Young, Deborah R.; Spengler, John O.; Frost, Natasha; Evenson, Kelly R.; Vincent, Jeffrey M.; Whitsel, Laurie
2014-01-01
Most Americans are not sufficiently physically active, even though regular physical activity improves health and reduces the risk of many chronic diseases. Those living in rural, non-White, and lower-income communities often have insufficient access to places to be active, which can contribute to their lower level of physical activity. The shared use of school recreational facilities can provide safe and affordable places for communities. Studies suggest that challenges to shared use include additional cost, liability protection, communication among constituencies interested in sharing space, and decision-making about scheduling and space allocation. This American Heart Association policy statement has provided recommendations for federal, state, and local decision-makers to support and expand opportunities for physical activity in communities through the shared use of school spaces. PMID:24134355
Young, Deborah R; Spengler, John O; Frost, Natasha; Evenson, Kelly R; Vincent, Jeffrey M; Whitsel, Laurie
2014-09-01
Most Americans are not sufficiently physically active, even though regular physical activity improves health and reduces the risk of many chronic diseases. Those living in rural, non-White, and lower-income communities often have insufficient access to places to be active, which can contribute to their lower level of physical activity. The shared use of school recreational facilities can provide safe and affordable places for communities. Studies suggest that challenges to shared use include additional cost, liability protection, communication among constituencies interested in sharing space, and decision-making about scheduling and space allocation. This American Heart Association policy statement has provided recommendations for federal, state, and local decision-makers to support and expand opportunities for physical activity in communities through the shared use of school spaces.
Workshop on Research for Space Exploration: Physical Sciences and Process Technology
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1998-01-01
This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.
Generic results of the space physics community survey
NASA Technical Reports Server (NTRS)
Sharma, Rikhi R.; Cohen, Nathaniel B.
1993-01-01
This report summarizes the results of a survey of the members of the space physics research community conducted in 1990-1991 to ascertain demographic information on the respondents and information on their views on a number of facets of their space physics research. The survey was conducted by questionnaire and the information received was compiled in a database and analyzed statistically. The statistical results are presented for the respondent population as a whole and by four different respondent cross sections: individual disciplines of space physics, type of employers, age groups, and research techniques employed. Data from a brief corresponding survey of the graduate students of respondents are also included.
Understanding older adults' usage of community green spaces in Taipei, Taiwan.
Pleson, Eryn; Nieuwendyk, Laura M; Lee, Karen K; Chaddah, Anuradha; Nykiforuk, Candace I J; Schopflocher, Donald
2014-01-27
As the world's population ages, there is an increasing need for community environments to support physical activity and social connections for older adults. This exploratory study sought to better understand older adults' usage and perceptions of community green spaces in Taipei, Taiwan, through direct observations of seven green spaces and nineteen structured interviews. Descriptive statistics from observations using the System for Observing Play and Recreation in Communities (SOPARC) confirm that older adults use Taipei's parks extensively. Our analyses of interviews support the following recommendations for age-friendly active living initiatives for older adults: make green spaces accessible to older adults; organize a variety of structured activities that appeal to older adults particularly in the morning; equip green spaces for age-appropriate physical activity; and, promote the health advantages of green spaces to older adults.
Understanding Older Adults’ Usage of Community Green Spaces in Taipei, Taiwan
Pleson, Eryn; Nieuwendyk, Laura M.; Lee, Karen K.; Chaddah, Anuradha; Nykiforuk, Candace I. J.; Schopflocher, Donald
2014-01-01
As the world’s population ages, there is an increasing need for community environments to support physical activity and social connections for older adults. This exploratory study sought to better understand older adults’ usage and perceptions of community green spaces in Taipei, Taiwan, through direct observations of seven green spaces and nineteen structured interviews. Descriptive statistics from observations using the System for Observing Play and Recreation in Communities (SOPARC) confirm that older adults use Taipei’s parks extensively. Our analyses of interviews support the following recommendations for age-friendly active living initiatives for older adults: make green spaces accessible to older adults; organize a variety of structured activities that appeal to older adults particularly in the morning; equip green spaces for age-appropriate physical activity; and, promote the health advantages of green spaces to older adults. PMID:24473116
Moving through Life-Space Areas and Objectively Measured Physical Activity of Older People.
Portegijs, Erja; Tsai, Li-Tang; Rantanen, Taina; Rantakokko, Merja
2015-01-01
Physical activity-an important determinant of health and function in old age-may vary according to the life-space area reached. Our aim was to study how moving through greater life-space areas is associated with greater physical activity of community-dwelling older people. The association between objectively measured physical activity and life-space area reached on different days by the same individual was studied using one-week longitudinal data, to provide insight in causal relationships. One-week surveillance of objectively assessed physical activity of community-dwelling 70-90-year-old people in central Finland from the "Life-space mobility in old age" cohort substudy (N = 174). In spring 2012, participants wore an accelerometer for 7 days and completed a daily diary including the largest life-space area reached (inside home, outside home, neighborhood, town, and beyond town). The daily step count, and the time in moderate (incl. walking) and low activity and sedentary behavior were assessed. Differences in physical activity between days on which different life-space areas were reached were tested using Generalized Estimation Equation models (within-group comparison). Participants' mean age was 80.4±4.2 years and 63.5% were female. Participants had higher average step counts (p < .001) and greater moderate and low activity time (p < .001) on days when greater life-space areas were reached, from the home to the town area. Only low activity time continued to increase when moving beyond the town. Community-dwelling older people were more physically active on days when they moved through greater life-space areas. While it is unknown whether physical activity was a motivator to leave the home, intervention studies are needed to determine whether facilitation of daily outdoor mobility, regardless of the purpose, may be beneficial in terms of promoting physical activity.
Shared Use of Physical Activity Facilities Among North Carolina Faith Communities, 2013
Edwards, Michael B.; Bocarro, Jason N.; Stein, Anna; Kanters, Michael A.; Sherman, Danielle Marie; Rhew, Lori K.; Stallings, Willona Marie; Bowen, Sarah K.
2017-01-01
Introduction Shared use of recreational facilities is a promising strategy for increasing access to places for physical activity. Little is known about shared use in faith-based settings. This study examined shared use practices and barriers in faith communities in North Carolina. Methods Faith communities in North Carolina (n = 234) completed an online survey (October–December 2013) designed to provide information about the extent and nature of shared use of recreational facilities. We used binary logistic regression to examine differences between congregations that shared use and those that did not share use. Results Most of the faith communities (82.9%) that completed the survey indicated that they share their facilities with outside individuals and organizations. Formal agreements were more common when faith communities shared indoor spaces such as gymnasiums and classroom meeting spaces than when they shared outdoor spaces such as playgrounds or athletic fields. Faith communities in the wealthiest counties were more likely to share their spaces than were faith communities in poorer counties. Faith communities in counties with the best health rankings were more likely to share facilities than faith communities in counties that had lower health rankings. The most frequently cited reasons faith communities did not share their facilities were that they did not know how to initiate the process of sharing their facilities or that no outside groups had ever asked. Conclusion Most faith communities shared their facilities for physical activity. Research is needed on the relationship between shared use and physical activity levels, including the effect of formalizing shared-use policies. PMID:28152362
Shared Use of Physical Activity Facilities Among North Carolina Faith Communities, 2013.
Hardison-Moody, Annie; Edwards, Michael B; Bocarro, Jason N; Stein, Anna; Kanters, Michael A; Sherman, Danielle Marie; Rhew, Lori K; Stallings, Willona Marie; Bowen, Sarah K
2017-02-02
Shared use of recreational facilities is a promising strategy for increasing access to places for physical activity. Little is known about shared use in faith-based settings. This study examined shared use practices and barriers in faith communities in North Carolina. Faith communities in North Carolina (n = 234) completed an online survey (October-December 2013) designed to provide information about the extent and nature of shared use of recreational facilities. We used binary logistic regression to examine differences between congregations that shared use and those that did not share use. Most of the faith communities (82.9%) that completed the survey indicated that they share their facilities with outside individuals and organizations. Formal agreements were more common when faith communities shared indoor spaces such as gymnasiums and classroom meeting spaces than when they shared outdoor spaces such as playgrounds or athletic fields. Faith communities in the wealthiest counties were more likely to share their spaces than were faith communities in poorer counties. Faith communities in counties with the best health rankings were more likely to share facilities than faith communities in counties that had lower health rankings. The most frequently cited reasons faith communities did not share their facilities were that they did not know how to initiate the process of sharing their facilities or that no outside groups had ever asked. Most faith communities shared their facilities for physical activity. Research is needed on the relationship between shared use and physical activity levels, including the effect of formalizing shared-use policies.
Space-weather assets developed by the French space-physics community
NASA Astrophysics Data System (ADS)
Rouillard, A. P.; Pinto, R. F.; Brun, A. S.; Briand, C.; Bourdarie, S.; Dudok De Wit, T.; Amari, T.; Blelly, P.-L.; Buchlin, E.; Chambodut, A.; Claret, A.; Corbard, T.; Génot, V.; Guennou, C.; Klein, K. L.; Koechlin, L.; Lavarra, M.; Lavraud, B.; Leblanc, F.; Lemorton, J.; Lilensten, J.; Lopez-Ariste, A.; Marchaudon, A.; Masson, S.; Pariat, E.; Reville, V.; Turc, L.; Vilmer, N.; Zucarello, F. P.
2016-12-01
We present a short review of space-weather tools and services developed and maintained by the French space-physics community. They include unique data from ground-based observatories, advanced numerical models, automated identification and tracking tools, a range of space instrumentation and interconnected virtual observatories. The aim of the article is to highlight some advances achieved in this field of research at the national level over the last decade and how certain assets could be combined to produce better space-weather tools exploitable by space-weather centres and customers worldwide. This review illustrates the wide range of expertise developed nationally but is not a systematic review of all assets developed in France.
Tutorial on Actual Space Environmental Hazards For Space Systems (Invited)
NASA Astrophysics Data System (ADS)
Mazur, J. E.; Fennell, J. F.; Guild, T. B.; O'Brien, T. P.
2013-12-01
It has become common in the space science community to conduct research on diverse physical phenomena because they are thought to contribute to space weather. However, satellites contend with only three primary environmental hazards: single event effects, vehicle charging, and total dose, and not every physical phenomenon that occurs in space contributes in substantial ways to create these hazards. One consequence of the mismatch between actual threats and all-encompassing research is the often-described gap between research and operations; another is the creation of forecasts that provide no actionable information for design engineers or spacecraft operators. An example of the latter is the physics of magnetic field emergence on the Sun; the phenomenon is relevant to the formation and launch of coronal mass ejections and is also causally related to the solar energetic particles that may get accelerated in the interplanetary shock. Unfortunately for the research community, the engineering community mitigates the space weather threat (single-event effects from heavy ions above ~50 MeV/nucleon) with a worst-case specification of the environment and not with a prediction. Worst-case definition requires data mining of past events, while predictions involve large-scale systems science from the Sun to the Earth that is compelling for scientists and their funding agencies but not actionable for design or for most operations. Differing priorities among different space-faring organizations only compounds the confusion over what science research is relevant. Solar particle impacts to human crew arise mainly from the total ionizing dose from the solar protons, so the priority for prediction in the human spaceflight community is therefore much different than in the unmanned satellite community, while both communities refer to the fundamental phenomenon as space weather. Our goal in this paper is the presentation of a brief tutorial on the primary space environmental phenomena that are relevant to satellite design and operations. The tutorial will help space science researchers to understand the differing priorities of communities that operate in space and to better distinguish the science that is actually needed for the design and operation of all-weather space systems.
Exploring Engaged Spaces in Community-University Partnership
ERIC Educational Resources Information Center
Davies, Ceri; Gant, Nick; Millican, Juliet; Wolff, David; Prosser, Bethan; Laing, Stuart; Hart, Angie
2016-01-01
The Community University Partnership Programme (CUPP) has been operating at the University of Brighton for the past 10 years. This article explores the different types of space we think need to exist to support a variety of partnership and engaged work. We therefore explore our understandings of shared or "engaged" spaces as a physical,…
Ward Thompson, Catharine; Aspinall, Peter; Roe, Jenny; Robertson, Lynette; Miller, David
2016-04-22
Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people's stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use) necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant's home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments.
Ward Thompson, Catharine; Aspinall, Peter; Roe, Jenny; Robertson, Lynette; Miller, David
2016-01-01
Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people’s stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use) necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant’s home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments. PMID:27110803
Tsai, L-T; Portegijs, E; Rantakokko, M; Viljanen, A; Saajanaho, M; Eronen, J; Rantanen, T
2015-08-01
The purpose of this cross-sectional study was to investigate the association between objectively measured physical activity and life-space mobility in community-dwelling older people. Life-space refers to the spatial area a person purposefully moves through in daily life (bedroom, home, yard, neighborhood, town, and beyond) and life-space mobility to the frequency of travel and the help needed when moving through different life-space areas. The study population comprised community-living 75- to 90-year-old people {n = 174; median age 79.7 [interquartile range (IQR) 7.1]}, participating in the accelerometer substudy of Life-Space Mobility in Old Age (LISPE) project. Step counts and activity time were measured by an accelerometer (Hookie "AM20 Activity Meter") for 7 days. Life-space mobility was assessed with Life-Space Assessment (LSA) questionnaire. Altogether, 16% had a life-space area restricted to the neighborhood when moving independently. Participants with a restricted life space were less physically active and about 70% of them had exceptionally low values in daily step counts (≤ 615 steps) and moderate activity time (≤ 6.8 min). Higher step counts and activity time correlated positively with life-space mobility. Prospective studies are needed to clarify the temporal order of low physical activity level and restriction in life-space mobility. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Committee on solar and space physics
NASA Astrophysics Data System (ADS)
Lanzerotti, L. J.
The Committee on Solar and Space Physics (CSSP) is the Committee of the Space Science Board (SSB) of the National Research Council that is responsible for providing scientific advice to NASA in areas of solar/solar-terrestrial/space-plasma physics. The committee, composed of members who serve 3-year terms, wishes to solicit comments from colleagues on topics of interest to them and related to issues in the field.Current subjects on which the committee is devoting considerable effort include the following: (a) considerations of data handling and data systems in solar-terrestrial research for the future (This is being carried out with the encouragement of the SSB and its Committee on Data Management. The activity is in collaboration with the Committee on Solar-Terrestrial Research (CSTR) of the Geophysics Research Board. The handling, integration, and dissemination of solar-terrestrial data obtained by all techniques will be addressed. Chairmen of the responsible subgroup are D. J. Williams (CSSP) and M. A. Shea (CSTR).); (b) consideration of the policies and issues associated with a revitalized Explorer satellite program responsive to the requirements of the solar-terrestrial physics community (Inputs of ideas for potential Explorer missions have been received from a wide range of the community and will be further elaborated upon by additional community participation. A number of these ideas and examples will form a portion of a report discussing solar-terrestrial science topics of high contemporary interest that could be well addressed with Explorerclass missions.); (c) inputs to a more comprehensive consideration of the requirements for theoretical research in all the space sciences (This is an overall task of the Space Science Board. The CSSP response relies heavily upon the Colgate committee report on space plasma physics.); (d) a future workshop, in collaboration with the Space Science Committee of the European Science foundation, on potential cooperative work in space plasma physics with European nations (Four major program items will be addressed, including reviews of several major scientific achievements within the field, a review of the status of solar and space plasma physics as academic subjects in the U.S. and in Western Europe, a review of future research programs, and a discussion of the forms of collaboration between the U.S. and European space plasma physics communities, with recommendations for the future. The workshop will be held in the U.S., tentatively during the 1982-83 academic year.); (e) continuing dialogue with NASA public relations officials and other knowledgeable individuals regarding the status of public knowledge of the results, importance, and applications of solar-terrestrial research.); (f) discussions with relevant officials concerning the issues of scientific funding in the United States, particularly as related to solar-terrestrial research.
Creating a Classroom Makerspace
ERIC Educational Resources Information Center
Rivas, Luz
2014-01-01
What is a makerspace? Makerspaces are community-operated physical spaces where people (makers) create do-it-yourself projects together. These membership spaces serve as community labs where people learn together and collaborate on projects. Makerspaces often have tools and equipment like 3-D printers, laser cutters, and soldering irons.…
Pekong, the symbol identity of Chinese at Pekan Labuhan Medan Indonesia
NASA Astrophysics Data System (ADS)
Siagian, M.
2018-02-01
Urban architecture has always been combined by physical and non-physical components. The physical is formed by spatial pattern, space and history. The non physical is formed by social and cultural life of the community. The combination of that space would give the meaning as a place for the people that use it. Pekong has existed since 1890 in the area of Pekan Labuhan. The presence of two Pekongs in this area gives the symbol for distribution patterns of Chinese residential and community in Pekan Labuhan district. Symbolizing the Pekongs is sourced from being able to shape and influence the components such as the market, shophouses, and houses. Beside that the Pekongs also identify of districts and social influence of the community. The component activities enliven Pekongs make spaces for Pekongs grow to become a magnificent buildings in the comunity settlement. The aim of this research is to examine and describe the Pekong that has became the identity and attraction to the area. By using the qualitative method this research found that the Pekongs are the important buildings in identifying of the district.
Audiovisual Aids for Astronomy and Space Physics at an Urban College
ERIC Educational Resources Information Center
Moche, Dinah L.
1973-01-01
Discusses the use of easily available audiovisual aids to teach a one semester course in astronomy and space physics to liberal arts students of both sexes at Queensborough Community College. Included is a list of teaching aids for use in astronomy instruction. (CC)
Common Data Format: New XML and Conversion Tools
NASA Astrophysics Data System (ADS)
Han, D. B.; Liu, M. H.; McGuire, R. E.
2002-12-01
Common Data Format (CDF) is a self-describing platform-independent data format for storing, accessing, and manipulating scalar and multidimensional scientific data sets. Significant benefit has accrued to specific science communities from their use of standard formats within those communities. Examples include the International Solar Terrestrial Physics (ISTP) community in using CDF for traditional space physics data (fields, particles and plasma, waves, and images), the worldwide astronomical community in using FITS (Flexible Image Transport System) for solar data (primarily spectral images), the NASA Planetary community in using Planetary Data System (PDS) Labels, and the earth science community in using Hierarchical Data Format (HDF). Scientific progress in solar-terrestrial physics continues to be impeded by the multiplicity of available standards for data formats and dearth of general data format translators. As a result, scientists today spend a significant amount of time translating data into the format they are familiar with for their research. To minimize this unnecessary data translation time and to allow more research time, the CDF office located at GSFC National Space Science Data Center (NSSDC) has developed HDF-to-CDF and FITS-to-CDF translators, and employed the eXtensible Markup Language (XML) technology to facilitate and promote data interoperability within the space science community. We will present the current status of the CDF work including the conversion tools that have been recently developed, conversion tools that are planned in the near future, share some of the XML experiences, and use the discussion to gain community feedback to our planned future work.
Botticello, Amanda L.; Rohrbach, Tanya; Cobbold, Nicolette
2014-01-01
Purpose There is a need for empirical support of the association between the built environment and disability-related outcomes. This study explores the associations between community and neighborhood land uses and community participation among adults with acquired physical disability. Methods Cross-sectional data from 508 community-living, chronically disabled adults in New Jersey were obtained from among participants in national Spinal Cord Injury Model Systems database. Participants’ residential addresses were geocoded to link individual survey data with Geographic Information Systems (GIS) data on land use and destinations. The influence of residential density, land use mix, destination counts, and open space on four domains of participation were modeled at two geographic scales—the neighborhood (i.e., half mile buffer) and community (i.e., five mile) using multivariate logistic regression. All analyses were adjusted for demographic and impairment-related differences. Results Living in communities with greater land use mix and more destinations was associated with a decreased likelihood of reporting optimum social and physical activity. Conversely, living in neighborhoods with large portions of open space was positively associated with the likelihood of reporting full physical, occupational, and social participation. Conclusions These findings suggest that the overall living conditions of the built environment may be relevant to social inclusion for persons with physical disabilities. PMID:24935467
Sacred Space in Community settlement of Kudus Kulon, Central Java, Indonesia
NASA Astrophysics Data System (ADS)
Budi Sardjono, Agung; Rochma Harani, Arnis
2017-12-01
The sacred space becomes an important part of the spatial layout of Javanese society, as well as in most houses of the archipelago. This space is related to religious activities, highly respected and usually located in the main place. Kudus Kulon community is a part of Javanese culture in the northern coastal area of Java. Known as a devout Muslim society, sacred space in Kudus Kulon community house becomes an important thing to understand the culture of living in society. The research was conducted by looking at the religious activities of the community and how the space of activity is realized. The research was conducted by qualitative research method. In the Kudus Kulon community, sacred spaces are available in the house itself, in the community grup of houses, and around Kudus Kulon area. In every house, the sacred space can be found in Gedongan and extends to Dalem. In the community group of houses, the sacred space can be found in the neighbourhood praying area, while In Kudus Kulon area, it can be found in Mosque complex and Tower tomb. Physically sacred space is realized by raising the floor height of the space around it. In architectural view, the sacred space is seen on the elevation of the roof or roof angle. Spatially the sacred space occupies a central position and visually represented by a vertical orientation.
The Plasma Archipelago: Plasma Physics in the 1960s
NASA Astrophysics Data System (ADS)
Weisel, Gary J.
2017-09-01
With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.
Adolescents' Sense of Community on MySpace and Facebook: A Mixed-Methods Approach
ERIC Educational Resources Information Center
Reich, Stephanie M.
2010-01-01
Communities are foundational to the field of Community Psychology yet they are difficult to define and measure. Once viewed as social groups with ties to geographical locations, online communities interact free of physical or face-to-face contact. This cyberexistence makes the study of communities more challenging. Social networking sites (SNS),…
Space Telescope Systems Description Handbook
NASA Technical Reports Server (NTRS)
Carter, R. E.
1985-01-01
The objective of the Space Telescope Project is to orbit a high quality optical 2.4-meter telescope system by the Space Shuttle for use by the astronomical community in conjunction with NASA. The scientific objectives of the Space Telescope are to determine the constitution, physical characteristics, and dynamics of celestial bodies; the nature of processes which occur in the extreme physical conditions existing in stellar objects; the history and evolution of the universe; and whether the laws of nature are universal in the space-time continuum. Like ground-based telescopes, the Space Telescope was designed as a general-purpose instrument, capable of utilizing a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic will allow the Space Telescope to be effectively used as a national facility, capable of supporting the astronomical needs for an international user community and hence making contributions to man's needs. By using the Space Shuttle to provide scientific instrument upgrading and subsystems maintenance, the useful and effective operational lifetime of the Space Telescope will be extended to a decade or more.
Implementation of the Boston University Space Physics Acquisition Center
NASA Technical Reports Server (NTRS)
Spence, Harlan E.
1998-01-01
The tasks carried out during this grant achieved the goals as set forth in the initial proposal. The Boston University Space Physics Acquisition CEnter (BUSPACE) now provides World Wide Web access to data from a large suite of both space-based and ground-based instruments, archived from different missions, experiments, or campaigns in which researchers associated with the Center for Space Physics (CSP) at Boston University have been involved. These archival data sets are in digital form and are valuable for retrospective data analysis studies of magnetospheric as well as ionospheric, thermospheric, and mesospheric physics. We have leveraged our grass-roots effort with the NASA seed money to establish dedicated hardware (computer and hard disk augmentation) and student support to grow and maintain the system. This leveraging of effort now permits easy access by the space physics community to many underutilized, yet important data sets, one example being that of the SCATHA satellite.
Perceived community benefits from recreation resources: From scale development to validation
Jordan W. Smith; Dorothy H. Anderson; Mae A. Davenport; Jessica E. Leahy
2012-01-01
This research proposes a six-factor psychometric scale for assessing individuals' perceptions of community benefits generated from managed recreation resources.We suggested that community benefits primarily occur within six related dimensions: ecological, economic, lifestyle, quality of life, sense of physical space, and social solidarity.
An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors
NASA Astrophysics Data System (ADS)
Cade, W. B., III
2016-12-01
Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.
Smart growth community design and physical activity in children.
Jerrett, Michael; Almanza, Estela; Davies, Molly; Wolch, Jennifer; Dunton, Genevieve; Spruitj-Metz, Donna; Ann Pentz, Mary
2013-10-01
Physical inactivity is a leading cause of death and disease globally. Research suggests physical inactivity might be linked to community designs that discourage active living. A "smart growth" community contains features likely to promote active living (walkability, green space, mixed land use), but objective evidence on the potential benefits of smart growth communities is limited. To assess whether living in a smart growth community was associated with increased neighborhood-centered leisure-time physical activity in children aged 8-14 years, compared to residing in a conventional community (i.e., one not designed according to smart growth principles). Participants were recruited from a smart growth community, "The Preserve," located in Chino, California, and eight conventional communities within a 30-minute drive of The Preserve. The analytic sample included 147 children. During 2009-2010, each child carried an accelerometer and a GPS for 7 days to ascertain physical activity and location information. Negative binomial models were used to assess the association between residence in the smart growth community and physical activity. Analyses were conducted in 2012. Smart growth community residence was associated with a 46% increase in the proportion of neighborhood moderate-to-vigorous physical activity (MVPA) as compared to conventional community residence. This analysis included neighborhood activity data collected during the school season and outside of school hours and home. Counterfactual simulations with model parameters suggested that smart growth community residence could add 10 minutes per day of neighborhood MVPA. Living in a smart growth community may increase local physical activity in children as compared to residence in conventionally designed communities. © 2013 American Journal of Preventive Medicine.
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.
2017-12-01
The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).
Becoming a Physicist: How Identities and Practices Shape Physics Trajectories
NASA Astrophysics Data System (ADS)
Quan, Gina M.
This dissertation studies the relationships and processes which shape students' participation within the discipline of physics. Studying this early disciplinary participation gives insight to how students are supported in or pushed out of physics, which is an important step in cultivating a diverse set of physics students. This research occurs within two learning environments that we co-developed: a physics camp for high school girls and a seminar for undergraduate physics majors to get started in physics research. Using situated learning theory, we conceptualized physics learning to be intertwined with participation in physics practices and identity development. This theoretical perspective draws our attention to relationships between students and the physics community. Specifically, we study how students come to engage in the practices of the community and who they are within the physics community. We find that students' interactions with faculty and peers impact the extent to which students engage in authentic physics practices. These interactions also impact the extent to which students develop identities as physicists. We present implications of these findings for the design of physics learning spaces. Understanding this process of how students become members of the physics community will provide valuable insights into fostering a diverse set of successful trajectories in physics.
Hoffimann, Elaine; Barros, Henrique; Ribeiro, Ana Isabel
2017-08-15
Background : The provision of green spaces is an important health promotion strategy to encourage physical activity and to improve population health. Green space provision has to be based on the principle of equity. This study investigated the presence of socioeconomic inequalities in geographic accessibility and quality of green spaces across Porto neighbourhoods (Portugal). Methods : Accessibility was evaluated using a Geographic Information System and all the green spaces were audited using the Public Open Space Tool. Kendall's tau-b correlation coefficients and ordinal regression were used to test whether socioeconomic differences in green space quality and accessibility were statistically significant. Results : Although the majority of the neighbourhoods had an accessible green space, mean distance to green space increased with neighbourhood deprivation. Additionally, green spaces in the more deprived neighbourhoods presented significantly more safety concerns, signs of damage, lack of equipment to engage in active leisure activities, and had significantly less amenities such as seating, toilets, cafés, etc. Conclusions : Residents from low socioeconomic positions seem to suffer from a double jeopardy; they lack both individual and community resources. Our results have important planning implications and might contribute to understanding why deprived communities have lower physical activity levels and poorer health.
NASA Astrophysics Data System (ADS)
Babidge, S.; Cokley, J.; Gordon, F.; Louw, E.
2005-10-01
As humans expand into space communities will form. These have already begun to form in small ways, such as long-duration missions on the International Space Station and the space shuttle, and small-scale tourist excursions into space. Social, behavioural and communications data emerging from such existing communities in space suggest that the physically-bounded, work-oriented and traditionally male-dominated nature of these extremely remote groups present specific problems for the resident astronauts, groups of them viewed as ‘communities’, and their associated groups who remain on Earth, including mission controllers, management and astronauts’ families. Notionally feminine group attributes such as adaptive competence, social adaptation skills and social sensitivity will be crucial to the viability of space communities and in the absence of gender equity, ‘staying in touch’ by means of ‘news from home’ becomes more important than ever. A template of news and media forms and technologies is suggested to service those needs and enhance the social viability of future terraforming activities.
ERIC Educational Resources Information Center
McNiff, Shaun
1995-01-01
Discusses the studio as a therapeutic community of images where the therapist functions as keeper of the space. It is not the physical suitability that determines the suitability of the space; rather, distractions and imperfections in the space may more accurately mirror the state of psyche and so induce the passionate engagement that calls forth…
Criteria for Public Open Space Enhancement to Achieve Social Interaction: a Review Paper
NASA Astrophysics Data System (ADS)
Salih, S. A.; Ismail, S.
2017-12-01
A This paper presents a various literatures, studies, transcripts and papers aiming to provide an overview of some theories and existing research on the significance of natural environments and green open spaces to achieve social interaction and outdoor recreation. The main objective of the paper is to identify the factors that affecting social interaction in green open spaces, through proving that an appropriate open spaces is important to enhance social interaction and community. This study employs (qualitative) summarizing content analysis method which mainly focused on collect and summarizing of documentation such as transcripts, articles, papers, and books from more than 25 source, regarding the importance of public open spaces for the community. The summarizing content analysis of this paper is the fundament for a qualitative oriented procedure of text interpretation used to analyse the information gathered. Results of this study confirms that sound social interaction need an appropriate physical space including criteria of: design, activities, access and linkage, administration and maintenance, place attachment and users’ characteristics, also previous studies in this area have a health perspective with measures of physical activity of open spaces in general.
Space Physics Cosmic & Heliospheric Data Evaluation Panel Report
NASA Technical Reports Server (NTRS)
McGuiere, R. E.; Cooper, J.; Gazis, P.; Kurth, W.; Lazarus, A.; McDonald, F.; McNutt, R.; Pyle, R.; Tsurutani, B. T.
1995-01-01
This Cosmic and Heliospheric (C&H) Data Evaluation Panel was charged with the task of identifying and prioritizing important C&H data sets. It was requested to provide C&H community input to the Space Physics Division for a program of revitalizing data holdings. Details and recommendations are provided. Highest C&H priority is assigned to Voyager, Pioneer, Helios, IMP-8, and ISEE-3 data.
Inside the Black Box: Magnetic Reconnection and the Magnetospheric Multiscale Mission
NASA Astrophysics Data System (ADS)
Cassak, P. A.
2016-03-01
The motivation for the recently launched Magnetospheric Multiscale mission is learning about the process of magnetic reconnection, especially the physics of what is called the diffusion region. The diffusion region is often treated as a black box but is the home of very important physics, which is of great significance to understanding space weather. This article is a brief review of what is known—and not known—about the diffusion region in magnetic reconnection, written for the broad space weather community and its stakeholders (with an appendix for readers interested in more technical matters). The focus is on the physics of magnetic reconnection and the diffusion region, why it has been challenging to study, how MMS will contribute, and how the community will benefit from its measurements.
Space Commercial Opportunities for Fluid Physics and Transport Phenomena Applications
NASA Technical Reports Server (NTRS)
Gavert, R.
2000-01-01
Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.
NASA Astrophysics Data System (ADS)
Génot, V.; André, N.; Cecconi, B.; Bouchemit, M.; Budnik, E.; Bourrel, N.; Gangloff, M.; Dufourg, N.; Hess, S.; Modolo, R.; Renard, B.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.
2014-11-01
The interest for data communication between analysis tools in planetary sciences and space physics is illustrated in this paper via several examples of the uses of SAMP. The Simple Application Messaging Protocol is developed in the frame of the IVOA from an earlier protocol called PLASTIC. SAMP enables easy communication and interoperability between astronomy software, stand-alone and web-based; it is now increasingly adopted by the planetary sciences and space physics community. Its attractiveness is based, on one hand, on the use of common file formats for exchange and, on the other hand, on established messaging models. Examples of uses at the CDPP and elsewhere are presented. The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (Automated Multi Dataset Analysis, http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search and cataloging. Besides AMDA, the 3DView (http://3dview.cdpp.eu/) tool provides immersive visualizations and is further developed to include simulation and observational data. These tools and their interactions with each other, notably via SAMP, are presented via science cases of interest to planetary sciences and space physics communities.
From Commons to Classroom: The Evolution of Learning Spaces in Academic Libraries
ERIC Educational Resources Information Center
Karasic, Victoria
2016-01-01
Over the past two decades, academic library spaces have evolved to meet the changing teaching and learning needs of diverse campus communities. The Information Commons combines the physical and virtual in an informal library space, whereas the recent Active Learning Classroom creates a more formal setting for collaboration. As scholarship has…
Hearts, Minds, and the Library's Physical Space
ERIC Educational Resources Information Center
Huwe, Terence K.
2010-01-01
The digital era has revolutionized society's perception of space. Even so, against this backdrop, the struggle to preserve and enhance library space is a battle for the hearts and minds of the communities. It is ongoing, and it will never end. In this article, the author explores two characteristics of successful drives to revitalize physical…
NASA Astrophysics Data System (ADS)
Kuznetsova, Maria
The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) was established at the dawn of the new millennium as a long-term flexible solution to the problem of transition of progress in space environment modeling to operational space weather forecasting. CCMC hosts an expanding collection of state-of-the-art space weather models developed by the international space science community. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment and developing and maintaining custom displays and powerful web-based systems and tools ready to be used by researchers, space weather service providers and decision makers. In support of space weather needs of NASA users CCMC is developing highly-tailored applications and services that target specific orbits or locations in space and partnering with NASA mission specialists on linking CCMC space environment modeling with impacts on biological and technological systems in space. Confidence assessment of model predictions is an essential element of space environment modeling. CCMC facilitates interaction between model owners and users in defining physical parameters and metrics formats relevant to specific applications and leads community efforts to quantify models ability to simulate and predict space environment events. Interactive on-line model validation systems developed at CCMC make validation a seamless part of model development circle. The talk will showcase innovative solutions for space weather research, validation, anomaly analysis and forecasting and review on-going community-wide model validation initiatives enabled by CCMC applications.
Islamic representation and urban space in Banda Aceh: Linking the social and spatial
NASA Astrophysics Data System (ADS)
Istiqamah; Herlily
2018-03-01
Post conflict and tsunami; the city of Banda Aceh is experiencing a massive development as an effort to represent an Islamic city. Some strategic points have been chosen by the municipality to build architectural objects that are considered to represent Islam in the urban space. The issue of such representational practice is the development of neglecting the activities of local communities as users of urban public spaces. The purpose of this design study is to provide an alternative to the urban design of Banda Aceh to represent Islam that is not moving from physical development but by involving community activities. Establish and rediscover the relationship between Islam and urban life in Banda Aceh. This design study uses mental maps of 50 inhabitants of Banda Aceh city of various ages who live in 10 villages around the city center. We use mental maps as a tool to read the daily activities of the community and determine the familiar urban territory with the community. The results of this study will be used to form a Muslim community and present community activities to represent Islam in the urban space.
Hoffimann, Elaine; Barros, Henrique; Ribeiro, Ana Isabel
2017-01-01
Background: The provision of green spaces is an important health promotion strategy to encourage physical activity and to improve population health. Green space provision has to be based on the principle of equity. This study investigated the presence of socioeconomic inequalities in geographic accessibility and quality of green spaces across Porto neighbourhoods (Portugal). Methods: Accessibility was evaluated using a Geographic Information System and all the green spaces were audited using the Public Open Space Tool. Kendall’s tau-b correlation coefficients and ordinal regression were used to test whether socioeconomic differences in green space quality and accessibility were statistically significant. Results: Although the majority of the neighbourhoods had an accessible green space, mean distance to green space increased with neighbourhood deprivation. Additionally, green spaces in the more deprived neighbourhoods presented significantly more safety concerns, signs of damage, lack of equipment to engage in active leisure activities, and had significantly less amenities such as seating, toilets, cafés, etc. Conclusions: Residents from low socioeconomic positions seem to suffer from a double jeopardy; they lack both individual and community resources. Our results have important planning implications and might contribute to understanding why deprived communities have lower physical activity levels and poorer health. PMID:28809798
Space Weather Model Testing And Validation At The Community Coordinated Modeling Center
NASA Astrophysics Data System (ADS)
Hesse, M.; Kuznetsova, M.; Rastaetter, L.; Falasca, A.; Keller, K.; Reitan, P.
The Community Coordinated Modeling Center (CCMC) is a multi-agency partner- ship aimed at the creation of next generation space weather models. The goal of the CCMC is to undertake the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to pro- vide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of NASA's Living With aStar initiative, of the National Space Weather Program Implementation Plan, and of the Department of Defense Space Weather Tran- sition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and devel- opment accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate.
Creating Inclusive Physical Activity Spaces: The Case of Body-Positive Yoga.
Pickett, Andrew C; Cunningham, George B
2017-09-01
Within the modern cultural climate, those in larger bodies face high levels of weight stigma, particularly in sport and physical activity spaces, which serves as a strong barrier to their participation. However, given the strong link between physical activity and general health and well-being for participants, it is important to explore strategies that encourage participation of these individuals. Thus, the current research examined strategies that physical activity instructors use to develop inclusive exercise spaces for all body sizes. This study employed a series of semistructured qualitative interviews (n = 9) with instructors of body-inclusive yoga classes to explore the ways in which they encourage participation for those in larger bodies. Emergent themes from the current study suggested support for 6 factors for creating body-inclusive physical activity spaces: authentic leadership, a culture of inclusion, a focus on health, inclusive language, leader social activism, and a sense of community. This study revealed that leaders must intentionally cultivate inclusion in their spaces to encourage those in nonconforming bodies to participate. These findings have important health and management implications for the sport and physical activity context and provide a basic outline of practical strategies that practitioners can use to foster inclusion in their spaces.
Microgravity Fluids for Biology, Workshop
NASA Technical Reports Server (NTRS)
Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.
2013-01-01
Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.
NASA Astrophysics Data System (ADS)
Pankratz, C. K.; Baker, D. N.; Jaynes, A. N.; Elkington, S. R.; Baltzer, T.; Sanchez, F.
2017-12-01
Society's growing reliance on complex and highly interconnected technological systems makes us increasingly vulnerable to the effects of space weather events - maybe more than for any other natural hazard. An extreme solar storm today could conceivably impact hundreds of the more than 1400 operating Earth satellites. Such an extreme storm could cause collapse of the electrical grid on continental scales. The effects on navigation, communication, and remote sensing of our home planet could be devastating to our social functioning. Thus, it is imperative that the scientific community address the question of just how severe events might become. At least as importantly, it is crucial that policy makers and public safety officials be informed by the facts on what might happen during extreme conditions. This requires essentially real-time alerts, warnings, and also forecasts of severe space weather events, which in turn demands measurements, models, and associated data products to be available via the most effective data discovery and access methods possible. Similarly, advancement in the fundamental scientific understanding of space weather processes is also vital, requiring that researchers have convenient and effective access to a wide variety of data sets and models from multiple sources. The space weather research community, as with many scientific communities, must access data from dispersed and often uncoordinated data repositories to acquire the data necessary for the analysis and modeling efforts that advance our understanding of solar influences and space physics on the Earth's environment. The Laboratory for Atmospheric and Space Physics (LASP), as a leading institution in both producing data products and advancing the state of scientific understanding of space weather processes, is well positioned to address many of these issues. In this presentation, we will outline the motivating factors for effective space weather data access, summarize the various data and models that are available, and present methods for meeting the data management and access needs of the disparate communities who require low-latency space weather data and information.
Investigating student communities with network analysis of interactions in a physics learning center
NASA Astrophysics Data System (ADS)
Brewe, Eric; Kramer, Laird; Sawtelle, Vashti
2012-06-01
Developing a sense of community among students is one of the three pillars of an overall reform effort to increase participation in physics, and the sciences more broadly, at Florida International University. The emergence of a research and learning community, embedded within a course reform effort, has contributed to increased recruitment and retention of physics majors. We utilize social network analysis to quantify interactions in Florida International University’s Physics Learning Center (PLC) that support the development of academic and social integration. The tools of social network analysis allow us to visualize and quantify student interactions and characterize the roles of students within a social network. After providing a brief introduction to social network analysis, we use sequential multiple regression modeling to evaluate factors that contribute to participation in the learning community. Results of the sequential multiple regression indicate that the PLC learning community is an equitable environment as we find that gender and ethnicity are not significant predictors of participation in the PLC. We find that providing students space for collaboration provides a vital element in the formation of a supportive learning community.
Transforming community access to space science models
NASA Astrophysics Data System (ADS)
MacNeice, Peter; Hesse, Michael; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-04-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
Transforming Community Access to Space Science Models
NASA Technical Reports Server (NTRS)
MacNeice, Peter; Heese, Michael; Kunetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-01-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
NASA Astrophysics Data System (ADS)
Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.
2012-12-01
Community Coordinated Modeling Center (CCMC) was established to enhance basic solar terrestrial research and to aid in the development of models for specifying and forecasting conditions in the space environment. In achieving this goal, CCMC has developed and provides a set of innovative tools varying from: Integrated Space Weather Analysis (iSWA) web -based dissemination system for space weather information, Runs-On-Request System providing access to unique collection of state-of-the-art solar and space physics models (unmatched anywhere in the world), Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and recently Mobile apps (iPhone/Android) to view space weather data anywhere to the scientific community. The number of runs requested and the number of resulting scientific publications and presentations from the research community has not only been an indication of the broad scientific usage of the CCMC and effective participation by space scientists and researchers, but also guarantees active collaboration and coordination amongst the space weather research community. Arising from the course of CCMC activities, CCMC also supports community-wide model validation challenges and research focus group projects for a broad range of programs such as the multi-agency National Space Weather Program, NSF's CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions), GEM (Geospace Environment Modeling) and Shine (Solar Heliospheric and INterplanetary Environment) programs. In addition to performing research and model development, CCMC also supports space science education by hosting summer students through local universities; through the provision of simulations in support of classroom programs such as Heliophysics Summer School (with student research contest) and CCMC Workshops; training next generation of junior scientists in space weather forecasting; and educating the general public about the importance and impacts of space weather effects. Although CCMC is organizationally comprised of United States federal agencies, CCMC services are open to members of the international science community and encourages interagency and international collaboration. In this poster, we provide an overview of using Community Coordinated Modeling Center (CCMC) tools and services to support worldwide space weather scientific communities and networks.;
Human Factors and the International Space Station
NASA Technical Reports Server (NTRS)
Peacock, Brian; Rajulu, Sudhakar; Novak, Jennifer; Rathjen, Thomas; Whitmore, Mihriban; Maida, James; Woolford, Barbara
2001-01-01
The purposes of this panel are to inform the human factors community regarding the challenges of designing the International Space Station (ISS) and to stimulate the broader human factors community into participating in the various basic and applied research opportunities associated with the ISS. This panel describes the variety of techniques used to plan and evaluate human factors for living and working in space. The panel members have contributed to many different aspects of the ISS design and operations. Architecture, equipment, and human physical performance requirements for various tasks have all been tailored to the requirements of operating in microgravity.
Stream ecosystems change with urban development
Bell, Amanda H.; James, F. Coles; McMahon, Gerard
2012-01-01
The healthy condition of the physical living space in a natural stream—defined by unaltered hydrology (streamflow), high diversity of habitat features, and natural water chemistry—supports diverse biological communities with aquatic species that are sensitive to disturbances. In a highly degraded urban stream, the poor condition of the physical living space—streambank and tree root damage from altered hydrology, low diversity of habitat, and inputs of chemical contaminants—contributes to biological communities with low diversity and high tolerance to disturbance.
Appreciation of the 2015 JGR Space Physics Peer Reviewers
NASA Technical Reports Server (NTRS)
Liemohn, Michael W.; Balikhin, Michael; Kepko, Larry; Rodger, Alan; Wang, Yuming
2016-01-01
The Editors of the Journal of Geophysical Research Space Physics are deeply indebted to the many people among the research community that serve this journal through peer review. The journal could not exist without the time and effort invested by the community through this voluntary activity, providing expert evaluations and thoughtful assessments of the work of others. In 2015, the journal had 1506 scientists contribute to the process with at least one peer review, for a total of 3575 reviews completed, including additional reviews of resubmitted manuscripts. There were 277 reviewers that contributed four or more reports in 2015. The average number of reviews per referee in 2015 was, therefore, 2.4. Note that the total number of manuscript final decisions (i.e., accept or reject) for Journal of Geophysical Research (JGR) Space Physics was 1147 in 2015. Of this, 774 were accepted and 373 were declined, for an acceptance rate of 67% last year. If the 1334 "revision" decisions are included in the tally, then the total number of decisions made in 2015 was 2481. Working out the arithmetic, it means that on average, a manuscript gets about 1.2 revision decisions before a final accept-or-reject decision. This explains the 3.1 average number of reviews per manuscript throughout each paper's lifetime in the submission-revision editorial process. We are pleased and happy that the research community is willing and able to devote their resources toward this service endeavor. We appreciate each and every one of you that helped maintain the high quality of papers in JGR Space Physics last year. We look forward to another excellent year working with all of you through the year ahead.
Characteristics of physical activity levels among trail users in a U.S. national sample.
Librett, John J; Yore, Michelle M; Schmid, Thomas L
2006-11-01
The Task Force on Community Preventive Services strongly recommends environmental interventions that include enhanced access to opportunities for physical activity, such as walking and cycling trails. Although accumulating evidence indicates that trails can be effective in increasing physical activity, little is known about trail users. Cross-sectional analysis of a national sample of 3717 adults from the HealthStyles and ConsumerStyles surveys using logistic regression to determine physical activity patterns and sociodemographic correlates related to trail use, and to identify support regarding trail development policies. Almost 13% (12.7%) of the sample reported using trails at least once a month and 24.3% at least once a week. People who reported using trails at least once a week were twice as likely than people who reported rarely or never using trails to meet physical activity recommendations (odds ratio=2.3, 95% confidence interval=1.9-2.8). Nearly half (43.6%) of the non-trail users supported expanded public spaces for people to exercise, and 36.4% of the non-trail users reported that they would be willing to pay more taxes to build more parks and trails in their community. Community trails facilitate physical activity, and almost half of frequent trail users report that access to trails and other green space is important in choosing a place to live. These results support the need for prospective research on whether newly built trails promote physical activity in previously inactive people.
Kamide reflects on JGR and the role of editor
NASA Astrophysics Data System (ADS)
Woods, Peter
After serving the space physics community for more than 11 years, Y. Kamide of the Solar-Terrestrial Environment Laboratory at Nagoya University in Toyokawa, Japan, retired as editor of the Journal of Geophysical Research-Space Physics for the Asian/Pacific region. He had been a JGR editor since AGU first opened two editorial offices in Europe and the Asian/Pacific region in 1989. Even as the initial JGR editor in Asia, Kamide was not new to AGU editorial business. Before accepting the JGR position, Kamide served 3 years as the editor in Japan for Geophysical Research Letters.According to Kamide, over the last 5 years, the number of high-quality submissions to JGR in the Asian/Pacific region has increased dramatically, by a factor of 2.5. This increase came mostly from the younger generation of scientists, which bodes well for the future of JGR and space physics in general. Together with the substantial contributions to JGR from the European community, this achievement has been recognized by AGU as proof that JGR is truly an international journal of the highest editorial standards.
Social Networks and Performance in Distributed Learning Communities
ERIC Educational Resources Information Center
Cadima, Rita; Ojeda, Jordi; Monguet, Josep M.
2012-01-01
Social networks play an essential role in learning environments as a key channel for knowledge sharing and students' support. In distributed learning communities, knowledge sharing does not occur as spontaneously as when a working group shares the same physical space; knowledge sharing depends even more on student informal connections. In this…
Recent measurements for hadrontherapy and space radiation: nuclear physics
NASA Technical Reports Server (NTRS)
Miller, J.
2001-01-01
The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.
The space shuttle payload planning working groups. Volume 10: Space technology
NASA Technical Reports Server (NTRS)
1973-01-01
The findings and recommendations of the Space Technology group of the space shuttle payload planning activity are presented. The elements of the space technology program are: (1) long duration exposure facility, (2) advanced technology laboratory, (3) physics and chemistry laboratory, (4) contamination experiments, and (5) laser information/data transmission technology. The space technology mission model is presented in tabular form. The proposed experiments to be conducted by each test facility are described. Recommended approaches for user community interfacing are included.
Space Weather Modeling Services at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael
2006-01-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the Rapid Prototyping Centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide a description of the current CCMC status, discuss current plans, research and development accomplishments and goals, and describe the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.
Space Weather Modeling at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse M.
2005-01-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires dose collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.
NASA Astrophysics Data System (ADS)
Santosa, H.; Ernawati, J.; Wulandari, L. D.
2018-03-01
The visual aesthetic experience in urban spaces is important in establishing a comfortable and satisfying experience for the community. The embodiment of a good visual image of urban space will encourage the emergence of positive perceptions and meanings stimulating the community to produce a good reaction to its urban space. Moreover, to establish a Good Governance in urban planning and design, it is necessary to boost and promote a community participation in the process of controlling the visual quality of urban space through the visual quality evaluation on urban street corridors. This study is an early stage as part of the development of ‘Landscape Visual Planning System’ on the commercial street corridor in Malang. Accordingly, the research aims to evaluate the physical characteristics and the public preferences of the spatial and visual aspects in five provincial road corridors in Malang. This study employs a field survey methods, and an environmental aesthetics approach through semantic differential method. The result of the identification of physical characteristics and the assessment of public preferences on the spatial and visual aspects of the five provincial streets serve as the basis for constructing the 3d interactive simulation scenarios in the Landscape Visual Planning System.
Ou, Judy Y; Levy, Jonathan I; Peters, Junenette L; Bongiovanni, Roseann; Garcia-Soto, Jovanna; Medina, Rafael; Scammell, Madeleine K
2016-01-04
Proximity to a park does not necessarily imply access or use, and the social environment may positively or negatively influence the positive intentions of the built environment. To investigate parks, park use and physical activity, and their associations with exposure to community violence, we interviewed residents (n = 354) of a densely populated urban community. Our findings indicate that proximity to any park is not associated with physical activity. However, proximity to the preferred park reported by residents to be conducive for physical activity (with walking paths, large fields, playgrounds for children and tennis courts) was associated with physical activity. Conversely, knowledge of sexual assault or rape in the neighborhood is inversely associated with every type of physical activity (park-based, outdoor, and indoor). Our findings suggest that improvements to the built environment (parks, green spaces) may be hindered by adverse social environments and both are necessary for consideration in the design of public health interventions.
Ou, Judy Y.; Levy, Jonathan I.; Peters, Junenette L.; Bongiovanni, Roseann; Garcia-Soto, Jovanna; Medina, Rafael; Scammell, Madeleine K.
2016-01-01
Proximity to a park does not necessarily imply access or use, and the social environment may positively or negatively influence the positive intentions of the built environment. To investigate parks, park use and physical activity, and their associations with exposure to community violence, we interviewed residents (n = 354) of a densely populated urban community. Our findings indicate that proximity to any park is not associated with physical activity. However, proximity to the preferred park reported by residents to be conducive for physical activity (with walking paths, large fields, playgrounds for children and tennis courts) was associated with physical activity. Conversely, knowledge of sexual assault or rape in the neighborhood is inversely associated with every type of physical activity (park-based, outdoor, and indoor). Our findings suggest that improvements to the built environment (parks, green spaces) may be hindered by adverse social environments and both are necessary for consideration in the design of public health interventions. PMID:26742051
Life space and mental health: a study of older community-dwelling persons in Australia.
Byles, Julie E; Leigh, Lucy; Vo, Kha; Forder, Peta; Curryer, Cassie
2015-01-01
The ability of older people to mobilise within and outside their community is dependent on a number of factors. This study explored the relationship between spatial mobility and psychological health among older adults living in Australia. The survey sample consisted of 260 community-dwelling men and women aged 75-80 years, who returned a postal survey measuring spatial mobility (using the Life Space Questionnaire) and psychological health (using the SF36 Health Related Quality of Life Profile). From the Life Space Questionnaire, participants were given a life-space score and multinomial regression was used to explore the potential effect of mental health on life-space score. The study found a significant association between mental health and life space. However, gender, physical functioning, and ability to drive were most strongly associated with the extent of life space and spatial mobility. Compared to men, older women are more likely to experience less spatial mobility and restricted life space, and hence are more vulnerable to social isolation. Mental health and life space were associated for the older people in this study. These findings have important implications for health policy and highlight the need to support older persons to maintain independence and social networks, and to successfully age in place within their community. This study also highlights the utility of the Life Space Questionnaire in terms of identifying older persons at risk of poorer mental health.
The Application of the SPASE Metadata Standard in the U.S. and Worldwide
NASA Astrophysics Data System (ADS)
Thieman, J. R.; King, T. A.; Roberts, D.
2012-12-01
The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has not needed any structural modifications since January 2011 . The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. While we anticipate additional modifications to the model in the future to accommodate simulation and model data, these changes will not affect the data descriptions already generated for instrument-related datasets. Examples of SPASE descriptions can be viewed at
Developing Technological Initiatives for Youth Participation and Local Community Engagement
ERIC Educational Resources Information Center
Burd, Leo
2010-01-01
Recent advances in technology are transforming our lives, but in many cases they are also limiting the way children are exposed to local communities and physical spaces. Technology can help young people actively connect with their neighborhoods, but doing that requires different methods and tools from the ones typically available in schools,…
General Guide for Community College System Physical Planning. 2nd Printing.
ERIC Educational Resources Information Center
Mogi, Hitoshi
Part I describes a general outline for producing long range development plans for the Hawaii Community College System. Long-range planning is defined and discussed in terms of basic elements of academic requirements, quality of campus, space requirements, environmental factors, administrative factors, and adjustment factors of the general plans.…
Creating a Collaborative Learning Community in the CIS Sandbox
ERIC Educational Resources Information Center
Frydenberg, Mark
2013-01-01
Purpose: The purpose of this paper is to investigate the impact of transforming a traditional university computer lab to create a collaborative learning community known as the CIS Sandbox, by remodeling a physical space and supporting it with a virtual presence through the use of social media tools. The discussion applies Selander's "designs for…
ERIC Educational Resources Information Center
Hoffman, Blaine
2013-01-01
This work focuses on the impact of mobile computing on individuals' perspectives of places within their community. A technological intervention is designed and deployed to augment the user experience of visiting different locations around town, physically exploring them while also interacting with an online tool. The tool-supported activity serves…
PlasmaPy: beginning a community developed Python package for plasma physics
NASA Astrophysics Data System (ADS)
Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration
2016-10-01
In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.
Living environment and mobility of older adults.
Cress, M Elaine; Orini, Stefania; Kinsler, Laura
2011-01-01
Older adults often elect to move into smaller living environments. Smaller living space and the addition of services provided by a retirement community (RC) may make living easier for the individual, but it may also reduce the amount of daily physical activity and ultimately reduce functional ability. With home size as an independent variable, the primary purpose of this study was to evaluate daily physical activity and physical function of community dwellers (CD; n = 31) as compared to residents of an RC (n = 30). In this cross-sectional study design, assessments included: the Continuous Scale Physical Functional Performance - 10 test, with a possible range of 0-100, higher scores reflecting better function; Step Activity Monitor (StepWatch 3.1); a physical activity questionnaire, the area of the home (in square meters). Groups were compared by one-way ANOVA. A general linear regression model was used to predict the number of steps per day at home. The level of significance was p < 0.05. Of the 61 volunteers (mean age: 79 ± 6.3 years; range: 65-94 years), the RC living space (68 ± 37.7 m(2)) was 62% smaller than the CD living space (182.8 ± 77.9 m(2); p = 0.001). After correcting for age, the RC took fewer total steps per day excluding exercise (p = 0.03) and had lower function (p = 0.005) than the CD. On average, RC residents take 3,000 steps less per day and have approximately 60% of the living space of a CD. Home size and physical function were primary predictors of the number of steps taken at home, as found using a general linear regression analysis. Copyright © 2010 S. Karger AG, Basel.
Girls InSpace project: A new space physics outreach initiative.
NASA Astrophysics Data System (ADS)
Abe Pacini, A.; Tegbaru, D.; Max, A., Sr.
2017-12-01
We present here the concept and state-of-art of the new space physics youth education and outreach initiative called "Girls InSpace project". The project goal is to spread quality scientific information to underrepresented groups, motivate girls in STEM and promote gender equality in the Space Physics area. Initially, the "Girls InSpace project" will be available in two languages (Portuguese and English) aiming to reach out to the youth of Brazil, United States, Nigeria, South Africa, Ethiopia and Angola. Eventually, the material will be translated to French and Spanish, focusing on French-speaking countries in Africa and Latin America. The project spans a collection of four books about a group of young girls and their adventures (always related to the sky and simultaneously introducing earth and space science concepts). Ancillary content such as a webpage, mobile applications and lesson plans are also in development. The books were written by a Space Physicist PhD woman, illustrated by a Brazilian young artist and commented by senior female scientists, creating positive role models for the next generation of girls in STEM. The story lines were drawn around the selected topics of astronomy and space physics, introducing scientific information to the target readers (girls from 8-13 years old) and enhancing their curiosity and critical thinking. The books instill the readers to explore the available extra web-content (with images, videos, interviews with scientists, real space data, coding and deeper scientific information) and game apps (with Virtual Reality components and real space images). Moreover, for teachers K-12, a collection of lesson plans will be made available, aiming to facilitate scientific content discussed in the books and inside classroom environments. Gender bias in STEM reported earlier this year in Nature and based on a study of the American Geophysical Union's member database showed a competitive disadvantage for women in the Earth and Space Sciences. The AGU has since challenged the scientific community to act and support gender balance initiatives as crucial path to progress. This project aligns well with AGU's mission and similar-thinking organizations, and aims to educate and promote development of young girls in underrepresented communities.
NASA Astrophysics Data System (ADS)
Moldwin, M.; Morrow, C. A.; Moldwin, L. A.; Torrence, J.
2012-12-01
To assess the state-of-health of the field of Solar and Space Physics an analysis of the number of Ph.D.s produced and number of Job Postings each year was done for the decade 2001-2010. To determine the number of Ph.D's produced in the field, the University of Michigan Ph.D. Dissertation Archive (Proquest) was queried for Solar and Space Physics dissertations produced in North America. The field generated about 30 Ph.D. per year from 2001 to 2006, but then saw the number increase to 50 to 70 per year for the rest of the decade. Only 14 institutions account for the majority of Solar and Space Physics PhDs. To estimate the number of jobs available each year in the field, a compilation of the job advertisements listed in the American Astronomical Society's Solar Physics Division (SPD) and the American Geophysical Union's Space Physics and Aeronomy (SPA) electronic newsletters was done. The positions were sorted into four types (Faculty, Post-doctoral Researcher, and Scientist/Researcher or Staff), institution type (academic, government lab, or industry) and if the position was located inside or outside the United States. Overall worldwide, 943 Solar and Space Physics positions were advertised over the decade. Of this total, 52% were for positions outside the US. Within Solar Physics, 44% of the positions were in the US, while in Space Physics 57% of the positions were for US institutions. The annual average for positions in the US were 26.9 for Solar Physics and 31.5 for Space Physics though there is much variability year-to-year particularly in Solar Physics positions outside the US. A disconcerting trend is a decline in job advertisements in the last two years for Solar Physics positions and between 2009 and 2010 for Space Physics positions. For both communities within the US in 2010, the total job ads reached their lowest levels in the decade (14), approximately half the decadal average number of job advertisements.
The secrets of highly active older adults.
Franke, Thea; Tong, Catherine; Ashe, Maureen C; McKay, Heather; Sims-Gould, Joanie
2013-12-01
Although physical activity is a recognized component in the management of many chronic diseases associated with aging, activity levels tend to progressively decline with increasing age (Manini & Pahor, 2009; Schutzer & Graves, 2004). In this article we examine the key factors that facilitate physical activity in highly active community-dwelling older adults. Using a strengths based approach, we examined the factors that facilitated physical activity in our sample of highly active older adults. Twenty-seven older adults participated in face-to face interviews. We extracted a sub-sample of 10 highly active older adults to be included in the analyses. Based on a framework analysis of our transcripts we identified three factors that facilitate physical activity in our sample, these include: 1) resourcefulness: engagement in self-help strategies such as self-efficacy, self-control and adaptability; 2) social connections: the presence of relationships (friend, neighborhood, institutions) and social activities that support or facilitate high levels of physical activity; and 3) the role of the built and natural environments: features of places and spaces that support and facilitate high levels of physical activity. Findings provide insight into, and factors that facilitate older adults' physical activity. We discuss implications for programs (e.g., accessible community centers, with appropriate programming throughout the lifecourse) and policies geared towards the promotion of physical activity (e.g., the development of spaces that facilitate both physical and social activities). © 2013.
Lessons Learned to Date in Developing the Virtual Space Physics Observatory
NASA Astrophysics Data System (ADS)
Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.
2005-12-01
We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.
Rural Latino youth park use: characteristics, park amenities, and physical activity.
Perry, Cynthia K; Saelens, Brain E; Thompson, Beti
2011-06-01
Less than half of youth engage in sufficient physical activity to achieve health benefits. Key environmental factors of park and recreation spaces may influence youth physical activity. We sought to ascertain youth characteristics and behaviors that attract youth to parks with specific amenities and encourage physical activity while at the parks in a rural, predominantly Latino community. We examined the quality of amenities in the 13 parks and recreation spaces that middle school aged youth have access to in their community using the Environmental Assessment of Parks and Recreation Spaces (EAPRS) tool. Middle school students completed surveys in the school classroom (n = 1,102) regarding park use, physical activity, and intrapersonal characteristics (e.g., motivators). We used logistic regression to identify correlates of any park use, use of higher quality field and court parks, and active and sedentary park use. Younger age, participation in an after school activity, and identification of a team as a motivator were positively associated with any park use. Use of higher quality court and field parks was associated with participation in an after school activity and being Latino. The odds of being active in the parks were greater for boys and Latinos. Older age and alcohol use are correlated with being sedentary at the park, while odds of being sedentary at the park were lower for boys and youth who met physical activity guidelines. Organized team activities may encourage active use of higher quality fields and courts parks by Latino youth; thereby, increasing their level of physical activity.
NASA Technical Reports Server (NTRS)
Pankratz, Chris; Beland, Stephane; Craft, James; Baltzer, Thomas; Wilson, Anne; Lindholm, Doug; Snow, Martin; Woods, Thomas; Woodraska, Don
2018-01-01
The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado in Boulder, USA operates the Solar Radiation and Climate Experiment (SORCE) NASA mission, as well as several other NASA spacecraft and instruments. Dozens of Solar Irradiance data sets are produced, managed, and disseminated to the science community. Data are made freely available to the scientific immediately after they are produced using a variety of data access interfaces, including the LASP Interactive Solar Irradiance Datacenter (LISIRD), which provides centralized access to a variety of solar irradiance data sets using both interactive and scriptable/programmatic methods. This poster highlights the key technological elements used for the NASA SORCE mission ground system to produce, manage, and disseminate data to the scientific community and facilitate long-term data stewardship. The poster presentation will convey designs, technological elements, practices and procedures, and software management processes used for SORCE and their relationship to data quality and data management standards, interoperability, NASA data policy, and community expectations.
Breaking the barriers of time and space: the dawning of the great age of librarians*
Plutchak, T. Scott
2012-01-01
Purpose: This lecture, reflecting on future roles, posits the potential dawning of a “great age of librarians,” if librarians make the conceptual shift of focusing on their own skills and activities rather than on their libraries. Discussion: In the digital age, physical libraries are becoming less relevant to the communities that they serve. Librarians, however, are more necessary than ever in helping members of their communities navigate the increasingly complex information space. To meet their social responsibilities requires that librarians seek new roles and recognize that their most important activities will take place outside of the physical library. Conclusion: A great age of librarians is possible, but not guaranteed. We are at the very beginning of the development of a digital culture that parallels the print culture that has been dominant for five hundred years. Innovative and creative librarians have the potential to shape the development of that culture in ways that will truly serve the needs of their communities. PMID:22272154
NASA Astrophysics Data System (ADS)
McDonald, Frank B.
1996-05-01
In the October 1994 issue of the Journal of Geophysical Research, J. Simpson, E. Parker, and C. Sonnett wrote of the early history of space physics. Previously, J. Van Allen had written a monogram on the genesis of magnetospheric physics, and H. Newell (``Above the atmosphere'') and J. Naugle (``First among equals'') had given excellent accounts of the initial development of the space sciences within NASA and the broader research community. I write as a member of the second generation or Junior Pioneers who profited greatly from the foundation laid down by the Pioneers of the era. With the second wave it was possible to fully participate in the dramatic expansion of the nation's space science program that occurred in the 1960s. In this brief memoir, I give a personal recollection of this period and try to relate it to some of the current developments in space physics.
SCOSTEP: Understanding the Climate and Weather of the Sun-Earth System
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk
2011-01-01
The international solar-terrestrial physics community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by the Scientific Committee on Solar Terrestrial Physics (SCOSTEP). The CAWSES program is the current major scientific program of SCOSTEP that will continue until the end of the year 2013. The CAWSES program has brought scientists from all over the world together to tackle the scientific issues behind the Sun-Earth connected system and explore ways of helping the human society. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and other SCOSTEP activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.
The development of extraterrestrial civilizations and physical laws
NASA Astrophysics Data System (ADS)
Troitskii, V. S.
Consideration is given to the limiting characteristics of extraterrestrial civilizations as allowed by physical laws, and to the possible pathways and levels of development of such civilizations. The concept of an extraterrestrial civilization is defined in terms of the exchange of information, energy and matter both within a community of intelligent beings and between the community and its environment. The possible characteristics of such a civilization are then examined, including amount of populated space, population and population density, energy requirements and supply, information content, transportation capacity and lifetimes, and it is shown that the space occupiable by an extraterrestrial civilization is limited to the space around its star, due to the finite velocity of transport processes. The development of a type II civilization, making use of energy on the order of that put out by its star, is then examined, and constraints on energy production in such a civilization making impossible the establishment of an omnidirectional radio beacon detectable throughout the Galaxy are pointed out.
NASA Astrophysics Data System (ADS)
Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.
2017-12-01
The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.
Space Weather Modeling at the Community Coordinated Modeling Center
NASA Astrophysics Data System (ADS)
Hesse, M.; Falasca, A.; Johnson, J.; Keller, K.; Kuznetsova, M.; Rastaetter, L.
2003-04-01
The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership aimed at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of NASA's Living With a Star (LWS) initiative, of the National Space Weather Program Implementation Plan, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide updates on CCMC status, on current plans, research and development accomplishments and goals, and on the model testing and validation process undertaken as part of the CCMC mandate. We will demonstrate the capabilities of models resident at CCMC via the analysis of a geomagnetic storm, driven by a shock in the solar wind.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.
2012-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
Makerspace in STEM for Girls: A Physical Space to Develop Twenty-First-Century Skills
ERIC Educational Resources Information Center
Sheffield, Rachel; Koul, Rekha; Blackley, Susan; Maynard, Nicoleta
2017-01-01
"Makerspace" has been lauded as a new way forward to create communities, empower students and bring together enthusiasts of all ages and skill levels "to tinker" and create. Makerspace education has been touted as having the potential to empower young people to become agents of change in their communities. This paper examines…
The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research
NASA Astrophysics Data System (ADS)
Engebretson, Mark; Zesta, Eftyhia
2017-11-01
A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.
Typology of social space in Kauman Kampong Semarang
NASA Astrophysics Data System (ADS)
Endrianto Pandelaki, Edward; Suprapti, Atiek; Wahyu Firmandhani, Satriya
2017-12-01
Social space is various forms of spaces used by community in conducting social interaction. These kinds of spaces should be given more attention since they serve as catalyst in the implementation of good social cohesion in community. The effort includes giving concern toward their various implemented form. This concern will give benefits in the creation of resilient built environment. Kauman Kampong in Semarang, is an old urban kampong and still exist up until now. During its development, the inhabitant live and conduct their activities in good shape. Therefore this kampong is an appropriate place to learn and explore social spaces which is formed and utilized by the community who conduct their activities in this kampong. The aim of this research is to find out forms and typology of social space in Kauman Kampong in Semarang. Qualitative method is used in this research since the nature of this research is explorative. There are various social activities in Kauman Kampong in Semarang, such as religious, trading, and other social interaction, which have formed various social spaces. These social spaces have their own physical characteristics and with various intensity of activities. Based on collected data in field survey, the typology of social spaces that could be inferred are: permanent, temporary, and dynamic social space.
Summary: achievements, critical issues, and thoughts on the future.
Held, Kathryn D
2012-11-01
The number of individuals exposed to particle radiations in cancer treatment worldwide is increasing rapidly, and space agencies are developing plans for long duration, deep space missions in which humans could be exposed to significant levels of radiation from charged particles. Hence, the NCRP 47 th Annual Meeting on "Scientific and Policy Challenges of Particle Radiations in Medical Therapy and Space Missions" was a timely opportunity to showcase the current scientific knowledge regarding charged particles, enhance cross-fertilization between the oncology and space scientific communities, and identify common needs and challenges to both communities as well as ways to address those challenges. This issue of Health Physics contains papers from talks presented at that meeting and highlights provocative questions and the ample opportunities for synergism between space and particle-therapy research to further understanding of the biological impacts of particle radiations.
Building Virtual Spaces for Children in the Digital Branch
ERIC Educational Resources Information Center
DuBroy, Michelle
2010-01-01
Purpose: A digital branch is just like a physical branch except that content is delivered digitally via the web. A digital branch has staff, a collection, a community, and a building. The purpose of this paper is to explore the concept of building individual spaces for different user groups, specifically children, within a digital branch.…
NASA Astrophysics Data System (ADS)
Pass, Jim
2007-01-01
As we prepare to go back to the Moon on a permanent basis, it behooves us to take advantage of our return to the Moon by increasing our knowledge base so as to make all aspects of survival possible. The standard approach remains fixed on meeting the challenges related to power, physical habitat, and others associated with the physical environment and personal survival. While this traditional facet of space settlement must be addressed in a successful manner, the other set of variables to the equation for human survival in space receive little attention. In other words, we tend to focus so strongly on getting to a location and setting up a physical habitat that we overlook what it will require to survive in our new social world once the physical environment is functioning properly. We should take care now to begin formal consideration of the psychological, social, and cultural realities that will exist once we arrive. Plans starting with the very first Moon base should integrate research objectives that both (1) construct the integral physical elements of an isolated habitat and (2) study how the new social system operates subsequently. In fact, we should involve social scientists in planning as many of the latter issues as possible before the mission begins. This dual approach will serve as a first step to acquiring the critical knowledge necessary for human beings to live in isolated space environments situated too far away from the Earth that practical assistance is not readily available. Astrosociology, being a multidisciplinary social scientific field, can serve to unite social scientists interested in space research to work together on this issue and others in a formal manner. This, in turn, will make it possible for them to collaborate with space scientists and engineers in order to foster a fully comprehensive approach to make space settlements livable on a long-term basis. This collaboration, involving natural scientists and social scientists working together for the common goal of implementing sustainable space societies and conducting relevant research to improve the next project, represents a fundamental shift to a new paradigm currently unfamiliar. This paper lays out the basics for this new paradigm, for consideration by both the social science community and the space community.
Establishment of the New Ecuadorian Solar Physics Phenomena Division
NASA Astrophysics Data System (ADS)
Lopez, E. D.
2014-02-01
Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. In this contribution, the above initiative is presented by inviting leaders of other scientific projects to deploy its instruments and to work with us providing the necessary support to the creation of this new strategic research center
Isolation and confinement - Considerations for colonization
NASA Technical Reports Server (NTRS)
Akins, F. R.
1978-01-01
This paper discusses three types of isolation (sensory/perceptual, temporal, and social) that could adversely affect mankind in space. The literature dealing with laboratory and field experiments relevant to these areas is summarized and suggestions are given for dealing with these problems within the space colony community. Also, consideration is given to the potential effects of physical confinement and the need for usable space. Finally, a modification of Maslow's hierarchy of needs is proposed as a theoretical framework to understand and investigate mankind's psychological needs in space.
NASA Astrophysics Data System (ADS)
Koca, Güler; Kayılıoğlu, Begüm
2017-10-01
People’s expectations from the city have changed with the transformation of urban life. Urban space is not the only place where structures are formed. Urban space also consists of a combination of public spaces, semi-public spaces, and private spaces. As social and cultural phenomena, social events occur and people communicate with each other in these spaces. Therefore, streets and neighbourhoods composed of houses are not only physical spaces, but they also have important social and cultural dimensions. Modern life has brought a plethora of changes that affected the cities. Due to rapid changes today, the urban space forms in the conversion process are also designed differently. Historically, the space organization based on the streets of the semi-public life in Turkish cities has been transformed into mass housing and housing estate-style life in recent years. This transformation has been expressed differently in urban life not only physically, but also socially and culturally. The street which is regarded as a public space was a place where people communicated and social events happened in the past; but today, the streets are rife with security problems and they have become a concept evoking an image of street that is bordered with buildings. Spatial separation has emerged with middle and upper classes isolating themselves from the streets and heading towards gated communities, especially for security reasons. This social and spatial separation has begun to lead to various problems in cities. Eskisehir is an important Anatolian city located between Ankara, the capital of Turkey, and Istanbul. This research was conducted in two research sites in Eskisehir: one is a gated community where middle and upper-income groups reside, and the other is a residential neighbourhood where middle-income groups live. These groups were studied through a survey. The spatial preferences of the residents in these two areas and their relation with the neighbourhood are examined. These groups were surveyed and their relations with their relatives have been researched.
Start small, dream big: Experiences of physical activity in public spaces in Colombia.
Díaz Del Castillo, Adriana; González, Silvia Alejandra; Ríos, Ana Paola; Páez, Diana C; Torres, Andrea; Díaz, María Paula; Pratt, Michael; Sarmiento, Olga L
2017-10-01
Multi-sectoral strategies to promote active recreation and physical activity in public spaces are crucial to building a "culture of health". However, studies on the sustainability and scalability of these strategies are limited. This paper identifies the factors related to the sustainability and scaling up of two community-based programs offering physical activity classes in public spaces in Colombia: Bogotá's Recreovía and Colombia's "Healthy Habits and Lifestyles Program-HEVS". Both programs have been sustained for more than 10years, and have benefited 1455 communities. We used a mixed-methods approach including semi-structured interviews, document review and an analysis of data regarding the programs' history, characteristics, funding, capacity building and challenges. Interviews were conducted between May-October 2015. Based on the sustainability frameworks of Shediac-Rizkallah and Bone and Scheirer, we developed categories to independently code each interview. All information was independently analyzed by four of the authors and cross-compared between programs. Findings showed that these programs underwent adaptation processes to address the challenges that threatened their continuation and growth. The primary strategies included flexibility/adaptability, investing in the working conditions and training of instructors, allocating public funds and requesting accountability, diversifying resources, having community support and champions at different levels and positions, and carrying out continuous advocacy to include physical activity in public policies. Recreovía and HEVS illustrate sustainability as an incremental, multi-level process at different levels. Lessons learned for similar initiatives include the importance of individual actions and small events, a willingness to start small while dreaming big, being flexible, and prioritizing the human factor. Copyright © 2016 Elsevier Inc. All rights reserved.
Informal and Formal Support Groups Retain Women and Minorities in Physics
NASA Astrophysics Data System (ADS)
Ong, Maria
2005-10-01
Ten U.S. minority female undergraduates who aspire to become physicists were followed over an 8-year period. Participant observation and in-depth interviews recorded the strategies they used to earn bachelor's degrees in physics or physics-related fields, and then go on to graduate school and/or careers in science. One significant strategy these women of color employed was participating in small subcommunities with other women or underrepresented ethnic minorities at the margins of their local physics community. The study found that informal peer groups offered safe spaces to counter negative experiences, to normalize their social realities, and to offer practical guidance for persevering in the field. Formal women- and minority-serving programs in physics provided foundations for community building, stronger curriculum and instruction, networking, and role models. The positive effects of informal and formal support groups on these students' experiences challenge a standard application of Pierre Bourdieu's framework of social and cultural capital. Women of color in the study initially lacked traditional capital of "acceptable" appearance, cultural background and habits, and networks that are more easily acquired by white males and are rewarded by the U.S. physics culture. However, instead of failing or leaving, as Bourdieu's theory would predict, the minority women persisted and achieved in science. The marginal communities contributed to their retention by offering safe spaces in which they could learn and share alternative ways of "accruing capital." Moreover, as these women made strides along their academic and career paths, they also engaged in social justice work in efforts to change the physics culture to be more welcoming of nontraditional members. The outcomes of the study offer empirical confirmation of the critical need for informal and institutionally supported women's and minorities' support groups to promote diversity in science.
The Utility of a Physics Education in Science Policy
NASA Astrophysics Data System (ADS)
Roberts, Drew
2016-03-01
In order for regulators to create successful policies on technical issues, ranging from environmental protection to distribution of national Grant money, the scientific community must play an integral role in the legislative process. Through a summer-long internship with the Science, Space, and Technology Committee of the U.S. House of Representatives, I have learned that skills developed while pursuing an undergraduate degree in physics are very valuable in the policy realm. My physics education provided me the necessary tools to bridge the goals of the scientific and political communities. The need for effective comprehension and communication of technical subjects provides an important opportunity for individuals with physics degrees to make substantial contributions to government policy. Science policy should be encouraged as one of the many career pathways for physics students. Society of Physics Students, John and Jane Mather Foundation for Science and the Arts.
Aligning physical learning spaces with the curriculum: AMEE Guide No. 107.
Nordquist, Jonas; Sundberg, Kristina; Laing, Andrew
2016-08-01
This Guide explores emerging issues on the alignment of learning spaces with the changing curriculum in medical education. As technology and new teaching methods have altered the nature of learning in medical education, it is necessary to re-think how physical learning spaces are aligned with the curriculum. The better alignment of learning spaces with the curriculum depends on more directly engaged leadership from faculty and the community of medical education for briefing the requirements for the design of all kinds of learning spaces. However, there is a lack of precedent and well-established processes as to how new kinds of learning spaces should be programmed. Such programmes are essential aspects of optimizing the intended experience of the curriculum. Faculty and the learning community need better tools and instruments to support their leadership role in briefing and programming. A Guide to critical concepts for exploring the alignment of curriculum and learning spaces is provided. The idea of a networked learning landscape is introduced as a way of assessing and evaluating the alignment of physical spaces to the emerging curriculum. The concept is used to explore how technology has widened the range of spaces and places in which learning happens as well as enabling new styles of learning. The networked learning landscaped is explored through four different scales within which learning is accommodated: the classroom, the building, the campus, and the city. High-level guidance on the process of briefing for the networked learning landscape is provided, to take into account the wider scale of learning spaces and the impact of technology. Key to a successful measurement process is argued to be the involvement of relevant academic stakeholders who can identify the strategic direction and purpose for the design of the learning environments in relation to the emerging demands of the curriculum.
ERIC Educational Resources Information Center
Sussman, Carl
This guidebook assesses the feasibility and potential impact a specialized lending program might have on the capital needs of community-based child and family services. It explains the need for quality facilities and how physical space can affect child care quality and the program's impact. Also described are the problems associated with capital…
A Tie for Third Place: Teens Need Physical Spaces as well as Virtual Places
ERIC Educational Resources Information Center
Heeger, Paula Brehm
2006-01-01
"Third places" or public and informal gathering places have declined over the years. Third places, which are "neutral ground" where people gather to discuss, interact, and enjoy the company of those they know, are important for the health of communities. It's a known fact that teens have a strong need to socialize, and their third-space options…
Can Architecture Design Solve Social Problem?
NASA Astrophysics Data System (ADS)
Ginting, S. W.; TSB Darjosanjoto, E.; Sulistyarso, H.
2017-03-01
Most of architects and urban designers believe physical design gives impact on our social life. For example, a sign or landmark in the middle of a city makes people find orientation easier. In vice verse, most of social scientists believe it is social dynamic that plays role in shaping our space. How people spend their time moving from real space into cyber space is a proof that life style and IT give impact to space usage. This paper argues that interaction between physical design and social change is a two ways process. Both design aspect and social dynamic influence each other. This paper aims to examine how designing of gated community plays important role in increasing or decreasing segregation, both spatially and socially. The paper explores some architectural design principles applied in a gated community called CitraLand in west Surabaya, Indonesia, and addresses segregation between CitraLanders and outside kampung. We find CitraLand is designed openly and fully accessible for outsiders. It provides public spaces and several accessible gates and streets without walls and fences making all places inside and outside CitraLand spatially integrated. What’s interesting is it still reinforces social segregation due to its policy on prohibiting using the public park. We believe CitraLand’s planning and designing has successfully solved segregation problem spatially not socially.
ERIC Educational Resources Information Center
Petrie, Kirsten; Burrows, Lisette; Cosgriff, Marg
2014-01-01
On-going critiques of existing practices in primary schools focus on the ability of generalist teachers to deliver quality Health and Physical Education (HPE). As well, there are concerns regarding the influx of outsider providers in school spaces and the potentially damaging body pedagogies and practices that are pervading education settings. Our…
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
Management of the Space Physics Analysis Network (SPAN)
NASA Technical Reports Server (NTRS)
Green, James L.; Thomas, Valerie L.; Butler, Todd F.; Peters, David J.; Sisson, Patricia L.
1990-01-01
Here, the purpose is to define the operational management structure and to delineate the responsibilities of key Space Physics Analysis Network (SPAN) individuals. The management structure must take into account the large NASA and ESA science research community by giving them a major voice in the operation of the system. Appropriate NASA and ESA interfaces must be provided so that there will be adequate communications facilities available when needed. Responsibilities are delineated for the Advisory Committee, the Steering Committee, the Project Scientist, the Project Manager, the SPAN Security Manager, the Internetwork Manager, the Network Operations Manager, the Remote Site Manager, and others.
Promoting Scientist Communications Through Graduate Summer School in Heliophysics and Space Physics
NASA Astrophysics Data System (ADS)
Gross, N. A.; Schrijver, K.; Bagenal, F.; Sojka, J. J.; Wiltberger, M. J.
2014-12-01
edagogical tools that promote student interaction can be applied successfully during graduate workshops to enhance community and communication among the participants and instructors. The NASA/LWS funded Heliophysics Summer School and the NSF funded Space Weather Summer School provide graduate students starting research in the field, and others who are involved in space physics, an opportunity to learn from and interact with leaders in the field and each other. These interactions can happen casually, but there are a number of programatic aspects that foster the interaction so that they can be as fruitful as possible during the short period. These include: specific "ice-breaker" activities, practicing "elevator speeches", embedded lecture questions, question cards, discussion questions, interactive lab activities, structured lab groups, and use of social media. We are continuing to develop new ways to foster profession interaction during these short courses. Along with enhancing their own learning, the inclusion of these strategies provides both the participants and the instructors with models of good pedagogical tools and builds community among the students. Our specific implementation of these strategies and evidence of success will be presented.
NASA Astrophysics Data System (ADS)
Kragh, Helge
2012-12-01
The idea that space is not Euclidean by necessity, and that there are other kinds of "curved" spaces, diffused slowly to the physical and astronomical sciences. Until Einstein's general theory of relativity, only a handful of astronomers contemplated a connection between non-Euclidean geometry and real space. One of them, the German astrophysicist Johann Carl Friedrich Zöllner (1834-1882), suggested in 1872 a remarkable cosmological model describing a finite universe in closed space. I examine Zöllner's little-known contribution to cosmology and also his even more unorthodox speculations of a four-dimensional space including both physical and spiritual phenomena. I provide an overview of Zöllner's scientific work, of his status in the German scientific community, and of the controversies caused by his polemical style of science. Zöllner's cosmology was effectively forgotten, but there is no reason why it should remain an unwritten chapter in the history of science.
NASA Astrophysics Data System (ADS)
Morales, P. V.; Pinto, V. A.; Stepanova, M. V.; Valdivia, J. A.
2011-12-01
Primary and High School educational programs in Chile include a wide geophysical section inside the natural sciences and physics courses. Unfortunately, teacher generally have a lack of preparation and knowledge in this field and there is small amount of available didactical material in the native languaje. This implies that in the reality the geophysical topics are ignored year after year in the school rooms. By the preparation of didactic material and web resources in magnetosphere, solar wind and solar topics, in accordance with the official programs of the Chilean Ministry of Education, we are collaborating to the outreach of the space physics in Chile. As the primary diffusion mechanism is the web, we hope that all the spanish talking community in Latin America can benefit from the public teaching resources that we are developing. There are a growing number of space scientist and graduate students volunteering for this endeavour.
The NASA Physics of the Cosmos Program
NASA Astrophysics Data System (ADS)
Bock, Jamie
2015-04-01
The NASA Physics of the Cosmos program is a portfolio of space-based investigations for studying fundamental processes in the universe. Areas of focus include: probing the physical process of inflation associated with the birth of the universe, studying the nature of the dark energy that dominates the mass-energy of the modern universe, advancing new ways to observe the universe through gravitational-wave astronomy, studying the universe in X-rays and gamma rays to probe energetic astrophysical processes and to study the formation and behavior of black holes in strong gravity, and determining the energetic origins and history of cosmic rays. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis. Space offers unique advantages for these exciting investigations, and the program seeks to guide the development of future space missions through observations from current facilities, and by formulating new technologies and capabilities.
NASA Astrophysics Data System (ADS)
Schrijver, K.; Knoelker, M.
1999-05-01
The NASA Sun-Earth Connections Program is currently revising its Roadmap, the long-range plan for science goals, technology development, and missions between 2000 and 2040. From the interior dynamics of the Sun, to the interactions of plasma, fields, and radiation in the photosphere and solar atmosphere, to the heating and structure of the corona, to the acceleration, structure, and evolution of the solar wind, to the interactions of the heliosphere with the interstellar medium, to the processes of solar, stellar, and solar system evolution - progress in each of these domains will help us understand how the Sun impacts our home in space. The Roadmap Committee is seeking to refine and extend the SEC's vision and identify the milestone missions for the future. During this session, an outline of the current draft Roadmap will be presented, and further community involvement will be solicited to ensure the strongest possible concensus on the revised Roadmap. The National Academy of Sciences' Space Science Board has appointed a committee to perform a Decadal Survey of Astronomy and Astrophysics, which is surveying the field of space- and ground-based astronomy and astrophysics, recommending priorities for the most important new initiatives of the decade 2000-2010. The prioritization delivered by the earlier Decadal Surveys has played an important role in guiding the funding agencies in setting their priorities for astronomy and astrophysics. Therefore it will be of crucial importance for solar physics to contribute a strong case for its own set of future projects to be incorpoprated into the survey. The solar physics of the next decade will be characterized by its increasing societal relevance in the context of the National Space Weather Program and related issues, as well as its classical importance as a ``base" for many astrophysical questions. The presentation and subsequent discussion at the Chicago meeting is intended to solicit further community input, to achieve optimal representation for solar physics in the Decadal Survey. The Roadmap Committee and the Decadal Survey's solar panel encourage the whole solar physics community to contact them prior to the meeting. The list of the committee/panel members and their e-mail addresses, as well as related information, can be accessed via their websites at http://www.lmsal.com/sec/ and http://www.nas.edu/bpa/projects/astrosurvey/solar/ , respectively.
The Third Place in Second Life: Real Life Community in a Virtual World
NASA Astrophysics Data System (ADS)
Peachey, Anna
In June 2006 The Open University (OU) purchased its first land in Second LifeTM (SL). Over a two and a half year period, the OU presence evolved and grew to a point where an average of between 150 and 250 unique users in any 7-day period are active in an OU area. This chapter charts the history of the development of the OU Second Life social community and considers the nature of that activity at a point of critical change, in January 2009, shortly before a new island is developed to provide a permanent home for the community. In order for the community to continue evolving it is necessary to understand the nature of the core activities of these users, and to consider this in a context of sustainable development. Through reference to aspects of socialisation and physical community, the author proposes that a virtual world environment can be described using the physical world concept of a Third Place in the information age, and considers the value of virtual space to a learning community. From a perspective of ethnography, this chapter captures a community development within SL and proposes that physical world concepts of community and Third Place are exhibited in a virtual world, and that there are equivalent benefits in the sense of support and belonging to a virtual world community.
Influence of urban neighbourhood environment on physical activity and obesity-related diseases.
Lee, H; Kang, H-M; Ko, Y-J; Kim, H-S; Kim, Y-J; Bae, W K; Park, S; Cho, B
2015-09-01
The impact of characteristics of neighbourhood environment on physical activity and obesity-related diseases is still the subject of debate. This study aimed to explore the impact of urban neighbourhood environment on physical activity and obesity-related diseases. Cross-sectional study. Individuals who participated in the 2009 national health-screening programme, submitted all necessary information, and had lived in Community 1 (Haengdang) or Community 2 (Ilsan) for at least 2 years (n = 16,178) were selected for inclusion in this study. Anthropometric measures were taken and physical activity was assessed using a short questionnaire. No significant difference in the trigger factors for walking, including the amount of neighbourhood park space, number of shopping malls, and distance between the community and shopping malls, was found between the two communities. However, Community 2 had a better street environment than Community 1. Participants who lived in Community 2 were more physically active [adjusted odds ratio (OR) 1.31, 95% confidence interval (CI) 1.16-1.48] and walked more regularly (adjusted OR 1.09, 95% CI 1.02-1.17) than participants who lived in Community 1, and were less likely to have abdominal obesity (adjusted OR 0.83, 95% CI 0.77-0.91), hypertension (adjusted OR 0.88, 95% CI 0.80-0.97) and diabetes (adjusted OR 0.86, 95% CI 0.75-0.99). However, the risk of dyslipidaemia, especially in terms of low-density lipoprotein cholesterol, was higher in Community 2. These results suggest that a walkable environment has a positive influence on hypertension and diabetes, and physical activity is the possible mechanism for this association. A walkable environment may function as an important tool for health promotion in urban areas. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Gaming out online: Black lesbian identity development and community building in Xbox Live.
Gray, Kishonna L
2017-11-22
As gaming culture continues to marginalize women and people of color, other gamers are also highlighting the inequalities they face within digital gaming communities. While heterosexism and homophobia are commonplace within gaming culture, little is known about the actual experiences of "gaymers" and even less about "gaymers" of color. As such, this article seeks to explore lesbians of color and their experiences "gayming" out and online. Exploring identity development, community building, and connectivity via social networking, the women within this study articulate what it means to be lesbian online and how this impacts their physical and digital experiences. The private spaces within gaming culture that many marginalized groups inhabit are the few spaces that value the articulation of marginalized interests and viewpoints. Ethnographic observations reveal how supportive communities can improve resilience by mitigating the effects of stereotyping, microaggressions, and other discriminatory practices in online gaming.
Catalyzing community action within a national campaign: VERB community and national partnerships.
Bretthauer-Mueller, Rosemary; Berkowitz, Judy M; Thomas, Melonie; McCarthy, Susan; Green, Lula Anna; Melancon, Heidi; Courtney, Anita H; Bryant, Carol A; Dodge, Kristin
2008-06-01
The VERB campaign used a social marketing approach to deliver its message through the mass media, school and community promotions, and partnerships to encourage children aged 9-13 years (tweens) to be physically active every day. This paper presents the VERB campaign's community and national partnership strategy, highlights three successful partnerships, and discusses challenges associated with the efforts. The national advertising generated awareness of and affinity for the product's brand and motivated the primary audience to seek out the product. The campaign's national and community partners were engaged to facilitate a product-distribution channel. The campaign developed a three-pronged partnership strategy to integrate the promotion with the placement of the campaign's product (physical activity): (1) reframe the way physical activity is positioned and delivered; (2) connect the brand to the point-of-purchase; and (3) refer (or drive) the audience to the action outlets, opportunities, places, spaces and programs to purchase the product. The VERB campaign provided partners with marketing training and resources to assist them as they leveraged tweens' brand awareness and supported regular physical activity among tweens. The method of technical assistance and the types of marketing tools were provided in relationship to four characteristics of the partner: (1) partner's network, (2) leaders and champions in the network, (3) partner's financial resources for community campaigns; and (4) partner's understanding of the marketing mindset. Coordinated, collaborative, and strong mass-media and community-based interventions within a national social marketing campaign can sustain the immediate effects of such campaigns.
NASA Astrophysics Data System (ADS)
Ness, Norman
Dr. Velior Petrovich Shabansky, aged 58, the head of the Laboratory of Cosmic Electrodynamics, Institute of Nuclear Physics, Moscow State University, suddenly passed away on November 16, 1985, of a heart attack. He was one of the founders of theoretical ideas in physics of interplanetary and near-earth space. Shabansky obtained his education at the Moscow State University and joined the P. N. Lebedev Physical Institute, Academy of Sciences of the U.S.S.R., as a postgraduate. He obtained his Candidate's Degree in theory of conductivity of metals in strong electric fields, with V. L. Ginsburg as his advisor, in 1954. During 1954-1958, Shabansky continued investigation of nonlinear properties of plasma in metals. For the next 2 years, he worked at the Crimean Astrophysical Observatory. Shabansky left the Crimean Observatory to go to the Institute of Nuclear Physics, Moscow State University, where he investigated the earth's radiation belts, the plasma of the earth's magnetosphere, finished his doctoral dissertation, and received his degree in 1966. From 1966, he headed the Laboratory of Cosmic Electrodynamics, Institute of Nuclear Physics, Moscow State University. He is best known to the scientific community in the Soviet Union as chief of the Seminar on Cosmic Electrodynamics. Shabansky elaborated a special course of lectures on space physics that has been delivered for many years at the Physical Faculty, Moscow State University. He taught a large number of Soviet physicists, experts in cosmic electrodynamics. An enthusiastic, talented, and many-sided personality, he carried away everybody who knew him. He was known to the U.S. space physics community because of his own work, because of the work of his colleagues and students, a n d because of his infectious and spirited personality. Having died an untimely death, he left a deeply mourning widow and a 23-year-old son. Friends and colleagues will keep the bright image of Dr. Shabansky in their memory forever.
Conceptual design for the Space Station Freedom fluid physics/dynamics facility
NASA Technical Reports Server (NTRS)
Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.
1993-01-01
A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.
Ushering in a New Frontier in Geospace Through Data Science
NASA Astrophysics Data System (ADS)
McGranaghan, Ryan M.; Bhatt, Asti; Matsuo, Tomoko; Mannucci, Anthony J.; Semeter, Joshua L.; Datta-Barua, Seebany
2017-12-01
Our understanding and specification of solar-terrestrial interactions benefit from taking advantage of comprehensive data-intensive approaches. These data-driven methods are taking on new importance in light of the shifting data landscape of the geospace system, which extends from the near Earth space environment, through the magnetosphere and interplanetary space, to the Sun. The space physics community faces both an exciting opportunity and an important imperative to create a new frontier built at the intersection of traditional approaches and state-of-the-art data-driven sciences and technologies. This brief commentary addresses the current paradigm of geospace science and the emerging need for data science innovation, discusses the meaning of data science in the context of geospace, and highlights community efforts to respond to the changing landscape.
ERIC Educational Resources Information Center
Thomas, Lisa Carlucci
2012-01-01
Bookstores, record stores, libraries, Facebook: these places--both physical and virtual--demonstrate an established and essential purpose as centers of community, expertise, convenience, immediacy, and respect. Yet as digital, mobile, and social shifts continue to transform culture and interactions, these spaces and places transform, too.…
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-12-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory. 2012 Oct 06 - Astronaut Sunita Williams operating a Fluid Mixing Enclosure during SSEP Mission 2 on the International Space Station.
COMESEP: bridging the gap between the SEP, CME, and terrestrial effects scientific communities
NASA Astrophysics Data System (ADS)
Crosby, Norma; Veronig, Astrid; Rodriguez, Luciano; Vrsnak, Bojan; Vennerstrøm, Susanne; Malandraki, Olga; Dalla, Silvia; Srivastava, Nandita
2016-04-01
In the past there has been a tendency for the geomagnetic storm and solar energetic particle (SEP) communities to work in parallel rather than to apply a cross-disciplinary work approach specifically in regard to space weather forecasting. To provide more awareness on the existing links between these communities, as well as further bridge this gap, the three-year EU FP7 COMESEP (COronal Mass Ejections and Solar Energetic Particles: forecasting the space weather impact) project emphasized cross-collaboration between the SEP, coronal mass ejection, and terrestrial effects scientific communities. COMESEP went from basic solar-terrestrial physics research to space weather operations by developing, validating and implementing multi-purpose tools into an operational 24/7 alert service. Launched in November 2013, the COMESEP alert system provides space weather stakeholders geomagnetic storm alerts ("Event based" and "Next 24 hours") and SEP (proton) storm alerts (E > 10 MeV and E > 60 MeV) without human intervention based on the COMESEP definition of risk. COMESEP alerts and forecasts are freely available on the COMESEP alert website (http://www.comesep.eu/alert), as well as disseminated by e-mail to registered users. Acknowledgement: This work has received funding from the European Commission FP7 Project COMESEP (263252).
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1999-01-01
This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.
Microbial astronauts: assembling microbial communities for advanced life support systems.
Roberts, M S; Garland, J L; Mills, A L
2004-02-01
Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment. Copyright 2004 Springer-Verlag
Microbial astronauts: assembling microbial communities for advanced life support systems
NASA Technical Reports Server (NTRS)
Roberts, M. S.; Garland, J. L.; Mills, A. L.
2004-01-01
Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment. Copyright 2004 Springer-Verlag.
Gender and social geography: impact on Lady Health Workers mobility in Pakistan.
Mumtaz, Zubia
2012-10-16
In Pakistan, where gendered norms restrict women's mobility, female community health workers (CHWs) provide doorstep primary health services to home-bound women. The program has not achieved optimal functioning. One reason, I argue, may be that the CHWs are unable to make home visits because they have to operate within the same gender system that necessitated their appointment in the first place. Ethnographic research shows that women's mobility in Pakistan is determined not so much by physical geography as by social geography (the analysis of social phenomena in space). Irrespective of physical location, the presence of biradaria members (extended family) creates a socially acceptable 'inside space' to which women are limited. The presence of a non-biradari person, especially a man, transforms any space into an 'outside space', forbidden space. This study aims to understand how these cultural norms affect CHWs' home-visit rates and the quality of services delivered. Data will be collected in district Attock, Punjab. Twenty randomly selected CHWs will first be interviewed to explore their experiences of delivering doorstep services in the context of gendered norms that promote women's seclusion. Each CHW will be requested to draw a map of her catchment area using social mapping techniques. These maps will be used to survey women of reproductive age to assess variations in the CHW's home visitation rates and quality of family planning services provided. A sample size of 760 households (38 per CHW) is estimated to have the power to detect, with 95% confidence, households the CHWs do not visit. To explore the role of the larger community in shaping the CHWs mobility experiences, 25 community members will be interviewed and five CHWs observed as they conduct their home visits. The survey data will be merged with the maps to demonstrate if any disjunctures exist between CHWs' social geography and physical geography. Furthermore, the impacts these geographies have on home visitation rates and quality of services delivered will be explored. The study will provide generic and theoretical insights into how the CHW program policies and operations can improve working conditions to facilitate the work of female staff in order to ultimately provide high-quality services.
High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program
NASA Astrophysics Data System (ADS)
Bautz, Marshall
2017-01-01
We summarize currently-funded NASA activities in high energy astrophysics and cosmology embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes participation in a space mission to measure gravitational waves from a variety of astrophysical sources, including binary black holes, throughout most of cosmic history, and in another to map the evolution of black hole accretion by means of the accompanying X-ray emission. These missions are envisioned as collaborations with the European Space Agency's Large 3 (L3) and Athena programs, respectively. It also features definition of a large, NASA-led X-ray Observatory capable of tracing the surprisingly rapid growth of supermassive black holes during the first billion years of cosmic history. The program also includes the study of cosmic rays and high-energy gamma-ray photons resulting from range of physical processes, and efforts to characterize both the physics of inflation associated with the birth of the universe and the nature of the dark energy that dominates its mass-energy content today. Finally, we describe the activities of the Physics of the Cosmos Program Analysis Group, which serves as a forum for community analysis and input to NASA.
Salvo, Deborah; Banda, Jorge A; Sheats, Jylana L; Winter, Sandra J; Lopes Dos Santos, Daniela; King, Abby C
2017-08-01
Physical inactivity is a known risk factor for obesity and a number of chronic diseases. Modifying the physical features of neighborhoods to provide residents with equitable and convenient access to spaces for physical activity (PA) is a promising strategy for promoting PA. Public urban recreation spaces (e.g., parks) play an important role in promoting PA and are potentially an important neighborhood element for optimizing social capital and liveability in cities. Most studies examining the effects of park availability and use on PA have focused on traditional, permanent parks. The aims of this study were to (1) document patterns of park use and park-based PA at a temporary urban pop-up park implemented in the downtown business district of Los Altos, California during July-August 2013 and May-June 2014, (2) identify factors associated with park-based PA in 2014, and (3) examine the effects of the 2014 pop-up park on additional outcomes of potential benefit for park users and the Los Altos community at large. Park use remained high during most hours of the day in 2013 and 2014. Although the park attracted a multigenerational group of users, children and adolescents were most likely to engage in walking or more vigorous PA at the park. Park presence was significantly associated with potentially beneficial changes in time-allocation patterns among users, including a reduction in screen-time and an increase in overall park-time and time spent outdoors. Park implementation resulted in notable use among people who would otherwise not be spending time at a park (85% of surveyed users would not be spending time at any other park if the pop-up park was not there-2014 data analysis). Our results (significantly higher odds of spending time in downtown Los Altos due to park presence) suggest that urban pop-up parks may also have broader community benefits, such as attracting people to visit downtown business districts. Pending larger, confirmatory studies, our results suggest that temporary urban pop-up parks may contribute to solving the limited access to public physical activity recreation spaces many urban residents face.
Design and implementation of space physics multi-model application integration based on web
NASA Astrophysics Data System (ADS)
Jiang, Wenping; Zou, Ziming
With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.
Davey, Rachel C; Hurst, Gemma L; Smith, Graham R; Grogan, Sarah C; Kurth, Judy
2011-09-12
There is growing recognition that a sedentary lifestyle is being driven, at least in part, by environmental factors that affect individuals' physical activity choices and health behaviours. In other words, the environments in which we live, and with which we interact, have become ones that encourage lifestyle choices that decrease physical activity and encourage over-consumption of foods. However, evidence from community-led interventions to change local neighbourhood environments to support physical activity and healthy eating is lacking. This article summarises the research protocol developed to evaluate a community-led intervention "My Health Matters" aimed at reducing health inequalities relating to increasing physical activity and healthy eating as defined by community members themselves. This study includes three of the most deprived electoral wards in Stoke-on-Trent. In each of these areas, environmental factors including proximity of physical activity spaces, greenspace and leisure facilities, neighbourhood connectivity and walkability, land-use-mix and population density, traffic, safety and crime, and food outlets will be mapped using Geographical Information Systems (GIS). A community postal survey of randomly selected addresses assessing environmental characteristics relating to physical activity, perceived health status, social capital, fruit and vegetable consumption and levels of physical activity will be undertaken (baseline and at 2 year follow-up). Based on baseline findings an intervention will be designed and implemented over a 2 year period that includes the following; use of community participatory research to build effective community partnerships; use of partnership consensus to identify, prioritise and design intervention(s) related to specific health disparities; recruitment of local residents to help with the delivery and sustainability of target intervention(s); and the development of local systems for ongoing monitoring and evaluation of the intervention(s). A community-led and multidisciplinary approach to modifying environmental factors that support and reinforce healthful behaviours may be more successful than focusing on individual behaviour change as this approach does not exclusively rely upon individual will and capacity.Study findings will be collated in 2012 and, if successful in improving levels of physical activity and healthy eating, will help to inform the design of a larger area-based, cluster randomized controlled trial to determine effectiveness.
Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
NASA Technical Reports Server (NTRS)
Singh, Bhim S. (Editor)
1999-01-01
This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).
Thompson, Sharon L; Chenhall, Richard D; Brimblecombe, Julie K
2013-05-15
The burden of chronic disease in Indigenous Australia is more than double that of non-Indigenous populations and even higher in remote Northern Territory (NT) communities. Sufficient levels of physical activity are known to reduce the risk of chronic disease and improve the health of those already suffering from chronic disease. It has been identified that effective promotion of physical activity in Indigenous settings requires the diverse cultural perspectives and participation of Indigenous people. However, Indigenous concepts of physical activity are not represented in the public health literature and examples of Indigenous involvement in physical activity promotion are scarce. This study aimed to explore and describe local perspectives, experiences and meanings of physical activity in two remote NT Indigenous communities. Qualitative research methods guided by ethnographic and participatory action research principles were used. Semi-structured interviews conducted with 23 purposively selected community members were the main source of data, augmented by five commissioned paintings by community-based artists and observations recorded in a journal by the first author. The findings reveal that in this cultural context the meaning of physical activity is embedded in socially significant and economically necessary physical engagement with the environment. Participants described physical activities associated with Indigenous natural and cultural resource management, customary spaces, seasonal timing and traditional education as creating and protecting health. These activities were viewed not only as culturally appropriate physical activities that contribute to health but as legitimate, physically active forms of social organisation, education and employment that help to build and maintain relationships, wealth, resources and the environment. This different construction of physical activity in remote Indigenous communities highlights the importance of involving Indigenous people in the development and implementation of physical activity promotion. Physical activities associated with traditional Indigenous cultural practices and being active 'on country' need to be viewed as legitimate health promotion activities. Exploring further ways to enable Indigenous people in remote NT to be involved in creating viable active livelihoods on 'traditional country' needs to be considered as imperative to health improvement.
2013-01-01
Background The burden of chronic disease in Indigenous Australia is more than double that of non-Indigenous populations and even higher in remote Northern Territory (NT) communities. Sufficient levels of physical activity are known to reduce the risk of chronic disease and improve the health of those already suffering from chronic disease. It has been identified that effective promotion of physical activity in Indigenous settings requires the diverse cultural perspectives and participation of Indigenous people. However, Indigenous concepts of physical activity are not represented in the public health literature and examples of Indigenous involvement in physical activity promotion are scarce. This study aimed to explore and describe local perspectives, experiences and meanings of physical activity in two remote NT Indigenous communities. Methods Qualitative research methods guided by ethnographic and participatory action research principles were used. Semi-structured interviews conducted with 23 purposively selected community members were the main source of data, augmented by five commissioned paintings by community-based artists and observations recorded in a journal by the first author. Results The findings reveal that in this cultural context the meaning of physical activity is embedded in socially significant and economically necessary physical engagement with the environment. Participants described physical activities associated with Indigenous natural and cultural resource management, customary spaces, seasonal timing and traditional education as creating and protecting health. These activities were viewed not only as culturally appropriate physical activities that contribute to health but as legitimate, physically active forms of social organisation, education and employment that help to build and maintain relationships, wealth, resources and the environment. Conclusion This different construction of physical activity in remote Indigenous communities highlights the importance of involving Indigenous people in the development and implementation of physical activity promotion. Physical activities associated with traditional Indigenous cultural practices and being active ‘on country’ need to be viewed as legitimate health promotion activities. Exploring further ways to enable Indigenous people in remote NT to be involved in creating viable active livelihoods on ‘traditional country’ needs to be considered as imperative to health improvement. PMID:23672247
Investigations of Physical Processes in Microgravity Relevant to Space Electrochemical Power Systems
NASA Technical Reports Server (NTRS)
Lvovich, Vadim F.; Green, Robert; Jakupca, Ian
2015-01-01
NASA has performed physical science microgravity flight experiments in the areas of combustion science, fluid physics, material science and fundamental physics research on the International Space Station (ISS) since 2001. The orbital conditions on the ISS provide an environment where gravity driven phenomena, such as buoyant convection, are nearly negligible. Gravity strongly affects fluid behavior by creating forces that drive motion, shape phase boundaries and compress gases. The need for a better understanding of fluid physics has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low-gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena that are very relevant to management of fluid - gas separations in fuel cell and electrolysis systems. Experiments conducted in space have yielded rich results. These results provided valuable insights into fundamental fluid and gas phase behavior that apply to space environments and could not be observed in Earth-based labs. As an example, recent capillary flow results have discovered both an unexpected sensitivity to symmetric geometries associated with fluid container shape, and identified key regime maps for design of corner or wedge-shaped passive gas-liquid phase separators. In this presentation we will also briefly review some of physical science related to flight experiments, such as boiling, that have applicability to electrochemical systems, along with ground-based (drop tower, low gravity aircraft) microgravity electrochemical research. These same buoyancy and interfacial phenomena effects will apply to electrochemical power and energy storage systems that perform two-phase separation, such as water-oxygen separation in life support electrolysis, and primary space power generation devices such as passive primary fuel cell.
Space Biology Meets Astrobiology: Critical Synergies and Concerns
NASA Technical Reports Server (NTRS)
Boston, Penelope J.; Kirven-Brooks, Melissa
2016-01-01
The broad fields of space biology and astrobiology share much in common in terms of science questions, approaches, and goals. However, historical circumstances and funding agency practices have frequently resulted in a wide separation between the two related areas. Is this a good thing? We believe that it is not, and that much is to be gained in each field from sharing ideas, resources, and perhaps projects between investigators traditionally working in one discipline or the other. Some of the strengths that the Space Biology community offers include sophistication and experience in flying experiments on space missions. In turn, Astrobiology has focused heavily on ground-based and field research. Challenging physical and chemical conditions experienced in space and on other planets partially overlap, and much can be gleaned from the body of work of each community along these topical lines. A combination of these areas of expertise and experience could result in major advances to all involved. When possible, avoiding having to reinvent methods or approaches already used by a sister community can result in greater efficiencies of resource use. We will discuss some case studies where we believe there are significant overlaps including adaptation to a variety of environmental stresses, extremophiles as potential flight organisms, microfluidics as applied to planetary environment simulations, and others.
Specification of the Surface Charging Environment with SHIELDS
NASA Astrophysics Data System (ADS)
Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.
2016-12-01
Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.
Grumman and SDI-related technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, B.
1985-01-01
The application of Grumman Corporation's aerospace and nuclear fusion technology to the Strategic Defense Initiative (SDI) program has taken place in at least five major areas. These include infrared boost surveillance and tracking to detect intercontinental ballistic missiles just after launch, space-based radar, neutral particle beam platforms, nuclear electric power and propulsion units in space, and battle management systems. The author summarizes developments in each of these areas to illustrate how Grumman has responded to the request that the scientific and industrial communities pursue innovative, high-risk concepts involving materials, structures, space power, space physics, and kinetic energy weapon concepts. 3more » figures.« less
The Application and Future Direction of the SPASE Metadata Standard in the U.S. and Worldwide
NASA Astrophysics Data System (ADS)
King, Todd; Thieman, James; Roberts, D. Aaron
2013-04-01
The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has been stable since January 2011. The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. In development are modifications to accommodate simulation and model data, as well as enhancements to describe data accessibility. These additions will add features to describe a broader range of data types. In keeping with a SPASE principle of back-compatibility, these changes will not affect the data descriptions already generated for instrument-related datasets. We also look at the long term commitment by NASA to support the SPASE effort and how SPASE metadata can enable value-added services.
Improving Urban Corridor that Respect to Public Space
NASA Astrophysics Data System (ADS)
Zahrah, W.; Rahmadhani, N.; Nasution, A. D.; Pane, I. F.
2017-03-01
The urban corridor is more than just a linear space to circulation. It is a place for community activities. Since the urban area in Indonesia functionates without guidelines, it is necessary to analyze how this space being used by the community. The objective of the research is to explore the problems in utilization of public space in Dr. Mansur corridor in Medan and to propose some recommendation to improve it. The survey was started by mapping the physical situation that based on urban design aspects and the activities occur. Based on the data, the study identified the problems of the public space utilization. Next, study selected several buildings that significant in generating public life. The study interviewed the building’s owners and users/customers to get their opinion and perception about the using of urban public space utilization in the corridor in relation to their private function. The study analyzed the problems and opportunity to redesign the buildings that respect to public space. Then, the design ideas were presented to the buildings owners to get their response. The result of the observation shows that the fundamental problem in the corridor is the intervention of the private interest to the street as public space. The study indicates that the majority of the buildings owner was not aware that their buildings had distracted the urban public space. However, they gave a positive respond to the design recommendation. The design offered the solution that provided individual needs without intervention to the public realm. The study can contribute to improving urban corridor by educating the community with architecture and urban design.
Purpose: Previous studies have positively correlated human nature exposures with health promoting outcomes such as increased physical activity, improved cognitive function, increased social engagement, and reduced ambient air pollution. When using remotely-sensed data to investig...
ERIC Educational Resources Information Center
Shultz, Jeffrey; Florio, Susan
1979-01-01
In addition to learning academic content, school children learn to become socially competent members of the classroom community. This study uses microethnographic techniques to discover and describe important aspects of the social competence acquired by kindergarten and first-grade children. (Author/RLV)
Continuing the Classroom Community: Suggestions for Using Online Discussion Boards
ERIC Educational Resources Information Center
Jewell, Vivian
2005-01-01
A considerable use of technology to supplement classroom instruction could improve student learning. A high school teacher reveals the ways in which the use of online discussions of literature assignments increases student participation by extending dialogue beyond the physical space and time of a single class.
ERIC Educational Resources Information Center
Research Assessment Management, Inc., Silver Spring, MD.
A quality Head Start facility should provide a physical environment responsive both to the needs of the children and families served and to the needs of staff, volunteers, and community agencies that share space with Head Start. This manual is a tool for Head Start grantees and delegate agencies for assessing existing facilities, making…
GEANT4 and Secondary Particle Production
NASA Technical Reports Server (NTRS)
Patterson, Jeff
2004-01-01
GEANT 4 is a Monte Carlo tool set developed by the High Energy Physics Community (CERN, SLAC, etc) to perform simulations of complex particle detectors. GEANT4 is the ideal tool to study radiation transport and should be applied to space environments and the complex geometries of modern day spacecraft.
NASA Astrophysics Data System (ADS)
Damas, M. C.; Cheung, T. D.; Ngwira, C.; Mohamed, A.; Knipp, D. J.; Johnson, L. P.; Zheng, Y.; Paglione, T.
2015-12-01
The Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution, is the recipient of a 2-year NSF EAGER (Early Concept Grants for Exploratory Research) grant to design and implement a high-impact practice integrated research and education program in solar and atmospheric physics. Through a strong collaboration with CUNY/City College of New York and NASA Goddard Space Flight Center's Community Coordinated Modeling Center (CCMC), the project engages underrepresented community college students in geosciences-related STEM fields through a year-long research experience with two components: 1) during the academic year, students are enrolled in a course-based introductory research (CURE) where they conduct research on real-world problems; and 2) during the summer, students are placed in research internships at partner institutions. We will present the results of the first year-long research experience, including successes and challenges.
NASA Astrophysics Data System (ADS)
Scalzo, F.; Frost, J.; Carlson, B. E.; Marchese, P.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Baruh, H.; Decker, S.; Thangam, S.; Miles, J.; Moshary, F.; Rossow, W.; Greenbaum, S.; Cheung, T. K.; Johnson, L. P.
2010-12-01
1 Frank Scalzo, 1 Barbara Carlson, 2 Leon Johnson, 3 Paul Marchese, 1 Cynthia Rosenzweig, 2 Shermane Austin, 1 Dorothy Peteet, 1 Len Druyan, 1 Matthew Fulakeza, 1 Stuart Gaffin, 4 Haim Baruh, 4 Steven Decker, 5 Siva Thangam, 5 Joe Miles, 6 James Frost, 7 Fred Moshary, 7 William Rossow, 7 Samir Ahmed, 8 Steven Greenbaum and 3 Tak Cheung 1 NASA Goddard Institute for Space Studies, USA 2 Physical, Environmental and Computer Sciences, Medgar Evers College, CUNY, Brooklyn, NY, USA 3 Physics, Queensborough Community College, CUNY, Queens, NY, USA 4 Rutgers University, Newark, NJ, USA 5 Stevens Institute of Technology, Hoboken, NJ, USA 6 Physics, LaGuardia Community College, CUNY, Queens, NY, USA 7 Electrical Engineering, City College of New York, CUNY, USA 8 Physics, Hunter College, CUNY, USA The New York City Research Initiative (NYCRI) is a research and academic program that involves high school, undergraduate and graduate students, and high school teachers in research teams under the mentorship of college/university principal investigator of NASA funded projects and/or NASA scientists. The principal investigators are at 7 colleges/universities within a 20-mile radius of New York City (NYC and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies. The program supports research in Earth Science, Space Science, and Space Technology. Research investigations include: Sea Surface Temperature and Precipitation in the West African Monsoon, Urban Heat Island: Sun and Rain Effects, Decadal Changes in Aerosol and Asthma, Variations in Salinity and River Discharge in the Hudson River Estuary, Environmental Change in the Hudson Estuary Wetlands, Verification of Winter Storm Scale Developed for Nor’easters, Solar Weather and Tropical Cyclone Activity, Tropospheric and Stratospheric Ozone Investigation in Metropolitan NYC, Aerosol Optical Depth through use of a MFRSR, Detection of Concentration in the Atmosphere Using a Quantum Cascade Laser System, Optimization Model for Future Lunar Colony, Models of Space Travel, and NMR Investigation of MnO2 Infused Carbon Nanofoams. We describe student research, significant results and enrichment activities during the Summer 2010. The NYCRI partners with the CUNY-GISS Center for Global Climate Change, an NSF REU Site. The NYCRI is supported by NASAâ^À^Ùs Earth Science Office, GSFC Education Office, as well as NASA and NSF awards to NYCRI College/University Principal Investigators.
Geochemical and physical drivers of microbial community structure in hot spring ecosystems
NASA Astrophysics Data System (ADS)
Havig, J. R.; Hamilton, T. L.; Boyd, E. S.; Meyer-Dombard, D. R.; Shock, E.
2012-12-01
Microbial communities in natural systems are typically characterized using samples collected from a single time point, thereby neglecting the temporal dynamics that characterize natural systems. The composition of these communities obtained from single point samples is then related to the geochemistry and physical parameters of the environment. Since most microbial life is adapted to a relatively narrow ecological niche (multiplicity of physical and chemical parameters that characterize a local habitat), these assessments provide only modest insight into the controls on community composition. Temporal variation in temperature or geochemical composition would be expected to add another dimension to the complexity of niche space available to support microbial diversity, with systems that experience greater variation supporting a greater biodiversity until a point where the variability is too extreme. . Hot springs often exhibit significant temporal variation, both in physical as well as chemical characteristics. This is a result of subsurface processes including boiling, phase separation, and differential mixing of liquid and vapor phase constituents. These characteristics of geothermal systems, which vary significantly over short periods of time, provide ideal natural laboratories for investigating how i) the extent of microbial community biodiversity and ii) the composition of those communities are shaped by temporal fluctuations in geochemistry. Geochemical and molecular samples were collected from 17 temporally variable hot springs across Yellowstone National Park, Wyoming. Temperature measurements using data-logging thermocouples, allowing accurate determination of temperature maximums, minimums, and ranges for each collection site, were collected in parallel, along with multiple geochemical characterizations as conditions varied. There were significant variations in temperature maxima (54.5 to 90.5°C), minima (12.5 to 82.5°C), and range (3.5 to 77.5°C) for the hot spring environments that spanned ranges of pH values (2.2 to 9.0) and geochemical compositions. We characterized the abundance, composition, and phylogenetic diversity of bacterial and archaeal 16S rRNA gene assemblages in sediment/biofilm samples collected from each site. 16S data can be used as proxy for metabolic dissimilarity. We predict that temporally fluctuating environments should provide additional complexity to the system (additional niche space) capable of supporting additional taxa, which should lead to greater 16S rRNA gene diversity. However, systems with too much variability should collapse the diversity. Thus, one would expect an optimal system for variability, with respect to 16S phylogenetic diversity. Community ecology tools were then applied to model the relative influence of physical and chemical characteristics (including temperature dynamics) on the local biodiversity. The results reveal unique insight into the role of temporal environmental variation in the development of biodiverse communities and provide a platform for predicting the response of an ecosystem to temperature perturbation.
Relationship between the neighbourhood built environment and early child development.
Christian, Hayley; Ball, Stephen J; Zubrick, Stephen R; Brinkman, Sally; Turrell, Gavin; Boruff, Bryan; Foster, Sarah
2017-11-01
The relationship between features of the neighbourhood built environment and early child development was investigated using area-level data from the Australian Early Development Census. Overall 9.0% of children were developmentally vulnerable on the Physical Health and Well-being domain, 8.1% on the Social Competence domain and 8.1% on the Emotional Maturity domain. After adjustment for socio-demographic factors, Local Communities with the highest quintile of home yard space had significantly lower odds of developmental vulnerability on the Emotional Maturity domain. Residing in a Local Community with fewer main roads was associated with a decrease in the proportion of children developmentally vulnerable on the Social Competence domain. Overall, sociodemographic factors were more important than aspects of the neighbourhood physical environment for explaining variation between Local Communities in the developmental vulnerability of children. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Astrosociology of Space Colonies: Or the Social Construction of Societies in Space
NASA Astrophysics Data System (ADS)
Pass, Jim
2006-01-01
For a number of reasons, the construction of a single space colony represents a future social reality strongly likely to play itself out repeatedly as the twenty-first century advances. As early plans are considered, we must take into account that societies on Earth serve to carry out a variety of life functions and, in so doing, must meet the social needs of their citizens. While the proper engineering/construction of space habitats is necessary to ensure survivability of the inhabitants of a physical environment in space, it remains insufficient to ensure proper functioning of a social environment in space. This paper assumes that the physical environment is adequate to sustain life reliably (that is, to provide life support) and focuses instead on issues related to the sustainability of a society in space from primarily a sociological perspective. The astrosociological argument serving as a central theme here is that we must carefully consider research findings of Earth-based societies and their communities and apply the sociological lessons learned to the planning of space colonies. Moreover, the astrosociological perspective can serve to provide a formal mechanism for collaboration between social scientists and space scientists so that construction of a particular space colony proceeds based on the greatest level of understanding possible.
Witham, Miles D.; Donnan, Peter T.; Vadiveloo, Thenmalar; Sniehotta, Falko F.; Crombie, Iain K.; Feng, Zhiqiang; McMurdo, Marion E. T.
2014-01-01
Background Weather is a potentially important determinant of physical activity. Little work has been done examining the relationship between weather and physical activity, and potential modifiers of any relationship in older people. We therefore examined the relationship between weather and physical activity in a cohort of older community-dwelling people. Methods We analysed prospectively collected cross-sectional activity data from community-dwelling people aged 65 and over in the Physical Activity Cohort Scotland. We correlated seven day triaxial accelerometry data with daily weather data (temperature, day length, sunshine, snow, rain), and a series of potential effect modifiers were tested in mixed models: environmental variables (urban vs rural dwelling, percentage of green space), psychological variables (anxiety, depression, perceived behavioural control), social variables (number of close contacts) and health status measured using the SF-36 questionnaire. Results 547 participants, mean age 78.5 years, were included in this analysis. Higher minimum daily temperature and longer day length were associated with higher activity levels; these associations remained robust to adjustment for other significant associates of activity: age, perceived behavioural control, number of social contacts and physical function. Of the potential effect modifier variables, only urban vs rural dwelling and the SF-36 measure of social functioning enhanced the association between day length and activity; no variable modified the association between minimum temperature and activity. Conclusions In older community dwelling people, minimum temperature and day length were associated with objectively measured activity. There was little evidence for moderation of these associations through potentially modifiable health, environmental, social or psychological variables. PMID:24497925
Witham, Miles D; Donnan, Peter T; Vadiveloo, Thenmalar; Sniehotta, Falko F; Crombie, Iain K; Feng, Zhiqiang; McMurdo, Marion E T
2014-01-01
Weather is a potentially important determinant of physical activity. Little work has been done examining the relationship between weather and physical activity, and potential modifiers of any relationship in older people. We therefore examined the relationship between weather and physical activity in a cohort of older community-dwelling people. We analysed prospectively collected cross-sectional activity data from community-dwelling people aged 65 and over in the Physical Activity Cohort Scotland. We correlated seven day triaxial accelerometry data with daily weather data (temperature, day length, sunshine, snow, rain), and a series of potential effect modifiers were tested in mixed models: environmental variables (urban vs rural dwelling, percentage of green space), psychological variables (anxiety, depression, perceived behavioural control), social variables (number of close contacts) and health status measured using the SF-36 questionnaire. 547 participants, mean age 78.5 years, were included in this analysis. Higher minimum daily temperature and longer day length were associated with higher activity levels; these associations remained robust to adjustment for other significant associates of activity: age, perceived behavioural control, number of social contacts and physical function. Of the potential effect modifier variables, only urban vs rural dwelling and the SF-36 measure of social functioning enhanced the association between day length and activity; no variable modified the association between minimum temperature and activity. In older community dwelling people, minimum temperature and day length were associated with objectively measured activity. There was little evidence for moderation of these associations through potentially modifiable health, environmental, social or psychological variables.
The Ultimate Monte Carlo: Studying Cross-Sections With Cosmic Rays
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.
2007-01-01
The high-energy physics community has been discussing for years the need to bring together the three principal disciplines that study hadron cross-section physics - ground-based accelerators, cosmic-ray experiments in space, and air shower research. Only recently have NASA investigators begun discussing the use of space-borne cosmic-ray payloads to bridge the gap between accelerator physics and air shower work using cosmic-ray measurements. The common tool used in these three realms of high-energy hadron physics is the Monte Carlo (MC). Yet the obvious has not been considered - using a single MC for simulating the entire relativistic energy range (GeV to EeV). The task is daunting due to large uncertainties in accelerator, space, and atmospheric cascade measurements. These include inclusive versus exclusive cross-section measurements, primary composition, interaction dynamics, and possible new physics beyond the standard model. However, the discussion of a common tool or ultimate MC might be the very thing that could begin to unify these independent groups into a common purpose. The Offline ALICE concept of a Virtual MC at CERN s Large Hadron Collider (LHC) will be discussed as a rudimentary beginning of this idea, and as a possible forum for carrying it forward in the future as LHC data emerges.
Space Weather: Where Is The Beef?
NASA Astrophysics Data System (ADS)
Koskinen, H. E. J.
Space weather has become a highly fashionable topic in solar-terrestrial physics. It is perhaps the best tool to popularise the field and it has contributed significantly to the dialogue between solar, magnetospheric, and ionospheric scientist, and also to mu- tual understanding between science and engineering communities. While these are laudable achievements, it is important for the integrity of scientific space weather re- search to recognise the central open questions in the physics of space weather and the progress toward solving them. We still lack sufficient understanding of the solar physics to be able to tell in advance when and where a solar eruption will take place and whether it will turn to a geoeffective event. There is much to do to understand ac- celeration of solar energetic particles and propagation of solar mass ejecta toward the Earth. After more than 40 years of research scientific discussion of energy and plasma transfer through the magnetopause still deals mostly with qualitative issues and the rapid acceleration processes in the magnetosphere are not yet explained in a satisfac- tory way. Also the coupling to the ionosphere and from there to the strong induction effects on ground is another complex of research problems. For space weather science the beef is in the investigation of these and related topics, not in marketing half-useful space weather products to hesitant customers.
NASA Microgravity Science and Applications Program
NASA Technical Reports Server (NTRS)
1992-01-01
Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.
Singleton, Judith L; Raunig, Manuela; Brunsteter, Halley; Desmond, Michelle; Rao, Deepa
2015-12-01
African American men have the highest rates of HIV in the USA, and research has shown that stigma, mistrust of health care, and other psychosocial factors interfere with optimal engagement in care with this population. In order to further understand reducing stigma and other psychosocial issues among African American men, we conducted qualitative interviews and focus groups with African American men in two metropolitan areas in the USA: Chicago and Seattle. We examined transcripts for relationships across variables of stigma, anonymity, self-identity, and space within the context of HIV. Our analysis pointed to similarities between experiences of stigma across the two cities and illustrated the relationships between space, isolation, and preferred anonymity related to living with HIV. The men in our study often preferred that their HIV-linked identities remain invisible and anonymous, associated with perceived and created isolation from physical community spaces. This article suggests that our health care and housing institutions may influence preferences for anonymity. We make recommendations in key areas to create safer spaces for African American men living with HIV and reduce feelings of stigma and isolation.
Generic magnetohydrodynamic model at the Community Coordinated Modeling Center
NASA Astrophysics Data System (ADS)
Honkonen, I. J.; Rastaetter, L.; Glocer, A.
2016-12-01
The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center is a multi-agency partnership to enable, support and perform research and development for next-generation space science and space weather models. CCMC currently hosts nearly 100 numerical models and a cornerstone of this activity is the Runs on Request (RoR) system which allows anyone to request a model run and analyse/visualize the results via a web browser. CCMC is also active in the education community by organizing student research contests, heliophysics summer schools, and space weather forecaster training for students, government and industry representatives. Recently a generic magnetohydrodynamic (MHD) model was added to the CCMC RoR system which allows the study of a variety of fluid and plasma phenomena in one, two and three dimensions using a dynamic point-and-click web interface. For example students can experiment with the physics of fundamental wave modes of hydrodynamic and MHD theory, behavior of discontinuities and shocks as well as instabilities such as Kelvin-Helmholtz.Students can also use the model to experiments with numerical effects of models, i.e. how the process of discretizing a system of equations and solving them on a computer changes the solution. This can provide valuable background understanding e.g. for space weather forecasters on the effects of model resolution, numerical resistivity, etc. on the prediction.
Social space, social class and Bourdieu: health inequalities in British Columbia, Canada.
Veenstra, Gerry
2007-03-01
This article adopts Pierre Bourdieu's cultural-structuralist approach to conceptualizing and identifying social classes in social space and seeks to identify health effects of class in one Canadian province. Utilizing data from an original questionnaire survey of randomly selected adults from 25 communities in British Columbia, social (class) groupings defined by cultural tastes and dispositions, lifestyle practices, social background, educational capital, economic capital, social capital and occupational categories are presented in visual mappings of social space constructed by use of exploratory multiple correspondence analysis techniques. Indicators of physical and mental health are then situated within this social space, enabling speculations pertaining to health effects of social class in British Columbia.
Charged dust phenomena in the near-Earth space environment.
Scales, W A; Mahmoudian, A
2016-10-01
Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.
NASA Astrophysics Data System (ADS)
Gross, N. A.; Buxner, S.; Cobabe-Ammann, E. A.; Fraknoi, A.; Moldwin, M.; Peticolas, L. M.; Low, R.; Schultz, G. R.
2013-12-01
As part of the NASA Education Forums, the Higher Education Working Group (HEWG) strives to support undergraduate science education through a variety of activities. These activities include: providing resource that incorporate space science topics into the existing undergraduate curriculum, understanding the role that community colleges play in STEM education and preparing STEM teachers, and identifying issues in diversity related to STEM education. To assess the best way of including space science into the undergraduate curriculum, the HEWG held a series of workshops and conducted surveys of undergraduate faculty who are conducting research in space science. During this engagement, the faculty expressed a need for a centralized repository of materials that can be used as part of already existing undergraduate courses in astronomy, physics, and earth science. Such a repository has since been developed, the 'EarthSpace Higher Education Clearing House (http://www.lpi.usra.edu/earthspace/) and it is still growing. Additional community tools, such as a newsletter, are provided through this website. To better understand the role and needs of community colleges, the HEWG undertook and extensive survey of community college STEM faculty. 187 faculty responded to the survey and the results show the extensive teaching load these faculty have, as well as the diverse demographics and the extent to which STEM teachers begin their preparation at 2 year institutions. Finally, the HEWG has begun to work on understanding the issues faced in increasing the diversity of the STEM work force. Progress and results of all this work will be summarized in this presentation.
Solmon, Melinda A
2015-01-01
The benefits associated with being physically active are well documented, but a significant proportion of the population is insufficiently active. Physical inactivity is a major health risk factor in our society, and physical education programs are consistently identified as a means to address this concern. The purpose of this article is to use the social-ecological model as a framework to examine ways in which physical education programs can play an important role in promoting physical activity. Policies that require time allocations and resources for physical education and physical activity in schools and community designs that provide infrastructure that makes being physically active accessible and convenient are important factors in making schools and communities healthier spaces. It is clear, however, that policies alone are not sufficient to address concerns about physical inactivity. We must consider individual factors that influence decisions to be physically active in efforts to engage children in physical education programs that promote active lifestyles. The learning climate that teachers create determines what students do and learn in physical education classes. Ensuring that students see value in the content presented and structuring classes so that students believe they can experience success when they exert effort are key elements in an effective motivational climate. Efforts to address public health concerns about physical inactivity require a comprehensive approach including quality physical education. It is critical that kinesiology professionals emerge as leaders in these efforts to place physical education programs at the center of promoting children's physical activity.
Portegijs, Erja; Rantakokko, Merja; Viljanen, Anne; Sipilä, Sarianna; Rantanen, Taina
2016-07-01
essential aspects of independence in community mobility among older people concern the control over where, when and how to participate (perceived autonomy), and actual mobility (life-space mobility; frequency, distance and need of assistance). We studied relationships between frailty and life-space mobility and perceived autonomy in participation outdoors among community-dwelling 75-90 years old people. longitudinal analyses of the 'Life-space mobility in old age' cohort study (n = 753). Life-space mobility (Life-Space Assessment, range 0-120) and perceived autonomy in participation outdoors (Impact on Participation and Autonomy subscale 'autonomy outdoors', range 0-20) were assessed at baseline and 2 years later. Baseline frailty indicators were unintentional weight loss (self-report), weakness (5 times chair rise), exhaustion (self-report), slowness (2.44 m walk) and low physical activity (self-report). in total, 53% had no frailty, 43% pre-frailty (1-2 frailty indicators) and 4% frailty (≥3 indicators). Generalised estimation equation models showed that life-space mobility was lower among those with frailty and pre-frailty compared with those without frailty and, in addition, declined at a faster pace. Perceived autonomy in participation outdoors was more restricted among those with frailty and pre-frailty compared with those without frailty, but the rate of decline did not differ. frailty was associated with more restricted life-space mobility and poorer perceived autonomy in the decision-making concerning community mobility. Over the follow-up, frailty predicted a steeper decline in life-space mobility but not in perceived autonomy. Further study is warranted to determine whether compensation strategies or changes in the valuation of activities underlie this discrepancy. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program
NASA Astrophysics Data System (ADS)
Hornschemeier, Ann
2016-03-01
We summarize currently-funded NASA activities in high energy astrophysics and cosmology, embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes development of a space mission for measuring gravitational waves from merging supermassive black holes, currently envisioned as a collaboration with the European Space Agency (ESA) on its L3 mission and development of an X-ray observatory that will measure X-ray emission from the final stages of accretion onto black holes, currently envisioned as a NASA collaboration on ESA's Athena observatory. The portfolio also includes the study of cosmic rays and gamma ray photons resulting from a range of processes, of the physical process of inflation associated with the birth of the universe and of the nature of the dark energy that dominates the mass-energy of the modern universe. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis and the talk will include a description of activities of this group.
Parallel structure among environmental gradients and three trophic levels in a subarctic estuary
Speckman, Suzann G.; Piatt, John F.; Minte-Vera, C. V.; Parrish, Julia K.
2005-01-01
We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong (r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 (r = 0.87) and 1998 (r = 0.82). The correlation was poor (r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.
Parallel structure among environmental gradients and three trophic levels in a subarctic estuary
NASA Astrophysics Data System (ADS)
Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.
2005-07-01
We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin ( Mallotus villosus), walleye pollock ( Theragra chalcogramma), and arrowtooth flounder ( Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Niña year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of “bottom-up control,” i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.
Third Microgravity Fluid Physics Conference
NASA Technical Reports Server (NTRS)
1996-01-01
The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program, present and future areas of emphasis, information on NASA's ground-based and space-based flight research facilities-especially use of the International Space Station, and the process by which future investigators enter the program. An international forum offered participants an opportunity to hear from Russian speakers about their microgravity research programs. Three keynote speakers provided broad technical overviews on the history and future development of the moon and on multiphase flow and complex fluids research. One keynote paper and an extended abstract are included in the proceedings. One hundred and thirty-two technical papers were presented in 28 sessions. Presenters briefed their peers on the scientific results of their ground-based and flight research. One hundred and twenty-two papers are included here.
Hansen, Ryan H.; Timm, Andrea C.; Timm, Collin M.; Bible, Amber N.; Morrell-Falvey, Jennifer L.; Pelletier, Dale A.; Simpson, Michael L.; Doktycz, Mitchel J.; Retterer, Scott T.
2016-01-01
The structure and function of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment and the abundance of its community members. The complexity of this natural parameter space has made characterization of the key drivers of community development difficult. In order to facilitate these characterizations, we have developed a microwell platform designed to screen microbial growth and interactions across a wide variety of physical and initial conditions. Assembly of microbial communities into microwells was achieved using a novel biofabrication method that exploits well feature sizes for control of innoculum levels. Wells with incrementally smaller size features created populations with increasingly larger variations in inoculum levels. This allowed for reproducible growth measurement in large (20 μm diameter) wells, and screening for favorable growth conditions in small (5, 10 μm diameter) wells. We demonstrate the utility of this approach for screening and discovery using 5 μm wells to assemble P. aeruginosa colonies across a broad distribution of innoculum levels, and identify those conditions that promote the highest probability of survivial and growth under spatial confinement. Multi-member community assembly was also characterized to demonstrate the broad potential of this platform for studying the role of member abundance on microbial competition, mutualism and community succession. PMID:27152511
Bringing Space Science to the Undergraduate Classroom: NASA's USIP Mission
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Spencer, E. A.; Gross, J.; Lusk, G. D.
2015-12-01
As part of its participation in NASA's Undergraduate Student Instrument Project (USIP), a team of engineering and physics students at West Virginia University (WVU) built a series of sounding rocket and balloon missions. The first rocket and balloon missions were flown near-simultaneously in a campaign on June 26, 2014 (image). The second sounding rocket mission is scheduled for October 5, 2015. Students took a course on space science in spring 2014, and followup courses in physics and aerospace engineering departments have been developed since then. Guest payloads were flown from students affiliated with WV Wesleyan College, NASA's IV&V Facility, and the University of South Alabama. Students specialized in electrical and aerospace engineering, and space physics topics. They interacted regularly with NASA engineers, presented at telecons, and prepared reports. A number of students decided to pursue internships and/or jobs related to space science and technology. Outreach to the campus and broader community included demos and flight projects. The physics payload includes plasma density and temperature measurements using a Langmuir and a triple probe; plasma frequency measurements using a radio sounder (WVU) and an impedance probe (U.S.A); and a magnetometer (WVWC). The aerospace payload includes an IMU swarm, a GPS experiment (with TEC capability); a cubesat communications module (NASA IV&V), and basic flight dynamics. Acknowledgments: staff members at NASA Wallops Flight Facility, and at the Orbital-ATK Rocket Center, WV.
NASA Technical Reports Server (NTRS)
Singh, Bhim (Compiler)
2002-01-01
The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.
SPASE: The Connection Among Solar and Space Physics Data Centers
NASA Technical Reports Server (NTRS)
Thieman, James R.; King, Todd A.; Roberts, D. Aaron
2011-01-01
The Space Physics Archive Search and Extract (SPASE) project is an international collaboration among Heliophysics (solar and space physics) groups concerned with data acquisition and archiving. Within this community there are a variety of old and new data centers, resident archives, "virtual observatories", etc. acquiring, holding, and distributing data. A researcher interested in finding data of value for his or her study faces a complex data environment. The SPASE group has simplified the search for data through the development of the SPASE Data Model as a common method to describe data sets in the various archives. The data model is an XML-based schema and is now in operational use. There are both positives and negatives to this approach. The advantage is the common metadata language enabling wide-ranging searches across the archives, but it is difficult to inspire the data holders to spend the time necessary to describe their data using the Model. Software tools have helped, but the main motivational factor is wide-ranging use of the standard by the community. The use is expanding, but there are still other groups who could benefit from adopting SPASE. The SPASE Data Model is also being expanded in the sense of providing the means for more detailed description of data sets with the aim of enabling more automated ingestion and use of the data through detailed format descriptions. We will discuss the present state of SPASE usage and how we foresee development in the future. The evolution is based on a number of lessons learned - some unique to Heliophysics, but many common to the various data disciplines.
Roe, Jenny; Aspinall, Peter A.; Ward Thompson, Catharine
2016-01-01
Very little is known about how differences in use and perceptions of urban green space impact on the general health of black and minority ethnic (BME) groups. BME groups in the UK suffer from poorer health and a wide range of environmental inequalities that include poorer access to urban green space and poorer quality of green space provision. This study used a household questionnaire (n = 523) to explore the relationship between general health and a range of individual, social and physical environmental predictors in deprived white British and BME groups living in ethnically diverse cities in England. Results from Chi-Squared Automatic Interaction Detection (CHAID) segmentation analyses identified three distinct general health segments in our sample ranging from “very good” health (people of Indian origin), to ”good” health (white British), and ”poor” health (people of African-Caribbean, Bangladeshi, Pakistani origin and other BME groups), labelled ”Mixed BME” in the analyses. Correlated Component Regression analyses explored predictors of general health for each group. Common predictors of general health across all groups were age, disability, and levels of physical activity. However, social and environmental predictors of general health-including use and perceptions of urban green space-varied among the three groups. For white British people, social characteristics of place (i.e., place belonging, levels of neighbourhood trust, loneliness) ranked most highly as predictors of general health, whilst the quality of, access to and the use of urban green space was a significant predictor of general health for the poorest health group only, i.e., in ”Mixed BME”. Results are discussed from the perspective of differences in use and perceptions of urban green space amongst ethnic groups. We conclude that health and recreation policy in the UK needs to give greater attention to the provision of local green space amongst poor BME communities since this can play an important role in helping address the health inequalities experienced by these groups. PMID:27399736
Roe, Jenny; Aspinall, Peter A; Ward Thompson, Catharine
2016-07-05
Very little is known about how differences in use and perceptions of urban green space impact on the general health of black and minority ethnic (BME) groups. BME groups in the UK suffer from poorer health and a wide range of environmental inequalities that include poorer access to urban green space and poorer quality of green space provision. This study used a household questionnaire (n = 523) to explore the relationship between general health and a range of individual, social and physical environmental predictors in deprived white British and BME groups living in ethnically diverse cities in England. Results from Chi-Squared Automatic Interaction Detection (CHAID) segmentation analyses identified three distinct general health segments in our sample ranging from "very good" health (people of Indian origin), to "good" health (white British), and "poor" health (people of African-Caribbean, Bangladeshi, Pakistani origin and other BME groups), labelled "Mixed BME" in the analyses. Correlated Component Regression analyses explored predictors of general health for each group. Common predictors of general health across all groups were age, disability, and levels of physical activity. However, social and environmental predictors of general health-including use and perceptions of urban green space-varied among the three groups. For white British people, social characteristics of place (i.e., place belonging, levels of neighbourhood trust, loneliness) ranked most highly as predictors of general health, whilst the quality of, access to and the use of urban green space was a significant predictor of general health for the poorest health group only, i.e., in "Mixed BME". Results are discussed from the perspective of differences in use and perceptions of urban green space amongst ethnic groups. We conclude that health and recreation policy in the UK needs to give greater attention to the provision of local green space amongst poor BME communities since this can play an important role in helping address the health inequalities experienced by these groups.
Concurrent validity of the Swedish version of the life-space assessment questionnaire.
Fristedt, Sofi; Kammerlind, Ann-Sofi; Bravell, Marie Ernsth; Fransson, Eleonor I
2016-11-08
The Life-Space Assessment (LSA), developed in the USA, is an instrument focusing on mobility with respect to reaching different areas defined as life-spaces, extending from the room where the person sleeps to mobility outside one's hometown. A newly translated Swedish version of the LSA (LSA-S) has been tested for test-retest reliability, but the validity remains to be tested. The purpose of the present study was to examine the concurrent validity of the LSA-S, by comparing and correlating the LSA scores to other measures of mobility. The LSA was included in a population-based study of health, functioning and mobility among older persons in Sweden, and the present analysis comprised 312 community-dwelling participants. To test the concurrent validity, the LSA scores were compared to a number of other mobility-related variables, including the Short Physical Performance Battery (SPPB) as well as "stair climbing", "transfers", "transportation", "food shopping", "travel for pleasure" and "community activities". The LSA total mean scores for different levels of the other mobility-related variables, and measures of correlation were calculated. Higher LSA total mean scores were observed with higher levels of all the other mobility related variables. Most of the correlations between the LSA and the other mobility variables were large (r = 0.5-1.0) and significant at the 0.01 level. The LSA total score, as well as independent life-space and assistive life-space correlated with transportation (0.63, 0.66, 0.64) and food shopping (0.55, 0.58, 0.55). Assistive life-space also correlated with SPPB (0.47). With respect to maximal life-space, the correlations with the mobility-related variables were generally lower (below 0.5), probably since this aspect of life-space mobility is highly influenced by social support and is not so dependent on the individual's own physical function. LSA was shown to be a valid measure of mobility when using the LSA total, independent LS or assistive LSA.
NASA Astrophysics Data System (ADS)
Collier, Charles Patrick
2017-04-01
The Next Generation Space Interconnect Standard (NGSIS) effort is a Government-Industry collaboration effort to define a set of standards for interconnects between space system components with the goal of cost effectively removing bandwidth as a constraint for future space systems. The NGSIS team has selected the ANSI/VITA 65 OpenVPXTM standard family for the physical baseline. The RapidIO protocol has been selected as the basis for the digital data transport. The NGSIS standards are developed to provide sufficient flexibility to enable users to implement a variety of system configurations, while meeting goals for interoperability and robustness for space. The NGSIS approach and effort represents a radical departure from past approaches to achieve a Modular Open System Architecture (MOSA) for space systems and serves as an exemplar for the civil, commercial, and military Space communities as well as a broader high reliability terrestrial market.
Community, Collaboration, and Creativity: The Potential of Art Education to Create Change
ERIC Educational Resources Information Center
Prettyman, Sandra Spickard; Gargarella, Elisa B.
2006-01-01
The authors used qualitative methods to examine a high school summer arts program in the Midwest, and researched how the program promotes the creative and aesthetic development of students and teachers, as well as an appreciation for cultural and environmental diversity and conservation. We argue the program provides a space, both physical and…
ERIC Educational Resources Information Center
Lester, Jaime; Yamanaka, Aoi; Struthers, Brice
2016-01-01
Career and technical education (CTE) programs account for a large proportion of student enrollments in community colleges each year. While women tend to dominate CTE enrollments overall, they remain concentrated in historically feminized fields contrary to nontraditional occupations in which less than 25% of workers are females. Drawing on the…
Design Development Plans for Altamont Junior High School, Klamath Falls, Oregon.
ERIC Educational Resources Information Center
Lutes and Amundson, Architects and Community Planners, Springfield, OR.
The architects, with the teaching staff, administration, students, and community, worked as a team to make a coordinated statement of the physical, functional, and esthetic proposals for a new school. The space and functional requirements of each teaching area have been documented and analyzed to arrive at a realistic appraisal of need for the…
Combating Dance Educators' Isolation: Interacting with the Larger Learning Community
ERIC Educational Resources Information Center
Sprague, Marty
2009-01-01
Dance studio spaces are often tucked away in the physical plant, separated from other classrooms and the primary activities of the school. During team meetings and curriculum planning, where does the dance educator ft in? With whom does the dance educator partner or team? The dance educator should be routinely partnered with a department or team…
ERIC Educational Resources Information Center
Fitzgerald, Victoria
2012-01-01
Part of the School of Physical Sciences mission and plan is to deliver an effective outreach programme to the community and South East regions to stimulate interest, both in school pupils and the general public, in science. To do this, it offers many activities that are school-based and aimed at students in Key stages 3, 4 and 5 (ages 11-18).…
Community Coordinated Modeling Center Support of Science Needs for Integrated Data Environment
NASA Technical Reports Server (NTRS)
Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Maddox, M.
2007-01-01
Space science models are essential component of integrated data environment. Space science models are indispensable tools to facilitate effective use of wide variety of distributed scientific sources and to place multi-point local measurements into global context. The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the- art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The majority of models residing at CCMC are comprehensive computationally intensive physics-based models. To allow the models to be driven by data relevant to particular events, the CCMC developed an online data file generation tool that automatically downloads data from data providers and transforms them to required format. CCMC provides a tailored web-based visualization interface for the model output, as well as the capability to download simulations output in portable standard format with comprehensive metadata and user-friendly model output analysis library of routines that can be called from any C supporting language. CCMC is developing data interpolation tools that enable to present model output in the same format as observations. CCMC invite community comments and suggestions to better address science needs for the integrated data environment.
White Hughto, Jaclyn M.; Pachankis, John E.; Eldahan, Adam I.; Keene, Danya E.
2016-01-01
Social–sexual networking technologies have been reported to yield both psychosocial benefits and sexual risks for gay and bisexual men, yet little research has explored how technology interacts with the social–geographical environment to shape the health of gay and bisexual men in the relatively understudied environment of small cities. This article draws on 29 semistructured interviews examining the use of social–sexual networking technologies among racially diverse gay and bisexual men in two small cities. Questions probed participants’ use of technology to meet sexual partners, engagement in the gay community, and the role of virtual and nonvirtual spaces in relation to health. Findings suggest that social networking technologies can help men navigate the challenges of small cities, including small and insular gay communities, lack of dedicated gay spaces, and sexual minority stigma. However, participants also describe declines in gay community visibility and cohesion, which they attribute to technology use. The article concludes by discussing the intersections of virtual and physical space in small cities as sites for the production of health and illness. PMID:27885147
White Hughto, Jaclyn M; Pachankis, John E; Eldahan, Adam I; Keene, Danya E
2017-05-01
Social-sexual networking technologies have been reported to yield both psychosocial benefits and sexual risks for gay and bisexual men, yet little research has explored how technology interacts with the social-geographical environment to shape the health of gay and bisexual men in the relatively understudied environment of small cities. This article draws on 29 semistructured interviews examining the use of social-sexual networking technologies among racially diverse gay and bisexual men in two small cities. Questions probed participants' use of technology to meet sexual partners, engagement in the gay community, and the role of virtual and nonvirtual spaces in relation to health. Findings suggest that social networking technologies can help men navigate the challenges of small cities, including small and insular gay communities, lack of dedicated gay spaces, and sexual minority stigma. However, participants also describe declines in gay community visibility and cohesion, which they attribute to technology use. The article concludes by discussing the intersections of virtual and physical space in small cities as sites for the production of health and illness.
Space, geophysical research related to Latin America - Part 2
NASA Astrophysics Data System (ADS)
Mendoza, Blanca; Shea, M. A.
2016-11-01
For the last 25 years, every two to three years the Conferencia Latinoamericana de Geofísica Espacial (COLAGE) is held in one of the Latin American countries for the purpose of promoting scientific exchange among scientists of the region and to encourage continued research that is unique to this area of the world. At the more recent conference, the community realized that many individuals both within and outside Latin America have contributed greatly to the understanding of the space sciences in this area of the world. It was therefore decided to assemble a Special Issue Space and Geophysical Physics related to Latin America, presenting recent results and where submissions would be accepted from the world wide community of scientists involved in research appropriate to Latin America. Because of the large number of submissions, these papers have been printed in two separate issues. The first issue was published in Advances in Space Research, Vol. 57, number 6 and contained 15 papers. This is the second issue and contains 25 additional papers. These papers show the wide variety of research, both theoretical and applied, that is currently being developed or related to space and geophysical sciences in the Sub-Continent.
Demographic and Environmental Factors Associated with Mental Health: A Cross-Sectional Study
Kim, Jayeun; Kim, Ho
2017-01-01
Relevant demographic and environmental conditions need to be understood before tailoring policies to improve mental health. Using community health survey data from 25 communities in Seoul, 2013, cross-sectional associations between mental health and community level environments were assessed. Mental health outcomes (self-rated stress levels (SRS) and depressive symptoms (DS)) were analyzed. Community environmental factors included green space, green facilities, and annual PM10 level (AnnPM10); socio-demographic factors included sex, age, education, labor market participation, comorbidity, sleep hours, physical activity, smoking, and drinking. A total of 23,139 people with the following characteristics participated: men (44.2%); age groups 19−39 (36.0%), 40−59 (39.4%), 60−74 (19.2%), and 75+ (5.4%). Women had higher odds ratios (OR) for SRS [OR 1.22, 95% Confidence interval (CI) 1.17–1.27] and DS [OR 1.55, 95% CI 1.42–1.71]. Regular physical activity predicted SRS [OR 0.90, 95% CI 0.84–0.95] and DS [OR 0.98, 95% CI 0.88–1.10]; current smoking and drinking were adversely associated with both SRS and DS. Higher accessibility to green space (Q4) was inversely associated with DS [OR 0.89, 95% CI 0.81−0.97] compared to lower accessibility (Q1). AnnPM10, annual levels for particles of aerodynamic diameter <10 µm (PM10), among communities was associated with poorer SRS [OR 1.02, 95% CI 1.00–1.04] by 10 μg/m3 increases. Therefore, both demographic and environmental factors should be considered to understand mental health conditions among the general population. PMID:28420189
Biological and Physical Space Research Laboratory 2002 Science Review
NASA Technical Reports Server (NTRS)
Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)
2003-01-01
With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.
NASA Technical Reports Server (NTRS)
Wilson, Thomas L. (Editor); Wefel, John P. (Editor)
1999-01-01
In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.
The dependence of magnetosphere-ionosphere system on the Earth's magnetic dipole moment
NASA Astrophysics Data System (ADS)
Ngwira, C. M.; Pulkkinen, A. A.; Sibeck, D. G.; Rastaetter, L.
2017-12-01
Space weather is increasingly recognized as an international problem affecting several different man-made technologies. The ability to understand, monitor and forecast Earth-directed space weather is of paramount importance for our highly technology-dependent society and for the current rapid developments in awareness and exploration within the heliosphere. It is well known that the strength of the Earth's magnetic field changes over long time scales. We use physics-based simulations with the University of Michigan Space Weather Modeling Framework (SWMF) to examine how the magnetosphere, ionosphere, and ground geomagnetic field perturbations respond as the geomagnetic dipole moment changes. We discuss the implication of these results for our community and the end-users of space weather information.
Preface: Space and geophysical research related to Latin America - Part 1
NASA Astrophysics Data System (ADS)
Mendoza, Blanca
2016-03-01
For the last 25 years, every two to three years the Conferencia Latinoamericana de Geofísica Espacial (COLAGE) is held in one of the Latin American countries for the purpose of promoting scientific exchange among scientists of the region and to encourage continued research that is unique to this area of the world. At the more recent conference, the community realized that many individuals both within and outside Latin America have contributed greatly to the understanding of the space sciences in this area of the world. It was therefore decided to assemble a Special Issue Space and Geophysical Physics related to Latin America, presenting recent results and where submissions would be accepted from the world wide community of scientists involved in research appropriate to Latin America. Because of the large number of submissions, these papers will be printed in two separate issues; this is Part 1. These papers show the wide variety of research, both theoretical and applied, that is currently being developed in the Sub-Continent.
Discover Space Weather and Sun's Superpowers: Using CCMC's innovative tools and applications
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Maddox, M. M.; Kuznetsova, M. M.; Chulaki, A.; Rastaetter, L.; Mullinix, R.; Weigand, C.; Boblitt, J.; Taktakishvili, A.; MacNeice, P. J.; Pulkkinen, A. A.; Pembroke, A. D.; Mays, M. L.; Zheng, Y.; Shim, J. S.
2015-12-01
Community Coordinated Modeling Center (CCMC) has developed a comprehensive set of tools and applications that are directly applicable to space weather and space science education. These tools, some of which were developed by our student interns, are capable of serving a wide range of student audiences, from middle school to postgraduate research. They include a web-based point of access to sophisticated space physics models and visualizations, and a powerful space weather information dissemination system, available on the web and as a mobile app. In this demonstration, we will use CCMC's innovative tools to engage the audience in real-time space weather analysis and forecasting and will share some of our interns' hands-on experiences while being trained as junior space weather forecasters. The main portals to CCMC's educational material are ccmc.gsfc.nasa.gov and iswa.gsfc.nasa.gov
New Ecuadorian VLF and ELF receiver for study the ionosphere
NASA Astrophysics Data System (ADS)
Lopez, Ericson; Montenegro, Jefferson; Vasconez, Michael; Vicente, Klever
Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory (QAO) of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. As part of this project, in the QAO has been designed a new system for acquisition and processing VLF and ELF signals propagating in the ionosphere. The Labview Software is used to filtering, processing and conditioning the received signals, avoiding in this way 60 percent of the analog components present in a common receiver. The same software have been programmed to create the spectrograms and the amplitude and phase diagrams of the radio signals. The data is stored neatly in files that can be processed even with other applications.
The Auroral Planetary Imaging and Spectroscopy (APIS) service
NASA Astrophysics Data System (ADS)
Lamy, L.; Prangé, R.; Henry, F.; Le Sidaner, P.
2015-06-01
The Auroral Planetary Imaging and Spectroscopy (APIS) service, accessible online, provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro-imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multi-spectral combined analysis.
Sensitivity of Ionosphere/Thermosphere to different high-latitude drivers
NASA Astrophysics Data System (ADS)
Shim, J.; Kuznetsova, M. M.; Rastaetter, L.; Swindell, M.; Codrescu, M.; Emery, B. A.; Foerster, M.; Foster, B.; Fuller-Rowell, T. J.; Mannucci, A. J.; Pi, X.; Prokhorov, B.; Ridley, A. J.; Coster, A. J.; Goncharenko, L. P.; Lomidze, L.; Scherliess, L.; Crowley, G.
2013-12-01
We compared Ionosphere/Thermosphere (IT) parameters, which were obtained using different models for the high-latitude ionospheric electric potential (e.g., Weimer 2005, AMIE (assimilative mapping of ionospheric electrodynamics) and global magnetosphere models (e.g. Space Weather Modeling Framework)) and particle precipitation (e.g., Fuller-Rowell & Evans, Roble & Ridley, and SWMF). For this study, the physical parameters such as Total Electron Content (TEC), NmF2 and hmF2, and electron and neutral densities at the CHAMP satellite track are considered. In addition, we compared the modeled physical parameters with observed data including ground-based GPS TEC measurements, NmF2 and hmF2 from COSMIC LEO satellites in the selected 5 degree eight longitude sectors, and Ne and neutral density measured by the CHAMP satellite. We quantified the performance of the models using skill scores. Furthermore, the skill scores are obtained for three latitude regions (low, middle and high latitudes) in order to investigate latitudinal dependence of the models' performance. This study is supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. The CCMC converted ionosphere drivers from a variety of sources and developed an interpolation tool that can be employed by any modelers for easy driver swapping. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) as a resource for the space science communities to use.
Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system.
Cianelli, Daniela; D'Alelio, Domenico; Uttieri, Marco; Sarno, Diana; Zingone, Adriana; Zambianchi, Enrico; d'Alcalà, Maurizio Ribera
2017-11-20
This proof-of-concept study integrates the surface currents measured by high-frequency coastal radars with plankton time-series data collected at a fixed sampling point from the Mediterranean Sea (MareChiara Long Term Ecological Research site in the Gulf of Naples) to characterize the spatial origin of phytoplankton assemblages and to scrutinize the processes ruling their dynamics. The phytoplankton community generally originated from the coastal waters whereby species succession was mainly regulated by biological factors (life-cycle processes, species-specific physiological performances and inter-specific interactions). Physical factors, e.g. the alternation between coastal and offshore waters and the horizontal mixing, were also important drivers of phytoplankton dynamics promoting diversity maintenance by i) advecting species from offshore and ii) diluting the resident coastal community so as to dampen resource stripping by dominant species and thereby increase the numerical importance of rarer species. Our observations highlight the resilience of coastal communities, which may favour their persistence over time and the prevalence of successional events over small time and space scales. Although coastal systems may act differently from one another, our findings provide a conceptual framework to address physical-biological interactions occurring in coastal basins, which can be generalised to other areas.
New solar irradiances for use in space research
NASA Astrophysics Data System (ADS)
Tobiska, W.; Bouwer, D.; Jones, A.
Space environment research applications require solar irradiances in a variety of time scales and spectral formats We describe the development of research grade modeled solar irradiances using four models and systems that are also used for space weather operations The four models systems include SOLAR2000 S2K SOLARFLARE SFLR APEX and IDAR which are used by Space Environment Technologies SET to provide solar irradiances from the soft X-rays through the visible spectrum SFLR uses the GOES 0 1--0 8 nm X-rays in combination with a Mewe model subroutine to provide 0 1--30 0 nm irradiances at 0 1 nm spectral resolution at 1 minute time resolution and in a 6-hour XUV--EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances in the S2K model There are additional developments with S2K that we discuss particularly the method by which S2K is emerging as a hybrid model empirical plus physics-based and real-time data integration platform Numerous new solar indices have been recently developed for the operations community and we describe their inclusion in S2K The APEX system is a real-time data retrieval system developed under contract to the University of Southern California Space Sciences Center SSC to provide SOHO SEM data processing and distribution SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community We
Neighborhood green, social support, physical activity, and stress: assessing the cumulative impact.
Fan, Yingling; Das, Kirti V; Chen, Qian
2011-11-01
We estimate the cumulative stress mitigating impact of neighborhood greenness by investigating whether neighborhood green mitigates stress directly, and indirectly by encouraging physical activity and/or fostering social support. Using data from a recent community health survey in Chicago and two-stage instrumental variables regression modeling, we find that different components of neighborhood green play distinct roles in influencing stress. Park spaces are found to indirectly mitigate stress by fostering social support. Overall neighborhood vegetation is found to have direct stress mitigation impact, yet the impact is counteracted by its negative effect on social support. When comparing the effect size, park spaces show a more positive impact on health and well-being than the overall neighborhood vegetation level. Policy makers are recommended to focus on creating structured green spaces with public recreation and socialization opportunities rather than simply conserving green spaces in the neighborhood. Previous studies, as they often investigate the direct impact only and rarely use multiple measures of greenness, may have mis-estimated health benefits of neighborhood green. Published by Elsevier Ltd.
Sociospace: A smart social framework based on the IP Multimedia Subsystem
NASA Astrophysics Data System (ADS)
Hasswa, Ahmed
Advances in smart technologies, wireless networking, and increased interest in contextual services have led to the emergence of ubiquitous and pervasive computing as one of the most promising areas of computing in recent years. Smart Spaces, in particular, have gained significant interest within the research community. Currently, most Smart Spaces rely on physical components, such as sensors, to acquire information about the real-world environment. Although current sensor networks can acquire some useful contextual information from the physical environment, their information resources are often limited, and the data acquired is often unreliable. We argue that by introducing social network information into such systems, smarter and more adaptive spaces can be created. Social networks have recently become extremely popular, and are now an integral part of millions of people's daily lives. Through social networks, users create profiles, build relationships, and join groups, forming intermingled sets and communities. Social Networks contain a wealth of information, which, if exploited properly, can lead to a whole new level of smart contextual services. A mechanism is therefore needed to extract data from heterogeneous social networks, to link profiles across different networks, and to aggregate the data obtained. We therefore propose the design and implementation of a Smart Spaces framework that utilizes the social context. In order to manage services and sessions, we integrate our system with the IP Multimedia Subsystem. Our system, which we call SocioSpace, includes full design and implementation of all components, including the central server, the location management system, the social network interfacing system, the service delivery platform, and user agents. We have built a prototype for proof of concept and carried out exhaustive performance analysis; the results show that SocioSpace is scalable, extensible, and fault-tolerant. It is capable of creating Smart Spaces that can truly deliver adaptive services that enhance the users' overall experience, increase their satisfaction, and make the surroundings more beneficial and interesting to them.
Second Microgravity Fluid Physics Conference
NASA Technical Reports Server (NTRS)
1994-01-01
The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program information on NASA's ground-based and space-based flight research facilities. An international forum offered participants an opportunity to hear from French, German, and Russian speakers about the microgravity research programs in their respective countries. Two keynote speakers provided broad technical overviews on multiphase flow and complex fluids research. Presenters briefed their peers on the scientific results of their ground-based and flight research. Fifty-eight of the sixty-two technical papers are included here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Ma, Po-Lun; Xiao, Heng
2013-08-29
The ability to use multi-resolution dynamical cores for weather and climate modeling is pushing the atmospheric community towards developing scale aware or, more specifically, resolution aware parameterizations that will function properly across a range of grid spacings. Determining the resolution dependence of specific model parameterizations is difficult due to strong resolution dependencies in many pieces of the model. This study presents the Separate Physics and Dynamics Experiment (SPADE) framework that can be used to isolate the resolution dependent behavior of specific parameterizations without conflating resolution dependencies from other portions of the model. To demonstrate the SPADE framework, the resolution dependencemore » of the Morrison microphysics from the Weather Research and Forecasting model and the Morrison-Gettelman microphysics from the Community Atmosphere Model are compared for grid spacings spanning the cloud modeling gray zone. It is shown that the Morrison scheme has stronger resolution dependence than Morrison-Gettelman, and that the ability of Morrison-Gettelman to use partial cloud fractions is not the primary reason for this difference. This study also discusses how to frame the issue of resolution dependence, the meaning of which has often been assumed, but not clearly expressed in the atmospheric modeling community. It is proposed that parameterization resolution dependence can be expressed in terms of "resolution dependence of the first type," RA1, which implies that the parameterization behavior converges towards observations with increasing resolution, or as "resolution dependence of the second type," RA2, which requires that the parameterization reproduces the same behavior across a range of grid spacings when compared at a given coarser resolution. RA2 behavior is considered the ideal, but brings with it serious implications due to limitations of parameterizations to accurately estimate reality with coarse grid spacing. The type of resolution awareness developers should target in their development depends upon the particular modeler’s application.« less
NASA's Microgravity Fluid Physics Strategic Research Roadmap
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Singh, Bhim S.
2004-01-01
The Microgravity Fluid Physics Program at NASA has developed a substantial investigator base engaging a broad crosssection of the U.S. scientific community. As a result, it enjoys a rich history of many significant scientific achievements. The research supported by the program has produced many important findings that have been published in prestigious journals such as Science, Nature, Journal of Fluid Mechanics, Physics of Fluids, and many others. The focus of the program so far has primarily been on fundamental scientific studies. However, a recent shift in emphasis at NASA to develop advanced technologies to enable future exploration of space has provided motivation to add a strategic research component to the program. This has set into motion a year of intense planning within NASA including three workshops to solicit inputs from the external scientific community. The planning activities and the workshops have resulted in a prioritized list of strategic research issues along with a corresponding detailed roadmap specific to fluid physics. The results of these activities were provided to NASA s Office of Biological and Physical Research (OBPR) to support the development of the Enterprise Strategy document. This paper summarizes these results while showing how the planned research supports NASA s overall vision through OBPR s organizing questions.
Singleton, Judith L.; Raunig, Manuela; Brunsteter, Halley; Desmond, Michelle; Rao, Deepa
2015-01-01
African American men have the highest rates of HIV in the United States, and research has shown that stigma, mistrust of healthcare, and other psychosocial factors interfere with optimal engagement in care with this population. In order to further understand reducing stigma and other psychosocial issues among African American men, we conducted qualitative interviews and focus groups with African American men in two metropolitan areas in the United States: Chicago and Seattle. We examined transcripts for relationships across variables of stigma, anonymity, self-identity, and space within the context of HIV. Our analysis pointed to similarities between experiences of stigma across the two cities, and illustrated the relationships between space, isolation and preferred anonymity related to living with HIV. The men in our study often preferred their HIV-linked identities remain invisible and anonymous, associated with perceived and created isolation from physical community spaces. This article suggests that our healthcare and housing institutions may influence preferences for anonymity. We make recommendations in key areas to create safer spaces for African American men living with HIV and reduce feelings of stigma and isolation. PMID:26863561
Donetto, Sara; Malone, Mary; Sayer, Lynn; Robert, Glenn
2017-07-01
In response to a policy-driven workforce expansion in England new models of preparing health visitors for practice have been implemented. 'Community of Learning hubs' (COLHs) are one such model, involving different possible approaches to student support in clinical practice placements (for example, 'long arm mentoring' or 'action learning set' sessions). Such models present opportunities for studying the possible effects of spatiality on the learning experiences of students and newly qualified health visitors, and on team relationships more broadly. To explore a 'community of learning hub' model in health visitor education and reflect on the role of space and place in the learning experience and professional identity development of student health visitors. Qualitative research conducted during first year of implementation. Three 'community of learning hub' projects based in two NHS community Trusts in London during the period 2013-2015. Managers and leads (n=7), practice teachers and mentors (n=6) and newly qualified and student health visitors (n=16). Semi-structured, audio-recorded interviews analysed thematically. Participants had differing views as to what constituted a 'hub' in their projects. Two themes emerged around the spaces that shape the learning experience of student and newly qualified health visitors. Firstly, a generalised need for a 'quiet place' which allows pause for reflection but also for sharing experiences and relieving common anxieties. Secondly, the role of physical arrangements in open-plan spaces to promote access to support from more experienced practitioners. Attention to spatiality can shed light on important aspects of teaching and learning practices, and on the professional identities these practices shape and support. New configurations of time and space as part of educational initiatives can surface new insights into existing practices and learning models. Copyright © 2017. Published by Elsevier Ltd.
Allison, J.; Amako, K.; Apostolakis, J.; ...
2016-07-01
Geant4 is a software toolkit for the simulation of the passage of particles through matter. It is used by a large number of experiments and projects in a variety of application domains, including high energy physics, astrophysics and space science, medical physics and radiation protection. Over the past several years, major changes have been made to the toolkit in order to accommodate the needs of these user communities, and to efficiently exploit the growth of computing power made available by advances in technology. In conclusion, the adaptation of Geant4 to multithreading, advances in physics, detector modeling and visualization, extensions tomore » the toolkit, including biasing and reverse Monte Carlo, and tools for physics and release validation are discussed here.« less
Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space
NASA Technical Reports Server (NTRS)
Strayer, Don (Editor)
2003-01-01
The 2003 Fundamental Physics workshop included presentations ranging from forces acting on RNA to properties of clouds of degenerate Fermi atoms, to techniques to probe for a added space-time dimensions, and to flight hardware for low temperature experiments, amongst others. Mark Lee from NASA Headquarters described the new strategic plan that NASA has developed under Administrator Sean O'Keefe's leadership. Mark explained that the Fundamental Physics community now needs to align its research program and the roadmap describing the long-term goals of the program with the NASA plan. Ulf Israelsson of JPL discussed how the rewrite of the roadmap will be implemented under the leadership of the Fundamental Physics Discipline Working Group (DWG). Nick Bigelow, chair of the DWG, outlined how investigators can contribute to the writing of the roadmap. Results of measurements on very cold clouds of Fermi atoms near a Feshbach resonance were described by three investigators. Also, new measurements relating to tests of Einstein equivalence were discussed. Investigators also described methods to test other aspects of Einstein's relativity theories.
Kurt F. Anschuetz
2007-01-01
The purpose of this essay is to introduce an anthropological landscape approach. It considers landscape broadly as the physical and conceptual interaction of nature and culture rather than the sum of material modifications, which people might make to a particular geographic space. I suggest that cultural resource managers might find this perspective useful in the...
Evolving the Living With a Star Data System Definition
NASA Astrophysics Data System (ADS)
Otranto, J. F.; Dijoseph, M.
2003-12-01
NASA's Living With a Star (LWS) Program is a space weather-focused and applications-driven research program. The LWS Program is soliciting input from the solar, space physics, space weather, and climate science communities to develop a system that enables access to science data associated with these disciplines, and advances the development of discipline and interdisciplinary findings. The LWS Program will implement a data system that builds upon the existing and planned data capture, processing, and storage components put in place by individual spacecraft missions and also inter-project data management systems, including active and deep archives, and multi-mission data repositories. It is technically feasible for the LWS Program to integrate data from a broad set of resources, assuming they are either publicly accessible or allow access by permission. The LWS Program data system will work in coordination with spacecraft mission data systems and science data repositories, integrating their holdings using a common metadata representation. This common representation relies on a robust metadata definition that provides journalistic and technical data descriptions, plus linkages to supporting data products and tools. The LWS Program intends to become an enabling resource to PIs, interdisciplinary scientists, researchers, and students facilitating both access to a broad collection of science data, as well as the necessary supporting components to understand and make productive use of these data. For the LWS Program to represent science data that are physically distributed across various ground system elements, information will be collected about these distributed data products through a series of LWS Program-created agents. These agents will be customized to interface or interact with each one of these data systems, collect information, and forward any new metadata records to a LWS Program-developed metadata library. A populated LWS metadata library will function as a single point-of-contact that serves the entire science community as a first stop for data availability, whether or not science data are physically stored in an LWS-operated repository. Further, this metadata library will provide the user access to information for understanding these data including descriptions of the associated spacecraft and instrument, data format, calibration and operations issues, links to ancillary and correlative data products, links to processing tools and models associated with these data, and any corresponding findings produced using these data. The LWS may also support an active archive for solar, space physics, space weather, and climate data when these data would otherwise be discarded or archived off-line. This archive could potentially serve also as a data storage backup facility for LWS missions. The plan for the LWS Program metadata library is developed based upon input received from the solar and geospace science communities; the library's architecture is based on existing systems developed for serving science metadata. The LWS Program continues to seek constructive input from the science community, examples of both successes and failures in dealing with science data systems, and insights regarding the obstacles between the current state-of-the-practice and this vision for the LWS Program metadata library.
Evolving the Living With a Star Data System Definition
NASA Astrophysics Data System (ADS)
Otranto, J.; Dijoseph, M.; Worrall, W.
2003-04-01
NASA’s Living With a Star (LWS) Program is a space weather-focused and applications-driven research program. The LWS Program is soliciting input from the solar, space physics, space weather, and climate science communities to develop a system that enables access to science data associated with these disciplines, and advances the development of discipline and interdisciplinary findings. The LWS Program will implement a data system that builds upon the existing and planned data capture, processing, and storage components put in place by individual spacecraft missions and also inter-project data management systems, such as active archives, deep archives, and multi-mission repositories. It is technically feasible for the LWS Program to integrate data from a broad set of resources, assuming they are either publicly accessible or access is permitted by the system’s administrators. The LWS Program data system will work in coordination with spacecraft mission data systems and science data repositories, integrating them into a common data representation. This common representation relies on a robust metadata definition that provides journalistic and technical data descriptions, plus linkages to supporting data products and tools. The LWS Program intends to become an enabling resource to PIs, interdisciplinary scientists, researchers, and students facilitating both access to a broad collection of science data, as well as the necessary supporting components to understand and make productive use of the data. For the LWS Program to represent science data that is physically distributed across various ground system elements, information about the data products stored on each system is collected through a series of LWS-created active agents. These active agents are customized to interface or interact with each one of these data systems, collect information, and forward updates to a single LWS-developed metadata broker. This broker, in turn, updates a centralized repository of LWS-specific metadata. A populated LWS metadata database is a single point-of-contact that can serve all users (the science community) with a “one-stop-shop” for data access. While data may not be physically stored in an LWS-specific repository, the LWS system enables data access from wherever the data are stored. Moreover, LWS provides the user access to information for understanding the data source, format, and calibration, enables access to ancillary and correlative data products, provides links to processing tools and models associated with the data, and any corresponding findings. The LWS may also support an active archive for solar, space physics, space weather, and climate data when these data would otherwise be discarded or archived off-line. This archive could potentially serve as a backup facility for LWS missions. This plan is developed based upon input already received from the science community; the architecture is based on system developed to date that have worked well on a smaller scale. The LWS Program continues to seek constructive input from the science community, examples of both successes and failures in dealing with science data systems, and insights regarding the obstacles between the current state-of-the-practice and this vision for the LWS Program data system.
Space weather effects on communications
NASA Astrophysics Data System (ADS)
Lanzerotti, Louis J.
In the 150 years since the advent of the first electrical communication system - the electrical telegraph - the diversity of communications technologies that are embedded within space-affected environments have vastly increased. The increasing sophistication of these communications technologies, and how their installation and operations may relate to the environments in which they are embedded, requires ever more sophisticated understanding of natural physical phenomena. At the same time, the business environment for most present-day communications technologies that are affected by space phenomena is very dynamic. The commercial and national security deployment and use of these technologies do not wait for optimum knowledge of possible environmental effects to be acquired before new technological embodiments are created, implemented, and marketed. Indeed, those companies that might foolishly seek perfectionist understanding of natural effects can be left behind by the marketplace. A well-considered balance is needed between seeking ever deeper understanding of physical phenomena and implementing `engineering' solutions to current crises. The research community must try to understand, and operate in, this dynamic environment.
NASA Astrophysics Data System (ADS)
Malloy, Vanja
2013-09-01
John Keats once wrote that `there is no such thing as time and space' rather, believing that time and space are mental constructs that are subject to a variety of forms and as diverse as the human mind. In the 1920s through the 1930s, modern physics in many ways supported this idea through the various philosophical writings on the Theory of General Relativity to the masses by scientists such as Arthur Eddington and Albert Einstein. These new concepts of modern physics fundamentally changed our understanding of time and space and had substantial philosophical implications, which were absorbed by modern artists resulting in the 1936 Dimensionist Manifesto. Seeking to internalize the developments of modern science within modern art, this manifesto was widely endorsed by the most prominent figures of the avant-garde such as Marcel Duchamp, Jean Arp, Naum Gabo, Joan Miró, László Moholy-Nagy, Wassily Kandinsky and Alexander Calder. Of particular interest to this manifesto was the new concept of the fourth-dimension, which in many ways revolutionized the arts. Importantly, its interpretation varied widely in the artistic community, ranging from a purely physical four-dimensional space, to a kinetic concept of space in which space and time are linked, to a metaphysical interest in a space that exists beyond the material realm. The impact of modern science and astronomy on avant-garde art is currently a bourgeoning area of research with considerable implications to our rethinking of substantial artistic figures of this era. Through a case study of Alexander Calder's Mobiles and Ben Nicholson's Reliefs, this paper explores how these artworks were informed by an interest in modern science.
National Report Norway: Arctic Access to Space
NASA Astrophysics Data System (ADS)
Brekke, P.
2015-09-01
Norway has long traditions as a space nation, much due to our northern latitude. Our space science activities are concentrated into relatively few areas. This concentration is necessary due to limited resources, both in funding and personnel. The main scientific activities are within Solar-terrestrial physics and cosmology. The first field has been a priority since before the space age and is still the major priority. The usage of the ground infrastructure in Northern Norway and on Svalbard is essential in studying the middle and upper atmosphere and the interaction with the Sun. This includes the utilization of sounding rockets, both small and large, and ground based installations like radars, lidars and other optical instrumentation. The planned use of Svalbard as a launch site for large stratospheric balloons may allow the cosmology community access to our northern infrastructure. The solar physics community is also heavily involved in the HINODE and IRIS missions and Norway is supporting downlink of data via the Svalbard Station for these missions. The sounding rocket program is in close collaboration with many countries like Germany, USA, France, Canada and Japan. Two scientific sounding rocket programs are currently being pursued: The ICI series (from Svalbard) and MaxiDusty (from Andoya). A series of scientific publications have recently appeared from the ECOMA campaign a few years ago. A significant improvement of today's polar and ionospheric research infrastructure in Northern Norway and Svalbard has recently been put on the ESFRI roadmap for European research infrastructure through the 5105 and EISCAT 3D initiatives. The Norwegian government has recently decided to upgrade the VLBI facilities at Svalbard.
Sarmiento, Olga L.; Rios, Ana Paola; Paez, Diana C.; Quijano, Karoll; Fermino, Rogério César
2017-01-01
Community-based physical activity (PA) programs in Latin America have been recognized because of the use of available environmental resources to offer PA classes. Yet, the evaluation of programs focused on PA classes involving dancing in public spaces is limited. The aim of this study was to assess the physical activity levels, park use, and the contextual characteristics of public parks with and without the Recreovía in Bogotá in Colombia. Al Ritmo de las Comunidades is a natural experiment conducted in nine parks (3 parks implementing new Recreovías, 3 control parks and 3 parks with existing Recreovías) during 2013. We used the System for Observing Play and Recreation in Communities to evaluate park use (gender, age, and physical activity level) and target areas. A total of 4925 people were observed during 702 observation visits to parks. The percentage of women was higher in parks with Recreovía, compared to parks without Recreovía (53% vs. 40% vs. 33%; p < 0.001). Women using parks with Recreovía compared to women in parks without Recreovía were less likely to be sedentary (25% vs. 39%; p < 0.0001) and more likely to engage in moderate-to-vigorous activity (75% vs. 61%; p < 0.0001). Among men, the activity pattern was the opposite. The Recreovía is a promising strategy to promote park use and PA, especially among women who are less likely to meet PA recommendations during their leisure time. The provision of a cost-free community program may be an effective approach and a good investment for health. PMID:28608844
Sarmiento, Olga L; Rios, Ana Paola; Paez, Diana C; Quijano, Karoll; Fermino, Rogério César
2017-06-13
Community-based physical activity (PA) programs in Latin America have been recognized because of the use of available environmental resources to offer PA classes. Yet, the evaluation of programs focused on PA classes involving dancing in public spaces is limited. The aim of this study was to assess the physical activity levels, park use, and the contextual characteristics of public parks with and without the Recreovía in Bogotá in Colombia. Al Ritmo de las Comunidades is a natural experiment conducted in nine parks (3 parks implementing new Recreovías, 3 control parks and 3 parks with existing Recreovías) during 2013. We used the System for Observing Play and Recreation in Communities to evaluate park use (gender, age, and physical activity level) and target areas. A total of 4925 people were observed during 702 observation visits to parks. The percentage of women was higher in parks with Recreovía, compared to parks without Recreovía (53% vs. 40% vs. 33%; p < 0.001). Women using parks with Recreovía compared to women in parks without Recreovía were less likely to be sedentary (25% vs. 39%; p < 0.0001) and more likely to engage in moderate-to-vigorous activity (75% vs. 61%; p < 0.0001). Among men, the activity pattern was the opposite. The Recreovía is a promising strategy to promote park use and PA, especially among women who are less likely to meet PA recommendations during their leisure time. The provision of a cost-free community program may be an effective approach and a good investment for health.
NASA Technical Reports Server (NTRS)
Suh, Jong-ook
2013-01-01
The Xilinx Virtex 4QV and 5QV (V4 and V5) are next-generation field-programmable gate arrays (FPGAs) for space applications. However, there have been concerns within the space community regarding the non-hermeticity of V4/V5 packages; polymeric materials such as the underfill and lid adhesive will be directly exposed to the space environment. In this study, reliability concerns associated with the non-hermeticity of V4/V5 packages were investigated by studying properties and behavior of the underfill and the lid adhesvie materials used in V4/V5 packages.
Stability and change in kelp forest habitats at San Nicolas Island
Kenner, Michael C.; Tinker, M. Tim
2018-01-01
Kelp forest communities are highly variable over space and time. Despite this complexity it has been suggested that kelp forest communities can be classified into one of 2 states: kelp dominated or sea urchin dominated. It has been further hypothesized that these represent “alternate stable states” because a site can remain in either of these states for decades before some perturbation causes a rapid shift to the other state. Our research group has maintained a subtidal community monitoring program for 38 years at San Nicolas Island consisting of twice-annual scuba-based surveys at 6 sites distributed within 4 regions around the island. Three types of perturbations are thought to be relevant to subtidal community dynamics at San Nicolas: (1) physical disturbances in the form of major storm and El Niño/Southern Oscillation (ENSO) events; (2) invertebrate diseases, which periodically decimate urchin populations; and (3) the reintroduction and subsequent increase of sea otters (Enhydra lutris nereis). These 3 perturbations differ in spatial and temporal specificity; physical disturbances and disease outbreaks occur periodically and could affect all 4 regions, while sea otter predation has been concentrated primarily at the West End sites over the last 15 years. The different types of perturbations and the duration of the time series at the kelp forests at San Nicolas make the data set ideal for testing the “alternate stable state” hypothesis. We use nonmetric multidimensional scaling (NMDS) to examine spatial and temporal patterns of community similarity at the 4 regions. In particular, we evaluate support for the existence of stable states, which are represented on NMDS plots as distinct spatial clusters. Community dynamics at each site approximated a biased random walk in NMDS space, with one or more basins of attraction and occasional jumps between basins. We found evidence for alternative stable states at some sites, and we show that transitions from one stable state to another may be influenced by interactions between multiple perturbations.
Capitalizing on Community: the Small College Environment and the Development of Researchers
NASA Astrophysics Data System (ADS)
Stoneking, M. R.
2014-03-01
Liberal arts colleges constitute an important source of and training ground for future scientists. At Lawrence University, we take advantage of our small college environment to prepare physics students for research careers by complementing content acquisition with skill development and project experience distributed throughout the curriculum and with co-curricular elements that are tied to our close-knit supportive physics community. Small classes and frequent contact between physics majors and faculty members offer opportunities for regular and detailed feedback on the development of research relevant skills such as laboratory record-keeping, data analysis, electronic circuit design, computational programming, experimental design and modification, and scientific communication. Part of our approach is to balance collaborative group work on small projects (such as Arduino-based electronics projects and optical design challenges) with independent work (on, for example, advanced laboratory experimental extensions and senior capstone projects). Communal spaces and specialized facilities (experimental and computational) and active on-campus research programs attract eager students to the program, establish a community-based atmosphere, provide unique opportunities for the development of research aptitude, and offer opportunities for genuine contribution to a research program. Recently, we have also been encouraging innovativetendencies in physics majors through intentional efforts to develop personal characteristics, encouraging students to become more tolerant of ambiguity, risk-taking, initiative-seeking, and articulate. Indicators of the success of our approach include the roughly ten physics majors who graduate each year and our program's high ranking among institutions whose graduates go on to receive the Ph.D. in physics. Work supported in part by the National Science Foundation.
The Future of UV-Visible Astronomy from Space - the NASA COPAG SIG
NASA Astrophysics Data System (ADS)
Scowen, Paul
2015-08-01
The ultraviolet (92-320nm) and visible (320-1000nm) (UVV) regions of the spectrum contain a vital suite of diagnostic lines that can be used to study diverse astronomical objects and phenomena that shape and energize the interstellar medium. It is a critical spectral range for tracing the physics of interstellar and intergalactic gas, the ionization of nebulae, the properties of shocks, the atmospheres and winds of hot stars, energy transfer between galaxies and their surrounding environments, and the engines of active galactic nuclei. This spectral range contains diagnostics that measure gas density, electron temperature, and energy balance between various modes of cooling. It is an unfortunate truth that many, if not most, of these diagnostics can only be observed outside the Earth’s atmosphere, requiring facilities in space. Space-based observations also provide access to diffraction-limited optical performance to achieve high spatial resolution. Such spatial resolutions cannot currently be achieved from the ground over wide fields, a capability that many science programs need for sampling and survey work.In order to provide continuing access in the future, new space-based missions will be needed to provide the core imaging and spectroscopic information in this important part of the electromagnetic spectrum. The technology that enables such access has been a high priority in technology development plans that have been developed by both the Cosmic Origins Program Office and Astrophysics Division at NASA, but a holistic approach to considering what is needed for a long-term technology roadmap has not yet been discussed widely within the community. This UVV Science Interest Group [SIG #2] has been established to collect community input and define long-term Cosmic Origins science objectives of the UVV astronomy community that can be addressed by space-based observations. The SIG facilitates communication to merge the needs and desires of the science community with the achievements and plans of the technology community. The SIG is open to any interested members of the community and we welcome any and all input. SIG website: http://sig2.asu.edu.
Essay on the Causes and Consequences of Extraterrestrial Tyranny
NASA Astrophysics Data System (ADS)
Cockell, C. S.
The construction of societies in space in which liberty can be preserved requires that the reasons for the emergence of despotism are identified. Tyranny will emerge from the historical origins of extraterrestrial society and the way in which early communities must be developed technically. It will receive encouragement from the imposing nature of the extraterrestrial environment - its extreme physical characteristics and vast spatial scales that encourage social isolation and autarky. It will flourish in the very culture of a new society in which the laws of physics force people to engage in the most traditional forms of revolutionary activity, such as inventing new calendars. Preventing the emergence of tyranny will not merely be essential for the freedom of people in such societies: the continuity of liberty on the Earth may depend ultimately upon the successful propagation of liberty in space.
Shared use agreements and leisure time physical activity in North Carolina public schools.
Carlton, Troy A; Kanters, Michael A; Bocarro, Jason N; Floyd, Myron F; Edwards, Michael B; Suau, Luis J
2017-02-01
Although increasing community access to public schools through shared use agreements (SUAs) has been a recommended strategy for promoting physical activity (PA) among national, state and local organizations, empirical evidence examining the efficacy of SUAs is limited. This study examined the degree of usage and production of PA among schools with shared use, and how variation in PA output is related to characteristics of the school, type of activity, facility type, and when activity occurs. Data were collected in 20 schools across North Carolina using System for Observing Play and Recreation in Communities (SOPARC) and Structured Physical Activity Surveys (SPAS) to assess PA in school athletic facilities during out of school time. Findings indicated that although schools had a policy of shared or open use, most facilities were empty during non-school hours. Hierarchal linear regression models also showed that formal programming was positively associated with both use and PA levels. Given the abundance of empty facilities, community groups in need of space to facilitate structured PA programs should pursue avenues of sharing facilities with public schools. Furthermore, to increase the efficacy of shared use, structured physical activity programs may be needed. Future studies are encouraged to further explore the effects of the specific types of shared use programs on PA production as well other aspects of the built environment surrounding schools. Copyright © 2016 Elsevier Inc. All rights reserved.
Asynchrony among local communities stabilises ecosystem function of metacommunities.
Wilcox, Kevin R; Tredennick, Andrew T; Koerner, Sally E; Grman, Emily; Hallett, Lauren M; Avolio, Meghan L; La Pierre, Kimberly J; Houseman, Gregory R; Isbell, Forest; Johnson, David Samuel; Alatalo, Juha M; Baldwin, Andrew H; Bork, Edward W; Boughton, Elizabeth H; Bowman, William D; Britton, Andrea J; Cahill, James F; Collins, Scott L; Du, Guozhen; Eskelinen, Anu; Gough, Laura; Jentsch, Anke; Kern, Christel; Klanderud, Kari; Knapp, Alan K; Kreyling, Juergen; Luo, Yiqi; McLaren, Jennie R; Megonigal, Patrick; Onipchenko, Vladimir; Prevéy, Janet; Price, Jodi N; Robinson, Clare H; Sala, Osvaldo E; Smith, Melinda D; Soudzilovskaia, Nadejda A; Souza, Lara; Tilman, David; White, Shannon R; Xu, Zhuwen; Yahdjian, Laura; Yu, Qiang; Zhang, Pengfei; Zhang, Yunhai
2017-12-01
Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook
2012-01-01
The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.
Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
NASA Technical Reports Server (NTRS)
1999-01-01
This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." The conference publication consists of the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference. Ninety papers are presented in 21 technical sessions, and a special exposition session presents 32 posters describing the work of principal investigators new to NASA's program in this discipline. Eighty-eight papers and 25 posters are presented in their entirety on the CD-ROM.
The ESIS query environment pilot project
NASA Technical Reports Server (NTRS)
Fuchs, Jens J.; Ciarlo, Alessandro; Benso, Stefano
1993-01-01
The European Space Information System (ESIS) was originally conceived to provide the European space science community with simple and efficient access to space data archives, facilities with which to examine and analyze the retrieved data, and general information services. To achieve that ESIS will provide the scientists with a discipline specific environment for querying in a uniform and transparent manner data stored in geographically dispersed archives. Furthermore it will provide discipline specific tools for displaying and analyzing the retrieved data. The central concept of ESIS is to achieve a more efficient and wider usage of space scientific data, while maintaining the physical archives at the institutions which created them, and has the best background for ensuring and maintaining the scientific validity and interest of the data. In addition to coping with the physical distribution of data, ESIS is to manage also the heterogenity of the individual archives' data models, formats and data base management systems. Thus the ESIS system shall appear to the user as a single database, while it does in fact consist of a collection of dispersed and locally managed databases and data archives. The work reported in this paper is one of the results of the ESIS Pilot Project which is to be completed in 1993. More specifically it presents the pilot ESIS Query Environment (ESIS QE) system which forms the data retrieval and data dissemination axis of the ESIS system. The others are formed by the ESIS Correlation Environment (ESIS CE) and the ESIS Information Services. The ESIS QE Pilot Project is carried out for the European Space Agency's Research and Information center, ESRIN, by a Consortium consisting of Computer Resources International, Denmark, CISET S.p.a, Italy, the University of Strasbourg, France and the Rutherford Appleton Laboratories in the U.K. Furthermore numerous scientists both within ESA and space science community in Europe have been involved in defining the core concepts of the ESIS system.
Li, Bai; Lin, Rong; Liu, Wei; Chen, Jingyi; Liu, Weijia; Cheng, KarKeung; Pallan, Miranda; Adab, Peymane; Jones, Laura
2017-01-01
In developing countries, obesity traditionally affectsmore affluent children, butis spreading to a wider social group. Understanding the perceivedcontributors can provide valuable insights to plan preventive interventions. We exploreddifferences in the perceived causes of childhood obesity between local and migrant communities in a major Chinese city. We conducted 20 focus groups (137 parents, grandparents, school teachers) and 11semi-structured interviews with school Principals from migrant and local communities in Guangzhou. Data were transcribed and analysed using a thematic approach. We found that Lack of influence from grandparents, who were perceived to promote obesogenic behaviorin local children, fewer opportunities for unhealthy snacking and less pressure for academic attainment leading to moreactive play were interpreted as potential "protective" factors among migrant children. Nevertheless, two perceived causes of obesity were more pronounced in migrant than local children: lack of parental monitoring after-school andunsafe neighborhoods limiting physical-activity. Two barriers that restricted child physical activity were only found in the migrant community: limited home space, and cultural differences, inhabitinginteractive play with local children. Future interventions should consider uniquedeterminants of obesity in children from different social backgrounds, with tailored strategies to prevent further rise of the epidemic.
Distribution of green infrastructure along walkable roads ...
Low-income and minority neighborhoods frequently lack healthful resources to which wealthier communities have access. Though important, the addition of facilities such as recreation centers can be costly and take time to implement. Urban green infrastructure, such as street trees and other green space, can be a low-cost alternative to promote frequency and duration of outdoor physical activity. Street trees and other green space may increase outdoor physical activity levels by providing shade, improving aesthetics, and promoting social engagement. Though street trees and green space provide many benefits and are publicly accessible at all times, these resources are not evenly distributed between neighborhoods. An objective analysis of street tree cover and green space in 6,407 block groups across 10 urban areas was conducted using fine-scale land cover data. Distribution of green infrastructure was then analyzed by minority status, income, car ownership, housing density, and employment density. The objective measure of street tree cover and green space is based on 1-meter resolution land cover data from the U.S. EPA-led EnviroAtlas. Tree cover was analyzed along each side of walkable road centerlines in the areas where sidewalks are estimated to be. Green space was calculated within 25 meters of road centerlines. Percent tree cover and green space per city block were then summarized to census block group (CBG). CBG demographics from the U.S. Census and built env
ERIC Educational Resources Information Center
Krusemark, Stephanie L.
2010-01-01
"Space, like language, is socially constructed; and like the syntax of language, the spatial arrangements of our buildings and communities reflect and reinforce the nature of gender, race, and class relations in society" (Weisman, 1992, p. 2). While institutions of higher education have granted physical access to African-American women over the…
1984-10-01
develop pollution abatement procedures for Army munition plants and military installations.n, t ftr Laboratory is also actively engaged in the...FACILITIES The physical plant provides over 100,000 square feet for research, development, testing, and administrative activities . Space is...protection of industrial workers and thq surrounding community at Army-controlled, industry-operated munition plants . G Environmental Quality program
ERIC Educational Resources Information Center
Lee, Sungkyung
2009-01-01
Although the contemporary commercial urban landscape is often assessed as placeless, this research proposes that even these seemingly anonymous places are repositories of thriving community values and meanings. Seeking a more complex reading, this research extends the scope of analysis from physical space to human use in order to reveal the…
A Room with a View: Accommodating Hindu Religious Practice on a College Campus
ERIC Educational Resources Information Center
Chander, Vineet
2013-01-01
This article examines the question of how to best accommodate Hindu practice on college campuses by contrasting the dedication of a prayer room with the hiring of a Hindu chaplain. The author suggests that this dichotomy--of an impersonal physical space ("a room") on the one hand, and a chaplain empowered to lead a community ("a view") on the…
Community health assessment using self-organizing maps and geographic information systems
Basara, Heather G; Yuan, May
2008-01-01
Background From a public health perspective, a healthier community environment correlates with fewer occurrences of chronic or infectious diseases. Our premise is that community health is a non-linear function of environmental and socioeconomic effects that are not normally distributed among communities. The objective was to integrate multivariate data sets representing social, economic, and physical environmental factors to evaluate the hypothesis that communities with similar environmental characteristics exhibit similar distributions of disease. Results The SOM algorithm used the intrinsic distributions of 92 environmental variables to classify 511 communities into five clusters. SOM determined clusters were reprojected to geographic space and compared with the distributions of several health outcomes. ANOVA results indicated that the variability between community clusters was significant with respect to the spatial distribution of disease occurrence. Conclusion Our study demonstrated a positive relationship between environmental conditions and health outcomes in communities using the SOM-GIS method to overcome data and methodological challenges traditionally encountered in public health research. Results demonstrated that community health can be classified using environmental variables and that the SOM-GIS method may be applied to multivariate environmental health studies. PMID:19116020
Analysis of Potentially Hazardous Asteroids
NASA Technical Reports Server (NTRS)
Arnold, J. O.; Burkhard, C. D.; Dotson, J. L.; Prabhu, D. K.; Mathias, D. L.; Aftosmis, M. J.; Venkatapathy, Ethiraj; Morrison, D. D.; Sears, D. W. G.; Berger, M. J.
2015-01-01
The National Aeronautics and Space Administration initiated a new project focused on Planetary Defense on October 1, 2014. The new project is funded by NASAs Near Earth Object Program (Lindley Johnson, Program Executive). This presentation describes the objectives, functions and plans of four tasks encompassed in the new project and their inter-relations. Additionally, this project provides for outreach to facilitate partnerships with other organizations to help meet the objectives of the planetary defense community. The four tasks are (1) Characterization of Near Earth Asteroids, (2) Physics-Based Modeling of Meteor Entry and Breakup (3) Surface Impact Modeling and (4) Physics-Based Impact Risk Assessment.
Survivor Fitness: An Exercise Program for Young Survivors and Patients With Cancer.
Acevedo, Jose A
2017-04-01
Young survivors of cancer often face challenges reintegrating into their schools and communities after treatment. Maintaining a physically active lifestyle is recommended, but finding appropriate exercises that cater to their needs can be difficult. As a result, the pilot fitness program Move4Fun/Move4Fitness was developed. This 12-week basic fitness program teaches young survivors of cancer appropriate exercises and how they can exercise on their own with limited space and equipment. Participants experienced physical and mental transformations demonstrated through weight loss, building of muscle, and increased self-confidence.
Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts
NASA Technical Reports Server (NTRS)
Singh, Bhim (Compiler)
2002-01-01
The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.
NASA Astrophysics Data System (ADS)
Cheptsov, V. S.; Vorobyova, E. A.
2017-05-01
Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.
Lessons learned from recent geomagnetic disturbance model validation activities
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Welling, D. T.
2017-12-01
Due to concerns pertaining to geomagnetically induced current impact on ground-based infrastructure, there has been significantly elevated interest in applying models for local geomagnetic disturbance or "delta-B" predictions. Correspondingly there has been elevated need for testing the quality of the delta-B predictions generated by the modern empirical and physics-based models. To address this need, community-wide activities were launched under the GEM Challenge framework and one culmination of the activities was the validation and selection of models that were transitioned into operations at NOAA SWPC. The community-wide delta-B action is continued under the CCMC-facilitated International Forum for Space Weather Capabilities Assessment and its "Ground Magnetic Perturbations: dBdt, delta-B, GICs, FACs" working group. The new delta-B working group builds on the past experiences and expands the collaborations to cover the entire international space weather community. In this paper, we discuss the key lessons learned from the past delta-B validation exercises and lay out the path forward for building on those experience under the new delta-B working group.
Mmari, Kristin; Lantos, Hannah; Brahmbhatt, Heena; Delany-Moretlwe, Sinead; Lou, Chaohua; Acharya, Rajib; Sangowawa, Adesola
2014-04-12
The Well-Being of Adolescents in Vulnerable Environments (WAVE) study was conducted among adolescents aged 15-19 years in Baltimore, Ibadan, Johannesburg, New Delhi, and Shanghai to examine perceived factors related to their health. A preliminary analysis of the data, unexpectedly, revealed that the influence of the physical environment on adolescent health was a dominant theme across every site examined. To explore this further, this paper analyzed the specific components of the physical environment that were perceived to influence health, and how they contributed to various health outcomes across sites. Researchers in each site conducted in-depth interviews among adolescents; community mapping and focus groups among adolescents; a Photovoice methodology, in which adolescents were trained in photography and took photos of the meaning of 'health' in their communities; and key informant interviews among adults who work with young people. A total 529 participants from across the sites were included in the analysis. Findings showed that while there was surprising uniformity in how adolescents characterized their physical environment, perceived health outcomes related to the physical environment varied by site and gender. In Baltimore and Johannesburg, vacant homes and the lack of recreation facilities were perceived to impact on sexual and reproductive health problems for girls, while among boys they contributed to drugs and violence. In Shanghai, New Delhi, and Ibadan, garbage and trash observed in their communities were perceived to have a higher impact on infectious and chronic diseases. As the world continues to urbanize, our study points to a strong need to examine how the physical aspects of a living environment contribute to the health of adolescents. Specific aspects, such as housing, safety, garbage, and recreational spaces must all be examined as possible pathways for making improvements to health of adolescents, particularly among those living in poor urban environments.
2014-01-01
Background The Well-Being of Adolescents in Vulnerable Environments (WAVE) study was conducted among adolescents aged 15-19 years in Baltimore, Ibadan, Johannesburg, New Delhi, and Shanghai to examine perceived factors related to their health. A preliminary analysis of the data, unexpectedly, revealed that the influence of the physical environment on adolescent health was a dominant theme across every site examined. To explore this further, this paper analyzed the specific components of the physical environment that were perceived to influence health, and how they contributed to various health outcomes across sites. Methods Researchers in each site conducted in-depth interviews among adolescents; community mapping and focus groups among adolescents; a Photovoice methodology, in which adolescents were trained in photography and took photos of the meaning of ‘health’ in their communities; and key informant interviews among adults who work with young people. A total 529 participants from across the sites were included in the analysis. Results Findings showed that while there was surprising uniformity in how adolescents characterized their physical environment, perceived health outcomes related to the physical environment varied by site and gender. In Baltimore and Johannesburg, vacant homes and the lack of recreation facilities were perceived to impact on sexual and reproductive health problems for girls, while among boys they contributed to drugs and violence. In Shanghai, New Delhi, and Ibadan, garbage and trash observed in their communities were perceived to have a higher impact on infectious and chronic diseases. Conclusions As the world continues to urbanize, our study points to a strong need to examine how the physical aspects of a living environment contribute to the health of adolescents. Specific aspects, such as housing, safety, garbage, and recreational spaces must all be examined as possible pathways for making improvements to health of adolescents, particularly among those living in poor urban environments. PMID:24726018
Physics of the Cosmos (PCOS) Technology Development Program Overview
NASA Astrophysics Data System (ADS)
Pham, B. Thai; Clampin, M.; Werneth, R. L.
2014-01-01
The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.
Tackling 'wicked' health promotion problems: a New Zealand case study.
Signal, Louise N; Walton, Mat D; Ni Mhurchu, Cliona; Maddison, Ralph; Bowers, Sharron G; Carter, Kristie N; Gorton, Delvina; Heta, Craig; Lanumata, Tolotea S; McKerchar, Christina W; O'Dea, Des; Pearce, Jamie
2013-03-01
This paper reports on a complex environmental approach to addressing 'wicked' health promotion problems devised to inform policy for enhancing food security and physical activity among Māori, Pacific and low-income people in New Zealand. This multi-phase research utilized literature reviews, focus groups, stakeholder workshops and key informant interviews. Participants included members of affected communities, policy-makers and academics. Results suggest that food security and physical activity 'emerge' from complex systems. Key areas for intervention include availability of money within households; the cost of food; improvements in urban design and culturally specific physical activity programmes. Seventeen prioritized intervention areas were explored in-depth and recommendations for action identified. These include healthy food subsidies, increasing the statutory minimum wage rate and enhancing open space and connectivity in communities. This approach has moved away from seeking individual solutions to complex social problems. In doing so, it has enabled the mapping of the relevant systems and the identification of a range of interventions while taking account of the views of affected communities and the concerns of policy-makers. The complex environmental approach used in this research provides a method to identify how to intervene in complex systems that may be relevant to other 'wicked' health promotion problems.
Taking Risks for the Future of Space Weather Forecasting, Research, and Operations
NASA Astrophysics Data System (ADS)
Jaynes, A. N.; Baker, D. N.; Kanekal, S. G.; Li, X.; Turner, D. L.
2017-12-01
Taking Risks for the Future of Space Weather Forecasting, Research, and Operations The need for highly improved space weather modeling and monitoring is quickly becoming imperative as our society depends ever more on the sensitive technology that builds and connects our world. Instead of relying primarily on tried and true concepts, academic institutions and funding agencies alike should be focusing on truly new and innovative ways to solve this pressing problem. In this exciting time, where student-led groups can launch CubeSats for under a million dollars and companies like SpaceX are actively reducing the cost-cap of access to space, the space physics community should be pushing the boundaries of what is possible to enhance our understanding of the space environment. Taking great risks in instrumentation, mission concepts, operational development, collaborations, and scientific research is the best way to move our field forward to where it needs to be for the betterment of science and society.
Context matters: A community-based study of urban minority parents’ views on child health
Bolar, Cassandra L.; Hernandez, Natalie; Akintobi, Tabia Henry; McAllister, Calvin; Ferguson, Aneeqah S.; Rollins, Latrice; Wrenn, Glenda; Okafor, Martha; Collins, David; Clem, Thomas
2016-01-01
Background Among children, there are substantial ethno-racial minority disparities across a broad range of health-related behaviors, experiences, and outcomes. Addressing these disparities is important, as childhood and adolescence establish health trajectories that extend throughout life. Methods The current study employed a community-based participatory research approach to gain community insight on child health priorities and to frame an intervention aimed at improving the health of minority children. Eight focus groups were conducted among seventy-five African American parents in a Southeastern city. The current study was guided by an ecological theoretical framework. Results Although the focus of this investigation was on community identification of child health priorities, participants cited, as root determinants, contextual factors, which included lack of healthy food options, lack of spaces for physical activity, and community violence. These co-occurring factors were related to limited engagement in outdoor activities and physical activity, increased obesity, and poor mental health and coping. Poor parenting was cited as the most substantial barrier to improving child health outcomes, and quality parenting was identified as the most important issue to address for community programs focused on promoting the health and success of children. For improving health outcomes for children in their neighborhoods, establishment of positive social capital and constructive activities were also cited. Conclusions These results reinforce social determinants of health as influences on child health outcomes and describe how community engagement can address potential solutions through interventions that resonate with program participants. PMID:27275021
NASA Astrophysics Data System (ADS)
Herrington, A. R.; Reed, K. A.
2018-02-01
A set of idealized experiments are developed using the Community Atmosphere Model (CAM) to understand the vertical velocity response to reductions in forcing scale that is known to occur when the horizontal resolution of the model is increased. The test consists of a set of rising bubble experiments, in which the horizontal radius of the bubble and the model grid spacing are simultaneously reduced. The test is performed with moisture, through incorporating moist physics routines of varying complexity, although convection schemes are not considered. Results confirm that the vertical velocity in CAM is to first-order, proportional to the inverse of the horizontal forcing scale, which is consistent with a scale analysis of the dry equations of motion. In contrast, experiments in which the coupling time step between the moist physics routines and the dynamical core (i.e., the "physics" time step) are relaxed back to more conventional values results in severely damped vertical motion at high resolution, degrading the scaling. A set of aqua-planet simulations using different physics time steps are found to be consistent with the results of the idealized experiments.
Morrow, Reiff, Receive 2013 Space Physics and Aeronomy Richard Carrington Awards: Response
NASA Astrophysics Data System (ADS)
Morrow, Cherilynn
2014-08-01
I am delighted to receive the SPARC award, which recognizes education and public outreach (E/PO) efforts that incorporate our community's scientific achievements while addressing authentic educational needs. No one is honored in isolation, and I owe a large debt of gratitude to many fellow pioneers, including the author of the citation above and my fellow SPARC awardee, Pat Reiff. Back in 1994, she was one of two committee members to be overtly supportive as I made the first ever E/PO presentations to the (then) NASA Space Science Advisory Committee. Today all of the recent space science decadal reports include explicit support for E/PO programs integrated within NASA and National Science Foundation research missions.
Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee
NASA Technical Reports Server (NTRS)
Gallagher, D. L. (Editor)
1993-01-01
The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.
Wiles, Janine L; Allen, Ruth E S; Palmer, Anthea J; Hayman, Karen J; Keeling, Sally; Kerse, Ngaire
2009-02-01
A sense of belonging or attachment to place is believed to help maintain a sense of identity and well-being, and to facilitate successful adjustments in old age. Older people in particular have been shown to draw meaning and security from the places in which they live. Qualitative data from multiple conversational interviews held over the period of a year with each of 83 community-dwelling older people in Auckland within the context of a study conducted from 2006 to 2008 are interpreted to explore how older people relate to their social and physical environments, with a specific focus on attachment to place and the meaning of home. The concept of 'social space' is proposed, to capture the elastic physical, imaginative, emotional and symbolic experiences of and connections to people and place across time and in scope. Talking with older people themselves gave a rich account of attachment to place, social spaces, and well-being. Our participants had strong attachments to their homes and neighbourhoods, extensive participation in 'beyond spaces', and shrinking social worlds. They did not, however necessarily view changes as negative; instead there was a delicate negotiation of positive and negative aspects, and complex engagement with 'social space' as a profoundly meaningful construct.
Reciprocal Space Mapping of Macromolecular Crystals in the Home Laboratory
NASA Technical Reports Server (NTRS)
Snell, Edward H.; Fewster, P. F.; Andrew, Norman; Boggon, T. J.; Judge, Russell A.; Pusey, Marc A.
1999-01-01
Reciprocal space mapping techniques are used widely by the materials science community to provide physical information about their crystal samples. We have used similar methods at synchrotron sources to look at the quality of macromolecular crystals produced both on the ground and under microgravity conditions. The limited nature of synchrotron time has led us to explore the use of a high resolution materials research diffractometer to perform similar measurements in the home laboratory. Although the available intensity is much reduced due to the beam conditioning necessary for high reciprocal space resolution, lower resolution data can be collected in the same detail as the synchrotron source. Experiments can be optimized at home to make most benefit from the synchrotron time available. Preliminary results including information on the mosaicity and the internal strains from reciprocal space maps will be presented.
Durand, C P; Andalib, M; Dunton, G F; Wolch, J; Pentz, M A
2011-05-01
Smart growth is an approach to urban planning that provides a framework for making community development decisions. Despite its growing use, it is not known whether smart growth can impact physical activity. This review utilizes existing built environment research on factors that have been used in smart growth planning to determine whether they are associated with physical activity or body mass. Searching the MEDLINE, Psycinfo and Web-of-Knowledge databases, 204 articles were identified for descriptive review, and 44 for a more in-depth review of studies that evaluated four or more smart growth planning principles. Five smart growth factors (diverse housing types, mixed land use, housing density, compact development patterns and levels of open space) were associated with increased levels of physical activity, primarily walking. Associations with other forms of physical activity were less common. Results varied by gender and method of environmental assessment. Body mass was largely unaffected. This review suggests that several features of the built environment associated with smart growth planning may promote important forms of physical activity. Future smart growth community planning could focus more directly on health, and future research should explore whether combinations or a critical mass of smart growth features is associated with better population health outcomes. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.
From Theory to Action: Children's Community Pediatrics Behavioral Health System.
Schlesinger, Abigail; Collura, Jacquelyn M; Harris, Emily; Quigley, Joanna
2017-10-01
Integrated health care models attempt to cross the barrier between behavioral and medical worlds in order to improve access to quality care that meets the needs of the whole patient. Unfortunately, the integration of behavioral health and physical health providers in one space is not enough to actually promote integration. There are many models for promoting integration and collaboration within the primary care context. This article uses the experience of the Children's Community Pediatrics Behavioral Health Services system to highlight components of collaboration that should be considered in order to successfully integrate behavioral health within a medical home. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeilik, M.; Garvin-Doxas, K.
2003-12-01
FLAG, the Field-tested Learning Assessment Guide (http://www.flaguide.org/) is a NSF funded website that offers broadly-applicable, self-contained modular classroom assessment techniques (CATs) and discipline-specific tools for STEM instructors creating new approaches to evaluate student learning, attitudes and performance. In particular, the FLAG contains proven techniques for alterative assessments---those needed for reformed, innovative STEM courses. Each tool has been developed, tested and refined in real classrooms at colleges and universities. The FLAG also contains an assessment primer, a section to help you select the most appropriate assessment technique(s) for your course goals, and other resources. In addition to references on instrument development and field-tested instruments on attitudes towards science, the FLAG also includes discipline-specific tools in Physics, Astronomy, Biology, and Mathematics. Building of the Geoscience collection is currently under way with the development of an instrument for detecting misconceptions of incoming freshmen on Space Science, which is being developed with the help of the Committee on Space Science and Astronomy of the American Association of Physics Teachers. Additional field-tested resources from the Geosciences are solicited from the community. Contributions should be sent to Michael Zeilik, zeilik@la.unm.edu. This work has been supported in part by NSF grant DUE 99-81155.
Quantifications of Geomagnetic Storm Impact on TEC and NmF2 during 2013 Mar. event
NASA Astrophysics Data System (ADS)
Shim, J. S.; Tsagouri, I.; Goncharenko, L. P.; Mays, M. L.; Taktakishvili, A.; Rastaetter, L.; Kuznetsova, M. M.
2016-12-01
We investigate the ionospheric response to 2013 Mar. geomagnetic storm event using GPS TEC, ISR and ionosonde observations in North American sector. In order to quantify variations of TEC and NmF2 (or foF2) due to the storm, we remove the background quiet-time values (e.g., TEC of one day prior to the storm, NmF2 median and average of five quietest days for 30 days prior to the storm). In addition, in order to assess modeling capability of reproducing storm impacts on TEC and NmF2, we compare the observations with various model simulations, which are obtained from empirical, physics-based, and data assimilation models. Further, we investigate how uncertainty in the interplanetary magnetic field (IMF) impacts on TEC and NmF2 during the geomagnetic storm event. For this uncertainty study, we use a physics-based coupled ionosphere-thermosphere model, CTIPe, and solar wind parameters obtained from ensemble of WSA-ENLIL+Cone model simulations. This study has been supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) for the space science communities to use.
Global Plasmaspheric Imaging: A New "Light" Focusing on Familiar Questions
NASA Technical Reports Server (NTRS)
Adrian, M. L.; Six, N. Frank (Technical Monitor)
2002-01-01
Until recently plasmaspheric physics, for that matter, magnetospheric physics as a whole, has relied primarily on single point in-situ measurement, theory, modeling, and a considerable amount of extrapolation in order to envision the global structure of the plasmasphere. This condition changed with the launch of the IMAGE satellite in March 2000. Using the Extreme Ultraviolet (EUV) imager on WAGE, we can now view the global structure of the plasmasphere bathed in the glow of resonantly scattered 30.4 nm radiation allowing the space physics community to view the dynamics of this global structure as never before. This talk will: (1) define the plasmasphere from the perspective of plasmaspheric physics prior to March 2000; (2) present a review of EUV imaging optics and the IMAGE mission; and focus on efforts to understand an old and familiar feature of plasmaspheric physics, embedded plasmaspheric density troughs, in this new global light with the assistance of forward modeling.
Seasonal Patterns of the Insect Community Structure in Urban Rain Pools of Temperate Argentina
Fontanarrosa, M. Soledad; Collantes, Marta B.; Bachmann, Axel O.
2009-01-01
Temporary aquatic environments are widespread in the world, and although there are considerable regional differences in their type and method of formation they have many physical, chemical and biological properties in common. With the aim to increase knowledge of urban temporary pool fauna, the objectives of this work were to assess the seasonal patterns of species composition, richness, and diversity of the aquatic insect community inhabiting rain pools in urban temperate Argentina, and to identify the environmental variables associated to these patterns. Four temporary pools of an urban green space in Buenos Aires City were studied throughout a 1-year period. Eleven flood cycles with very varied hydroperiods and dry periods, mainly associated with rainfall, were identified. Insect species richness in these temporary urban pools, 86 taxa were documented, was found to be within the range reported for wild temporary water bodies of other regions of the world. The present results provide evidence for the existence of a clear link between habitat and community variability. Hydroperiod and seasonality were the main environmental factors involved in structuring the insect communities of the studied water bodies. Urban pools in green spaces have the potential to act to its dwellers like corridors through the urban matrix. Taking into account these characteristics and their accessibility, urban temporary pools can be considered as promising habitats for the study of ecological processes involving the insect community. PMID:19611261
Sawyer, Alexia D M; Jones, Russell; Ucci, Marcella; Smith, Lee; Kearns, Ade; Fisher, Abi
2017-01-01
Understanding the environmental determinants of physical activity in populations at high risk of inactivity could contribute to the development of effective interventions. Socioecological models of activity propose that environmental factors have independent and interactive effects of physical activity but there is a lack of research into interactive effects. This study aimed to explore independent and interactive effects of social and physical environmental factors on self-reported physical activity in income-deprived communities. Participants were 5,923 adults in Glasgow, United Kingdom. Features of the social environment were self-reported. Quality of the physical environment was objectively-measured. Neighbourhood walking and participation in moderate physical activity [MPA] on ≥5 days/week was self-reported. Multilevel multivariate logistic regression models tested independent and interactive effects of environmental factors on activity. 'Social support' (walking: OR:1.22,95%CI = 1.06-1.41,p<0.01; MPA: OR:0.79,95%CI = 0.67-0.94,p<0.01), 'social interaction' (walking: OR:1.25,95%CI = 1.10-1.42,p<0.01; MPA: OR:6.16,95%CI = 5.14-7.37,p<0.001) and 'cohesion and safety' (walking: OR:1.78,95%CI = 1.56-2.03,p<0.001; MPA: OR:1.93,95%CI = 1.65-2.27,p<0.001), but not 'trust and empowerment', had independent effects on physical activity. 'Aesthetics of built form' (OR:1.47,95%CI = 1.22-1.77,p<0.001) and 'aesthetics and maintenance of open space' (OR:1.32, 95%CI = 1.13-1.54,p<0.01) were related to walking. 'Physical disorder' (OR:1.63,95%CI = 1.31-2.03,p<0.001) had an independent effect on MPA. Interactive effects of social and physical factors on walking and MPA were revealed. Findings suggest that intervening to create activity-supportive environments in deprived communities may be most effective when simultaneously targeting the social and physical neighbourhood environment.
Personal goals and changes in life-space mobility among older people.
Saajanaho, Milla; Rantakokko, Merja; Portegijs, Erja; Törmäkangas, Timo; Eronen, Johanna; Tsai, Li-Tang; Jylhä, Marja; Rantanen, Taina
2015-12-01
Life-space mobility - the spatial extent of mobility in daily life - is associated with quality of life and physical functioning but may also be influenced by future orientation expressed in personal goals. The aim of this study was to explore how different personal goals predict changes in older people's life-space mobility. This prospective cohort study with a 2-year follow-up included 824 community-dwelling people aged 75 to 90 years from the municipalities of Jyväskylä and Muurame in Central Finland. As part of the Life-Space Mobility in Old Age study (LISPE), which was conducted between 2012 and 2014, the participants responded to the Life-Space Assessment and Personal Project Analysis in addition to questions on socio-demographics and health. Data were analyzed using generalized estimation equation models. The results showed that goals indicating a desire to be active in daily life, to stay mentally alert, and to exercise were associated with higher life-space mobility, and that the associations remained over the follow-up years. Goals related to maintaining functioning predicted higher life-space mobility at the 2-year follow-up. In contrast, goals reflecting improvement of poor physical functioning predicted lower life-space mobility. The results remained significant even when adjusted for indicators of health and functioning. This study indicates that supporting older people in striving for relevant personal goals in their lives might contribute to a larger life-space and thus also to improved quality of life in old age. Copyright © 2015 Elsevier Inc. All rights reserved.
Microgravity strategic plan, 1990
NASA Technical Reports Server (NTRS)
1990-01-01
The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.
Science data visualization in planetary and heliospheric contexts with 3DView
NASA Astrophysics Data System (ADS)
Génot, V.; Beigbeder, L.; Popescu, D.; Dufourg, N.; Gangloff, M.; Bouchemit, M.; Caussarieu, S.; Toniutti, J.-P.; Durand, J.; Modolo, R.; André, N.; Cecconi, B.; Jacquey, C.; Pitout, F.; Rouillard, A.; Pinto, R.; Erard, S.; Jourdane, N.; Leclercq, L.; Hess, S.; Khodachenko, M.; Al-Ubaidi, T.; Scherf, M.; Budnik, E.
2018-01-01
We present a 3D orbit viewer application capable of displaying science data. 3DView, a web tool designed by the French Plasma Physics Data Center (CDPP) for the planetology and heliophysics community, has extended functionalities to render space physics data (observations and models alike) in their original 3D context. Time series, vectors, dynamic spectra, celestial body maps, magnetic field or flow lines, 2D cuts in simulation cubes, etc, are among the variety of data representation enabled by 3DView. The direct connection to several large databases, the use of VO standards and the possibility to upload user data makes 3DView a versatile tool able to cover a wide range of space physics contexts. The code is open source and the software is regularly used at Masters Degree level or summer school for pedagogical purposes. The present paper describes the general architecture and all major functionalities, and offers several science cases (simulation rendering, mission preparation, etc.) which can be easily replayed by the interested readers. Future developments are finally outlined.
NASA Astrophysics Data System (ADS)
Denardini, Clezio Marcos; Padilha, Antonio; Takahashi, Hisao; Souza, Jonas; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Costa, D. Joaquim
On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is kwon by the acronyms Embrace that stands for the Portuguese statement “Estudo e Monitoramento BRAasileiro de Clima Espacial” Program (Brazilian Space Weather Study and Monitoring program). The main purpose of the Embrace Program is to monitor the space climate and weather from sun, interplanetary space, magnetosphere and ionosphere-atmosphere, and to provide useful information to space related communities, technological, industrial and academic areas. Since then we have being visiting several different space weather costumers and we have host two workshops of Brazilian space weather users at the Embrace facilities. From the inputs and requests collected from the users the Embrace Program decided to monitored several physical parameters of the sun-earth environment through a large ground base network of scientific sensors and under collaboration with space weather centers partners. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. A comprehensive data bank and an interface layer are under development to allow an easy and direct access to the useful information. Nowadays, the users will count on products derived from a GNSS monitor network that covers most of the South American territory; a digisonde network that monitors the ionospheric profiles in two equatorial sites and in one low latitude site; several solar radio telescopes to monitor solar activity, and a magnetometer network, besides a global ionospheric physical model. Regarding outreach, we publish a daily bulletin in Portuguese with the status of the space weather environment on the Sun, in the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, we have release brand new products, among them, some regional magnetic indices and the GNSS vertical error map over South America. Contacting Author: C. M. Denardini (clezio.denardin@inpe.br)
Book review: Mapping gendered routes and spaces in the early modern world
Varanka, Dalia E.
2016-01-01
This book encapsulates and extends many seminal ideas presented at the eighth “Attending to Early Modern Women” conference held at the University of Wisconsin–Milwaukee in June 2012. Merry Wiesner-Hanks has done a masterful job editing these papers within a central theme of the interaction of spatial domains with gender-based phenomena. The fifteen chapters of this book are organized into four sections: “Framework,” discussing theoretical concepts; “Embodied Environments,” focusing on physicality; “Communities and Networks” of social patterns; and “Exchanges” across geographic space. Together, a global society shaped by gender and sexuality and intersected by race and class emerges.
Putting the International Space Station to work.
Clancy, Paul
2003-08-01
The International Space Station (ISS) is the largest international cooperative science and technology project ever undertaken. Involving the United States, Russia, Japan, Canada and 10 ESA Member States, it is now rapidly becoming a reality in orbit, offering unprecedented access for research and applications under space conditions. Europe has invested heavily in this endeavour and plans to exploit that investment by a vigorous utilisation of the ISS for life and physical sciences research and applications, space science, Earth observation, space technology development, the promotion of commercial access to space, and the use of space for educational purposes. In recent years, ESA has engaged in an intensive promotional effort to encourage potential user communities to exploit the novel opportunities that the ISS offers. It has also made significant financial commitments to develop both multi-user facilities for life and physical sciences studies in the Columbus Laboratory, and observational and technology exposure instruments using the external Columbus mounting locations, as well as giving financial support to promote commercial and educational activities. ESA has now elaborated a European Strategy for the efficient utilisation of the ISS by European scientists and other users, which is being coordinated with the Agency's Member States contributing to the ISS Programme, and with the European Science Foundation (ESF). In cooperation with the European Commission, ESA is also fostering synergy with the European Commission's Framework Programmes in terms of shared R&D objectives. This article describes the plan that has been evolved to integrate all of these various elements.
Buro, Brandy; Gold, Abby; Contreras, Dawn; Keim, Ann L; Mobley, Amy R; Oscarson, Renee; Peters, Paula; Procter, Sandy; Smathers, Carol
2015-01-01
To identify factors using the Ecological Model of Childhood Overweight related to accessing nutritious foods and physical activity opportunities from the perspectives of rural parents of preschoolers. A mixed-methods study using a quantitative survey (Active Where?) and qualitative interviews. Analyzed interview themes provided context to the survey results. The setting was Head Start centers, county human service offices, and Women, Infants, and Children Program sites in rural counties in the Midwest. Rural parents (n = 377) of preschoolers took part in the survey in 7 Midwestern states; 15 similar participants were interviewed from 1 of the states. Transcribed interviews were coded. Frequencies and chi-square tests were computed; significance was set at P < .05. The Active Where? survey and interviews revealed that close proximity to recreation spaces and traffic safety issues influenced physical activity. For food access, close proximity to full service grocery stores did not influence access to healthy foods because respondents traveled to urban communities to purchase healthy foods. Public transportation solutions and enhanced neighborhood safety are potential community-wide obesity prevention strategies in rural communities. However, interventions should be tailored to the community's stage of readiness. Strong social networks should be considered an asset for community change in these regions. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Bulleri, Fabio; Russell, Bayden D; Connell, Sean D
2012-01-01
Enhanced nutrient loading and depletion of consumer populations interact to alter the structure of aquatic plant communities. Nonetheless, variation between adjacent habitats in the relative strength of bottom-up (i.e. nutrients) versus top-down (i.e. grazing) forces as determinants of community structure across broad spatial scales remains unexplored. We experimentally assessed the importance of grazing pressure and nutrient availability on the development of macroalgal assemblages and the maintenance of unoccupied space in habitats differing in physical conditions (i.e. intertidal versus subtidal), across regions of contrasting productivity (oligotrophic coasts of South Australia versus the more productive coasts of Eastern Australia). In Eastern Australia, grazers were effective in maintaining space free of macroalgae in both intertidal and subtidal habitats, irrespective of nutrient levels. Conversely, in South Australia, grazers could not prevent colonization of space by turf-forming macroalgae in subtidal habitats regardless of nutrients levels, yet in intertidal habitats removal of grazers reduced unoccupied space when nutrients were elevated. Assessing the effects of eutrophication in coastal waters requires balancing our understanding between local consumer pressure and background oceanographic conditions that affect productivity. This broader-based understanding may assist in reconciling disproportionately large local-scale variation, a characteristic of ecology, with regional scale processes that are often of greater relevance to policy making and tractability to management.
To Meet or Not To Meet Physical vs. Virtual Configuration Control Board
NASA Technical Reports Server (NTRS)
Rice, Shelley
2017-01-01
This presentation will define the CCB, discuss its functions and members. We will look into traditional processes of managing change control via the CCB meeting and advanced practices utilizing enhanced product tools and technologies. Well step through a summary of the feedback from the community of CM professionals at NASA Goddard Space Flight Center of best practices as well as pros and cons for facilitating both a physical CCB and managing stakeholder approvals in a virtual environment. Attendees will come away with current industry strategies to determine if process for managing change control and approvals can be streamlined within their local work environments.
Train Like an Astronaut Educational Outreach
NASA Technical Reports Server (NTRS)
Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.
2012-01-01
In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".
NASA Astrophysics Data System (ADS)
Lim, D. S. S.; Abercromby, A.; Beaton, K.; Brady, A. L.; Cardman, Z.; Chappell, S.; Cockell, C. S.; Cohen, B. A.; Cohen, T.; Deans, M.; Deliz, I.; Downs, M.; Elphic, R. C.; Hamilton, J. C.; Heldmann, J.; Hillenius, S.; Hoffman, J.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Lees, D. S.; Marquez, J.; Miller, M.; Milovsoroff, C.; Payler, S.; Sehlke, A.; Squyres, S. W.
2016-12-01
Analogs are destinations on Earth that allow researchers to approximate operational and/or physical conditions on other planetary bodies and within deep space. Over the past decade, our team has been conducting geobiological field science studies under simulated deep space and Mars mission conditions. Each of these missions integrate scientific and operational research with the goal to identify concepts of operations (ConOps) and capabilities that will enable and enhance scientific return during human and human-robotic missions to the Moon, into deep space and on Mars. Working under these simulated mission conditions presents a number of unique challenges that are not encountered during typical scientific field expeditions. However, there are significant benefits to this working model from the perspective of the human space flight and scientific operations research community. Specifically, by applying human (and human-robotic) mission architectures to real field science endeavors, we create a unique operational litmus test for those ConOps and capabilities that have otherwise been vetted under circumstances that did not necessarily demand scientific data return meeting the rigors of peer-review standards. The presentation will give an overview of our team's recent analog research, with a focus on the scientific operations research. The intent is to encourage collaborative dialog with a broader set of analog research community members with an eye towards future scientific field endeavors that will have a significant impact on how we design human and human-robotic missions to the Moon, into deep space and to Mars.
NASA Astrophysics Data System (ADS)
Chantale Damas, M.
2015-08-01
The Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution, is the recipient of a 2-year NSF EAGER (Early Concept Grants for Exploratory Research) grant to design and implement a high-impact practice integrated research and education program in solar, geospace and atmospheric physics. Proposed is a year-long research experience with two components: 1) during the academic year, students are enrolled in a course-based introductory research (CURE) where they conduct research on real-world problems; and 2) during the summer, students are placed in research internships at partner institutions. Specific objectives include: 1) provide QCC students with research opportunities in solar and atmospheric physics as early as their first year; 2) develop educational materials in solar and atmospheric physics; 3) increase the number of students, especially underrepresented minorities, that transfer to 4-year STEM programs. A modular, interdisciplinary concept approach is used to integrate educational materials into the research experience. The project also uses evidence-based best practices (i.e., Research experience, Mentoring, Outreach, Recruitment, Enrichment and Partnership with 4-year colleges and institutions) that have proven successful at increasing the retention, transfer and graduation rates of community college students. Through a strong collaboration with CUNY’s 4-year colleges (Medgar Evers College and the City College of New York’s NOAA CREST program); Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado, Boulder; and NASA Goddard Space Flight Center’s Community Coordinated Modeling Center (CCMC), the project trains and retains underrepresented community college students in geosciences-related STEM fields. Preliminary results will be presented at this meeting.*This project is supported by the National Science Foundation Geosciences Directorate under NSF Award Number DES-1446704
Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS
NASA Technical Reports Server (NTRS)
Urban, David L.; Singh, Bhim S.; Kohl, Fred J.
2007-01-01
Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.
NASA Astrophysics Data System (ADS)
Gross, N. A.; Lopez, R.; Hughes, W. J.
2008-03-01
The Center for Integrated Space Weather Modeling (CISM) is a nationally distributed research program that focuses its activities around building a comprehensive physics-based numerical simulation model that describes the space environment from the Sun to the Earth. As a Science and Technology Center (STC) funded by the National Science Foundation (NSF), CISM is committed to training the next generation of space physicists and imbuing them with an understanding of the Sun & Earth as a system. CISM has fostered a thriving, diverse community of graduate students actively engaged in CISM research and related activities. The Center's goal for these students is for them to not only graduate with a strong understanding of their research field, but also with knowledge of related research areas and relationships with other young professionals who work in those areas. To meet this goal, CISM sponsors graduate activities such as graduate retreats, a graduate online community, graduate video conferences, and provides professional interactions with leaders in the field. These activities are designed to develop peer to peer relationships and are exactly the sort of activities that will engage new students in the community. This paper will describe these activities and show that they are consistent with the needs of graduate students as identified in the limited literature on persistence in graduate education. These activities are also consistent with the conclusions about the well studied problem of retention at the undergraduate level. Activities that help to increase retention will also increase the value of diversity recruitment programs, since it will increase the likeliness that these students will persist to graduation.
Mural art as a media on making urban kampung's public space
NASA Astrophysics Data System (ADS)
Susanto, Dalhar; Widyarko, Widyarko; Nadia Ilmiani, Ajeng
2017-12-01
The lack of public space is one of the main problems in the big cities in Indonesia. Urban kampungas part of the city is also no exception. Rapid growth on population sparks uncontrollable physical development that erode open space inside urbankampung. Sometimes, what is left is just neglected space which don‟t „live‟ and far from the definition of public space. Mural art has been existed since the beginning of human civilization. Now, it has evolved into one of the popular urban art. The previous research has proven that the process of urban art making through participatory approach could trigger community interaction in a space. Interaction itself is a main factor that may trigger the establishmentof a public space. With the same method, this research attempts to build mural in a neglected space inside urbankampung named Palsigunung. After all of the process done, the space still haven‟t changed from the previous condition, which is still a neglected space. Together with facilitator, kampung‟s residents need to be involved identifying the problem and also the solution to the lack of public space in their kampung. Particularly for urban kampungPalsigunung, the needed solution might not be mural.
Health care in a community of followers of traditional African-Brazilian religions.
Alves, Miriam Cristiane; Seminotti, Nedio
2009-08-01
To understand the concept of health and the source of psychological distress among followers of a traditional African-Brazilian religion. Qualitative study performed in a community of followers of a traditional African-Brazilian religion, in the city of Porto Alegre, Southern Brazil, between 2007 and 2008. The priest/Babalorixá and six followers of this community participated in the study. Open interviews, which were recorded and subsequently transcribed, were conducted to collect data and construct the corpus of analysis. Report categorization, based on the complex systemic approach, enabled the construction of two main themes: 1) religious community and concept of health, and 2) origin of psychological distress and cultural identity. In this religious community, traditional health therapies, such as the use of herbs, baths, diets and/or initiation rites, were associated with conventional therapies proposed by the Sistema Unico de Saúde (SUS - Unified Health System). Bonds with and belonging to a territory, the relationships among individuals, and the relationship among their spiritual, psychological and physical dimensions are considered in their concepts of psychological distress and health. The way to understand and act in the world, as experienced in this community, with its myths, rites, beliefs and values, constitutes a set of legitimate types of knowledge in its context, which oftentimes opposes and goes beyond professionals' technical-scientific knowledge and truths. This community is a space marked by welcoming, counseling and treatment of followers, where the physical, psychological and spiritual dimensions are integrated in these practices. As regards the black population health, psychological distress results from their having been uprooted from African black cultures.
NASA Astrophysics Data System (ADS)
Pulkkinen, A.
2012-12-01
Empirical modeling has been the workhorse of the past decades in predicting the state of the geospace. For example, numerous empirical studies have shown that global geoeffectiveness indices such as Kp and Dst are generally well predictable from the solar wind input. These successes have been facilitated partly by the strongly externally driven nature of the system. Although characterizing the general state of the system is valuable and empirical modeling will continue playing an important role, refined physics-based quantification of the state of the system has been the obvious next step in moving toward more mature science. Importantly, more refined and localized products are needed also for space weather purposes. Predictions of local physical quantities are necessary to make physics-based links to the impacts on specific systems. As we have introduced more localized predictions of the geospace state one central question is how predictable these local quantities are? This complex question can be addressed by rigorously measuring the model performance against the observed data. Space sciences community has made great advanced on this topic over the past few years and there are ongoing efforts in SHINE, CEDAR and GEM to carry out community-wide evaluations of the state-of-the-art solar and heliospheric, ionosphere-thermosphere and geospace models, respectively. These efforts will help establish benchmarks and thus provide means to measure the progress in the field analogous to monitoring of the improvement in lower atmospheric weather predictions carried out rigorously since 1980s. In this paper we will discuss some of the latest advancements in predicting the local geospace parameters and give an overview of some of the community efforts to rigorously measure the model performances. We will also briefly discuss some of the future opportunities for advancing the geospace modeling capability. These will include further development in data assimilation and ensemble modeling (e.g. taking into account uncertainty in the inflow boundary conditions).
Urban simulation evaluation with study case of the Singapore Management University, Singapore
NASA Astrophysics Data System (ADS)
Seanders, O.
2018-01-01
This paper reports and discusses about the urban simulation evaluation with a study case, The Singapore Managemant University (SMU), the first major university to be located in the city centre. It is located in Bras Basah District, with some controversy on the geographical establishment, the physical realization of the University in the original plan required some demolishes, urban historical building, a public park and in the end will impact the lose of some certain qualities of the urban space. From this case we can see that the urban design and cultural heritage principles could come into conflicts with the more practical concerns of space constraints and transportation efficiency. This SMU case reflect the problem of the developing countries that have to decide between conservation of buildings and green spaces and space demands. In this case, for Singapore, it marks a progress in the step of greater community involvement in the planning process.
Engaging Undergraduate Students in Space Weather Research at a 2- Year College
NASA Astrophysics Data System (ADS)
Damas, M. C.
2017-07-01
The Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution, has been very successful at engaging undergraduate students in space weather research for the past ten years. Recently, it received two awards to support student research and education in solar and atmospheric physics under the umbrella discipline of space weather. Through these awards, students receive stipends during the academic year and summer to engage in scientific research. Students also have the opportunity to complete a summer internship at NASA and at other partner institutions. Funding also supports the development of course materials and tools in space weather. Educational materials development and the challenges of engaging students in research as early as their first year will be discussed. Once funding is over, how is the program sustained? Sustaining such a program, as well as how to implement it at other universities will also be discussed.
Cavanaugh, James T; Crawford, Kelley
2014-08-01
To validate the administration of the Life-Space Assessment (LSA) and Physical Activity Scale for the Elderly (PASE) surveys to proxy informants, as would be necessary when measuring long-term outcomes in acutely ill, hospitalized older adults who are initially incapacitated but eventually return to the community. Cross-sectional study. General community. Convenience sample of dyads (N=40) composed of an ambulatory older adult and a familiar companion. Dyads completed the LSA and PASE surveys on 1 occasion. Companions based their responses on the recent mobility and physical activity of the older adult. Paired total scores for each instrument. At a group level, the difference between older adult and companion mean scores for each instrument was not significant (P>.05). Standardized mean difference values were small (d<0.1). Paired scores were significantly yet moderately associated: intraclass correlation coefficient(1,1)=.84 to .88; P<.01. Difference in scores was not associated with time spent together (P>.05) or older adult gait speed (P>.05). At an individual level, older adults and companions agreed more closely on the LSA than on the PASE. However, disagreement in excess of estimated measurement error occurred in 40% of the dyads for the LSA and in none of the dyads for the PASE. Older adults and companions collectively provided similar responses on each instrument. Nonetheless, varying levels of agreement within individual dyads suggested that proxy responses should be considered carefully. Implications for clinical research and practice research are discussed. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Suminski, Richard R; Petosa, Rick L; Jones, Larry; Hall, Lisa; Poston, Carlos W
2009-01-01
There is a scientific and practical need for high-quality effectiveness studies of physical activity interventions in "real-world" settings. To use a community-based participatory research (CBPR) approach to develop, implement, operate, and evaluate an intervention for promoting physical activity called Neighborhoods on the Move. Two communities with similar physical and social characteristics participated in this study. One community was involved in Neighborhoods on the Move; the other (comparison community) participated only in the assessments. Academic personnel and residents/organizations in the Neighborhoods on the Move community worked together to create a community environment that was more conducive for physical activity. Pre- and posttest data on new initiatives promoting physical activity, existing physical activity initiatives, and business policies supporting physical activity were collected simultaneously in both communities. The success of the CBPR approach was evidenced by several developments, including substantial resident involvement and the formation of a leadership committee, marketing campaign, and numerous community partnerships. The number of businesses with policies promoting physical activity and breadth of existing physical activity initiatives (participants, activities, hours) increased substantially more in the Neighborhoods on the Move community than in the comparison community. A total of sixty new initiatives promoting physical activity were implemented in the Neighborhoods on the Move community during the intervention. The CBPR approach is an effective strategy for inducing environmental changes that promote physical activity. Additional research is needed to assess the portability and sustainability of Neighborhoods on the Move.
Advancing Translational Research through Facility Design in Non-AMC Hospitals.
Pati, Debajyoti; Pietrzak, Michael P; Harvey, Thomas E; Armstrong, Walter B; Clarke, Robert; Weissman, Neil J; Rapp, Paul E; Smith, Mark S; Fairbanks, Rollin J; Collins, Jeffreyg M
2013-01-01
This article aims to explore the future of translational research and its physical design implications for community hospitals and hospitals not attached to large centralized research platforms. With a shift in medical services delivery focus to community wellness, continuum of care, and comparative effectiveness research, healthcare research will witness increasing pressure to include community-based practitioners. The roundtable discussion group, comprising 14 invited experts from 10 institutions representing the fields of biomedical research, research administration, facility planning and design, facility management, finance, and environmental design research, examined the issue in a structured manner. The discussion was conducted at the Washington Hospital Center, MedStar Health, Washington, D.C. Institutions outside the AMCs will be increasingly targeted for future research. Three factors are crucial for successful research in non-AMC hospitals: operational culture, financial culture, and information culture. An operating culture geared towards creation, preservation, and protection of spaces needed for research; creative management of spaces for financial accountability; and a flexible information infrastructure at the system level that enables complete link of key programmatic areas to academic IT research infrastructure are critical to success of research endeavors. Hospital, interdisciplinary, leadership, planning, work environment.
Chen, Yiyong; Liu, Tao; Xie, Xiaohuan; Marušić, Barbara Goličnik
2016-01-01
A well-designed open space that encourages outdoor activity and social communication is a community asset that could potentially contribute to the health of local residents and social harmony of the community. Numerous factors may influence the use of each single space and may result in a variety of visitors. Compared with previous studies that focused on accessibility, this study highlights the relationship between the utilization and characteristics of community open spaces in China. The Overseas Chinese Town community in Shenzhen is regarded as an example. The association between the number of visitors and space characteristics is examined with multivariate regression models. Results show that large areas with accessible lawns, well-maintained footpaths, seats, commercial facilities, and water landscapes are important characteristics that could increase the use of community open spaces. However, adding green vegetation, sculptures, and landscape accessories in open spaces has limited effects on increasing the outdoor activities of residents. Thus, to increase the use of community open spaces, landscape designers should focus more on creating user-oriented spaces with facilities that encourage active use than on improving ornamental vegetation and accessories. PMID:27367713
Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.
2016-07-01
The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck
2005-01-01
The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.
Evenson, Kelly R.; Wen, Fang; Lee, Sarah M.; Heinrich, Katie M.; Eyler, Amy
2016-01-01
Background A Healthy People 2010 developmental objective (22-12) was set to increase the proportion of the nation’s public and private schools that provide access to their physical activity spaces and facilities for all persons outside of normal school hours. The purpose of this study was to describe the prevalence of indoor and outdoor facilities at schools and the availability of those facilities to the public in 2000 and 2006. Methods In 2000 and 2006, the School Health Policies and Programs Study (SHPPS) was conducted in each state and in randomly selected districts, schools, and classrooms. This analysis focused on the school level questionnaire from a nationally representative sample of public and nonpublic elementary, middle, and high schools (n = 921 in 2000 and n = 984 in 2006). Results No meaningful changes in the prevalence of access to school physical activity facilities were found from 2000 to 2006, for youth or adult community sports teams, classes, or open gym. Conclusions These national data indicate a lack of progress from 2000 and 2006 toward increasing the proportion of the nation’s public and private schools that provide access to their physical activity facilities for all persons outside of normal school hours. PMID:20440007
NASA Technical Reports Server (NTRS)
Perrell, Eric R.
2005-01-01
The recent bold initiatives to expand the human presence in space require innovative approaches to the design of propulsion systems whose underlying technology is not yet mature. The space propulsion community has identified a number of candidate concepts. A short list includes solar sails, high-energy-density chemical propellants, electric and electromagnetic accelerators, solar-thermal and nuclear-thermal expanders. For each of these, the underlying physics are relatively well understood. One could easily cite authoritative texts, addressing both the governing equations, and practical solution methods for, e.g. electromagnetic fields, heat transfer, radiation, thermophysics, structural dynamics, particulate kinematics, nuclear energy, power conversion, and fluid dynamics. One could also easily cite scholarly works in which complete equation sets for any one of these physical processes have been accurately solved relative to complex engineered systems. The Advanced Concepts and Analysis Office (ACAO), Space Transportation Directorate, NASA Marshall Space Flight Center, has recently released the first alpha version of a set of computer utilities for performing the applicable physical analyses relative to candidate deep-space propulsion systems such as those listed above. PARSEC, Preliminary Analysis of Revolutionary in-Space Engineering Concepts, enables rapid iterative calculations using several physics tools developed in-house. A complete cycle of the entire tool set takes about twenty minutes. PARSEC is a level-zero/level-one design tool. For PARSEC s proof-of-concept, and preliminary design decision-making, assumptions that significantly simplify the governing equation sets are necessary. To proceed to level-two, one wishes to retain modeling of the underlying physics as close as practical to known applicable first principles. This report describes results of collaboration between ACAO, and Embry-Riddle Aeronautical University (ERAU), to begin building a set of level-two design tools for PARSEC. The "CFD Multiphysics Tool" will be the propulsive element of the tool set. The name acknowledges that space propulsion performance assessment is primarily a fluid mechanics problem. At the core of the CFD Multiphysics Tool is an open-source CFD code, HYP, under development at ERAU. ERAU is renowned for its undergraduate degree program in Aerospace Engineering the largest in the nation. The strength of the program is its applications-oriented curriculum, which culminates in one of three two-course Engineering Design sequences: Aerospace Propulsion, Spacecraft, or Aircraft. This same philosophy applies to the HYP Project, albeit with fluid physics modeling commensurate with graduate research. HYP s purpose, like the Multiphysics Tool s, is to enable calculations of real (three-dimensional; geometrically complex; intended for hardware development) applications of high speed and propulsive fluid flows.
NASA Applications and Lessons Learned in Reliability Engineering
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Fuller, Raymond P.
2011-01-01
Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.
Rind, Esther; Jones, Andy
2015-02-01
Studies of geographical variations in physical activity behaviours have suggested that activity levels are particularly low in areas that have undergone employment loss associated with the decline of industry. This is of concern given that affected populations are already at risk of poor health. Applying focus group methodology amongst 19 participants in four groups, this study aims to unpack how broader societal and environmental changes associated with industrial decline affect beliefs and attitudes towards physical activity in ex-mining communities in the North-East of England. Identified core themes comprise the direct impact of deindustrialisation on social and physical environments. Based on our findings, we provide evidence for mechanisms that operate via loss of occupational physical activity as well as the progressive development of environments that are not fit to support population activity levels. Particularly important was the loss of recreational facilities, public green spaces and sports facilities that were owned and organised by the miners themselves with support from the mining companies. Attitudes and beliefs directly related to the areas' industrial past were also seen to be key. We suggest that the development of interventions considering the socio-cultural history and socio-economic reality of communities could be a promising route to encourage more active lifestyles in deprived areas with particularly low levels of physical activity. Copyright © 2015. Published by Elsevier Ltd.
Rind, Esther; Jones, Andy
2015-01-01
Studies of geographical variations in physical activity behaviours have suggested that activity levels are particularly low in areas that have undergone employment loss associated with the decline of industry. This is of concern given that affected populations are already at risk of poor health. Applying focus group methodology amongst 19 participants in four groups, this study aims to unpack how broader societal and environmental changes associated with industrial decline affect beliefs and attitudes towards physical activity in ex-mining communities in the North-East of England. Identified core themes comprise the direct impact of deindustrialisation on social and physical environments. Based on our findings, we provide evidence for mechanisms that operate via loss of occupational physical activity as well as the progressive development of environments that are not fit to support population activity levels. Particularly important was the loss of recreational facilities, public green spaces and sports facilities that were owned and organised by the miners themselves with support from the mining companies. Attitudes and beliefs directly related to the areas' industrial past were also seen to be key. We suggest that the development of interventions considering the socio-cultural history and socio-economic reality of communities could be a promising route to encourage more active lifestyles in deprived areas with particularly low levels of physical activity. PMID:25541186
Kumar, Revathy; Seay, Nancy; Karabenick, Stuart A
2015-04-01
Ecologically embedded social identity theories were used to examine the risk and protective factors associated with the identity negotiation and adjustment of recent immigrant Arab (IA) adolescents to the United States residing in ethnic enclaves. Yemeni, Lebanese, and Iraqi 8th-graders (n = 45) from 4 ethnic enclave schools participated in focus-group interviews. In-depth analyses of interviews revealed that living in an ethnic enclave enhanced IA adolescents' feelings of belonging to the community. However, the new immigrant status coupled with country of origin determined the permeability of intergroup boundaries with well-established Arab and Arab American peers. Their identity negotiations and social identity salience (national, religious, and pan-Arab) were informed by transitional experiences from home to host country and the prevailing political and cultural tensions between the two, recognition of national hierarchy within the Arab community, perceptions of discrimination by the larger society, changed educational aspirations consequent to immigration, and current physical (school and community) and phenomenological contexts. Findings suggest that current theoretical perspectives should be extended to incorporate phenomenological representations of past spaces and places not currently occupied to understand adolescents' multifaceted identity. (c) 2015 APA, all rights reserved).
Gender differences in the effects of urban neighborhood on depressive symptoms in Jamaica.
Mullings, Jasneth Asher; McCaw-Binns, Affette Michelle; Archer, Carol; Wilks, Rainford
2013-12-01
To explore the mental health effects of the urban neighborhood on men and women in Jamaica and the implications for urban planning and social development. A cross-sectional household sample of 2 848 individuals 15-74 years of age obtained from the Jamaica Health and Lifestyle Survey 2007-2008 was analyzed. Secondary analysis was undertaken by developing composite scores to describe observer recorded neighborhood features, including infrastructure, amenities/services, physical conditions, community socioeconomic status, and green spaces around the home. Depressive symptoms were assessed using the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Bivariate and multivariate methods were used to explore the associations among gender, neighborhood factors, and risk of depressive symptoms. While no associations were found among rural residents, urban neighborhoods were associated with increased risk of depressive symptoms. Among males, residing in a neighborhood with poor infrastructure increased risk; among females, residing in an informal community/unplanned neighborhood increased risk. The urban neighborhood contributes to the risk of depression symptomatology in Jamaica, with different environmental stressors affecting men and women. Urban and social planners need to consider the physical environment when developing health interventions in urban settings, particularly in marginalized communities.
NASA Astrophysics Data System (ADS)
Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.
2015-10-01
The Auroral Planetary Imaging and Spectroscopy (APIS) service http://obspm.fr/apis/ provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro- imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria (Figure 1) and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multispectral combined analysis [1,2]. We will present the updated capabilities of APIS with several examples. Several tutorials are available online.
Advanced Cosmic Ray Composition Experiment for Space Station (ACCESS)
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Wefel, John P.
1999-01-01
In 1994 the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), was selected by NASA's Administrator as a joint collaboration with the U.S. Department of Energy (DOE). The AMS program was chartered to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments which were evolving from the Office of Space Science. The first such experiment to come forward was ACCESS in 1996. It was proposed as a new mission concept in space physics to place a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the ISS, and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's sub-orbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer-review. This process is still on-going and the Accommodation Study presented here will discuss the baseline definition of ACCESS as we understand it today. Further detail on the history, scope, and background of the study is provided in Appendix A.
Access to green space, physical activity and mental health: a twin study.
Cohen-Cline, Hannah; Turkheimer, Eric; Duncan, Glen E
2015-06-01
Increasing global urbanisation has resulted in a greater proportion of the world's population becoming exposed to risk factors unique to urban areas, and understanding these effects on public health is essential. The aim of this study was to examine the association between access to green space and mental health among adult twin pairs. We used a multilevel random intercept model of same-sex twin pairs (4338 individuals) from the community-based University of Washington Twin Registry to analyse the association between access to green space, as measured by the Normalised Difference Vegetation Index and self-reported depression, stress, and anxiety. The main parameter of interest was the within-pair effect for identical (monozygotic, MZ) twins because it was not subject to confounding by genetic or shared childhood environment factors. Models were adjusted for income, physical activity, neighbourhood deprivation and population density. When treating twins as individuals and not as members of a twin pair, green space was significantly inversely associated with each mental health outcome. The association with depression remained significant in the within-pair MZ univariate and adjusted models; however, there was no within-pair MZ effect for stress or anxiety among the models adjusted for income and physical activity. These results suggest that greater access to green space is associated with less depression, but provide less evidence for effects on stress or anxiety. Understanding the mechanisms linking neighbourhood characteristics to mental health has important public health implications. Future studies should combine twin designs and longitudinal data to strengthen causal inference. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Helbich, Marco; Klein, Nadja; Roberts, Hannah; Hagedoorn, Paulien; Groenewegen, Peter P
2018-06-20
Exposure to green space seems to be beneficial for self-reported mental health. In this study we used an objective health indicator, namely antidepressant prescription rates. Current studies rely exclusively upon mean regression models assuming linear associations. It is, however, plausible that the presence of green space is non-linearly related with different quantiles of the outcome antidepressant prescription rates. These restrictions may contribute to inconsistent findings. Our aim was: a) to assess antidepressant prescription rates in relation to green space, and b) to analyze how the relationship varies non-linearly across different quantiles of antidepressant prescription rates. We used cross-sectional data for the year 2014 at a municipality level in the Netherlands. Ecological Bayesian geoadditive quantile regressions were fitted for the 15%, 50%, and 85% quantiles to estimate green space-prescription rate correlations, controlling for physical activity levels, socio-demographics, urbanicity, etc. RESULTS: The results suggested that green space was overall inversely and non-linearly associated with antidepressant prescription rates. More important, the associations differed across the quantiles, although the variation was modest. Significant non-linearities were apparent: The associations were slightly positive in the lower quantile and strongly negative in the upper one. Our findings imply that an increased availability of green space within a municipality may contribute to a reduction in the number of antidepressant prescriptions dispensed. Green space is thus a central health and community asset, whilst a minimum level of 28% needs to be established for health gains. The highest effectiveness occurred at a municipality surface percentage higher than 79%. This inverse dose-dependent relation has important implications for setting future community-level health and planning policies. Copyright © 2018 Elsevier Inc. All rights reserved.
Madrigal, Daniel; Salvatore, Alicia; Casillas, Gardenia; Casillas, Crystal; Vera, Irene; Eskenazi, Brenda; Minkler, Meredith
2015-01-01
Background The photovoice method has shown substantial promise for work with youth in metropolitan areas, yet its potential for use with youth from farmworker families has not been documented. Objectives This project was designed to teach environmental health to 15 high school youth while building their individual and community capacity for studying and addressing shared environmental concerns. The project also aimed to test the utility of photovoice with Latino agricultural youth. Methods Fifteen members of the Youth Community Council (YCC), part of a 15-year project with farmworker families in Salinas, CA, took part in a 12-week photovoice project. Their pictures captured the assets and strengths of their community related to environmental health, and were then analyzed by participants. A multi-pronged evaluation was conducted. Results YCC members identified concerns such as poor access to affordable, healthy foods and lack of safe physical spaces in which to play, as well as assets, including caring adults and organizations, and open spaces in surrounding areas. Participants presented their findings on radio, television, at local community events, and to key policy makers. The youth also developed and implemented two action plans, a successful 5K run/walk and a school recycling project, still in progress. Evaluation results included significant changes or trends in such areas as perceived ability to make presentations, leadership, and self-confidence, as well as challenges including transportation, group dynamics, and gaining access to people in power. Conclusion The photovoice method shows promise for environmental health education and youth development in farmworker communities. PMID:25435558
Madrigal, Daniel Santiago; Salvatore, Alicia; Casillas, Gardenia; Casillas, Crystal; Vera, Irene; Eskenazi, Brenda; Minkler, Meredith
2014-01-01
The PhotoVoice method has shown substantial promise for work with youth in metropolitan areas, yet its potential for use with Latino youth from agricultural areas has not been well documented. This project was designed to teach environmental health to 15 high school youth while building their individual and community capacity for studying and addressing shared environmental concerns. The project also aimed to test the utility of PhotoVoice with Latino agricultural youth. Fifteen members of the Youth Community Council (YCC), part of a 15-year project with farmworker families in Salinas, CA, took part in a 12-week PhotoVoice project. Their pictures captured the assets and strengths of their community related to environmental health, and were then analyzed by participants. A multi-pronged evaluation was conducted. YCC members identified concerns such as poor access to affordable, healthy foods and lack of safe physical spaces in which to play, as well as assets, including caring adults and organizations, and open spaces in surrounding areas. Participants presented their findings on radio, television, at local community events, and to key policy makers. The youth also developed two action plans, a successful 5K run/walk and a school recycling project, still in progress. Evaluation results included significant changes in such areas as perceived ability to make presentations, leadership, and self-confidence, as well as challenges including transportation, group dynamics, and gaining access to people in power. The PhotoVoice method shows promise for environmental health education and youth development in farmworker communities.
NASA Technical Reports Server (NTRS)
Scharf, R.
2014-01-01
The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.; Kohl, Fred J.
2004-01-01
A new Vision for Space Exploration was announced earlier this year by U.S. President George W. Bush. NASA has evaluated on-going programs for strategic alignment with this vision. The evaluation proceeded at a rapid pace and is resulting in changes to the scope and focus of experimental research that will be conducted in support of the new vision. The existing network of researchers in the physical sciences - a highly capable, independent, and loosely knitted community - typically have shared conclusions derived from their work within appropriate discipline-specific peer reviewed journals and publications. The initial result of introducing this Vision for Space Exploration has been to shift research focus from a broad coverage of numerous, widely varying topics into a research program focused on a nearly-singular set of supporting research objectives to enable advances in space exploration. Two of these traditional physical science research disciplines, Combustion Science and Fluid Physics, are implementing a course adjustment from a portfolio dominated by "Fundamental Science Research" to one focused nearly exclusively on supporting the Exploration Vision. Underlying scientific and engineering competencies and infrastructure of the Microgravity Combustion Science and Fluid Physics disciplines do provide essential research capabilities to support the contemporary thrusts of human life support, radiation countermeasures, human health, low gravity research for propulsion and materials and, ultimately, research conducted on the Moon and Mars. A perspective on how these two research disciplines responded to the course change will be presented. The relevance to the new NASA direction is provided, while demonstrating through two examples how the prior investment in fundamental research is being brought to bear on solving the issues confronting the successful implementation of the exploration goals.
2013-01-01
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications. PMID:24359668
Predicting Space Weather: Challenges for Research and Operations
NASA Astrophysics Data System (ADS)
Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.
2013-12-01
Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.
NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae;
2010-01-01
NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.
Blum, Alexander; Lalli, Roberto; Renn, M Jürgen
2015-09-01
The history of the theory of general relativity presents unique features. After its discovery, the theory was immediately confirmed and rapidly changed established notions of space and time. The further implications of general relativity, however, remained largely unexplored until the mid 1950s, when it came into focus as a physical theory and gradually returned to the mainstream of physics. This essay presents a historiographical framework for assessing the history of general relativity by taking into account in an integrated narrative intellectual developments, epistemological problems, and technological advances; the characteristics of post-World War II and Cold War science; and newly emerging institutional settings. It argues that such a framework can help us understand this renaissance of general relativity as a result of two main factors: the recognition of the untapped potential of general relativity and an explicit effort at community building, which allowed this formerly disparate and dispersed field to benefit from the postwar changes in the scientific landscape.
NASA Astrophysics Data System (ADS)
Bering, E. A., III; Dusenbery, P.; Gross, N. A.; Johnson, R.; Lopez, R. E.; Lysak, R. L.; Moldwin, M.; Morrow, C. A.; Nichols-Yehling, M.; Peticolas, L. M.; Reiff, P. H.; Scherrer, D. K.; Thieman, J.; Wawro, M.; Wood, E. L.
2017-12-01
The American Geophysical Union Space Physics and Aeronomy Section Education and Public Outreach Committee (AGU SPA-EPO Committee) was established in 1990 to foster the growth of a culture of outreach and community engagement within the SPA Section of the AGU. The SPA was the first AGU Section to establish an EPO Committee. The Committee has initiated several key Section EPO programs that have grown to become Union programs. NASA sponsored research is central to the mission of the SPE-EPO. Programs highlighting NASA research include the Student Paper Competition, Exploration Station, a precursor to the GIFT workshops, the Student mixer, and more. The Committee played a key role in coordinating the AGU's outreach activities relating to the International Heliophysical Year in 2007-2008. This paper will review the triumphs, the failures, and the lessons learned about recruiting colleagues to join with us from the last quarter century of effort.
Gym-based exoskeleton walking: A preliminary exploration of non-ambulatory end-user perspectives.
Cahill, Aoife; Ginley, Orna Mc; Bertrand, Courtney; Lennon, Olive
2018-07-01
Robotic walking devices (RWD) have shown many physical benefits in Spinal Cord Injury (SCI) rehabilitation. No study to date has explored end-user perceptions of these devices or gained insight into the use of these devices in a gym-based setting. This preliminary study explores the perspectives of four non-ambulatory individuals with SCI on using an exoskeleton walking device in a gym-based community setting. In-depth, semi-structured interviews were conducted with four SCI individuals living in the community. Interviews were audio-recorded and transcribed verbatim. Inductive thematic analysis established common overarching themes and subthemes. Four primary themes emerged addressing "The Psychological Adjustments Around Using RWDs with Respect to Disability", "Perceived Physical, Social and Psychological Benefits of Using an Exoskeleton", "The Role of External Influences", and "A Wellness Model to Health". A fully integrated gym setting was found to provide a positive and encouraging space to utilise the device. In addition, both the ability to set training goals and the positive attitude of robotic trainers were deemed to be important factors. This preliminary study provides detailed perspectives of four non-ambulatory individuals with SCI on utilising an exoskeleton walking device in a community setting. It suggests that gym-based RWDs impact positively on the users' lives and enhance their perceived wellbeing and sense of community integration. Enabling access to similar, community-based facilities should be prioritised for those with longstanding SCI disability. Copyright © 2018 Elsevier Inc. All rights reserved.
Hypervelocity Dust Impacts in Space and the Laboratory
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team
2013-10-01
Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.
Lab- and space-based researchers discuss plasma experiments
NASA Astrophysics Data System (ADS)
Baker, D. N.; Yamada, M.
Plasma physics provides a common language and set of approaches that tie together all scientists who study the acceleration, transport, and loss processes of the plasma state. Some years ago, researchers from the laboratory and space research communities suggested a workshop to bring together the diverse researchers in the respective fields. A series of workshops on the “Interrelationship between Plasma Experiments in the Laboratory and Space” (IPELS) was established, and the third meeting was held July 24-28, 1995, in the beautiful and historic town of Pitlochry in the Scottish Highlands.The conference reestablished the critical point that plasma physics is an important but surprisingly diversified research discipline. Meetings attendees discussed a number of new approaches to plasma research, including novel diagnostic techniques for use in space, such as active antennas and electric field sounding devices. Detailed discussions covered spacecraft-plasma environment interactions, including vehicle charging and neutral gas release; fundamental aspects of industrial application of dusty plasmas and waves in dusty plasmas; a very distinctive phase transition of coulomb crystals (from solid state to liquid state) in dusty plasmas; and terrella experiments to simulate and study chaotic transport in the ionosphere.
Forrest, Jamie I; Stevenson, Benjamin; Rich, Ashleigh; Michelow, Warren; Pai, Jayaram; Jollimore, Jody; Raymond, H. Fisher; Moore, David; Hogg, Robert S; Roth, Eric A
2014-01-01
Literature suggests formative research is vital for those using respondent-driven sampling (RDS) to study hidden populations of interest. However, few authors have described in detail how different qualitative methodologies can address the objectives of formative research for understanding the social network properties of the study population, selecting seeds, and adapting survey logistics to best fit the population. In this paper we describe the use of community mapping exercises as a tool within focus groups to collect data on social and sexual network characteristics of gay and bisexual men in the metropolitan area of Vancouver, Canada. Three key themes emerged from analyzing community maps along with other formative research data: (a) connections between physical spaces and social networks of gay and bisexual men, (b) diversity in communities, and (c) substance use connected with formation of sub-communities. We discuss how these themes informed the planning and operations of a longitudinal epidemiological cohort study recruited by RDS. We argue that using community mapping within formative research is a valuable qualitative tool for characterizing network structures of a diverse and differentiated population of gay and bisexual men in a highly developed urban setting. PMID:24512070
Jernigan, Valarie Blue Bird; Salvatore, Alicia L; Styne, Dennis M; Winkleby, Marilyn
2012-08-01
The food insecurity faced by many Native American communities has numerous implications for the health and welfare of families. To identify and address upstream causes of food insecurity in a rural California reservation, we conducted a community assessment using the Tool for Health and Resilience in Vulnerable Environments (THRIVE). Guided by a community-based participatory research orientation, the THRIVE tool was adapted using digital storytelling and implemented in a series of focus groups. As a result of the THRIVE assessment, community members identified racial injustice and physical and financial barriers to accessing healthy and culturally appropriate foods as areas of greatest importance. Subsequently, the project partnership developed policies to reduce identified barriers which included an integrated community supported agriculture and commodity food program, the introduction of Electronic Benefits Transfer and culturally appropriate foods at the local farmers' market and reallocation of shelf space at the grocery store to include vegetables and fruits as well as special foods for diabetics. Results suggest that a participatory research orientation coupled with the use of a culturally adapted THRIVE tool may be an effective means for identifying structural determinants of food insecurity and initiating novel policy interventions to reduce health disparities experienced by Native American communities.
NASA Technical Reports Server (NTRS)
Spann, James F.; Moore, Thomas E.
2017-01-01
A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories. This gathering of over 200 scientists and instrumentalists was born out of the desire to collect in one place the latest experiment and instrument technologies required for advancement of scientific knowledge in the disciplines of solar and space physics. The two goals for this conference and the subsequent publication of its content are (a) to describe measurement techniques and technology development needed to advance high priority science in the fields of solar and space physics; and (b) to provide a survey or reference of techniques for in situ measurement and remote sensing of space plasmas. Towards this end, our goal has always been inspired by the two 1998 Geophysical Monographs (Nos. 102 and 103) entitled, "Measurement Techniques in Space Plasmas" (particles and fields) [Pfaff et al., 1998a, 1998b], which have served as a reference and resource for advanced students, engineers, and scientists who wish to learn the fundamentals of measurement techniques and technology in this field. Those monographs were the product of an American Geophysical Union Chapman Conference that took place in Santa Fe, NM, in 1995: "Measurement Techniques in Space Plasmas-What Works, What Doesn't." Two decades later, we believe that it is appropriate to revisit this subject, in light of recent advances in technology, research platforms, and analysis techniques. Moreover, we now include direct measurements of neutral gases in the upper atmosphere, optical imaging techniques, and remote observations in space and on the ground. Accordingly, the workshop was organized among four areas of measurement techniques: particles, fields, photons, and ground-based. This two-set volume is largely composed of the content of that workshop. Special attention is given to those techniques and technologies that demonstrate promise of significant advancement in measurements that will enable the highest priority science as described in the 2012 National Research Council Decadal Survey [Baker and Zurbuchen et al., 2013]. Additionally, a broad tutorial survey of the current technologies is provided to serve as reference material and as a basis from which advanced and innovative ideas can be discussed and pursued. Included are instrumentation and techniques to observe the solar environment from its interior to its outer atmosphere, the heliosphere out to the interstellar regions, in geospace, and other planetary magnetospheres and atmospheres. To make significant progress in priority science as expressed in the National Research Council solar and space physics decadal survey and recent NASA Heliophysics roadmaps, identification of enabling new measurement techniques and technologies to be developed is required. Also, it is valuable to the community and future scientists and engineers to have a complete survey of the techniques and technologies used by the practitioners of solar and space physics. As with the 1995 conference and subsequent 1998 publication, it is incumbent on the community to identify those measurements that are particularly challenging and still require new techniques to be identified and tested to enable the necessary accuracy and resolution of certain parameters to be achieved. The following is a partial list of the measurement technique categories that are featured in these special publications: Particles; Thermal plasma to MeV energetic particles, neutral gas properties including winds, density, temperature, and composition, and enhanced neutral atom imaging; Fields; DC electric and magnetic fields, plasma waves, and electron drift instruments from which the plasma velocity information provides a measure of the DC electric field; Photons; Instruments sensitive from the near-infrared to X-rays; Contributions of techniques and technology for optical design, optical components, sensors, material selection for cameras, telescopes, and spectrographs; Ground based; Remote sensing methods for solar and geospace activity and space weather. The focus includes solar observatories, all-sky cameras, lidars, and ionosphere thermosphere mesosphere observatory systems such as radars, ionosondes, GPS receivers, magnetometers, conjugate observations, and airborne campaigns. The present volume collects together the papers for photons and ground-based categories. The companion volume collects together the papers for particles and fields categories. It is recognized that there are measurement techniques that overlap among the four categories. For example, use of microchannel plate detectors is used in photon and particle measurement techniques or the observation of visible photons and magnetic fields in space and on the ground share common technologies. Therefore, the reader should consider the entire collection of papers as they seek to understand particular applications. We hope that these volumes will be as valuable as a reference for our community as the earlier 1998 volumes have been.
Introduction: Photons and Ground-Based
NASA Technical Reports Server (NTRS)
Spann, James; Moore, Thomas
2017-01-01
A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories. This gathering of over 200 scientists and instrumentalists was born out of the desire to collect in one place the latest experiment and instrument technologies required for advancement of scientific knowledge in the disciplines of solar and space physics. The two goals for this conference and the subsequent publication of its content are (a) to describe measurement techniques and technology development needed to advance high priority science in the fields of solar and space physics; and (b) to provide a survey or reference of techniques for in situ measurement and remote sensing of space plasmas. Towards this end, our goal has always been inspired by the two 1998 Geophysical Monographs (Nos. 102 and 103) entitled, "Measurement Techniques in Space Plasmas" (particles and fields) [Pfaff et al., 1998a, 1998b], which have served as a reference and resource for advanced students, engineers, and scientists who wish to learn the fundamentals of measurement techniques and technology in this field. Those monographs were the product of an American Geophysical Union Chapman Conference that took place in Santa Fe, NM, in 1995: "Measurement Techniques in Space Plasmas-What Works, What Doesn't." Two decades later, we believe that it is appropriate to revisit this subject, in light of recent advances in technology, research platforms, and analysis techniques. Moreover, we now include direct measurements of neutral gases in the upper atmosphere, optical imaging techniques, and remote observations in space and on the ground. Accordingly, the workshop was organized among four areas of measurement techniques: particles, fields, photons, and ground-based. This two-set volume is largely composed of the content of that workshop. Special attention is given to those techniques and technologies that demonstrate promise of significant advancement in measurements that will enable the highest priority science as described in the 2012 National Research Council Decadal Survey [Baker and Zurbuchen et al., 2013]. Additionally, a broad tutorial survey of the current technologies is provided to serve as reference material and as a basis from which advanced and innovative ideas can be discussed and pursued. Included are instrumentation and techniques to observe the solar environment from its interior to its outer atmosphere, the heliosphere out to the interstellar regions, in geospace, and other planetary magnetospheres and atmospheres. To make significant progress in priority science as expressed in the National Research Council solar and space physics decadal survey and recent NASA Heliophysics roadmaps, identification of enabling new measurement techniques and technologies to be developed is required. Also, it is valuable to the community and future scientists and engineers to have a complete survey of the techniques and technologies used by the practitioners of solar and space physics. As with the 1995 conference and subsequent 1998 publication, it is incumbent on the community to identify those measurements that are particularly challenging and still require new techniques to be identified and tested to enable the necessary accuracy and resolution of certain parameters to be achieved. The following is a partial list of the measurement technique categories that are featured in these special publications: Particles; Thermal plasma to MeV energetic particles, neutral gas properties including winds, density, temperature, and composition, and enhanced neutral atom imaging; Fields; DC electric and magnetic fields, plasma waves, and electron drift instruments from which the plasma velocity information provides a measure of the DC electric field; Photons; Instruments sensitive from the near-infrared to X-rays; Contributions of techniques and technology for optical design, optical components, sensors, material selection for cameras, telescopes, and spectrographs; Ground based; Remote sensing methods for solar and geospace activity and space weather. The focus includes solar observatories, all-sky cameras, lidars, and ionosphere thermosphere mesosphere observatory systems such as radars, ionosondes, GPS receivers, magnetometers, conjugate observations, and airborne campaigns. The present volume collects together the papers for photons and ground-based categories. The companion volume collects together the papers for particles and fields categories. It is recognized that there are measurement techniques that overlap among the four categories. For example, use of microchannel plate detectors is used in photon and particle measurement techniques or the observation of visible photons and magnetic fields in space and on the ground share common technologies. Therefore, the reader should consider the entire collection of papers as they seek to understand particular applications. We hope that these volumes will be as valuable as a reference for our community as the earlier 1998 volumes have been.
Henderson, Peter A; Magurran, Anne E
2010-05-22
Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance.
Henderson, Peter A.; Magurran, Anne E.
2010-01-01
Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance. PMID:20071388
The future of Astrometry in Space
NASA Astrophysics Data System (ADS)
Vallenari, Antonella
2018-04-01
This contribution focuses on the importance of astrometry and on its future developments. Over the centuries astrometry has greatly contributed to the advance of the knowledge of the Universe. Nowadays a major breakthrough is on the way due to astrometric sky surveys from space. ESA space missions Hipparcos first and then Gaia point out the outstanding contribution that space astrometry can provide to our knowledge in many fields of astrophysics, going from the Milky Way formation and evolution, to stellar astrophysics, extra-galactic astrophysics, and fundamental physics. We briefly outline the properties of Gaia first and second data release, and the accuracies expected end-of-mission. The next big advance in space astrometry would be either to improve the astrometric accuracy of one order of magnitude, or to move to a different wavelength domain. While both options have the potential to bring us in a new era of discovery, they have to face enormous issues. We summarize the future directions in space astrometry that are proposed or under investigation by the scientific community, their main challenges and the expected outcome.
Residual acceleration data on IML-1: Development of a data reduction and dissemination plan
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Alexander, J. Iwan D.; Wolf, Randy
1992-01-01
The need to record some measure of the low-gravity environment of an orbiting space vehicle was recognized at an early stage of the U.S. Space Program. Such information was considered important for both the assessment of an astronaut's physical condition during and after space missions and the analysis of the fluid physics, materials processing, and biological sciences experiments run in space. Various measurement systems were developed and flown on space platforms beginning in the early 1970's. Similar in concept to land based seismometers that measure vibrations caused by earthquakes and explosions, accelerometers mounted on orbiting space vehicles measure vibrations in and of the vehicle due to internal and external sources, as well as vibrations in a sensor's relative acceleration with respect to the vehicle to which it is attached. The data collected over the years have helped to alter the perception of gravity on-board a space vehicle from the public's early concept of zero-gravity to the science community's evolution of thought from microgravity to milligravity to g-jitter or vibrational environment. Since the advent of the Shuttle Orbiter Program, especially since the start of Spacelab flights dedicated to scientific investigations, the interest in measuring the low-gravity environment in which experiments are run has increased. This interest led to the development and flight of numerous accelerometer systems dedicated to specific experiments. It also prompted the development of the NASA MSAD-sponsored Space Acceleration Measurement System (SAMS). The first SAMS units flew in the Spacelab on STS-40 in June 1991 in support of the first Spacelab Life Sciences mission (SLS-1). SAMS is currently manifested to fly on all future Spacelab missions.
Falb, Kathryn L; Tanner, Sophie; Ward, Leora; Erksine, Dorcas; Noble, Eva; Assazenew, Asham; Bakomere, Theresita; Graybill, Elizabeth; Lowry, Carmen; Mallinga, Pamela; Neiman, Amy; Poulton, Catherine; Robinette, Katie; Sommer, Marni; Stark, Lindsay
2016-03-05
Violence against adolescent girls in humanitarian settings is of urgent concern given their additional vulnerabilities to violence and unique health and well-being needs that have largely been overlooked by the humanitarian community. In order to understand what works to prevent violence against adolescent girls, a multi-component curriculum-based safe spaces program (Creating Opportunities through Mentorship, Parental involvement and Safe Spaces - COMPASS) will be implemented and evaluated. The objectives of this multi-country study are to understand the feasibility, acceptability and effectiveness of COMPASS programming to prevent violence against adolescent girls in diverse humanitarian settings. Two wait-listed cluster-randomized controlled trials are being implemented in conflict-affected communities in eastern Democratic Republic of Congo (N = 886 girls aged 10-14 years) and in refugee camps in western Ethiopia (N = 919 girls aged 13-19 years). The intervention consists of structured facilitated sessions delivered in safe spaces by young female mentors, caregiver discussion groups, capacity-building activities with service providers, and community engagement. In Ethiopia, the research centers on the overall impact of COMPASS compared to a wait-list group. In DRC, the research objective is to understand the incremental effectiveness of the caregiver component in addition to the other COMPASS activities as compared to a wait-list group. The primary outcome is change in sexual violence. Secondary outcomes include decreased physical and emotional abuse, reduced early marriage, improved gender norms, and positive interpersonal relationships, among others. Qualitative methodologies seek to understand girls' perceptions of safety within their communities, key challenges they face, and to identify potential pathways of change. These trials will add much needed evidence for the humanitarian community to meet the unique needs of adolescent girls and to promote their safety and well-being, as well as contributing to how multi-component empowerment programming for adolescent girls could be adapted across humanitarian settings. Clinical Trials NCT02384642 (Registered: 2/24/15) & NCT02506543 (Registered: 7/19/15).
The Internet of Samples in the Earth Sciences (iSamples)
NASA Astrophysics Data System (ADS)
Carter, M. R.; Lehnert, K. A.
2015-12-01
Across most Earth Science disciplines, research depends on the availability of samples collected above, at, and beneath Earth's surface, on the moon and in space, or generated in experiments. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). The Internet of Samples in the Earth Sciences (iSamples) is an initiative funded as a Research Coordination Network (RCN) within the EarthCube program to address this need. iSamples aims to advance the use of innovative cyberinfrastructure to connect physical samples and sample collections across the Earth Sciences with digital data infrastructures to revolutionize their utility for science. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture of a shared cyberinfrastructure for collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical samples. Creating awareness of the need to include physical samples in discussions of reproducible science is another priority of the iSamples RCN.
Towards a National Space Weather Predictive Capability
NASA Astrophysics Data System (ADS)
Fox, N. J.; Lindstrom, K. L.; Ryschkewitsch, M. G.; Anderson, B. J.; Gjerloev, J. W.; Merkin, V. G.; Kelly, M. A.; Miller, E. S.; Sitnov, M. I.; Ukhorskiy, A. Y.; Erlandson, R. E.; Barnes, R. J.; Paxton, L. J.; Sotirelis, T.; Stephens, G.; Comberiate, J.
2014-12-01
National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review datasets, tools and models that have resulted from research by scientists at JHU/APL, and examine how they could be applied to support space weather applications in coordination with other community assets and capabilities.
Fifty Years of Space Weather Forecasting from Boulder
NASA Astrophysics Data System (ADS)
Berger, T. E.
2015-12-01
The first official space weather forecast was issued by the Space Disturbances Laboratory in Boulder, Colorado, in 1965, ushering in an era of operational prediction that continues to this day. Today, the National Oceanic and Atmospheric Administration (NOAA) charters the Space Weather Prediction Center (SWPC) as one of the nine National Centers for Environmental Prediction (NCEP) to provide the nation's official watches, warnings, and alerts of space weather phenomena. SWPC is now integral to national and international efforts to predict space weather events, from the common and mild, to the rare and extreme, that can impact critical technological infrastructure. In 2012, the Strategic National Risk Assessment included extreme space weather events as low-to-medium probability phenomena that could, unlike any other meteorogical phenomena, have an impact on the government's ability to function. Recognizing this, the White House chartered the Office of Science and Technology Policy (OSTP) to produce the first comprehensive national strategy for the prediction, mitigation, and response to an extreme space weather event. The implementation of the National Strategy is ongoing with NOAA, its partners, and stakeholders concentrating on the goal of improving our ability to observe, model, and predict the onset and severity of space weather events. In addition, work continues with the research community to improve our understanding of the physical mechanisms - on the Sun, in the heliosphere, and in the Earth's magnetic field and upper atmosphere - of space weather as well as the effects on critical infrastructure such as electrical power transmission systems. In fifty years, people will hopefully look back at the history of operational space weather prediction and credit our efforts today with solidifying the necessary developments in observational systems, full-physics models of the entire Sun-Earth system, and tools for predicting the impacts to infrastructure to protect against any and all forms of space weather.
NASA Astrophysics Data System (ADS)
Moore, R.; Faerman, M.; Minster, J.; Day, S. M.; Ely, G.
2003-12-01
A community digital library provides support for ingestion, organization, description, preservation, and access of digital entities. The technologies that traditionally provide these capabilities are digital libraries (ingestion, organization, description), persistent archives (preservation) and data grids (access). We present a design for the SCEC community digital library that incorporates aspects of all three systems. Multiple groups have created integrated environments that sustain large-scale scientific data collections. By examining these projects, the following stages of implementation can be identified: \\begin{itemize} Definition of semantic terms to associate with relevant information. This includes definition of uniform content descriptors to describe physical quantities relevant to the scientific discipline, and creation of concept spaces to define how the uniform content descriptors are logically related. Organization of digital entities into logical collections that make it simple to browse and manage related material. Definition of services that are used to access and manipulate material in the collection. Creation of a preservation environment for the long-term management of the collection. Each community is faced with heterogeneity that is introduced when data is distributed across multiple sites, or when multiple sets of collection semantics are used, and or when multiple scientific sub-disciplines are federated. We will present the relevant standards that simplify the implementation of the SCEC community library, the resource requirements for different types of data sets that drive the implementation, and the digital library processes that the SCEC community library will support. The SCEC community library can be viewed as the set of processing steps that are required to build the appropriate SCEC reference data sets (SCEC approved encoding format, SCEC approved descriptive metadata, SCEC approved collection organization, and SCEC managed storage location). Each digital entity that is ingested into the SCEC community library is processed and validated for conformance to SCEC standards. These steps generate provenance, descriptive, administrative, structural, and behavioral metadata. Using data grid technology, the descriptive metadata can be registered onto a logical name space that is controlled and managed by the SCEC digital library. A version of the SCEC community digital library is being implemented in the Storage Resource Broker. The SRB system provides almost all the features enumerated above. The peer-to-peer federation of metadata catalogs is planned for release in September, 2003. The SRB system is in production use in multiple projects, from high-energy physics, to astronomy, to earth systems science, to bio-informatics. The SCEC community library will be based on the definition of standard metadata attributes, the creation of logical collections within the SRB, the creation of access services, and the demonstration of a preservation environment. The use of the SRB for the SCEC digital library will sustain the expected collection size and collection capabilities.
Richardson, J; Goss, Z; Pratt, A; Sharman, J; Tighe, M
2013-12-01
The health and well-being benefits of access to green space are well documented. Research suggests positive findings regardless of social group, however barriers exist that limit access to green space, including proximity, geography and differing social conditions. Current public health policy aims to broaden the range of environmental public health interventions through effective partnership working, providing opportunities to work across agencies to promote the use of green space. Health Impact Assessment (HIA) is a combination of methods and procedures to assess the potential health and well-being impacts of policies, developments and projects. It provides a means by which negative impacts can be mitigated and positive impacts can be enhanced, and has potential application for assessing green space use. This paper describes the application of a HIA approach to a multi-agency project (Stepping Stones to Nature--SS2N) in the UK designed to improve local green spaces and facilitate green space use in areas classified as having high levels of deprivation. The findings suggest that the SS2N project had the potential to provide significant positive benefits in the areas of physical activity, mental and social well-being. Specific findings for one locality identified a range of actions that could be taken to enhance benefits, and mitigate negative factors such as anti-social behaviour. The HIA approach proved to be a valuable process through which impacts of a community development/public health project could be enhanced and negative impacts prevented at an early stage; it illustrates how a HIA approach could enhance multi-agency working to promote health and well-being in communities.
Space Weather Products and Tools Used in Auroral Monitoring and Forecasting at CCMC/SWRC
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Rastaetter, Lutz
2015-01-01
Key points discussed in this chapter are (1) the importance of aurora research to scientific advances and space weather applications, (2) space weather products at CCMC that are relevant to aurora monitoring and forecasting, and (3) the need for more effort from the whole community to achieve a better and long-lead-time forecast of auroral activity. Aurora, as manifestations of solar wind-magnetosphere-ionosphere coupling that occurs in a region of space that is relatively easy to access for sounding rockets, satellites, and other types of observational platforms, serves as a natural laboratory for studying the underlying physics of the complex system. From a space weather application perspective, auroras can cause surface charging of technological assets passing through the region, result in scintillation effects affecting communication and navigation, and cause radar cluttering that hinders military and civilian applications. Indirectly, an aurora and its currents can induce geomagnetically induced currents (GIC) on the ground, which poses major concerns for the wellbeing and operation of power grids, particularly during periods of intense geomagnetic activity. In addition, accurate auroral forecasting is desired for auroral tourism. In this chapter, we first review some of the existing auroral models and discuss past validation efforts. Such efforts are crucial in transitioning a model(s) from research to operations and for further model improvement and development that also benefits scientific endeavors. Then we will focus on products and tools that are used for auroral monitoring and forecasting at the Space Weather Research Center (SWRC). As part of the CCMC (Community Coordinated Modeling Center), SWRC has been providing space weather services since 2010.
FOILFEST :community enabled security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Judy Hennessey; Johnson, Curtis Martin; Whitley, John B.
2005-09-01
The Advanced Concepts Group of Sandia National Laboratories hosted a workshop, ''FOILFest: Community Enabled Security'', on July 18-21, 2005, in Albuquerque, NM. This was a far-reaching look into the future of physical protection consisting of a series of structured brainstorming sessions focused on preventing and foiling attacks on public places and soft targets such as airports, shopping malls, hotels, and public events. These facilities are difficult to protect using traditional security devices since they could easily be pushed out of business through the addition of arduous and expensive security measures. The idea behind this Fest was to explore how themore » public, which is vital to the function of these institutions, can be leveraged as part of a physical protection system. The workshop considered procedures, space design, and approaches for building community through technology. The workshop explored ways to make the ''good guys'' in public places feel safe and be vigilant while making potential perpetrators of harm feel exposed and convinced that they will not succeed. Participants in the Fest included operators of public places, social scientists, technology experts, representatives of government agencies including DHS and the intelligence community, writers and media experts. Many innovative ideas were explored during the fest with most of the time spent on airports, including consideration of the local airport, the Albuquerque Sunport. Some provocative ideas included: (1) sniffers installed in passage areas like revolving door, escalators, (2) a ''jumbotron'' showing current camera shots in the public space, (3) transparent portal screeners allowing viewing of the screening, (4) a layered open/funnel/open/funnel design where open spaces are used to encourage a sense of ''communitas'' and take advantage of citizen ''sensing'' and funnels are technological tunnels of sensors (the tunnels of truth), (5) curved benches with blast proof walls or backs, (6) making it easy for the public to report, even if not sure/''non-event'' (e.g. ''I'm uncomfortable'') and processing those reports in aggregate not individually, (7) transforming the resident working population into a part-time undercover security/sensor force through more innovative training and (8) adding ambassadors/security that engage in unexpected conversation with the public. The group recommended that we take actions to pursue the following ideas next: (a) A concept for a mobile sensor transport (JMP); (b) Conduct a follow-on workshop; (c) Conduct social experiments/activities to see how people would react to the concepts related to community and security; (d) Explore further aesthetically pleasing, blast-resistance seating areas; and (e) The Art of Freedom (an educational, multi-media campaign).« less
Levinger, Pazit; Sales, Myrla; Polman, Remco; Haines, Terry; Dow, Briony; Biddle, Stuart J H; Duque, Gustavo; Hill, Keith D
2018-03-14
Exercising outdoors provide beneficial effect on mental and physical health for all ages. However, few older people exercise outdoors other than walking. While outdoor gyms have become increasingly common in Australia, limited outdoor exercise equipment specifically designed for older people is available in public spaces. We have set up and evaluated a unique purpose-built outdoor exercise park for older people in the community setting and demonstrated positive physical and well-being outcomes associated with the provision of this unique exercise mode and social programme. This study is a reflective narrative describing this innovative exercise approach and reports challenges associated with establishment of the exercise park, conducting the randomised trial, strategies adopted to address these challenges and recommendations for future implementation of this approach in the community. Many challenges were encountered, including securing appropriate land to locate the exercise park, control of environmental factors for safety (non-slippery ground and equipment) as well as logistics in running the exercise programme itself. Several adjustments in the equipment were also required to ensure safe use by older people. The inclusion of outdoor equipment for older people in public spaces or urban parks is important and careful consideration needs to be taken by local/public authorities to provide access, amenities and safety for all as well as activities to suit all ages. SO WHAT?: Seniors' exercise parks can be installed in public places and may provide an enjoyable and effective approach to engage older individuals in a more active and healthier lifestyle. © 2018 The Authors. Health Promotion Journal of Australia published by John Wiley & Sons Australia, Ltd on behalf of Australian Health Promotion Association.
Development the Internet - Resources in Solar-Terrestrial Physics for the Science and Education
NASA Astrophysics Data System (ADS)
Zaistev, A.; Ishkov, V.; Kozlov, A.; Obridko, V.; Odintsov, V.
Future development of research in the solar-terrestrial physics (STP) will motivated by needs into fundamental knowledge and the practical demands in the format of space weather. Public community realized that outer space disturbances affects on the operation of high technologies systems integrated into everyday life, so they need into Internet resources of solar-terrestrial physics as the open scientific and public domain. Recent achievements of STP lead to burst of data sources and we have now many different types of information available free in Internet: solar images from SOHO and GOES-12 satellites, WIND and ACE interplanetary data, satellite and ground-based magnetic field variations, aurora images in real time, ionospheric data and many more. In this paper we present some experience to establish in Russian language the open scientific and public domain in Internet which can served for better understanding of STP in wide scientific community and into the general public including different media sources. Now we have more than one hundred sites which present the STP data: Space Research Institute (www.iki.rssi.ru), IZMIRAN (www.izmiran.rssi.ru), Institute of Solar-Terrestrial Physics (www.iszf.irk.ru), Institute of Nuclear Physics in Moscow University (http://alpha.npi.msu.su) Institute of Nuclear Physics in Moscow University ) and many more. Based on our own experience and our colleagues we decide to create information resources in solar-terrestrial physics as the open scientific and public domain. On this way the main directions of our activity as follows: to produce the catalogues of resources in Internet with detailed description of its content in Russian, to publish the list of Russian institutes working in STP, to present the biographical dictionary of Russian scientists in STP, to create the interactive forum for discussion of latest scientific results, to form the team of authors who willing to publish summarized analytical papers on the STP problems, to establish the regular newsletter with open circulation between professionals and people interested in STP, and to provide the scientific coordination between Russian institutes according rules of the road adopted by Solar-Terrestrial Scientific Council. We strongly advocate in favor to construct such Internet resources on native languages as it will served for national level due to its basic funding source. On the other hand our experience might be useful for other nations, as they are have the same aims. Our project have one of the goal to establish a better public understanding of STP through more open and wide public access to the latest scientific results. The realization of this project is supported by Russian Fund of Basic Research (grant N 02-07-90232) for period 2002-2004 and include results also supported by RFBR before.
Equatorial waves simulated by the NCAR community climate model
NASA Technical Reports Server (NTRS)
Cheng, Xinhua; Chen, Tsing-Chang
1988-01-01
The equatorial planetary waves simulated by the NCAR CCM1 general circulation model were investigated in terms of space-time spectral analysis (Kao, 1968; Hayashi, 1971, 1973) and energetic analysis (Hayashi, 1980). These analyses are particularly applied to grid-point data on latitude circles. In order to test some physical factors which may affect the generation of tropical transient planetary waves, three different model simulations with the CCM1 (the control, the no-mountain, and the no-cloud experiments) were analyzed.
NASA Technical Reports Server (NTRS)
Neupert, Werner M.
1991-01-01
The interface is described between NASA HQ, NASA Goddard, and the rocket Principal Investigators. The proposal selection process is described along with the cycle time to flight, constraints imposed by science objectives on operations, campaign modes, and coordination with ground based facilities. There were questions about the success rate of proposals and the primary sources of funding for the payloads program from the branches of the science divisions in OSSA, especially space physics, astrophysics, Earth sciences, and solar system exploration. The presentation is given in the form of viewgraphs.
Space physics and policy for contemporary society
NASA Astrophysics Data System (ADS)
Cassak, P. A.; Emslie, A. G.; Halford, A. J.; Baker, D. N.; Spence, H. E.; Avery, S. K.; Fisk, L. A.
2017-04-01
Space physics is the study of Earth's home in space. Elements of space physics include how the Sun works from its interior to its atmosphere, the environment between the Sun and planets out to the interstellar medium, and the physics of the magnetic barriers surrounding Earth and other planets. Space physics is highly relevant to society. Space weather, with its goal of predicting how Earth's technological infrastructure responds to activity on the Sun, is an oft-cited example, but there are many more. Space physics has important impacts in formulating public policy.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); daSilva, Arlindo; Dee, Dick; Bloom, Stephen; Bosilovich, Michael; Pawson, Steven; Schubert, Siegfried; Wu, Man-Li; Sienkiewicz, Meta; Stajner, Ivanka
2005-01-01
This document describes the structure and validation of a frozen version of the Goddard Earth Observing System Data Assimilation System (GEOS DAS): GEOS-4.0.3. Significant features of GEOS-4 include: version 3 of the Community Climate Model (CCM3) with the addition of a finite volume dynamical core; version two of the Community Land Model (CLM2); the Physical-space Statistical Analysis System (PSAS); and an interactive retrieval system (iRET) for assimilating TOVS radiance data. Upon completion of the GEOS-4 validation in December 2003, GEOS-4 became operational on 15 January 2004. Products from GEOS-4 have been used in supporting field campaigns and for reprocessing several years of data for CERES.
The Ecocultural Context and Child Behavior Problems: A Qualitative Analysis in Rural Nepal
Burkey, Matthew D.; Ghimire, Lajina; Adhikari, Ramesh Prasad; Wissow, Lawrence S.; Jordans, Mark J.D.; Kohrt, Brandon A.
2016-01-01
Commonly used paradigms for studying child psychopathology emphasize individual-level factors and often neglect the role of context in shaping risk and protective factors among children, families, and communities. To address this gap, we evaluated influences of ecocultural contextual factors on definitions, development of, and responses to child behavior problems and examined how contextual knowledge can inform culturally responsive interventions. We drew on Super and Harkness’ “developmental niche” framework to evaluate the influences of physical and social settings, childcare customs and practices, and parental ethnotheories on the definitions, development of, and responses to child behavior problems in a community in rural Nepal. Data were collected between February and October 2014 through in-depth interviews with a purposive sampling strategy targeting parents (N=10), teachers (N=6), and community leaders (N=8) familiar with child-rearing. Results were supplemented by focus group discussions with children (N=9) and teachers (N=8), pile-sort interviews with mothers (N=8) of school-aged children, and direct observations in homes, schools, and community spaces. Behavior problems were largely defined in light of parents’ socialization goals and role expectations for children. Certain physical settings and times were seen to carry greater risk for problematic behavior when children were unsupervised. Parents and other adults attempted to mitigate behavior problems by supervising them and their social interactions, providing for their physical needs, educating them, and through a shared verbal reminding strategy (samjhaune). The findings of our study illustrate the transactional nature of behavior problem development that involves context-specific goals, roles, and concerns that are likely to affect adults’ interpretations and responses to children’s behavior. Ultimately, employing a developmental niche framework will elucidate setting-specific risk and protective factors for culturally compelling intervention strategies. PMID:27173743
NASA Astrophysics Data System (ADS)
Hanuise, C.; Blanc, E.; Crosby, N.; Ebert, U.; Mareev, E.; Neubert, T.; Rothkaehl, H.; Santolik, O.; Yair, Y.; Gille, P.
2008-12-01
Transient luminous events in the stratosphere and mesosphere, the sprites, elves, blue jets and gigantic jets, are observed above intense thunderstorms in association with particularly intense lightning discharges. Their recent discovery (1989) offers an opportunity to study the fundamental process of the electric discharge under the different conditions of the troposphere (lightning), stratosphere (blue jets) and the mesosphere (sprites) and the coupling between these regions by electric and magnetic fields. It further facilitates studies of the more general questions of thunderstorm effects on the atmosphere and the role of thunderstorms in a changing climate. New space missions will be launched in the coming years to study the various effects of thunderstorms. They will focus on transient luminous events, the generation of relativistic electron beams in discharges, and the perturbation to the atmosphere, ionosphere and magnetosphere of lightning, transient luminous events, water vapour transport and gravity waves. The missions are the French micro-satellite TARANIS, the ESA ASIM payload on board the International Space Station and the Japanese Sprite Sat mission. These highly interdisciplinary missions will result in a wealth of new data, which require knowledge based capacity building to underpin the observations with improved statistical data analysis and theoretical modelling. We are therefore establishing a global framework for research on thunderstorm processes and their effect on the atmosphere, in particular (1) the fundamental process of the electric discharge as manifested in the stratosphere and mesosphere as sprites and jets, (2) the relationship between cosmic rays, lightning discharges, transient luminous events and terrestrial gamma ray flashes, and (3) the environmental impact of the above physical processes, and thunderstorms in general, on the atmosphere and near-Earth space. The first step has been the creation of the European research group (GDRE) dubbed E-CANES (Electromagnetic Coupling of the Atmosphere with the Near-Earth Space). It complements in a synergistic way the former EU Research Training Network 'Coupling of Atmospheric Layers', the existing COST action on 'The physics of lightning flash and its effects', the ASIM Topical Team, and other programs. The main objective of E-CANES is to initiate and promote coordination activities towards a global research community on the subject. The first actions include the establishment of an organization for coordinating ground, balloon and aircraft observation campaigns, the creation of a community-wide mailing list and website, and the promotion and coordination of joint activities with other structures - to include new communities and to avoid the duplication of meetings and workshops.
NASA Technical Reports Server (NTRS)
1991-01-01
Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.
Evidence-based intervention in physical activity: lessons from around the world.
Heath, Gregory W; Parra, Diana C; Sarmiento, Olga L; Andersen, Lars Bo; Owen, Neville; Goenka, Shifalika; Montes, Felipe; Brownson, Ross C
2012-07-21
Promotion of physical activity is a priority for health agencies. We searched for reviews of physical activity interventions, published between 2000 and 2011, and identified effective, promising, or emerging interventions from around the world. The informational approaches of community-wide and mass media campaigns, and short physical activity messages targeting key community sites are recommended. Behavioural and social approaches are effective, introducing social support for physical activity within communities and worksites, and school-based strategies that encompass physical education, classroom activities, after-school sports, and active transport. Recommended environmental and policy approaches include creation and improvement of access to places for physical activity with informational outreach activities, community-scale and street-scale urban design and land use, active transport policy and practices, and community-wide policies and planning. Thus, many approaches lead to acceptable increases in physical activity among people of various ages, and from different social groups, countries, and communities.
Evidence-based intervention in physical activity: lessons from around the world
Heath, Gregory W; Parra, Diana C; Sarmiento, Olga L; Andersen, Lars Bo; Owen, Neville; Goenka, Shifalika; Montes, Felipe; Brownson, Ross C
2016-01-01
Promotion of physical activity is a priority for health agencies. We searched for reviews of physical activity interventions, published between 2000 and 2011, and identified effective, promising, or emerging interventions from around the world. The informational approaches of community-wide and mass media campaigns, and short physical activity messages targeting key community sites are recommended. Behavioural and social approaches are effective, introducing social support for physical activity within communities and worksites, and school-based strategies that encompass physical education, classroom activities, after-school sports, and active transport. Recommended environmental and policy approaches include creation and improvement of access to places for physical activity with informational outreach activities, community-scale and street-scale urban design and land use, active transport policy and practices, and community-wide policies and planning. Thus, many approaches lead to acceptable increases in physical activity among people of various ages, and from different social groups, countries, and communities. PMID:22818939
NASA Astrophysics Data System (ADS)
Belloni, Diogo; Schreiber, Matthias R.; Zorotovic, Mónica; Iłkiewicz, Krystian; Hurley, Jarrod R.; Giersz, Mirek; Lagos, Felipe
2018-06-01
The predicted and observed space density of cataclysmic variables (CVs) have been for a long time discrepant by at least an order of magnitude. The standard model of CV evolution predicts that the vast majority of CVs should be period bouncers, whose space density has been recently measured to be ρ ≲ 2 × 10-5 pc-3. We performed population synthesis of CVs using an updated version of the Binary Stellar Evolution (BSE) code for single and binary star evolution. We find that the recently suggested empirical prescription of consequential angular momentum loss (CAML) brings into agreement predicted and observed space densities of CVs and period bouncers. To progress with our understanding of CV evolution it is crucial to understand the physical mechanism behind empirical CAML. Our changes to the BSE code are also provided in details, which will allow the community to accurately model mass transfer in interacting binaries in which degenerate objects accrete from low-mass main-sequence donor stars.
NASA Astrophysics Data System (ADS)
Evetts, S. N.
2014-08-01
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.
Design of Urban Public Spaces: Intent vs. Reality
Martin, W. Mike; Stewart, Tom; Troelsen, Jens
2018-01-01
This study investigated how two public spaces for sport and recreation were utilized by different user groups, and how this aligned with the initial design objectives for these spaces. Two newly built urban spaces situated in Copenhagen, Denmark, provided the context for this investigation. The System for Observing Play and Recreation in Communities (SOPARC) was used to examine the physical activity of users in these two urban spaces. The architects responsible for designing each space were interviewed to ascertain the intended target group of each space and to unravel the reasons behind the design decisions. The SOPARC observations revealed that males were more vigorously active than females when using the recreation facilities, and the observed users did not align with the intended target groups. The interviews suggested that design decisions were based on minimal interdisciplinary knowledge, and that expert knowledge was chosen randomly. These findings point to a systematic lack of evidence-based practice when designing sport and recreational facilities. This article has implications for landscape architects and urban planners; a new method must be developed to embed interdisciplinary knowledge in the planning process of future sport and recreation projects. This must be done in a systematic way to make the design process transparent. PMID:29690509
Value of urban green spaces in promoting healthy living and wellbeing: prospects for planning.
Lee, Andrew Chee Keng; Jordan, Hannah C; Horsley, Jason
2015-01-01
There has been considerable work done in recent years exploring the value of urban green space for health and wellbeing. Urban green spaces provide environmental benefits through their effects on negating urban heat, offsetting greenhouse gas emissions, and attenuating storm water. They also have direct health benefits by providing urban residents spaces for physical activity and social interaction, and allowing psychological restoration to take place. Consequently, there is a real need to understand the mechanisms by which these benefits accrue. Previously, much of the focus has been on the characteristics of the urban green space that are likely to influence its use, such as its accessibility, quality, facilities, attractiveness, and security. This assumes a causal relationship, when in reality the relationship is more complex and multifactorial. It is more likely that it is the functionality of the green space, be it for exercise or sociocultural activities, rather than its character, which translates to the reported benefits. Challenges exist, such as competing urban planning priorities, economic considerations, and market forces. There is thus a need for urban planning to match the health benefits sought with the needs of the community and the functionality that the urban green space will serve.
1998-01-01
Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).
Microgravity: A New Tool for Basic and Applied Research in Space
NASA Technical Reports Server (NTRS)
1985-01-01
This brochure highlights selected aspects of the NASA Microgravity Science and Applications program. So that we can expand our understanding and control of physical processes, this program supports basic and applied research in electronic materials, metals, glasses and ceramics, biological materials, combustion and fluids and chemicals. NASA facilities that provide weightless environments on the ground, in the air, and in space are available to U.S. and foreign investigators representing the academic and industrial communities. After a brief history of microgravity research, the text explains the advantages and methods of performing microgravity research. Illustrations follow of equipment used and experiments preformed aboard the Shuttle and of prospects for future research. The brochure concludes be describing the program goals and the opportunities for participation.
Incorporating educative environments into the holistic care of paediatric patients.
Wilks, Susan E; Green, Julie B; Zazryn, Tsharni R
2012-08-01
Hospital settings can, and should, create educative spaces and learning opportunities as part of their holistic care for young patients. The purpose of this paper is to examine the evidence for creating high quality, child-centred learning environments within paediatric settings. We explore the impact of physical spaces on learning; the literature on developmental stages of learning for children and young people as it relates to learning environments; and the literature on learning in out-of-school settings, particularly as this applies to children who are separated from their daily communities. As all paediatric settings can create opportunities for the ongoing educational development of their patients, this paper presents a way forward for this approach to holistic care.
NASA Technical Reports Server (NTRS)
1998-01-01
Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).
Supporting Collective Inquiry: A Technology Framework for Distributed Learning
NASA Astrophysics Data System (ADS)
Tissenbaum, Michael
This design-based study describes the implementation and evaluation of a technology framework to support smart classrooms and Distributed Technology Enhanced Learning (DTEL) called SAIL Smart Space (S3). S3 is an open-source technology framework designed to support students engaged in inquiry investigations as a knowledge community. To evaluate the effectiveness of S3 as a generalizable technology framework, a curriculum named PLACE (Physics Learning Across Contexts and Environments) was developed to support two grade-11 physics classes (n = 22; n = 23) engaged in a multi-context inquiry curriculum based on the Knowledge Community and Inquiry (KCI) pedagogical model. This dissertation outlines three initial design studies that established a set of design principles for DTEL curricula, and related technology infrastructures. These principles guided the development of PLACE, a twelve-week inquiry curriculum in which students drew upon their community-generated knowledge base as a source of evidence for solving ill-structured physics problems based on the physics of Hollywood movies. During the culminating smart classroom activity, the S3 framework played a central role in orchestrating student activities, including managing the flow of materials and students using real-time data mining and intelligent agents that responded to emergent class patterns. S3 supported students' construction of knowledge through the use individual, collective and collaborative scripts and technologies, including tablets and interactive large-format displays. Aggregate and real-time ambient visualizations helped the teacher act as a wondering facilitator, supporting students in their inquiry where needed. A teacher orchestration tablet gave the teacher some control over the flow of the scripted activities, and alerted him to critical moments for intervention. Analysis focuses on S3's effectiveness in supporting students' inquiry across multiple learning contexts and scales of time, and in making timely and effective use of the community's knowledge base, towards producing solutions to sophisticated, ill defined problems in the domain of physics. Video analysis examined whether S3 supported teacher orchestration, freeing him to focus less on classroom management and more on students' inquiry. Three important outcomes of this research are a set of design principles for DTEL environments, a specific technology infrastructure (S3), and a DTEL research framework.
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri
2004-01-01
As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.
Virtual auditorium concepts for exhibition halls
NASA Astrophysics Data System (ADS)
Evans, Jack; Himmel, Chad; Knight, Sarah
2002-11-01
Many communities lack good performance facilities for symphonic music, opera, dramatic and musical arts, but have basic convention, exhibition or assembly spaces. It should be possible to develop performance space environments within large multipurpose facilities that will accommodate production and presentation of dramatic arts. Concepts for moderate-cost, temporary enhancements that transform boxy spaces into more intimate, acoustically articulated venues will be presented. Acoustical criteria and design parameters will be discussed in the context of creating a virtual auditorium within the building envelope. Physical, economic, and logistical limitations affect implementation. Sound reinforcement system augmentation can supplement the room conversion. Acceptable control of reflection patterns, reverberation, and to some extent, ambient noise, may be achieved with an array of nonpermanent reflector and absorber elements. These elements can sculpture an enclosure to approach the shape and acoustic characteristics of an auditorium. Plan and section illustrations will be included.
Street as Public Space - Measuring Street Life of Kuala Lumpur
NASA Astrophysics Data System (ADS)
Sulaiman, Normah; Ayu Abdullah, Yusfida; Hamdan, Hazlina
2017-10-01
Kuala Lumpur has envisioning in becoming World Class City by the year 2020. Essential elements of form and function of the urban environment are streets. Streets showcase the community and connect people. It’s one of the most comfortable social environment that provides aesthetical and interaction pleasure for everyone. Classified as main shopping streets in the local Kuala Lumpur urban design guidelines, Jalan Masjid India (JMI) has its uniqueness of shopping experience and social interaction. This conceptual paper will study the physical and cultural characteristics of the street that will generate the street character by mapping its original characters. The findings will focus on strengthening the methodology applied to promote improvements in evaluating it as a great public space. Results will also contribute to understanding the overall site context, the street connectivity, and urban dynamics. This paper is part of a larger study that addresses on transforming the sociability of public space.
SpaceWire Data Handling Demonstration System
NASA Astrophysics Data System (ADS)
Mills, S.; Parkes, S. M.; O'Gribin, N.
2007-08-01
The SpaceWire standard was published in 2003 with the aim of providing a standard for onboard communications, defining the physical and data link layers of an interconnection, in order to improve reusability, reliability and to reduce the cost of mission development. The many benefits which it provides mean that it has already been used in a number of missions, both in Europe and throughout the world. Recent work by the SpaceWire community has included the development of higher level protocols for SpaceWire, such as the Remote Memory Access Protocol (RMAP) which can be used for many purposes, including the configuration of SpaceWire devices. Although SpaceWire has become very popular, the various ways in which it can be used are still being discovered, as are the most efficient ways to use it. At the same time, some in the space industry are not even aware of SpaceWire's existence. This paper describes the SpaceWire Data Handling Demonstration System that has been developed by the University of Dundee. This system simulates an onboard data handling network based on SpaceWire. It uses RMAP for all communication, and so demonstrates how SpaceWire and standardised higher level protocols can be used onboard a spacecraft. The system is not only a good advert for those who are unfamiliar with the benefits of SpaceWire, it is also a useful tool for those using SpaceWire to test ideas.
New SPDF Directions and Evolving Services Supporting Heliophysics Research
NASA Technical Reports Server (NTRS)
McGuire, Robert E.; Candey, Robert M.; Bilitza, D.; Chimiak, Reine A.; Cooper, John F.; Fung, Shing F.; Han, David B.; Harris, Bernie; Johnson R.; Klipsch, C.;
2006-01-01
The next advances in Heliophysics science and its paradigm of a Great Observatory require an increasingly integrated and transparent data environment, where data can be easily accessed and used across the boundaries of both missions and traditional disciplines. The Space Physics Data Facility (SPDF) project includes uniquely important multi-mission data services with current data from most operating space physics missions. This paper reviews the capabilities of key services now available and the directions in which they are expected to evolve to enable future multi-mission correlative research. The Coordinated Data Analysis Web (CDAWeb) and Satellite Situation Center Web (SSCWeb), critically supported by the Common Data Format (CDF) effort and supplemented by more focused science services such as OMNIWeb and technical services such as data format translations are important operational capabilities serving the international community today (and cited last year by 20% of the papers published in JGR Space Physics). These services continue to add data from most current missions as SPDF works with new missions such as THEMIS to help enable their unique science goals and the meaningful sharing of their data in a multi-mission correlative context. Recent enhancements to CDF, our 3D Java interactive orbit viewer (TIPSOD), the CDAWeb Plus system, increasing automation of data service population, the new folding of the VSPO effort into SPDF and our continuing thrust towards fully-functional web services APIs to allow ready invocation from distributed external middleware and clients will be shown.
NASA Technical Reports Server (NTRS)
Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.;
2008-01-01
From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.
Terminator field-aligned current system: A new finding from model-assimilated data set (MADS)
NASA Astrophysics Data System (ADS)
Zhu, L.; Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Gardner, L. C.; Eccles, J. V.; Rice, D.
2013-12-01
Physics-based data assimilation models have been recognized by the space science community as the most accurate approach to specify and forecast the space weather of the solar-terrestrial environment. The model-assimilated data sets (MADS) produced by these models constitute an internally consistent time series of global three-dimensional fields whose accuracy can be estimated. Because of its internal consistency of physics and completeness of descriptions on the status of global systems, the MADS has also been a powerful tool to identify the systematic errors in measurements, reveal the missing physics in physical models, and discover the important dynamical physical processes that are inadequately observed or missed by measurements due to observational limitations. In the past years, we developed a data assimilation model for the high-latitude ionospheric plasma dynamics and electrodynamics. With a set of physical models, an ensemble Kalman filter, and the ingestion of data from multiple observations, the data assimilation model can produce a self-consistent time-series of the complete descriptions of the global high-latitude ionosphere, which includes the convection electric field, horizontal and field-aligned currents, conductivity, as well as 3-D plasma densities and temperatures, In this presentation, we will show a new field-aligned current system discovered from the analysis of the MADS produced by our data assimilation model. This new current system appears and develops near the ionospheric terminator. The dynamical features of this current system will be described and its connection to the active role of the ionosphere in the M-I coupling will be discussed.
Plans and Recent Developments for Fluid Physics Experiments Aboard the ISS
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Motil, Brian J.
2016-01-01
From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensable laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for Fluid Physics, NASA GRC is developing and testing the Pack Bed Reactor Experiment (PBRE), Zero Boil Off (ZBOT) Two Phase Flow Separator Experiment (TPFSE), Multiphase Flow Heat Transfer (MFHT) Experiment and the Electro-HydroDynamic (EHD) experiment. An overview each experiment, including its objectives, concept and status will be presented. In addition, data will be made available after a nominal period to NASAs Physical Science Informatics PSI database to the scientific community to enable additional analyses of results.
O'Brien, Daniel Tumminelli; Montgomery, Barrett W
2015-03-01
Much research has focused on physical disorder in urban neighborhoods as evidence that the community does not maintain local norms and spaces. Little attention has been paid to the opposite: indicators of proactive investment in the neighborhood's upkeep. This manuscript presents a methodology that translates a database of approved building permits into an ecometric of investment by community members, establishing basic content, criteria for reliability, and construct validity. A database from Boston, MA contained 150,493 permits spanning 2.5 years, each record including the property to be modified, permit type, and date issued. Investment was operationalized as the proportion of properties in a census block group that underwent an addition or renovation, excluding larger developments involving the demolition or construction of a building. The reliability analysis found that robust measures could be generated every 6 months, and that longitudinal analysis could differentiate between trajectories across neighborhoods. The validity analysis supported two hypotheses: investment was best predicted by homeownership and median income; and maintained an independent relationship with measures of physical disorder despite controlling for demographics, implying that it captures the other end of a spectrum of neighborhood maintenance. Possible uses for the measure in research and policy are discussed.
NASA Astrophysics Data System (ADS)
Logan, Savannah L.; Shields, Drew S.; Hammer, Brian K.; Xavier, Joao B.; Parthasarathy, Raghuveer
Animal gastrointestinal tracts are home to a diverse community of microbes. The mechanisms by which microbial species interact and compete in this dense, physically dynamic space are poorly understood, limiting our understanding of how natural communities are assembled and how different communities could be engineered. Here, we focus on a physical mechanism for competition: the type VI secretion system (T6SS). The T6SS is a syringe-like organelle used by certain bacteria to translocate effector proteins across the cell membranes of target bacterial cells, killing them. Here, we use T6SS+ and T6SS- strains of V. cholerae, the pathogen that causes cholera in humans, and light sheet fluorescence microscopy for in vivo imaging to show that the T6SS provides an advantage to strains colonizing the larval zebrafish gut. Furthermore, we show that T6SS+ bacteria can invade and alter an existing population of a different species in the zebrafish gut, reducing its abundance and changing the form of its population dynamics. This work both demonstrates a mechanism for altering the gut microbiota with an invasive species and explores the processes controlling the stability and dynamics of the gut ecosystem. Research Corporation, Gordon and Betty Moore Foundation, and the Simons Foundation.
Dombois, Oliver Thommen; Braun-Fahrländer, Charlotte; Martin-Diener, Eva
2007-09-01
To compare physical activity levels of residents of three Swiss alpine communities with varying access to motorized transport and to investigate whether socio-demographic factors, the settlement structure or means of transport affect these levels. Between January and February 2004 a computer assisted telephone interview was conducted with 901 randomly selected adults aged 18 years or older living in three Swiss alpine communities. In particular, information on moderate and vigorous intensity physical activities and on transport behaviour was collected. Respondents were categorized as 'sufficiently active' or 'insufficiently active' according to self-reported physical activity. People living in community 1 without access to motorized traffic were significantly more likely to be sufficiently active (Sex- and age-adjusted prevalences of sufficient total physical activity, 43.9% 95% CI: 38.3%-49.8%) compared to individuals living in the other two communities (community 2: 35.9%, 95% CI: 30.6%-41.6%, community 3: 32.7%, 95% CI: 27.5%-38.3%). The differences were due to higher levels of moderate physical activities. Vigorous physical activity levels did not differ between the communities. Community differences were explained by passive means of transport to work and for leisure time activities. Although the environment encountered in the three alpine communities is generally conducive to physical activity the majority of the participants did not achieve recommended activity levels. Passive mode of transport to work and during leisure time was strongly associated with insufficient total physical activity. Walking and cycling for transportation is thus a promising approach to promote health enhancing physical activity.
Space Weathering: A Proposed Laboratory Approach to Explaining the Sulfur Depletion on Eros
NASA Technical Reports Server (NTRS)
Franzen, M. A.; Kracher, A.; Sears, D. W. G.; Cassidy, W.; Hapke, B.
2005-01-01
Space weathering is the cumulative effect of physical and chemical changes that occur to substances exposed on the exterior of body void of an atmosphere [1], in this case the regolith on asteroid Eros. It is only recently that the scientific community has accepted the theory first developed in the mid- 1970s by Hapke and his colleagues of how space weathering occurs. The theory [1] asserts that optical and magnetic effects, first studied on moon rocks and lunar regolith, are caused by submicroscopic metallic iron (SMFe), smaller than the wavelength of light in vapor deposit coatings, on regolith grains, and in agglutinates. This vapor is generated by solar wind and micrometeorite impacts and does not require additional heating, melting, or a reducing environment to produce space weathering. One of the major finds of the first detailed reconnaissance of an asteroid by the NEAR Shoemaker mission was that the surface of Eros was essentially chondritic yet showed major depletions in sulfur [2, 3]. Here we propose space weathering sputtering experiments that may contribute to the explanation of sulfur depletion on asteroid Eros.
Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2008-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.
The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory
NASA Technical Reports Server (NTRS)
Gurman, Joseph B.
2007-01-01
The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."
NASA Astrophysics Data System (ADS)
Green, Joel D.; Smith, Denise A.; Lawton, Brandon L.; Jirdeh, Hussein; Meinke, Bonnie K.
2016-01-01
The James Webb Space Telescope is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public, to educators and students, and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. We have injected Webb-specific content into ongoing E/PO programs: for example, simulated scientifically inspired but aesthetic JWST scenes, illustrating the differences between JWST and previous missions; partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; educational materials in vast networks of schools through products like the Star Witness News.
Global Space Weather Observational Network: Challenges and China's Contribution
NASA Astrophysics Data System (ADS)
Wang, C.
2017-12-01
To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.
The Heliophysics Data Environment: Open Source, Open Systems and Open Data.
NASA Astrophysics Data System (ADS)
King, Todd; Roberts, Aaron; Walker, Raymond; Thieman, James
2012-07-01
The Heliophysics Data Environment (HPDE) is a place for scientific discovery. Today the Heliophysics Data Environment is a framework of technologies, standards and services which enables the international community to collaborate more effectively in space physics research. Crafting a framework for a data environment begins with defining a model of the tasks to be performed, then defining the functional aspects and the work flow. The foundation of any data environment is an information model which defines the structure and content of the metadata necessary to perform the tasks. In the Heliophysics Data Environment the information model is the Space Physics Archive Search and Extract (SPASE) model and available resources are described by using this model. A described resource can reside anywhere on the internet which makes it possible for a national archive, mission, data center or individual researcher to be a provider. The generated metadata is shared, reviewed and harvested to enable services. Virtual Observatories use the metadata to provide community based portals. Through unique identifiers and registry services tools can quickly discover and access data available anywhere on the internet. This enables a researcher to quickly view and analyze data in a variety of settings and enhances the Heliophysics Data Environment. To illustrate the current Heliophysics Data Environment we present the design, architecture and operation of the Heliophysics framework. We then walk through a real example of using available tools to investigate the effects of the solar wind on Earth's magnetosphere.
Quantitative Evaluation of Ionosphere Models for Reproducing Regional TEC During Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Shim, J. S.; Kuznetsova, M.; Rastaetter, L.; Bilitza, D.; Codrescu, M.; Coster, A. J.; Emery, B.; Foster, B.; Fuller-Rowell, T. J.; Goncharenko, L. P.; Huba, J.; Mitchell, C. N.; Ridley, A. J.; Fedrizzi, M.; Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Zhu, L.
2015-12-01
TEC (Total Electron Content) is one of the key parameters in description of the ionospheric variability that has influence on the accuracy of navigation and communication systems. To assess current TEC modeling capability of ionospheric models during geomagnetic storms and to establish a baseline against which future improvement can be compared, we quantified the ionospheric models' performance by comparing modeled vertical TEC values with ground-based GPS TEC measurements and Multi-Instrument Data Analysis System (MIDAS) TEC. The comparison focused on North America and Europe sectors during selected two storm events: 2006 AGU storm (14-15 Dec. 2006) and 2013 March storm (17-19 Mar. 2013). The ionospheric models used for this study range from empirical to physics-based, and physics-based data assimilation models. We investigated spatial and temporal variations of TEC during the storms. In addition, we considered several parameters to quantify storm impacts on TEC: TEC changes compared to quiet time, rate of TEC change, and maximum increase/decrease during the storms. In this presentation, we focus on preliminary results of the comparison of the models performance in reproducing the storm-time TEC variations using the parameters and skill scores. This study has been supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) for the space science communities to use.
Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996
NASA Technical Reports Server (NTRS)
1997-01-01
NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth.
Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder
2014-12-17
The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimesmore » to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.« less
Benefits of Enterprise Social Networking Systems for High Energy Physics community
NASA Astrophysics Data System (ADS)
Silva de Sousa, B.; Wagner, A.; Ormancey, E.; Grzywaczewski, P.
2015-12-01
The emergence of social media platforms in the consumer space unlocked new ways of interaction between individuals on the Web. People develop now their social networks and relations based on common interests and activities with the choice to opt-in or opt-out on content of their interest. This kind of platforms have also an important place to fill inside large organizations and enterprises where communication and collaborators interaction are keys for development. Enterprise Social Networking Systems (ESN) add value to an organization by encouraging information sharing, capturing knowledge, enabling action and empowering people. CERN is currently rolling out an ESN which aims to unify and provide a single point of access to the multitude of information sources in the organization. It also implements social features that can be added on top of existing communication channels. While the deployment of this kind of platforms is not without risks we firmly believe that they are of the best interest for our community, opening the opportunity to evaluate a global social network for High Energy Physics (HEP).
Blue Bird Jernigan, Valarie; Salvatore, Alicia L.; Styne, Dennis M.; Winkleby, Marilyn
2012-01-01
The food insecurity faced by many Native American communities has numerous implications for the health and welfare of families. To identify and address upstream causes of food insecurity in a rural California reservation, we conducted a community assessment using the Tool for Health and Resilience in Vulnerable Environments (THRIVE). Guided by a community-based participatory research orientation, the THRIVE tool was adapted using digital storytelling and implemented in a series of focus groups. As a result of the THRIVE assessment, community members identified racial injustice and physical and financial barriers to accessing healthy and culturally appropriate foods as areas of greatest importance. Subsequently, the project partnership developed policies to reduce identified barriers which included an integrated community supported agriculture and commodity food program, the introduction of Electronic Benefits Transfer and culturally appropriate foods at the local farmers’ market and reallocation of shelf space at the grocery store to include vegetables and fruits as well as special foods for diabetics. Results suggest that a participatory research orientation coupled with the use of a culturally adapted THRIVE tool may be an effective means for identifying structural determinants of food insecurity and initiating novel policy interventions to reduce health disparities experienced by Native American communities. PMID:21994709
Effects of Distant Green Space on Physical Activity in Sydney, Australia.
Chong, Shanley; Byun, Roy; Mazumdar, Soumya; Bauman, Adrian; Jalaludin, Bin
2017-01-01
The aim was to investigate the association between distant green space and physical activity modified by local green space. Information about physical activity, demographic and socioeconomic background at the individual level was extracted from the New South Wales Population Health Survey. The proportion of a postcode that was parkland was used as a proxy measure for access to parklands and was calculated for each individual. There was a significant relationship between distant green space and engaging in moderate-to-vigorous physical activity (MVPA) at least once a week. No significant relationship was found between adequate physical activity and distant green space. No significant relationships were found between adequate physical activity, engaging in MVPA, and local green space. However, if respondents lived in greater local green space (≥25%), there was a significant relationship between engaging in MVPA at least once a week and distance green space of ≥20%. This study highlights the important effect of distant green space on physical activity. Our findings also suggest that moderate size of local green space together with moderate size of distant green space are important levers for participation of physical activity.
Building the base: two active living projects that inspired community participation.
Hamamoto, Mark H; Derauf, David D; Yoshimura, Sheryl R
2009-12-01
Kalihi Valley is a densely populated, low-income community (28,958 residents in approximately 6 square miles) with insufficient sidewalks, bike lanes, and public green space to support regular physical activity for its residents. Kokua Kalihi Valley (KKV), a community health center formed in 1972, sought to improve Kalihi Valley's built environment based on its history of community- and partnership-based preventive health initiatives that have focused on the social determinants of health. Kokua Kalihi Valley used a flexible partnership model and a focus on direct community action to develop an unused 100-acre state park (the Kalihi Valley Nature Park) and establish a bicycle repair and recycling program that mobilized thousands of community volunteers, attracted widespread media coverage, and established a number of innovative programs for active living. Kokua Kalihi Valley and its partners also contributed to the successful passage of a city charter amendment to prioritize Honolulu as a bicycle- and pedestrian-friendly city. This initiative was successful in reclaiming a substantial amount of land for active living and in stimulating both public governmental support and widespread private community involvement in programs and activities. Projects that engaged community members in activities with tangible accomplishment were shown to be most successful. This initiative showed that community health centers may be uniquely positioned to provide leadership and assume responsibility for cross-sectoral active-living health projects.
NASA Astrophysics Data System (ADS)
Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.
2013-12-01
Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit from in the short- and medium-term, such as: enhanced forecasting eg. using Bayesian statistics; optimization and standardization of effects tools; operations-ready real-time data tools, with customization options tailored around the operator's views; next-generation SWE-specific sensors and provision of key data to Operators.
Climate, weather, space weather: model development in an operational context
NASA Astrophysics Data System (ADS)
Folini, Doris
2018-05-01
Aspects of operational modeling for climate, weather, and space weather forecasts are contrasted, with a particular focus on the somewhat conflicting demands of "operational stability" versus "dynamic development" of the involved models. Some common key elements are identified, indicating potential for fruitful exchange across communities. Operational model development is compelling, driven by factors that broadly fall into four categories: model skill, basic physics, advances in computer architecture, and new aspects to be covered, from costumer needs over physics to observational data. Evaluation of model skill as part of the operational chain goes beyond an automated skill score. Permanent interaction between "pure research" and "operational forecast" people is beneficial to both sides. This includes joint model development projects, although ultimate responsibility for the operational code remains with the forecast provider. The pace of model development reflects operational lead times. The points are illustrated with selected examples, many of which reflect the author's background and personal contacts, notably with the Swiss Weather Service and the Max Planck Institute for Meteorology, Hamburg, Germany. In view of current and future challenges, large collaborations covering a range of expertise are a must - within and across climate, weather, and space weather. To profit from and cope with the rapid progress of computer architectures, supercompute centers must form part of the team.
NASA Astrophysics Data System (ADS)
Ferreira, Jose Leonardo
2016-07-01
This project aims to develop interdisciplinary actions, articulated and convergence in the field of education, dissemination and popularization of science and technology in Brasilia-DF, the Federal District of Brazil. These actions are also been carried out at DF surroundings areas. Since 2015 linked convergent actions are focused on the development of space science and astronomy teaching with hands on experimental activities. Workshops, short basic astronomy courses, expositions and planetarium show are been carried out by a team of professors, graduate and under graduate students from University of Brasilia- UnB. At the same time upgrade actions are been done in order to modernize The Luiz Cruls Astronomical Observatory located at the far campus of UnB, named Fazenda Água Limpa. It is now a Center for research and space science dissemination and popularization not only for students but also for the whole community of Brasilia. Working toghether with the Physics Institute of UnB we have the recently created Museum of Science and Technology of Brasilia, also located at the UnB campus. The Museum is responsible for contac with schools and Brasilia community and for the organization of the activities of the Science on the School Project. Science on the School is an educational, scientific and cultural proposal approved and financed by the brazillian national research council (CNPq) and by the Science and Technology Reseach Foundation of Brasilia. Besides science dissemination for the brazillian society the project is also developing theoretical and experimental research in the area of Space Science and Astronomy. The project also aim to transform the Museum in a strong Science Education Center for the Brazil central region population, It is going to be a cultural environment and leisure for the Federal District and surrounding areas of Brasilia. In this work we will describe the coordinate actions of The Luiz Cruls Astronomical Observatory the Physics Institute of UnB and of the Museum of Science and Technology of Brasilia destinate to converge public communication of science. In their facilities will be possible to conceive, plan, develop, encourage and support scientific activities (playful and interactive) in schools and communities in the Federal District and surrounding areas of Brasilia, focusing on different aspects of science and technology and their relationship with society through investigative practices involving, particularly students and teachers of basic education and the community in General. The project will act even in the promotion of events, courses, workshops and scientific-cultural experiences, production of radio and TV programs aimed at promoting initiation into Science and environmental awareness on basic education.
Health sciences libraries building survey, 1999-2009.
Ludwig, Logan
2010-04-01
A survey was conducted of health sciences libraries to obtain information about newer buildings, additions, remodeling, and renovations. An online survey was developed, and announcements of survey availability posted to three major email discussion lists: Medical Library Association (MLA), Association of Academic Health Sciences Libraries (AAHSL), and MEDLIB-L. Previous discussions of library building projects on email discussion lists, a literature review, personal communications, and the author's consulting experiences identified additional projects. Seventy-eight health sciences library building projects at seventy-three institutions are reported. Twenty-two are newer facilities built within the last ten years; two are space expansions; forty-five are renovation projects; and nine are combinations of new and renovated space. Six institutions report multiple or ongoing renovation projects during the last ten years. The survey results confirm a continuing migration from print-based to digitally based collections and reveal trends in library space design. Some health sciences libraries report loss of space as they move toward creating space for "community" building. Libraries are becoming more proactive in using or retooling space for concentration, collaboration, contemplation, communication, and socialization. All are moving toward a clearer operational vision of the library as the institution's information nexus and not merely as a physical location with print collections.
NASA Technical Reports Server (NTRS)
Roberts, W. T.; Kropp, J.; Taylor, W. W. L.
1986-01-01
This paper outlines the currently planned utilization of the Space Station to perform investigations in solar physics, solar terrestrial physics, and plasma physics. The investigations and instrumentation planned for the Solar Terrestrial Observatory (STO) and its associated Space Station accommodation requirements are discussed as well as the planned placement of the STO instruments and typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the Space Station are outlined. These preliminary experiment concepts use the space environment around the Space Station as an unconfined plasma laboratory. In solar physics, the initial instrument complement and associated accommodation requirements of the Advanced Solar Observatory are described. The planned evolutionary development of this observatory is outlined, making use of the Space Station capabilities for servicing and instrument reconfiguration.
F-CHROMA.Flare Chromospheres: Observations, Models and Archives
NASA Astrophysics Data System (ADS)
Cauzzi, Gianna; Fletcher, Lyndsay; Mathioudakis, Mihalis; Carlsson, Mats; Heinzel, Petr; Berlicki, Arek; Zuccarello, Francesca
2014-06-01
F-CHROMA is a collaborative project newly funded under the EU-Framework Programme 7 "FP7-SPACE-2013-1", involving seven different European research Institutes and Universities. The goal of F-CHROMA is to substantially advance our understanding of the physics of energy dissipation and radiation in the flaring solar atmosphere, with a particular focus on the flares' chromosphere. A major outcome of the F-CHROMA project will be the creation of an archive of chromospheric flare observations and models to be made available to the community for further research.In this poster we describe the structure and milestones of the project, the different activities planned, as well as early results. Emphasis will be given to the dissemination efforts of the project to make results of these activities available to and usable by the community.
Microgravity Science and Application Program tasks, 1989 revision
NASA Technical Reports Server (NTRS)
1990-01-01
The active research tasks, as of the fiscal year 1989, of the Microgravity Science and Applications Program, NASA Office of Space Science and Applications, involving several NASA Centers and other organizations are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The scientists in industry, university, and government communities. An introductory description of the program, the strategy and overall goal, identification of the organizational structures and people involved, and a description of each task are included. Also provided is a list of recent publications. The tasks are grouped into several major categories: electronic materials, solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; glasses and ceramics; combustion science; physical and chemistry experiments (PACE); and experimental technology, facilities, and instrumentation.
Urban green space and vibrant communities: exploring the linkage in the Portland Vancouver area
Edward A. Stone; JunJie Wu; Ralph Alig
2015-01-01
This report investigates the interactions between household location decisions and community characteristics, including green space. Household location decisions are a primary driver of land-use change, and collective location decisions affect community characteristics. At the same time, community characteristics affect location decisions. Neighborhoods or communities...
NASA Astrophysics Data System (ADS)
Smith, H. T.
2013-12-01
Multiple companies are in the process of developing commercial suborbital reusable launch vehicles (sRLV's). While these companies originally targeted space tourism as the primary customer base, it is rapidly becoming apparent that this dramatic increase in low cost access to space could provide revolutionary opportunities for scientific research, engineering/instrument development and STEM education. These burgeoning capabilities will offer unprecedented opportunities regarding access to space with frequent low-cost access to the region of space from the ground to the boundary of near-Earth space at ~100 km. In situ research of this region is difficult because it is too high for aircraft and balloons and yet too low for orbital satellites and spacecraft. However, this region is very significant because it represents the tenuous boundary of Earth's Atmosphere and Space. It contains a critical portion of the atmosphere where the regime transitions from collisional to non-collisional physics and includes complex charged and neutral particle interactions. These new launch vehicles are currently designed for manned and unmanned flights that reach altitudes up to 110 km for 5K-500K per flight with payload capacity exceeding 600 kg. Considering the much higher cost per flight for a sounding rocket with similar capabilities, high flight cadence, and guaranteed return of payload, commercial spacecraft has the potential to revolutionize access to near space. This unprecedented access to space allows participation at all levels of research, engineering, education and the public at large. For example, one can envision a model where students can conduct complete end to end projects where they design, build, fly and analyze data from individual research projects for thousands of dollars instead of hundreds of thousands. Our community is only beginning to grasp the opportunities and impactions of these new capabilities but with operational flights anticipated in 2014, it is important for our community to start exploring possible applications for these new spacecraft.
The ZPIC educational code suite
NASA Astrophysics Data System (ADS)
Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.
2017-10-01
Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.
Utility of space transportation system to space communication community: Executive summary
NASA Technical Reports Server (NTRS)
Bronstein, L. M.
1975-01-01
The space transportation system (STS) offers the opportunity for maintaining, and perhaps accelerating, growth of the space communication community. This new launch vehicle service, however, must be obtained at a cost lower than the current expandable launch vehicles cost. A cost competitive STS is defined for geostationary payloads. It is concluded that the STS will be useful to the space communication community, as well as to other geostationary satellite system users, if the proposed recommendations are adapted.
CU Prime Diversity Workshops: Creating Spaces for Growth Amongst Organizers
NASA Astrophysics Data System (ADS)
Hyater-Adams, Simone
2016-03-01
CU Prime is a graduate student run organization that was created as a way to promote community and inclusion amongst students in CU Physics Department. With a mission to improve the experiences of students, especially those underrepresented in the department and field, the core organizers developed three programs: a seminar series, a class, and a mentorship program. However, because this is strictly volunteer time for most organizers, there is little time for development and growth as a group. In response, we developed a series of diversity workshops for the group, in order to provide space and time for organizers to reflect on and grapple with difficult issues around diversity and inclusion that are important to think about when running these programs. With a structure based on readings, informal videos, and reflection, there have been 5 workshops around topics ranging from gender in physics to how to be an ally. We overview the structure and framing of these workshops, along with the challenges and successes throughout the process of developing them, along with plans for future development.
Yu, Ruby; Wang, Dan; Leung, Jason; Lau, Kevin; Kwok, Timothy; Woo, Jean
2018-06-01
To examine whether neighborhood green space was related to frailty risk longitudinally and to examine the relative contributions of green space, physical activity, and individual health conditions to the frailty transitions. Four thousand community-dwelling Chinese adults aged ≥65 years participating in the Mr. and Ms. Os (Hong Kong) study in 2001-2003 were followed up for 2 years. The percentage of green space within a 300-meter radial buffer around the participants' place of residence was derived for each participant at baseline based on the normalized difference vegetation index. Frailty status was classified according to the Fried criteria at baseline and after 2 years. Ordinal logistic regression and path analysis were used to examine associations between green space and the frailty transitions, adjusting for demographics, socioeconomic status, lifestyle factors, health conditions, and baseline frailty status. At baseline, 53.5% of the participants met the criterion for robust, 41.5% were classified as prefrailty, and 5.0% were frail. After 2 years, 3240 participants completed all the measurements. Among these, 18.6% of prefrail or frail participants improved, 66% remained in their frailty state, and 26.8% of robust or prefrail participants progressed in frailty status. In multivariable models, the frailty status of participants living in neighborhoods with more than 34.1% green space (the highest quartile) at baseline was more likely to improve at the 2-year follow-up than it was for those living in neighborhoods with 0 to 4.5% (the lowest quartile) [odds ratio (OR): 1.29, 95% confidence interval (CI): 1.04-1.60; P for trend: 0.022]. When men and women were analyzed separately, the association between green space and frailty remained significant in men (OR: 1.40, 95% CI: 1.03-1.90) but not in women. Path analysis showed that green space directly affects frailty transitions (β = 0.041, P < .05) and also exerts an effect through physical activity (β = 0.034, P < .05). Physical activity directly affects frailty (β = 0.134, P < .05), and also indirectly affects frailty through health conditions including number of diseases (β = -0.057, P < .05) and cognitive functions (β = 0.041, P < .05). The magnitude of the direct effect of green space on the 2-year frailty transitions is comparable to those of the indirect effect through physical activity. Older people living in neighborhoods with a higher percentage of green space were associated with improvement in frailty status, independent of a wide range of individual characteristics. Copyright © 2018 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Laboratory space physics: Investigating the physics of space plasmas in the laboratory
NASA Astrophysics Data System (ADS)
Howes, Gregory G.
2018-05-01
Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.
Book Review: Dolores Knipp’s Understanding Space Weather and the Physics Behind It
NASA Astrophysics Data System (ADS)
Moldwin, Mark
2012-08-01
Delores Knipp's textbook Understanding Space Weather and the Physics Behind It provides a comprehensive resource for space physicists teaching in a variety of academic departments to introduce space weather to advanced undergraduates. The book benefits from Knipp's extensive experience teaching introductory and advanced undergraduate physics courses at the U.S. Air Force Academy. The fundamental physics concepts are clearly explained and are connected directly to the space physics concepts being discussed. To expand upon the relevant basic physics, current research areas and new observations are highlighted, with many of the chapters including contributions from a number of leading space physicists.
Space ecoliteracy- five informal education models for community empowerment
NASA Astrophysics Data System (ADS)
Venkataramaiah, Jagannatha; Jagannath, Sahana; J, Spandana; J, Sadhana; Jagannath, Shobha
Space ecoliteracy is a historical necessity and vital aspect of space age.Space Situational Awareness has taught lessons for mankind to look inward while stretching beyond cradle in human endeavours. Quality of life for every one on the only home of mankind-TERRA shall be a feasibility only after realizing Space ecoliteracy amongst all stakeholders in space quest. Objectives of Informal Environmental Education(UNESCO/UNEP/IEEP,1977) mandates awareness, attitude, knowledge, skill and participation at Individual and Community domains. Application of Space Technology at both Telecommunications and Remote Sensing domain have started making the fact that mankind has a challenge to learn and affirm earthmanship. Community empowerment focus after Earth Summit 1992 mandate of Sustainable Development has demonstrated a deluge of best practices in Agriculture,Urban, Industries and service sectors all over the globe. Further, deployment of Space technologies have proved the immense potential only after pre-empting the participatory approach at individual and community levels.Indian Space Programme with its 44th year of space service to national development has demonstrated self reliance in space technology for human development. Space technology for the most underdeveloped is a success story both in communication and information tools for quality of life. In this presentation Five Space Ecoliteracy models designed and validated since 1985 till date on informal environmental education namely 1) Ecological Environmental Studies by Students-EESS (1988): cited as one of the 20 best eco -education models by Earth Day Network,2)Community Eco Literacy Campaign-CEL,(2000): cited as a partner under Clean Up the World Campaign,UN, 3) Space Eco Literacy(2011)-an informa 8 week space eco literacy training reported at 39th COSPAR 12 assembly and 4) Space Eco Literacy by Practice(2014)- interface with formal education at institutions and 5) Space Ecoliteracy Mission as a space out reach in Popular Science are listed. Five models methodologies, design criterion and working details along with the net benefits to the community are discussed.
Dolash, Karry; He, Meizi; Yin, Zenong; Sosa, Erica T
2015-04-01
Park features' association with physical activity among predominantly Hispanic communities is not extensively researched. The purpose of this study was to assess factors associated with park use and physical activity among park users in predominantly Hispanic neighborhoods. Data were collected across 6 parks and included park environmental assessments to evaluate park features, physical activity observations to estimate physical activity energy expenditure as kcal/kg/ minute per person, and park user interviews to assess motivators for park use. Quantitative data analysis included independent t tests and ANOVA. Thematic analysis of park user interviews was conducted collectively and by parks. Parks that were renovated had higher physical activity energy expenditure scores (mean = .086 ± .027) than nonrenovated parks (mean = .077 ± .028; t = -3.804; P < .01). Basketball courts had a significantly higher number of vigorously active park users (mean = 1.84 ± .08) than tennis courts (mean = .15 ± .01; F = 21.9, η(2) = 6.1%, P < .01). Thematic analysis of qualitative data revealed 4 emerging themes-motivation to be physically active, using the play spaces in the park, parks as the main place for physical activity, and social support for using parks. Renovations to park amenities, such as increasing basketball courts and trail availability, could potentially increase physical activity among low-socioeconomic-status populations.
Who is excluded and how? An analysis of community spaces for maternal and child health in Pakistan.
Aziz, Ayesha; Khan, Fazal Ali; Wood, Geof
2015-11-25
The maternal, newborn, and child health (MNCH) indicators of Pakistan depict the deplorable state of the poor and rural women and children. Many MNCH programmes stress the need to engage the poor in community spaces. However, caste and class based hierarchies and gendered social norms exclude the lower caste poor women from accessing healthcare. To find pathways for improving the lives of the excluded, this study considers the social system as a whole and describes the mechanisms of exclusion in the externally created formal community spaces and their interaction with the indigenous informal spaces. The study used a qualitative case study design to identify the formal and informal community spaces in three purposively selected villages of Thatta, Rajanpur, and Ghizer districts. Community perspectives were gathered by conducting 37 focus group discussions, based on participatory rural appraisal tools, with separate groups of women and men. Relevant documents of six MNCH programmes were reviewed and 25 key informant interviews were conducted with programme staff. We found that lower caste poor tenants and nomadic peasants were excluded from formal and informal spaces. The formal community spaces formed by MNCH programmes across Pakistan included fixed, small transitory, large transitory, and emerging institutional spaces. Programme guidelines mandated selection of community notables in groups/committees and used criteria that prevented registration of nomadic groups as eligible clients. The selection criteria and adverse attitude of healthcare workers, along with inadequacy of programmatic resources to sustain outreach activities also contributed to exclusion of the lower caste poor women from formal spaces. The informal community spaces were mostly gender segregated. Infrequently, MNCH information trickled down from the better-off to the lower caste poor women through transitory interactions in the informal domestic sphere. A revision of the purpose and implementation mechanisms for MNCH programmes is mandated to transform formal health spaces into sites of equitable healthcare.
Biological community structure on patch reefs in Biscayne National Park, FL, USA
Kuffner, Ilsa B.; Grober-Dunsmore, Rikki; Brock, John C.; Hickey, T. Don
2010-01-01
Coral reef ecosystem management benefits from continual quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigate the relationships among physical, benthic, and fish variables in an effort to help explain the distribution patterns of organisms on patch reefs within Biscayne National Park, FL, USA. We visited a total of 196 randomly selected sampling stations on 12 shallow (<10 m) patch reefs and measured physical variables (e.g., substratum rugosity, substratum type) and benthic and fish community variables. We also incorporated data on substratum rugosity collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar—EAARL). Across all stations, only weak relationships were found between physical, benthic cover, and fish assemblage variables. Much of the variance was attributable to a “reef effect,” meaning that community structure and organism abundances were more variable at stations among reefs than within reefs. However, when the reef effect was accounted for and removed statistically, patterns were detected. Within reefs, juvenile scarids were most abundant at stations with high coverage of the fleshy macroalgae Dictyota spp., and the calcified alga Halimeda tuna was most abundant at stations with low EAARL rugosity. Explanations for the overwhelming importance of “reef” in explaining variance in our dataset could include the stochastic arrangement of organisms on patch reefs related to variable larval recruitment in space and time and/or strong historical effects due to patchy disturbances (e.g., hurricanes, fishing), as well as legacy effects of prior residents (“priority” effects).
Charging of Space Debris and Their Dynamical Consequences
2016-01-08
field of plasmas and space physics . 15. SUBJECT TERMS Space Plasma Physics , Space Debris 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...opens up potential new areas of fundamental and applied research in the field of plasmas and space physics ...object in a plasma”, accepted for publication in Physics of Plasmas. (attached as Annexure III) For details on (iv) please refer to the
2002-10-01
beneficiaries are uti - lized as part of the health care team; how physical space is divided, laid out, and used for various aspects of work flow; what...counselors, family therapists, community pharmacists , dentists, or podiatrists), public or private agencies (e.g., Navy and Marine Corps family services...clinic should have a clinic manager, and each team should have integrated support from: • 0.25 FTE clinical pharmacist • 0.5 FTE behavioral or mental
McNaughton, Amanda; Aldington, Sarah; Williams, Gayle; Levack, William M M
2016-09-20
To explore the ways in which participation in a community singing group contributed to the health and well-being of patients with chronic obstructive pulmonary disease (COPD). Qualitative description, based on transcripts from individual interviews and a focus group meeting with people with COPD participating in the singing group, regarding their experience. Urban community, Wellington, New Zealand. 23 people (13 women and 10 men), 51-91 years with COPD (21) or interstitial lung disease (2). The weekly singing group was a well-attended activity, with self-reported benefits to health and well-being. 4 key themes were identified: being in the 'right space', connection, purpose and growth, and participation in a meaningful physical activity. This study helps us to better understand how participation in a community singing group can benefit the health and well-being of patients with COPD. ACTRN12615000736549; Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Space Biology Plant Research for 2010-2020
NASA Technical Reports Server (NTRS)
Levine, H. G.; Tomko, D. L.; Porterfield, D. M.
2012-01-01
The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA's Space Biology research will optimize ISS research utilization, develop and demonstrate technology and hardware that will enable new science, and contribute to the base of fundamental knowledge that will facilitate development of new tools for human space exploration and Earth applications. By taking these steps, NASA will energize the Space Biology user community and advance our knowledge of the effect of the space flight environment on living systems.
Shared Space, Liminal Space: Five Years into a Community-University Place-Based Experiment
ERIC Educational Resources Information Center
Barajas, Heidi Lasley; Martin, Lauren
2016-01-01
This article explores shared space at the University of Minnesota's Robert J. Jones Urban Research and Outreach Engagement Center (UROC), located four miles off campus in a community strong in assets, but facing inequality, disinvestment and racism. UROC's mission promotes university-community collaboration to solve critical urban challenges. We…
My Brother’s Keeper National Lab Week
2016-03-02
Students in the My Brother’s Keeper program watch as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs demonstrates some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
My Brother’s Keeper National Lab Week
2016-03-02
Students in the My Brother’s Keeper program listen as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs explains some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
Maitland, Clover; Stratton, Gareth; Foster, Sarah; Braham, Rebecca; Rosenberg, Michael
2014-12-24
Recent changes in home physical environments, such as decreasing outdoor space and increasing electronic media, may negatively affect health by facilitating sedentariness and reducing physical activity. As children spend much of their time at home they are particularly vulnerable. This study qualitatively explored family perceptions of physical environmental influences on sedentary behaviour and physical activity within the home space. Home based interviews were conducted with 28 families with children aged 9-13 years (total n = 74 individuals), living in Perth, Australia. Families were stratified by socioeconomic status and selected to provide variation in housing. Qualitative methods included a family interview, observation and home tour where families guided the researcher through their home, enabling discussion while in the physical home space. Audio recordings were transcribed verbatim and thematically analysed. Emergent themes related to children's sedentariness and physical activity included overall size, space and design of the home; allocation of home space; equipment within the home space; perceived safety of the home space; and the changing nature of the home space. Families reported that children's activity options were limited when houses and yards were small. In larger homes, multiple indoor living rooms usually housed additional sedentary entertainment options, although parents reported that open plan home layouts could facilitate monitoring of children's electronic media use. Most families reported changing the allocation and contents of their home space in response to changing priorities and circumstances. The physical home environment can enhance or limit opportunities for children's sedentary behaviour and physical activity. However, the home space is a dynamic ecological setting that is amenable to change and is largely shaped by the family living within it, thus differentiating it from other settings. While size and space were considered important, how families prioritise the use of their home space and overcome the challenges posed by the physical environment may be of equal or greater importance in establishing supportive home environments. Further research is required to tease out how physical, social and individual factors interact within the family home space to influence children's sedentary behaviour and physical activity at home.
Web Based Semi-automatic Scientific Validation of Models of the Corona and Inner Heliosphere
NASA Astrophysics Data System (ADS)
MacNeice, P. J.; Chulaki, A.; Taktakishvili, A.; Kuznetsova, M. M.
2013-12-01
Validation is a critical step in preparing models of the corona and inner heliosphere for future roles supporting either or both the scientific research community and the operational space weather forecasting community. Validation of forecasting quality tends to focus on a short list of key features in the model solutions, with an unchanging order of priority. Scientific validation exposes a much larger range of physical processes and features, and as the models evolve to better represent features of interest, the research community tends to shift its focus to other areas which are less well understood and modeled. Given the more comprehensive and dynamic nature of scientific validation, and the limited resources available to the community to pursue this, it is imperative that the community establish a semi-automated process which engages the model developers directly into an ongoing and evolving validation process. In this presentation we describe the ongoing design and develpment of a web based facility to enable this type of validation of models of the corona and inner heliosphere, on the growing list of model results being generated, and on strategies we have been developing to account for model results that incorporate adaptively refined numerical grids.
PREFACE: XXII International Conference on Spectral Line Shapes 2014
NASA Astrophysics Data System (ADS)
Parigger, C. G.
2014-11-01
The 22nd International Conference on Spectral Line Shapes (ICSLS) was convened at The University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee, USA, during June 1 to 6, 2014. A variety of topics of interest to the line shape community were addressed during invited and contributed oral and poster presentations. General categories of the ICSLS 2014 scientific contents included Astrophysics, Biomedical Physics, High and Low Temperature Plasma Physics, Magnetic Fusion Physics, Neutrals Atomic-Molecular-Optical (AMO) Physics, and Applied Physics. Research interests at UTSI and at the Center for Laser Applications (CLA) focus on Applied Physics and Plasma Physics areas such as laser-induced breakdown spectroscopy, spectroscopy with ultra-short light pulses, combustion diagnostics, to name a few. Consequently, the presentations during the conference addressed a variety of these topics. Attendance at the conference included researchers from North America, Africa, Asia and Europe, with an international representation showing 250 authors and co-authors with over 25 different citizenships, and 100 participants at the Conference. Figure 1 shows a photo of Conference attendees. The schedule included 82 contributions, 41 oral and 41 poster presentations. The 29 invited, 12 contributed oral and 41 contributed poster presentations were selected following communication with the international organizing committee members. A smart phone ''app'' was also utilized, thanks to Elsevier, to communicate electronic versions of the posters during the conference. Special thanks go to the members of the international and local committees for their work in organizing the 22nd ICSLS. In addition, thank you notes also go to the peer reviewers for the proceedings. Following the success of the IOP: Journal of Physics Conference Series selected for the 21st ICSLS publication, the proceedings papers report ongoing research activities. Papers submitted amount to 68 in number, or 83% of the 82 papers contributed to the 22nd ICSLS conference will be published in the IOP: Journal of Physics proceedings. The Executive Director of the University of Tennessee Space Institute welcomed all participants of the Conference on the first day of the technical sessions on Monday June 2, 2014. This welcome address is also included in the conference series publication, especially important for Physics and Engineering research at UTSI is the concurrent 50-year celebration of the Institute in 2014. Informal welcome occurred on Sunday June 1, 2014, and various social activities included a tour to the Jack Daniel's distillery in Lynchburg, Tennessee, followed by the conference dinner. The international scientific committee met to look into various aspects of the ICSLS and future role of this conference for the spectral line shape community. The next meeting locations have been discussed, including the scheduling of the next 23rd conference in Torun, Poland, in June of 2016. Further meeting locations include hosting the conference in Egypt in 2018, possibly in Luxor, Egypt. Communication regarding the 24th ICSLS in 2020 included mentioning of scheduling the Conference to occur in Dublin, Ireland. Clearly, there is a wealth of interest in continuing the long standing tradition of communicating spectral signatures and line shapes at the biannual ICSLS meetings. The 22nd International Conference on Spectral Line Shapes was supported by the Institute of Physics, the University of Tennessee Space Institute, the Center for Laser Applications, the Quantel Laser company, and by Elsevier. On behalf of the organizing committee, I greatly appreciate the support.
Computational Physics for Space Flight Applications
NASA Technical Reports Server (NTRS)
Reed, Robert A.
2004-01-01
This paper presents viewgraphs on computational physics for space flight applications. The topics include: 1) Introduction to space radiation effects in microelectronics; 2) Using applied physics to help NASA meet mission objectives; 3) Example of applied computational physics; and 4) Future directions in applied computational physics.
Scorgie, Fiona; Baron, Deborah; Stadler, Jonathan; Venables, Emilie; Brahmbhatt, Heena; Mmari, Kristin; Delany-Moretlwe, Sinead
2017-07-04
For adolescents growing up in poor urban South African settings, violence is often a part of daily life and has lasting effects on physical and mental health outcomes in adulthood. We conducted a qualitative study to document and understand the forms of interpersonal violence experienced by adolescents living in Hillbrow, Johannesburg. In this article, we explore how violence is experienced differently by adolescent boys and girls, how they conceptualise 'dangerous' and 'safe' spaces in their neighbourhood and what gaps exist in available services for youth in Hillbrow. The article draws on data collected in the formative phase of the 'Wellbeing of Adolescents in Vulnerable Environments' (WAVE) Study of challenges faced by adolescents (15-19 years) growing up in impoverished parts of five cities. This article reports on analysis using only data from the Johannesburg site. Using both purposive and snowball sampling to select participants, we conducted in-depth interviews (n = 20) and community mapping exercises with female (n = 19) and male (n = 20) adolescents living in Hillbrow, as well as key informant interviews with representatives of residential shelters, CBOs, and NGOs working with youth (n = 17). Transcripts were coded manually and analysed using an inductive thematic analysis approach. Both girls and boys reported high exposure to witnessing violence and crime. For girls, the threat of sexual harassment and violence was pervasive, while boys feared local gangs, the threat of physical violence, and being drawn into substance-abuse. Home was largely a safe haven for boys, whereas for girls it was often a space of sexual violence, abuse and neglect. Some adolescents developed coping mechanisms, such as actively seeking out community theatres, churches and other places of sanctuary from violence. Community-based services and shelters that support adolescents reported a lack of resources, overall instability and difficulties networking effectively. Adolescents in Hillbrow commonly witnessed and had direct experience of many forms of violence in their environment, and these experiences differed markedly by gender. Interventions that build young peoples' social capital and resilience are essential for reducing violence-related trauma and long-term health and social consequences for adolescents in this community.
Microgravity science and applications: Program tasks and bibliography for FY 1992
NASA Technical Reports Server (NTRS)
1993-01-01
This report is a compilation of the FY 1992 Principal Investigator program task descriptions funded by the Microgravity Science and Applications Division (MSAD), NASA Headquarters, Washington, DC. The document also provides a bibliography of FY 1992 publications and presentations cited by MSAD Principal Investigators, and an index of the Principal Investigators and their affiliations. The purpose of the document is to provide an overview and progress report for the funded tasks for scientists and researchers in industry, university, and government communities. The tasks are grouped into three categories appropriate to the type of research being done-space flight, ground based, and advanced technology development-and by science discipline. The science disciplines are: biotechnology, combustion science,, electronic materials, fluid physics, fundamental physics, glass and ceramics, metals and alloys, and protein crystal growth.
Geography From Another Dimension
NASA Technical Reports Server (NTRS)
2002-01-01
The GEODESY software program is intended to promote geographical awareness among students with its remote sensing capabilities to observe the Earth's surface from distant vantage points. Students and teachers using GEODESY learn to interpret and analyze geographical data pertaining to the physical attributes of their community. For example, the program provides a digital environment of physical features, such as mountains and bodies of water, as well as man-made features, such as roads and parks, using aerial photography, satellite imagery, and geographic information systems data in accordance with National Geography Standards. The main goal is to have the students and teachers gain a better understanding of the unique forces that drive their coexistence. GEODESY was developed with technical assistance and financial support from Stennis Space Center's Commercial Remote Sensing Program Office, now known as the Earth Science Applications Directorate.
Occupational health and safety of merchant seafarers from Kiribati and Tuvalu.
Borovnik, Maria
2011-01-01
Intensifying international competition in the shipping industry in response to global pressures makes seafarers' jobs increasingly difficult. Challenging conditions in ship employment are problematic, particularly in a development context where home communities' dependence on seafarers' income is high and social protection is low. Qualitative fieldwork revealed that seafarers from Kiribati and Tuvalu endure exceptionally lengthy work periods at sea to remain competitive. Absence from home while working in constrained and mobile spaces with multinational crews, frequent security controls and speedy turnarounds impacting on sleep deprivation and decreased shore time have implications for physical and emotional health and can become safety matters. Hence, there is a growing need to address mechanisms to protect seafarers from the physical and emotional effects of global demands in the shipping industry.
Approaches and Activities of Professional Development During Graduate/Postdoctoral Summer Workshops
NASA Astrophysics Data System (ADS)
Gross, N. A.; Wiltberger, M. J.; Hughes, W. J.; Bhattacharjee, A.; Schrijver, K.; Bagenal, F.; Sojka, J. J.; Munoz-Jaramillo, A.
2017-12-01
NSF and NASA each fund a space physics summer school - the Space Weather Summer School (https://www2.hao.ucar.edu/CISM-Summer-School) and the Heliophysics Summer School (https://cpaess.ucar.edu/heliophysics/summer-school) - each of which provide a comprehensive introduction to their fields at the conceptual and quantitative level for graduate and postdoctoral researchers. Along with specific content goals, each summer school also recognizes professional development goals for the students. Each school intentionally develops community among the summer school students to promote professional networking between the students and between students and instructors. Community is promoted both as part of the formal program and through informal gatherings and outings. Social media is intentionally used for this purpose as well. The summer schools also promote practice with discussing science concepts in small groups through peer instruction, practice presenting in small groups, and discussing results with minimal preparation. Short formal student presentations and poster sessions are organized as part of the formal schedule of one of the summer schools. Much of the professional development work is informed by improvisational theater approaches. Group improv training focuses on the development of the group or the community rather than the individual. Group improv activities are used to build the group and encourage full participation. This talk will outline the professional development activities in each school and how they are informed by improv.
NASA Astrophysics Data System (ADS)
Stall, S.
2017-12-01
Integrity and transparency within research is solidified by a complete set of research products that are findable, accessible, interoperable, and reusable. In other words, they follow the FAIR Guidelines developed by FORCE11.org. Your datasets, images, video, software, scripts, models, physical samples, and other tools and technology are an integral part of the narrative you tell about your research. These research products increasingly are being captured through workflow tools and preserved and connected through persistent identifiers across multiple repositories that keep them safe. They help secure, with your publications, the supporting evidence and integrity of the scientific record. This is the direction that Earth and space science as well as other disciplines is moving. Within our community, some science domains are further along, and others are taking more measured steps. AGU as a publisher is working to support the full scientific record with peer reviewed publications. Working with our community and all the Earth and space science journals, AGU is developing new policies to encourage researchers to plan for proper data preservation and provide data citations along with their research submission and to encourage adoption of best practices throughout the research workflow and data life cycle. Providing incentives, community standards, and easy-to-use tools are some important factors for helping researchers embrace the FAIR Guidelines and support transparency and integrity.
Integrated Access to Heliospheric and Magnetospheric Data
NASA Astrophysics Data System (ADS)
Merka, J.; Szabo, A.; Narock, T. W.
2007-05-01
Heliospheric and magnetospheric data are provided by a variety of diverse sources. For space physics scientists, knowing that such data sources exist and where they are located are only the first hurdles to overcome before they can utilize the data for research. As a solution, the NASA Heliophysics Division has established a group of virtual observatories (VOs) to provide the scientific community with integrated access to well documented data and related services. The VOs are organized by scientific discipline and yet their essential characteristic is cross-discipline data discovery and exchange. In this talk, we will demonstrate the architecture and features of two distributed data systems, the Virtual Heliospheric Observatory (VHO) and the Virtual Magnetospheric Observatory at NASA Goddard Space Flight Center (VMO/G). The VHO and VMO/G are designed to share most of the components to facilitate faster development and to ease communication between the two VxOs. Since different communities are served by the two observatories, slightly, and sometimes even significantly, different terms and expectations must be accommodated and correctly processed. In our approach the interfaces are tuned for a particular community while the standard SPASE data model is employed internally. Together with other VxOs, we are also developing a standard query language for metadata exchange among the VxOs, data providers, and VxO-related services. Specific examples will be given. http:vho.nasa.gov
Belon, Ana Paula; Nieuwendyk, Laura M; Vallianatos, Helen; Nykiforuk, Candace I J
2014-09-01
A growing body of evidence shows that community environment plays an important role in individuals' physical activity engagement. However, while attributes of the physical environment are widely investigated, sociocultural, political, and economic aspects of the environment are often neglected. This article helps to fill these knowledge gaps by providing a more comprehensive understanding of multiple dimensions of the community environment relative to physical activity. The purpose of this study was to qualitatively explore how people's experiences and perceptions of their community environments affect their abilities to engage in physical activity. A PhotoVoice method was used to identify barriers to and opportunities for physical activity among residents in four communities in the province of Alberta, Canada, in 2009. After taking pictures, the thirty-five participants shared their perceptions of those opportunities and barriers in their community environments during individual interviews. Using the Analysis Grid for Environments Linked to Obesity (ANGELO) framework, themes emerging from these photo-elicited interviews were organized in four environment types: physical, sociocultural, economic, and political. The data show that themes linked to the physical (56.6%) and sociocultural (31.4%) environments were discussed more frequently than the themes of the economic (5.9%) and political (6.1%) environments. Participants identified nuanced barriers and opportunities for physical activity, which are illustrated by their quotes and photographs. The findings suggest that a myriad of factors from physical, sociocultural, economic, and political environments influence people's abilities to be physically active in their communities. Therefore, adoption of a broad, ecological perspective is needed to address the barriers and build upon the opportunities described by participants to make communities more healthy and active. Copyright © 2014 Elsevier Ltd. All rights reserved.
Space Sciences Education and Outreach Project of Moscow State University
NASA Astrophysics Data System (ADS)
Krasotkin, S.
2006-11-01
sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space sciences educational activity of Moscow State University is a non-profit project and is open for all interested parties. “Space schools” for university teachers and students were held in the autumn of 2004 and 2005. The main objective of those schools was to attract interest in space research. Tutors and students who took part in these schools had never before been involved in the space sciences. The idea behind these schools was to join forces: Moscow State University scientists gave space science lectures, students from different universities (Ulianovsk, Samara, Kostroma and other Russian universities) performed the work (prepared educational material) and their university teachers managed the students. After participating in these schools, both students and teachers started to study space science related topics emphasizing the success of these schools. It is important for the educational community to understand what skills future space scientists and space industry employees must be equipped with. In the next years, emphasis is to be placed on space science education at all educational levels and better communication should be practiced between universities and industry.
Davis, Sally M.; Cruz, Theresa; Hess, Julia Meredith; Kozoll, Richard; Page-Reeves, Janet
2016-01-01
Background A tri-ethnic rural community with limited resources and a university Prevention Research Center developed a partnership to promote evidence-based physical activity. Objective The purpose of this study was to investigate how a community-university partnership can disseminate and implement The Community Guide’s recommendations for increasing physical activity and create a model for other under-resourced communities experiencing high rates of chronic disease. Methods Qualitative data collected through 47 semi-structured interviews, meeting minutes, and local newspaper articles were coded for themes and analyzed for patterns across the data. Results Implementation resulted in the creation of new paths and trails, increased walkability throughout the community, local park enhancements, and a community-wide campaign. Lessons learned included the importance of community-defined goals and outcomes, leadership, volunteerism, mutually beneficial goals, synergy, and having non-traditional partners. Conclusion This research provides a community-university partnership model for implementing evidence-based strategies to increase physical activity in rural communities. PMID:28736407
Services, Perspective and Directions of the Space Physics Data Facility
NASA Technical Reports Server (NTRS)
McGuire, Robert E.; Bilitza, Dieter; Candey, Reine A.; Chimiak, Reine A.; Cooper, John F.; Fung, Shing F.; Harris, Bernard T.; Johnson, Rita C.; King, Joseph H.; Kovalick, Tamara;
2008-01-01
The multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer unique capabilities supporting science of the Heliophysics Great Observatory and that are highly complementary to other services now evolving in the international heliophysics data environment. The VSPO (Virtual Space Physics Observatory) service is an active portal to a wide rage of distributed data sources. CDAWeb (Coordinated Data Analysis Web) offers plots, listings and file downloads for current data from many missions across the boundaries of missions and instrument types. CDAWeb now includes extensive new data from STEREO and THEMIS, plus new ROCSAT IPEI data, the latest data from all four TIMED instruments and high-resolution data from all DE-2 experiments. SSCWeb, Helioweb and out 3D Animated Orbit Viewer (TIPSOD) provide position data and identification of spacecraft and ground conjunctions. OMNI Web, with its new extension to 1- and 5-minute resolution, provides interplanetary parameters at the Earth's bow shock. SPDF maintains NASA's CDF (Common Data Format) standard and a range of associated tools including format translation services. These capabilities are all now available through web services based APIs, one element in SPDF's ongoing work to enable heliophysics community development of Virtual discipline Observatories (e.g. VITMO). We will demonstrate out latest data and capabilities, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.
Dickson-Gomez, Julia
2013-01-01
This article explores differences in the social context in which crack sales and use and HIV risk take place in seven low-income communities in San Salvador, and structural factors that may influence these differences. The organization of drug selling varied among the communities on a number of dimensions including: whether drug sales were open or closed systems; the type of drug-selling site; and the participation of drug users in drug-distribution roles. Drug-use sites also varied according to whether crack was used in private, semiprivate, or public spaces, and whether individuals used drugs alone or with other drug users. Three patterns of drug use and selling were identified based on the dimensions outlined above. Structural factors that influenced these patterns included the geographic location of the communities, their physical layout, gang involvement in drug sales, and police surveillance. Implications for HIV risk and prevention are explored for each pattern. PMID:20550091
Space technology, sustainable development and community applications: Internet as a facilitator
NASA Astrophysics Data System (ADS)
Peter, Nicolas; Afrin, Nadia; Goh, Gérardine; Chester, Ed
2006-07-01
Among other approaches, space technologies are currently being deployed for disaster management, environmental monitoring, urban planning, health applications, communications, etc. Although space-based applications have tremendous potential for socioeconomic development, they are primarily technology driven and the requirements from the end-users (i.e. the development community) are rarely taken into consideration during the initial development stages. This communication gap between the "space" and "development" communities can be bridged with the help of the web-based knowledge sharing portal focused on space applications for development. This online community uses the development gateway foundation's sophisticated content management system. It is modeled after the development gateway's knowledge sharing portals ( http://topics.developmentgateway.org) and draws from their expertise in knowledge management, partnership building and marketing. These types of portal are known to facilitate broad-based partnerships across sectors, regions and the various stakeholders but also to facilitate North-South and South-South cooperation. This paper describes the initiative "Space for Development" ( http://topics.developmentgateway.org/space) started in 2004 which aims to demonstrate how such a web-based portal can be structured to facilitate knowledge sharing in order to bridge the gap between the "space" and "development" communities in an innovative and global manner.
Towards a National Space Weather Predictive Capability
NASA Astrophysics Data System (ADS)
Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.
2015-12-01
National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.
Soil fungi colony growth and community dynamics
NASA Astrophysics Data System (ADS)
Falconer, Ruth E.; Kravchenko, Alexandra; Otten, Wilfred
2010-05-01
Fungi are a major player in soil functioning, they contribute to soil structure formation and shaping of plant communities through their role in nutrient cycling, pathogenesis and symbiosis. Theoretical approaches which have emerged over the years and improved considerably our understanding of above ground plant communities are still lacking below ground. A theoretical framework is needed, such that links soil physics, fungal biology and mathematical biology in order to understand fungal community dynamics and diversity in undisturbed soils. Such a framework is essential if we are to understand how environmental change or soil manipulation impacts biodiversity. Different land use and management practices significantly affect soil environmental characteristics crucial for fungal communities by contributing different quantities and qualities of biomass inputs, generating different levels of soil disturbance, influencing soil temperature and moisture regimes, and affecting structure and geometry of soil pore space. Differences in pore structures generated by long-term differences in land use and management are reflected in notable changes in soil physical and hydraulic properties, including soil porosity, hydraulic conductivity and water retention (Brye and Pirani, 2005). Changes in numbers, shapes, and distributions of soil macropores have been often observed (e.g., Pachepsky et al., 1996; Giménez et al., 1997; Udawatta et al., 2008). However, specific implications of these differences in pore structure and geometries for ability of pathogenic as well as non-pathogenic fungi to colonize soil have not yet been addressed. Recent advances in computed tomography and microscopy facilitate detailed examination of the inner pore structures of undisturbed soil samples as well as visualization of fungal mycelia. Such tools together with modelling generate a new level of understanding of the mechanisms governing fungal behaviour at microscopic scales, and for the first time allow us to examine species interactions in a 3D soil environment.
Standards for Community College Library Facilities.
ERIC Educational Resources Information Center
California State Postsecondary Education Commission, Sacramento.
This report contains proposed standards for community college library facilities developed by the California Postsecondary Education Commission. Formulae for calculating stack space, staff space, reader station space, and total space are included in the report. Three alternative models for revising the present library standards were considered:…
Linking Science Fiction and Physics Courses
NASA Astrophysics Data System (ADS)
McBride, Krista K.
2016-05-01
Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty learning communities. This article discusses a learning community of 21 students that I created with a colleague in the English department. The community encompasses two general education courses: an algebra-based physics course entitled "Intro to Physics" and a literature course entitled "Science Fiction, Science Fact." Students must enroll in both of these courses during the same semester. Additionally, I highlight advantages to linking these courses through surveying the assignments and course materials that we used in our learning community. Figure 1 shows the topics that are covered in both physics and literature courses.
Green Open Space: Awareness for Health or Sustainability?
NASA Astrophysics Data System (ADS)
Dewi, O. C.; Chairunnisa, I.; Hidayat, T.; Anggraini, M.; Napitupulu, A.
2018-03-01
Universitas Indonesia in cooperation with American Red Cross and Indonesian Red Cross have been assisting green open space revitalisation program in 7 locations in Bogor Regency (2016-2017). The program was held under The Urban Disaster Risk Reduction Greater Jakarta Project; an initiative program from American Red Cross Indonesia. This project was not only improving the existing green open space quality, but also creating one adapted from public land. The revitalization project figures what happened on daily basis on the existing land, proposing new programming facilities, community-based construction, monitoring and handing over. This paper discovers the meaning of a green space for the community, whether the community aware of its benefit on human health or environmental sustainability. The research question is does the community aware of green open space benefit for human health or environmental sustainability? Or both? The original data from the community was gathered and grouped based on its relevance with environmental quality and public health.
Communities, commodities, cultural space, and style.
Freitas, A; Kaiser, S; Hammidi, T
1996-01-01
This article explores the interconnections between queer communities and cultural space(s) in the context of style. Visibility issues and politics have become important to gay communities in the U.S. Gays and lesbians use clothing and appearance style to signal membership in or separation from specific cultures or communities. Within commodity capital, the heuristic categories of 'subculture' and 'target market' describe space or spaces that gays and lesbians occupy, and often occupy differently, based on self positionality within gay cultures, within commodity capital, and in relation to gender-specific discourse. Based on in-depth interviews with 60 lesbians and gays, this paper illuminates the ambivalences gays and lesbians express in embracing 'subculture' and 'target market' as categories to establish differences and fashion identities within the current cultural economy.
Effects of high-latitude drivers on Ionosphere/Thermosphere parameters
NASA Astrophysics Data System (ADS)
Shim, J.; Kuznetsova, M. M.; Rastaetter, L.; Berrios, D.; Codrescu, M.; Emery, B. A.; Fedrizzi, M.; Foerster, M.; Foster, B. T.; Fuller-Rowell, T. J.; Mannucci, A.; Negrea, C.; Pi, X.; Prokhorov, B. E.; Ridley, A. J.; Coster, A. J.; Goncharenko, L.; Lomidze, L.; Scherliess, L.
2012-12-01
In order to study effects of high-latitude drivers, we compared Ionosphere/Thermosphere (IT) model performance for predicting IT parameters, which were obtained using different models for the high-latitude ionospheric electric potential including Weimer 2005, AMIE (assimilative mapping of ionospheric electrodynamics) and global magnetosphere models (e.g. Space Weather Modeling Framework). For this study, the physical parameters selected are Total Electron Content (TEC) obtained by GPS ground stations, and NmF2 and hmF2 from COSMIC LEO satellites in the selected 5 degree eight longitude sectors. In addition, Ne, Te, Ti, and Tn at about 300 km height from ISRs are considered. We compared the modeled values with the observations for the 2006 AGU storm period and quantified the performance of the models using skill scores. Furthermore, the skill scores are obtained for three latitude regions (low, middle and high latitudes) in order to investigate latitudinal dependence of the models' performance. This study is supported by the Community Coordinated Modeling Center (CCMC) at the Goddard Space Flight Center. The CCMC converted ionosphere drivers from a variety of sources and developed an interpolation tool that can be employed by any modelers for easy driver swapping. Model outputs and observational data used for the study will be permanently posted at the CCMC website (http://ccmc.gsfc.nasa.gov) as a resource for the space science communities to use.
[Reflections on physical spaces and mental spaces].
Chen, Hung-Yi
2013-08-01
This article analyzes certain reciprocal impacts from physical spaces to mental spaces. If the epistemological construction and the spatial imagination from the subject of cogito or the social collectivities are able to influence the construction and creation of the physical spaces of that subject, then the context of that physical space may also affect the cognitive or social subject's mental cognition. This article applies the methodology of iconology from art history (E. Panofsky) and sociology (P. Bourdieu) to explore correlations between the creation of imaginative and physical spaces from the collective consciousness and mental cognition. The author uses Gilles Deleuses's opinion regarding the 17th-century Baroque style and contemporary social collective symptoms as an explanation. From these theoretical studies, the author analyzes the differences of spatial epistemology generated by Taiwan's special geological text. Finally, the author applies Michel Foucault's studies on spatial context to assess the possible application of this thesis of reciprocal impacts from mental spaces to physical spaces in a nursing context.
Design-for-reliability (DfR) of aerospace electronics: Attributes and challenges
NASA Astrophysics Data System (ADS)
Bensoussan, A.; Suhir, E.
The next generation of multi-beam satellite systems that would be able to provide effective interactive communication services will have to operate within a highly flexible architecture. One option to develop such flexibility is to employ microwaves and/or optoelectronic components and to make them reliable. The use of optoelectronic devices, equipments and systems will result indeed in significant improvement in the state-of-the-art only provided that the new designs will suggest a novel and effective architecture that will combine the merits of good functional performance, satisfactory mechanical (structural) reliability and high cost effectiveness. The obvious challenge is the ability to design and fabricate equipment based on EEE components that would be able to successfully withstand harsh space environments for the entire duration of the mission. It is imperative that the major players in the space industry, such as manufacturers, industrial users, and space agencies, understand the importance and the limits of the achievable quality and reliability of optoelectronic devices operated in harsh environments. It is equally imperative that the physics of possible failures is well understood and, if necessary, minimized, and that adequate Quality Standards are developed and employed. The space community has to identify and to develop the strategic approach for validating optoelectronic products. This should be done with consideration of numerous intrinsic and extrinsic requirements for the systems' performance. When considering a particular next generation optoelectronic space system, the space community needs to address the following major issues: proof of concept for this system, proof of reliability and proof of performance. This should be done with taking into account the specifics of the anticipated application. High operational reliability cannot be left to the prognostics and health monitoring/management (PHM) effort and stage, no matter how important and - ffective such an effort might be. Reliability should be pursued at all the stages of the equipment lifetime: design, product development, manufacturing, burn-in testing and, of course, subsequent PHM after the space apparatus is launched and operated.
A hybrid system for solar irradiance specification
NASA Astrophysics Data System (ADS)
Tobiska, W.; Bouwer, S.
2006-12-01
Space environment research and space weather operations require solar irradiances in a variety of time scales and spectral formats. We describe the development of solar irradiance characterization using four models and systems that are also used for space weather operations. The four models/systems include SOLAR2000 (S2K), SOLARFLARE (SFLR), APEX, and IDAR, which are used by Space Environment Technologies (SET) to provide solar irradiances from the soft X-rays through the visible spectrum. SFLR uses the GOES 0.1 0.8 nm X-rays in combination with a Mewe model subroutine to provide 0.1 30.0 nm irradiances at 0.1 nm spectral resolution, at 1 minute time resolution, and in a 6-hour XUV EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence. These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances into the S2K model. The APEX system is a real-time data retrieval system developed in conjunction with the University of Southern California Space Sciences Center (SSC) to provide SOHO SEM data processing and distribution. SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community. We describe how the SOHO SEM data, and especially the new S10.7 index, is being integrated directly into the S2K model for space weather operations. The IDAR system has been developed by SET to extract coronal hole boundaries, streamers, coronal loops, active regions, plage, network, and background (internetwork) features from solar images for comparison with solar magnetic features. S2K, SFLR, APEX, and IDAR outputs are integrated through the S2K solar irradiance platform that has become a hybrid system, i.e., a system that is able to produce irradiances using different processes, including empirical and physics-based models combined with real-time data integration.
The Sun/Earth System and Space Weather
NASA Technical Reports Server (NTRS)
Poland, Arthur I.; Fox, Nicola; Lucid, Shannon
2003-01-01
Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.
Bines, Julie E; Jamieson, Peter
2013-09-01
Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development.
Koohsari, Mohammad Javad; Mavoa, Suzanne; Villanueva, Karen; Sugiyama, Takemi; Badland, Hannah; Kaczynski, Andrew T; Owen, Neville; Giles-Corti, Billie
2015-05-01
Public open spaces such as parks and green spaces are key built environment elements within neighbourhoods for encouraging a variety of physical activity behaviours. Over the past decade, there has been a burgeoning number of active living research studies examining the influence of public open space on physical activity. However, the evidence shows mixed associations between different aspects of public open space (e.g., proximity, size, quality) and physical activity. These inconsistencies hinder the development of specific evidence-based guidelines for urban designers and policy-makers for (re)designing public open space to encourage physical activity. This paper aims to move this research agenda forward, by identifying key conceptual and methodological issues that may contribute to inconsistencies in research examining relations between public open space and physical activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
The association between social cohesion and physical activity in canada: A multilevel analysis.
Yip, Calvin; Sarma, Sisira; Wilk, Piotr
2016-12-01
Although previous research has shown that social cohesion may promote physical activity, social cohesion at the individual level was not always differentiated from social cohesion at the community level, and studies were often limited to specific population subgroups or geographical areas. We addressed the above limitations through the use of a multilevel modelling approach and nationally-representative data from the 2009-2014 Canadian Community Health Survey. Physical activity level was operationalized as average daily energy expenditure; social cohesion was assessed by self-rated sense of belonging to the local community; and communities were represented by Canada's Forward Sortation Areas. The sample included 245,150 respondents from 1570 communities. Geographical location was found to explain a significant proportion (4.1%) of the overall variance in physical activity level. After adjusting for age, sex, household income, education and urban-rural status, both individual- and community-level social cohesion were found to be positively associated with physical activity (p<0.001 for both). Thus, efforts to promote social cohesion and integration within communities may also promote physical activity and overall health.
Community Gardens for Refugee and Immigrant Communities as a Means of Health Promotion.
Hartwig, Kari A; Mason, Meghan
2016-12-01
Refugees and new immigrants arriving in the United States (U.S.) often encounter a multitude of stressors adjusting to a new country and potentially coping with past traumas. Community gardens have been celebrated for their role in improving physical and emotional health, and in the Twin Cities of Minnesota, have been offered as a resource to immigrants and refugees. The purpose of this study is to present a mixed method evaluation of a refugee gardening project hosted by area churches serving primarily Karen and Bhutanese populations. Quantitative data were obtained from early and late season surveys (44 and 45 % response rates, respectively), and seven focus groups conducted at the end of the season provided qualitative data. Although few gardeners (4 %) identified food insecurity as a problem, 86 % indicated that they received some food subsidy, and 78 % reported vegetable intake increased between the early and late season surveys. Twelve percent of gardeners indicated possible depression using the PHQ-2 scale; in focus groups numerous respondents identified the gardens as a healing space for their depression or anxiety. Refugee gardeners expressed receiving physical and emotional benefits from gardening, including a sense of identity with their former selves. Gardens may serve as a meaningful health promotion intervention for refugees and immigrants adjusting to the complexity of their new lives in the U.S. and coping with past traumas.
PREFACE: International Symposium on Physical Sciences in Space
NASA Astrophysics Data System (ADS)
Meyer, Andreas; Egry, Ivan
2011-12-01
ISPS is the major international scientific forum for researchers in physics utilizing the space environment, in particular microgravity. It is intended to inspire and encourage cross-cutting discussions between different scientific communities working in the same environment. Contributions discussing results of experiments carried out on drop towers, parabolic aircraft flights, sounding rockets, unmanned recoverable capsules and, last but not least, the International Space Station ISS, are the backbone of this conference series, complemented by preparatory ground-based work, both experimentally and theoretically. The first International Symposium on Physical Sciences in Space (ISPS) sponsored by the International Microgravity Strategic Planning Group (IMSPG) took place in 2000 in Sorrento, Italy. IMSPG seeks to coordinate the planning of space for research in physical sciences by space agencies worldwide. AEB (Brazil), ASI (Italy), CNES (France), CSA (Canada), DLR (Germany), ESA (Europe), JAXA (Japan), NASA (USA), NSAU (Ukraine) and RSA (Russia) are members, and CNSA (China) and ISRO (India) are also invited to join IMSPG meetings. ISPS-4 was the fourth symposium in that series, following ISPS-2 organized by CSA in 2004 in Toronto, Canada, and ISPS-3 organized in 2007 by JAXA in Nara, Japan. ISPS-4 was jointly organized by ESA and DLR on behalf of the IMSPG and was held in Bonn from 11-15 July 2011. 230 participants from 17 different countries attended ISPS-4. Recent microgravity experiments were presented, analysed, and set in context to results from Earth bound experiments in 16 plenary and 68 topical talks. Lively discussions continued during two dedicated poster sessions and at the exhibition booths of space industry and research centers with new flight hardware on display. The oral presentations at ISPS4 were selected exclusively on the basis of scientific merit, as evidenced through the submitted abstracts. The selection was performed by the International Scientific Program Committee. It is our pleasure to thank the members of this committee for their excellent support in setting up a high-quality, well-balanced program. We also thank our sponsors, the German Aerospace Center and the European Space Agency, the Bundesministerium für Wirtschaft und Technologie (German Federal Ministry of Economics and Technology), the ZARM Center of Applied Space Technology and Microgravity as well as our industrial sponsors EADS-Astrium and Kayser-Threde, for their generous contributions. Our special thanks go to the authors and reviewers of the papers in these proceedings. Together we were able to realize up-to-date, peer reviewed conference proceedings, containing new and original data. Thanks to their efforts and that of the IOP Publishing staff, we succeeded in publishing the proceedings within six months of the conference. We are confident that this collection of papers will provide a useful reference for all workers in the field. Andreas Meyer and Ivan Egry Chairmen ISPS-4 Institute of Materials Physics in Space German Aerospace Center, Cologne Conference photograph Opening ceremony Professor Dr Andreas Meyer, Chairman ISPS 4, Professor Dr Johann-Dietrich Wörner, CEO DLR, and Dr Martin Zell, Head of ESA ISS Utilisation (left to right), at the opening ceremony of ISPS-4.
NASA Astrophysics Data System (ADS)
Thakore, B.; Frierson, T.; Coderre, K.; Lukaszczyk, A.; Karl, A.
2009-04-01
This paper outlines the response of students and young space professionals on the occasion of the 50th Anniversary of the first artificial satellite and the 40th anniversary of the Outer Space Treaty. The contribution has been coordinated by the Space Generation Advisory Council (SGAC) in support of the United Nations Programme on Space Applications. It follows consultation of the SGAC community through a series of meetings, online discussions and online surveys. The first two online surveys collected over 750 different visions from the international community, totaling approximately 276 youth from over 28 countries and builds on previous SGAC policy contributions. A summary of these results was presented as the top 10 visions of today's youth as an invited input to world space leaders gathered at the Symposium on "The future of space exploration: Solutions to earthly problems" held in Boston, USA from April 12-14 2007 and at the United Nations Committee on the Peaceful Uses of Outer Space in May 2007. These key visions suggested the enhancement for humanity's reach beyond this planet - both physically and intellectual. These key visions were themed into three main categories: • Improvement of Human Survival Probability - sustained exploration to become a multi- planet species, humans to Mars, new treaty structures to ensure a secure space environment, etc • Improvement of Human Quality of Life and the Environment - new political systems or astrocracy, benefits of tele-medicine, tele-education, and commercialization of space, new energy and resources: space solar power, etc. • Improvement of Human Knowledge and Understanding - complete survey of extinct and extant life forms, use of space data for advanced environmental monitoring, etc. This paper will summarize the outcomes from a further online survey and represent key recommendations given by international youth advocates on further steps that could be taken by space agencies and organizations to make the top 10 visions a reality. In turn the online discussions that are used to engage the youth audience would be recorded and would help to reflect the confidence of the younger generation in these visions. The categories listed above would also be investigated further from the technology, policy and ethical aspects. Recent activities in development to further disseminate the necessary connections between using of space technology for solving global challenges is discussed.
Global, real-time ionosphere specification for end-user communication and navigation products
NASA Astrophysics Data System (ADS)
Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.
2010-12-01
Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those data into operational space physics models, and finally generate visualization products such as the images, plots, and alerts that can be viewed on SpaceWx. In a real sense, the space weather community is now able to transition research models into operations through “proofing” products such as real-time disseminated of information through smart phones. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.
Expanded Owens Valley Solar Array Science and Data Products
NASA Astrophysics Data System (ADS)
Gary, Dale E.; Hurford, G. J.; Nita, G. M.; Fleishman, G. D.; McTiernan, J. M.
2010-05-01
The Owens Valley Solar Array (OVSA) has been funded for major expansion, to create a university-based facility serving a broad scientific community, to keep the U.S. competitive in the field of solar radio physics. The project, funded by the National Science Foundation through the MRI-Recovery and Reinvestment program, will result in a world-class facility for scientific research at microwave radio frequencies (1-18 GHz) in solar and space weather physics. The project also includes an exciting program of targeted astronomical science. The solar science to be addressed focuses on the magnetic structure of the solar corona, on transient phenomena resulting from magnetic interactions, including the sudden release of energy and subsequent particle acceleration and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelength bands. The New Jersey Institute of Technology (NJIT) will upgrade OVSA from its current complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We will detail the new science addressed by the expanded array, and provide an overview of the expected data products.
2009-05-28
CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Bob Cabana talks to guests at the annual Community Leaders Breakfast held in the Debus Center at Kennedy Space Center's Visitor Complex. Community leaders, business executives, educators, community organizers and state and local government heard Cabana provide an overview of operations at the space center and a look ahead at upcoming missions and activities. Photo credit: NASA/Kim Shiflett
Fleischhacker, Sheila; Roberts, Erica; Camplain, Ricky; Evenson, Kelly R; Gittelsohn, Joel
2016-12-01
Promoting physical activity using environmental, policy, and systems approaches could potentially address persistent health disparities faced by American Indian and Alaska Native children and adolescents. To address research gaps and help inform tribally led community changes that promote physical activity, this review examined the methodology and current evidence of physical activity interventions and community-wide initiatives among Native youth. A keyword-guided search was conducted in multiple databases to identify peer-reviewed research articles that reported on physical activity among Native youth. Ultimately, 20 unique interventions (described in 76 articles) and 13 unique community-wide initiatives (described in 16 articles) met the study criteria. Four interventions noted positive changes in knowledge and attitude relating to physical activity but none of the interventions examined reported statistically significant improvements on weight-related outcomes. Only six interventions reported implementing environmental, policy, and system approaches relating to promoting physical activity and generally only shared anecdotal information about the approaches tried. Using community-based participatory research or tribally driven research models strengthened the tribal-research partnerships and improved the cultural and contextual sensitivity of the intervention or community-wide initiative. Few interventions or community-wide initiatives examined multi-level, multi-sector interventions to promote physical activity among Native youth, families, and communities. More research is needed to measure and monitor physical activity within this understudied, high risk group. Future research could also focus on the unique authority and opportunity of tribal leaders and other key stakeholders to use environmental, policy, and systems approaches to raise a healthier generation of Native youth.
Roberts, Erica; Camplain, Ricky; Evenson, Kelly R.; Gittelsohn, Joel
2015-01-01
Promoting physical activity using environmental, policy, and systems approaches could potentially address persistent health disparities faced by American Indian and Alaska Native children and adolescents. To address research gaps and help inform tribally-led community changes that promote physical activity, this review examined the methodology and current evidence of physical activity interventions and community-wide initiatives among Native youth. A keyword guided search was conducted in multiple databases to identify peer-reviewed research articles that reported on physical activity among Native youth. Ultimately, 20 unique interventions (described in 76 articles) and 13 unique community-wide initiatives (described in 16 articles) met the study criteria. Four interventions noted positive changes in knowledge and attitude relating to physical activity but none of the interventions examined reported statistically significant improvements on weight-related outcomes. Only six interventions reported implementing environmental, policy, and system approaches relating to promoting physical activity and generally only shared anecdotal information about the approaches tried. Using community-based participatory research or tribally-driven research models strengthened the tribal-research partnerships and improved the cultural and contextual sensitivity of the intervention or community-wide initiative. Few interventions or community-wide initiatives examined multi-level, multi-sector interventions to promote physical activity among Native youth, families and communities. More research is needed to measure and monitor physical activity within this understudied, high risk group. Future research could also focus on the unique authority and opportunity of tribal leaders and other key stakeholders to use environmental, policy, and systems approaches to raise a healthier generation of Native youth. PMID:27294756
ERIC Educational Resources Information Center
Baldridge, Bianca J.; Beck, Nathan; Medina, Juan Carlos; Reeves, Marlo A.
2017-01-01
Community-based educational spaces (CBES; afterschool programs, community-based youth organizations, etc.) have a long history of interrupting patterns of educational inequity and continue to do so under the current educational policy climate. The current climate of education, marked by neoliberal education restructuring, has left community-based…
Lillehoj, Catherine J; Daniel-Ulloa, Jason D; Nothwehr, Faryle
2016-01-01
This study describes results of community and worksite assessments of physical activity policies and environmental strategies in 26 Iowa counties. Community coalition members completed the Community Health Assessment and Group Evaluation tool. The study explored findings using descriptive statistics and examined rural-urban differences in two of the five assessed sectors: community and worksites. Lower community scores (ie, needing improvement) were found for complete streets, bicycle use, and street calming. Higher scores (ie, identified strengths) were found for land use plans, maintain parks, and sidewalks Americans with Disabilities Act compliant. Worksites scored lower on promote stairwells, encourage non-motorized commuting, and implement activity breaks but higher on subsidize gym membership and provide area for physical activity. No rural-urban differences were found. Results identify opportunities to enhance community and worksite policies and environmental strategies to increase physical activity.
The Impact of Space Experiments on our Knowledge of the Physics of the Universe
NASA Astrophysics Data System (ADS)
Giovannelli, Franco; Sabau-Graziati, Lola
2004-05-01
With the advent of space experiments it was demonstrated that cosmic sources emit energy practically across all the electromagnetic spectrum via different physical processes. Several physical quantities give witness to these processes which usually are not stationary; those physical observable quantities are then generally variable. Therefore simultaneous multifrequency observations are strictly necessary in order to understand the actual behaviour of cosmic sources. Space experiments have opened practically all the electromagnetic windows on the Universe. A discussion of the most important results coming from multifrequency photonic astrophysics experiments will provide new inputs for the advance of the knowledge of the physics, very often in its more extreme conditions. A multitude of high quality data across practically the whole electromagnetic spectrum came at the scientific community's disposal a few years after the beginning of the Space Era. With these data we are attempting to explain the physics governing the Universe and, moreover, its origin, which has been and still is a matter of the greatest curiosity for humanity. In this paper we will try to describe the last steps of the investigation born with the advent of space experiments, to note upon the most important results and open problems still existing, and to comment upon the perspectives we can reasonably expect. Once the idea of this paper was well accepted by ourselves, we had the problem of how to plan the exposition. Indeed, the exposition of the results can be made in different ways, following several points of view, according to: - a division in diffuse and discrete sources; - different classes of cosmic sources; - different spectral ranges, which implies in turn a sub-classification in accordance with different techniques of observations; - different physical emission mechanisms of electromagnetic radiation; - different vehicles used for launching the experiments (aircraft, balloons, rockets, satellites, observatories). In order to exhaustively present The Impact of Space Experiments on our Knowledge of the Physics of the Universe it would then have been necessary to write a kind of Encyclopaedia of the Astronomical Space Research, which is not our desire. On the contrary, since our goal is to provide an useful tool for the reader who has not specialized in space astrophysics and for the students, we decided to write this paper in the form of a review, the length of which can be still considered reasonable, taking into account the complexity of the arguments discussed. Because of the impossibility of realizing a complete picture of the physics governing the Universe, we were obliged to select how to proceed, the subjects to be discussed the more or the less, or those to be rejected. Because this work was born in the Ph.D. thesis of one of us (LSG) (Sabau-Graziati, 1990) we decided to follow the `astronomical tradition' used there, namely: the spectral energy ranges. Although such energy ranges do not determine physical objects (even if in many cases such ranges are used to define the sources as: radio, infrared, optical, ultraviolet, X-ray, γ-ray emitters), they do determine the methods of study, and from the technical point of view they define the technology employed in the relative experiments. However, since then we have decided to avoid a deep description of the experiments, satellites, and observatories, simply to grant a preference to the physical results, rather than to technologies, however fundamental for obtaining those results. The exposition, after an introduction (Section 1) and some crucial results from space astronomy (Section 2), has been focussed into three parts: the physics of the diffuse cosmic sources deduced from space experiments (Section 3), the physics of cosmic rays from ground- and space-based experiments (Section 4), and the physics of discrete cosmic sources deduced from space experiments (Section 5). In this first part of the paper we have used the logic of describing the main results obtained in different energy ranges, which in turn characterize the experiments on board space vehicles. Within each energy range we have discussed the contributions to the knowledge of various kind of cosmic sources coming from different experiments. And this part is mainly derived by the bulk of the introductory part of LSG's Ph.D. thesis. In the second part of the paper, starting from Section 6, we have preferred to discuss several classes of cosmic sources independently of the energy ranges, mainly focussing the results from a multifrequency point of view, making a preference for the knowledge of the physics governing the whole class. This was decided also because of the multitude of new space experiments launched in the last fifteen years, which would have rendered almost impossible a discussion of the results divided into energy ranges without weakening the construction of the entire puzzle. We do not pretend to cover every aspect of every subject considered under the heading of the physics of the universe. Instead a cross section of essays on historical, modern, and philosophical topics are offered and combined with personal views into tricks of the space astrophysics trade. The reader is, then, invited to accept this paper even though it obviously lacks completeness and the arguments discussed are certainly biased by a selection effect owed essentially to our knowledge, and to it being of a reasonable length. Some parts of it could seem, in certain sense, to belong to an older paper, in which the `news' is not reported. But this is owed to our own choice, just in full accord with the goals of the text: we want to present those results which have, in our opinion, been really important, in the development of the science. These impacting results do not necessarily constitute the last news. This text was formally closed just on the day of the launch of the INTEGRAL satellite: October 17, 2002. After that date only finishing touches have been added.
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Tobola, K. W.; Allen, J. S.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri
2005-01-01
As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.
2003-01-01
As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a three-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret real data, students realize that the research is an application of basic science concepts they should know, the electromagnetic spectrum and isotopes. They can understand the results without knowing how to do the research or operate the instruments.
Legerton, Graham
2013-09-01
The refurbishment and extension of existing university buildings is a critical consideration for many universities. This article details an architect's perspective of an innovative and collaborative design approach to transforming an existing library into a futuristic and student-centric interactive learning environment. The design is responsive to people, place, the community and the environment, due, in part, to the enhanced physical permeability of the building. Associated user-group forums comprised the end user client, the university's facilities body, the builder, lead architectural consultants, the Centre for Indigenous Students (Gumurrii Centre) and architectural sub-consultants. This article discusses five key design moves--"triangulate", "unique geometries and spaces", "learning aviary", "sky lounge" and "understanding flexibility". It goes on to discuss these elements in relation to designing spaces to enhance interprofessional education and collaboration. In summary, this article identifies how it is possible to maximise the value and characteristics of an existing library whilst creating a series of innovative spaces that offer choice, encourage serendipity and embrace experimentation.
Space Weather Products at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.
2010-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Maddox, M. M.; Mays, M. L.; Mullinix, R.; MacNeice, P. J.; Pulkkinen, A. A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.; Wiegand, C.
2013-12-01
Community Coordinated Modeling Center (CCMC) was established at the dawn of the millennium as an essential element on the National Space Weather Program. One of the CCMC goals was to pave the way for progress in space science research to operational space weather forecasting. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment, in developing and maintaining powerful web-based tools and systems ready to be used by space weather service providers and decision makers as well as in space weather prediction capabilities assessments. The presentation will showcase latest innovative solutions for space weather research, analysis, forecasting and validation and review on-going community-wide initiatives enabled by CCMC applications.
Community Modeling Program for Space Weather: A CCMC Perspective
NASA Technical Reports Server (NTRS)
Hesse, Michael
2009-01-01
A community modeling program, which provides a forum for exchange and integration between modelers, has excellent potential for furthering our Space Weather modeling and forecasting capabilities. The design of such a program is of great importance to its success. In this presentation, we will argue that the most effective community modeling program should be focused on Space Weather-related objectives, and that it should be open and inclusive. The tremendous successes of prior community research activities further suggest that the most effective implementation of a new community modeling program should be based on community leadership, rather than on domination by individual institutions or centers. This presentation will provide an experience-based justification for these conclusions.
Development of the physics driver in NOAA Environmental Modeling System (NEMS)
NASA Astrophysics Data System (ADS)
Lei, H.; Iredell, M.; Tripp, P.
2016-12-01
As a key component of the Next Generation Global Prediction System (NGGPS), a physics driver is developed in the NOAA Environmental Modeling System (NEMS) in order to facilitate the research, development, and transition to operations of innovations in atmospheric physical parameterizations. The physics driver connects the atmospheric dynamic core, the Common Community Physics Package and the other NEMS-based forecast components (land, ocean, sea ice, wave, and space weather). In current global forecasting system, the physics driver has incorporated major existing physics packages including radiation, surface physics, cloud and microphysics, ozone, and stochastic physics. The physics driver is also applicable to external physics packages. The structure adjustment in NEMS by separating the PHYS trunk is to create an open physics package pool. This open platform is beneficial to the enhancement of U.S. weather forecast ability. In addition, with the universal physics driver, the NEMS can also be used for specific functions by connecting external target physics packages through physics driver. The test of its function is to connect a physics dust-radiation model in the system. Then the modified system can be used for dust storm prediction and forecast. The physics driver is also developed into a standalone form. This is to facilitate the development works on physics packages. The developers can save instant fields of meteorology data and snapshots from the running system , and then used them as offline driving data fields to test the new individual physics modules or small modifications to current modules. This prevents the run of whole system for every test.
The diverse utility of ground-based magnetometer data
NASA Astrophysics Data System (ADS)
Love, J. J.
2012-12-01
The global network of magnetic observatories represents a unique collective asset for the scientific community. Since observatory data record a wide range of physical phenomena, they are also used for a wide range of applications. Historically, magnetic observatories were first established in the 19th century to support global magnetic-field mapping projects, and this application continues to be important today. But since the dawn of the space age and the International Geophysical Year, observatory data have become important for research analysis of the ionosphere, the magnetosphere, and, indirectly, the heliosphere. Over the past couple of solar cycles, magnetic observatories have also played an important role in real-time operational monitoring of the changing conditions of space weather and assessment of ground-level geomagnetic hazards. This diversification and expansion of the observatory-data user community has brought demands for data that meet new and more stringent standards. In cooperation with the many institutes that support magnetic observatories, INTERMAGNET has been helping to coordinate and facilitate observatory modernization and improved operation. In this presentation, we give an overview of the diversity of signals recorded in observatory data, including secular, quiet, storm-time, and solar-cycle variations. We discuss future opportunities, especially for global integration and data sharing.
King, Diane K; Allen, Peg; Jones, Dina L; Marquez, David X; Brown, David R; Rosenberg, Dori; Janicek, Sarah; Allen, Laila; Belza, Basia
2016-03-01
Midlife and older adults use shopping malls for walking, but little research has examined mall characteristics that contribute to their walkability. We used modified versions of the Centers for Disease Control and Prevention (CDC)-Healthy Aging Research Network (HAN) Environmental Audit and the System for Observing Play and Recreation in Communities (SOPARC) tool to systematically observe 443 walkers in 10 shopping malls. We also observed 87 walkers in 6 community-based nonmall/nongym venues where older adults routinely walked for physical activity. All venues had public transit stops and accessible parking. All malls and 67% of nonmalls had wayfinding aids, and most venues (81%) had an established circuitous walking route and clean, well-maintained public restrooms (94%). All venues had level floor surfaces, and one-half had benches along the walking route. Venues varied in hours of access, programming, tripping hazards, traffic control near entrances, and lighting. Despite diversity in location, size, and purpose, the mall and nonmall venues audited shared numerous environmental features known to promote walking in older adults and few barriers to walking. Future research should consider programmatic features and outreach strategies to expand the use of malls and other suitable public spaces for walking.
Adams, Sabirah; Savahl, Shazly; Fattore, Tobia
2017-12-01
The aim of the study was to explore children's representations and perceptions of natural spaces using photovoice and community mapping. The sample consisted of 28 children aged 12-14 years residing in urban and rural communities in the Western Cape, South Africa. Data were collected by means of a series of six focus groups interviews (three photovoice discussion groups and three community mapping discussion groups). For the photovoice missions, children were provided with a 28-exposure disposable camera and given 1 week to complete their missions. Thematic analysis was employed to analyse the data. Three key themes emerged, namely: safe spaces in nature, unsafe spaces in nature, and children's favourite places in nature. Socio-economic status (SES) was found to be a determining factor in how children make sense of natural spaces. Children from low SES communities indicated being more constricted in their mobility, and were unable to access to safe natural spaces compared to the children from the middle SES community. It is recommended that an expedient starting point would be to work towards and build environmentally and child-friendly communities for children, with children as key contributors in the planning process using a child participation framework.
The ecocultural context and child behavior problems: A qualitative analysis in rural Nepal.
Burkey, Matthew D; Ghimire, Lajina; Adhikari, Ramesh Prasad; Wissow, Lawrence S; Jordans, Mark J D; Kohrt, Brandon A
2016-06-01
Commonly used paradigms for studying child psychopathology emphasize individual-level factors and often neglect the role of context in shaping risk and protective factors among children, families, and communities. To address this gap, we evaluated influences of ecocultural contextual factors on definitions, development of, and responses to child behavior problems and examined how contextual knowledge can inform culturally responsive interventions. We drew on Super and Harkness' "developmental niche" framework to evaluate the influences of physical and social settings, childcare customs and practices, and parental ethnotheories on the definitions, development of, and responses to child behavior problems in a community in rural Nepal. Data were collected between February and October 2014 through in-depth interviews with a purposive sampling strategy targeting parents (N = 10), teachers (N = 6), and community leaders (N = 8) familiar with child-rearing. Results were supplemented by focus group discussions with children (N = 9) and teachers (N = 8), pile-sort interviews with mothers (N = 8) of school-aged children, and direct observations in homes, schools, and community spaces. Behavior problems were largely defined in light of parents' socialization goals and role expectations for children. Certain physical settings and times were seen to carry greater risk for problematic behavior when children were unsupervised. Parents and other adults attempted to mitigate behavior problems by supervising them and their social interactions, providing for their physical needs, educating them, and through a shared verbal reminding strategy (samjhaune). The findings of our study illustrate the transactional nature of behavior problem development that involves context-specific goals, roles, and concerns that are likely to affect adults' interpretations and responses to children's behavior. Ultimately, employing a developmental niche framework will elucidate setting-specific risk and protective factors for culturally compelling intervention strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reed, K. A.; Jablonowski, C.
2011-02-01
This paper explores the impact of the physical parameterization suite on the evolution of an idealized tropical cyclone within the National Center for Atmospheric Research's (NCAR) Community Atmosphere Model (CAM). The CAM versions 3.1 and 4 are used to study the development of an initially weak vortex in an idealized environment over a 10-day simulation period within an aqua-planet setup. The main distinction between CAM 3.1 and CAM 4 lies within the physical parameterization of deep convection. CAM 4 now includes a dilute plume Convective Available Potential Energy (CAPE) calculation and Convective Momentum Transport (CMT). The finite-volume dynamical core with 26 vertical levels in aqua-planet mode is used at horizontal grid spacings of 1.0°, 0.5° and 0.25°. It is revealed that CAM 4 produces stronger and larger tropical cyclones by day 10 at all resolutions, with a much earlier onset of intensification when compared to CAM 3.1. At the highest resolution CAM 4 also accounts for changes in the storm's vertical structure, such as an increased outward slope of the wind contours with height, when compared to CAM 3.1. An investigation concludes that the new dilute CAPE calculation in CAM 4 is largely responsible for the changes observed in the development, strength and structure of the tropical cyclone.
Public Spaces - Coexistence and Participation
NASA Astrophysics Data System (ADS)
Stasiak, Anna; Wojtowicz-Jankowska, Dorota
2017-10-01
The paper is an attempt to answer two questions: (1) how to develop positive social relations and citizenship among residents of cities in Poland and (2) how suitable shaping of public space affects the activation and integration of local residents. The specificity of the postwar process of urbanization in Poland - a country traditionally agricultural - was its political dimension (forced “nationalisation” of agriculture and industrialization of the country) ignoring the socio-cultural determinants and consequences of this process resulting in disappearance of traditional social bonds. According to forecasts, the number of urban dwellers is expected to grow by the year 2050 and increase up to 70 percent of the population. Such a rapid urban sprawl was not accompanied by appropriate social policies; the result was a low level of social organization and of a sense of citizenship. There are various attempts to change this situation. One of them is the development of a system of urban public spaces, according to the needs and preferences of residents (i.e. promotion of physical activity in public areas, introducing elements of art to the common external space, encouraging users to contribute to their surroundings and introducing the appearance of temporary, often cyclical, attractions). Regular interactions between people in public spaces are conducive to developing positive social relationships. Quality and development of the local community is dependent on the quality of space in which it is built. For this reason, attention has been paid to the factors influencing the perception of public space, i.e. geographical and natural conditions, cultural and architectural (arrangement, the availability and condition of these spaces). In the article, the examples of different types of Polish public spaces are described - permanent and temporal recreational spaces (including summer activities and winter attractions). Attempt has also been made to give an answer to the question: who nowadays is a citizen and how to assist in the creation of civil society with a system of public spaces with thoughtful application program. Currently the city, through its scale, deepens the alienation of residents, therefore appears a need for treatments favouring social interaction. The aforementioned spatial actions motivate people to go out and find themselves in the public space. Coexistence is the first necessary step to produce community. This relationship and the specifics of this co-presence may encourage citizens to return to the public space.
A New Undergraduate Course on the Physics of Space Situational Awareness
NASA Astrophysics Data System (ADS)
Jost, T.; Dearborn, M.; Chun, F.; McHarg, G.
As documented in the National Defense Authorization Act for fiscal year 2010, space situational awareness (SSA) is a high priority for the DoD and intelligence community. A fundamental understanding of the technical issues involved with SSA requires knowledge in many different scientific areas. The mission of the United States Air Force Academy (USAFA) is to educate, train, and inspire men and women to become officers of character motivated to lead the United States Air Force in service to our Nation. The physics department is implementing the USAFA mission and the need for technically competent officers in SSA through a comprehensive SSA Initiative. As part of the Initiative, we are developing a course to provide junior or senior cadets with the scientific background necessary to understand the challenges associated with SSA missions and systems. This presentation introduces the planned course objectives and includes a discussion of topics to be covered. Examples of topics include, optically resolved imaging, radiometry and photometry, radar detection and tracking, orbital prediction, debris and collision avoidance, detection of proximity operations and modeling and simulation tools. Cadets will have hands-on opportunities to collect metrics of a designated object using Academy assets such as the 41 cm telescope. Cadets will convert telescope gimbal angles into an orbital data. Cadets will synthesize what they learned in the course by completing the semester with a final project where the collected data is merged with a notional scenario to present a mock decision briefing. This class will be open to cadets of any academic major, since the intent is to prepare officers with basic technical competence in SSA applications. This is critical since graduates of the Academy become commissioned officers in the military and serve in a large variety of leadership positions -- from the researcher to the warfighter. Since we are currently developing the course, the SSA community will be invited to send online feedback to USAFA physics department faculty and to participate by providing materials that may be integrated into course.
NASA Astrophysics Data System (ADS)
Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.
2017-04-01
The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.
Sheik, Cody S.; Stevenson, Emily I.; Den Uyl, Paul A.; Arendt, Carli A.; Aciego, Sarah M.; Dick, Gregory J.
2015-01-01
Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical, and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG) in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream, and the glacier’s terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria, and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time. PMID:26042114
Physical activity level and fall risk among community-dwelling older adults.
Low, Sok Teng; Balaraman, Thirumalaya
2017-07-01
[Purpose] To find the physical activity level and fall risk among the community-dwelling Malaysian older adults and determine the correlation between them. [Subjects and Methods] A cross-sectional study was conducted in which, the physical activity level was evaluated using the Rapid Assessment of Physical Activity questionnaire and fall risk with Fall Risk Assessment Tool. Subjects recruited were 132 community-dwelling Malaysian older adults using the convenience sampling method. [Results] The majority of the participants were under the category of under-active regular light-activities and most of them reported low fall risk. The statistical analysis using Fisher's exact test did not show a significant correlation between physical activity level and fall risk. [Conclusion] The majority of community-dwelling Malaysian older adults are performing some form of physical activity and in low fall risk category. But this study did not find any significant correlation between physical activity level and fall risk among community-dwelling older adults in Malaysia.
2009-05-28
CAPE CANAVERAL, Fla. – Florida Rep. Ralph Poppell (left) talks with Kennedy Space Center Director Bob Cabana during the annual Community Leaders Breakfast held in the Debus Center at Kennedy Space Center's Visitor Complex. Community leaders, business executives, educators, community organizers and state and local government heard Cabana provide an overview of operations at the space center and a look ahead at upcoming missions and activities. Photo credit: NASA/Kim Shiflett
Planting Trees in Designed and Built Community Landscapes - Checklists for Success
Mary K. Reynolds; H. Sharon Ossenbruggen
Trees create green spaces in communities. The right trees in the right places benefit you, your home, and your community now and in the future. It is essential to select living trees to create a sense of place within communities. This publication helps citizens create community green spaces. It encourages both experts and amateurs to plant and grow trees correctly, and...
Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop
NASA Technical Reports Server (NTRS)
Creduer, Leonard (Editor); Perry, R. Brad (Editor)
1997-01-01
A Government and Industry workshop on wake vortex dynamic spacing systems was conducted on May 13-15, 1997, at the NASA Langley Research Center. The purpose of the workshop was to disclose the status of ongoing NASA wake vortex R&D to the international community and to seek feedback on the direction of future work to assure an optimized research approach. Workshop sessions examined wake vortex characterization and physics, wake sensor technologies, aircraft/wake encounters, terminal area weather characterization and prediction, and wake vortex systems integration and implementation. A final workshop session surveyed the Government and Industry perspectives on the NASA research underway and related international wake vortex activities. This document contains the proceedings of the workshop including the presenters' slides, the discussion following each presentation, the wrap-up panel discussion, and the attendees' evaluation feedback.
A Multi-agent Simulation Tool for Micro-scale Contagion Spread Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Daniel B
2016-01-01
Within the disaster preparedness and emergency response community, there is interest in how contagions spread person-to-person at large gatherings and if mitigation strategies can be employed to reduce new infections. A contagion spread simulation module was developed for the Incident Management Preparedness and Coordination Toolkit that allows a user to see how a geographically accurate layout of the gathering space helps or hinders the spread of a contagion. The results can inform mitigation strategies based on changing the physical layout of an event space. A case study was conducted for a particular event to calibrate the underlying simulation model. Thismore » paper presents implementation details of the simulation code that incorporates agent movement and disease propagation. Elements of the case study are presented to show how the tool can be used.« less
Oreskovic, Nicolas M; Goodman, Elizabeth; Park, Elyse R; Robinson, Alyssa I; Winickoff, Jonathan P
2015-01-01
Adequate physical activity promotes physical and mental health and decreases obesity risk. However, most adolescents do not attain recommended physical activity levels and effective interventions are lacking. Physical activity trials rarely incorporate built environment use patterns. This paper describes the design and rationale of the Children's Use of the Built Environment (CUBE) Study, an office-based intervention designed to teach youth how to use their surrounding built environment to increase physical activity. CUBE is a 6-month intervention trial among 60 overweight and obese 10-16 year old adolescents from a community health center in Massachusetts. The study began in the winter of 2013. Patients are sequentially assigned to either the intervention or control group. Baseline physical activity by accelerometry and location by GPS, along with measured height, weight, and blood pressure are collected. Control subjects receive standard of care lifestyle counseling. Intervention subjects receive tailored recommendations on how to increase their physical activity based on their accelerometer and GPS data. Data collections are repeated at end-of-treatment, and again 3 months later. The findings from this study should help guide future efforts to design interventions aimed at increasing adolescent physical activity as well as to inform design professionals and government officials charged with creating outdoor spaces where adolescents spend time. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Acuña, M.
The International Solar Terrestrial Physics Program (ISTP) evolved from the individual plans of US, Japanese and European countries to develop space missions to expand our knowledge of the Sun-Earth connection as a "system". Previous experience with independent missions amply illustrated the critical need for coordinated and simultaneous observations in key regions of Sun-Earth space in order to resolve time-space ambiguities and cause-effect relationships. Mission studies such as the US Origins of Plasmas in the Earth's Neighborhood (OPEN), Geotail in Japan, the Solar Heliospheric Observatory in Europe and the Regatta and other magnetospheric missions in the former Soviert Union, formed the early conceptual elements that eventually led to the ISTP program. The coordinating role developed by the Inter-Agency-Consultative-Group (IACG) integrated by NASA, ESA, ISAS and IKI and demonstrated during the comet Halley apparition in 1986, was continued to include solar-terrestrial research and the mission elements described above. In addition to the space elements, a most important component of the coordination effort was the inclusion of data networks, analysis and planning tools as well as globally accessible data sets by the scientific community at large. This approach enabled the active and direct participation of scientists in developing countries in one of the most comprehensive solar-terrestrial research programs implemented to date. The creation of multiple ISTP data repositories throughout the world has enabled a large number of scientists in developing countries to have direct access to the latest spacecraft observations and a most fruitful interaction with fellow researchers throughout the world. This paper will present a review of the evolution of the ISTP program, its products, analysis tools, data bases, infrastructure and lessons learned applicable to future international collaborative programs.
Research and technology: Fiscal year 1984 report
NASA Technical Reports Server (NTRS)
1985-01-01
Topics covered include extraterrestrial physics, high energy astrophysics, astronomy, solar physics, atmospheres, oceans, terrestrial physics, space technology, sensors, techniques, user space data systems, space communications and navigation, and system and software engineering.
NASA Astrophysics Data System (ADS)
Laughton, C.
2008-12-01
For the last half century the physics community has increasingly turned to the use of underground space to conduct basic research. The community is currently planning to conduct a new generation of underground experiments at the Deep Underground Science and Engineering Laboratory (DUSEL). DUSEL will be constructed within the footprint of the defunct Homestake Gold Mine, located in Lead, South Dakota. Physics proposals call for the construction of new caverns in which to conduct major new experiments. Some of the proposed laboratory facilities will be significantly larger and deeper than any previously constructed. The talk will highlight possible opportunities for integrating multi-disciplinary research in to the cavern construction program, and will stress the need to work closely with design and construction contractors to ensure that research goals can be achieve with minimal impact on project work. The constructors of large caverns should be particularly receptive to, and encouraging of geoscience research that could improve the engineering characterization of the rock mass. An improved understanding of the rock mass, as the host construction material, would result in a more reliable cavern design and construction process, and a reduced construction risk to the Project.
Aarts, Marie-Jeanne; Schuit, Albertine J; van de Goor, Ien Am; van Oers, Hans Am
2011-12-15
Although multi-sector policy is a promising strategy to create environments that stimulate physical activity among children, little is known about the feasibility of such a multi-sector policy approach. The aims of this study were: to identify a set of tangible (multi-sector) policy measures at the local level that address environmental characteristics related to physical activity among children; and to assess the feasibility of these measures, as perceived by local policy makers. In four Dutch municipalities, a Delphi study was conducted among local policy makers of different policy sectors (public health, sports, youth and education, spatial planning/public space, traffic and transportation, and safety). In the first Delphi round, respondents generated a list of possible policy measures addressing three environmental correlates of physical activity among children (social cohesion, accessibility of facilities, and traffic safety). In the second Delphi round, policy makers weighted different feasibility aspects (political feasibility, cultural/community acceptability, technical feasibility, cost feasibility, and legal feasibility) and assessed the feasibility of the policy measures derived from the first round. The third Delphi round was aimed at reaching consensus by feedback of group results. Finally, one overall feasibility score was calculated for each policy measure. Cultural/community acceptability, political feasibility, and cost feasibility were considered most important feasibility aspects. The Delphi studies yielded 16 feasible policy measures aimed at physical and social environmental correlates of physical activity among children. Less drastic policy measures were considered more feasible, whereas environmental policy measures were considered less feasible. This study showed that the Delphi technique can be a useful tool in reaching consensus about feasible multi-sector policy measures. The study yielded several feasible policy measures aimed at physical and social environmental correlates of physical activity among children and can assist local policy makers in designing multi-sector policies aimed at an activity-friendly environment for children.
Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference
NASA Technical Reports Server (NTRS)
Singh, Bhim S. (Editor)
2000-01-01
The Fifth Microgravity Fluid Physics and Transport Phenomena Conference provided the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program and research opportunities and plans for the near future. Consistent with the conference theme "Microgravity Research an Agency-Wide Asset" the conference focused not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. The conference included 14 invited plenary talks, 61 technical paper presentations, 61 poster presentations, exhibits and a forum on emerging research themes focusing on nanotechnology and biofluid mechanics. This web-based proceeding includes the presentation and poster charts provided by the presenters of technical papers and posters that were scanned at the conference site. Abstracts of all the papers and posters are included and linked to the presentations charts. The invited and plenary speakers were not required to provide their charts and are generally not available for scanning and hence not posted. The conference program is also included.
Space physics education via examples in the undergraduate physics curriculum
NASA Astrophysics Data System (ADS)
Martin, R.; Holland, D. L.
2011-12-01
The field of space physics is rich with examples of basic physics and analysis techniques, yet it is rarely seen in physics courses or textbooks. As space physicists in an undergraduate physics department we like to use research to inform teaching, and we find that students respond well to examples from magnetospheric science. While we integrate examples into general education courses as well, this talk will focus on physics major courses. Space physics examples are typically selected to illustrate a particular concept or method taught in the course. Four examples will be discussed, from an introductory electricity and magnetism course, a mechanics/nonlinear dynamics course, a computational physics course, and a plasma physics course. Space physics provides examples of many concepts from introductory E&M, including the application of Faraday's law to terrestrial magnetic storm effects and the use of the basic motion of charged particles as a springboard to discussion of the inner magnetosphere and the aurora. In the mechanics and nonlinear dynamics courses, the motion of charged particles in a magnetotail current sheet magnetic field is treated as a Newtonian dynamical system, illustrating the Poincaré surface-of-section technique, the partitioning of phase space, and the KAM theorem. Neural network time series analysis of AE data is used as an example in the computational physics course. Finally, among several examples, current sheet particle dynamics is utilized in the plasma physics course to illustrate the notion of adiabatic/guiding center motion and the breakdown of the adiabatic approximation. We will present short descriptions of our pedagogy and student assignments in this "backdoor" method of space physics education.
NASA Astrophysics Data System (ADS)
Quigley, Cassie F.
2013-03-01
Through the use of narrative enquiry, this paper tells the story of how a kindergarten teacher in an all-girls' school incorporates family and community members' involvement to the construction of the congruent Third Space present in the classroom, and the ways the girls respond to this involvement, thereby providing a successful model for other schools in marginalized communities. In this study, the author sought to understand how this teacher and the community members' in this classroom create a congruent Third Space. This research enquiry includes the systematic use of the methodology portraiture with analysis of critical events. The portraits are titled: Mutual Desire for the Girls to Succeed and Community Members' Involvement. This paper moves Third Space theory towards praxis through concrete examples in an urban, kindergarten classroom.
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
2002-01-01
The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.
NASA Astrophysics Data System (ADS)
Meehan, Jennifer; Fulgham, Jared; Tobiska, W. Kent
2012-07-01
How can we continue to advance the space weather operational community from lessons already learned when it comes to data reliability, maintainability, accessibility, dependability, safety, and quality? How can we make space weather more easily accessible to each other and outside users? Representatives from operational, commercial, academic, and government organizations weighed in on these important questions at the second annual Space Weather Community Operations Workshop, held 22-23 March 2012 in Park City, Utah, with the unofficial workshop motto being Don’t Reinvent the Wheel.
ERIC Educational Resources Information Center
Christensen, Keith M.
2010-01-01
Social integration in community is especially important for individuals with disabilities well-being. Although individuals with disabilities reside within the community's physical environment, they are often marginalized in the social environment. This may be the result of individuals with disabilities residing in physical environments that…
NASA Astrophysics Data System (ADS)
Foltynowicz, Aleksandra; Picqué, Nathalie; Ye, Jun
2018-05-01
Frequency combs are becoming enabling tools for many applications in science and technology, beyond the original purpose of frequency metrology of simple atoms. The precisely evenly spaced narrow lines of a laser frequency comb inspire intriguing approaches to molecular spectroscopy, designed and implemented by a growing community of scientists. Frequency-comb spectroscopy advances the frontiers of molecular physics across the entire electro-magnetic spectrum. Used as frequency rulers, frequency combs enable absolute frequency measurements and precise line shape studies of molecular transitions, for e.g. tests of fundamental physics and improved determination of fundamental constants. As light sources interrogating the molecular samples, they dramatically improve the resolution, precision, sensitivity and acquisition time of broad spectral-bandwidth spectroscopy and open up new opportunities and applications at the leading edge of molecular spectroscopy and sensing.
Promoting physical activity among youth through community-based prevention marketing.
Bryant, Carol A; Courtney, Anita H; McDermott, Robert J; Alfonso, Moya L; Baldwin, Julie A; Nickelson, Jen; McCormack Brown, Kelli R; Debate, Rita D; Phillips, Leah M; Thompson, Zachary; Zhu, Yiliang
2010-05-01
Community-based prevention marketing (CBPM) is a program planning framework that blends community-organizing principles with a social marketing mind-set to design, implement, and evaluate public health interventions. A community coalition used CBPM to create a physical activity promotion program for tweens (youth 9-13 years of age) called VERB Summer Scorecard. Based on the national VERB media campaign, the program offered opportunities for tweens to try new types of physical activity during the summer months. The VERB Summer Scorecard was implemented and monitored between 2004 and 2007 using the 9-step CBPM framework. Program performance was assessed through in-depth interviews and a school-based survey of youth. The CBPM process and principles used by school and community personnel to promote physical activity among tweens are presented. Observed declines may become less steep if school officials adopt a marketing mind-set to encourage youth physical activity: deemphasizing health benefits but promoting activity as something fun that fosters spending time with friends while trying and mastering new skills. Community-based programs can augment and provide continuity to school-based prevention programs to increase physical activity among tweens.
Towards the Next Generation of Space Environment Prediction Capabilities.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.
2015-12-01
Since its establishment more than 15 years ago, the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) is serving as an assess point to expanding collection of state-of-the-art space environment models and frameworks as well as a hub for collaborative development of next generation space weather forecasting systems. In partnership with model developers and international research and operational communities the CCMC integrates new data streams and models from diverse sources into end-to-end space weather impacts predictive systems, identifies week links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will highlight latest developments, progress in CCMC-led community-wide projects on testing, prototyping, and validation of models, forecasting techniques and procedures and outline ideas on accelerating implementation of new capabilities in space weather operations.
Built Environment, Adiposity, and Physical Activity in Adults Aged 50–75
Li, Fuzhong; Harmer, Peter A.; Cardinal, Bradley J.; Bosworth, Mark; Acock, Alan; Johnson-Shelton, Deborah; Moore, Jane M.
2008-01-01
Background Few studies have investigated the built environment and its association with health—especially excess adiposity—and physical activity in the immediate pre-Baby Boom/early-Baby Boom generations, soon to be the dominant demographic in the U.S. The purpose of this study was to examine this relationship. Methods This study used a cross-sectional, multilevel design with neighborhoods as the primary sampling unit (PSU). Residents (N=1221; aged 50–75) were recruited from 120 neighborhoods in Portland OR. The independent variables at the PSU level involved GIS-derived measures of land-use mix, distribution of fast-food outlets, street connectivity, access to public transportation, and green and open spaces. Dependent variables included resident-level measures of excess adiposity (BMI ≥25), three walking activities, and physical activity. Data were collected in 2006–2007 and analyzed in 2007. Results Each unit (i.e., 10%) increase in land-use mix was associated with a 25% reduction in the prevalence of overweight/obesity. However, a 1-SD increase in the density of fast-food outlets was associated with a 7% increase in overweight/obesity. Higher mixed-use land was positively associated with all three types of walking activities and the meeting of physical activity recommendations. Neighborhoods with high street connectivity, high density of public transit stations, and green and open spaces were related in varying degrees to walking and the meeting of physical activity recommendations. The analyses adjusted for neighborhood- and resident-level sociodemographic characteristics. Conclusions Findings suggest the need for public health and city planning officials to address modifiable neighborhood-level, built-environment characteristics to create more livable residential communities aimed at both addressing factors that may influence unhealthy eating and promoting active, healthy lifestyles in this rapidly growing population. PMID:18541175
Gustafson, Alison; McGladrey, Margaret; Liu, Emily; Peritore, Nicole; Webber, Kelly; Butterworth, Brooke; Vail, Ann
2017-07-07
Rural residents report high rates of obesity, physical inactivity, and poor eating habits. The objectives of this study were to (1) use the collective impact model to guide efforts to elicit community members' perceptions of county-specific factors influencing high obesity rates; (2) determine the association between utilization of food retail venues and concern about obesity and healthy eating; and (3) determine community members' utilization of physical activity infrastructure and concern about physical inactivity. The study was conducted in 6 rural counties in Kentucky with adult obesity prevalence rates >40%. Community stakeholders met to assess counties' needs and assets in implementing interventions to reduce obesity in their communities. A random-digit dial survey (n = 756) also was conducted to examine awareness and availability of community resources for healthy eating and physical activity. Stakeholders identified lack of access to fruits and vegetables and poor physical activity infrastructure as contributors to obesity. Reporting moderate and serious concern about obesity and healthy eating was associated with higher odds of shopping at a supercenter compared with those expressing little concern. Reported access to information about physical activity opportunities was associated with higher odds of reporting the availability of safe places for physical activity, sidewalks, and trails compared with those who reported that information was difficult to obtain. This study elicits community-identified barriers to healthy behaviors and provides foundational data to inform future place-based obesity reduction interventions. © 2017 National Rural Health Association.
Regular group exercise contributes to balanced health in older adults in Japan: a qualitative study.
Komatsu, Hiroko; Yagasaki, Kaori; Saito, Yoshinobu; Oguma, Yuko
2017-08-22
While community-wide interventions to promote physical activity have been encouraged in older adults, evidence of their effectiveness remains limited. We conducted a qualitative study among older adults participating in regular group exercise to understand their perceptions of the physical, mental, and social changes they underwent as a result of the physical activity. We conducted a qualitative study with purposeful sampling to explore the experiences of older adults who participated in regular group exercise as part of a community-wide physical activity intervention. Four focus group interviews were conducted between April and June of 2016 at community halls in Fujisawa City. The participants in the focus group interviews were 26 older adults with a mean age of 74.69 years (range: 66-86). The interviews were analysed using the constant comparative method in the grounded theory approach. We used qualitative research software NVivo10® to track the coding and manage the data. The finding 'regular group exercise contributes to balanced health in older adults' emerged as an overarching theme with seven categories (regular group exercise, functional health, active mind, enjoyment, social connectedness, mutual support, and expanding communities). Although the participants perceived that they were aging physically and cognitively, the regular group exercise helped them to improve or maintain their functional health and enjoy their lives. They felt socially connected and experienced a sense of security in the community through caring for others and supporting each other. As the older adults began to seek value beyond individuals, they gradually expanded their communities beyond geographical and generational boundaries. The participants achieved balanced health in the physical, mental, and social domains through regular group exercise as part of a community-wide physical activity intervention and contributed to expanding communities through social connectedness and mutual support. Health promotion through physical activity is being increasingly emphasized. The study results can help to develop effective physical activity programs for older adults in the community.
Things That Work: Roles and Services of SPDF
NASA Technical Reports Server (NTRS)
McGuire, R. E.; Bilitza, D.; Candey, R. M.; Chimiak, R. A.; Cooper, J. F.; Garcia, L. N.; Han, D. B.; Harris, B. T.; Johnson, R. C.; King, J. H.;
2010-01-01
The current Heliophysics Science Data Management Policy (HpSDMP) defines the roles of the Space Physics Data Facility (SPDF) project as a heliophysics active Final Archive (aFA), a focus for critical data infrastructure services and a center of excellence for data and ancillary information services. This presentation will highlight (1) select current SPDF activities, (2) the lessons we are continuing to learn in how to usefully serve the the heliophysics science community and (3)SPDF's programmatic emphasis in the coming year. In cooperation with the Heliophysics Virtual discipline Observatories (VxOs), we are working closely with current, and with upcoming missions such as RBSP and MMS, to define effective approaches to ensure the long-term availability and archiving of mission data, as well as how SPDF services can complement active mission capabilities. We are working to make the Virtual Space Physics Observatory (VSPO) service comprehensive in all significant and NASA relevant heliophysics data. We will highlight a new CDAWeb interface, a faster SSCWeb, availability of our data through VxO services such as Autoplot, a new capability to easily access our data from within IDL and continuing improvements to CDF including better handling of leap seconds.
Herschel and the Molecular Universe
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.; Helmich, F. P.
2006-01-01
Over the next decade, space-based missions will open up the universe to high spatial and spectral resolution studies at infrared and submillimeter wavelengths. This will allow us to study, in much greater detail, the composition and the origin and evolution of molecules in space. Moreover, molecular transitions in these spectral ranges provide a sensitive probe of the dynamics and the physical and chemical conditions in a wide range of objects at scales ranging from budding planetary systems to galactic and extragalactic sizes. Hence, these missions provide us with the tools to study key astrophysical and astrochemical processes involved in the formation and evolution of planets, stars, and galaxies. These new missions can be expected to lead to the detection of many thousands of new spectral features. Identification, analysis and interpretation of these features in terms of the physical and chemical characteristics of the astronomical sources will require detailed astronomical modeling tools supported by laboratory measurements and theoretical studies of chemical reactions and collisional excitation rates on species of astrophysical relevance. These data will have to be made easily accessible to the scientific community through web-based data archives. In this paper, we will review the Herschel mission and its expected impact on our understanding of the molecular universe.
Solar physics in the space age
NASA Technical Reports Server (NTRS)
1989-01-01
A concise and brief review is given of the solar physics' domain, and how its study has been affected by NASA Space programs which have enabled space based observations. The observations have greatly increased the knowledge of solar physics by proving some theories and challenging others. Many questions remain unanswered. To exploit coming opportunities like the Space Station, solar physics must continue its advances in instrument development, observational techniques, and basic theory. Even with the Advance Solar Observatory, other space based observation will still be required for the sure to be ensuing questions.
Free Spaces: Excavating Race, Class, and Gender among Urban Schools and Communities
ERIC Educational Resources Information Center
Akom, A. A.
2007-01-01
This article introduces the concept of "free spaces" as an important site for the development of theory and practice around youth activism, teacher development, and the transformation of public and private space in urban schools and communities. Nearly a quarter of a century ago, Evans and Boyte (1986) introduced the concept of "free spaces" in…
NASA Technical Reports Server (NTRS)
1988-01-01
This report presents the on-going research activities at the NASA Marshall Space Flight Center for the year 1988. The subjects presented are space transportation systems, shuttle cargo vehicle, materials processing in space, environmental data base management, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, aeronomy, atomic physics, rocket propulsion, materials and processes, telerobotics, and space systems.
Space physics strategy: Implementation study. Volume 2: Program plan
NASA Technical Reports Server (NTRS)
1991-01-01
In June, 1989, the Space Science and Applications Advisory Committee (SSAAC) authorized its Space Physics Subcommittee (SPS) to prepare a plan specifying the future missions, launch sequence, and encompassing themes of the Space Physics Division. The plan, now complete, is the product of a year-long study comprising two week-long workshops - in January and June 1990 - assisted by pre-workshop, inter-workshop, and post-workshop preparation and assessment activities. The workshops engaged about seventy participants, drawn equally from the Division's four science disciplines: cosmic and heliospheric physics, solar physics, magnetosphere physics, and ionosphere-thermosphere-mesospheric physics. An earlier report records the outcome of the first workshop; this is the report of the final workshop.
Indiana Wesleyan University SPS Physics Outreach to Rural Middle School and High School Students
NASA Astrophysics Data System (ADS)
Ostrander, Joshua; Rose, Heath; Burchell, Robert; Ramos, Roberto
2013-03-01
The Society of Physics Students chapter at Indiana Wesleyan University is unusual in that it has no physics major, only physics minors. Yet while just over a year old, IWU-SPS has been active in performing physics outreach to middle school and high school students, and the rural community of Grant County. Our year-old SPS chapter consists of majors from Chemistry, Nursing, Biology, Exercise Science, Computer Science, Psychology, Pastoral Studies, and Science Education, who share a common interest in physics and service to the community. IWU currently has a physics minor and is currently working to build a physics major program. Despite the intrinsic challenges, our multi-disciplinary group has been successful at using physics demonstration equipment and hands-on activities and their universal appeal to raise the interest in physics in Grant County. We report our experience, challenges, and successes with physics outreach. We describe in detail our two-pronged approach: raising the level of physics appreciation among the IWU student community and among pre-college students in a rural community of Indiana. Acknowledgements: We acknowledge the support of the Society of Physics Students through a Marsh White Outreach Award and a Blake Lilly Prize.
The MMS Science Data Center: Operations, Capabilities, and Resource.
NASA Astrophysics Data System (ADS)
Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.
2015-12-01
The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.
Adams, Sabirah; Savahl, Shazly; Fattore, Tobia
2017-01-01
ABSTRACT The aim of the study was to explore children’s representations and perceptions of natural spaces using photovoice and community mapping. The sample consisted of 28 children aged 12–14 years residing in urban and rural communities in the Western Cape, South Africa. Data were collected by means of a series of six focus groups interviews (three photovoice discussion groups and three community mapping discussion groups). For the photovoice missions, children were provided with a 28-exposure disposable camera and given 1 week to complete their missions. Thematic analysis was employed to analyse the data. Three key themes emerged, namely: safe spaces in nature, unsafe spaces in nature, and children’s favourite places in nature. Socio-economic status (SES) was found to be a determining factor in how children make sense of natural spaces. Children from low SES communities indicated being more constricted in their mobility, and were unable to access to safe natural spaces compared to the children from the middle SES community. It is recommended that an expedient starting point would be to work towards and build environmentally and child-friendly communities for children, with children as key contributors in the planning process using a child participation framework. PMID:28699852
Edwards, Michael B; Theriault, Daniel S; Shores, Kindal A; Melton, Karen M
2014-01-01
Research on youth physical activity has focused on urban areas. Rural adolescents are more likely to be physically inactive than urban youth, contributing to higher risk of obesity and chronic diseases. Study objectives were to: (1) identify perceived opportunities and barriers to youth physical activity within a rural area and (2) identify rural community characteristics that facilitate or inhibit efforts to promote youth physical activity. Thirty in-depth interviews were conducted with expert informants in 2 rural southern US counties. Interviewees were recruited from diverse positions across multiple sectors based on their expert knowledge of community policies and programs for youth physical activity. Informants saw ball fields, natural amenities, and school sports as primary resources for youth physical activity, but they were divided on whether opportunities were abundant or scarce. Physical distance, social isolation, lack of community offerings, and transportation were identified as key barriers. Local social networks facilitated political action and volunteer recruitment to support programs. However, communities often lacked human capital to sustain initiatives. Racial divisions influenced perceptions of opportunities. Despite divisions, there were also examples of pooling resources to create and sustain physical activity opportunities. Developing partnerships and leveraging local resources may be essential to overcoming barriers for physical activity promotion in rural areas. Involvement of church leaders, school officials, health care workers, and cooperative extension is likely needed to establish and sustain youth rural physical activity programs. Allocating resources to existing community personnel and volunteers for continuing education may be valuable. © 2014 National Rural Health Association.
Goh, Ying-Ying; Sipple-Asher, Bessie Ko; Uyeda, Kimberly; Hawes-Dawson, Jennifer; Olarita-Dhungana, Josephina; Ryan, Gery W.; Schuster, Mark A.
2010-01-01
Using a community-based participatory research approach, we explored adolescent, parent, and community stakeholder perspectives on barriers to healthy eating and physical activity, and intervention ideas to address adolescent obesity. We conducted 14 adolescent focus groups (n = 119), 8 parent focus groups (n = 63), and 28 interviews with community members (i.e., local experts knowledgeable about youth nutrition and physical activity). Participants described ecological and psychosocial barriers in neighborhoods (e.g., lack of accessible nutritious food), in schools (e.g., poor quality of physical education), at home (e.g., sedentary lifestyle), and at the individual level (e.g., lack of nutrition knowledge). Participants proposed interventions such as nutrition classes for families, addition of healthy school food options that appeal to students, and non-competitive physical education activities. Participants supported health education delivered by students. Findings demonstrate that community-based participatory research is useful for revealing potentially feasible interventions that are acceptable to community members. PMID:19544091
Numerical Study of Solar Storms from the Sun to Earth
NASA Astrophysics Data System (ADS)
Feng, Xueshang; Jiang, Chaowei; Zhou, Yufen
2017-04-01
As solar storms are sweeping the Earth, adverse changes occur in geospace environment. How human can mitigate and avoid destructive damages caused by solar storms becomes an important frontier issue that we must face in the high-tech times. It is of both scientific significance to understand the dynamic process during solar storm's propagation in interplanetary space and realistic value to conduct physics-based numerical researches on the three-dimensional process of solar storms in interplanetary space with the aid of powerful computing capacity to predict the arrival times, intensities, and probable geoeffectiveness of solar storms at the Earth. So far, numerical studies based on magnetohydrodynamics (MHD) have gone through the transition from the initial qualitative principle researches to systematic quantitative studies on concrete events and numerical predictions. Numerical modeling community has a common goal to develop an end-to-end physics-based modeling system for forecasting the Sun-Earth relationship. It is hoped that the transition of these models to operational use depends on the availability of computational resources at reasonable cost and that the models' prediction capabilities may be improved by incorporating the observational findings and constraints into physics-based models, combining the observations, empirical models and MHD simulations in organic ways. In this talk, we briefly focus on our recent progress in using solar observations to produce realistic magnetic configurations of CMEs as they leave the Sun, and coupling data-driven simulations of CMEs to heliospheric simulations that then propagate the CME configuration to 1AU, and outlook the important numerical issues and their possible solutions in numerical space weather modeling from the Sun to Earth for future research.
Lee, Janet Lok Chun; Lo, Temmy Lee Ting
2018-01-01
(1) Background: An outdoor gym (OG) is environmental infrastructure built in a public open space to promote structured physical activity. The provision of OGs is increasingly seen as an important strategy to realize public health agendas promoting habitual physical activity. A systematic review was conducted to synthesize characteristics of OG and OG users’ experiences and perceptions in different cultural contexts; (2) Methods: Online searches of multidisciplinary databases were conducted in health, sport and recreation, and urban planning disciplines. Characteristics of OGs were synthesized by integrating evidence from quantitative, qualitative, and mix-methods studies. The experiences and perceptions of OG users from both qualitative data and survey responses were synthesized through framework analysis; (3) Results: Nine studies met the inclusion criteria (three quantitative studies, four mixed-methods studies, and two pure qualitative studies). None were excluded on the basis of quality. OGs mainly serve adult and older adult population groups. Their size, design, and instructional support vary across studies. The inclusion of functional types of equipment did not have a unified standard. Regarding experiences and perceptions of OGs, five major themes emerged: “health”, “social connectedness”, “affordable”, “support”, and “design and promotion”; (4) Conclusions: The OG characteristics synthesis guides the direction in further studies regarding exploration of design parameters. The qualitative and quantitative synthesis revealed that health was a central theme of users’ experiences. OGs are also spaces where community-dwellers can find social connectedness while participating in structured physical activity at no cost. Findings from this review create knowledge support for OG as environmental infrastructure for further research and facilitate the understanding of users’ experiences and perceptions of OGs in different cultural contexts. PMID:29587402
Xia, Ruiping; Stone, John R; Hoffman, Julie E; Klappa, Susan G
2016-03-01
In physical therapy, there is increasing focus on the need at the community level to promote health, eliminate disparities in health status, and ameliorate risk factors among underserved minorities. Community-based participatory research (CBPR) is the most promising paradigm for pursuing these goals. Community-based participatory research stresses equitable partnering of the community and investigators in light of local social, structural, and cultural elements. Throughout the research process, the CBPR model emphasizes coalition and team building that joins partners with diverse skills/expertise, knowledge, and sensitivities. This article presents core concepts and principles of CBPR and the rationale for its application in the management of health issues at the community level. Community-based participatory research is now commonly used to address public health issues. A literature review identified limited reports of its use in physical therapy research and services. A published study is used to illustrate features of CBPR for physical therapy. The purpose of this article is to promote an understanding of how physical therapists could use CBPR as a promising way to advance the profession's goals of community health and elimination of health care disparities, and social responsibility. Funding opportunities for the support of CBPR are noted. © 2016 American Physical Therapy Association.
Aytur, Semra A; Jones, Sydney A; Stransky, Michelle; Evenson, Kelly R
2015-01-01
Chronic diseases such as cardiovascular disease (CVD) are major contributors to escalating health care costs in the USA. Physical activity is an important protective factor against CVD, and the National Prevention Strategy recognizes active living (defined as a way of life that integrates physical activity into everyday routines) as a priority for improving the nation's health. This paper focuses on developing more inclusive measures of physical activity in outdoor community recreational environments, specifically parks and trails, to enhance their usability for at-risk populations such as persons with mobility limitations. We develop an integrated conceptual framework for measuring physical activity in outdoor community recreational environments, describe examples of evidence-based tools for measuring physical activity in these settings, and discuss strategies to improve measurement of physical activity for persons with mobility limitations. Addressing these measurement issues is critically important to making progress towards national CVD goals pertaining to active community environments.
Fluid Physics Experiments onboard International Space Station: Through the Eyes of a Scientist.
NASA Astrophysics Data System (ADS)
Shevtsova, Valentina
Fluids are present everywhere in everyday life. They are also present as fuel, in support systems or as consumable in rockets and onboard of satellites and space stations. Everyone experiences every day that fluids are very sensitive to gravity: on Earth liquids flow downwards and gases mostly rise. Nowadays much of the interest of the scientific community is on studying the phenomena at microscales in so-called microfluidic systems. However, at smaller scales the experimental investigation of convective flows becomes increasingly difficult as the control parameter Ra scales with g L (3) (g; acceleration level, L: length scale). A unique alternative to the difficulty of investigating systems with small length scale on the ground is to reduce the gravity level g. In systems with interfaces, buoyancy forces are proportional to the volume of the liquid, while capillary forces act solely on the liquid surface. The importance of buoyancy diminishes either at very small scales or with reducing the acceleration level. Under the weightless conditions of space where buoyancy is virtually eliminated, other mechanisms such as capillary forces, diffusion, vibration, shear forces, electrostatic and electromagnetic forces are dominating in the fluid behaviour. This is why research in space represents a powerful tool for scientific research in this field. Understanding how fluids work really matters and so does measuring their properties accurately. Presently, a number of scientific laboratories, as usual goes with multi-user instruments, are involved in fluid research on the ISS. The programme of fluid physics experiments on-board deals with capillary flows, diffusion, dynamics in complex fluids (foams, emulsions and granular matter), heat transfer processes with phase change, physics and physico-chemistry near or beyond the critical point and it also extends to combustion physics. The top-level objectives of fluid research in space are as follows: (i) to investigate fluid behaviour in order to support the development of predictive models for the management of fluids and fluid mixtures on the ground as well as in space; (ii) to measure fluid properties that are either very difficult or not possible at all to measure on the ground and establish benchmarks; (iii) to exploit the absence of gravity forces to study new behaviours and implement new experimental configurations; Surely, all of you have seen movies about astronauts’ work and life on the ISS. Here you will learn another approach to the ISS activity, through the opinion of experienced scientist.
2009-05-28
CAPE CANAVERAL, Fla. – Guests at the annual Community Leaders Breakfast held in the Debus Center at Kennedy Space Center's Visitor Complex enjoy reminiscing about the early days of the Space Shuttle Program with Center Director Bob Cabana, far right on stage. Community leaders, business executives, educators, community organizers and state and local government heard Cabana provide an overview of operations at the space center and a look ahead at upcoming missions and activities. Photo credit: NASA/Kim Shiflett
ERIC Educational Resources Information Center
MCGRAW, EUGENE T.
PART OF A KANSAS STATE UNIVERSITY SERIES ON COMMUNITY PLANNING AND DEVELOPMENT, THIS MONOGRAPH DESCRIBES AND DEFINES THE NATURE OF URBAN CENTERS AS PHYSICAL ENTITIES. BASIC LAND USE CATEGORIES AND SUBDIVISIONS, FUNCTIONAL CLASSIFICATIONS OF COMMUNITIES IN THE UNITED STATES (MANUFACTURING, RETAIL, WHOLESALE, DIVERSIFIED, TRANSPORTATION, MINING,…
Wang, Dan; Lau, Kevin Ka-Lun; Yu, Ruby; Wong, Samuel Y S; Kwok, Timothy T Y; Woo, Jean
2017-08-01
Green space has been shown to be beneficial for human wellness through multiple pathways. This study aimed to explore the contributions of neighbouring green space to cause-specific mortality. Data from 3544 Chinese men and women (aged ≥65 years at baseline) in a community-based cohort study were analysed. Outcome measures, identified from the death registry, were death from all-cause, respiratory system disease, circulatory system disease. The quantity of green space (%) within a 300 m radius buffer was calculated for each subject from a map created based on the Normalised Difference Vegetation Index. Cox proportional hazard models adjusted for demographics, socioeconomics, lifestyle, health conditions and housing type were used to estimate the HRs and 95% CIs. During a mean of 10.3 years of follow-up, 795 deaths were identified. Our findings showed that a 10% increase in coverage of green space was significantly associated with a reduction in all-cause mortality (HR 0.963, 95% CI 0.930 to 0.998), circulatory system-caused mortality (HR 0.887, 95% CI 0.817 to 0.963) and stroke-caused mortality (HR 0.661, 95% CI 0.524 to 0.835), independent of age, sex, marital status, years lived in Hong Kong, education level, socioeconomic ladder, smoking, alcohol intake, diet quality, self-rated health and housing type. The inverse associations between coverage of green space with all-cause mortality (HR 0.964, 95% CI 0.931 to 0.999) and circulatory system disease-caused mortality (HR 0.888, 95% CI 0.817 to 0.964) were attenuated when the models were further adjusted for physical activity and cognitive function. The effects of green space on all-cause and circulatory system-caused mortality tended to be stronger in females than in males. Higher coverage of green space was associated with reduced risks of all-cause mortality, circulatory system-caused mortality and stroke-caused mortality in Chinese older people living in a highly urbanised city. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Wang, Dan; Lau, Kevin Ka-Lun; Yu, Ruby; Wong, Samuel Y S; Kwok, Timothy T Y; Woo, Jean
2017-01-01
Objective Green space has been shown to be beneficial for human wellness through multiple pathways. This study aimed to explore the contributions of neighbouring green space to cause-specific mortality. Methods Data from 3544 Chinese men and women (aged ≥65 years at baseline) in a community-based cohort study were analysed. Outcome measures, identified from the death registry, were death from all-cause, respiratory system disease, circulatory system disease. The quantity of green space (%) within a 300 m radius buffer was calculated for each subject from a map created based on the Normalised Difference Vegetation Index. Cox proportional hazard models adjusted for demographics, socioeconomics, lifestyle, health conditions and housing type were used to estimate the HRs and 95% CIs. Results During a mean of 10.3 years of follow-up, 795 deaths were identified. Our findings showed that a 10% increase in coverage of green space was significantly associated with a reduction in all-cause mortality (HR 0.963, 95% CI 0.930 to 0.998), circulatory system-caused mortality (HR 0.887, 95% CI 0.817 to 0.963) and stroke-caused mortality (HR 0.661, 95% CI 0.524 to 0.835), independent of age, sex, marital status, years lived in Hong Kong, education level, socioeconomic ladder, smoking, alcohol intake, diet quality, self-rated health and housing type. The inverse associations between coverage of green space with all-cause mortality (HR 0.964, 95% CI 0.931 to 0.999) and circulatory system disease-caused mortality (HR 0.888, 95% CI 0.817 to 0.964) were attenuated when the models were further adjusted for physical activity and cognitive function. The effects of green space on all-cause and circulatory system-caused mortality tended to be stronger in females than in males. Conclusion Higher coverage of green space was associated with reduced risks of all-cause mortality, circulatory system-caused mortality and stroke-caused mortality in Chinese older people living in a highly urbanised city. PMID:28765127
A Science Strategy for Space Physics
NASA Technical Reports Server (NTRS)
1995-01-01
This report by the Committee on Solar and Space Physics and the Committee on Solar-Terrestrial Research recommends the major directions for scientific research in space physics for the coming decade. As a field of science, space physics has passed through the stage of simply looking to see what is out beyond Earth's atmosphere. It has become a 'hard' science, focusing on understanding the fundamental interactions between charged particles, electromagnetic fields, and gases in the natural laboratory consisting of the galaxy, the Sun, the heliosphere, and planetary magnetospheres, ionospheres, and upper atmospheres. The motivation for space physics research goes far beyond basic physics and intellectual curiosity, however, because long-term variations in the brightness of the Sun virtually affect the habitability of the Earth, while sudden rearrangements of magnetic fields above the solar surface can have profound effects on the delicate balance of the forces that shape our environment in space and on the human technology that is sensitive to that balance. The several subfields of space physics share the following objectives: to understand the fundamental laws or processes of nature as they apply to space plasmas and rarefied gases both on the microscale and in the larger complex systems that constitute the domain of space physics; to understand the links between changes in the Sun and the resulting effects at the Earth, with the eventual goal of predicting the significant effects on the terrestrial environment; and to continue the exploration and description of the plasmas and rarefied gases in the solar system.
Book Review: Physics of the Space Environment
NASA Technical Reports Server (NTRS)
Holman, Gordon D.
1998-01-01
Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.
REU Solar and Space Physics Summer School
NASA Astrophysics Data System (ADS)
Snow, M. A.; Wood, E. L.
2011-12-01
The Research Experience for Undergrads (REU) program in Solar and Space Physics at the University of Colorado begins with a week of lectures and labs on Solar and Space Physics. The students in our program come from a variety of majors (physics, engineering, meteorology, etc.) and from a wide range of schools (small liberal arts colleges up through large research universities). The majority of the students have never been exposed to solar and space physics before arriving in Boulder to begin their research projects. We have developed a week-long crash course in the field using the expertise of scientists in Boulder and the labs designed by the Center for Integrated Space Weather Modeling (CISM).
Green Space Visits among Adolescents: Frequency and Predictors in the PIAMA Birth Cohort Study.
Bloemsma, Lizan D; Gehring, Ulrike; Klompmaker, Jochem O; Hoek, Gerard; Janssen, Nicole A H; Smit, Henriëtte A; Vonk, Judith M; Brunekreef, Bert; Lebret, Erik; Wijga, Alet H
2018-04-30
Green space may influence health through several pathways, for example, increased physical activity, enhanced social cohesion, reduced stress, and improved air quality. For green space to increase physical activity and social cohesion, spending time in green spaces is likely to be important. We examined whether adolescents visit green spaces and for what purposes. Furthermore, we assessed the predictors of green space visits. In this cross-sectional study, data for 1911 participants of the Dutch PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort were analyzed. At age 17, adolescents reported how often they visited green spaces for physical activities, social activities, relaxation, and to experience nature and quietness. We assessed the predictors of green space visits altogether and for different purposes by log-binomial regression. Fifty-three percent of the adolescents visited green spaces at least once a week in summer, mostly for physical and social activities. Adolescents reporting that a green environment was (very) important to them visited green spaces most frequently {adjusted prevalence ratio (PR) [95% confidence interval (CI)] very vs. not important: 6.84 (5.10, 9.17) for physical activities and 4.76 (3.72, 6.09) for social activities}. Boys and adolescents with highly educated fathers visited green spaces more often for physical and social activities. Adolescents who own a dog visited green spaces more often to experience nature and quietness. Green space visits were not associated with the objectively measured quantity of residential green space, i.e., the average normalized difference vegetation index (NDVI) and percentages of urban, agricultural, and natural green space in circular buffers around the adolescents' homes. Subjective variables are stronger predictors of green space visits in adolescents than the objectively measured quantity of residential green space. https://doi.org/10.1289/EHP2429.
New tools: potential medical applications of data from new and old environmental satellites.
Huh, O K; Malone, J B
2001-04-27
The last 40 years, beginning with the first TIROS (television infrared observational satellite) launched on 1 April 1960, has seen an explosion of earth environmental satellite systems and their capabilities. They can provide measurements in globe encircling arrays or small select areas, with increasing resolutions, and new capabilities. Concurrently there are expanding numbers of existing and emerging infectious diseases, many distributed according to areal patterns of physical conditions at the earth's surface. For these reasons, the medical and remote sensing communities can beneficially collaborate with the objective of making needed progress in public health activities by exploiting the advances of the national and international space programs. Major improvements in applicability of remotely sensed data are becoming possible with increases in the four kinds of resolution: spatial, temporal, radiometric and spectral, scheduled over the next few years. Much collaborative research will be necessary before data from these systems are fully exploited by the medical community.
International Year of Astronomy Events in a Small, Midwestern Community
NASA Astrophysics Data System (ADS)
Brevik, C. E.
2009-12-01
Dickinson State University is a small, liberal arts college located in Southwestern North Dakota. With extremely dark skies and a safe, family-friendly nighttime environment, this rural location provides excellent opportunities for clear astronomical viewing. However, the university does not offer a physics or an astronomy major. Therefore, a concentrated effort was needed to develop a trained workforce of interested college students who could help manage public viewing sessions. Once oriented to the fundamentals of telescope viewing, this group of students offered numerous community-related activities to support the International Year of Astronomy. These efforts, designed to share the excitement of the universe with kids and adults alike, included a variety of events such as public presentations and star parties. The star parties were aided by the purchase of a 14” automated Cassegrain telescope funded by a grant from the North Dakota Space Grant Consortium.
Fundamentalist physics: why Dark Energy is bad for astronomy
NASA Astrophysics Data System (ADS)
White, Simon D. M.
2007-06-01
Astronomers carry out observations to explore the diverse processes and objects which populate our Universe. High-energy physicists carry out experiments to approach the Fundamental Theory underlying space, time and matter. Dark Energy is a unique link between them, reflecting deep aspects of the Fundamental Theory, yet apparently accessible only through astronomical observation. Large sections of the two communities have therefore converged in support of astronomical projects to constrain Dark Energy. In this essay I argue that this convergence can be damaging for astronomy. The two communities have different methodologies and different scientific cultures. By uncritically adopting the values of an alien system, astronomers risk undermining the foundations of their own current success and endangering the future vitality of their field. Dark Energy is undeniably an interesting problem to tackle through astronomical observation, but it is one of many and not necessarily the one where significant progress is most likely to follow a major investment of resources.
Mathur, Rohit; Xing, Jia; Gilliam, Robert; Sarwar, Golam; Hogrefe, Christian; Pleim, Jonathan; Pouliot, George; Roselle, Shawn; Spero, Tanya L.; Wong, David C.; Young, Jeffrey
2018-01-01
The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled processes were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution-climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency. PMID:29681922
Learning in third spaces: community art studio as storefront university classroom.
Timm-Bottos, Janis; Reilly, Rosemary C
2015-03-01
Third spaces are in-between places where teacher-student scripts intersect, creating the potential for authentic interaction and a shift in what counts as knowledge. This paper describes a unique community-university initiative: a third space storefront classroom for postsecondary students in professional education programs, which also functions as a community art studio for the surrounding neighborhood. This approach to professional education requires an innovative combination of theory, methods, and materials as enacted by the professionals involved and performed by the students. This storefront classroom utilizes collaborative and inclusive instructional practices that promote human and community development. It facilitates the use of innovative instructional strategies including art making and participatory dialogue to create a liminal learning space that reconfigures professional education. In researching the effectiveness of this storefront classroom, we share the voices of students who have participated in this third space as part of their coursework to underscore these principles and practices.
Community Agency Survey Formative Research Results From the TAAG Study
Saunders, Ruth P.; Moody, Jamie
2008-01-01
School and community agency collaboration can potentially increase physical activity opportunities for youth. Few studies have examined the role of community agencies in promoting physical activity, much less in collaboration with schools. This article describes formative research data collection from community agencies to inform the development of the Trial of Activity for Adolescent Girls (TAAG) intervention to provide out-of-school physical activity programs for girls. The community agency survey is designed to assess agency capacity to provide physical activity programs for girls, including resources, programs, and partnerships. Most agency respondents (n = 138) report operations during after-school hours, adequate facilities, and program options for girls, although most are sport oriented. Agency resources and programming vary considerably across the six TAAG field sites. Many agencies report partnerships, some involving schools, although not necessarily related to physical activity. Implications for the TAAG intervention are presented. PMID:16397156
Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.
Miller, J; Zeitlin, C
2016-06-01
Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1986-01-01
Activities of the Goddard Space Flight Center are described in the areas of planets and interplanetary media, comets, astronomy and high-energy physics, solar physics, atmospheres, terrestrial physics, ocean science, sensors and space technology, techniques, user space data systems, space communications and navigation, and system and software engineering. Flight projects and mission definition studies are presented, and institutional technology is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder
The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimesmore » to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.« less
2014-01-01
Background The built environment in which older people live plays an important role in promoting or inhibiting physical activity. Most work on this complex relationship between physical activity and the environment has excluded people with reduced physical function or ignored the difference between groups with different levels of physical function. This study aims to explore the role of neighbourhood green space in determining levels of participation in physical activity among elderly men with different levels of lower extremity physical function. Method Using data collected from the Caerphilly Prospective Study (CaPS) and green space data collected from high resolution Landmap true colour aerial photography, we first investigated the effect of the quantity of neighbourhood green space and the variation in neighbourhood vegetation on participation in physical activity for 1,010 men aged 66 and over in Caerphilly county borough, Wales, UK. Second, we explored whether neighbourhood green space affects groups with different levels of lower extremity physical function in different ways. Results Increasing percentage of green space within a 400 meters radius buffer around the home was significantly associated with more participation in physical activity after adjusting for lower extremity physical function, psychological distress, general health, car ownership, age group, marital status, social class, education level and other environmental factors (OR = 1.21, 95% CI 1.05, 1.41). A statistically significant interaction between the variation in neighbourhood vegetation and lower extremity physical function was observed (OR = 1.92, 95% CI 1.12, 3.28). Conclusion Elderly men living in neighbourhoods with more green space have higher levels of participation in regular physical activity. The association between variation in neighbourhood vegetation and regular physical activity varied according to lower extremity physical function. Subjects reporting poor lower extremity physical function living in neighbourhoods with more homogeneous vegetation (i.e. low variation) were more likely to participate in regular physical activity than those living in neighbourhoods with less homogeneous vegetation (i.e. high variation). Good lower extremity physical function reduced the adverse effect of high variation vegetation on participation in regular physical activity. This provides a basis for the future development of novel interventions that aim to increase levels of physical activity in later life, and has implications for planning policy to design, preserve, facilitate and encourage the use of green space near home. PMID:24646136
Gong, Yi; Gallacher, John; Palmer, Stephen; Fone, David
2014-03-19
The built environment in which older people live plays an important role in promoting or inhibiting physical activity. Most work on this complex relationship between physical activity and the environment has excluded people with reduced physical function or ignored the difference between groups with different levels of physical function. This study aims to explore the role of neighbourhood green space in determining levels of participation in physical activity among elderly men with different levels of lower extremity physical function. Using data collected from the Caerphilly Prospective Study (CaPS) and green space data collected from high resolution Landmap true colour aerial photography, we first investigated the effect of the quantity of neighbourhood green space and the variation in neighbourhood vegetation on participation in physical activity for 1,010 men aged 66 and over in Caerphilly county borough, Wales, UK. Second, we explored whether neighbourhood green space affects groups with different levels of lower extremity physical function in different ways. Increasing percentage of green space within a 400 meters radius buffer around the home was significantly associated with more participation in physical activity after adjusting for lower extremity physical function, psychological distress, general health, car ownership, age group, marital status, social class, education level and other environmental factors (OR = 1.21, 95% CI 1.05, 1.41). A statistically significant interaction between the variation in neighbourhood vegetation and lower extremity physical function was observed (OR = 1.92, 95% CI 1.12, 3.28). Elderly men living in neighbourhoods with more green space have higher levels of participation in regular physical activity. The association between variation in neighbourhood vegetation and regular physical activity varied according to lower extremity physical function. Subjects reporting poor lower extremity physical function living in neighbourhoods with more homogeneous vegetation (i.e. low variation) were more likely to participate in regular physical activity than those living in neighbourhoods with less homogeneous vegetation (i.e. high variation). Good lower extremity physical function reduced the adverse effect of high variation vegetation on participation in regular physical activity. This provides a basis for the future development of novel interventions that aim to increase levels of physical activity in later life, and has implications for planning policy to design, preserve, facilitate and encourage the use of green space near home.
NASA Astrophysics Data System (ADS)
2012-03-01
Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom
2015-09-30
DoD Space S &T Community of Interest Presentation to National Defense University 30 September 2015 Dr. John Stubstad Space S &T COI Chair...STRATEGY 2015 Photo: Coronal mass ejection as recorded by NASA, August 31, 2014 DoD Space S &T Strategy • Biennial report to Congress – updated...advantages enabled by space systems at the strategic, operational, and tactical levels • Looks across the entire DoD Space S &T Enterprise
Gendered Communities of Practice and the Construction of Masculinities in Turkish Physical Education
ERIC Educational Resources Information Center
Atencio, Matthew; Koca, Canan
2011-01-01
This paper analyses the construction of masculinities in Turkish physical education through Carrie Paechter's conceptualisation of gendered communities of practice. According to Paechter, educational communities of practice operate as sites of gendered activity. Membership within these communities contributes to the construction of a gendered…