, including fastener preload monitoring and solder joints. Chemical and physical testing of nonmetallic materials was performed to establish data on their behavior in heat-treatment and vacuum environments. A Thermal Effects Test Model and a Proof Test Capsule were used. It is concluded that a space vehicle can be designed and fabricated to withstand heat sterilization requirements.

  10. A small chance of paradise —Equivalence of balanced states

    NASA Astrophysics Data System (ADS)

    Krawczyk, M. J.; Kaluzny, S.; Kulakowski, K.

    2017-06-01

    A social network is modeled by a complete graph of N nodes, with interpersonal relations represented by links. In the framework of the Heider balance theory, we prove numerically that the probability of each balanced state is the same. This means in particular, that the probability of the paradise state, where all relations are positive, is 21-N . The proof is performed within two models. In the first, relations are changing continuously in time, and the proof is performed only for N = 3 with the methods of nonlinear dynamics. The second model is the Constrained Triad Dynamics, as introduced by Antal, Krapivsky and Redner in 2005. In the latter case, the proof makes use of the symmetries of the network of system states and it is completed for 3≤ N≤ 7 .

  11. The Development of Proofs in Analytical Mathematics for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Ali, Maselan; Sufahani, Suliadi; Hasim, Nurnazifa; Saifullah Rusiman, Mohd; Roslan, Rozaini; Mohamad, Mahathir; Khalid, Kamil

    2018-04-01

    Proofs in analytical mathematics are essential parts of mathematics, difficult to learn because its underlying concepts are not visible. This research consists of problems involving logic and proofs. In this study, a short overview was provided on how proofs in analytical mathematics were used by university students. From the results obtained, excellent students obtained better scores compared to average and poor students. The research instruments used in this study consisted of two parts: test and interview. In this way, analysis of students’ actual performances can be obtained. The result of this study showed that the less able students have fragile conceptual and cognitive linkages but the more able students use their strong conceptual linkages to produce effective solutions

  12. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    PubMed

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  13. 46 CFR 35.30-30 - Portable electric equipment-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., explosion-proof lamps approved by Underwriters Laboratories Inc., Factory Mutual Research Corporation, or... Underwriters Laboratories Inc., Factory Mutual Research Corporation, or other independent laboratory recognized...; (iv) Filled with Grade E liquid; or (v) Spaces where flammable gases are not expected to accumulate...

  14. 46 CFR 35.30-30 - Portable electric equipment-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., explosion-proof lamps approved by Underwriters Laboratories Inc., Factory Mutual Research Corporation, or... Underwriters Laboratories Inc., Factory Mutual Research Corporation, or other independent laboratory recognized...; (iv) Filled with Grade E liquid; or (v) Spaces where flammable gases are not expected to accumulate...

  15. 46 CFR 35.30-30 - Portable electric equipment-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., explosion-proof lamps approved by Underwriters Laboratories Inc., Factory Mutual Research Corporation, or... Underwriters Laboratories Inc., Factory Mutual Research Corporation, or other independent laboratory recognized...; (iv) Filled with Grade E liquid; or (v) Spaces where flammable gases are not expected to accumulate...

  16. 46 CFR 35.30-30 - Portable electric equipment-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., explosion-proof lamps approved by Underwriters Laboratories Inc., Factory Mutual Research Corporation, or... Underwriters Laboratories Inc., Factory Mutual Research Corporation, or other independent laboratory recognized...; (iv) Filled with Grade E liquid; or (v) Spaces where flammable gases are not expected to accumulate...

  17. 46 CFR 35.30-30 - Portable electric equipment-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., explosion-proof lamps approved by Underwriters Laboratories Inc., Factory Mutual Research Corporation, or... Underwriters Laboratories Inc., Factory Mutual Research Corporation, or other independent laboratory recognized...; (iv) Filled with Grade E liquid; or (v) Spaces where flammable gases are not expected to accumulate...

  18. Long time existence from interior gluing

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.

    2017-07-01

    We prove completeness-to-the-future of null hypersurfaces emanating outwards from large spheres, in vacuum space-times evolving from general asymptotically flat data with well-defined energy-momentum. The proof uses scaling and a gluing construction to reduce the problem to Bieri’s stability theorem.

  19. Students participate in Congressional Night

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Middle school students were offered a unique opportunity at Stennis Space Center to speak real-time through audio and visual means to NASA scientists in Washington D.C., about numerous research projects, such as the Martian meteorite NASA researchers claim contains fossilized proof that life existed on Mars.

  20. 14 CFR 25.307 - Proof of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... load tests may be inadequate. (b)-(c) [Reserved] (d) When static or dynamic tests are used to show... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... condition. Structural analysis may be used only if the structure conforms to that for which experience has...

  1. 14 CFR 25.307 - Proof of structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... load tests may be inadequate. (b)-(c) [Reserved] (d) When static or dynamic tests are used to show... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... condition. Structural analysis may be used only if the structure conforms to that for which experience has...

  2. 14 CFR 25.307 - Proof of structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... load tests may be inadequate. (b)-(c) [Reserved] (d) When static or dynamic tests are used to show... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... condition. Structural analysis may be used only if the structure conforms to that for which experience has...

  3. 14 CFR 25.307 - Proof of structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... load tests may be inadequate. (b)-(c) [Reserved] (d) When static or dynamic tests are used to show... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... condition. Structural analysis may be used only if the structure conforms to that for which experience has...

  4. 14 CFR 25.307 - Proof of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... load tests may be inadequate. (b)-(c) [Reserved] (d) When static or dynamic tests are used to show... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... condition. Structural analysis may be used only if the structure conforms to that for which experience has...

  5. Harmonic maps and black holes

    NASA Astrophysics Data System (ADS)

    Lopes Costa, João

    2010-05-01

    We address two applications of existence and uniqueness properties of harmonic maps to the theory of stationary and axisymmetric electro-vacuum black holes. More specifically, we will consider: (1) The classification of such black hole space-times and (2) the proof of a Dain inequality with charge.

  6. Improving the fiber coupling efficiency for DARWIN by loss-less shaping of the receive beams

    NASA Astrophysics Data System (ADS)

    Voland, Ch.; Weigel, Th.; Dreischer, Th.; Wallner, O.; Ergenzinger, K.; Ries, H.; Jetter, R.; Vosteen, A.

    2017-11-01

    For the DARWIN mission the extremely low planet signal levels require an optical instrument design with utmost efficiency to guarantee the required science performance. By shaping the transverse amplitude and phase distributions of the receive beams, the singlemode fibre coupling efficiency can be increased to almost 100%, thus allowing for a gain of more than 20% compared to conventional designs. We show that the use of "tailored freeform surfaces" for purpose of beam shaping dramatically reduces the coupling degradations, which otherwise result from mode mismatch between the Airy pattern of the image and the fibre mode, and therefore allows for achieving a performance close to the physical limitations. We present an application of tailored surfaces for building a beam shaping optics that shall enhance fibre coupling performance as core part of a space based interferometer in the future DARWIN mission and present performance predictions by wave-optical simulations. We assess the feasibility of manufacturing the corresponding tailored surfaces and describe the proof of concept demonstrator we use for experimental performance verification.

  7. Intelligent Flexible Materials for Space Structures: Expandable Habitat Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Hinkle, Jon; Sharpe, George; Lin, John; Wiley, Cliff; Timmers, Richard

    2010-01-01

    Expandable habitable elements are an enabling technology for human exploration in space and on planetary surfaces. Large geometries can be deployed from a small launch volume, allowing greater mission capability while reducing mass and improving robustness over traditional rigid shells. This report describes research performed by ILC Dover under the Intelligent Flexible Materials for Space Structures program on the design and manufacture of softgoods for LaRC's Expandable Habitat Engineering Development Unit (EDU). The EDU is a full-scale structural test article of an expandable hybrid habitat, integrating an expandable softgoods center section with two rigid end caps. The design of the bladder, restraint layer and a mock-up Thermal Micrometeoroid Cover is detailed together with the design of the interface hardware used to attach them to the end caps. The integration and design of two windows and a floor are also covered. Analysis was performed to study the effects of the open weave design, and to determine the correct webbing and fabric configuration. Stress analyses were also carried out on the interfaces between the softgoods and the end caps and windows. Testing experimentally determined the strength of the fabric and straps, and component testing was used to proof several critical parts of the design. This program established new manufacturing and design techniques that can be applied to future applications in expandable structures.

  8. MAP: an iterative experimental design methodology for the optimization of catalytic search space structure modeling.

    PubMed

    Baumes, Laurent A

    2006-01-01

    One of the main problems in high-throughput research for materials is still the design of experiments. At early stages of discovery programs, purely exploratory methodologies coupled with fast screening tools should be employed. This should lead to opportunities to find unexpected catalytic results and identify the "groups" of catalyst outputs, providing well-defined boundaries for future optimizations. However, very few new papers deal with strategies that guide exploratory studies. Mostly, traditional designs, homogeneous covering, or simple random samplings are exploited. Typical catalytic output distributions exhibit unbalanced datasets for which an efficient learning is hardly carried out, and interesting but rare classes are usually unrecognized. Here is suggested a new iterative algorithm for the characterization of the search space structure, working independently of learning processes. It enhances recognition rates by transferring catalysts to be screened from "performance-stable" space zones to "unsteady" ones which necessitate more experiments to be well-modeled. The evaluation of new algorithm attempts through benchmarks is compulsory due to the lack of past proofs about their efficiency. The method is detailed and thoroughly tested with mathematical functions exhibiting different levels of complexity. The strategy is not only empirically evaluated, the effect or efficiency of sampling on future Machine Learning performances is also quantified. The minimum sample size required by the algorithm for being statistically discriminated from simple random sampling is investigated.

  9. High performance data transfer

    NASA Astrophysics Data System (ADS)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  10. Tomography of a displacement photon counter for discrimination of single-rail optical qubits

    NASA Astrophysics Data System (ADS)

    Izumi, Shuro; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2018-04-01

    We investigate the performance of a detection strategy composed of a displacement operation and a photon counter, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the {\\hat{σ }}x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the detection strategy in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof-of-principle experiment shows that the proposed scheme can achieve a discrimination error surpassing homodyne detection.

  11. NMRI Measurements of Flow of Granular Mixtures

    NASA Technical Reports Server (NTRS)

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  12. The Research Plan: Closing the ExMC Med02 "Pharmacy" Gap

    NASA Technical Reports Server (NTRS)

    Daniels, Vernie; Bayuse, Tina; Mulcahy, Robert; Shah, Ronak; Antonsen, Erik

    2017-01-01

    HRP Human Research Roadmap: Risk and Gap Risk of Adverse Health Outcomes and Decrements in Performance due to Inflight Medical Conditions. Med02 "Pharmacy" Gap: We do not have the capability to provide a safe and effective medication formulary for exploration missions delivering a recommendation for a chemically stable, safe, and effective medication formulary that will support the operational needs of exploration space missions research strategy evidence-based formulary and models innovative analytical tools and methodologies novel treatments and preventive measures Planned review by a panel of experts from the pharmaceutical industry, regulatory, and academic scientific communities Formulary Selection Formulary Potency and Shelf life Formulary Safety and Toxicity Novel Technology Proof-of-Concept Portable real-time chemical analysis Innovative drug development / design

  13. Undergraduate Mathematics Majors' Writing Performance Producing Proofs and Counterexamples about Continuous Functions

    ERIC Educational Resources Information Center

    Ko, Yi-Yin; Knuth, Eric

    2009-01-01

    In advanced mathematical thinking, proving and refuting are crucial abilities to demonstrate whether and why a proposition is true or false. Learning proofs and counterexamples within the domain of continuous functions is important because students encounter continuous functions in many mathematics courses. Recently, a growing number of studies…

  14. 47 CFR 73.154 - AM directional antenna partial proof of performance measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false AM directional antenna partial proof of...) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.154 AM directional antenna... measurements are to be made within 3 to 15 kilometers from the center of the antenna array. When a monitoring...

  15. 47 CFR 73.154 - AM directional antenna partial proof of performance measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false AM directional antenna partial proof of...) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.154 AM directional antenna... measurements are to be made within 3 to 15 kilometers from the center of the antenna array. When a monitoring...

  16. 47 CFR 73.154 - AM directional antenna partial proof of performance measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false AM directional antenna partial proof of...) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.154 AM directional antenna... measurements are to be made within 3 to 15 kilometers from the center of the antenna array. When a monitoring...

  17. 47 CFR 73.154 - AM directional antenna partial proof of performance measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false AM directional antenna partial proof of...) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.154 AM directional antenna... measurements are to be made within 3 to 15 kilometers from the center of the antenna array. When a monitoring...

  18. 28 CFR 79.53 - Proof of employment as a miller.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Millers § 79.53 Proof of employment as... Service (PHS) in the course of any health studies of uranium workers during or including the period 1942-1990; (2) Records of a uranium worker census performed by the PHS at various times during the period...

  19. A 3D Bioprinted Model for the Study of Premalignant Breast Disease

    DTIC Science & Technology

    2017-05-01

    these glands and performed proof-of-principle 3D printing . We have printed simple ductal structures (tubes) and seeded breast epithelial cells. The...performed proof-of-principle 3D printing . We have printed simple ductal structures (tubes) and seeded breast epithelial cells. The next year we will...All of the PN17 reconstruction data from the 5 completed strains has also been sent to the University of Pittsburg for 3D printing . A summary of the

  20. Grounded and embodied mathematical cognition: Promoting mathematical insight and proof using action and language.

    PubMed

    Nathan, Mitchell J; Walkington, Candace

    2017-01-01

    We develop a theory of grounded and embodied mathematical cognition (GEMC) that draws on action-cognition transduction for advancing understanding of how the body can support mathematical reasoning. GEMC proposes that participants' actions serve as inputs capable of driving the cognition-action system toward associated cognitive states. This occurs through a process of transduction that promotes valuable mathematical insights by eliciting dynamic depictive gestures that enact spatio-temporal properties of mathematical entities. Our focus here is on pre-college geometry proof production. GEMC suggests that action alone can foster insight but is insufficient for valid proof production if action is not coordinated with language systems for propositionalizing general properties of objects and space. GEMC guides the design of a video game-based learning environment intended to promote students' mathematical insights and informal proofs by eliciting dynamic gestures through in-game directed actions. GEMC generates several hypotheses that contribute to theories of embodied cognition and to the design of science, technology, engineering, and mathematics (STEM) education interventions. Pilot study results with a prototype video game tentatively support theory-based predictions regarding the role of dynamic gestures for fostering insight and proof-with-insight, and for the role of action coupled with language to promote proof-with-insight. But the pilot yields mixed results for deriving in-game interventions intended to elicit dynamic gesture production. Although our central purpose is an explication of GEMC theory and the role of action-cognition transduction, the theory-based video game design reveals the potential of GEMC to improve STEM education, and highlights the complex challenges of connecting embodiment research to education practices and learning environment design.

  1. Localization of Interference Fringes.

    ERIC Educational Resources Information Center

    Simon, J. M.; Comastri, Silvia A.

    1980-01-01

    Discusses a proof for determining the localized fringes position arrived at when one considers the interference of two extended sources when one is able to observe fringes only at certain points in space. Shows how the localized fringes may be found in a device used to observe Newton's rings. (Author/CS)

  2. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  3. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  4. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  5. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  6. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  7. Non-Lipschitz Approach to Quantum Mechnics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1997-01-01

    An attempt to reconcile quantum mechanics with Newton's laws represented by the non-Lipschitz formalism has been made. As a Proof-of-concept, a line of equally spaced atoms was studied. It appeared that enforcement of atom incompressibility required relaxation of the lipschitz condition at the points of contact.

  8. Space Ops 2002: Bringing Space Operations into the 21st Century. Track 3: Operations, Mission Planning and Control. 2nd Generation Reusable Launch Vehicle-Concepts for Flight Operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff

    2002-01-01

    With the successful implementation of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) enters a new era of opportunity for scientific research. The ISS provides a working laboratory in space, with tremendous capabilities for scientific research. Utilization of these capabilities requires a launch system capable of routinely transporting crew and logistics to/from the ISS, as well as supporting ISS assembly and maintenance tasks. The Space Shuttle serves as NASA's launch system for performing these functions. The Space Shuttle also serves as NASA's launch system for supporting other science and servicing missions that require a human presence in space. The Space Shuttle provides proof that reusable launch vehicles are technically and physically implementable. However, a couple of problems faced by NASA are the prohibitive cost of operating and maintaining the Space Shuttle and its relative inability to support high launch rates. The 2nd Generation Reusable Launch Vehicle (2nd Gen RLV) is NASA's solution to this problem. The 2nd Gen RLV will provide a robust launch system with increased safety, improved reliability and performance, and less cost. The improved performance and reduced costs of the 2nd Gen RLV will free up resources currently spent on launch services. These resource savings can then be applied to scientific research, which in turn can be supported by the higher launch rate capability of the 2nd Gen RLV. The result is a win - win situation for science and NASA. While meeting NASA's needs, the 2nd Gen RLV also provides the United States aerospace industry with a commercially viable launch capability. One of the keys to achieving the goals of the 2nd Gen RLV is to develop and implement new technologies and processes in the area of flight operations. NASA's experience in operating the Space Shuttle and the ISS has brought to light several areas where automation can be used to augment or eliminate functions performed by crew and ground controllers. This experience has also identified the need for new approaches to staffing and training for both crew and ground controllers. This paper provides a brief overview of the mission capabilities provided by the 2nd Gen RLV, a description of NASA's approach to developing the 2nd Gen RLV, a discussion of operations concepts, and a list of challenges to implementing those concepts.

  9. Acellular dermal matrices in breast implant surgery: defining the problem and proof of concept.

    PubMed

    Baxter, Richard A

    2012-04-01

    The use of acellular dermal matrices (ADMs) has become a useful adjunct to implant-based breast reconstruction and revision of the augmented breast. In both instances, the goal is replacement or reinforcement of thinned or missing tissues for implant support and control of the implant pocket. This article reviews the factors that contribute to periprosthetic tissue thinning, and the advantages and limitations of the use of ADMs for revision breast surgery and breast reconstruction. Proof of concept for the use of ADMs in the periprosthetic space is detailed from early clinical experience and histologic analysis documenting vascular ingrowth and cellular repopulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Development of a Proof of Concept Low Temperature Superfluid Magnetic Pump with Applications

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.

    State of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin coolers over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. Development of a proof of concept Superfluid Magnetic Pump is discussed in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He- 4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, or active magnetic regenerative refrigerators. Due to its superior thermal transport properties this pump can also be used as a simple circulator of sub-Lambda 4He to distribute cooling over large surface areas. The pump discussed in this work was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pascal. This pump worked in an "ideal" thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be put to test in suitable sub Kelvin refrigeration systems. Numerical modeling of an Active Magnetic Regenerative Refrigerator (AMRR) that uses the Superfluid Magnetic Pump (SMP) to circulate liquid 3He-4He through a magnetic regenerator is presented as a potential application of such a pump.

  11. Twenty Seven Years of Quantum Cryptography!

    NASA Astrophysics Data System (ADS)

    Hughes, Richard

    2011-03-01

    One of the fundamental goals of cryptographic research is to minimize the assumptions underlying the protocols that enable secure communications between pairs or groups of users. In 1984, building on earlier research by Stephen Wiesner, Charles Bennett and Gilles Brassard showed how quantum physics could be harnessed to provide information-theoretic security for protocols such as the distribution of cryptographic keys, which enables two parties to secure their conventional communications. Bennett and Brassard and colleagues performed a proof-of-principle quantum key distribution (QKD) experiment with single-photon quantum state transmission over a 32-cm air path in 1991. This seminal experiment led other researchers to explore QKD in optical fibers and over line-of-sight outdoor atmospheric paths (``free-space''), resulting in dramatic increases in range, bit rate and security. These advances have been enabled by improvements in sources and single-photon detectors. Also in 1991 Artur Ekert showed how the security of QKD could be related to quantum entanglement. This insight led to a deeper understanding and proof of QKD security with practical sources and detectors in the presence of transmission loss and channel noise. Today, QKD has been implemented over ranges much greater than 100km in both fiber and free-space, multi-node network testbeds have been demonstrated, and satellite-based QKD is under study in several countries. ``Quantum hacking'' researchers have shown the importance of extending security considerations to the classical devices that produce and detect the photon quantum states. New quantum cryptographic protocols such as secure identification have been proposed, and others such as quantum secret splitting have been demonstrated. It is now possible to envision quantum cryptography providing a more secure alternative to present-day cryptographic methods for many secure communications functions. My talk will survey these remarkable developments.

  12. 32 CFR Appendix B to Part 324 - System of Records Notice

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., punctuation, and spaces. 2. Security classification. Self explanatory. (DoD does not publish this caption... birth, etc.); and any description of proof of identity for verification purposes required for personal... verification. If appropriate, the individual may be referred to the system manager or another DFAS official who...

  13. Proof-of-Principle High Speed Electronic Imaging System. Phase 2.

    DTIC Science & Technology

    1988-03-01

    Winchenbach George Streckmann I Martha Martinez John Krieger Joe Parker John Morris Ann Coverston ." Karen Hollis Gregg Abate I... , .. ", .t ii i...R. J. Kelley, manager of the research facility, allocated space and locations for the equipment, and assigned John Krieger , technician, to us to

  14. Topology of Document Retrieval Systems.

    ERIC Educational Resources Information Center

    Everett, Daniel M.; Cater, Steven C.

    1992-01-01

    Explains the use of a topological structure to examine the closeness between documents in retrieval systems and analyzes the topological structure of a vector-space model, a fuzzy-set model, an extended Boolean model, a probabilistic model, and a TIRS (Topological Information Retrieval System) model. Proofs for the results are appended. (17…

  15. Mathematical Modeling in the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Toews, Carl

    2012-01-01

    Mathematical modeling occupies an unusual space in the undergraduate mathematics curriculum: typically an "advanced" course, it nonetheless has little to do with formal proof, the usual hallmark of advanced mathematics. Mathematics departments are thus forced to decide what role they want the modeling course to play, both as a component of the…

  16. An antiproton driver for ICF propulsion

    NASA Technical Reports Server (NTRS)

    Chiang, Pi-Ren; Lewis, R. A.; Smith, G. A.; Gazze, C.; Higman, K.; Newton, R.; Chiaverini, M.; Dailey, J.; Surratt, M.; Werthman, W. Lance

    1993-01-01

    Inertial confinement fusion (ICF) utilizing an anitprotoncatalyzed target is discussed as a possible source of propulsion for rapid interplanetary manned space missions. The relevant compression, ignition, and thrust mechanisms are presented. Progress on an experiment presently in progress at the Phillips Laboratory, Kirtland AFB, NM to demonstrate proof-of-principle is reviewed.

  17. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  18. The soil-water system as basis for a climate proof and healthy urban environment: opportunities identified in a Dutch case-study.

    PubMed

    Claessens, Jacqueline; Schram-Bijkerk, Dieneke; Dirven-van Breemen, Liesbet; Otte, Piet; van Wijnen, Harm

    2014-07-01

    One of the effects of climate change expected to take place in urban areas in the Netherlands is an increase in periods of extreme heat and drought. How the soil can contribute to making cities more climate proof is often neglected. Unsealed soil and green spaces increase water storage capacity and can consequently prevent flooding. The planning of public or private green spaces can have a cooling effect and, in general, have a positive effect on how people perceive their health. This paper reviews existing guidelines from Dutch policy documents regarding unsealed soil and green spaces in the Netherlands; do they support climate adaptation policies? Scientific literature was used to quantify the positive effects of green spaces on water storage capacity, cooling and public health. Finally we present a case study of a model town where different policy areas are linked together. Maps were made to provide insight into the ratio of unsealed soil and the number of green spaces in relation to existing guidelines using Geographical Information Systems (GIS). Maps marking the age and social-economic status of the population were also made. The benefits of green spaces are difficult to express in averages because they depend on many different factors such as soil properties, type of green spaces, population characteristics and spatial planning. Moreover, it is not possible to provide quantifications of the benefits of green spaces because of a lack of scientific evidence at the moment. Based on the maps, however, policy assessments can be made, for example, in which site a neighborhood will most benefit from investment in parks and public gardens. Neighborhoods where people have a low social-economic status have for example fewer green spaces than others. This offers opportunities for efficient adaptation policies linking goals of several policy fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fire Protection Jacket

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NERAC, Inc., Tolland, CT, aided Paul Monroe Engineering, Orange, CA, in the development of their PC1200 Series Fire Protection Jacket that protects the oil conduit system on an offshore drilling platform from the intense hydrocarbon fires that cause buckling and could cause structural failure of the platform. The flame-proof jacketing, which can withstand temperatures of 2000 degrees Fahrenheit for four hours or more, was developed from a combination of ceramic cloth (similar to the ceramic in Space Shuttle tiles), and laminates used in space suits.

  20. Analysis of a space debris laser removal system

    NASA Astrophysics Data System (ADS)

    Gjesvold, Evan; Straub, Jeremy

    2017-05-01

    As long as man ventures into space, he will leave behind debris, and as long as he ventures into space, this debris will pose a threat to him and his projects. Space debris must be located and decommissioned. Lasers may prove to be the ideal method, as they can operate at a distance from the debris, have a theoretically infinite supply of energy from the sun, and are a seemingly readily available technology. This paper explores the requirements and reasoning for such a laser debris removal method. A case is made for the negligibility of eliminating rotational velocity from certain systems, while a design schematic is also presented for the implementation of a cube satellite proof of concept.

  1. The Virtual Space Telescope: A New Class of Science Missions

    NASA Technical Reports Server (NTRS)

    Shah, Neerav; Calhoun, Philip

    2016-01-01

    Many science investigations proposed by GSFC require two spacecraft alignment across a long distance to form a virtual space telescope. Forming a Virtual Space telescope requires advances in Guidance, Navigation, and Control (GNC) enabling the distribution of monolithic telescopes across multiple space platforms. The capability to align multiple spacecraft to an intertial target is at a low maturity state and we present a roadmap to advance the system-level capability to be flight ready in preparation of various science applications. An engineering proof of concept, called the CANYVAL-X CubeSat MIssion is presented. CANYVAL-X's advancement will decrease risk for a potential starshade mission that would fly with WFIRST.

  2. Helmholtz and Zoellner: nineteenth-century empiricism, spiritism, and the theory of space perception.

    PubMed

    Stromberg, W H

    1989-10-01

    J. K. F. Zoellner began writing on "experimental proofs" of a fourth spatial dimension, and of the existence of spirits, in 1878. His arguments caused strong controversy, with rebuttal essays by Wilhelm Wundt and others. The author argues that Zoellner's case that these matters are experimental questions rested on arguments which Hermann von Helmholtz, inveighing against rationalist views of space and space perception, had recently published. Zoellner's use of Helmholtz's arguments to advance and defend his spiritist views occasioned strong criticism of Helmholtz, affected careers and reputations of scholars in Berlin and Leipzig, and caused enduring controversy over the credibility of Helmholtz's empiricist theory of space perception.

  3. Design and implementation of an array of micro-electrochemical detectors for two-dimensional liquid chromatography--proof of principle.

    PubMed

    Abia, Jude A; Putnam, Joel; Mriziq, Khaled; Guiochon, Georges A

    2010-03-05

    Simultaneous two-dimensional liquid chromatography (2D-LC) is an implementation of two-dimensional liquid chromatography which has the potential to provide very fast, yet highly efficient separations. It is based on the use of time x space and space x space separation systems. The basic principle of this instrument has been validated long ago by the success of two-dimensional thin layer chromatography. The construction of a pressurized wide and flat column (100 mm x 100 mm x 1 mm) operated under an inlet pressure of up to 50 bar was described previously. However, to become a modern analytical method, simultaneous 2D-LC requires the development of detectors suitable for the monitoring of the composition of the eluent of this pressurized planar, wide column. An array of five equidistant micro-electrochemical sensors was built for this purpose and tested. Each sensor is a three-electrode system, with the working electrode being a 25 microm polished platinum micro-electrode. The auxiliary electrode is a thin platinum wire and the reference electrode an Ag/AgCl (3M sat. KCl) electrode. In this first implementation, proof of principle is demonstrated, but the final instrument will require a much larger array. 2010 Elsevier B.V. All rights reserved.

  4. On infinite-dimensional state spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Tobias

    It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context frommore » which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V{sup -1}U{sup 2}V=U{sup 3}, then finite-dimensionality entails the relation UV{sup -1}UV=V{sup -1}UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V{sup -1}U{sup 2}V=U{sup 3} holds only up to {epsilon} and then yields a lower bound on the dimension.« less

  5. SPHINX Satellite Testing in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1973-12-21

    Researchers examine the Space Plasma-High Voltage Interaction Experiment (SPHINX) satellite in the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis’ Spacecraft Technology Division designed SPHINX to study the electrical interaction of its experimental surfaces with space plasma. They sought to determine if higher orbits would improve the transmission quality of communications satellites. Robert Lovell, the Project Manager, oversaw vibrational and plasma simulation testing of the satellite in the Electric Propulsion Laboratory, seen here. SPHINX was an add-on payload for the first Titan/Centaur proof launch in early 1974. Lewis successfully managed the Centaur Program since 1962, but this would be the first Centaur launch with a Titan booster. Since the proof test did not have a scheduled payload, the Lewis-designed SPHINX received a free ride. The February 11, 1974 launch, however, proved to be one of the Launch Vehicle Division’s lowest days. Twelve minutes after the vehicle departed the launch pad, the booster and Centaur separated as designed, but Centaur’s two RL-10 engines failed to ignite. The launch pad safety officer destroyed the vehicle, and SPHINX never made it into orbit. Overall Centaur has an excellent success rate, but the failed SPHINX launch attempt caused deep disappointment across the center.

  6. A formal approach to the analysis of clinical computer-interpretable guideline modeling languages.

    PubMed

    Grando, M Adela; Glasspool, David; Fox, John

    2012-01-01

    To develop proof strategies to formally study the expressiveness of workflow-based languages, and to investigate their applicability to clinical computer-interpretable guideline (CIG) modeling languages. We propose two strategies for studying the expressiveness of workflow-based languages based on a standard set of workflow patterns expressed as Petri nets (PNs) and notions of congruence and bisimilarity from process calculus. Proof that a PN-based pattern P can be expressed in a language L can be carried out semi-automatically. Proof that a language L cannot provide the behavior specified by a PNP requires proof by exhaustion based on analysis of cases and cannot be performed automatically. The proof strategies are generic but we exemplify their use with a particular CIG modeling language, PROforma. To illustrate the method we evaluate the expressiveness of PROforma against three standard workflow patterns and compare our results with a previous similar but informal comparison. We show that the two proof strategies are effective in evaluating a CIG modeling language against standard workflow patterns. We find that using the proposed formal techniques we obtain different results to a comparable previously published but less formal study. We discuss the utility of these analyses as the basis for principled extensions to CIG modeling languages. Additionally we explain how the same proof strategies can be reused to prove the satisfaction of patterns expressed in the declarative language CIGDec. The proof strategies we propose are useful tools for analysing the expressiveness of CIG modeling languages. This study provides good evidence of the benefits of applying formal methods of proof over semi-formal ones. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Supersonic Retropropulsion Flight Test Concepts

    NASA Technical Reports Server (NTRS)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  8. Space Solar Power Demonstrations: Challenges and Progress

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; Lavoie, Anthony R. (Technical Monitor)

    2002-01-01

    The prospects of using electrical power beamed from space are coming closer to reality with the continued pursuit and improvements in the supporting space solar research and technology. Space Solar Power (SSP) has been explored off and on for approximately three decades as a viable alternative and clean energy source. Results produced through the more recent Space Solar Power Exploratory Research and Technology (SERT) program involving extensive participation by industry, universities, and government has provided a sound technical basis for believing that technology can be improved to the extent that SSP systems can be built, economically feasible, and successfully deployed in space. Considerable advancements have been made in conceptual designs and supporting technologies including solar power generation, wireless power transmission, power management distribution, thermal management and materials, and the integrated systems engineering assessments. Basic technologies have progressed to the point were the next logical step is to formulate and conduct sophisticated demonstrations involving prototype hardware as final proof of concepts and identify high end technology readiness levels in preparation for full scale SSP systems designs. In addition to continued technical development issues, environmental and safety issues must be addressed and appropriate actions taken to reassure the public and prepare them for the future use of this alternative renewable energy resource. Accomplishing these objectives will allow informed future decisions regarding further SSP and related R&D investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (terrestrial markets, science, commercial development of space, and other government missions).

  9. Model-based system-of-systems engineering for space-based command, control, communication, and information architecture design

    NASA Astrophysics Data System (ADS)

    Sindiy, Oleg V.

    This dissertation presents a model-based system-of-systems engineering (SoSE) approach as a design philosophy for architecting in system-of-systems (SoS) problems. SoS refers to a special class of systems in which numerous systems with operational and managerial independence interact to generate new capabilities that satisfy societal needs. Design decisions are more complicated in a SoS setting. A revised Process Model for SoSE is presented to support three phases in SoS architecting: defining the scope of the design problem, abstracting key descriptors and their interrelations in a conceptual model, and implementing computer-based simulations for architectural analyses. The Process Model enables improved decision support considering multiple SoS features and develops computational models capable of highlighting configurations of organizational, policy, financial, operational, and/or technical features. Further, processes for verification and validation of SoS models and simulations are also important due to potential impact on critical decision-making and, thus, are addressed. Two research questions frame the research efforts described in this dissertation. The first concerns how the four key sources of SoS complexity---heterogeneity of systems, connectivity structure, multi-layer interactions, and the evolutionary nature---influence the formulation of SoS models and simulations, trade space, and solution performance and structure evaluation metrics. The second question pertains to the implementation of SoSE architecting processes to inform decision-making for a subset of SoS problems concerning the design of information exchange services in space-based operations domain. These questions motivate and guide the dissertation's contributions. A formal methodology for drawing relationships within a multi-dimensional trade space, forming simulation case studies from applications of candidate architecture solutions to a campaign of notional mission use cases, and executing multi-purpose analysis studies is presented. These efforts are coupled to the generation of aggregate and time-dependent solution performance metrics via the hierarchical decomposition of objectives and the analytical recomposition of multi-attribute qualitative program drivers from quantifiable measures. This methodology was also applied to generate problem-specific solution structure evaluation metrics that facilitate the comparison of alternate solutions at a high level of aggregation, at lower levels of abstraction, and to relate options for design variables with associated performance values. For proof-of-capability demonstration, the selected application problem concerns the design of command, control, communication, and information (C3I) architecture services for a notional campaign of crewed and robotic lunar surface missions. The impetus for the work was the demonstration of using model-based SoSE for design of sustainable interoperability capabilities between all data and communication assets in extended lunar campaigns. A comprehensive Lunar C3I simulation tool was developed by a team of researchers at Purdue University in support of NASA's Constellation Program; the author of this dissertation was a key contributor to the creation of this tool and made modifications and extensions to key components relevant to the methodological concepts presented in this dissertation. The dissertation concludes with a presentation of example results based on the interrogation of the constructed Lunar C3I computational model. The results are based on a family of studies, structured around a trade-tree of architecture options, which were conducted to test the hypothesis that the SoSE approach is efficacious in the information-exchange architecture design in space exploration domain. Included in the family of proof-of-capability studies is a simulation of the Apollo 17 mission, which allows not only for partial verification and validation of the model, but also provides insights for prioritizing future model design iterations to make it more realistic representation of the "real world." A caveat within the results presented is that they serve within the capacity of a proof-of-capability demonstration, and as such, they are a product of models and analyses that need further development before the tool's results can be employed for decision-making. Additional discussion is provided for how to further develop and validate the Lunar C3I tool and also to make it extensible to other SoS design problems of similar nature in space exploration and other problem application domains.

  10. Glass Fiber Reinforced Metal Pressure Vessel Design Guide

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1972-01-01

    The Engineering Guide presents curves and general equations for safelife design of lightweight glass fiber reinforced (GFR) metal pressure vessels operating under anticipated Space Shuttle service conditions. The high composite vessel weight efficiency is shown to be relatively insensitive to shape, providing increased flexibility to designers establishing spacecraft configurations. Spheres, oblate speroids, and cylinders constructed of GFR Inconel X-750, 2219-T62 aluminum, and cryoformed 301 stainless steel are covered; design parameters and performance efficiencies for each configuration are compared at ambient and cryogenic temperature for an operating pressure range of 690 to 2760 N/sq cm (1000 to 4000 psi). Design variables are presented as a function of metal shell operating to sizing (proof) stress ratios for use with fracture mechanics data generated under a separate task of this program.

  11. Delayed bunching for multi-reflection time-of-flight mass separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbusch, M.; Marx, G.; Schweikhard, L.

    2015-06-29

    Many experiments are handicapped when the ion sources do not only deliver the ions of interest but also contaminations, i.e., unwanted ions of similar mass. In the recent years, multi-reflection time-of-flight mass separation has become a promising method to isolate the ions of interest from the contaminants, in particular for measurements with low-energy short-lived nuclides. To further improve the performance of multi-reflection mass separators with respect to the limitations by space-charge effects, the simultaneously trapped ions are spatially widely distributed in the apparatus. Thus, the ions can propagate with reduced Coulomb interactions until, finally, they are bunched by a changemore » in the trapping conditions for high-resolution mass separation. Proof-of-principle measurements are presented.« less

  12. Optical Channelizer Evaluation Using Empirical Data and Simulation

    NASA Technical Reports Server (NTRS)

    Ivancic,William D.

    1998-01-01

    Westinghouse Electric Corporation Division under NASA contract NAS3-25865 developed a proof-of-concept (POC) multichannel demultiplexer implemented as an acousto-optic radiofrequency (RF) with a spectrum analyzer. A detailed analysis of the experimental results indicate that the expected degradation caused by the acousto-optical channelizer is approximately 2.0 dB degradation at 10(exp -5) bit-error rate (BER) and 3.0 dB degradation at 10(exp -8) BER. This degradation may be quite acceptable when considering the excellent volume, mass, and power characteristics of acousto-optical channelizing relative to other technologies. In addition, system performance can be greatly improved by using digital pulse shaping in the modem and increasing the channel spacing from 40 to 45 kHz for 64 kbps quadrature phase-shift keying (QPSK) modulation.

  13. Delaunay-based derivative-free optimization for efficient minimization of time-averaged statistics of turbulent flows

    NASA Astrophysics Data System (ADS)

    Beyhaghi, Pooriya

    2016-11-01

    This work considers the problem of the efficient minimization of the infinite time average of a stationary ergodic process in the space of a handful of independent parameters which affect it. Problems of this class, derived from physical or numerical experiments which are sometimes expensive to perform, are ubiquitous in turbulence research. In such problems, any given function evaluation, determined with finite sampling, is associated with a quantifiable amount of uncertainty, which may be reduced via additional sampling. This work proposes the first algorithm of this type. Our algorithm remarkably reduces the overall cost of the optimization process for problems of this class. Further, under certain well-defined conditions, rigorous proof of convergence is established to the global minimum of the problem considered.

  14. The Φ43 and Φ63 matricial QFT models have reflection positive two-point function

    NASA Astrophysics Data System (ADS)

    Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar

    2018-01-01

    We extend our previous work (on D = 2) to give an exact solution of the ΦD3 large- N matrix model (or renormalised Kontsevich model) in D = 4 and D = 6 dimensions. Induction proofs and the difficult combinatorics are unchanged compared with D = 2, but the renormalisation - performed according to Zimmermann - is much more involved. As main result we prove that the Schwinger 2-point function resulting from the ΦD3 -QFT model on Moyal space satisfies, for real coupling constant, reflection positivity in D = 4 and D = 6 dimensions. The Källén-Lehmann mass spectrum of the associated Wightman 2-point function describes a scattering part | p|2 ≥ 2μ2 and an isolated broadened mass shell around | p|2 =μ2.

  15. A Solution Space for a System of Null-State Partial Differential Equations: Part 1

    NASA Astrophysics Data System (ADS)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the first of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). In CFT, these are null-state equations and conformal Ward identities. They govern partition functions for the continuum limit of a statistical cluster or loop-gas model, such as percolation, or more generally the Potts models and O( n) models, at the statistical mechanical critical point. (SLE partition functions also satisfy these equations.) For such a lattice model in a polygon with its 2 N sides exhibiting a free/fixed side-alternating boundary condition , this partition function is proportional to the CFT correlation function where the w i are the vertices of and where is a one-leg corner operator. (Partition functions for "crossing events" in which clusters join the fixed sides of in some specified connectivity are linear combinations of such correlation functions.) When conformally mapped onto the upper half-plane, methods of CFT show that this correlation function satisfies the system of PDEs that we consider. In this first article, we use methods of analysis to prove that the dimension of this solution space is no more than C N , the Nth Catalan number. While our motivations are based in CFT, our proofs are completely rigorous. This proof is contained entirely within this article, except for the proof of Lemma 14, which constitutes the second article (Flores and Kleban, in Commun Math Phys, arXiv:1404.0035, 2014). In the third article (Flores and Kleban, in Commun Math Phys, arXiv:1303.7182, 2013), we use the results of this article to prove that the solution space of this system of PDEs has dimension C N and is spanned by solutions constructed with the CFT Coulomb gas (contour integral) formalism. In the fourth article (Flores and Kleban, in Commun Math Phys, arXiv:1405.2747, 2014), we prove further CFT-related properties about these solutions, some useful for calculating cluster-crossing probabilities of critical lattice models in polygons.

  16. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  17. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  18. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  19. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  20. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  1. Brains and Brawn: Complex Motor Activities to Maximize Cognitive Enhancement

    ERIC Educational Resources Information Center

    Moreau, David

    2015-01-01

    The target articles in this special issue address the timely question of embodied cognition in the classroom, and in particular the potential of this approach to facilitate learning in children. The interest for motor activities within settings that typically give little space to nontraditional content is proof of a shift from a Cartesian…

  2. 8. Asymptotically Flat and Regular Cauchy Data

    NASA Astrophysics Data System (ADS)

    Dain, Sergio

    I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.

  3. Entanglement for All Quantum States

    ERIC Educational Resources Information Center

    de la Torre, A. C.; Goyeneche, D.; Leitao, L.

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…

  4. Calabi's conjecture and some new results in algebraic geometry

    PubMed Central

    Yau, Shing-Tung

    1977-01-01

    We announce a proof of Calabi's conjectures on the Ricci curvature of a compact Kähler manifold and then apply it to prove some new results in algebraic geometry and differential geometry. For example, we prove that the only Kähler structure on a complex projective space is the standard one. PMID:16592394

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, Ludovico; Ciani, Giacomo; Dolesi, Rita

    We have measured surface-force noise on a hollow replica of a LISA proof mass surrounded by its capacitive motion sensor. Forces are detected through the torque exerted on the proof mass by means of a torsion pendulum in the 0.1-30 mHz range. The sensor and electronics have the same design as for the flight hardware, including 4 mm gaps around the proof mass. The measured upper limit for forces would allow detection of a number of galactic binaries signals with signal-to-noise ratio up to {approx_equal}40 for 1 yr integration. We also discuss how LISA Pathfinder will substantially improve this limit,more » approaching the LISA performance.« less

  6. Analytical Proof That There is no Effect of Confinement or Curvature on the Maxwell-Boltzmann Collision Frequency

    NASA Astrophysics Data System (ADS)

    Carnio, Brett N.; Elliott, Janet A. W.

    2014-08-01

    The number of Maxwell-Boltzmann particles that hit a flat wall in infinite space per unit area per unit time is a well-known result. As new applications are arising in micro and nanotechnologies there are a number of situations in which a rarefied gas interacts with either a flat or curved surface in a small confined geometry. Thus, it is necessary to prove that the Maxwell-Boltzmann collision frequency result holds even if a container's dimensions are on the order of nanometers and also that this result is valid for both a finite container with flat walls (a rectangular container) and a finite container with a curved wall (a cylindrical container). An analytical proof confirms that the Maxwell-Boltzmann collision frequencies for either a finite rectangular container or a finite cylindrical container are both equal to the well-known result obtained for a flat wall in infinite space. A major aspect of this paper is the introduction of a mathematical technique to solve the arising infinite sum of integrals whose integrands depend on the Maxwell-Boltzmann velocity distribution.

  7. Technology requirements for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Wada, B. K.; Freeland, R. E.; Garcia, N. F.

    1983-01-01

    Research, test, and demonstration experiments necessary for establishing a data base that will permit construction of large, lightweight flexible space structures meeting on-orbit pointing and surface precesion criteria are discussed. Attention is focused on the wrap-rib proof-of-concept antenna structures developed from technology used on the ATS-6 satellite. The target structure will be up to 150 m in diameter or smaller, operate at RF levels, be amenable to packaging for carriage in the Shuttle bay, be capable of being ground-tested, and permit on-orbit deployment and retraction. Graphite/epoxy has been chosen as the antenna ribs material, and the antenna mesh will be gold-plated Mo wire. A 55-m diam reflector was built as proof-of-concept with ground-test capability. Tests will proceed on components, a model, the entire structure, and in-flight. An analytical model has been formulated to characterize the antenna's thermal behavior. The flight test of the 55-m prototype in-orbit offers the chance to validate the analytical model and characterize the control, mechanical, and thermal characteristics of the antenna configuration.

  8. Meteorite as raw material for Direct Metal Printing: A proof of concept study

    NASA Astrophysics Data System (ADS)

    Lietaert, Karel; Thijs, Lore; Neirinck, Bram; Lapauw, Thomas; Morrison, Brian; Lewicki, Chris; Van Vaerenbergh, Jonas

    2018-02-01

    Asteroid mining as such is not a new concept, as it has been described in science fiction for more than a century and some of its aspects have been studied by academia for more than 30 years. Recently, there is a renewed interest in this subject due the more and more concrete plans for long-duration space missions and the need for resources to support industrial activity in space. The use of locally available resources would greatly improve the economics and sustainability of such missions. Due to its economy in material, use of additive manufacturing (AM) provides an interesting route to valorize these resources for the production of spare parts, tools and large-scale structures optimized for their local microgravity environment. Proof of concept has already been provided for AM of moon regolith. In this paper the concept of In-Situ Resource Utilization is extended towards the production of metallic objects using powdered iron meteorite as raw material. The meteorite-based powder was used to produce a structural part but further research is needed to obtain a high density part without microcracks.

  9. RB-ARD: A proof of concept rule-based abort

    NASA Technical Reports Server (NTRS)

    Smith, Richard; Marinuzzi, John

    1987-01-01

    The Abort Region Determinator (ARD) is a console program in the space shuttle mission control center. During shuttle ascent, the Flight Dynamics Officer (FDO) uses the ARD to determine the possible abort modes and make abort calls for the crew. The goal of the Rule-based Abort region Determinator (RB/ARD) project was to test the concept of providing an onboard ARD for the shuttle or an automated ARD for the mission control center (MCC). A proof of concept rule-based system was developed on a LMI Lambda computer using PICON, a knowdedge-based system shell. Knowdedge derived from documented flight rules and ARD operation procedures was coded in PICON rules. These rules, in conjunction with modules of conventional code, enable the RB-ARD to carry out key parts of the ARD task. Current capabilities of the RB-ARD include: continuous updating of the available abort mode, recognition of a limited number of main engine faults and recommendation of safing actions. Safing actions recommended by the RB-ARD concern the Space Shuttle Main Engine (SSME) limit shutdown system and powerdown of the SSME Ac buses.

  10. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    NASA Technical Reports Server (NTRS)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  11. Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform.

    PubMed

    Hausel, Tamás

    2006-04-18

    A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas of Poincaré polynomials of toric hyperkähler varieties (recovering results of Bielawski-Dancer and Hausel-Sturmfels), Poincaré polynomials of Hilbert schemes of points and twisted Atiyah-Drinfeld-Hitchin-Manin (ADHM) spaces of instantons on C2 (recovering results of Nakajima-Yoshioka), and Poincaré polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced.

  12. Scattering in the Energy Space for Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Muñoz, Claudio; Poblete, Felipe; Pozo, Juan C.

    2018-01-01

    In this note we show that all small solutions in the energy space of the generalized 1D Boussinesq equation must decay to zero as time tends to infinity, strongly on slightly proper subsets of the space-time light cone. Our result does not require any assumption on the power of the nonlinearity, working even for the supercritical range of scattering. For the proof, we use two new Virial identities in the spirit of works (Kowalczyk et al. in J Am Math Soc 30:769-798, 2017; Kowalczyk et al. in Lett Math Phys 107(5):921-931, 2017). No parity assumption on the initial data is needed.

  13. Optical isolation based on space-time engineered asymmetric photonic band gaps

    NASA Astrophysics Data System (ADS)

    Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe

    2017-10-01

    Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.

  14. Adaptive Power Control for Space Communications

    NASA Technical Reports Server (NTRS)

    Thompson, Willie L., II; Israel, David J.

    2008-01-01

    This paper investigates the implementation of power control techniques for crosslinks communications during a rendezvous scenario of the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). During the rendezvous, NASA requires that the CEV supports two communication links: space-to-ground and crosslink simultaneously. The crosslink will generate excess interference to the space-to-ground link as the distances between the two vehicles decreases, if the output power is fixed and optimized for the worst-case link analysis at the maximum distance range. As a result, power control is required to maintain the optimal power level for the crosslink without interfering with the space-to-ground link. A proof-of-concept will be described and implemented with Goddard Space Flight Center (GSFC) Communications, Standard, and Technology Lab (CSTL).

  15. Intelligent data reduction for autonomous power systems

    NASA Technical Reports Server (NTRS)

    Floyd, Stephen A.

    1988-01-01

    Since 1984 Marshall Space Flight Center was actively engaged in research and development concerning autonomous power systems. Much of the work in this domain has dealt with the development and application of knowledge-based or expert systems to perform tasks previously accomplished only through intensive human involvement. One such task is the health status monitoring of electrical power systems. Such monitoring is a manpower intensive task which is vital to mission success. The Hubble Space Telescope testbed and its associated Nickel Cadmium Battery Expert System (NICBES) were designated as the system on which the initial proof of concept for intelligent power system monitoing will be established. The key function performed by an engineer engaged in system monitoring is to analyze the raw telemetry data and identify from the whole only those elements which can be considered significant. This function requires engineering expertise on the functionality of the system, the mode of operation and the efficient and effective reading of the telemetry data. Application of this expertise to extract the significant components of the data is referred to as data reduction. Such a function possesses characteristics which make it a prime candidate for the application of knowledge-based systems' technologies. Such applications are investigated and recommendations are offered for the development of intelligent data reduction systems.

  16. Glass Solder Approach for Robust, Low-Loss, Fiber-to-Waveguide Coupling

    NASA Technical Reports Server (NTRS)

    McNeil, Shirley; Battle, Philip; Hawthorne, Todd; Lower, John; Wiley, Robert; Clark, Brett

    2012-01-01

    The key advantages of this approach include the fact that the index of interface glass (such as Pb glass n = 1.66) greatly reduces Fresnel losses at the fiber-to-waveguide interface, resulting in lower optical losses. A contiguous structure cannot be misaligned and readily lends itself for use on aircraft or space operation. The epoxy-free, fiber-to-waveguide interface provides an optically pure, sealed interface for low-loss, highpower coupling. Proof of concept of this approach has included successful attachment of the low-melting-temperature glass to the x-y plane of the crystal, successful attachment of the low-meltingtemperature glass to the end face of a standard SMF (single-mode fiber), and successful attachment of a wetted lowmelting- temperature glass SMF to the end face of a KTP crystal. There are many photonic components on the market whose performance and robustness could benefit from this coupling approach once fully developed. It can be used in a variety of fibercoupled waveguide-based components, such as frequency conversion modules, and amplitude and phase modulators. A robust, epoxy-free, contiguous optical interface lends itself to components that require low-loss, high-optical-power handling capability, and good performance in adverse environments such as flight or space operation.

  17. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO

    NASA Astrophysics Data System (ADS)

    Kim, Byoungsu; Hillman, Febrian; Ariyoshi, Miho; Fujikawa, Shigenori; Kenis, Paul J. A.

    2016-04-01

    With the development of better catalysts, mass transport limitations are becoming a challenge to high throughput electrochemical reduction of CO2 to CO. In contrast to optimization of electrodes for fuel cells, optimization of gas diffusion electrodes (GDE) - consisting of a carbon fiber substrate (CFS), a micro porous layer (MPL), and a catalyst layer (CL) - for CO2 reduction has not received a lot of attention. Here, we studied the effect of the MPL and CFS composition on cathode performance in electroreduction of CO2 to CO. In a flow reactor, optimized GDEs exhibited a higher partial current density for CO production than Sigracet 35BC, a commercially available GDE. By performing electrochemical impedance spectroscopy in a CO2 flow reactor we determined that a loading of 20 wt% PTFE in the MPL resulted in the best performance. We also investigated the influence of the thickness and wet proof level of CFS with two different feeds, 100% CO2 and the mixture of 50% CO2 and N2, determining that thinner and lower wet proofing of the CFS yields better cathode performance than when using a thicker and higher wet proof level of CFS.

  18. Evaluating cryostat performance for naval applications

    NASA Astrophysics Data System (ADS)

    Knoll, David; Willen, Dag; Fesmire, James; Johnson, Wesley; Smith, Jonathan; Meneghelli, Barry; Demko, Jonathan; George, Daniel; Fowler, Brian; Huber, Patti

    2012-06-01

    The Navy intends to use High Temperature Superconducting Degaussing (HTSDG) coil systems on future Navy platforms. The Navy Metalworking Center (NMC) is leading a team that is addressing cryostat configuration and manufacturing issues associated with fabricating long lengths of flexible, vacuum-jacketed cryostats that meet Navy shipboard performance requirements. The project includes provisions to evaluate the reliability performance, as well as proofing of fabrication techniques. Navy cryostat performance specifications include less than 1 Wm-1 heat loss, 2 MPa working pressure, and a 25-year vacuum life. Cryostat multilayer insulation (MLI) systems developed on the project have been validated using a standardized cryogenic test facility and implemented on 5-meterlong test samples. Performance data from these test samples, which were characterized using both LN2 boiloff and flow-through measurement techniques, will be presented. NMC is working with an Integrated Project Team consisting of Naval Sea Systems Command, Naval Surface Warfare Center-Carderock Division, Southwire Company, nkt cables, Oak Ridge National Laboratory (ORNL), ASRC Aerospace, and NASA Kennedy Space Center (NASA-KSC) to complete these efforts. Approved for public release; distribution is unlimited. This material is submitted with the understanding that right of reproduction for governmental purposes is reserved for the Office of Naval Research, Arlington, Virginia 22203-1995.

  19. Local Flood Proofing Programs

    DTIC Science & Technology

    2005-02-01

    Carolina, funded its flood audits and other flood protection projects with stormwater utility income. Impact fees: Impact fees are contributions...determining appropriate projects . Local Flood Proofing Programs – 68 – February 2005 Bolingbrook’s Flood Audit Bolingbrook, Illinois, has used different...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND

  20. Why does trigonometric substitution work?

    NASA Astrophysics Data System (ADS)

    Cunningham, Daniel W.

    2018-05-01

    Modern calculus textbooks carefully illustrate how to perform integration by trigonometric substitution. Unfortunately, most of these books do not adequately justify this powerful technique of integration. In this article, we present an accessible proof that establishes the validity of integration by trigonometric substitution. The proof offers calculus instructors a simple argument that can be used to show their students that trigonometric substitution is a valid technique of integration.

  1. Training for life science experiments in space at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  2. Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure

    NASA Technical Reports Server (NTRS)

    Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  3. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    NASA Technical Reports Server (NTRS)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  4. Multiple capillary biochemical analyzer with barrier member

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1996-10-22

    A multiple capillary biochemical analyzer is disclosed for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal-to-noise ratio. 12 figs.

  5. Multiple capillary biochemical analyzer with barrier member

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1996-01-01

    A multiple capillary biochemical analyzer for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal to noise ratio.

  6. I = 1 and I = 2 π-π scattering phase shifts from Nf = 2 + 1 lattice QCD

    NASA Astrophysics Data System (ADS)

    Bulava, John; Fahy, Brendan; Hörz, Ben; Juge, Keisuke J.; Morningstar, Colin; Wong, Chik Him

    2016-09-01

    The I = 1 p-wave and I = 2 s-wave elastic π-π scattering amplitudes are calculated from a first-principles lattice QCD simulation using a single ensemble of gauge field configurations with Nf = 2 + 1 dynamical flavors of anisotropic clover-improved Wilson fermions. This ensemble has a large spatial volume V =(3.7 fm)3, pion mass mπ = 230 MeV, and spatial lattice spacing as = 0.11 fm. Calculation of the necessary temporal correlation matrices is efficiently performed using the stochastic LapH method, while the large volume enables an improved energy resolution compared to previous work. For this single ensemble we obtain mρ /mπ = 3.350 (24), gρππ = 5.99 (26), and a clear signal for the I = 2 s-wave. The success of the stochastic LapH method in this proof-of-principle large-volume calculation paves the way for quantitative study of the lattice spacing effects and quark mass dependence of scattering amplitudes using state-of-the-art ensembles.

  7. Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

    PubMed Central

    Juhl, Anika C; Schneider, Artur; Ufer, Boris; Brezesinski, Torsten

    2016-01-01

    Summary Hollow carbon spheres (HCS) with a nanoporous shell are promising for the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm−2 were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g−1 based on the mass of sulfur over 500 cycles. PMID:27826497

  8. Canonical formalism for modelling and control of rigid body dynamics.

    PubMed

    Gurfil, P

    2005-12-01

    This paper develops a new paradigm for stabilization of rigid-body dynamics. The state-space model is formulated using canonical elements, known as the Serret-Andoyer (SA) variables, thus far scarcely used for engineering applications. The main feature of the SA formalism is the reduction of the dynamics via the underlying symmetry stemming from conservation of angular momentum and rotational kinetic energy. The controllability of the system model is examined using the notion of accessibility, and is shown to be accessible from all points. Based on the accessibility proof, two nonlinear asymptotic feedback stabilizers are developed: a damping feedback is designed based on the Jurdjevic-Quinn method, and a Hamiltonian controller is derived by using the Hamiltonian as a natural Lyapunov function for the closed-loop dynamics. It is shown that the Hamiltonian control is both passive and inverse optimal with respect to a meaningful performance index. The performance of the new controllers is examined and compared using simulations of realistic scenarios from the satellite attitude dynamics field.

  9. The precompetitive space: time to move the yardsticks.

    PubMed

    Norman, Thea; Edwards, Aled; Bountra, Chas; Friend, Stephen

    2011-03-30

    Industry, government, patient advocacy groups, public funders, and academic thought leaders met in Toronto, Canada, to set into motion an initiative that addresses some of the scientific and organizational challenges of modern therapeutics discovery. What emerged from the meeting was a public-private partnership that seeks to establish proof of clinical mechanism (POCM) for selected "pioneer" disease targets using lead compounds-all accomplished in the precompetitive space. The group will reconvene in April 2011 to create a business plan that specifies the generation of two positive POCM results per year.

  10. Isovariant extensors and the characterization of equivariant homotopy equivalences

    NASA Astrophysics Data System (ADS)

    Ageev, Sergei M.

    2012-10-01

    We extend the well-known theorem of James-Segal to the case of an arbitrary family F of conjugacy classes of closed subgroups of a compact Lie group G: a G-map f\\colon{X}\\to{Y} of metric \\operatorname{Equiv}_{F}- {ANE}-spaces is a G-homotopy equivalence if and only if it is a weak G- F-homotopy equivalence. The proof is based on the theory of isovariant extensors, which is developed in this paper and enables us to endow F-classifying G-spaces with an additional structure.

  11. A System of Poisson Equations for a Nonconstant Varadhan Functional on a Finite State Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavazos-Cadena, Rolando; Hernandez-Hernandez, Daniel

    2006-01-15

    Given a discrete-time Markov chain with finite state space and a stationary transition matrix, a system of 'local' Poisson equations characterizing the (exponential) Varadhan's functional J(.) is given. The main results, which are derived for an arbitrary transition structure so that J(.) may be nonconstant, are as follows: (i) Any solution to the local Poisson equations immediately renders Varadhan's functional, and (ii) a solution of the system always exist. The proof of this latter result is constructive and suggests a method to solve the local Poisson equations.

  12. ACOSS Three (Active Control of Space Structures). Phase I.

    DTIC Science & Technology

    1980-05-01

    their assorted pitfalls, programs such as NASTRAN, SPAR, ASTRO , etc., are never-the-less the primary tools for generating dynamical models of...proofs and additional details, see Ref [*] Consider the system described in state-space form by: Dynamics: X = FX + Gu Sensors: y = HX = (F +GCH)X (1...input u and output y = Fx + Gu (6) y = Hx+Du (7) The input-output transfer function is given by y = (H(sI- F)-1G +D)u (8) or y(s) _ 1 N u(s) A(s) E

  13. Lightweight deformable mirrors for future space telescopes

    NASA Astrophysics Data System (ADS)

    Patterson, Keith

    This thesis presents a concept for ultra-lightweight deformable mirrors based on a thin substrate of optical surface quality coated with continuous active piezopolymer layers that provide modes of actuation and shape correction. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits micro-fabrication technologies to provide a tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10-cm-diameter mirrors with a low areal density of about 0.5 kg/m2 have been designed, built and tested to measure their shape-correction performance and verify the models used for design. The low cost manufacturing scheme uses replication techniques, and strives for minimizing residual stresses that deviate the optical figure from the master mandrel. It does not require precision tolerancing, is lightweight, and is therefore potentially scalable to larger diameters for use in large, modular space telescopes. Other potential applications for such a laminate could include ground-based mirrors for solar energy collection, adaptive optics for atmospheric turbulence, laser communications, and other shape control applications. The immediate application for these mirrors is for the Autonomous Assembly and Reconfiguration of a Space Telescope (AAReST) mission, which is a university mission under development by Caltech, the University of Surrey, and JPL. The design concept, fabrication methodology, material behaviors and measurements, mirror modeling, mounting and control electronics design, shape control experiments, predictive performance analysis, and remaining challenges are presented herein. The experiments have validated numerical models of the mirror, and the mirror models have been used within a model of the telescope in order to predict the optical performance. A demonstration of this mirror concept, along with other new telescope technologies, is planned to take place during the AAReST mission.

  14. Probabilistic Assessment of National Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M.; Chamis, C. C.

    1996-01-01

    A preliminary probabilistic structural assessment of the critical section of National Wind Tunnel (NWT) is performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) computer code. Thereby, the capabilities of NESSUS code have been demonstrated to address reliability issues of the NWT. Uncertainties in the geometry, material properties, loads and stiffener location on the NWT are considered to perform the reliability assessment. Probabilistic stress, frequency, buckling, fatigue and proof load analyses are performed. These analyses cover the major global and some local design requirements. Based on the assumed uncertainties, the results reveal the assurance of minimum 0.999 reliability for the NWT. Preliminary life prediction analysis results show that the life of the NWT is governed by the fatigue of welds. Also, reliability based proof test assessment is performed.

  15. A proof of concept investigation: A unique mobility spectrometer for In Situ diagnostics of positive and negative ion distributions in the mesosphere and lower ionosphere

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.

    1996-01-01

    We have carried out a proof-of-concept development and test effort that not only promises the reduction of parasitic effects of surface contamination (therefore increasing the integrity of 'in situ' measurements in the 60-130 km regime), but promises a uniquely expanded measurement set that includes electron densities, plasma conductivities, charged-particle mobilities, and mass discrimination of positive and negative ion distributions throughout the continuum to free-molecular-flow regimes. Three different sensor configurations were designed, built and tested, along with specialized driving voltage, electrometer and channeltron control electronics. The individual systems were tested in a variety of simulated space environments ranging from pressures near the continuum limit of 100 mTorr to the collisionless regime at 10(exp -6) Torr. Swept modes were initially employed to better understand ion optics and ion 'beam' losses to end walls and to control electrodes. This swept mode also helped better understand and mitigate the influences of secondary electrons on the overall performance of the PIMS design concept. Final results demonstrated the utility of the concept in dominant single-ion plasma environments. Accumulated information, including theoretical concepts and laboratory data, suggest that multi-ion diagnostics are fully within the instrument capabilities and that cold plasma tests with minimized pre-aperture sheath acceleration are the key ingredients to multi-ion success.

  16. The Hartman-Grobman theorem for semilinear hyperbolic evolution equations

    NASA Astrophysics Data System (ADS)

    Hein, Marie-Luise; Prüss, Jan

    2016-10-01

    The famous Hartman-Grobman theorem for ordinary differential equations is extended to abstract semilinear hyperbolic evolution equations in Banach spaces by means of simple direct proof. It is also shown that the linearising map is Hölder continuous. Several applications to abstract and specific damped wave equations are given, to demonstrate the strength of our results.

  17. 3D elastic control for mobile devices.

    PubMed

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  18. Definition of avionics concepts for a heavy lift cargo vehicle, appendix A

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The major objective of the study task was to define a cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles. This volume provides the results of the main simulation processor selection study and describes some proof-of-concept demonstrations for the avionics test bed facility.

  19. A note on decentralized integral controllability

    NASA Technical Reports Server (NTRS)

    Nwokah, O. D. I.; Frazho, A. E.; Le, D. K.

    1993-01-01

    A concept of decentralized integral controllability (DIC) defined on a given gain space Phi is clarified and related to the original definition given by Morari and Zafirou (1989). This leads to a simple proof of the existence of DIC on Phi from which existence conditions for DIC can be routinely deduced in the sense of Morari and Zafirou.

  20. The challenging scales of the bird: Shuttle tile structural integrity

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Miller, G. J.

    1985-01-01

    The principal design issues, tests, and analyses required to solve the tile integrity problem on the space shuttle orbiters are addressed. Proof testing of installed tiles is discussed along with an airflow test of special tiles. Orbiter windshield tiles are considered in terms of changes necessary to ensure acceptable margins of safety for flight.

  1. Feeling the Spirit: Spiritualism, Literary Aesthetics, and the Reformation of the Senses in Nineteenth-Century America

    ERIC Educational Resources Information Center

    Fritz, Tracy Lynn

    2012-01-01

    This dissertation attempts to explain how nineteenth-century American Spiritualist literature may have made readers feel like they were hearing voices, touching the dead, seeing celestial spaces, or enjoying other sensory proofs of the afterlife. Spiritualists believed that, while all human beings possessed faculties designed to perceive the dead,…

  2. Old Tails and New Trails in High Dimensions

    ERIC Educational Resources Information Center

    Halevy, Avner

    2013-01-01

    We discuss the motivation for dimension reduction in the context of the modern data revolution and introduce a key result in this field, the Johnson-Lindenstrauss flattening lemma. Then we leap into high-dimensional space for a glimpse of the phenomenon called concentration of measure, and use it to sketch a proof of the lemma. We end by tying…

  3. The three-body problem and equivariant Riemannian geometry

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramírez, M.; García, A.; Meléndez, J.; Reyes-Victoria, J. G.

    2017-08-01

    We study the planar three-body problem with 1/r2 potential using the Jacobi-Maupertuis metric, making appropriate reductions by Riemannian submersions. We give a different proof of the Gaussian curvature's sign and the completeness of the space reported by Montgomery [Ergodic Theory Dyn. Syst. 25, 921-947 (2005)]. Moreover, we characterize the geodesics contained in great circles.

  4. High Altitude Venus Operational Concept (HAVOC): Proofs of Concept

    NASA Technical Reports Server (NTRS)

    Jones, Christopher A.; Arney, Dale C.; Bassett, George Z.; Clark, James R.; Hennig, Anthony I.; Snyder, Jessica C.

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

  5. Resilient and Corrosion-proof Rolling Element Bearings Made from Ni-ti Alloys for Aerospace Mechanism Applications and the Ultimate Space Technology Development Platform

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2014-01-01

    The International Space Station provides a unique microgravity laboratory environment for research. The ISS also serves as an effective platform for the development of technologies and engineered solutions related to living and working in space. The space environment also challenges our capabilities related to lubrication and tribology. In this seminar, Dr. DellaCorte will review the basics of space mechanism tribology and the challenges of providing good lubrication and long-life in the harsh space environment. He will also discuss recent tribological challenges associated with the Solar Alpha Rotary Joint (SARJ) bearings and life support hardware that must operate under severe conditions that are literally out of this world. Each tribology challenge is unique and their solutions often result in new technologies that benefit the tribology community everywhere, even back on Earth

  6. Scaling of Rényi entanglement entropies of the free fermi-gas ground state: a rigorous proof.

    PubMed

    Leschke, Hajo; Sobolev, Alexander V; Spitzer, Wolfgang

    2014-04-25

    In a remarkable paper [Phys. Rev. Lett. 96, 100503 (2006)], Gioev and Klich conjectured an explicit formula for the leading asymptotic growth of the spatially bipartite von Neumann entanglement entropy of noninteracting fermions in multidimensional Euclidean space at zero temperature. Based on recent progress by one of us (A. V. S.) in semiclassical functional calculus for pseudodifferential operators with discontinuous symbols, we provide here a complete proof of that formula and of its generalization to Rényi entropies of all orders α>0. The special case α=1/2 is also known under the name logarithmic negativity and often considered to be a particularly useful quantification of entanglement. These formulas exhibiting a "logarithmically enhanced area law" have been used already in many publications.

  7. Communications and Intelligent Systems Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2017-01-01

    Provides expertise, and plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for applications in current and future aeronautics and space systems.Advances communication systems engineering, development and analysis needed for Glenn Research Center's leadership in communications and intelligent systems technology. Focus areas include advanced high frequency devices, components, and antennas; optical communications, health monitoring and instrumentation; digital signal processing for communications and navigation, and cognitive radios; network architectures, protocols, standards and network-based applications; intelligent controls, dynamics and diagnostics; and smart micro- and nano-sensors and harsh environment electronics. Research and discipline engineering allow for the creation of innovative concepts and designs for aerospace communication systems with reduced size and weight, increased functionality and intelligence. Performs proof-of-concept studies and analyses to assess the impact of the new technologies.

  8. Review of the High Performance Antiproton Trap (HiPAT) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Lewis, Raymond A.; Pearson, J. Boise; Sims, W. Herb; Chakrabarti, Suman; Fant, Wallace E.; McDonald, Stan

    2003-01-01

    Many space propulsion concepts exist that use matter-antimatter reactions. Current antiproton production rates are enough to conduct proof-of-principle evaluation of these concepts. One enabling technology for such experiments is portable storage of low energy antiprotons, to transport antiprotons to experimental facilities. To address this need, HiPAT is being developed, with a design goal of containing 10(exp 12) particles for up to 18 days. HiPAT is a Penning-Malmberg trap with a 4 Tesla superconductor, 20kV electrodes, radio frequency (RF) network, and 10(exp -13) Torr vacuum. 'Normal' matter is being used to evaluate the system. An electron beam ionizes background gas in situ, and particle beams are captured dynamically. The experiment examines ion storage lifetimes, RF plasma diagnostics, charge exchange with background gases, and dynamic ion beam capture.

  9. Feasibility of performing space surveillance tasks with a proposed space-based optical architecture

    NASA Astrophysics Data System (ADS)

    Flohrer, Tim; Krag, Holger; Klinkrad, Heiner; Schildknecht, Thomas

    Under ESA contract an industrial consortium including Aboa Space Research Oy (ASRO), the Astronomical Institute of the University of Bern (AIUB), and the Dutch National Aerospace Laboratory (NLR), proposed the observation concept, developed a suitable sensor architecture, and assessed the performance of a space-based optical (SBO) telescope in 2005. The goal of the SBO instrumentation was to analyse how the existing knowledge gap in the space debris population in the millimetre and centimetre regime may be closed by means of a passive op-tical instrument. SBO was requested to provide statistical information on the space debris population, in terms of number of objects and size distribution. The SBO was considered to be a cost-efficient instrumentation of 20 cm aperture and 6 deg field-of-view with flexible integration requirements. It should be possible to integrate the SBO easily as a secondary payload on satellites launched into low-Earth orbits (LEO), or into geostationary orbit (GEO). Thus the selected mission concept only allowed for fix-mounted telescopes, and the pointing direction could be requested freely. It was shown in the performance analysis that the statistical information on small-sized space debris can only be collected if the observation ranges are comparatively small. Two of the most promising concepts were to observe objects in LEO from a sensor placed into a sun-synchronous LEO, while objects in GEO should be observed from a GEO satellite. Since 2007 ESA focuses space surveillance and tracking activities in the Space Situational Awareness (SSA) preparatory program. Ground-based radars and optical telescopes are stud-ied for the build-up and to maintenance of a catalogue of objects. In this paper we analyse how the SBO architecture could contribute to the space surveillance tasks survey and tracking. We assume that the SBO instrumentation is placed into a circular sun-synchronous orbit at 800 km altitude. We discuss the observation conditions of objects at higher altitude, such as GEO and Medium-Earth Orbits (MEO). Of particular interest are the radiometric performance from which we derive the detectable object diameters, the coverage of a reference population, and the covered arc lengths of individual objects. The latter is of particular interest for the simu-lation of the orbit determination, correlation, and cataloguing. Assuming realistic noise levels known from the SBO design we simulate first orbit determination of unknown objects (surveys) and orbit improvements (tracking) for sample objects. We use a simulation environment that comprises the ESA Program for Radar and Optical Observation Forecasting (PROOF) in the version 2005 and AIUB's program system CelMech. ESA's MASTER-2005 serves as reference population for all analyses.

  10. Invited Article: First Flight in Space of a Wide-field-of-view Soft X-Ray Imager Using Lobster-Eye Optics: Instrument Description and Initial Flight Results

    NASA Technical Reports Server (NTRS)

    Collier, Michael; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chomay, Dennis J.; Cravens, Thomas E.; Galeazzi, Massiniliano; Keller, John; Koutroumpa, Dimitra

    2015-01-01

    We describe the development, launch into space, and initial results from a prototype wide eld-of-view (FOV) soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The Sheath Transport Observer for the Redistribution of Mass (STORM) is the rst instrument using this type of optics launched into space and provides proof-of-concept for future ight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the moon, and the solar wind interaction with planetary bodies like Venus and Mars.

  11. Invited Article: First Flight in Space of a Wide-Field-of-View Soft X-Ray Imager Using Lobster-Eye Optics: Instrument Description and Initial Flight Results

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Porter, Frederick S.; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas E.; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2015-01-01

    We describe the development, launch into space, and initial results from a prototype wide eld-of-view (FOV) soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The Sheath Transport Observer for the Redistribution of Mass (STORM) is the rst instrument using this type of optics launched into space and provides proof-of-concept for future ight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the moon, and the solar wind interaction with planetary bodies like Venus and Mars.

  12. Large space structure damping design

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Haviland, J. K.

    1983-01-01

    Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.

  13. Hybrid Active/Passive Jet Engine Noise Suppression System

    NASA Technical Reports Server (NTRS)

    Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.

    1999-01-01

    A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.

  14. Proof of Concept Study of Trade Space Configuration Tool for Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Glidden, Geoffrey L.

    2009-01-01

    Spacecraft design is a very difficult and time consuming process because requirements and criteria are often changed or modified as the design is refined. Accounting for these adjustments in the design constraints plays a significant role in furthering the overall progress. There are numerous aspects and variables that hold significant influence on various characteristics of the design. This can be especially frustrating when attempting to conduct rapid trade space analysis on system configurations. Currently, the data and designs considered for trade space evaluations can only be displayed by using the traditional interfaces of Excel spreadsheets or CAD (Computer Aided Design) models. While helpful, these methods of analyzing the data from a systems engineering approach can be rather complicated and overwhelming. As a result, a proof of concept was conducted on a dynamic data visualization software called Thinkmap SDK (Software Developer Kit) to allow for better organization and understanding of the relationships between the various aspects that make up an entire design. The Orion Crew Module Aft Bay Subsystem was used as the test case for this study because the design and layout of many of the subsystem components will be significant in ensuring the overall center of gravity of the capsule is correct. A simplified model of this subsystem was created and programmed using Thinkmap SDK to create a preliminary prototype application of a Trade Space Configuration Tool. The completed application ensures that the core requirements for the Tool can be met. Further development is strongly suggested to produce a full prototype application to allow final evaluations and recommendations of the software capabilities.

  15. QIPS: quantum information and quantum physics in space

    NASA Astrophysics Data System (ADS)

    Schmitt-Manderbach, Tobias; Scheidl, Thomas; Ursin, Rupert; Tiefenbacher, Felix; Weier, Henning; Fürst, Martin; Jennewein, T.; Perdigues, J.; Sodnik, Z.; Rarity, J.; Zeilinger, Anton; Weinfurter, Harald

    2017-11-01

    The aim of the QIPS project (financed by ESA) is to explore quantum phenomena and to demonstrate quantum communication over long distances. Based on the current state-of-the-art a first study investigating the feasibility of space based quantum communication has to establish goals for mid-term and long-term missions, but also has to test the feasibility of key issues in a long distance ground-to-ground experiment. We have therefore designed a proof-of-concept demonstration for establishing single photon links over a distance of 144 km between the Canary Islands of La Palma and Tenerife to evaluate main limitations for future space experiments. Here we report on the progress of this project and present first measurements of crucial parameters of the optical free space link.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart Zweben; Samuel Cohen; Hantao Ji

    Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.

  17. Performer-centric Interface Design.

    ERIC Educational Resources Information Center

    McGraw, Karen L.

    1995-01-01

    Describes performer-centric interface design and explains a model-based approach for conducting performer-centric analysis and design. Highlights include design methodology, including cognitive task analysis; creating task scenarios; creating the presentation model; creating storyboards; proof of concept screens; object models and icons;…

  18. RGLite, an interface between ROOT and gLite—proof on the grid

    NASA Astrophysics Data System (ADS)

    Malzacher, P.; Manafov, A.; Schwarz, K.

    2008-07-01

    Using the gLitePROOF package it is possible to perform PROOF-based distributed data analysis on the gLite Grid. The LHC experiments managed to run globally distributed Monte Carlo productions on the Grid, now the development of tools for data analysis is in the foreground. To grant access interfaces must be provided. The ROOT/PROOF framework is used as a starting point. Using abstract ROOT classes (TGrid, ...) interfaces can be implemented, via which Grid access from ROOT can be accomplished. A concrete implementation exists for the ALICE Grid environment AliEn. Within the D-Grid project an interface to the common Grid middleware of all LHC experiments, gLite, has been created. Therefore it is possible to query Grid File Catalogues from ROOT for the location of the data to be analysed. Grid jobs can be submitted into a gLite based Grid. The status of the jobs can be asked for, and their results can be obtained.

  19. Fibers and fabrics with insulating, water-proofing, and flame-resistant properties

    DOEpatents

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    2004-04-20

    Fibers, and fabrics produced from the fibers, are made water repellent, fire-retardant and/or thermally insulating by filling void spaces in the fibers and/or fabrics with a powdered material. When the powder is sufficiently finely divided, it clings tenaciously to the fabric's fibers and to itself, resisting the tendency to be removed from the fabric.

  20. Lightweight evacuated multilayer insulation systems for the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Zimmerman, D. K.

    1973-01-01

    The elements in the evacuated multilayer insulation system were investigated, and the major weight contributors for optimization selected. Outgassing tests were conducted on candidate vacuum jacket materials and experiments were conducted to determine the vacuum and structural integrity of selected vacuum jacket configurations. A nondestructive proof test method, applicable to externally pressurized shells, was validated on this program.

  1. White Paper for Virtual Control Room

    NASA Technical Reports Server (NTRS)

    Little, William; Tully-Hanson, Benjamin

    2015-01-01

    The Virtual Control Room (VCR) Proof of Concept (PoC) project is the result of an award given by the Fourth Annual NASA T&I Labs Challenge Project Call. This paper will outline the work done over the award period to build and enhance the capabilities of the Augmented/Virtual Reality (AVR) Lab at NASA's Kennedy Space Center (KSC) to create the VCR.

  2. 46 CFR 129.520 - Hazardous areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid with a flashpoint of below 140 °F (60 °C), or carries hazardous cargoes on deck or in integral...-storage spaces, or within 3 meters (10 feet) of a source of vapor on a weather deck unless the equipment... liquid unless the equipment is explosion-proof or intrinsically safe under § 111.105-9 or § 111.105-11 of...

  3. 46 CFR 129.520 - Hazardous areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... liquid with a flashpoint of below 140 °F (60 °C), or carries hazardous cargoes on deck or in integral...-storage spaces, or within 3 meters (10 feet) of a source of vapor on a weather deck unless the equipment... liquid unless the equipment is explosion-proof or intrinsically safe under § 111.105-9 or § 111.105-11 of...

  4. 46 CFR 129.520 - Hazardous areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid with a flashpoint of below 140 °F (60 °C), or carries hazardous cargoes on deck or in integral...-storage spaces, or within 3 meters (10 feet) of a source of vapor on a weather deck unless the equipment... liquid unless the equipment is explosion-proof or intrinsically safe under § 111.105-9 or § 111.105-11 of...

  5. The spectral method and the central limit theorem for general Markov chains

    NASA Astrophysics Data System (ADS)

    Nagaev, S. V.

    2017-12-01

    We consider Markov chains with an arbitrary phase space and develop a modification of the spectral method that enables us to prove the central limit theorem (CLT) for non-uniformly ergodic Markov chains. The conditions imposed on the transition function are more general than those by Athreya-Ney and Nummelin. Our proof of the CLT is purely analytical.

  6. Compact laser interferometer for translation and tilt measurement as optical readout for the LISA inertial sensor

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2007-10-01

    The space mission LISA (Laser Interferometer Space Antenna) aims at detecting gravitational waves in the frequency range 30 μ Hz to 1Hz. Free flying proof masses inside the satellites act as inertial sensors and represent the end mirrors of the interferometer. In the current baseline design, LISA utilizes an optical readout of the position and tilt of the proof mass with respect to the satellite housing. This readout must have ~ 5pm/√Hz sensitivity for the translation measurement (for frequencies above 2.8mHz with an ƒ -2 relaxation down to 30 μHz) and ~ 10 nrad/√Hz sensitivity for the tilt measurement (for frequencies above 0.1mHz with an ƒ -1 relaxation down to 30 μHz). The University of Applied Sciences Konstanz (HTWG) - in collaboration with Astrium GmbH, Friedrichshafen, and the Humboldt-University Berlin - therefore develops a highly symmetric heterodyne interferometer implementing differential wavefront sensing for the tilt measurement. We realized a mechanically highly stable and compact setup. In a second, improved setup we measured initial noise levels below 5 pm/√Hz and 10 nrad/√Hz, respectively, for frequencies above 10mHz.

  7. Moving GIS Research Indoors: Spatiotemporal Analysis of Agricultural Animals

    PubMed Central

    Daigle, Courtney L.; Banerjee, Debasmit; Montgomery, Robert A.; Biswas, Subir; Siegford, Janice M.

    2014-01-01

    A proof of concept applying wildlife ecology techniques to animal welfare science in intensive agricultural environments was conducted using non-cage laying hens. Studies of wildlife ecology regularly use Geographic Information Systems (GIS) to assess wild animal movement and behavior within environments with relatively unlimited space and finite resources. However, rather than depicting landscapes, a GIS could be developed in animal production environments to provide insight into animal behavior as an indicator of animal welfare. We developed a GIS-based approach for studying agricultural animal behavior in an environment with finite space and unlimited resources. Concurrent data from wireless body-worn location tracking sensor and video-recording systems, which depicted spatially-explicit behavior of hens (135 hens/room) in two identical indoor enclosures, were collected. The spatial configuration of specific hen behaviors, variation in home range patterns, and variation in home range overlap show that individual hens respond to the same environment differently. Such information could catalyze management practice adjustments (e.g., modifying feeder design and/or location). Genetically-similar hens exhibited diverse behavioral and spatial patterns via a proof of concept approach enabling detailed examinations of individual non-cage laying hen behavior and welfare. PMID:25098421

  8. Development of a small single-ring OpenPET prototype with a novel transformable architecture.

    PubMed

    Tashima, Hideaki; Yoshida, Eiji; Inadama, Naoko; Nishikido, Fumihiko; Nakajima, Yasunori; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Nitta, Munetaka; Kinouchi, Shoko; Suga, Mikio; Haneishi, Hideaki; Inaniwa, Taku; Yamaya, Taiga

    2016-02-21

    The single-ring OpenPET (SROP), for which the detector arrangement has a cylinder shape cut by two parallel planes at a slant angle to form an open space, is our original proposal for in-beam PET. In this study, we developed a small prototype of an axial-shift type SROP (AS-SROP) with a novel transformable architecture for a proof-of-concept. In the AS-SROP, detectors originally forming a cylindrical PET are axially shifted little by little. We designed the small AS-SROP prototype for 4-layer depth-of-interaction detectors arranged in a ring diameter of 250 mm. The prototype had two modes: open and closed. The open mode formed the SROP with the open space of 139 mm and the closed mode formed a conventional cylindrical PET. The detectors were simultaneously moved by a rotation handle allowing them to be transformed between the two modes. We evaluated the basic performance of the developed prototype and carried out in-beam imaging tests in the HIMAC using (11)C radioactive beam irradiation. As a result, we found the open mode enabled in-beam PET imaging at a slight cost of imaging performance; the spatial resolution and sensitivity were 2.6 mm and 5.1% for the open mode and 2.1 mm and 7.3% for the closed mode. We concluded that the AS-SROP can minimize the decrease of resolution and sensitivity, for example, by transforming into the closed mode immediately after the irradiation while maintaining the open space only for the in-beam PET measurement.

  9. On Some Parabolic Type Problems from Thin Film Theory and Chemical Reaction-Diffusion Networks

    NASA Astrophysics Data System (ADS)

    Mohamed, Fatma Naser Ali

    This dissertation considers some parabolic type problems from thin film theory and chemical reaction-diffusion networks. The dissertation consists of two parts: In the first part, we study the evolution of a thin film of fluid modeled by the lubrication approximation for thin viscous films. We prove an existence of (dissipative) strong solutions for the Cauchy problem when the sub-diffusive exponent ranges between 3/8 and 2; then we show that these solutions tend to zero at rates matching the decay of the source-type self-similar solutions with zero contact angle. We introduce the weaker concept of dissipative mild solutions and we show that, in this case, the surface-tension energy dissipation is the mechanism responsible for the H1-norm decay to zero of the thickness of the film at an explicit rate. Relaxed problems, with second-order nonlinear terms of porous media type, are also successfully treated by the same means. [special characters omitted]. In the second part, we are concerned with the convergence of a certain space-discretization scheme -the so-called method of lines- for mass-action reaction-diffusion systems. First, we start with a toy model, namely. [special characters omitted]. and prove convergence of method of lines for this linear case. Here weak convergence in L2(0,1) is enough to prove convergence of the method of lines. Then we adopt the framework for convergence analysis introduced in [23] and concentrate on the proof-of-concept reaction. within 1D space, while at the same time noting that our techniques are readily generalizable to other reaction-diffusion networks and to more than one space dimension. Indeed, it will be obvious how to extend our proofs to the multi-dimensional case; we only note that the proof of the comparison principle (the continuous and the discrete versions; see chapter 6) imposes a limitation on the spatial dimension (should be at most five; see [24] for details). The Method of Lines (MOL) is not a mainstream numerical tool and the specialized literature is rather scarce. The method amounts to discretizing evolutionary PDE's in space only, so it produces a semi-discrete numerical scheme which consists of a system of ODE's (in the time variable). To prove convergence of the semi-discrete MOL scheme to the original PDE one needs to perform some more or less traditional analysis: it is necessary to show that the scheme is consistent with the continuous problem and that the discretized version of the spatial differential operator retains sufficient dissipative properties in order to allow an application of Gronwall's Lemma to the error term. As shown in [23], a uniform (in time) consistency estimate is sufficient to obtain convergence; however, the consistency estimate we proved is not uniform for a small time, so we cannot directly employ the results in [23] to prove convergence in our case. Instead, we prove all the required estimates "from the scratch", then we use their exact quantitative form in order to conclude convergence.

  10. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas

    PubMed Central

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G.; Leergaard, Trygve B.; Kirlangic, Mehmet E.; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time. PMID:27199682

  11. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas.

    PubMed

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G; Leergaard, Trygve B; Kirlangic, Mehmet E; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time.

  12. Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry

    1998-01-01

    As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.

  13. On the completeness and the linear dependence of the Cartesian multipole series in representing the solution to the Helmholtz equation.

    PubMed

    Liu, Yangfan; Bolton, J Stuart

    2016-08-01

    The (Cartesian) multipole series, i.e., the series comprising monopole, dipoles, quadrupoles, etc., can be used, as an alternative to the spherical or cylindrical wave series, in representing sound fields in a wide range of problems, such as source radiation, sound scattering, etc. The proofs of the completeness of the spherical and cylindrical wave series in these problems are classical results, and it is also generally agreed that the Cartesian multipole series spans the same space as the spherical waves: a rigorous mathematical proof of that statement has, however, not been presented. In the present work, such a proof of the completeness of the Cartesian multipole series, both in two and three dimensions, is given, and the linear dependence relations among different orders of multipoles are discussed, which then allows one to easily extract a basis from the multipole series. In particular, it is concluded that the multipoles comprising the two highest orders in the series form a basis of the whole series, since the multipoles of all the lower source orders can be expressed as a linear combination of that basis.

  14. Free-space optical polarization demultiplexing and multiplexing by means of conical refraction.

    PubMed

    Turpin, Alex; Loiko, Yurii; Kalkandjiev, Todor K; Mompart, Jordi

    2012-10-15

    Polarization demultiplexing and multiplexing by means of conical refraction is proposed to increase the channel capacity for free-space optical communication applications. The proposed technique is based on the forward-backward optical transform occurring when a light beam propagates consecutively along the optic axes of two identical biaxial crystals with opposite orientations of their conical refraction characteristic vectors. We present an experimental proof of usefulness of the conical refraction demultiplexing and multiplexing technique by increasing in one order of magnitude the channel capacity at optical frequencies in a propagation distance of 4 m.

  15. Innovative Stemless Valve Eliminates Emissions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Big Horn Valve Inc. (BHVI), of Sheridan, Wyoming, won a series of SBIR and Small Business Technology Transfer (STTR) contracts with Kennedy Space Center and Marshall Space Flight Center to explore and develop a revolutionary valve technology. BHVI developed a low-mass, high-efficiency, leak-proof cryogenic valve using composites and exotic metals, and had no stem-actuator, few moving parts, with an overall cylindrical shape. The valve has been installed at a methane coal gas field, and future applications are expected to include in-flight refueling of military aircraft, high-volume gas delivery systems, petroleum refining, and in the nuclear industry.

  16. Spinors in Hilbert Space

    NASA Astrophysics Data System (ADS)

    Plymen, Roger; Robinson, Paul

    1995-01-01

    Infinite-dimensional Clifford algebras and their Fock representations originated in the quantum mechanical study of electrons. In this book, the authors give a definitive account of the various Clifford algebras over a real Hilbert space and of their Fock representations. A careful consideration of the latter's transformation properties under Bogoliubov automorphisms leads to the restricted orthogonal group. From there, a study of inner Bogoliubov automorphisms enables the authors to construct infinite-dimensional spin groups. Apart from assuming a basic background in functional analysis and operator algebras, the presentation is self-contained with complete proofs, many of which offer a fresh perspective on the subject.

  17. Designing the STS-134 Re-Rendezvous: A Preparation for Future Crewed Rendezvous Missions

    NASA Technical Reports Server (NTRS)

    Stuit, Timothy D.

    2011-01-01

    In preparation to provide the capability for the Orion spacecraft, also known as the Multi-Purpose Crew Vehicle (MPCV), to rendezvous with the International Space Station (ISS) and future spacecraft, a new suite of relative navigation sensors are in development and were tested on one of the final Space Shuttle missions to ISS. The National Aeronautics and Space Administration (NASA) commissioned a flight test of prototypes of the Orion relative navigation sensors on STS-134, in order to test their performance in the space environment during the nominal rendezvous and docking, as well as a re-rendezvous dedicated to testing the prototype sensors following the undocking of the Space Shuttle orbiter at the end of the mission. Unlike the rendezvous and docking at the beginning of the mission, the re-rendezvous profile replicates the newly designed Orion coelliptic approach trajectory, something never before attempted with the shuttle orbiter. Therefore, there were a number of new parameters that needed to be conceived of, designed, and tested for this rerendezvous to make the flight test successful. Additionally, all of this work had to be integrated with the normal operations of the ISS and shuttle and had to conform to the constraints of the mission and vehicles. The result of this work is a separation and rerendezvous trajectory design that would not only prove the design of the relative navigation sensors for the Orion vehicle, but also would serve as a proof of concept for the Orion rendezvous trajectory itself. This document presents the analysis and decision making process involved in attaining the final STS-134 re-rendezvous design.

  18. Cyber Fighter Associate

    DTIC Science & Technology

    2016-01-01

    accomplish a patch- management mission while securing a critical path. As a first proof of concept a simulation with a network of 10 nodes and 4...software-agility walk of the “PERFORMANCE Each Threat Managed ” tree is slightly more complex than the network -agility walk. The original design of the...CyFiA was tested to accomplish a patch- management mission while securing a critical path. As a first proof of concept a simulation with a network of 10

  19. An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures

    NASA Astrophysics Data System (ADS)

    Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.

    2009-07-01

    A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.

  20. Non-Toxic Dual Thrust Reaction Control Engine Development for On-Orbit APS Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.

    2003-01-01

    A non-toxic dual thrust proof-of-concept demonstration engine was successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the Next Generation Launch Technology (NGLT) program. The demonstration engine utilized the existing Kistler K-1 870 lbf LOX/Ethanol orbital maneuvering engine ( O m ) coupled with some special test equipment (STE) that enabled engine operation at 870 lbf in the primary mode and 25 lbf in the vernier mode. Ambient testing in primary mode varied mixture ratio (MR) from 1.28 to 1.71 and chamber pressure (P(c) from 110 to 181 psia, and evaluated electrical pulse widths (EPW) of 0.080, 0.100 and 0.250 seconds. Altitude testing in vernier mode explored igniter and thruster pulsing characteristics, long duration steady state operation (greater than 420 sec) and the impact of varying the percent fuel film cooling on vernier performance and chamber thermal response at low PC (4 psia). Data produced from the testing provided calibration of the performance and thermal models used in the design of the next version of the dual thrust Reaction Control Engine (RCE).

  1. Continued Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Wincheski, Russell; Jablonski, David; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are used in essentially all NASA spacecraft, launch. vehicles and payloads to contain high-pressure fluids for propulsion, life support systems and science experiments. Failure of any COPV either in flight or during ground processing would result in catastrophic damage to the spacecraft or payload, and could lead to loss of life. Therefore, NASA continues to investigate new methods to non-destructively inspect (NDE) COPVs for structural anomalies and to provide a means for in-situ structural health monitoring (SHM) during operational service. Partnering with JENTEK Sensors, engineers at NASA, Kennedy Space Center have successfully conducted a proof-of-concept study to develop Meandering Winding Magnetometer (MWM) eddy current sensors designed to make direct measurements of the stresses of the internal layers of a carbon fiber composite wrapped COPV. During this study three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed good correlation with actual surface strain gage measurements. MWM-Array technology for scanning COPVs can reliably be used to image and detect mechanical damage. To validate this conclusion, several COPVs were scanned to obtain a baseline, and then each COPV was impacted at varying energy levels and then rescanned. The baseline subtracted images were used to demonstrate damage detection. These scans were performed with two different MWM-Arrays. with different geometries for near-surface and deeper penetration imaging at multiple frequencies and in multiple orientations of the linear MWM drive. This presentation will include a review of micromechanical models that relate measured sensor responses to composite material constituent properties, validated by the proof of concept study, as the basis for SHM and NDE data analysis as well as potential improvements including design changes to miniaturize and make the sensors durable in the vacuum of space

  2. Development and Test of Robotically Assisted Extravehicular Activity Gloves

    NASA Technical Reports Server (NTRS)

    Rogers, Jonathan M.; Peters, Benjamin J.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    Over the past two years, the High Performance EVA Glove (HPEG) project under NASA's Space Technology Mission Directorate (STMD) funded an effort to develop an electromechanically-assisted space suit glove. The project was a collaboration between the Johnson Space Center's Software, Robotics, and Simulation Division and the Crew and Thermal Systems division. The project sought to combine finger actuator technology developed for Robonaut 2 with the softgoods from the ILC Phase VI EVA glove. The Space Suit RoboGlove (SSRG) uses a system of three linear actuators to pull synthetic tendons attached to the glove's fingers to augment flexion of the user's fingers. To detect the user's inputs, the system utilizes a combination of string potentiometers along the back of the fingers and force sensitive resistors integrated into the fingertips of the glove cover layer. This paper discusses the development process from initial concepts through two major phases of prototypes, and the results of initial human testing. Initial work on the project focused on creating a functioning proof of concept, designing the softgoods integration, and demonstrating augmented grip strength with the actuators. The second year of the project focused on upgrading the actuators, sensors, and software with the overall goal of creating a system that moves with the user's fingers in order to reduce fatigue associated with the operation of a pressurized glove system. This paper also discusses considerations for a flight system based on this prototype development and address where further work is required to mature the technology.

  3. Betti numbers of graded modules and cohomology of vector bundles

    NASA Astrophysics Data System (ADS)

    Eisenbud, David; Schreyer, Frank-Olaf

    2009-07-01

    In the remarkable paper Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, Mats Boij and Jonas Soederberg conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fan naturally associated to the Young lattice. With the same tools we show that the cohomology table of any vector bundle on projective space is a positive rational linear combination of the cohomology tables of what we call supernatural vector bundles. Using this result we give new bounds on the slope of a vector bundle in terms of its cohomology.

  4. 47 CFR 73.155 - Periodic directional antenna performance recertification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...

  5. 47 CFR 73.155 - Periodic directional antenna performance recertification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...

  6. 47 CFR 73.155 - Periodic directional antenna performance recertification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...

  7. 47 CFR 73.155 - Periodic directional antenna performance recertification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...

  8. 47 CFR 73.155 - Periodic directional antenna performance recertification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Periodic directional antenna performance... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.155 Periodic directional antenna performance recertification. A station licensed with a directional antenna pattern pursuant to a proof of...

  9. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  10. Long-Time Behavior and Critical Limit of Subcritical SQG Equations in Scale-Invariant Sobolev Spaces

    NASA Astrophysics Data System (ADS)

    Coti Zelati, Michele

    2018-02-01

    We consider the subcritical SQG equation in its natural scale-invariant Sobolev space and prove the existence of a global attractor of optimal regularity. The proof is based on a new energy estimate in Sobolev spaces to bootstrap the regularity to the optimal level, derived by means of nonlinear lower bounds on the fractional Laplacian. This estimate appears to be new in the literature and allows a sharp use of the subcritical nature of the L^∞ bounds for this problem. As a by-product, we obtain attractors for weak solutions as well. Moreover, we study the critical limit of the attractors and prove their stability and upper semicontinuity with respect to the strength of the diffusion.

  11. Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results.

    PubMed

    Collier, Michael R; Porter, F Scott; Sibeck, David G; Carter, Jenny A; Chiao, Meng P; Chornay, Dennis J; Cravens, Thomas E; Galeazzi, Massimiliano; Keller, John W; Koutroumpa, Dimitra; Kujawski, Joseph; Kuntz, Kip; Read, Andy M; Robertson, Ina P; Sembay, Steve; Snowden, Steven L; Thomas, Nicholas; Uprety, Youaraj; Walsh, Brian M

    2015-07-01

    We describe the development, launch into space, and initial results from a prototype wide field-of-view soft X-ray imager that employs lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The sheath transport observer for the redistribution of mass is the first instrument using this type of optics launched into space and provides proof-of-concept for future flight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the Moon, and the solar wind interaction with planetary bodies like Venus and Mars [Kuntz et al., Astrophys. J. (in press)].

  12. Acquisition and evaluation of Hamburg wheel-tracking device

    DOT National Transportation Integrated Search

    1999-04-01

    Surrogate performance tests, or "proof" tests, for asphalt mixtures are being evaluated by states to gauge mixture performance potential in the lab. The University of Arkansas constructed, ERSA (Evaluator of Rutting and Stripping in Asphalt) to "scre...

  13. Big Data Analysis of Contractor Performance Information for Services Acquisition in DoD: A Proof of Concept

    DTIC Science & Technology

    2016-04-30

    qÜáêíÉÉåíÜ=^ååì~ä= ^Åèìáëáíáçå=oÉëÉ~êÅÜ= póãéçëáìã= qÜìêëÇ~ó=pÉëëáçåë= sçäìãÉ=ff= = Big Data Analysis of Contractor Performance Information for Services...Director, Acquisition Career Management, ASN(RD&A) Big Data Analysis of Contractor Performance Information for Services Acquisition in DoD: A Proof of...oÉëÉ~êÅÜ=mêçÖê~ãW= `êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 398 - Big Data Analysis of Contractor Performance Information for Services Acquisition in

  14. Using the SPICE system to help plan and interpret space science observations

    NASA Technical Reports Server (NTRS)

    Acton, Charles H., Jr.

    1993-01-01

    A portable multimission information system named SPICE is used to assemble, archive, and provide easy user access to viewing geometry and other ancillary information needed by space scientists to interpret observations of bodies within our solar system. The modular nature of this system lends it to use in planning such observations as well. With a successful proof of concept on Voyager, the SPICE system has been adapted to the Magellan, Galileo and Mars Observer missions, and to a variety of ground based operations. Adaptation of SPICE for Cassini and the Russian Mars 94/96 projects is underway, and work on Cassini will follow, SPICE has been used to support observation planning for moving targets on the Hubble Space Telescope Project. Applications for SPICE on earth science, space physics and other astrophysics missions are under consideration.

  15. Sprint: The first flight demonstration of the external work system robots

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Grimm, Keith

    1995-01-01

    The External Works Systems (EWS) 'X Program' is a new NASA initiative that will, in the next ten years, develop a new generation of space robots for active and participative support of zero g external operations. The robotic development will center on three areas: the assistant robot, the associate robot, and the surrogate robot that will support external vehicular activities (EVA) prior to and after, during, and instead of space-suited human external activities respectively. The EWS robotics program will be a combination of technology developments and flight demonstrations for operational proof of concept. The first EWS flight will be a flying camera called 'Sprint' that will seek to demonstrate operationally flexible, remote viewing capability for EVA operations, inspections, and contingencies for the space shuttle and space station. This paper describes the need for Sprint and its characteristics.

  16. Optical Detection of Lightning from Space

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Christian, Hugh J.

    1998-01-01

    Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.

  17. Resource Allocation Games: A Priming Game for a Series of Instructional Games (The POE Game).

    ERIC Educational Resources Information Center

    Allen, Layman E.

    This paper describes in detail the paper-and-pencil POE (Pelham Odd 'R Even) game, in which units of space are the allocated resources. The game is designed to provide an introduction to the rule structure common to the games of EQUATIONS, WFF 'N PROOF, and ON-SENTS & NON-SENTS. Techniques of playing POE, including goals, solutions, moves, scoring…

  18. Supplemental Analysis on Compressed Sensing Based Interior Tomography

    PubMed Central

    Yu, Hengyong; Yang, Jiansheng; Jiang, Ming; Wang, Ge

    2010-01-01

    Recently, in the compressed sensing framework we proved that an interior ROI can be exactly reconstructed via the total variation minimization if the ROI is piecewise constant. In the proofs, we implicitly utilized the property that if an artifact image assumes a constant value within the ROI then this constant must be zero. Here we prove this property in the space of square integrable functions. PMID:19717891

  19. 2005 Precision Strike Annual Programs Review

    DTIC Science & Technology

    2005-04-20

    Control Canards (4) Polyurethane Foam Support DPICM (404 M101 Grenades) Warhead Fuze: Electronic Safe & Arm Device (ESAD) UNCLASSIFIED UNCLASSIFIED PF...SYSTEMS: • JASSM: Colonel James Geurts, USAF JASSM PM • ATACMS : Colonel Earnest Harris, USA PM, Precision Fires Rockets & Missiles, PEO Space and...UNCLASSIFIED UNCLASSIFIED Viper Strike Lineage ATACMS Delivered Base BATs Viper Strike SAL Seeker Proof of Principle Demos I & II Hunter-Viper Strike

  20. Non Locality Proofs in Quantum Mechanics Analyzed by Ordinary Mathematical Logic

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2014-10-01

    The so-called non-locality theorems aim to show that Quantum Mechanics is not consistent with the Locality Principle. Their proofs require, besides the standard postulates of Quantum Theory, further conditions, as for instance the Criterion of Reality, which cannot be formulated in the language of Standard Quantum Theory; this difficulty makes the proofs not verifiable according to usual logico-mathematical methods, and therefore it is a source of the controversial debate about the real implications of these theorems. The present work addresses this difficulty for Bell-type and Stapp's arguments of non-locality. We supplement the formalism of Quantum Mechanics with formal statements inferred from the further conditions in the two different cases. Then an analysis of the two arguments is performed according to ordinary mathematical logic.

  1. Multi-objective optimization of an arch dam shape under static loads using an evolutionary game method

    NASA Astrophysics Data System (ADS)

    Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang

    2018-06-01

    This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.

  2. Ka-band MMIC subarray technology program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottenger, Warren

    1995-01-01

    The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.

  3. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE PAGES

    Fan, D.; Huang, J. W.; Zeng, X. L.; ...

    2016-05-23

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  4. Design and Preliminary Testing of a High Performance Antiproton Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James; Meyer, Kirby; Kramer, Kevin; Smith, Gerald; Lewis, Raymond; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    Antimatter represents the pinnacle of energy density, offering the potential to enhance current fusion/fission concepts enabling various classes of deep space missions. Current production rates are sufficient to support proof-of-concept evaluation of many key technologies associated with antimatter-derived propulsion. Storage has been identified as a key enabling technology for all antimatter-related operations, and as such is the current focus of this NASA-MSFC effort to design and fabricate a portable device capable of holding up to 10(exp 12) particles. Hardware has been assembled and initial tests are underway to evaluate the trap behavior using electron gun generated, positive hydrogen ions. Ions have been stored for tens of minutes, limited by observed interaction with background gas. Additionally, radio frequency manipulation is being tested to increase lifetime by stabilizing the stored particles, potentially reducing their interaction with background gas, easing requirements on ultimate trap vacuum and precision mechanical alignment.

  5. Nickel-Hydrogen Cell Testing Experience, NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.

    1999-01-01

    The objectives of the project were to test the Nickel-Hydrogen Cell to: (1) verify the Aerospace Cell Flight Worthiness, (2) Elucidate the Aerospace Cell Thermal Behavior, (3) Develop the Aerospace Battery Assembly Design(s) and In-orbit Battery Management plan(s) and (4) Understand the Aerospace Cell Failure Mechanism. The tests included the LEO and GEO Life cycle tests, Calorimetric Analysis, Destructive Physical analysis, and special tests. Charts show the Mission Profile Cycling Data, Stress Cycling Data. The test data complies with the mission requirements, validating the flight worthiness of batteries. The nominal stress and mission profile cycling performance test shows the charge voltage as high as 1.60V and recharge ratio greater than 1.05. It is apparent that the electrochemical signatures alone do not provide conclusive proof for Nickel precharge. The researchers recommend a gas and positive plate analyses for further confirmation.

  6. Packaging strategy for maximizing the performance of a screen printed piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhu, D.; Tudor, M. J.; Beeby, S. P.

    2013-12-01

    This paper reports the extended design and simulation of a screen printed piezoelectric energy harvester. The proposed design was based on a previous credit card sized smart tag sensor node, and packages the power conditioning circuit in the free space above the tungsten proof mass layer. This approach enables electronic components to be mounted onto the cantilever beam, which provides additional weight at the tip of the cantilever structure. The design structure contains a T-shape cantilever beam with size of 47 mm × 30 mm × 0.85 mm which is fabricated using screen printing. ANSYS simulation results predict the revised architecture can generate 421.9 μW approximately twice of the RMS power produced by the original design along with a higher open-circuit RMS Voltage of 8.0 V while the resonant frequency is dropped to 53.4 Hz.

  7. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D.; Huang, J. W.; Zeng, X. L.

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  8. 3D exploitation of large urban photo archives

    NASA Astrophysics Data System (ADS)

    Cho, Peter; Snavely, Noah; Anderson, Ross

    2010-04-01

    Recent work in computer vision has demonstrated the potential to automatically recover camera and scene geometry from large collections of uncooperatively-collected photos. At the same time, aerial ladar and Geographic Information System (GIS) data are becoming more readily accessible. In this paper, we present a system for fusing these data sources in order to transfer 3D and GIS information into outdoor urban imagery. Applying this system to 1000+ pictures shot of the lower Manhattan skyline and the Statue of Liberty, we present two proof-of-concept examples of geometry-based photo enhancement which are difficult to perform via conventional image processing: feature annotation and image-based querying. In these examples, high-level knowledge projects from 3D world-space into georegistered 2D image planes and/or propagates between different photos. Such automatic capabilities lay the groundwork for future real-time labeling of imagery shot in complex city environments by mobile smart phones.

  9. A surgical parallel continuum manipulator with a cable-driven grasper.

    PubMed

    Orekhov, Andrew L; Bryson, Caroline E; Till, John; Chung, Scotty; Rucker, D Caleb

    2015-01-01

    In this paper, we present the design, construction, and control of a six-degree-of-freedom (DOF), 12 mm diameter, parallel continuum manipulator with a 2-DOF, cable-driven grasper. This work is a proof-of-concept first step towards miniaturization of this type of manipulator design to provide increased dexterity and stability in confined-space surgical applications, particularly for endoscopic procedures. Our robotic system consists of six superelastic NiTi (Nitinol) tubes in a standard Stewart-Gough configuration and an end effector with 180 degree motion of its two jaws. Two Kevlar cables pass through the centers of the tube legs to actuate the end effector. A computationally efficient inverse kinematics model provides low-level control inputs to ten independent linear actuators, which drive the Stewart-Gough platform and end-effector actuation cables. We demonstrate the performance and feasibility of this design by conducting open-loop range-of-motion tests for our system.

  10. Identification of lymphogranuloma venereum-associated Chlamydia trachomatis serovars by fluorescence in situ hybridisation--a proof-of-principle analysis.

    PubMed

    Frickmann, Hagen; Essig, Andreas; Poppert, Sven

    2014-04-01

    We describe a proof-of-principle evaluation of a fluorescence in situ hybridisation (FISH) procedure to identify Chlamydia trachomatis serovars L1-L3, the causative agents of lymphogranuloma venereum, in cell cultures based on newly designed DNA probes. Rapid and easy-to-perform FISH could facilitate the diagnosis of lymphogranuloma venereum without nucleic acid amplification or serotyping, but requires broader evaluation studies, for example, in tropical high-endemicity regions. © 2014 John Wiley & Sons Ltd.

  11. Ultraviolet-infrared laser-induced domain inversion in MgO-doped congruent LiNbO3 and near stoichiometric LiTaO3 crystals

    NASA Astrophysics Data System (ADS)

    Zhi, Ya'nan; Qu, Weijuan; Liu, De'an; Sun, Jianfeng; Yan, Aimin; Liu, Liren

    2008-08-01

    Laser-induced domain inversion is a promising technique for domain engineering in LiNbO3 and LiTaO3. The ultraviolet-infrared laser induced domain inversions in MgO-doped congruent LiNbO3 and near stoichiometric LiTaO3 crystals are investigated for the first time here. Within the wavelength range from 351 to 799 nm, the different reductions of nucleation field induced by the focused continuous laser irradiation are systematically investigated in the MgO-doped congruent LiNbO3 crystals. The investigation of ultrashort-pulse laser-induced domain inversion in MgO-doped congruent LiNbO3 is performed with 800 nm wavelength irradiation. The focused continuous ultraviolet laser-induced ferroelectric domain inversion in the near stoichiometric LiTaO3 is also investigated. The different physical explanations, based on space charge field and defect formation, are presented for the laser-induced domain inversion, and the solid experimental proofs are also presented. The results provide the solid experimental proofs and feasible schemes for the further investigation of laser-induced domain engineering in MgO-doped LiNbO3 and near stoichiometric LiTaO3 crystals. The important characteristics of domain inversion, including domain wall and internal field, in LiNbO3 crystals are also investigated by the digital holographic interferometry with an improved reconstruction method, and some creative experimental results and conclusions are achieved.

  12. Low-Cost Cold-Gas RCS for the Sloshsat Small Satellite

    NASA Astrophysics Data System (ADS)

    Adler, S.; Warshavsky, A.; Peretz, A.

    2002-01-01

    Cold gas thrusters usually provide an inexpensive, highly reliable, low-power consuming, non contaminating, and safe auxiliary propulsion means for small spacecraft. A low-cost cold-gas Reaction Control System (RCS) has been designed and developed to provide linear acceleration and rotation control of the SLOSHSAT satellite for liquid-slosh experimentation. This ESA-sponsored mini-spacecraft will be launched by the Space Shuttle and ejected into space from its hitchhiker bay. The RCS was designed and developed according to man rated safety standards, as required by NASA. The RCS comprises four identical spherical carbon/epoxy-wound stainless steel tanks, which store 1.6 kg of nitrogen at 600 bars, corresponding to a maximum rated temperature of 70°C. The relatively high pressure enables economic utilization of the limited space available in small satellites. The tanks are of a "leak before burst" design, which was subjected to a comprehensive finite-element stress analysis. They were developed and tested in accordance with MIL-STD-1522A, with a proof pressure and a minimum burst pressure of 1000 and 1700 bars, respectively. Each tank has an internal volume of 0.97 l, and is equipped with an attached accessories assembly, that includes a pyrovalve and a filter. The RCS was supplied with the tanks prepressurized and sealed to 473 bars (at 20°C). The whole system is pressurized only after the satellite is in its orbit, by activating the tank's pyrovalve. This unique approach enables to supply a sealed RCS system and propellant loading activities are not necessary before launch. Additionally, this approach has safety advantages that were meaningful to meet the NASA safety requirements. The pyrovalve includes a RAFAEL-developed initiator, which complies with MIL-STD-1576, and passed all required testing, including ESD tests with the resistor removed, as demanded by NASA for approval. The pyrovalve is of a "self seal" design, which includes a sealing mechanism, that seals the system from contamination during the pyrovalve actuation. The test port valve allows proof-pressure and leakage testing of the assembled system. The tanks and their accessories were subjected to extensive qualification testing and met the requirements of a stringent acceptance test procedure. The N2 propellant is supplied to twelve 0.8-N thrusters, at a steady regulated pressure of 15.5 bars. Accurate regulated pressure is obtained by a two stage regulating system, which accepts pressure input range of 600 to 40 bar. The thrusters were especially developed to meet the specific program requirements. They will normally be operated in pairs. For safety reasons and redundancy two relief valves are mounted downstream of the regulators. Each valve can handle the total flow with a minimum pressure rise, which defines the Maximum Operating Pressure (MEOP) in the low-pressure section of the system. The pressure surge phenomenon that follows the pyrovalve actuation was precisely analyzed, and tested in simulated conditions. A surge damper is successfully applied to the gas pipeline, significantly lowering the pressure surge. The sensitivity of the regulated pressure to the pulse modulation of the thrusters was examined. Due to the lock pressure of the regulators, and the difference between the static and dynamic regulated pressure levels, the average pressure was found to depend on the pulse duty cycle. This phenomenon was investigated and a model that predicts the pressure level according to the mass flow rate and pulse modulation was established. A breadboard test system, that completely simulates the pneumatic nature of the SLOSHSAT RCS, was constructed and used for ground test evaluation of the RCS performance in various modes of operation (continuous and pulses of various duty cycles). Computerized data acquisition and data reduction was used for pressure, temperature and mass flow measurements at several locations in the system. The breadboard system was also used for development experiments and investigation of various transient and steady state phenomena to enable successful performance prediction for operation in space. In order to establish appropriate assembly procedures for the RCS in the limited space allocated for it in the SLOSHSAT, a mock-up of the final satellite configuration, an Assembly and Testing System (ATS), was constructed. The complete RCS integrated in the ATS was subjected to vibration tests, followed by proof pressure, leakage and performance tests, as a part of the RCS qualification. All RCS components, except for the thrusters, are off-the-shelf items, adapted for space application by meeting stringent NASA/ESA man-rated mission requirements. A cooperative effort between FOKKER-SPACE and NLR of the Netherlands and RAFAEL of Israel enabled a very efficient RCS architecture that satisfies the limiting volume constraints. This approach made it possible to attain a man-rated, space-qualified cold-gas propulsion system with low-cost and safety and high- reliability attributes.

  13. Use of injectable promethazine to decrease symptom scores of Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Beck, B. G.; Nicogossian, A. E.

    1992-01-01

    Space motion sickness (SMS) has been a problem affecting approximately 74 percent of first time shuttle flyers. Promethazine injections have been used for 29 cases of SMS to decrease the severity of their illness. Although reported to be effective in reducing symptoms in 27 of the 29 cases, there has been no proof of its efficacy. Methods: Retrospective analysis of medical debriefs examining the symptom scores for nausea, vomiting, decreased appetite, and stomach awareness were performed. Each symptom is rated on a mild = 1, moderate = 2, severe = 3 system for each flight day. Crewmember scores for the first three flight days on an initial flight in which injectable promethazine had not been used were compared to scores in a later flight in which the promethazine was utilized. Scores were also compared in a similar group of crewmembers who did not use promethazine. Results: There was a decrease in median scores for all symptoms except nausea, however, it was significant (p = 0.14) only for the vomiting scores. This significant decrease was not seen in the control group. Conclusions: Injectable promethazine has been associated with a significant decrease in vomiting compared to earlier flights in which injectable promethazine was not used.

  14. Standalone GPS L1 C/A Receiver for Lunar Missions.

    PubMed

    Capuano, Vincenzo; Blunt, Paul; Botteron, Cyril; Tian, Jia; Leclère, Jérôme; Wang, Yanguang; Basile, Francesco; Farine, Pierre-André

    2016-03-09

    Global Navigation Satellite Systems (GNSSs) were originally introduced to provide positioning and timing services for terrestrial Earth users. However, space users increasingly rely on GNSS for spacecraft navigation and other science applications at several different altitudes from the Earth surface, in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geostationary Earth Orbit (GEO), and feasibility studies have proved that GNSS signals can even be tracked at Moon altitude. Despite this, space remains a challenging operational environment, particularly on the way from the Earth to the Moon, characterized by weaker signals with wider gain variability, larger dynamic ranges resulting in higher Doppler and Doppler rates and critically low satellite signal availability. Following our previous studies, this paper describes the proof of concept "WeakHEO" receiver; a GPS L1 C/A receiver we developed in our laboratory specifically for lunar missions. The paper also assesses the performance of the receiver in two representative portions of an Earth Moon Transfer Orbit (MTO). The receiver was connected to our GNSS Spirent simulator in order to collect real-time hardware-in-the-loop observations, and then processed by the navigation module. This demonstrates the feasibility, using current technology, of effectively exploiting GNSS signals for navigation in a MTO.

  15. Optimizing a reconfigurable material via evolutionary computation

    NASA Astrophysics Data System (ADS)

    Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.

    2015-08-01

    Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.

  16. Equilibrium Molecular Thermodynamics from Kirkwood Sampling

    PubMed Central

    2015-01-01

    We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys.2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide. PMID:25915525

  17. MOM-E: Moon-Orbiting Mothership Explorer

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria A.

    2010-01-01

    The National Aeronautics and Space Administration proposed that a new class of robotic space missions and spacecrafts be introduced to "ensure that future missions are safe, sustainable and affordable". Indeed, the United States space program aims for a return to manned space missions beyond Earth orbit, and robotic explorers are intended to pave the way. This vision requires that all future missions become less costly, provide a sustainable business plan, and increase in safety. Over the course of several fast feasibility studies that considered the 3 drivers above, the small-scale, consumer-driven Moon-Orbiting Mothership Explorer (MOM-E) mission was born. MOM-E's goals are to enable space exploration by offering a scaled down platform which carries multiple small space explorers to the Moon. Each payload will be dropped at their desired destination, offering a competitive price to customers. MOM-E's current scope of operations is limited to the Moon and will be used as a proof of concept mission. However, MOM-E is specifically designed with the idea that the platform is scalable.

  18. Using business intelligence to improve performance.

    PubMed

    Wadsworth, Tom; Graves, Brian; Glass, Steve; Harrison, A Marc; Donovan, Chris; Proctor, Andrew

    2009-10-01

    Cleveland Clinic's enterprise performance management program offers proof that comparisons of actual performance against strategic objectives can enable healthcare organization to achieve rapid organizational change. Here are four lessons Cleveland Clinic learned from this initiative: Align performance metrics with strategic initiatives. Structure dashboards for the CEO. Link performance to annual reviews. Customize dashboard views to the specific user.

  19. The spatial sensitivity of Sp converted waves—scattered-wave kernels and their applications to receiver-function migration and inversion

    NASA Astrophysics Data System (ADS)

    Mancinelli, N. J.; Fischer, K. M.

    2018-03-01

    We characterize the spatial sensitivity of Sp converted waves to improve constraints on lateral variations in uppermost-mantle velocity gradients, such as the lithosphere-asthenosphere boundary (LAB) and the mid-lithospheric discontinuities. We use SPECFEM2D to generate 2-D scattering kernels that relate perturbations from an elastic half-space to Sp waveforms. We then show that these kernels can be well approximated using ray theory, and develop an approach to calculating kernels for layered background models. As proof of concept, we show that lateral variations in uppermost-mantle discontinuity structure are retrieved by implementing these scattering kernels in the first iteration of a conjugate-directions inversion algorithm. We evaluate the performance of this technique on synthetic seismograms computed for 2-D models with undulations on the LAB of varying amplitude, wavelength and depth. The technique reliably images the position of discontinuities with dips <35° and horizontal wavelengths >100-200 km. In cases of mild topography on a shallow LAB, the relative brightness of the LAB and Moho converters approximately agrees with the ratio of velocity contrasts across the discontinuities. Amplitude retrieval degrades at deeper depths. For dominant periods of 4 s, the minimum station spacing required to produce unaliased results is 5 km, but the application of a Gaussian filter can improve discontinuity imaging where station spacing is greater.

  20. Image space subdivision for fast ray tracing

    NASA Astrophysics Data System (ADS)

    Yu, Billy T.; Yu, William W.

    1999-09-01

    Ray-tracing is notorious of its computational requirement. There were a number of techniques to speed up the process. However, a famous statistic indicated that ray-object intersections occupies over 95% of the total image generation time. Thus, it is most beneficial to work on this bottle-neck. There were a number of ray-object intersection reduction techniques and they could be classified into three major categories: bounding volume hierarchies, space subdivision, and directional subdivision. This paper introduces a technique falling into the third category. To further speed up the process, it takes advantages of hierarchy by adopting a MX-CIF quadtree in the image space. This special kind of quadtree provides simple objects allocation and ease of implementation. The text also included a theoretical proof of the expected performance. For ray-polygon comparison, the technique reduces the order of complexity from linear to square-root, O(n) -> O(2(root)n). Experiments with various shape, size and complexity were conducted to verify the expectation. Results shown that computational improvement grew with the complexity of the sceneries. The experimental improvement was more than 90% and it agreed with the theoretical value when the number of polygons exceeded 3000. The more complex was the scene, the more efficient was the acceleration. The algorithm described was implemented in the polygonal level, however, it could be easily enhanced and extended to the object or higher levels.

  1. The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly

    2011-01-01

    Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. The National Aeronautics and Space Administration (NASA) is currently exploring the Sabatier reaction, the Bosch reaction, and co-electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. While all three techniques have demonstrated the capacity to reduce CO2 in the laboratory, there is interest in understanding how all three techniques would perform at a system-level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily re-scaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental e orts. Comparison to experimental data is provided were available for veri cation purposes.

  2. Powersail High Power Propulsion System Design Study

    NASA Astrophysics Data System (ADS)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  3. Common-Path Wavefront Sensing for Advanced Coronagraphs

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Serabyn, Eugene; Mawet, Dimitri

    2012-01-01

    Imaging of faint companions around nearby stars is not limited by either intrinsic resolution of a coronagraph/telescope system, nor is it strictly photon limited. Typically, it is both the magnitude and temporal variation of small phase and amplitude errors imparted to the electric field by elements in the optical system which will limit ultimate performance. Adaptive optics systems, particularly those with multiple deformable mirrors, can remove these errors, but they need to be sensed in the final image plane. If the sensing system is before the final image plane, which is typical for most systems, then the non-common path optics between the wavefront sensor and science image plane will lead to un-sensed errors. However, a new generation of high-performance coronagraphs naturally lend themselves to wavefront sensing in the final image plane. These coronagraphs and the wavefront sensing will be discussed, as well as plans for demonstrating this with a high-contrast system on the ground. Such a system will be a key system-level proof for a future space-based coronagraph mission, which will also be discussed.

  4. Design verification of SIFT

    NASA Technical Reports Server (NTRS)

    Moser, Louise; Melliar-Smith, Michael; Schwartz, Richard

    1987-01-01

    A SIFT reliable aircraft control computer system, designed to meet the ultrahigh reliability required for safety critical flight control applications by use of processor replications and voting, was constructed for SRI, and delivered to NASA Langley for evaluation in the AIRLAB. To increase confidence in the reliability projections for SIFT, produced by a Markov reliability model, SRI constructed a formal specification, defining the meaning of reliability in the context of flight control. A further series of specifications defined, in increasing detail, the design of SIFT down to pre- and post-conditions on Pascal code procedures. Mechanically checked mathematical proofs were constructed to demonstrate that the more detailed design specifications for SIFT do indeed imply the formal reliability requirement. An additional specification defined some of the assumptions made about SIFT by the Markov model, and further proofs were constructed to show that these assumptions, as expressed by that specification, did indeed follow from the more detailed design specifications for SIFT. This report provides an outline of the methodology used for this hierarchical specification and proof, and describes the various specifications and proofs performed.

  5. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology.

    PubMed

    Reyes, Leticia; Herrera, David; Kozarov, Emil; Roldán, Silvia; Progulske-Fox, Ann

    2013-04-01

    The objective of this review was to perform a systematic evaluation of the literature reporting current scientific evidence for periodontal bacteria as contributors to atherosclerosis. Literature from epidemiological, clinical and experimental studies concerning periodontal bacteria and atherosclerosis were reviewed. Gathered data were categorized into seven "proofs" of evidence that periodontal bacteria: 1) disseminate from the oral cavity and reach systemic vascular tissues; 2) can be found in the affected tissues; 3) live within the affected site; 4) invade affected cell types in vitro; 5) induce atherosclerosis in animal models of disease; 6) non-invasive mutants of periodontal bacteria cause significantly reduced pathology in vitro and in vivo; and 7) periodontal isolates from human atheromas can cause disease in animal models of infection. Substantial evidence for proofs 1 to 6 was found. However, proof 7 has not yet been fulfilled. Despite the lack of evidence that periodontal bacteria obtained from human atheromas can cause atherosclerosis in animal models of infection, attainment of proofs 1 to 6 provides support that periodontal pathogens can contribute to atherosclerosis. © 2013 European Federation of Periodontology and American Academy of Periodontology.

  6. Shear lag sutures: Improved suture repair through the use of adhesives

    PubMed Central

    Linderman, Stephen W.; Kormpakis, Ioannis; Gelberman, Richard H.; Birman, Victor; Wegst, Ulrike G. K.; Genin, Guy M.; Thomopoulos, Stavros

    2015-01-01

    Suture materials and surgical knot tying techniques have improved dramatically since their first use over five millennia ago. However, the approach remains limited by the ability of the suture to transfer load to tissue at suture anchor points. Here, we predict that adhesive-coated sutures can improve mechanical load transfer beyond the range of performance of existing suture methods, thereby strengthening repairs and decreasing the risk of failure. The mechanical properties of suitable adhesives were identified using a shear lag model. Examination of the design space for an optimal adhesive demonstrated requirements for strong adhesion and low stiffness to maximize the strength of the adhesive-coated suture repair construct. To experimentally assess the model, we evaluated single strands of sutures coated with highly flexible cyanoacrylates (Loctite 4903 and 4902), cyanoacrylate (Loctite QuickTite Instant Adhesive Gel), rubber cement, rubber/gasket adhesive (1300 Scotch-Weld Neoprene High Performance Rubber & Gasket Adhesive), an albumin-glutaraldehyde adhesive (BioGlue), or poly(dopamine). As a clinically relevant proof-of-concept, cyanoacrylate-coated sutures were then used to perform a clinically relevant flexor digitorum tendon repair in cadaver tissue. The repair performed with adhesive-coated suture had significantly higher strength compared to the standard repair without adhesive. Notably, cyanoacrylate provides strong adhesion with high stiffness and brittle behavior, and is therefore not an ideal adhesive for enhancing suture repair. Nevertheless, the improvement in repair properties in a clinically relevant setting, even using a non-ideal adhesive, demonstrates the potential for the proposed approach to improve outcomes for treatments requiring suture fixation. Further study is necessary to develop a strongly adherent, compliant adhesive within the optimal design space described by the model. PMID:26022966

  7. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to simulate combined environments. Processing improvements included development and use of low spray guns for foam application, additional human factors considerations for production, use of high fidelity mockups during hardware processing with video review, improved tank access, extensive use of non destructive evaluation, and producibility enhancements. Design improvements included redesigned bipod fittings, a bellows heater, a feedline camera active during ascent flight, removal of the protuberance airload ramps, redesigned ice frost ramps, and titanium brackets replaced aluminum brackets on the liquid oxygen feedline. Post flight assessment improved due to significant addition of imagery assets, greatly improving situational awareness. The debris risk was reduced by two orders of magnitude. During this time a major natural disaster was overcome when Katrina damaged the manufacturing facility. Numerous lessons from these efforts are documented within the paper.

  8. Brunet-Derrida Behavior of Branching-Selection Particle Systems on the Line

    NASA Astrophysics Data System (ADS)

    Bérard, Jean; Gouéré, Jean-Baptiste

    2010-09-01

    We consider a class of branching-selection particle systems on {mathbb{R}} similar to the one considered by E. Brunet and B. Derrida in their 1997 paper “Shift in the velocity of a front due to a cutoff”. Based on numerical simulations and heuristic arguments, Brunet and Derrida showed that, as the population size N of the particle system goes to infinity, the asymptotic velocity of the system converges to a limiting value at the unexpectedly slow rate (log N)-2. In this paper, we give a rigorous mathematical proof of this fact, for the class of particle systems we consider. The proof makes use of ideas and results by R. Pemantle, and by N. Gantert, Y. Hu and Z. Shi, and relies on a comparison of the particle system with a family of N independent branching random walks killed below a linear space-time barrier.

  9. Photonic beamforming network for multibeam satellite-on-board phased-array antennas

    NASA Astrophysics Data System (ADS)

    Piqueras, M. A.; Cuesta-Soto, F.; Villalba, P.; Martí, A.; Hakansson, A.; Perdigués, J.; Caille, G.

    2017-11-01

    The implementation of a beamforming unit based on integrated photonic technologies is addressed in this work. This integrated photonic solution for multibeam coverage will be compared with the digital and the RF solution. Photonic devices show unique characteristics that match the critical requirements of space oriented devices such as low mass/size, low power consumption and easily scalable to big systems. An experimental proof-of-concept of the photonic beamforming structure based on 4x4 and 8x8 Butler matrices is presented. The proof-of-concept is based in the heterodyne generation of multiple phase engineered RF signals for the conformation of 8-4 different beams in an antenna array. Results show the feasibility of this technology for the implementation of optical beamforming with phase distribution errors below σ=10o with big savings in the required mass and size of the beamforming unit.

  10. Ionospheric Data Assimilation and Targeted Observation Strategies: Proof of Concept Analysis in a Geomagnetic Storm Event

    NASA Astrophysics Data System (ADS)

    Kostelich, Eric; Durazo, Juan; Mahalov, Alex

    2017-11-01

    The dynamics of the ionosphere involve complex interactions between the atmosphere, solar wind, cosmic radiation, and Earth's magnetic field. Geomagnetic storms arising from solar activity can perturb these dynamics sufficiently to disrupt radio and satellite communications. Efforts to predict ``space weather,'' including ionospheric dynamics, require the development of a data assimilation system that combines observing systems with appropriate forecast models. This talk will outline a proof-of-concept targeted observation strategy, consisting of the Local Ensemble Transform Kalman Filter, coupled with the Thermosphere Ionosphere Electrodynamics Global Circulation Model, to select optimal locations where additional observations can be made to improve short-term ionospheric forecasts. Initial results using data and forecasts from the geomagnetic storm of 26-27 September 2011 will be described. Work supported by the Air Force Office of Scientific Research (Grant Number FA9550-15-1-0096) and by the National Science Foundation (Grant Number DMS-0940314).

  11. Automatic differentiation for Fourier series and the radii polynomial approach

    NASA Astrophysics Data System (ADS)

    Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian

    2016-11-01

    In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differential equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem (PCRTBP).

  12. A proof for loop-law constraints in stoichiometric metabolic networks

    PubMed Central

    2012-01-01

    Background Constraint-based modeling is increasingly employed for metabolic network analysis. Its underlying assumption is that natural metabolic phenotypes can be predicted by adding physicochemical constraints to remove unrealistic metabolic flux solutions. The loopless-COBRA approach provides an additional constraint that eliminates thermodynamically infeasible internal cycles (or loops) from the space of solutions. This allows the prediction of flux solutions that are more consistent with experimental data. However, it is not clear if this approach over-constrains the models by removing non-loop solutions as well. Results Here we apply Gordan’s theorem from linear algebra to prove for the first time that the constraints added in loopless-COBRA do not over-constrain the problem beyond the elimination of the loops themselves. Conclusions The loopless-COBRA constraints can be reliably applied. Furthermore, this proof may be adapted to evaluate the theoretical soundness for other methods in constraint-based modeling. PMID:23146116

  13. Side-channel-free quantum key distribution.

    PubMed

    Braunstein, Samuel L; Pirandola, Stefano

    2012-03-30

    Quantum key distribution (QKD) offers the promise of absolutely secure communications. However, proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation. Here we replace all real channels with virtual channels in a QKD protocol, making the relevant detectors and settings inside private spaces inaccessible while simultaneously acting as a Hilbert space filter to eliminate side-channel attacks. By using a quantum memory we find that we are able to bound the secret-key rate below by the entanglement-distillation rate computed over the distributed states.

  14. Conformal Nets II: Conformal Blocks

    NASA Astrophysics Data System (ADS)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  15. Global and Local Existence for the Dissipative Critical SQG Equation with Small Oscillations

    NASA Astrophysics Data System (ADS)

    Lazar, Omar

    2015-09-01

    This article is devoted to the study of the critical dissipative surface quasi-geostrophic ( SQG) equation in . For any initial data belonging to the space , we show that the critical (SQG) equation has at least one global weak solution in time for all 1/4 ≤ s ≤ 1/2 and at least one local weak solution in time for all 0 < s < 1/4. The proof for the global existence is based on a new energy inequality which improves the one obtain in Lazar (Commun Math Phys 322:73-93, 2013) whereas the local existence uses more refined energy estimates based on Besov space techniques.

  16. OmniBird: a miniature PTZ NIR sensor system for UCAV day/night autonomous operations

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Li, Hui

    2007-04-01

    Through a SBIR funding from NAVAIR, we have successfully developed an innovative, miniaturized, and lightweight PTZ UCAV imager called OmniBird for UCAV taxiing. The proposed OmniBird will be able to fit in a small space. The designed zoom capability allows it to acquire focused images for targets ranging from 10 to 250 feet. The innovative panning mechanism also allows the system to have a field of view of +/- 100 degrees within the provided limited spacing (6 cubic inches). The integrated optics, camera sensor, and mechanics solution will allow the OmniBird to stay optically aligned and shock-proof under harsh environments.

  17. Rationale for windshield glass system specification requirements for shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Hayashida, K.; King, G. L.; Tesinsiky, J.; Wittenburg, D. R.

    1972-01-01

    A preliminary procurement specification for the space shuttle orbiter windshield pane, and some of the design considerations and rationale leading to its development are presented. The windshield designer is given the necessary methods and procedures for assuring glass pane structural integrity by proof test. These methods and procedures are fully developed for annealed and thermally tempered aluminosilicate, borosilicate, and soda lime glass and for annealed fused silica. Application of the method to chemically tempered glass is considered. Other considerations are vision requirements, protection against bird impact, hail, frost, rain, and meteoroids. The functional requirements of the windshield system during landing, ferrying, boost, space flight, and entry are included.

  18. Approximations of thermoelastic and viscoelastic control systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Liu, Z. Y.; Miller, R. E.

    1990-01-01

    Well-posed models and computational algorithms are developed and analyzed for control of a class of partial differential equations that describe the motions of thermo-viscoelastic structures. An abstract (state space) framework and a general well-posedness result are presented that can be applied to a large class of thermo-elastic and thermo-viscoelastic models. This state space framework is used in the development of a computational scheme to be used in the solution of a linear quadratic regulator (LQR) control problem. A detailed convergence proof is provided for the viscoelastic model and several numerical results are presented to illustrate the theory and to analyze problems for which the theory is incomplete.

  19. Surrogate based wind farm layout optimization using manifold mapping

    NASA Astrophysics Data System (ADS)

    Kaja Kamaludeen, Shaafi M.; van Zuijle, Alexander; Bijl, Hester

    2016-09-01

    High computational cost associated with the high fidelity wake models such as RANS or LES serves as a primary bottleneck to perform a direct high fidelity wind farm layout optimization (WFLO) using accurate CFD based wake models. Therefore, a surrogate based multi-fidelity WFLO methodology (SWFLO) is proposed. The surrogate model is built using an SBO method referred as manifold mapping (MM). As a verification, optimization of spacing between two staggered wind turbines was performed using the proposed surrogate based methodology and the performance was compared with that of direct optimization using high fidelity model. Significant reduction in computational cost was achieved using MM: a maximum computational cost reduction of 65%, while arriving at the same optima as that of direct high fidelity optimization. The similarity between the response of models, the number of mapping points and its position, highly influences the computational efficiency of the proposed method. As a proof of concept, realistic WFLO of a small 7-turbine wind farm is performed using the proposed surrogate based methodology. Two variants of Jensen wake model with different decay coefficients were used as the fine and coarse model. The proposed SWFLO method arrived at the same optima as that of the fine model with very less number of fine model simulations.

  20. Hierarchically clustered adaptive quantization CMAC and its learning convergence.

    PubMed

    Teddy, S D; Lai, E M K; Quek, C

    2007-11-01

    The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC), learning convergence, nonuniform quantization.

  1. Additive Manufacturing: From Form to Function

    DTIC Science & Technology

    2016-01-01

    embedded electronics in clothing that could allow additional protective benefits and health monitoring options.13 AM has also enabled proof-of-concept...the International Space Station (ISS) in September 2014 to test plastics . The second 3D printer was delivered to the ISS in April 2016. In addition...was developed by the Innovative Advanced Concepts program. The sensor is essentially a transparent sheet of plastic with printed elec- tronics that

  2. Progress towards quantum simulating the classical O(2) Model

    DTIC Science & Technology

    2014-12-01

    approach by building up on simple models sharing some of the basic features of lattice QCD . In the context of condensed matter, a proof of principle that...independently. Explicit Hilbert space repre- sentations of the physical states and of their matrix elements are mostly absent from today’s lattice QCD ...to lattice QCD , seems possible and interesting. ACKNOWLEDGMENTS We thank Masanori Hanada, Peter Orland, Lode Pollet, Boris Svistunov, the participants

  3. Two Novel Methods and Multi-Mode Periodic Solutions for the Fermi-Pasta-Ulam Model

    NASA Astrophysics Data System (ADS)

    Arioli, Gianni; Koch, Hans; Terracini, Susanna

    2005-04-01

    We introduce two novel methods for studying periodic solutions of the FPU β-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.

  4. Assessment of corrosion fatigue damage by acoustic emission and periodic proof tests

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, P.

    1976-03-01

    The development of a better nondestructive inspection method for detecting corrosion fatigue damage based on acoustic emission (AE) and periodic proof testing (PPT) is studied for corrosion fatigue tests in salt water solution under tension-tension loading. It is shown that PPT combined with AE monitoring can be a sensitive method for assessing the progress of corrosion fatigue damage as the continuous AE monitoring method. The AE-PPT technique is shown to be dependent on the geometry and size of the crack relative to the test specimen. A qualitative method based on plateauing of acoustic emission counts during proof tests due to changes in the fracture mode is used to predict the remaining fatigue life up to 70% of the actual values. PPT is shown to have no adverse effect on fatigue performance in salt water.

  5. Grassmannians for scattering amplitudes in 4d $$\\mathcal{N}=4 $$ SYM and 3d ABJM

    DOE PAGES

    Elvang, Henriette; Huang, Yu-tin; Keeler, Cynthia; ...

    2014-12-31

    Scattering amplitudes in 4d N=4 super Yang-Mills theory (SYM) can be described by Grassmannian contour integrals whose form depends on whether the external data is encoded in momentum space, twistor space, or momentum twistor space. Here, after a pedagogical review, we present a new, streamlined proof of the equivalence of the three integral formulations. A similar strategy allows us to derive a new Grassmannian integral for 3d N = 6 ABJM theory amplitudes in momentum twistor space: it is a contour integral in an orthogonal Grassmannian with the novel property that the internal metric depends on the external data. Themore » result can be viewed as a central step towards developing an amplituhedron formulation for ABJM amplitudes. Various properties of Grassmannian integrals are examined, including boundary properties, pole structure, and a homological interpretation of the global residue theorems for N = 4 SYM.« less

  6. Successful amplification of DNA aboard the International Space Station.

    PubMed

    Boguraev, Anna-Sophia; Christensen, Holly C; Bonneau, Ashley R; Pezza, John A; Nichols, Nicole M; Giraldez, Antonio J; Gray, Michelle M; Wagner, Brandon M; Aken, Jordan T; Foley, Kevin D; Copeland, D Scott; Kraves, Sebastian; Alvarez Saavedra, Ezequiel

    2017-01-01

    As the range and duration of human ventures into space increase, it becomes imperative that we understand the effects of the cosmic environment on astronaut health. Molecular technologies now widely used in research and medicine will need to become available in space to ensure appropriate care of astronauts. The polymerase chain reaction (PCR) is the gold standard for DNA analysis, yet its potential for use on-orbit remains under-explored. We describe DNA amplification aboard the International Space Station (ISS) through the use of a miniaturized miniPCR system. Target sequences in plasmid, zebrafish genomic DNA, and bisulfite-treated DNA were successfully amplified under a variety of conditions. Methylation-specific primers differentially amplified bisulfite-treated samples as would be expected under standard laboratory conditions. Our findings establish proof of concept for targeted detection of DNA sequences during spaceflight and lay a foundation for future uses ranging from environmental monitoring to on-orbit diagnostics.

  7. IEC fusion: The future power and propulsion system for space

    NASA Astrophysics Data System (ADS)

    Hammond, Walter E.; Coventry, Matt; Hanson, John; Hrbud, Ivana; Miley, George H.; Nadler, Jon

    2000-01-01

    Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production. .

  8. Review of the High Performance Antiproton Trap (HiPAT) Experiment at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Pearson, J. B.; Sims, Herb; Martin, James; Chakrabarti, Suman; Lewis, Raymond; Fant, Wallace

    2003-01-01

    The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter- derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility. To address this need, the Marshall Space Flight Center's Propulsion Research Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a design goal of containing 10(exp 12) particles for up to 18 days. The HiPAT makes use of an electromagnetic system (Penning- Malmberg design) consisting of a 4 Telsa superconductor, high voltage electrode structure, radio frequency (RF) network, and ultra high vacuum system. To evaluate the system normal matter sources (both electron guns and ion sources) are used to generate charged particles. The electron beams ionize gas within the trapping region producing ions in situ, whereas the ion sources produce the particles external to the trapping region and required dynamic capture. A wide range of experiments has been performed examining factors such as ion storage lifetimes, effect of RF energy on storage lifetime, and ability to routinely perform dynamic ion capture. Current efforts have been focused on improving the FW rotating wall system to permit longer storage times and non-destructive diagnostics of stored ions. Typical particle detection is performed by extracting trapped ions from HiPAT and destructively colliding them with a micro-channel plate detector (providing number and energy information). This improved RF system has been used to detect various plasma modes for both electron and ion plasmas in the two traps at MSFC, including axial, cyclotron, and diocotron modes. New diagnostics are also being added to HiPAT to measure the axial density distribution of the trapped cloud to match measured RF plasma modes to plasma conditions.

  9. Shape space figure-8 solution of three body problem with two equal masses

    NASA Astrophysics Data System (ADS)

    Yu, Guowei

    2017-06-01

    In a preprint by Montgomery (https://people.ucsc.edu/~rmont/Nbdy.html), the author attempted to prove the existence of a shape space figure-8 solution of the Newtonian three body problem with two equal masses (it looks like a figure 8 in the shape space, which is different from the famous figure-8 solution with three equal masses (Chenciner and Montgomery 2000 Ann. Math. 152 881-901)). Unfortunately there is an error in the proof and the problem is still open. Consider the α-homogeneous Newton-type potential, 1/rα, using action minimization method, we prove the existence of this solution, for α \\in (1, 2) ; for α=1 (the Newtonian potential), an extra condition is required, which unfortunately seems hard to verify at this moment.

  10. A proof of the Woodward-Lawson sampling method for a finite linear array

    NASA Technical Reports Server (NTRS)

    Somers, Gary A.

    1993-01-01

    An extension of the continuous aperture Woodward-Lawson sampling theorem has been developed for a finite linear array of equidistant identical elements with arbitrary excitations. It is shown that by sampling the array factor at a finite number of specified points in the far field, the exact array factor over all space can be efficiently reconstructed in closed form. The specified sample points lie in real space and hence are measurable provided that the interelement spacing is greater than approximately one half of a wavelength. This paper provides insight as to why the length parameter used in the sampling formulas for discrete arrays is larger than the physical span of the lattice points in contrast with the continuous aperture case where the length parameter is precisely the physical aperture length.

  11. Gauss-Manin Connection in Disguise: Calabi-Yau Threefolds

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Movasati, Hossein; Scheidegger, Emanuel; Yau, Shing-Tung

    2016-06-01

    We describe a Lie Algebra on the moduli space of non-rigid compact Calabi-Yau threefolds enhanced with differential forms and its relation to the Bershadsky-Cecotti-Ooguri-Vafa holomorphic anomaly equation. In particular, we describe algebraic topological string partition functions {{F}g^alg, g ≥ 1}, which encode the polynomial structure of holomorphic and non-holomorphic topological string partition functions. Our approach is based on Grothendieck's algebraic de Rham cohomology and on the algebraic Gauss-Manin connection. In this way, we recover a result of Yamaguchi-Yau and Alim-Länge in an algebraic context. Our proofs use the fact that the special polynomial generators defined using the special geometry of deformation spaces of Calabi-Yau threefolds correspond to coordinates on such a moduli space. We discuss the mirror quintic as an example.

  12. Student Teachers’ Proof Schemes on Proof Tasks Involving Inequality: Deductive or Inductive?

    NASA Astrophysics Data System (ADS)

    Rosyidi, A. H.; Kohar, A. W.

    2018-01-01

    Exploring student teachers’ proof ability is crucial as it is important for improving the quality of their learning process and help their future students learn how to construct a proof. Hence, this study aims at exploring at the proof schemes of student teachers in the beginning of their studies. Data were collected from 130 proofs resulted by 65 Indonesian student teachers on two proof tasks involving algebraic inequality. To analyse, the proofs were classified into the refined proof schemes level proposed by Lee (2016) ranging from inductive, which only provides irrelevant inferences, to deductive proofs, which consider addressing formal representation. Findings present several examples of each of Lee’s level on the student teachers’ proofs spanning from irrelevant inferences, novice use of examples or logical reasoning, strategic use examples for reasoning, deductive inferences with major and minor logical coherence, and deductive proof with informal and formal representation. Besides, it was also found that more than half of the students’ proofs coded as inductive schemes, which does not meet the requirement for doing the proof for the proof tasks examined in this study. This study suggests teacher educators in teacher colleges to reform the curriculum regarding proof learning which can accommodate the improvement of student teachers’ proving ability from inductive to deductive proof as well from informal to formal proof.

  13. Fiber Breakage Model for Carbon Composite Stress Rupture Phenomenon: Theoretical Development and Applications

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2010-01-01

    Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined.

  14. The Ongoing Assembly of a Central Cluster Galaxy: Phase-space Substructures in the Halo of M87

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Strader, Jay; Brodie, Jean P.; Mihos, J. Christopher; Spitler, Lee R.; Forbes, Duncan A.; Foster, Caroline; Arnold, Jacob A.

    2012-03-01

    The halos of galaxies preserve unique records of their formation histories. We carry out the first combined observational and theoretical study of phase-space halo substructure in an early-type galaxy: M87, the central galaxy in the Virgo cluster. We analyze an unprecedented wide-field, high-precision photometric and spectroscopic data set for 488 globular clusters (GCs), which includes new, large-radius Subaru/Suprime-Cam and Keck/DEIMOS observations. We find signatures of two substructures in position-velocity phase space. One is a small, cold stream associated with a known stellar filament in the outer halo; the other is a large shell-like pattern in the inner halo that implies a massive, hitherto unrecognized accretion event. We perform extensive statistical tests and independent metallicity analyses to verify the presence and characterize the properties of these features, and to provide more general methodologies for future extragalactic studies of phase-space substructure. The cold outer stream is consistent with a dwarf galaxy accretion event, while for the inner shell there is tension between a low progenitor mass implied by the cold velocity dispersion, and a high mass from the large number of GCs, which might be resolved by a ~0.5 L* E/S0 progenitor. We also carry out proof-of-principle numerical simulations of the accretion of smaller galaxies in an M87-like gravitational potential. These produce analogous features to the observed substructures, which should have observable lifetimes of ~1 Gyr. The shell and stream GCs together support a scenario where the extended stellar envelope of M87 has been built up by a steady rain of material that continues until the present day. This phase-space method demonstrates unique potential for detailed tests of galaxy formation beyond the Local Group.

  15. Experimental Evaluation of Optically Polished Aluminum Panels on the Deep Space Network's 34 Meter Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.

    2011-01-01

    The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.

  16. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space

    PubMed Central

    Li, Kan; Príncipe, José C.

    2018-01-01

    This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime. PMID:29666568

  17. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space.

    PubMed

    Li, Kan; Príncipe, José C

    2018-01-01

    This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.

  18. External Vision Systems (XVS) Proof-of-Concept Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Arthur, Jarvis J.; Prinzel, Lawrence, III; Bailey, Randall E.

    2014-01-01

    NASA's Fundamental Aeronautics Program, High Speed Project is performing research, development, test and evaluation of flight deck and related technologies to support future low-boom, supersonic configurations (without forward-facing windows) by use of an eXternal Vision System (XVS). The challenge of XVS is to determine a combination of sensor and display technologies which can provide an equivalent level of safety and performance to that provided by forward-facing windows in today's aircraft. This flight test was conducted with the goal of obtaining performance data on see-and-avoid and see-to-follow traffic using a proof-of-concept XVS design in actual flight conditions. Six data collection flights were flown in four traffic scenarios against two different sized participating traffic aircraft. This test utilized a 3x1 array of High Definition (HD) cameras, with a fixed forward field-of-view, mounted on NASA Langley's UC-12 test aircraft. Test scenarios, with participating NASA aircraft serving as traffic, were presented to two evaluation pilots per flight - one using the proof-of-concept (POC) XVS and the other looking out the forward windows. The camera images were presented on the XVS display in the aft cabin with Head-Up Display (HUD)-like flight symbology overlaying the real-time imagery. The test generated XVS performance data, including comparisons to natural vision, and post-run subjective acceptability data were also collected. This paper discusses the flight test activities, its operational challenges, and summarizes the findings to date.

  19. Data-oriented scheduling for PROOF

    NASA Astrophysics Data System (ADS)

    Xu, Neng; Guan, Wen; Wu, Sau Lan; Ganis, Gerardo

    2011-12-01

    The Parallel ROOT Facility - PROOF - is a distributed analysis system optimized for I/O intensive analysis tasks of HEP data. With LHC entering the analysis phase, PROOF has become a natural ingredient for computing farms at Tier3 level. These analysis facilities will typically be used by a few tenths of users, and can also be federated into a sort of analysis cloud corresponding to the Virtual Organization of the experiment. Proper scheduling is required to guarantee fair resource usage, to enforce priority policies and to optimize the throughput. In this paper we discuss an advanced priority system that we are developing for PROOF. The system has been designed to automatically adapt to unknown length of the tasks, to take into account the data location and availability (including distribution across geographically separated sites), and the {group, user} default priorities. In this system, every element - user, group, dataset, job slot and storage - gets its priority and those priorities are dynamically linked with each other. In order to tune the interplay between the various components, we have designed and started implementing a simulation application that can model various type and size of PROOF clusters. In this application a monitoring package records all the changes of them so that we can easily understand and tune the performance. We will discuss the status of our simulation and show examples of the results we are expecting from it.

  20. Internet Technology on Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current approaches. The cost to implement is much less than current approaches due to the availability of highly reliable and standard Internet tools. Use of standard Internet applications onboard reduces the risk of obsolescence inherent in custom protocols due to extremely wide use across all domains. These basic building blocks provide the framework for building onboard software to support direct user communication with payloads including payload control. Other benefits are payload to payload communication from dissimilar spacecraft, constellations of spacecraft, and reconfigurability on orbit. This work is funded through contract with the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC).

  1. Magnetic measurements with fluxgate 3-components magnetometers in archaeology. Multi-sensor device and associated potential field operators for large scale to centimetre investigations on the 1st millennium BC site of Qasr ʿAllam in the western desert of

    NASA Astrophysics Data System (ADS)

    Gavazzi, Bruno; Alkhatib-Alkontar, Rozan; Munschy, Marc; Colin, Frédéric; Duvette, Catherine

    2016-04-01

    Fluxgate 3-components magnetometers allow vector measurements of the magnetic field. Moreover, they are the magnetometers measuring the intensity of the magnetic field with the lightest weight and the lowest power consumption. Vector measurements make them the only kind of magnetometer allowing compensation of magnetic perturbations due to the equipment carried with the magnetometer. Fluxgate 3-components magnetometers are common in space magnetometry and in aero-geophysics but are never used in archaeology due to the difficulty to calibrate them. This problem is overcome by the use of a simple calibration and compensation procedure on the field developed initially for space research (after calibration and compensation, rms noise is less than 1 nT). It is therefore possible to build a multi-sensor (up to 8) and georeferenced device for investigations at different scales down to the centimetre: because the locus of magnetic measurements is less than a cubic centimetre, magnetic profiling or mapping can be performed a few centimetres outside magnetized bodies. Such an equipment is used in a context of heavy sediment coverage and uneven topography on the 1st millennium BC site of Qasr ʿAllam in the western desert of Egypt. Magnetic measurements with a line spacing of 0.5 m allow to compute a magnetic grid. Interpretation using potential field operators such as double reduction to the pole and fractional vertical derivatives reveals a widespread irrigation system and a vast cultic facility. In some areas, magnetic profiling with a 0.1 m line spacing and at 0.1 m above the ground is performed. Results of interpretations give enough proof to the local authorities to enlarge the protection of the site against the threatening progression of agricultural fields.

  2. Proof-of-principle test of coherent-state continuous variable quantum key distribution through turbulent atmosphere (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd

    2016-10-01

    Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a general entangling cloner collective attack (modeled using data obtained from the state measurement results on both trusted sides of the protocol), that allows to purify the noise added in the quantum channel . Our security analysis of coherent-state protocol also took into account the effect of imperfect channel estimation, limited post-processing efficiency and finite data ensemble size on the performance of the protocol. In this regime we observe the positive key rate even without the need of applying post-selection. We show the positive improvement of the key rate with increase of the modulation variance, still remaining low enough to tolerate the transmittance fluctuations. The obtained results show that coherent-state CV QKD protocol that uses real free-space atmospheric channel can withstand negative influence of transmittance fluctuations, limited post-processing efficiency, imperfect channel estimation and other finite-size effects, and be successfully implemented. Our result paves the way to the full-scale implementation of the CV QKD in real free-space channels at mid-range distances.

  3. Age, alcohol, and simulated altitude : effects on performance and breathalyzer scores.

    DOT National Transportation Integrated Search

    1988-01-01

    Trained men in two groups, 30-39 (n=12) and 60-69 (n=13), each performed at the Multiple Task Performance Battery (MTPB) in four separate full-day sessions with and without alcohol (2.2 mL of 100-proof vodka per kg of body weight) at ground level and...

  4. Topotecan lacks third space sequestration.

    PubMed

    Gelderblom, H; Loos, W J; Verweij, J; de Jonge, M J; Sparreboom, A

    2000-04-01

    The objective of this study was to determine the influence of pleural and ascitic fluid on the pharmacokinetics of the antitumor camptothecin derivative topotecan. Four patients with histological proof of malignant solid tumor received topotecan (0.45 or 1.5 mg/m2) p.o. on several occasions in both the presence and absence of third space volumes. Serial plasma and pleural or ascitic fluid samples were collected during each dosing and analyzed by high-performance liquid chromatography for both the intact lactone form of topotecan and its ring-opened carboxylate form. The apparent topotecan clearance demonstrated substantial interpatient variability but remained unchanged within the same patient in the presence [110 +/- 55.6 liters/ h/m2 (mean +/- SD of eight courses)] or absence of pleural and ascitic fluid [118 +/- 31.1 liters/h/m2 (mean +/- SD of seven courses)]. Similarly, terminal half-lives and area under the concentration-time curve ratios of lactone:total drug in plasma were similar between courses within each patient. Topotecan penetration into pleural and ascitic fluid demonstrated a mean lag time of 1.61 h (range, 1.37-1.86 h), and ratios with plasma concentration increased with time after dosing in all patients. The mean ratio of third space topotecan total drug area under the concentration-time curve to that in plasma was 0.55 (range, 0.26-0.87). These data indicate that topotecan can be safely administered to patients with pleural effusions or ascites and that there is substantial penetration of topotecan into these third spaces, which may prove beneficial for local antitumor effects.

  5. Optical Telescope System-Level Design Considerations for a Space-Based Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Sankar, Shannon R.

    2016-01-01

    The study of the Universe through gravitational waves will yield a revolutionary new perspective on the Universe, which has been intensely studied using electromagnetic signals in many wavelength bands. A space-based gravitational wave observatory will enable access to a rich array of astrophysical sources in the measurement band from 0.1 to 100 mHz, and nicely complement observations from ground-based detectors as well as pulsar timing arrays by sampling a different range of compact object masses and astrophysical processes. The observatory measures gravitational radiation by precisely monitoring the tiny change in the proper distance between pairs of freely falling proof masses. These masses are separated by millions of kilometers and, using a laser heterodyne interferometric technique, the change in their proper separation is detected to approx. 10 pm over timescales of 1000 seconds, a fractional precision of better than one part in 10(exp 19). Optical telescopes are essential for the implementation of this precision displacement measurement. In this paper we describe some of the key system level design considerations for the telescope subsystem in a mission context. The reference mission for this purpose is taken to be the enhanced Laser Interferometry Space Antenna mission (eLISA), a strong candidate for the European Space Agency's Cosmic Visions L3 launch opportunity in 2034. We will review the flow-down of observatory level requirements to the telescope subsystem, particularly pertaining to the effects of telescope dimensional stability and scattered light suppression, two performance specifications which are somewhat different from the usual requirements for an image forming telescope.

  6. The NASA Aircraft VOrtex Spacing System (AVOSS): Concept Demonstration Results and Future Direction

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.; OConnor, Cornelius J.

    2004-01-01

    Since the late 1990s the national airspace system has been recognized as approaching a capacity crisis. In the light of this condition, industry, government, user organizations, and educational institutions have been working on procedural and technological solutions to the problem. One aspect of system operations that holds potential for improvement is the separation criteria applied to aircraft for wake vortex avoidance. These criteria, applied when operations are conducted under instrument flight rules (IFR), were designed to represent safe spacing under weather conditions conducive to the longest wake hazards. It is well understood that wake behavior is dependent on meteorological conditions as well as the physical parameters of the generating aircraft. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft VOrtex Spacing System (AVOSS). Successfully demonstrated in a realtime field demonstration during July 2000 at the Dallas Ft. Worth International Airport (DFW), AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. AVOSS provides dynamic wake separation criteria that are a function of the ambient weather conditions for a particular airport, and the predicted wake behavior under those conditions. Wake sensing subsystems provide safety checks and validation for the predictions. The AVOSS was demonstrated in shadow mode; no actual spacing changes were applied to aircraft. This paper briefly reviews the system architecture and operation, reports the latest performance results from the DFW deployment, and describes the future direction of the project.

  7. Dissipative structure and global existence in critical space for Timoshenko system of memory type

    NASA Astrophysics Data System (ADS)

    Mori, Naofumi

    2018-08-01

    In this paper, we consider the initial value problem for the Timoshenko system with a memory term in one dimensional whole space. In the first place, we consider the linearized system: applying the energy method in the Fourier space, we derive the pointwise estimate of the solution in the Fourier space, which first gives the optimal decay estimate of the solution. Next, we give a characterization of the dissipative structure of the system by using the spectral analysis, which confirms our pointwise estimate is optimal. In the second place, we consider the nonlinear system: we show that the global-in-time existence and uniqueness result could be proved in the minimal regularity assumption in the critical Sobolev space H2. In the proof we don't need any time-weighted norm as recent works; we use just an energy method, which is improved to overcome the difficulties caused by regularity-loss property of Timoshenko system.

  8. The Rocket Balloon (Rocketball): Applications to Science, Technology, and Education

    NASA Technical Reports Server (NTRS)

    Esper, Jaime

    2009-01-01

    Originally envisioned to study upper atmospheric phenomena, the Rocket Balloon system (or Rocketball for short) has utility in a range of applications, including sprite detection and in-situ measurements, near-space measurements and calibration correlation with orbital assets, hurricane observation and characterization, technology testing and validation, ground observation, and education. A salient feature includes the need to reach space and near-space within a critical time-frame and in adverse local meteorological conditions. It can also provide for the execution of technology validation and operational demonstrations at a fraction of the cost of a space flight. In particular, planetary entry probe proof-of-concepts can be examined. A typical Rocketball operational scenario consists of a sounding rocket launch and subsequent deployment of a balloon above a desired location. An obvious advantage of this combination is the additional mission 'hang-time' rendered by the balloon once the sounding rocket flight is completed. The system leverages current and emergent technologies at the NASA Goddard Space Flight Center and other organizations.

  9. Sociospace: A smart social framework based on the IP Multimedia Subsystem

    NASA Astrophysics Data System (ADS)

    Hasswa, Ahmed

    Advances in smart technologies, wireless networking, and increased interest in contextual services have led to the emergence of ubiquitous and pervasive computing as one of the most promising areas of computing in recent years. Smart Spaces, in particular, have gained significant interest within the research community. Currently, most Smart Spaces rely on physical components, such as sensors, to acquire information about the real-world environment. Although current sensor networks can acquire some useful contextual information from the physical environment, their information resources are often limited, and the data acquired is often unreliable. We argue that by introducing social network information into such systems, smarter and more adaptive spaces can be created. Social networks have recently become extremely popular, and are now an integral part of millions of people's daily lives. Through social networks, users create profiles, build relationships, and join groups, forming intermingled sets and communities. Social Networks contain a wealth of information, which, if exploited properly, can lead to a whole new level of smart contextual services. A mechanism is therefore needed to extract data from heterogeneous social networks, to link profiles across different networks, and to aggregate the data obtained. We therefore propose the design and implementation of a Smart Spaces framework that utilizes the social context. In order to manage services and sessions, we integrate our system with the IP Multimedia Subsystem. Our system, which we call SocioSpace, includes full design and implementation of all components, including the central server, the location management system, the social network interfacing system, the service delivery platform, and user agents. We have built a prototype for proof of concept and carried out exhaustive performance analysis; the results show that SocioSpace is scalable, extensible, and fault-tolerant. It is capable of creating Smart Spaces that can truly deliver adaptive services that enhance the users' overall experience, increase their satisfaction, and make the surroundings more beneficial and interesting to them.

  10. Energy Storage Technology Development for Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  11. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 2; Validation Results

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.

  12. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber.

    PubMed

    Dang, Yunli; Zhao, Zhiyong; Tang, Ming; Zhao, Can; Gan, Lin; Fu, Songnian; Liu, Tongqing; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-08-21

    Featuring a dependence of Brillouin frequency shift (BFS) on temperature and strain changes over a wide range, Brillouin distributed optical fiber sensors are however essentially subjected to the relatively poor temperature/strain measurement resolution. On the other hand, phase-sensitive optical time-domain reflectometry (Φ-OTDR) offers ultrahigh temperature/strain measurement resolution, but the available frequency scanning range is normally narrow thereby severely restricts its measurement dynamic range. In order to achieve large dynamic range and high measurement resolution simultaneously, we propose to employ both the Brillouin optical time domain analysis (BOTDA) and Φ-OTDR through space-division multiplexed (SDM) configuration based on the multicore fiber (MCF), in which the two sensors are spatially separately implemented in the central core and a side core, respectively. As a proof of concept, the temperature sensing has been performed for validation with 2.5 m spatial resolution over 1.565 km MCF. Large temperature range (10 °C) has been measured by BOTDA and the 0.1 °C small temperature variation is successfully identified by Φ-OTDR with ~0.001 °C resolution. Moreover, the temperature changing process has been recorded by continuously performing the measurement of Φ-OTDR with 80 s frequency scanning period, showing about 0.02 °C temperature spacing at the monitored profile. The proposed system enables the capability to see finer and/or farther upon requirement in distributed optical fiber sensing.

  13. Mission Preparation Program for Exobiological Experiments in Earth Orbit

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Reitz, Guenther; Horneck, Gerda; Rabbow, Elke; Rettberg, Petra

    The ESA facilities EXPOSE-R and EXPOSE-E on board of the the International Space Station ISS provide the technology for exposing chemical and biological samples in a controlled manner to outer space parameters, such as high vacuum, intense radiation of galactic and solar origin and microgravity. EXPOSE-E has been attached to the outer balcony of the European Columbus module of the ISS in Febraury 2008 and will stay for about 1 year in space, EXPOSE-R will be attached to the Russian Svezda module of the ISS in fall 2008. The EXPOSE facilities are a further step in the study of the Responses of Organisms to Space Environment (ROSE concortium). The results from the EXPOSE missions will give new insights into the survivability of terrestrial organisms in space and will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin.To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed. It resulted in several experiment verification tests EVTs and an experiment sequence test EST that were conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allow the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. The procedure and results of these EVT tests and EST will be presented. These results are an essential prerequisite for the success of the EXPOSE missions and have been done in parallel with the development and construction of the final hardware design of the facility. The results gained during the simulation experiments demonstrated mission preparation as a basic requirement for successful and significant results of every space flight experiment. Hence, the Mission preparation program that was performed in the context of the space missions EXPOSE-E and EXPOSE-R proofed the outstanding importance and accentuated need for ground based experiments.

  14. Organopolysiloxane Waterproofing Treatment for Porous Ceramics

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Cagliostro, Domenick E. (Inventor); Hsu, Ming-ta S. (Inventor); Chen, Timothy S. (Inventor)

    1998-01-01

    Rigid and flexible porous ceramics, including thermal insulation of a type used on space vehicles, are waterproofed by a treatment which comprises applying an aqueous solution of an organopolysiloxane water-proofing agent having reactive silanol groups to the surface of the ceramic and then heating the treated ceramic to form a waterproofed ceramic. The organopolysiloxane is formed by the hydrolysis and partial condensation of di- and trialkoxyfunctional alkylalkoxysilanes having 1-10 carbon atom hydrocarbyl groups.

  15. An autonomous rendezvous and docking system using cruise missile technology

    NASA Technical Reports Server (NTRS)

    Jones, ED; Nicholson, Bruce

    1991-01-01

    In November 1990 General Dynamics demonstrated an AR&D system for members of the Strategic Avionics Technology Working Group. This simulation utilized prototype hardware derived from the Cruise Missile and Centaur avionics systems. The object of this proof of concept demonstration was to show that all the accuracy, reliability, and operational requirements established for a spacecraft to dock with Space Station Freedom could be met by the proposed AR&D system.

  16. Strategy for D/He-3 fusion development

    NASA Technical Reports Server (NTRS)

    Santarius, John F.

    1988-01-01

    It is concluded that Deuterium/Helium-3 fusion faces a more difficult physics development path but an easier technology development path than does Deuterium/Tritium. Early D/He-3 tests in next generation D/T fusion experiments might provide a valuable D/He-3 proof-of-principle at modest cost. At least one high leverage alternate concept should be vigorously pursued. Space applications of D/He-3 fusion are critically important to large scale development.

  17. The Study of Advanced Accelerator Physics Research at UCLA Using the ATF at BNL: Vacuum Acceleration by Laser of Free Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, David B.

    An experiment was designed and data were taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.

  18. The classification of explosion-proof protected induction motor into adequate temperature and efficiency class

    NASA Astrophysics Data System (ADS)

    Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem

    2017-07-01

    This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.

  19. Effect of Weight on the Resonant Tuning of Energy Harvesting Devices Using Giant Magnetostrictive Materials.

    PubMed

    Mori, Kotaro; Horibe, Tadashi; Ishikawa, Shigekazu

    2018-04-10

    This study deals with the numerical and experimental study of the effect of weight on the resonant tuning and energy harvesting characteristics of energy harvesting devices using giant magnetostrictive materials. The energy harvesting device is made in a cantilever shape using a thin Terfenol-D layer, stainless steel (SUS) layer and a movable proof mass, among other things. In this study, two types of movable proof mass were prepared, and the device was designed to adjust its own resonant frequency automatically to match external vibration frequency in real time. Three-dimensional finite element analysis (FEA) was performed, and the resonant frequency, tip displacement, and output voltage in the devices were predicted and measured, and the simulation and experiment results were compared. The effects of the weight of the proof mass on self-tuning ability and time-varying behavior were then considered in particular.

  20. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters

    PubMed Central

    Gratuze, Mathieu; Elsayed, Mohannad Y.

    2018-01-01

    Piezoelectric energy harvesters have proven to have the potential to be a power source in a wide range of applications. As the harvester dimensions scale down, the resonance frequencies of these devices increase drastically. Proof masses are essential in micro-scale devices in order to decrease the resonance frequency and increase the strain along the beam to increase the output power. In this work, the effects of proof mass geometry on piezoelectric energy harvesters are studied. Different geometrical dimension ratios have significant impact on the resonance frequency, e.g., beam to mass lengths, and beam to mass widths. A piezoelectric energy harvester has been fabricated and tested operating at a frequency of about 4 kHz within the audible range. The responses of various prototypes were studied, and an optimized T-shaped piezoelectric vibration energy harvester design is presented for improved performance. PMID:29772706

  1. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters.

    PubMed

    Alameh, Abdul Hafiz; Gratuze, Mathieu; Elsayed, Mohannad Y; Nabki, Frederic

    2018-05-16

    Piezoelectric energy harvesters have proven to have the potential to be a power source in a wide range of applications. As the harvester dimensions scale down, the resonance frequencies of these devices increase drastically. Proof masses are essential in micro-scale devices in order to decrease the resonance frequency and increase the strain along the beam to increase the output power. In this work, the effects of proof mass geometry on piezoelectric energy harvesters are studied. Different geometrical dimension ratios have significant impact on the resonance frequency, e.g., beam to mass lengths, and beam to mass widths. A piezoelectric energy harvester has been fabricated and tested operating at a frequency of about 4 kHz within the audible range. The responses of various prototypes were studied, and an optimized T-shaped piezoelectric vibration energy harvester design is presented for improved performance.

  2. Von Neumann's impossibility proof: Mathematics in the service of rhetorics

    NASA Astrophysics Data System (ADS)

    Dieks, Dennis

    2017-11-01

    According to what has become a standard history of quantum mechanics, in 1932 von Neumann persuaded the physics community that hidden variables are impossible as a matter of principle, after which leading proponents of the Copenhagen interpretation put the situation to good use by arguing that the completeness of quantum mechanics was undeniable. This state of affairs lasted, so the story continues, until Bell in 1966 exposed von Neumann's proof as obviously wrong. The realization that von Neumann's proof was fallacious then rehabilitated hidden variables and made serious foundational research possible again. It is often added in recent accounts that von Neumann's error had been spotted almost immediately by Grete Hermann, but that her discovery was of no effect due to the dominant Copenhagen Zeitgeist. We shall attempt to tell a story that is more historically accurate and less ideologically charged. Most importantly, von Neumann never claimed to have shown the impossibility of hidden variables tout court, but argued that hidden-variable theories must possess a structure that deviates fundamentally from that of quantum mechanics. Both Hermann and Bell appear to have missed this point; moreover, both raised unjustified technical objections to the proof. Von Neumann's argument was basically that hidden-variables schemes must violate the ;quantum principle; that physical quantities are to be represented by operators in a Hilbert space. As a consequence, hidden-variables schemes, though possible in principle, necessarily exhibit a certain kind of contextuality. As we shall illustrate, early reactions to Bohm's theory are in agreement with this account. Leading physicists pointed out that Bohm's theory has the strange feature that pre-existing particle properties do not generally reveal themselves in measurements, in accordance with von Neumann's result. They did not conclude that the ;impossible was done; and that von Neumann had been shown wrong.

  3. Combining Epidemiologic Information Across Space Agencies

    NASA Technical Reports Server (NTRS)

    Minard, Charles G.; Clark, April L.; Wear, Mary L.; Mason, Sara; Van Baalen, Mary

    2010-01-01

    Space flight is a very unique occupational exposure with potential hazards that are not fully understood. A limited number of individuals have experienced the exposures incurred during space flight, and epidemiologic research would benefit from shared information across space agencies. However, data sharing can be problematic due to agency protection policies for personally identifiable information as well as medical records. Compliance with these protocols in the astronaut population is particularly difficult given the small, high-profile population under study. Creativity in combining data is necessary in order to overcome these difficulties and improve statistical power in research. This study presents methods in meta-analysis that may be used to combine non-attributable data across space agencies so that meaningful conclusions may be drawn about study interests. Methods for combining epidemiologic data across space agencies are presented, and the processes are demonstrated using life-time mortality data in U.S. astronauts and Russian cosmonauts. This proof of concept was found to be an acceptable way of sharing data across agencies, and will be used in the future as more relevant research interests are identified.

  4. Technology Demonstration Missions

    NASA Technical Reports Server (NTRS)

    McDougal, John; French, Raymond; Adams-Fogle, Beth; Stephens, Karen

    2015-01-01

    Technology Demonstration Missions (TDM) is in its third year of execution, being initiated in 2010 and baselined in January of 2012. There are 11 projects that NASA Marshall Space Flight Center (MSFC) has contributed to or led: (1) Evolvable Cryogenics (eCryo): Cyrogenic Propellant Storage and Transfer Engineering Development Unit (EDU), a proof of manufacturability effort, used to enhance knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. (2) Composites for Exploration Upper Stage (CEUS): Design, build, test, and address flight certification of a large composite shell suitable for the second stage of the Space Launch System (SLS). (3) Deep Space Atomic Clock (DSAC): Spaceflight to demo small, low-mass atomic clock that can provide unprecedented stability for deep space navigation. (4) Green Propellant Infusion Mission (GPIM): Demo of high-performance, green propellant propulsion system suitable for Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA)-class spacecraft. (5) Human Exploration Telerobotics (HET): Demonstrating how telerobotics, remote control of a variety of robotic systems, can take routine, highly repetitive, dangerous or long-duration tasks out of human hands. (6) Laser Communication Relay Demo (LCRD): Demo to advance optical communications technology toward infusion into deep space and near Earth operational systems, while growing the capabilities of industry sources. (7) Low Density Supersonic Decelerator (LDSD): Demo new supersonic inflatable decelerator and parachute technologies to enable Mars landings of larger payloads with greater precision at a wider range of altitudes. (8) Mars Science Laboratory (MSL) Entry Descent & Landing Instrumentation (MEDLI): Demo of embedded sensors embedded in the MSL heat shield, designed to record the heat and atmospheric pressure experienced during the spacecraft's high-speed, hot entry in the Martian atmosphere. (9) Solar Electric Propulsion (SEP): 50-kW class spacecraft that uses flexible blanket solar arrays for power generation and an electric propulsion system that delivers payload from low-Earth orbit to higher orbits. (10) Solar Sail Demonstration (SSD): Demo to validate sail deployment techniques for solar sails that are propelled by the pressure of sunlight. (11) Terrestrial HIAD Orbit Reentry (THOR): Demo of a 3.7-m Hypersonic Inflatable Aerodynamic Decelerator (HIAD) entry vehicle to test second generation aerothermal performance and modeling.

  5. Linear time-to-space mapping system using double electrooptic beam deflectors.

    PubMed

    Hisatake, Shintaro; Tada, Keiji; Nagatsuma, Tadao

    2008-12-22

    We propose and demonstrate a linear time-to-space mapping system, which is based on two times electrooptic sinusoidal beam deflection. The direction of each deflection is set to be mutually orthogonal with the relative deflection phase of pi/2 rad so that the circular optical beam trajectory can be achieved. The beam spot at the observation plane moves with an uniform velocity and as a result linear time-to-space mapping (an uniform temporal resolution through the mapping) can be realized. The proof-of-concept experiment are carried out and the temporal resolution of 5 ps has been demonstrated using traveling-wave type quasi-velosity-matched electrooptic beam deflectors. The developed system is expected to be applied to characterization of ultrafast optical signal or optical arbitrary waveform shaping for modulated microwave/millimeter-wave generation.

  6. Bell - Kochen - Specker theorem for any finite dimension ?

    NASA Astrophysics Data System (ADS)

    Cabello, Adán; García-Alcaine, Guillermo

    1996-03-01

    The Bell - Kochen - Specker theorem against non-contextual hidden variables can be proved by constructing a finite set of `totally non-colourable' directions, as Kochen and Specker did in a Hilbert space of dimension n = 3. We generalize Kochen and Specker's set to Hilbert spaces of any finite dimension 0305-4470/29/5/016/img2, in a three-step process that shows the relationship between different kinds of proofs (`continuum', `probabilistic', `state-specific' and `state-independent') of the Bell - Kochen - Specker theorem. At the same time, this construction of a totally non-colourable set of directions in any dimension explicitly solves the question raised by Zimba and Penrose about the existence of such a set for n = 5.

  7. Global Well-Posedness of the Incompressible Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Cai, Yuan; Lei, Zhen

    2018-06-01

    This paper studies the Cauchy problem of the incompressible magnetohydro dynamic systems with or without viscosity ν. Under the assumption that the initial velocity field and the displacement of the initialmagnetic field froma non-zero constant are sufficiently small in certain weighted Sobolev spaces, the Cauchy problem is shown to be globally well-posed for all ν ≧ 0 and all spaces with dimension n ≧ 2. Such a result holds true uniformly in nonnegative viscosity parameters. The proof is based on the inherent strong null structure of the systems introduced by Lei (Commun Pure Appl Math 69(11):2072-2106, 2016) and the ghost weight technique introduced by Alinhac (Invent Math 145(3):597-618, 2001).

  8. Distribution-valued initial data for the complex Ginzburg-Landau equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levermore, C.D.; Oliver, M.

    1997-11-01

    The generalized complex Ginzburg-Landau (CGL) equation with a nonlinearity of order 2{sigma} + 1 in d spatial dimensions has a unique local classical solution for distributional initial data in the Sobolev space H{sup q} provided that q > d/2 - 1/{sigma}. This result directly corresponds to a theorem for the nonlinear Schroedinger (NLS) equation which has been proved by Cazenave and Weissler in 1990. While the proof in the NLS case relies on Besov space techniques, it is shown here that for the CGL equation, the smoothing properties of the linear semigroup can be eased to obtain an almost optimalmore » result by elementary means. 1 fig.« less

  9. Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster

    NASA Astrophysics Data System (ADS)

    Karadag, Burak; Cho, Shinatora; Funaki, Ikkoh

    2018-04-01

    It is quite a challenge to design low power Hall thrusters with a long lifetime and high efficiency because of the large surface area to volume ratio and physical limits to the magnetic circuit miniaturization. As a potential solution to this problem, we experimentally investigated the external discharge plasma thruster (XPT). The XPT produces and sustains a plasma discharge completely in the open space outside of the thruster structure through a magnetic mirror configuration. It eliminates the very fundamental component of Hall thrusters, discharge channel side walls, and its magnetic circuit consists solely of a pair of hollow cylindrical permanent magnets. Thrust, low frequency discharge current oscillation, ion beam current, and plasma property measurements were conducted to characterize the manufactured prototype thruster for the proof of concept. The thrust performance, propellant ionization, and thruster erosion were discussed. Thrust generated by the XPT was on par with conventional Hall thrusters [stationary plasma thruster (SPT) or thruster with anode layer] at the same power level (˜11 mN at 250 W with 25% anode efficiency without any optimization), and discharge current had SPT-level stability (Δ < 0.2). Faraday probe measurements revealed that ion beams are finely collimated, and plumes have Gaussian distributions. Mass utilization efficiencies, beam utilization efficiencies, and plume divergence efficiencies ranged from 28 to 62%, 78 to 99%, and 40 to 48%, respectively. Electron densities and electron temperatures were found to reach 4 × 1018 m-3 ( ∂ n e / n e = ±52%) and 15 eV ( ∂ T e / T e = ±10%-30%), respectively, at 10 mm axial distance from the anode centerline. An ionization mean free path analysis revealed that electron density in the ionization region is substantially higher than the conventional Hall thrusters, which explain why the XPT is as efficient as conventional ones even without a physical ionization chamber. Our findings propose an alternative approach for low power Hall thruster design and provide a successful proof of concept experiment of the XPT.

  10. A Microseismometer for Terrestrial and Extraterrestrial Applications

    NASA Technical Reports Server (NTRS)

    Banerdt, W.; Kaiser, W.; Vanzandt, T.

    1993-01-01

    The scientific and technical requirements of extraterrestrial seismology place severe demands on instrumentation. Performance in terms of sensitivity, stability, and frequency band must match that of the best terrestrial instruments, at a fraction of the size, mass, and power. In addition, this performance must be realized without operator intervention in harsh temperature, shock, and radiation environments. These constraints have forced us to examine some fundamental limits of accelerometer design in order to produce a small, rugged, sensitive seismometer. Silicon micromachined sensor technology offers techniques for the fabrication of monolithic, robust, compact, low-power and -mass accelerometers. However, currently available sensors offer inadequate sensitivity and bandwidth. Our implementation of an advanced silicon micro machined seismometer is based on principles developed at JPL for high-sensitivity position sensor technology. The use of silicon micro machining technology with these new principles should enable the fabrication of a 10(exp -11) g sensitivity seismometer with a bandwidth of at least 0.01 to 20 Hz. The low Q properties of pure single-crystal silicon are essential in order to minimize the Brownian thermal noise limitations generally characteristic of seismometers with small proof masses. A seismometer consists of a spring-supported proof mass and a transducer for measuring its motion. For long period motion a position sensor is generally used, for which the displacement is proportional to the ground acceleration. The mechanical sensitivity can be increased either by increasing the proof mass or decreasing the spring stiffness, neither of which is desirable for planetary applications. Our approach has been to use an ultra sensitive capacitive position sensor with a sensitivity of better than 10(exp -13) m/Hz(exp 1/2). This allows the use of a stiffer suspension and a smaller proof mass. We have built several prototypes using these principles, and tests show that these devices can exhibit performance comparable to state-of-the-art instruments.

  11. Mixed reality temporal bone surgical dissector: mechanical design.

    PubMed

    Hochman, Jordan Brent; Sepehri, Nariman; Rampersad, Vivek; Kraut, Jay; Khazraee, Milad; Pisa, Justyn; Unger, Bertram

    2014-08-08

    The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill's passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator.

  12. A figure-of-merit approach to extraterrestrial resource utilization

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.; Kirsch, T.

    1990-01-01

    A concept is developed for interrelated optimizations in space missions that utilize extraterrestrial resources. It is shown that isolated (component) optimizations may not result in the best mission. It is shown that substantial benefits can be had through less than the best propellants, propellant combinations, propulsion hardware, and actually, some waste in the traditional sense. One ready example is the possibility of discarding hydrogen produced extraterrestrially by water splitting and using only the oxygen to burn storable fuels. The gains in refrigeration and leak-proof equipment mass (elimination) outweigh the loss in specific impulse. After a brief discussion of this concept, the synthesis of the four major components of any future space mission is developed. The four components are: orbital mechanics of the transportation; performance of the rocket motor; support systems that include power; thermal and process controls, and instruments; and in situ resource utilization plant equipment. This paper's main aim is to develop the concept of a figure-of-merit for the mission. The Mars Sample Return Mission is used to illustrate the new concept. At this time, a popular spreadsheet is used to quantitatively indicate the interdependent nature of the mission optimization. Future prospects are outlined that promise great economy through extraterrestrial resource utilization and a technique for quickly evaluating the same.

  13. Design and Testing of a Variable Pressure Regulator for the Constellation Space Suit

    NASA Technical Reports Server (NTRS)

    Gill, Larry; Campbell, Colin

    2008-01-01

    The next generation space suit requires additional capabilities for controlling and adjusting internal pressure than previous design suits. Next generation suit pressures will range from slight pressure, for astronaut prebreath comfort, to hyperbaric pressure levels for emergency medical treatment. Carleton was awarded a contract in 2008 to design and build a proof of concept bench top demonstrator regulator having five setpoints which are selectable using input electronic signaling. Although the basic regulator architecture is very similar to the existing SOP regulator used in the current EMU, the major difference is the electrical selectivity of multiple setpoints rather than the mechanical On/Off feature found on the SOP regulator. The concept regulator employs a linear actuator stepper motor combination to provide variable compression to a custom design main regulator spring. This concept allows for a continuously adjustable outlet pressures from 8.2 psid (maximum) down to "firm" zero thus effectively allowing it to serve as a shutoff valve. This paper details the regulator design and presents test results on regulation band width, command set point accuracy; slue rate and regulation stability, particularly when the set point is being slued. Projections for a flight configuration version are also offered for performance, architectural layout and weight.

  14. The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly

    2012-01-01

    Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. NASA is currently exploring the Sabatier reaction, the Bosch reaction, and co- electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. All three techniques have demonstrated the capacity to reduce CO2 in the laboratory, yet there is interest in understanding how all three techniques would perform at a system level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily rescaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental efforts. Comparison to experimental data is provided were available for verification purposes.

  15. Standalone GPS L1 C/A Receiver for Lunar Missions

    PubMed Central

    Capuano, Vincenzo; Blunt, Paul; Botteron, Cyril; Tian, Jia; Leclère, Jérôme; Wang, Yanguang; Basile, Francesco; Farine, Pierre-André

    2016-01-01

    Global Navigation Satellite Systems (GNSSs) were originally introduced to provide positioning and timing services for terrestrial Earth users. However, space users increasingly rely on GNSS for spacecraft navigation and other science applications at several different altitudes from the Earth surface, in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geostationary Earth Orbit (GEO), and feasibility studies have proved that GNSS signals can even be tracked at Moon altitude. Despite this, space remains a challenging operational environment, particularly on the way from the Earth to the Moon, characterized by weaker signals with wider gain variability, larger dynamic ranges resulting in higher Doppler and Doppler rates and critically low satellite signal availability. Following our previous studies, this paper describes the proof of concept “WeakHEO” receiver; a GPS L1 C/A receiver we developed in our laboratory specifically for lunar missions. The paper also assesses the performance of the receiver in two representative portions of an Earth Moon Transfer Orbit (MTO). The receiver was connected to our GNSS Spirent simulator in order to collect real-time hardware-in-the-loop observations, and then processed by the navigation module. This demonstrates the feasibility, using current technology, of effectively exploiting GNSS signals for navigation in a MTO. PMID:27005628

  16. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction

    NASA Astrophysics Data System (ADS)

    Low, Jingxiang; Qiu, Shuoqi; Xu, Difa; Jiang, Chuanjia; Cheng, Bei

    2018-03-01

    Surface plasmon resonance (SPR) effect has been utilized in many solar conversion applications because of its ability to convert visible photons into "hot electron" energy. However, the direct evidence and enhancement of this unique effect are still great challenges, limiting its practical applications. Here we present the direct evidence and enhancement of SPR effect using TiO2 nanotube arrays (TNTAs) loaded with Ag nanoparticles (NPs) as a proof-of-concept example. Particularly, electrochemical deposition method is applied to deposit Ag NPs into the inner space of TNTAs for enhancing SPR effect of Ag NPs, as demonstrated by Raman and light absorption spectroscopies. This enhanced SPR effect is because multi-scattered light within TNTAs can be effectively utilized by Ag NPs in the inner space of TNTAs. Moreover, combining synchronous-illumination X-ray photoelectron and electrochemical impedance spectroscopy characterization, we confirm that the SPR effect of Ag NPs can enhance photocatalytic performance of TNTAs mainly from two aspects: (i) injection of "hot electrons" from Ag NPs to TNTAs and (ii) acceleration of charge carrier migration on the TNTAs through a unique near field effect. The direct evidence and enhancement of SPR effect open new perspectives in design of functional plasmonic nanomaterials with high solar conversion efficiency.

  17. High-dynamic range imaging techniques based on both color-separation algorithms used in conventional graphic arts and the human visual perception modeling

    NASA Astrophysics Data System (ADS)

    Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao

    2010-01-01

    The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.

  18. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  19. High Temperature Near-Field NanoThermoMechanical Rectification

    PubMed Central

    Elzouka, Mahmoud; Ndao, Sidy

    2017-01-01

    Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures. PMID:28322324

  20. High Temperature Near-Field NanoThermoMechanical Rectification

    NASA Astrophysics Data System (ADS)

    Elzouka, Mahmoud; Ndao, Sidy

    2017-03-01

    Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures.

Top