NASA Astrophysics Data System (ADS)
McGinty, A. B.
1982-04-01
Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.
Space physics strategy: Implementation study. Volume 2: Program plan
NASA Technical Reports Server (NTRS)
1991-01-01
In June, 1989, the Space Science and Applications Advisory Committee (SSAAC) authorized its Space Physics Subcommittee (SPS) to prepare a plan specifying the future missions, launch sequence, and encompassing themes of the Space Physics Division. The plan, now complete, is the product of a year-long study comprising two week-long workshops - in January and June 1990 - assisted by pre-workshop, inter-workshop, and post-workshop preparation and assessment activities. The workshops engaged about seventy participants, drawn equally from the Division's four science disciplines: cosmic and heliospheric physics, solar physics, magnetosphere physics, and ionosphere-thermosphere-mesospheric physics. An earlier report records the outcome of the first workshop; this is the report of the final workshop.
NASA Astrophysics Data System (ADS)
The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.
Website for the Space Science Division
NASA Technical Reports Server (NTRS)
Schilling, James; DeVincenzi, Donald (Technical Monitor)
2002-01-01
The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.
Preface to the special issue on ;Optical Communications Exploiting the Space Domain;
NASA Astrophysics Data System (ADS)
Wang, Jian; Yu, Siyuan; Li, Guifang
2018-02-01
The demand for high capacity optical communications will continue to be driven by the exponential growth of global internet traffic. Optical communications are about the exploitation of different physical dimensions of light waves, including complex amplitude, frequency (or wavelength), time, polarization, etc. Conventional techniques such as wavelength-division multiplexing (WDM), time-division multiplexing (TDM) and polarization-division multiplexing (PDM) have almost reached their scalability limits. Space domain is the only known physical dimension left and space-division multiplexing (SDM) seems the only option to further scale the transmission capacity and spectral efficiency of optical communications. In recent years, few-mode fiber (FMF), multi-mode fiber (MMF), multi-core fiber (MCF) and few-mode multi-core fiber (FM-MCF) have been widely explored as promising candidates for fiber-based SDM. The challenges for SDM include efficient (de)multiplexer, amplifiers, and multiple-input multiple-output (MIMO) digital signal processing (DSP) techniques. Photonic integration will also be a key technology to SDM. Meanwhile, free-space and underwater optical communications have also exploited the space domain to increase the transmission capacity and spectral efficiency. The challenges include long-distance transmission limited by propagation loss, divergence, scattering and turbulence. Very recently, helically phased light beams carrying orbital angular momentum (OAM) have also seen potential applications both in free-space, underwater and fiber-based optical communications. Actually, different mode bases such as linearly polarized (LP) modes and OAM modes can be employed for SDM. Additionally, SDM could be used in chip-scale photonic interconnects and data center optical interconnects. Quantum processing exploiting the space domain is of great interest. The information capacity limit and physical layer security in SDM optical communications systems are important issues to be addressed.
2016-06-05
have attended and made presen- tations at the annual APS Division of Plasma Physics Meeting, the bi-annual High Energy Laboratory Astrophysics meeting...the AFOSR Space Science Pro- gram Review, the SHINE solar physics meeting, the International Astrophysics Conference, and the workshop “Complex plasma...tor k and Resolving Space-time Ambiguity. GR-Space Physics . submitted. Bellan, P. M., Zhai, X., Chai, K. B., & Ha, B. N. 2015. Complex astrophysical
Establishment of the New Ecuadorian Solar Physics Phenomena Division
NASA Astrophysics Data System (ADS)
Lopez, E. D.
2014-02-01
Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. In this contribution, the above initiative is presented by inviting leaders of other scientific projects to deploy its instruments and to work with us providing the necessary support to the creation of this new strategic research center
NASA Astrophysics Data System (ADS)
Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.
2014-12-01
Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.
Space physics educational outreach
NASA Technical Reports Server (NTRS)
Copeland, Richard A.
1995-01-01
The goal of this Space Physics Educational Outreach project was to develop a laboratory experiment and classroom lecture on Earth's aurora for use in lower division college physics courses, with the particular aim of implementing the experiment and lecture at Saint Mary's College of California. The strategy is to teach physics in the context of an interesting natural phenomenon by investigating the physical principles that are important in Earth's aurora, including motion of charged particles in electric and magnetic fields, particle collisions and chemical reactions, and atomic and molecular spectroscopy. As a by-product, the undergraduate students would develop an appreciation for naturally occurring space physics phenomena.
NASA Astrophysics Data System (ADS)
2016-07-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Black holes: theory and observations," was held in the conference hall of the Lebedev Physical Institute, RAS, on 23 December 2015. The papers collected in this issue were written based on talks given at the session: (1) I D Novikov (Lebedev Physical Institute, Russian Academy of Sciences, Astro Space Center, Moscow; The Niels Bohr International Academy, The Niels Bohr Institute, Copenhagen; National Research Center 'Kurchatov Institute', Moscow) "Black holes, wormholes, and time machines"; (2) A M Cherepashchuk (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "Observing stellar-mass and supermassive black holes"; (3) N S Kardashev (Lebedev Physical Institute, Russian Academy of Sciences, Astro Space Center, Moscow) "Millimetron space project: a tool for researching black holes and wormholes." Papers written on the basis of oral presentations 1, 2 are published below. • Observing stellar mass and supermassive black holes, A M Cherepashchuk Physics-Uspekhi, 2016, Volume 59, Number 7, Pages 702-712 • Black holes, wormholes, and time machines, I D Novikov Physics-Uspekhi, 2016, Volume 59, Number 7, Pages 713-715
Physical Education, Junior Division: Grades 4, 5, 6. Curriculum J.5.
ERIC Educational Resources Information Center
Ontario Dept. of Education, Toronto.
This manual was prepared to give teachers assistance in carrying out programs in physical education in grades 4, 5, and 6. Because many schools have space and equipment deficiencies, some emphasis has been placed on improvisation and the fullest possible use of available space and equipment. The manual is divided into two sections: organization…
Overview of NASA Heliophysics and the Science of Space Weather
NASA Astrophysics Data System (ADS)
Talaat, E. R.
2017-12-01
In this paper, an overview is presented on the various activities within NASA that address space weather-related observations, model development, and research to operations. Specific to space weather, NASA formulates and implements, through the Heliophysics division, a national research program for understanding the Sun and its interactions with the Earth and the Solar System and how these phenomena impact life and society. NASA researches and prototypes new mission and instrument capabilities in this area, providing new physics-based algorithms to advance the state of solar, space physics, and space weather modeling.
The Astrophysics Science Division Annual Report 2008
NASA Technical Reports Server (NTRS)
Oegerle, William; Reddy, Francis; Tyler, Pat
2009-01-01
The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.
NASA Astrophysics Data System (ADS)
2010-12-01
A scientific session of the Physical Sciences Division, Russian Academy of Sciences (RAS), was held on 26 May 2010 at the conference hall of the Lebedev Physical Institute, RAS. The session was devoted to the 85th birthday of S I Syrovatskii. The program announced on the web page of the RAS Physical Sciences Division (www.gpad.ac.ru) contained the following reports: (1) Zelenyi L M (Space Research Institute, RAS, Moscow) "Current sheets and reconnection in the geomagnetic tail"; (2) Frank A G (Prokhorov General Physics Institute, RAS, Moscow) "Dynamics of current sheets as the cause of flare events in magnetized plasmas"; (3) Kuznetsov V D (Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, RAS, Troitsk, Moscow region) "Space research on the Sun"; (4) Somov B V (Shternberg Astronomical Institute, Lomonosov Moscow State University, Moscow) "Strong shock waves and extreme plasma states"; (5) Zybin K P (Lebedev Physical Institute, RAS, Moscow) "Structure functions for developed turbulence"; (6) Ptuskin V S (Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, RAS, Troitsk, Moscow region) "The origin of cosmic rays." Papers based on reports 1-4 and 6 are published in what follows. • Metastability of current sheets, L M Zelenyi, A V Artemyev, Kh V Malova, A A Petrukovich, R Nakamura Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 933-941 • Dynamics of current sheets underlying flare-type events in magnetized plasmas, A G Frank Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 941-947 • Space research of the Sun, V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 947-954 • Magnetic reconnection in solar flares, B V Somov Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 954-958 • The origin of cosmic rays, V S Ptuskin Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 958-961
Parrish, Clyde F
2003-12-01
A series of workshops were sponsored by the Physical Science Division of NASA's Office of Biological and Physical Research to address operational gravity-compliant in-situ resource utilization and life support techologies. Workshop participants explored a Mars simulation study on Devon Island, Canada; the processing of carbon dioxide in regenerative life support systems; space tourism; rocket technology; plant growth research for closed ecological systems; and propellant extraction of planetary regoliths.
Space Physics Cosmic & Heliospheric Data Evaluation Panel Report
NASA Technical Reports Server (NTRS)
McGuiere, R. E.; Cooper, J.; Gazis, P.; Kurth, W.; Lazarus, A.; McDonald, F.; McNutt, R.; Pyle, R.; Tsurutani, B. T.
1995-01-01
This Cosmic and Heliospheric (C&H) Data Evaluation Panel was charged with the task of identifying and prioritizing important C&H data sets. It was requested to provide C&H community input to the Space Physics Division for a program of revitalizing data holdings. Details and recommendations are provided. Highest C&H priority is assigned to Voyager, Pioneer, Helios, IMP-8, and ISEE-3 data.
NASA Astrophysics Data System (ADS)
2013-08-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), titled "Near-Earth space hazards and their detection", was held on 27 March 2013 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Emel'yanenko V V, Shustov B M (Institute of Astronomy, RAS, Moscow) "The Chelyabinsk event and the asteroid-comet hazard"; (2) Chugai N N (Institute of Astronomy, RAS, Moscow) "A physical model of the Chelyabinsk event"; (3) Lipunov V M (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "MASTER global network of optical monitoring"; (4) Beskin G M (Special Astrophysical Observatory, RAS, Arkhyz, Karachai-Cirkassian Republic) "Wide-field optical monitoring systems with subsecond time resolution for the detection and study of cosmic threats". The expanded papers written on the base of oral reports 1 and 4 are given below. • The Chelyabinsk event and the asteroid-comet hazard, V V Emel'yanenko, B M Shustov Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 833-836 • Wide-field subsecond temporal resolution optical monitoring systems for the detection and study of cosmic hazards, G M Beskin, S V Karpov, V L Plokhotnichenko, S F Bondar, A V Perkov, E A Ivanov, E V Katkova, V V Sasyuk, A Shearer Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 836-842
2014-10-09
Panelists, from left, Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California, are seen during a media briefing where they outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Joel Kowsky)
2014-10-09
Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, left, is seen with fellow panelists Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California during a media briefing where they outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. Photo Credit: (NASA/Joel Kowsky)
Higher Education: Teaching about the Colonization of Space.
ERIC Educational Resources Information Center
Huebner, Jay S.
1980-01-01
Describes an upper-division science course offered at the University of North Florida, Colonization of Space. The course presents several current issues in the areas of physical science and includes topics in science and technology likely to influence the future lives of present college students. (CS)
2014-10-09
Dwayne Brown, NASA public affairs officer, left, moderates a media briefing where panelist, seated from left, Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California, outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Joel Kowsky)
2011-10-26
NASA, space science industry and government officials are seen in front of a full-size model of NASA's James Webb Space Telescope at the Maryland Science Center in Baltimore, Wednesday, Oct. 26, 2011. From left, back row are: Dr. John Grunsfeld, former astronaut and Deputy Director, Space Telescope Science Institute (STScI), Baltimore; Jeffrey Grant, VP and General Manager of the Space Systems Division, Northrop Grumman; Van Reiner, President and CEO of the Maryland Science Center, Baltimore and Adam Reiss, recipient of the 2011 Nobel Prize in Physics and professor of astronomy and physics at Johns Hopkins University. In the front row are NASA Deputy Administrator Lori Garver, left, and U.S. Senator Barbara Mikulski (D-Md.). Photo Credit: (NASA/Carla Cioffi)
Space Science at Los Alamos National Laboratory
NASA Astrophysics Data System (ADS)
Smith, Karl
2017-09-01
The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.
Microgravity Fluids for Biology, Workshop
NASA Technical Reports Server (NTRS)
Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.
2013-01-01
Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.
NASA Technical Reports Server (NTRS)
1984-01-01
Standardized methods are established for screening of JAN B microcircuits and JANTXV semiconductor components for space mission or other critical applications when JAN S devices are not available. General specifications are provided which outline the DPA (destructive physical analysis), environmental, electrical, and data requirements for screening of various component technologies. This standard was developed for Air Force Space Division, and is available for use by other DOD agencies, NASA, and space systems contractors for establishing common screening methods for electronic components.
SAMS-II Requirements and Operations
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.
1998-01-01
The Space Acceleration Measurements System (SAMS) II is the primary instrument for the measurement, storage, and communication of the microgravity environment aboard the International Space Station (ISS). SAMS-II is being developed by the NASA Lewis Research Center Microgravity Science Division to primarily support the Office of Life and Microgravity Science and Applications (OLMSA) Microgravity Science and Applications Division (MSAD) payloads aboard the ISS. The SAMS-II is currently in the test and verification phase at NASA LeRC, prior to its first hardware delivery scheduled for July 1998. This paper will provide an overview of the SAMS-II instrument, including the system requirements and topology, physical and electrical characteristics, and the Concept of Operations for SAMS-II aboard the ISS.
Wavefront division digital holography
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan
2018-05-01
Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.
NASA Astrophysics Data System (ADS)
Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars
2014-05-01
This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.
Goddard's Astrophysics Science Division Annual Report 2011
NASA Technical Reports Server (NTRS)
Centrella, Joan; Reddy, Francis; Tyler, Pat
2012-01-01
The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.
The Astrophysics Science Division Annual Report 2009
NASA Technical Reports Server (NTRS)
Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)
2010-01-01
The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.
Goddard's Astrophysics Science Division Annual Report 2013
NASA Technical Reports Server (NTRS)
Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)
2014-01-01
The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.
2011-10-26
U.S. Senator Barbara Mikulski (D-Md.), third from right, cuts the yellow ribbon presenting the James Webb Space Telescope permanent exhibit at the Maryland Science Center on Wednesday, Oct. 26, 2011 in Baltimore. Mikulski is joined by NASA Deputy Administrator Lori Garver, far left; Adam Reiss, recipient of the 2011 Nobel Prize in Physics and professor of astronomy and physics at Johns Hopkins University; Jeffrey Grant, VP and General Manager of the Space Systems Division, Northrop Grumman; Van Reiner, President and CEO of the Maryland Science Center, Baltimore and Dr. John Grunsfeld, former astronaut and Deputy Director, Space Telescope Science Institute (STScI), Baltimore. The Webb telescope will provide images of the first galaxies ever formed and explore planets around distant stars. Photo Credit: (NASA/Carla Cioffi)
Disposal of Industrial and Domestic Wastes: Land and Sea Alternatives.
1984-01-01
square kilometers. The rough classification of physical, chemical , and biological processes into near field versus far field and short term versus...contaminants by sedimentation is slowed. Chemical Precipitation and Dissolution During the few minutes of the initial dilution of a buoyant plume ...model. Time and space scales of physical, chemical , and biological processes often provide natural divisions in such modeling. Near -field and far-field
NASA Human Research Program Space Radiation Program Element
NASA Technical Reports Server (NTRS)
Chappell, Lori; Huff, Janice; Patel, Janapriya; Wang, Minli; Hu, Shaowwen; Kidane, Yared; Myung-Hee, Kim; Li, Yongfeng; Nounu, Hatem; Plante, Ianik;
2013-01-01
The goal of the NASA Human Research Program's Space Radiation Program Element is to ensure that crews can safely live and work in the space radiation environment. Current work is focused on developing the knowledge base and tools required for accurate assessment of health risks resulting from space radiation exposure including cancer and circulatory and central nervous system diseases, as well as acute risks from solar particle events. Division of Space Life Sciences (DSLS) Space Radiation Team scientists work at multiple levels to advance this goal, with major projects in biological risk research; epidemiology; and physical, biophysical, and biological modeling.
Cell Division and Evolution of Biological Tissues
NASA Astrophysics Data System (ADS)
Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun
A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter
Engineering physics and mathematics division
NASA Astrophysics Data System (ADS)
Sincovec, R. F.
1995-07-01
This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period 1 Jan. 1993 - 31 Dec. 1994. This report is the final archival record of the EPM Division. On 1 Oct. 1994, ORELA was transferred to Physics Division and on 1 Jan. 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.
Physics division. Progress report, January 1, 1995--December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, M.; Bacon, D.S.; Aine, C.J.
1997-10-01
This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the fivemore » groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.« less
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Workshop on Research for Space Exploration: Physical Sciences and Process Technology
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1998-01-01
This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.
A Revised STONEMAN for Distributed Ada (Trademark) Support Environments.
1984-01-01
MA 02154 San Diego, CA 92152 Chuck Waltrip Philip Myers Johns Hopkins University Dave Pasterchik Applied Physics Lab NRVELEX Johns Hopkins Road FLEX...Georgia Tech Atlanta, GA 30332 Reed Kotler Lockheed Missiles & Space Dick Drake 1111 Lockheed Way IBM Sunnyvale, CA 94086 Federal Systems Division 102/075
OSSA Space Station Freedom science utilization plans
NASA Astrophysics Data System (ADS)
Cressy, Philip J.
Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.
OSSA Space Station Freedom science utilization plans
NASA Technical Reports Server (NTRS)
Cressy, Philip J.
1992-01-01
Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.
2010-02-01
Fluxes at Aragats-Space Environmental Center (ASEC) Ashot A. Chilingarian Alikhanyan Physics Institute Cosmic Ray Division 2 Alikhanian...GMS occurred during 23rd Solar activity cycle demonstrate that Cosmic Ray increase during GMS occurs coherently (or ~ 1 hour in advance) with abrupt...data on Solar bursts and secondary cosmic ray data. The magnetometer operates stable, noise level is low. 15. SUBJECT TERMS
NASA Technical Reports Server (NTRS)
1979-01-01
Significant acomplishments, current focus of work, plans for FY-80, and recommendations for new research are outlined for 36 research projects proposed for technical monitoring by the Atmospheric Sciences Division at Marshall Space Flight Center. Topics of the investigations, which were reviewed at a two-day meeting, relate to cloud physics, atmospheric electricity, and mesoscale/storm dynamics.
2017-02-16
Drs. Rob Ferl and Anna-Lisa Paul in a cold room in the Kennedy Space Center Processing Facility with the petri plates they prepped at the University of Florida for APEX-04. Paul is the principal investigator (PI) and Ferl is co-PI. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
International interface design for Space Station Freedom - Challenges and solutions
NASA Technical Reports Server (NTRS)
Mayo, Richard E.; Bolton, Gordon R.; Laurini, Daniele
1988-01-01
The definition of interfaces for the International Space Station is discussed, with a focus on negotiations between NASA and ESA. The program organization and division of responsibilities for the Space Station are outlined; the basic features of physical and functional interfaces are described; and particular attention is given to the interface management and documentation procedures, architectural control elements, interface implementation and verification, and examples of Columbus interface solutions (including mechanical, ECLSS, thermal-control, electrical, data-management, standardized user, and software interfaces). Diagrams, drawings, graphs, and tables listing interface types are provided.
International Space Station -- Fluid Physics Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The optical bench for the Fluid Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
International Space Station -- Fluid Physics Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The optical bench for the Fluids Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Physical layer security in fiber-optic MIMO-SDM systems: An overview
NASA Astrophysics Data System (ADS)
Guan, Kyle; Cho, Junho; Winzer, Peter J.
2018-02-01
Fiber-optic transmission systems provide large capacities over enormous distances but are vulnerable to simple eavesdropping attacks at the physical layer. We classify key-based and keyless encryption and physical layer security techniques and discuss them in the context of optical multiple-input-multiple-output space-division multiplexed (MIMO-SDM) fiber-optic communication systems. We show that MIMO-SDM not only increases system capacity, but also ensures the confidentiality of information transmission. Based on recent numerical and experimental results, we review how the unique channel characteristics of MIMO-SDM can be exploited to provide various levels of physical layer security.
Origin of the Wang-Sheeley-Arge solar wind model
NASA Astrophysics Data System (ADS)
Sheeley, Neil R., Jr.
2017-03-01
A correlation between solar wind speed at Earth and the amount of magnetic field line expansion in the corona was verified in 1989 using 22 years of solar and interplanetary observations. We trace the evolution of this relationship from its birth 15 years earlier in the Skylab era to its current use as a space weather forecasting technique. This paper is the transcript of an invited talk at the joint session of the Historical Astronomy Division and the Solar Physics Division of the American Astronomical Society during its 224th meeting in Boston, MA, on 3 June 2014.
The Science and Technology in Future Remote Sensing Space Missions of Alenia Aerospazio
NASA Astrophysics Data System (ADS)
Angino, G.; Borgarelli, L.
1999-12-01
The Space Division of Alenia Aerospazio, a Finmeccanica company, is the major Italian space industry. It has, in seven plants, design facilities and laboratories for advanced technological research that are amongst the most modern and well equipped in Europe. With the co-ordinated companies Alenia Aerospazio is one of Europe's largest space industries. In the field of Remote Sensing, i.e. the acquisition of information about objects without being in physical contact with them, the Space Division has proven their capability to manage all of the techniques from space (ranging from active instruments as Synthetic Aperture Radar, Radar Altimeter, Scatterometer, etc… to passive ones as radiometer) in different programs with the main international industries and agencies. Space techniques both for Monitoring/Observation (i.e. operational applications) and Exploration (i.e. research for science demonstration) according to the most recent indication from international committees constitute guidelines. The first is devoted to market for giving innovation, added-value to services and, globally, enhancement of quality of life. The second has the basic purpose of pursuing the scientific knowledge. Advanced technology allows to design for multi-functions instruments (easy in configuration, adaptable to impredictable environment), to synthesise, apparently, opposite concepts (see for instance different requirement from military and civil applications). Space Division of Alenia Aerospazio has knowledge and capability to face the challenge of new millennium in space missions sector. In this paper, it will be described main remote sensing missions in which Space Division is involved both in terms of science and technology definition. Two main segments can be defined: Earth and interplanetary missions. To the first belong: ENVISAT (Earth surface), LIGHTSAR (Earth imaging), CRYOSAT (Earth ice) and to the second: CASSINI (study of Titan and icy satellites), MARS EXPRESS (detection and localisation of water under planet surface) and EUROPA (water detection and localisation). Particular mention is for the leading program of the Space Division: COSMO/SkyMed mission. A complete constellation of remote sensing satellites (with microwave and optical payloads) is going to be designed for science, civil and military applications. Driving objective of the COSMO/ SkyMed mission is the observation, remote sensing and data exploitation for risks management, coastal zone monitoring and sea pollution control. However a broad spectrum of other important applications, in the field of the resource management, land use and law enforcement, etc., may be satisfied at the same time with the same mission design.
2005-06-01
AIR FORCE RESEARCH LABORATORY SPACE VEHICLES INTEGRATED EXPERMENTS DIVISION OFFICE SPACE AT KIRTLAND AIR FORCE ... Kirtland Air Force Base (KAFB). The office building would house the Air Force Research Laboratory Space Vehicles Integrated Experiments Division...ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate,3550 Aberdeen Ave. SE, Kirtland
The Laboratory for Terrestrial Physics
NASA Technical Reports Server (NTRS)
2003-01-01
The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.
The Mattis Way of War: An Examination of Operational Art in Task Force 58 and 1st Marine Division
2014-12-12
Research Questions Did his innovations work? Are they worthy of repeating? Did his style evolve as he increased in responsibility? What role did current...staff was born both out of necessity, lack of physical space, and personal style . Efficiencies gained from a small staff generate speed in orders...
NASA Astrophysics Data System (ADS)
Moldwin, M.; Morrow, C. A.; Moldwin, L. A.; Torrence, J.
2012-12-01
To assess the state-of-health of the field of Solar and Space Physics an analysis of the number of Ph.D.s produced and number of Job Postings each year was done for the decade 2001-2010. To determine the number of Ph.D's produced in the field, the University of Michigan Ph.D. Dissertation Archive (Proquest) was queried for Solar and Space Physics dissertations produced in North America. The field generated about 30 Ph.D. per year from 2001 to 2006, but then saw the number increase to 50 to 70 per year for the rest of the decade. Only 14 institutions account for the majority of Solar and Space Physics PhDs. To estimate the number of jobs available each year in the field, a compilation of the job advertisements listed in the American Astronomical Society's Solar Physics Division (SPD) and the American Geophysical Union's Space Physics and Aeronomy (SPA) electronic newsletters was done. The positions were sorted into four types (Faculty, Post-doctoral Researcher, and Scientist/Researcher or Staff), institution type (academic, government lab, or industry) and if the position was located inside or outside the United States. Overall worldwide, 943 Solar and Space Physics positions were advertised over the decade. Of this total, 52% were for positions outside the US. Within Solar Physics, 44% of the positions were in the US, while in Space Physics 57% of the positions were for US institutions. The annual average for positions in the US were 26.9 for Solar Physics and 31.5 for Space Physics though there is much variability year-to-year particularly in Solar Physics positions outside the US. A disconcerting trend is a decline in job advertisements in the last two years for Solar Physics positions and between 2009 and 2010 for Space Physics positions. For both communities within the US in 2010, the total job ads reached their lowest levels in the decade (14), approximately half the decadal average number of job advertisements.
International Space Station -- Fluid Physics Rack
NASA Technical Reports Server (NTRS)
2000-01-01
The optical bench for the Fluids Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees to access the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
Solar and Space Physics: A Science for a Technological Society
NASA Technical Reports Server (NTRS)
2013-01-01
From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.
GSFC Heliophysics Science Division FY2010 Annual Report
NASA Technical Reports Server (NTRS)
Gilbert, Holly R.; Strong, Keith T.; Saba, Julia L. R.; Clark, Judith B.; Kilgore, Robert W.; Strong, Yvonne M.
2010-01-01
This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2010, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 323 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include: Leading science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Leading the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Providing access to measurements from the Heliophysics Great Observatory through our Science Information Systems; and Communicating science results to the public and inspiring the next generation of scientists and explorers.
GSFC Heliophysics Science Division 2008 Science Highlights
NASA Technical Reports Server (NTRS)
Gilbert, Holly R.; Strong, Keith T.; Saba, Julia L. R.; Firestone, Elaine R.
2009-01-01
This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2008, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 261 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include Lead science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Lead the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Provide access to measurements from the Heliophysics Great Observatory through our Science Information Systems, and Communicate science results to the public and inspire the next generation of scientists and explorers.
GSFC Heliophysics Science Division 2009 Science Highlights
NASA Technical Reports Server (NTRS)
Strong, Keith T.; Saba, Julia L. R.; Strong, Yvonne M.
2009-01-01
This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2009, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 299 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include: Leading science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Leading the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Providing access to measurements from the Heliophysics Great Observatory through our Science Information Systems; and Communicating science results to the public and inspiring the next generation of scientists and explorers.
Goddard Visiting Scientist Program
NASA Technical Reports Server (NTRS)
2000-01-01
Under this Indefinite Delivery Indefinite Quantity (IDIQ) contract, USRA was expected to provide short term (from I day up to I year) personnel as required to provide a Visiting Scientists Program to support the Earth Sciences Directorate (Code 900) at the Goddard Space Flight Center. The Contractor was to have a pool, or have access to a pool, of scientific talent, both domestic and international, at all levels (graduate student to senior scientist), that would support the technical requirements of the following laboratories and divisions within Code 900: 1) Global Change Data Center (902); 2) Laboratory for Atmospheres (Code 910); 3) Laboratory for Terrestrial Physics (Code 920); 4) Space Data and Computing Division (Code 930); 5) Laboratory for Hydrospheric Processes (Code 970). The research activities described below for each organization within Code 900 were intended to comprise the general scope of effort covered under the Visiting Scientist Program.
NASA Musculoskeletal Space Medicine and Reconditioning Program
NASA Technical Reports Server (NTRS)
Kerstman, Eric; Scheuring, Richard
2011-01-01
The Astronaut Strength, Conditioning, and Rehabilitation (ASCR) group is comprised of certified strength and conditioning coaches and licensed and certified athletic trainers. The ASCR group works within NASA s Space Medicine Division providing direction and supervision to the astronaut corp with regards to physical readiness throughout all phases of space flight. The ASCR group is overseen by flight surgeons with specialized training in sports medicine or physical medicine and rehabilitation. The goals of the ASCR group include 1) designing and administering strength and conditioning programs that maximize the potential for physical performance while minimizing the rate of injury, 2) providing appropriate injury management and rehabilitation services, 3) collaborating with medical, research, engineering, and mission operations groups to develop and implement safe and effective in-flight exercise countermeasures, and 4) providing a structured, individualized post-flight reconditioning program for long duration crew members. This Panel will present the current approach to the management of musculoskeletal injuries commonly seen within the astronaut corp and will present an overview of the pre-flight physical training, in-flight exercise countermeasures, and post-flight reconditioning program for ISS astronauts.
NASA Astrophysics Data System (ADS)
2010-08-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 70th anniversary of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Troitsk, Moscow region) was held in the conference hall of IZMIRAN on 25 November 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Gurevich A V (Lebedev Physical Institute RAS, Moscow) "The role of cosmic rays and runaway electron breakdown in atmospheric lightning discharges"; (2) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Advances in quantum magnetometry for geomagnetic research"; (3) Dorman L I (IZMIRAN, Troitsk, Moscow region, CR & SWC, Israel) "Cosmic ray variations and space weather"; (4) Mareev E A (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Global electric circuit research: achievements and prospects"; (5) Tereshchenko E D, Safargaleev V V (Polar Geophysical Institute, Kola Research Center, RAS, Murmansk) "Geophysical research in Spitsbergen Archipelago: status and prospects"; (6) Gulyaev Yu V, Armand N A, Efimov A I, Matyugov S S, Pavelyev A G, Savich N A, Samoznaev L N, Smirnov V V, Yakovlev O I (Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region) "Results of solar wind and planetary ionosphere research using radiophysical methods"; (7) Kunitsyn V E (Lomonosov Moscow State University, Moscow) "Satellite radio probing and the radio tomography of the ionosphere"; (8) Kuznetsov V D (IZMIRAN, Troitsk, Moscow region) "Space Research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences." Papers based on reports 2-8 are published below. The main contents of report 1 are reproduced in A V Gurevich's review, "Nonlinear effects in the ionosphere" [Phys. Usp. 50 1091 (2007)] and in the paper by A V Gurevich et al., "Nonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm discharges" [Phys. Usp. 52 735 (2009)]. • Advances in quantum magnetometry for geomagnetic research , E B Aleksandrov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 487-496 • Cosmic ray variations and space weather, L I Dorman Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 496-503 • Global electric circuit research: achievements and prospects, E A Mareev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 504-511 • Geophysical research in Spitsbergen Archipelago: status and prospects, V V Safargaleev, E D Tereshchenko Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 511-517 • Results of solar wind and planetary ionosphere research using radiophysical methods, N A Armand, Yu V Gulyaev, A L Gavrik, A I Efimov, S S Matyugov, A G Pavelyev, N A Savich, L N Samoznaev, V M Smirnov, O I Yakovlev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 517-523 • Satellite radio probing and radio tomography of the ionosphere, V E Kunitsyn, E D Tereshchenko, E S Andreeva, I A Nesterov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 523-528 • Space research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences , V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 528-534
Color Space and Its Divisions: Color Order from Antiquity to the Present
NASA Astrophysics Data System (ADS)
Kuehni, Rolf G.
2003-03-01
It has been postulated that humans can differentiate between millions of gradations in color. Not surprisingly, no completely adequate, detailed catalog of colors has yet been devised, however the quest to understand, record, and depict color is as old as the quest to understand the fundamentals of the physical world and the nature of human consciousness. Rolf Kuehni's Color Space and Its Divisions: Color Order from Antiquity to the Present represents an ambitious and unprecedented history of man's inquiry into color order, focusing on the practical applications of the most contemporary developments in the field. Kuehni devotes much of his study to geometric, three-dimensional arrangements of color experiences, a type of system developed only in the mid-nineteenth century. Color spaces are of particular interest for color quality-control purposes in the manufacturing and graphics industries. The author analyzes three major color order systems in detail: Munsell, OSA-UCS, and NCS. He presents historical and current information on color space developments in color vision, psychology, psychophysics, and color technology. Chapter topics include: A historical account of color order systems Fundamentals of psychophysics and the relationship between stimuli and experience Results of perceptual scaling of colors according to attributes History of the development of mathematical color space and difference formulas Analysis of the agreements and discrepancies in psychophysical data describing color differences An experimental plan for the reliable, replicated perceptual data necessary to make progress in the field Experts in academia and industry, neuroscientists, designers, art historians, and anyone interested in the nature of color will find Color Space and Its Divisions to be the authoritative reference in its field.
2002 Microgravity Materials Science Conference
NASA Technical Reports Server (NTRS)
Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)
2003-01-01
The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.
KSC-20170216-MH-LCH01-0001-CRS_10_APH_Apex_4_and_Veggie_processing-3145683(H.265)
2017-02-16
APEX-04, or Advanced Plant Experiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX CRS-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Shawn Stephens, Engineering Services Contract, and Dr. Anna Lisa Paul confirm proper orientation of the plates for launch prior to turnover to cold stowage. Dr. Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The petri plates are wrapped in black cloth and kept cold (+4 degrees Celsius) to prevent them from germinating prior to the experiment start on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Aeronautics and Space Report of the President: Fiscal Year 2009 Activities
NASA Technical Reports Server (NTRS)
2009-01-01
In fiscal year 2009 (FY 09), the Exploration Systems Mission Directorate's (ESMD) Advanced Capabilities Division (ACD) provided critical research and technology products that reduced operational and technical risks for the flight systems being developed by the Constellation Program.1 These products addressed high-priority technology requirements for lunar exploration; risk mitigation related to astronaut health and performance; basic research in life and physical sciences using the International Space Station (ISS), free-flying spacecraft, and ground-based laboratories; and lunar robotic missions to gather data relevant to future human lunar missions.
International Space Station -- Fluid Physics Ra;ck
NASA Technical Reports Server (NTRS)
2000-01-01
The optical bench for the Fluids Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing and with the optical bench rotated 90 degrees for access to the rear elements. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)
NASA Microgravity Science and Applications Program
NASA Technical Reports Server (NTRS)
1992-01-01
Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.
77 FR 68125 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
..., development and evaluation; and (16) provides health physics expertise for all division public health..., development and evaluation; and (16) provides health physics expertise for all division public health..., development and evaluation; and (16) provides health physics expertise for all division public health...
Arrows as anchors: An analysis of the material features of electric field vector arrows
NASA Astrophysics Data System (ADS)
Gire, Elizabeth; Price, Edward
2014-12-01
Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in students' use of representations for computation. We focus on the vector-arrows representation of electric fields and describe this representation as a conceptual blend of electric field concepts, physical space, and the material features of the representation (i.e., the physical writing and the surface upon which it is drawn). In this representation, spatial extent (e.g., distance on paper) is used to represent both distances in coordinate space and magnitudes of electric field vectors. In conceptual blending theory, this conflation is described as a clash between the input spaces in the blend. We explore the benefits and drawbacks of this clash, as well as other features of this representation. This analysis is illustrated with examples from clinical problem-solving interviews with upper-division physics majors. We see that while these intermediate physics students make a variety of errors using this representation, they also use the geometric features of the representation to add electric field contributions and to organize the problem situation productively.
NASA Astrophysics Data System (ADS)
2016-05-01
A scientific session of the General meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 7 December 2015. The papers collected in this issue were written based on talks given at the session (the program of the session is available on the RAS Physical Sciences Division website http://www.gpad.ac.ru). (1) Loshchenov V B (Prokhorov General Physics Institute, RAS, Moscow) "Pharmacodynamics of a nanophotosensitizer under irradiation by an electromagnetic field: from THz to Cherenkov radiation"; (2) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Successes and problems in the development of medical radioisotope production in Russia"; (3) Tikhonov Yu A (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Applying nuclear physics methods in healthcare"; (4) Turchin I V (Institute of Applied Physics, RAS, Nizhny Novgorod) "Methods of biomedical optical imaging: from subcellular structures to tissues and organs"; (5) Breus T K, Petrukovich A A (Space Research Institute, RAS, Moscow), Binhi V N (Prokhorov General Physics Institute, RAS, Moscow; Lomonosov Moscow State University, Moscow) "Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research"; (6) Makarov D I (Special Astrophysical Observatory, RAS, Nizhnii Arkhyz, Zelenchukskii region, Karachai-Cherkessian Republic) "Studying the Local University". Papers based on oral reports 2, 4, and 5 are presented below. • Successes and problems in the development of medical radioisotope production in Russia, B L Zhuikov Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 481-486 • Methods of biomedical optical imaging: from subcellular structures to tissues and organs, I V Turchin Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 487-501 • Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research, T K Breus, V N Binhi, A A Petrukovich Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 502-510
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Eric Morris from the cold stowage group fits items into the Double Cold Bag (DCB) which is a non-powered container that keeps the APEX petri plates at +4 degrees Celsius during launch and ascent.. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The 30 petri plates are bundled into groups of 10 and placed into one of three science kits. The science kits allow easy handling when the crew removes the plates from cold stowage on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996
NASA Technical Reports Server (NTRS)
1997-01-01
NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth.
Physics Division annual review, 1 April 1975--31 March 1976. [ANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garvey, G. T.
1976-01-01
An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages. (RWR)
The Science Training Program for Young Italian Physicists and Engineers at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barzi, Emanuela; Bellettini, Giorgio; Donati, Simone
2015-03-12
Since 1984 Fermilab has been hosting a two-month summer training program for selected undergraduate and graduate Italian students in physics and engineering. Building on the traditional close collaboration between the Italian National Institute of Nuclear Physics (INFN) and Fermilab, the program is supported by INFN, by the DOE and by the Scuola Superiore di Sant`Anna of Pisa (SSSA), and is run by the Cultural Association of Italians at Fermilab (CAIF). This year the University of Pisa has qualified it as a “University of Pisa Summer School”, and will grant successful students with European Supplementary Credits. Physics students join the Fermilabmore » HEP research groups, while engineers join the Particle Physics, Accelerator, Technical, and Computing Divisions. Some students have also been sent to other U.S. laboratories and universities for special trainings. The programs cover topics of great interest for science and for social applications in general, like advanced computing, distributed data analysis, nanoelectronics, particle detectors for earth and space experiments, high precision mechanics, applied superconductivity. In the years, over 350 students have been trained and are now employed in the most diverse fields in Italy, Europe, and the U.S. In addition, the existing Laurea Program in Fermilab Technical Division was extended to the whole laboratory, with presently two students in Master’s thesis programs on neutrino physics and detectors in the Neutrino Division. And finally, a joint venture with the Italian Scientists and Scholars North-America Foundation (ISSNAF) provided this year 4 professional engineers free of charge for Fermilab. More details on all of the above can be found below.« less
NASA Astrophysics Data System (ADS)
Emigh, Paul Jeffrey
This dissertation describes research on student understanding of quantum mechanics across multiple levels of instruction. The primary focus has been to identify patterns in student reasoning related to key concepts in quantum mechanics. The specific topics include quantum measurements, time dependence, vector spaces, and angular momentum. The research has spanned a variety of different quantum courses intended for introductory physics students, upper-division physics majors, and graduate students in physics. The results of this research have been used to develop a set of curriculum, Tutorials in Physics: Quantum Mechanics, for addressing the most persistent student difficulties. We document both the development of this curriculum and how it has impacted and improved student understanding of quantum mechanics.
NASA Technical Reports Server (NTRS)
1990-01-01
Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These accomplishments exemplify the Center's varied and highly productive research efforts for 1990. The activities addressed are under the directories of: (1) aerospace systems which contains aircraft technology, full-scale aerodynamics research, information sciences, aerospace human factors research, and flight systems and simulation research divisions; (2) Dryden flight research facility which contains research engineering division; (3) aerophysics which contains aerodynamics, fluid dynamics, and thermosciences divisions; and (4) space research which contains advanced life support, space projects, earth system science, life science, and space science divisions, and search for extraterrestrial intelligence and space life sciences payloads offices.
143. GENERAL DYNAMICS SPACE SYSTEMS DIVISION SCHEDULE BOARD IN LUNCH ...
143. GENERAL DYNAMICS SPACE SYSTEMS DIVISION SCHEDULE BOARD IN LUNCH ROOM (120), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP
International Space Station -- Fluids and Combustion Facility
NASA Technical Reports Server (NTRS)
2000-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)
Physics division annual report 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glover, J.; Physics
2008-02-28
This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways tomore » address this mission.« less
NASA Astrophysics Data System (ADS)
Jin, Wei; Zhang, Chongfu; Yuan, Weicheng
2016-02-01
We propose a physically enhanced secure scheme for direct detection-orthogonal frequency division multiplexing-passive optical network (DD-OFDM-PON) and long reach coherent detection-orthogonal frequency division multiplexing-passive optical network (LRCO-OFDM-PON), by employing noise-based encryption and channel/phase estimation. The noise data generated by chaos mapping are used to substitute training sequences in preamble to realize channel estimation and frame synchronization, and also to be embedded on variable number of key-selected randomly spaced pilot subcarriers to implement phase estimation. Consequently, the information used for signal recovery is totally hidden as unpredictable noise information in OFDM frames to mask useful information and to prevent illegal users from correctly realizing OFDM demodulation, and thereby enhancing resistance to attackers. The levels of illegal-decryption complexity and implementation complexity are theoretically discussed. Through extensive simulations, the performances of the proposed channel/phase estimation and the security introduced by encrypted pilot carriers have been investigated in both DD-OFDM and LRCO-OFDM systems. In addition, in the proposed secure DD-OFDM/LRCO-OFDM PON models, both legal and illegal receiving scenarios have been considered. These results show that, by utilizing the proposed scheme, the resistance to attackers can be significantly enhanced in DD-OFDM-PON and LRCO-OFDM-PON systems without performance degradations.
The Plasma Archipelago: Plasma Physics in the 1960s
NASA Astrophysics Data System (ADS)
Weisel, Gary J.
2017-09-01
With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.
Earth observations and global change decision making: A special bibliography, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The first section of the bibliography contains 294 bibliographic citations and abstracts of relevant reports, articles, and documents announced in 'Scientific and Technical Aerospace Reports (STAR)' and 'International Aerospace Abstracts (IAA)'. These abstracts are categorized by the following major subject divisions: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences and general. Following the abstract section, seven indexes are provided for further assistance.
Space Science Division cumulative bibliography: 1989-1994
NASA Technical Reports Server (NTRS)
Morrison, D.
1995-01-01
The Space Science Division at NASA's Ames Research Center is dedicated to research in astrophysics, exobiology, and planetary science. These research programs are structured around the study of origins and evolution of stars, planets, planetary atmospheres, and life, and address some of the most fundamental questions pursued by science; questions that examine the origin of life and of our place in the universe. This bibliography is the accumulation of peer-reviewed publications authored by Division scientists for the years 1989 through 1994. The list includes 777 papers published in over 5 dozen scientific journals representing the high productivity and interdisciplinary nature of the Space Science Division.
Sixth Annual NASA Ames Space Science and Astrobiology Jamboree
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.
2018-01-01
Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such disciplines. This year we are pleased to honor Amanda Cook. We hope that you will make time to join us for the day in meeting fellow Division members, expanding knowledge of our activities, and creating new collaborations within the Space Science and Astrobiology Division.
NASA Microgravity Combustion Science Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.
2003-01-01
A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.
2000-01-31
The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)
Goddard's Astrophysics Science Divsion Annual Report 2014
NASA Technical Reports Server (NTRS)
Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)
2015-01-01
The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS) Explorer mission, in collaboration with MIT (Ricker, PI); the Soft X-ray Spectrometer (SXS) for the Astro-H mission in collaboration with JAXA, and the James Webb Space Telescope (JWST). The Wide-Field Infrared Survey Telescope (WFIRST), the highest ranked mission in the 2010 decadal survey, is in a pre-phase A study, and we are supplying study scientists for that mission.
NASA Technical Reports Server (NTRS)
1996-01-01
Released in 1995, the Trilogy cardiac pacemaker is the fourth generation of a unit developed in the 1970s by NASA, Johns Hopkins Applied Physics Laboratory and St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.). The new system incorporates the company's PDx diagnostic and programming software and a powerful microprocessor that allows more functions to be fully automatic and gives more detailed information on the patient's health and the performance of the pacing systems. The pacemaker incorporates bidirectional telemetry used for space communications for noninvasive communication with the implanted pacemaker, smaller implantable pulse generators from space microminiaturization, and longer-life batteries from technology for spacecraft electrical power systems.
2013-10-28
L-R: Dwayne Brown, NASA Public Affairs Officer, Jim Green, director, Planetary Science Division, NASA Headquarters, Lisa May, MAVEN program executive, NASA Headquarters, Kelly Fast, MAVEN program scientist, NASA Headquarters, Bruce Jakosky, MAVEN principal investigator, University of Colorado Boulder Laboratory for Atmospheric and Space Physics, and David Mitchell, MAVEN project manager, NASA's Goddard Space Flight Center, Greenbelt, Md. discuss the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)
2013-10-28
L-R: Jim Green, director, Planetary Science Division, NASA Headquarters, Lisa May, MAVEN program executive, NASA Headquarters, Kelly Fast, MAVEN program scientist, NASA Headquarters, Bruce Jakosky, MAVEN principal investigator, University of Colorado Boulder Laboratory for Atmospheric and Space Physics, and David Mitchell, MAVEN project manager, NASA's Goddard Space Flight Center, Greenbelt, Md. are applauded at the end of a panel discussion on the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)
Planck Surveyor On Its Way to Orbit
None
2017-12-09
An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center
New Ecuadorian VLF and ELF receiver for study the ionosphere
NASA Astrophysics Data System (ADS)
Lopez, Ericson; Montenegro, Jefferson; Vasconez, Michael; Vicente, Klever
Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory (QAO) of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. As part of this project, in the QAO has been designed a new system for acquisition and processing VLF and ELF signals propagating in the ionosphere. The Labview Software is used to filtering, processing and conditioning the received signals, avoiding in this way 60 percent of the analog components present in a common receiver. The same software have been programmed to create the spectrograms and the amplitude and phase diagrams of the radio signals. The data is stored neatly in files that can be processed even with other applications.
The Application of the SPASE Metadata Standard in the U.S. and Worldwide
NASA Astrophysics Data System (ADS)
Thieman, J. R.; King, T. A.; Roberts, D.
2012-12-01
The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has not needed any structural modifications since January 2011 . The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. While we anticipate additional modifications to the model in the future to accommodate simulation and model data, these changes will not affect the data descriptions already generated for instrument-related datasets. Examples of SPASE descriptions can be viewed at
Health physics division annual progress report for period ending June 30, 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-01
This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.
Two-Dimensional, Time-Dependent Plasma Structures of a Hall Effect Thruster
2011-09-01
atmospheric pressure to 80 mtorr, is accomplished by a Leybold-Trivac rotary van vacuum pump and the second stage is completed by four 20 in CVI...Thruster”. Physics of Plasmas, 13, 2006. 3. Albarede, Luc, Vanessa Vial, Alexey Lazurenko, Andre Bouchoule, and Michel Dudeck. “Low Frequency Dynamical...Force Research Laboratory Space and Missile Division (AFRL/RZS) 5 Pollux Drive Edwards AFB, CA 93524 DSN 525-5230 AFRL/RZS Approval for public release
The astrophysics program at the National Aeronautics and Space Administration (NASA)
NASA Technical Reports Server (NTRS)
Pellerin, C. J.
1990-01-01
Three broad themes characterize the goals of the Astrophysics Division at NASA. These are obtaining an understanding of the origin and evolution of the universe, the fundamental laws of physics, and the birth and evolutionary cycle of galaxies, stars, planets and life. These goals are pursued through contemporaneous observations across the electromagnetic spectrum with high sensitivity and resolution. The strategy to accomplish these goals is fourfold: the establishment of long term space based observatories implemented through the Great Observatories program; attainment of crucial bridging and supporting measurements visa missions of intermediate and small scope conducted within the Explorer, Spacelab, and Space Station Attached Payload Programs; enhancement of scientific access to results of space based research activities through an integrated data system; and development and maintenance of the scientific/technical base for space astrophysics programs through the research and analysis and suborbital programs. The near term activities supporting the first two objectives are discussed.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Eric Morris from the cold stowage group places the APEX-04 science kits into the Double Cold Bag (DCB), which is a non-powered container that keeps the APEX petri plates at +4 degrees Celsius during launch and ascent. The cold bricks in the lower right of the photo are placed in the DCB prior to closure. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Town Meeting on Plasma Physics at the National Science Foundation
NASA Astrophysics Data System (ADS)
2015-11-01
We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.
Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall
NASA Technical Reports Server (NTRS)
Gurman, Joseph; Fisher, Richard R. (Technical Monitor)
2001-01-01
Although a few, large, space- and groundbased solar physics databases exist at selected locations, there is as yet only limited standardization or interoperability. I describe the outline of a plan to facilitate access to a distributed network of online solar data archives, both large and small. The underlying principle is that the user need not know where- the data are, only how to specify which data are desired. At the least, such an approach could considerably simplify the scientific user's access to the enormous amount of solar physics data to be obtained in the next decade. At best, it might mean the withering away of traditional data centers, and all the bureaucracy they entail. This work is supported by the Sun-Earth Connections Division of NASA Office of Space Science, thanks to an anomalous act of largess on the part of the 2001 SEC Senior Review.
Toward a Virtual Solar Observatory: Starting Before the Petabytes Fall
NASA Astrophysics Data System (ADS)
Gurman, J. B.
2001-12-01
Although a few, large, space- and groundbased solar physics databases exist at selected locations, there is as yet only limited standardization or interoperability. I describe the outline of a plan to facilitate access to a distributed network of online solar data archives, both large and small. The underlying principle is that the user need not know where the data are, only how to specify which data are desired. At the least, such an approach could considerably simplify the scientific user's access to the enormous amount of solar physics data to be obtained in the next decade. At best, it might mean the withering away of traditional data centers, and all the bureaucracy they entail. This work is supported by the Sun-Earth Connections Division of NASA Office of Space Science, thanks to an anomalous act of largess on the part of the 2001 SEC Senior Review.
Division G Commission 35: Stellar Constitution
NASA Astrophysics Data System (ADS)
Limongi, Marco; Lattanzio, John C.; Charbonnel, Corinne; Dominguez, Inma; Isern, Jordi; Karakas, Amanda; Leitherer, Claus; Marconi, Marcella; Shaviv, Giora; van Loon, Jacco
2016-04-01
Commission 35 (C35), ``Stellar Constitution'', consists of members of the International Astronomical Union whose research spans many aspects of theoretical and observational stellar physics and it is mainly focused on the comprehension of the properties of stars, stellar populations and galaxies. The number of members of C35 increased progressively over the last ten years and currently C35 comprises about 400 members. C35 was part of Division IV (Stars) until 2014 and then became part of Division G (Stars and Stellar Physics), after the main IAU reorganisation in 2015. Four Working Groups have been created over the years under Division IV, initially, and Division G later: WG on Active B Stars, WG on Massive Stars, WG on Abundances in Red Giant and WG on Chemically Peculiar and Related Stars. In the last decade the Commission had 4 presidents, Wojciech Dziembowski (2003-2006), Francesca D'Antona (2006-2009), Corinne Charbonnel (2009-2012) and Marco Limongi (2012-2015), who were assisted by an Organizing Committee (OC), usually composed of about 10 members, all of them elected by the C35 members and holding their positions for three years. The C35 webpage (http://iau-c35.stsci.edu) has been designed and continuously maintained by Claus Leitherer from the Space Telescope Institute, who deserves our special thanks. In addition to the various general information on the Commission structure and activities, it contains links to various resources, of interest for the members, such as stellar models, evolutionary tracks and isochrones, synthetic stellar populations, stellar yields and input physics (equation of state, nuclear cross sections, opacity tables), provided by various groups. The main activity of the C35 OC is that of evaluating, ranking and eventually supporting the proposals for IAU sponsored meetings. In the last decade the Commission has supported several meetings focused on topics more or less relevant to C35. Since the primary aim of this document is to present the main activity of C35 over the last ten years, in the following we present some scientific highlights that emerged from the most relevant IAU Symposia and meetings supported and organized by C35 in the last decade.
3rd Annual NASA Ames Space Science and Astrobiology Jamboree
NASA Technical Reports Server (NTRS)
Dotson, Jessie
2015-01-01
The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co--ops, post--docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year
Mass and Reliability System (MaRS)
NASA Technical Reports Server (NTRS)
Barnes, Sarah
2016-01-01
The Safety and Mission Assurance (S&MA) Directorate is responsible for mitigating risk, providing system safety, and lowering risk for space programs from ground to space. The S&MA is divided into 4 divisions: The Space Exploration Division (NC), the International Space Station Division (NE), the Safety & Test Operations Division (NS), and the Quality and Flight Equipment Division (NT). The interns, myself and Arun Aruljothi, will be working with the Risk & Reliability Analysis Branch under the NC Division's. The mission of this division is to identify, characterize, diminish, and communicate risk by implementing an efficient and effective assurance model. The team utilizes Reliability and Maintainability (R&M) and Probabilistic Risk Assessment (PRA) to ensure decisions concerning risks are informed, vehicles are safe and reliable, and program/project requirements are realistic and realized. This project pertains to the Orion mission, so it is geared toward a long duration Human Space Flight Program(s). For space missions, payload is a critical concept; balancing what hardware can be replaced by components verse by Orbital Replacement Units (ORU) or subassemblies is key. For this effort a database was created that combines mass and reliability data, called Mass and Reliability System or MaRS. The U.S. International Space Station (ISS) components are used as reference parts in the MaRS database. Using ISS components as a platform is beneficial because of the historical context and the environment similarities to a space flight mission. MaRS uses a combination of systems: International Space Station PART for failure data, Vehicle Master Database (VMDB) for ORU & components, Maintenance & Analysis Data Set (MADS) for operation hours and other pertinent data, & Hardware History Retrieval System (HHRS) for unit weights. MaRS is populated using a Visual Basic Application. Once populated, the excel spreadsheet is comprised of information on ISS components including: operation hours, random/nonrandom failures, software/hardware failures, quantity, orbital replaceable units (ORU), date of placement, unit weight, frequency of part, etc. The motivation for creating such a database will be the development of a mass/reliability parametric model to estimate mass required for replacement parts. Once complete, engineers working on future space flight missions will have access a mean time to failures and on parts along with their mass, this will be used to make proper decisions for long duration space flight missions
NASA Technical Reports Server (NTRS)
Neupert, Werner M.
1991-01-01
The interface is described between NASA HQ, NASA Goddard, and the rocket Principal Investigators. The proposal selection process is described along with the cycle time to flight, constraints imposed by science objectives on operations, campaign modes, and coordination with ground based facilities. There were questions about the success rate of proposals and the primary sources of funding for the payloads program from the branches of the science divisions in OSSA, especially space physics, astrophysics, Earth sciences, and solar system exploration. The presentation is given in the form of viewgraphs.
Weak Interactions Group UC Berkeley UC Berkeley Physics Lawrence Berkeley Lab Nuclear Science Division at LBL Physics Division at LBL Phonebook A-Z Index Navigation Home Members Research Projects CUORE Design Concept Berkeley Projects People Publications Contact Links KamLAND Physics Impact Neutrino
Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard; Ryan, Harry
2007-01-01
This viewgraph presentation gives a general overview of the design and analysis division of NASA John C. Stennis Space Center. This division develops and maintains propulsion test systems and facilities for engineering competencies.
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Operations For information regarding Human Resources, procedures for acknowledging MSD support, division
2009-10-14
Don Mitchell, far left, Cassini spacecraft instrument scientist, IBEX co-Investigator, Johns Hopkins University Applied Physics Laboratory in Laurel, Md., answers questions on findings made by NASA's Interstellar Boundary Explorer, IBEX, at NASA Headquarters in Washington, Thursday, Oct. 10, 2009. Mitchell is joined by IBEX mission colleagues David McComas, far right, IBEX spacecraft principal investigator and senior executive director, Space Science and Engineering Division, Southwest Research Institute in San Antonio; Eric Christian, IBEX deputy mission scientist, NASA's Goddard Space Flight Center in Greenbelt, Md.; Rosine Lallement, senior scientist at the French National Center for Scientific Research in Paris; Lindsay Bartolone, second from left, lead of Education and Public Outreach at the Adler Planetarium in Chicago. Photo Credit: (NASA/Carla Cioffi)
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Separation distance requirements for co-location of division 1.1 and 1.3 explosives with liquid propellants. 420.69 Section 420.69 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Separation distance requirements for co-location of division 1.1 and 1.3 explosives with liquid propellants. 420.69 Section 420.69 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...
46 CFR 108.171 - Class I, Division 1 locations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... locations. The following are Class I, Division 1 locations: (a) An enclosed space that contains any part of the mud circulating system that has an opening into the space and is between the well and final... possible source of gas release. (c) An enclosed space that is on the drill floor, and is not separated by a...
46 CFR 108.171 - Class I, Division 1 locations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... locations. The following are Class I, Division 1 locations: (a) An enclosed space that contains any part of the mud circulating system that has an opening into the space and is between the well and final... possible source of gas release. (c) An enclosed space that is on the drill floor, and is not separated by a...
46 CFR 108.171 - Class I, Division 1 locations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... locations. The following are Class I, Division 1 locations: (a) An enclosed space that contains any part of the mud circulating system that has an opening into the space and is between the well and final... possible source of gas release. (c) An enclosed space that is on the drill floor, and is not separated by a...
46 CFR 108.171 - Class I, Division 1 locations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... locations. The following are Class I, Division 1 locations: (a) An enclosed space that contains any part of the mud circulating system that has an opening into the space and is between the well and final... possible source of gas release. (c) An enclosed space that is on the drill floor, and is not separated by a...
46 CFR 108.171 - Class I, Division 1 locations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... locations. The following are Class I, Division 1 locations: (a) An enclosed space that contains any part of the mud circulating system that has an opening into the space and is between the well and final... possible source of gas release. (c) An enclosed space that is on the drill floor, and is not separated by a...
NASA Technical Reports Server (NTRS)
Schmahl, Edward J.; Kundu, Mukul R.
1998-01-01
We have continued our previous efforts in studies of fourier imaging methods applied to hard X-ray flares. We have performed physical and theoretical analysis of rotating collimator grids submitted to GSFC(Goddard Space Flight Center) for the High Energy Solar Spectroscopic Imager (HESSI). We have produced simulation algorithms which are currently being used to test imaging software and hardware for HESSI. We have developed Maximum-Entropy, Maximum-Likelihood, and "CLEAN" methods for reconstructing HESSI images from count-rate profiles. This work is expected to continue through the launch of HESSI in July, 2000. Section 1 shows a poster presentation "Image Reconstruction from HESSI Photon Lists" at the Solar Physics Division Meeting, June 1998; Section 2 shows the text and viewgraphs prepared for "Imaging Simulations" at HESSI's Preliminary Design Review on July 30, 1998.
Facility design consideration for continuous mix production of class 1.3 propellant
NASA Technical Reports Server (NTRS)
Williamson, K. L.; Schirk, P. G.
1994-01-01
In November of 1989, NASA awarded the Advanced Solid Rocket Motor (ASRM) contract to Lockheed Missiles and Space Company (LMSC) for production of advanced solid rocket motors using the continuous mix process. Aerojet ASRM division (AAD) was selected as the facility operator and RUST International Corporation provided the engineering, procurement, and construction management services. The continuous mix process mandates that the mix and cast facilities be 'close-coupled' along with the premix facilities, creating unique and challenging requirements for the facility designer. The classical approach to handling energetic materials-division into manageable quantities, segregation, and isolation-was not available due to these process requirements and quantities involved. This paper provides a description of the physical facilities, the continuous mix process, and discusses the monitoring and detection techniques used to mitigate hazards and prevent an incident.
HEP Division Argonne National Laboratory
Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP Theory administrators theory users trice users HEP webmaster U.S. Department of Energy Office of Science | UChicago
NASA Technical Reports Server (NTRS)
Liu, Feng-Chuan; Adriaans, Mary Jayne; Pensinger, John; Israelsson, Ulf
2000-01-01
The Low Temperature Microgravity Physics Facility (LTMPF) is a state-of-the-art facility for long duration science Investigations whose objectives can only be achieved in microgravity and at low temperature. LTMPF consists of two reusable, cryogenic facilities with self-contained electronics, software and communication capabilities. The Facility will be first launched by Japanese HIIA Rocket in 2003 and retrieved by the Space Shuttle, and will have at least five months cryogen lifetime on the Japanese Experiment Module Exposed Facility (JEM EF) of the International Space Station. A number of high precision sensors of temperature, pressure and capacitance will be available, which can be further tailored to accommodate a wide variety of low temperature experiments. This paper will describe the LTMPF and its goals and design requirements. Currently there are six candidate experiments in the flight definition phase to fly on LTMPF. Future candidate experiments will be selected through the NASA Research Announcement process. Opportunities for utilization and collaboration with international partners will also be discussed. This work is being carried out by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. The work was funded by NASA Microgravity Research Division.
Memories for life: a review of the science and technology
O'Hara, Kieron; Morris, Richard; Shadbolt, Nigel; Hitch, Graham J; Hall, Wendy; Beagrie, Neil
2006-01-01
This paper discusses scientific, social and technological aspects of memory. Recent developments in our understanding of memory processes and mechanisms, and their digital implementation, have placed the encoding, storage, management and retrieval of information at the forefront of several fields of research. At the same time, the divisions between the biological, physical and the digital worlds seem to be dissolving. Hence, opportunities for interdisciplinary research into memory are being created, between the life sciences, social sciences and physical sciences. Such research may benefit from immediate application into information management technology as a testbed. The paper describes one initiative, memories for life, as a potential common problem space for the various interested disciplines. PMID:16849265
Laboratory directed research and development program FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.
Life Sciences Accomplishments 1994
NASA Technical Reports Server (NTRS)
Burnell, Mary Lou (Editor)
1993-01-01
The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting proposals for ground-based and flight research for all programs. Areas of particular interest to NASA were defined Proposals due April 29, 1994, will be peer reviewed - externally for scientific merit. This annual NRA process is now the mechanism for recruiting both extramural and intramural investigations. As an overview of LBSAD activities in 1993, this accomplishments document covers each of the major organizational components of the Division and the accomplishments of each. The second section is a review of the Space Life Sciences Research programs Space Biology, Space Physiology and Countermeasures, Radiation Health, Environmental Health, Space Human Factors, Advanced Life Support, and Global Monitoring and Disease Prediction, The third section, Research in Space Flight, describes the substantial contributions of the Spacelab Life Sciences 2 (SLS-2) mission to life sciences research and the significant contributions of the other missions flown in 1993, along with plans for future missions. The Division has greatly expanded and given high priority to its Education and Outreach Programs, which are presented in the fourth section. The fifth and final section, Partners for Space, shows the Divisions Cooperative efforts with other national and international agencies to achieve common goals, along with the accomplishments of joint research and analysis programs.
Annual Historical Report Calendar Year 1993
1994-04-01
Physical Training, 16. PRICE CODE Military Performance, Military Nutrition , Military Psychology. 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19... Nutrition Division . . . . . . . . . . 97 Military Performance & Neuroscience Division . 115 Occupational Medicine Division ........ .130 Occupational...Directorate, Dr. James A. Vogel, Director. The Directorate incorporates the Military Nutrition Division, the Military Performance and Neuroscience Division
New tools for investigating student learning in upper-division electrostatics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.
Student learning in upper-division physics courses is a growing area of research in the field of Physics Education. Developing effective new curricular materials and pedagogical techniques to improve student learning in upper-division courses requires knowledge of both what material students struggle with and what curricular approaches help to overcome these struggles. To facilitate the course transformation process for one specific content area --- upper-division electrostatics --- this thesis presents two new methodological tools: (1) an analytical framework designed to investigate students' struggles with the advanced physics content and mathematically sophisticated tools/techniques required at the junior and senior level, and (2) a new multiple-response conceptual assessment designed to measure student learning and assess the effectiveness of different curricular approaches. We first describe the development and theoretical grounding of a new analytical framework designed to characterize how students use mathematical tools and techniques during physics problem solving. We apply this framework to investigate student difficulties with three specific mathematical tools used in upper-division electrostatics: multivariable integration in the context of Coulomb's law, the Dirac delta function in the context of expressing volume charge densities, and separation of variables as a technique to solve Laplace's equation. We find a number of common themes in students' difficulties around these mathematical tools including: recognizing when a particular mathematical tool is appropriate for a given physics problem, mapping between the specific physical context and the formal mathematical structures, and reflecting spontaneously on the solution to a physics problem to gain physical insight or ensure consistency with expected results. We then describe the development of a novel, multiple-response version of an existing conceptual assessment in upper-division electrostatics courses. The goal of this new version is to provide an easily-graded electrostatics assessment that can potentially be implemented to investigate student learning on a large scale. We show that student performance on the new multiple-response version exhibits a significant degree of consistency with performance on the free-response version, and that it continues to provide significant insight into student reasoning and student difficulties. Moreover, we demonstrate that the new assessment is both valid and reliable using data from upper-division physics students at multiple institutions. Overall, the work described in this thesis represents a significant contribution to the methodological tools available to researchers and instructors interested in improving student learning at the upper-division level.
Publications - GMC 70 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 70 Publication Details Title: Core permeability determinations and other related physical determinations and other related physical analyses of 20 North Slope wells: Alaska Division of Geological &
Code of Federal Regulations, 2014 CFR
2014-01-01
... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...
Code of Federal Regulations, 2013 CFR
2013-01-01
... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...
Code of Federal Regulations, 2012 CFR
2012-01-01
... applicant for chemical, physical, or microbiological analyses and tests at a Science and Technology Division... Science and Technology Division laboratory, or by a laboratory approved and recognized by the Division to... quality control of procedures. Official plant or Science and Technology Division laboratories can analyze...
Second Annual NASA Ames Space Science and Astrobiology Jamboree
NASA Technical Reports Server (NTRS)
Dotson, Jessie
2014-01-01
The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.
ERIC Educational Resources Information Center
Miller, Christina L.
2014-01-01
The purpose of this study is to determine the relationship between physical distance from the headquarters, number of years working within the Division of Agriculture, and job title compared to mission statement and goal focus. The Division of Agriculture as part of the University of Arkansas System is a unique organization because many of its…
Annual Historical Report Calendar Year 1992
1993-04-01
Environmental Stress, Exercise Physiology, Physical Training, 16. PRICE CODE Military Performance, Military Nutrition , Military Psychology. 17. SECURITY...63 Occupational Health & Performance Directorate . . . 84 Military Nutrition Division ........ ........... 87 Military Performance...Military Nutrition Division, the Military Performance and Neuroscience Division, the Occupational Medicine Division, and the Occupational Physiology
14 CFR 1215.108 - Defining user service requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to NASA Headquarters, Code OX, Space Network Division, Washington, DC 20546. Upon review and... submitted in writing to both NASA Headquarters, Code OX, Space Network Division, and GSFC, Code 501.... Request for services within priority groups shall be negotiated with non-NASA users on a first come, first...
Helping Students Come to Grips with the Meaning of Division
ERIC Educational Resources Information Center
Aubrecht, Gordon J., II
2004-01-01
Many years ago, Arons pointed out the incomprehension science students exhibit of the basic mathematical operations multiplication and division and the need to address the problem in physics classes to assure student understanding of the physical world. McDermott et al.'s Physics by Inquiry program does address this need directly and in detail (by…
NASA Technical Reports Server (NTRS)
1991-01-01
A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.
Strategic Directions in Heliophysics Research Related to Weakly Ionized Plasmas
NASA Technical Reports Server (NTRS)
Spann, James F.
2010-01-01
In 2009, the Heliophysics Division of NASA published its triennial roadmap entitled "Heliophysics; the solar and space physics of a new era." In this document contains a science priority that is recommended that will serve as input into the recently initiated NRC Heliophysics Decadal Survey. The 2009 roadmap includes several science targets recommendations that are directly related to weakly ionized plasmas, including on entitled "Ion-Neutral Coupling in the Atmosphere." This talk will be a brief overview of the roadmap with particular focus on the science targets relevant to weakly ionized plasmas.
Laboratory and Space Plasma Studies
NASA Astrophysics Data System (ADS)
Hyman, Ellis
1996-08-01
The work performed by Science Applications International Corporation (SAIC), encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by sub-contracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.
NASA Astrophysics Data System (ADS)
Torres, Jhon James Granada; Soto, Ana María Cárdenas; González, Neil Guerrero
2016-10-01
In the context of gridless optical multicarrier systems, we propose a method for intercarrier interference (ICI) mitigation which allows bit error correction in scenarios of nonspectral flatness between the subcarriers composing the multicarrier system and sub-Nyquist carrier spacing. We propose a hybrid ICI mitigation technique which exploits the advantages of signal equalization at both levels: the physical level for any digital and analog pulse shaping, and the bit-data level and its ability to incorporate advanced correcting codes. The concatenation of these two complementary techniques consists of a nondata-aided equalizer applied to each optical subcarrier, and a hard-decision forward error correction applied to the sequence of bits distributed along the optical subcarriers regardless of prior subchannel quality assessment as performed in orthogonal frequency-division multiplexing modulations for the implementation of the bit-loading technique. The impact of the ICI is systematically evaluated in terms of bit-error-rate as a function of the carrier frequency spacing and the roll-off factor of the digital pulse-shaping filter for a simulated 3×32-Gbaud single-polarization quadrature phase shift keying Nyquist-wavelength division multiplexing system. After the ICI mitigation, a back-to-back error-free decoding was obtained for sub-Nyquist carrier spacings of 28.5 and 30 GHz and roll-off values of 0.1 and 0.4, respectively.
The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory
NASA Technical Reports Server (NTRS)
Gurman, Joseph B.
2007-01-01
The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."
14 CFR 385.18 - Authority of the Chief, Coordination Section, Documentary Services Division.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Authority of the Chief, Coordination Section, Documentary Services Division. 385.18 Section 385.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION STAFF ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions...
14 CFR 385.18 - Authority of the Chief, Coordination Section, Documentary Services Division.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Authority of the Chief, Coordination Section, Documentary Services Division. 385.18 Section 385.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION STAFF ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions...
14 CFR 385.18 - Authority of the Chief, Coordination Section, Documentary Services Division.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Authority of the Chief, Coordination Section, Documentary Services Division. 385.18 Section 385.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION STAFF ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions...
14 CFR 385.18 - Authority of the Chief, Coordination Section, Documentary Services Division.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Authority of the Chief, Coordination Section, Documentary Services Division. 385.18 Section 385.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION STAFF ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions...
14 CFR 385.18 - Authority of the Chief, Coordination Section, Documentary Services Division.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Authority of the Chief, Coordination Section, Documentary Services Division. 385.18 Section 385.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION STAFF ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions...
NASA Technical Reports Server (NTRS)
Krikorian, A. D.; O'Connor, S. A.
1984-01-01
Root tips prepared for metaphase chromosome analysis from seedlings germinated under microgravity on the Space Shuttle (oats and mung bean) or which were exposed to space flight as very young seedlings (sunflower) have been examined. Experimental constraints did not permit pre-fixation in space with a cytostatic agent but arrest was achieved in the first division cycle on Earth after recovery. The number of cells in division was significantly depressed in all three species. Several chromosomal abnormalities were encountered in flight material. Bridge formation was seen in sunflower, as was aneuploidy. Breakage and fracture of chromosomes was prevalent in oats. No aberrant features could be detected in the chromosomes of mung bean. These results, although preliminary, should serve to alert investigators of the need to assess carefully as many aspects of cell division in higher plants exposed to space flight conditions as possible.
1997-07-01
STS-94 Payload Specialist Roger K. Crouch prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. He is the Chief Scientist of the NASA Microgravity Space and Applications Division. He also has served as a Program Scientist for previous Spacelab microgravity missions and is an expert in semiconductor crystal growth. Since Crouch has more than 25 years of experience as a materials scientist, he will be concentrating on the five physics of materials processing experiments in the Middeck Glovebox Facility on the Blue shift. He will also share the workload with Thomas by monitoring the materials furnace experiments during this time. Crouch and six fellow crew members will lift off during a launch window that opens at 1:50 p.m. EDT, July 1. The launch window will open 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reach the space center
Mrs. Chandrasekhar addresses the media in TRW Media Hospitality Tent
NASA Technical Reports Server (NTRS)
1999-01-01
Mrs. Lalitha Chandrasekhar (at podium), wife of the late Indian- American Nobel Laureate Subrahmanyan Chandrasekhar, addresses the media and other invited guests in the TRW Media Hospitality Tent at the NASA Press Site at KSC. Other participants in the program (seated facing the audience, left to right) are the winners of the contest to rename the telescope, Jatila van der Veen, academic coordinator and lecturer, Physics Dept., University of Santa Barbara, Calif., and Tyrel Johnson, high school student, Laclede, Idaho; Joanne Maguire, vice-president and general manager, TRW Space & Laser Programs Division; and Dr. Alan Bunner, Science Program Director, Structure and Evolution of the Universe, Office of Space Science, NASA Headquarters, Washington, D.C. The name 'Chandra,' a shortened version of Chandrasekhar, was the name the Nobel Laureate preferred among friends and colleagues. 'Chandra' also means 'Moon' or 'luminous' in Sanskrit. The observatory is scheduled to be launched aboard Columbia on Space Shuttle mission STS-93.
1999-07-19
Mrs. Lalitha Chandrasekhar (at podium), wife of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar, addresses the media and other invited guests in the TRW Media Hospitality Tent at the NASA Press Site at KSC. Other participants in the program (seated facing the audience, left to right) are the winners of the contest to rename the telescope, Jatila van der Veen, academic coordinator and lecturer, Physics Dept., University of Santa Barbara, Calif., and Tyrel Johnson, high school student, Laclede, Idaho; Joanne Maguire, vice-president and general manager, TRW Space & Laser Programs Division; and Dr. Alan Bunner, Science Program Director, Structure and Evolution of the Universe, Office of Space Science, NASA Headquarters, Washington, D.C. The name "Chandra," a shortened version of Chandrasekhar, was the name the Nobel Laureate preferred among friends and colleagues. "Chandra" also means "Moon" or "luminous" in Sanskrit. The observatory is scheduled to be launched aboard Columbia on Space Shuttle mission STS-93
Space radiation health program plan
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.
1991-09-19
Company) in Torrance, CA; (8) Gnmman Space Electronics Division in Bethpage, NY; (9) Raytheon Services Nevada (RSN) in Las Vegas, NV; (10) Reynolds...10 to 20 minutes long, and spaced 1 or more weeks apart. (S) The accident scenario would result in a dose to a mximally exposed individual and to the...3.1-14 3.1.7 Grumman Corporation, Space and Electronics Division (U) 3.1-17 3.2 Ground Test Sites (U) 3.2-1 3.2.1 Nevada Test Site and Saddle Mountain
Köklü, Yusuf; Alemdaroğlu, Utku; Koçak, Fatma Ünver; Erol, A. Emre; Fındıkoğlu, Gülin
2011-01-01
The purpose of the present study was to compare chosen physical fitness characteristics of Turkish professional basketball players in different divisions (first and second division) and playing positions. Forty-five professional male basketball players (14 guards, 15 forwards, 16 centers) participated in this study voluntarily. For each player, anthropometric measurements were performed, as well as a multi-stage 20 m shuttle run, isokinetic leg strength, squat jump (SJ), countermovement jump (CMJ), 10–30 meter single-sprint and T-drill agility tests. The differences in terms of division were evaluated by independent t-test and the differences by playing position were evaluated by one-way ANOVA with Post Hoc Tukey test. First division players’ CMJ measurements were significantly higher than those of second division players’ (p≤0.05), whereas second division players’ 10 m sprint times were significantly better than those of first division players’ (p≤0.05). In addition, forwards and centers were significantly taller than guards. Centers were significantly heavier and their T-drill test performances were inferior to those of forwards and guards (p≤0.05). Moreover, guards had a significantly higher maximal oxygen uptake (VO2 max) than centers. Guards and forwards showed significantly better performance in the 10 and 30 m sprint tests than centers (p≤0.05). Forwards and centers had significantly better left leg flexor strength at 180°.s−1(p≤0.05). In conclusion, the findings of the present study indicated that physical performance of professional basketball players differed among guards, forwards and centers, whereas there were not significant differences between first and second division players. According to the present study, court positions have different demands and physical attributes which are specific to each playing position in professional basketball players. Therefore, these results suggest that coaches should tailor fitness programs according to specific positions on the court. PMID:23486863
Köklü, Yusuf; Alemdaroğlu, Utku; Koçak, Fatma Ünver; Erol, A Emre; Fındıkoğlu, Gülin
2011-12-01
The purpose of the present study was to compare chosen physical fitness characteristics of Turkish professional basketball players in different divisions (first and second division) and playing positions. Forty-five professional male basketball players (14 guards, 15 forwards, 16 centers) participated in this study voluntarily. For each player, anthropometric measurements were performed, as well as a multi-stage 20 m shuttle run, isokinetic leg strength, squat jump (SJ), countermovement jump (CMJ), 10-30 meter single-sprint and T-drill agility tests. The differences in terms of division were evaluated by independent t-test and the differences by playing position were evaluated by one-way ANOVA with Post Hoc Tukey test. First division players' CMJ measurements were significantly higher than those of second division players' (p≤0.05), whereas second division players' 10 m sprint times were significantly better than those of first division players' (p≤0.05). In addition, forwards and centers were significantly taller than guards. Centers were significantly heavier and their T-drill test performances were inferior to those of forwards and guards (p≤0.05). Moreover, guards had a significantly higher maximal oxygen uptake (VO2 max) than centers. Guards and forwards showed significantly better performance in the 10 and 30 m sprint tests than centers (p≤0.05). Forwards and centers had significantly better left leg flexor strength at 180°.s(-1)(p≤0.05). In conclusion, the findings of the present study indicated that physical performance of professional basketball players differed among guards, forwards and centers, whereas there were not significant differences between first and second division players. According to the present study, court positions have different demands and physical attributes which are specific to each playing position in professional basketball players. Therefore, these results suggest that coaches should tailor fitness programs according to specific positions on the court.
Upper-Division Student Difficulties with Separation of Variables
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Pollock, Steven J.
2015-01-01
Separation of variables can be a powerful technique for solving many of the partial differential equations that arise in physics contexts. Upper-division physics students encounter this technique in multiple topical areas including electrostatics and quantum mechanics. To better understand the difficulties students encounter when utilizing the…
Converging social classes through humanized urban edges
NASA Astrophysics Data System (ADS)
Abuan, M. V.; Galingan, Z. D.
2017-10-01
Urban open spaces are created to be used by people. It is a place of convergence and social activity. However, these places have transformed into places of divergence. When spaces become dehumanized, it separates social classes. As a result, underused spaces contribute to urban decay. Particularly an urban edge, the JP Rizal Makati Waterfront Area is the center of this paper. The JP Rizal Makati Waterfront Area is a waterfront development situated along the banks of one of Metro Manila’s major water thoroughfare --- Pasig River. The park and its physical form, urban design and landscape tend to deteriorate over time --- creating a further division of social convergence. Social hostility, crime, negligent maintenance and poor urban design are contributing factors to this sprawling decay in what used to be spaces of bringing people together. Amidst attempts to beautify and renew this portion of Makati City’s edge, the urban area still remains misspent.This paper attempts to re-humanize the waterfront development. It uses the responsive environment design principles to be able to achieve this goal.
The Cytoskeleton: Mechanical, Physical, and Biological Interactions
NASA Technical Reports Server (NTRS)
1996-01-01
This workshop, entitled "The Cytoskeleton: Mechanical, Physical, and Biological Interactions," was sponsored by the Center for Advanced Studies in the Space Life Sciences at the Marine Biological Laboratory. This Center was established through a cooperative agreement between the MBL and the Life Sciences Division of the National Aeronautics and Space Administration. To achieve these goals, the Center sponsors a series of workshops on various topics in the life sciences. Elements of the cytoskeleton have been implicated in the effects of gravity on the growth of plants fungi. An intriguing finding in this regard is the report indicating that an integrin-like protein may be the gravireceptor in the internodal cells of Chara. Involvement of the cytoskeleton in cellular graviperception of the basidiomycete Flammulina velutipes has also been reported. Although the responses of mammalian cells to gravity are not well documented, it has been proposed that integrins can act as mechanochemical transducers in mammalian cells. Little is known about the integrated mechanical and physical properties of cytoplasm, this workshop would be the best place to begin developing interdisciplinary approaches to the effects of mechanical stresses on cells and their most likely responsive cytoplasmic elements- the fibrous proteins comprising the cytoskeleton.
Reliability and the design process at Honeywell Avionics Division
NASA Technical Reports Server (NTRS)
Bezat, A.
1981-01-01
The division's philosophy for designed-in reliability and a comparison of reliability programs for space, manned military aircraft, and commercial aircraft, are presented. Topics include: the reliability interface with design and production; the concept phase through final proposal; the design, development, test and evaluation phase; the production phase; and the commonality among space, military, and commercial avionics.
EBIT - Electronic Beam Ion Trap: N Divison experimental physics annual report 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, D.
1996-10-01
The multi-faceted research effort of the EBIT (Electron Beam Ion Trap) program in N-Division of the Physics and Space Technology Department at Lawrence Livermore National Laboratory (LLNL) continues to contribute significant results to the physical sciences from studies with low energy very highly charged heavy ions. The EBIT program attracts a number of collaborators from the US and abroad for the different projects. The collaborations are partly carried out through participating graduate students demonstrating the excellent educational capabilities at the LLNL EBIT facilities. Moreover, participants from Historically Black Colleges and Universities are engaged in the EBIT project. This report describesmore » EBIT work for 1995 in atomic structure measurements and radiative transition probabilities, spectral diagnostics for laboratory and astrophysical plasmas, ion/surface interaction studies, electron-ion interactions studies, retrap and ion collisions, and instrumental development.« less
Playground usage and physical activity levels of children based on playground spatial features.
Reimers, Anne K; Knapp, Guido
2017-01-01
Being outdoors is one of the strongest correlates of physical activity in children. Playgrounds are spaces especially designed to enable and foster physical activity in children. This study aimed to analyze the relationship between the spatial features of public playgrounds and the usage and physical activity levels of children playing in them. A quantitative, observational study was conducted of ten playgrounds in one district of a middle-sized town in Germany. Playground spatial features were captured using an audit instrument and the playground manual of the town. Playground usage and physical activity levels of children were assessed using a modified version of the System for Observing Play and Leisure Activity in Youth. Negative binomial models were used to analyze the count data. The number of children using the playgrounds and the number of children actively playing in them were higher in those with more varied facilities and without naturalness. Girls played more actively in playgrounds without multi-purpose areas. Cleanliness, esthetics, play facility quality, division of functional areas and playground size were not related to any outcome variable. Playground spatial features are related to playground usage and activity levels of the children in the playgrounds. Playgrounds should offer a wide variety of play facilities and provide spaces for diverse play activities to respond to the needs of large numbers of different children and to provide activity-friendly areas enabling their healthy development.
Physics Division progress report, January 1, 1984-September 30, 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, W.E.
1987-10-01
This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less
Fade-resistant forward error correction method for free-space optical communications systems
Johnson, Gary W.; Dowla, Farid U.; Ruggiero, Anthony J.
2007-10-02
Free-space optical (FSO) laser communication systems offer exceptionally wide-bandwidth, secure connections between platforms that cannot other wise be connected via physical means such as optical fiber or cable. However, FSO links are subject to strong channel fading due to atmospheric turbulence and beam pointing errors, limiting practical performance and reliability. We have developed a fade-tolerant architecture based on forward error correcting codes (FECs) combined with delayed, redundant, sub-channels. This redundancy is made feasible though dense wavelength division multiplexing (WDM) and/or high-order M-ary modulation. Experiments and simulations show that error-free communications is feasible even when faced with fades that are tens of milliseconds long. We describe plans for practical implementation of a complete system operating at 2.5 Gbps.
NASA Astrophysics Data System (ADS)
Chen, H.; Jin, C.; Huang, B.; Fontaine, N. K.; Ryf, R.; Shang, K.; Grégoire, N.; Morency, S.; Essiambre, R.-J.; Li, G.; Messaddeq, Y.; Larochelle, S.
2016-08-01
Space-division multiplexing (SDM), whereby multiple spatial channels in multimode and multicore optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.
Lightning Talks 2015: Theoretical Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlachter, Jack S.
2015-11-25
This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.
46 CFR 108.175 - Contiguous locations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Contiguous locations. 108.175 Section 108.175 Shipping... EQUIPMENT Construction and Arrangement Classified Locations § 108.175 Contiguous locations. An enclosed space that has direct access to a Division 1 or Division 2 location is the same division as that...
Astronautics and Aeronautics, 1986-1990: A Chronology
NASA Technical Reports Server (NTRS)
Gawdiak, Ihor Y.; Miro, Ramon J.; Stueland, Sam
1997-01-01
This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the LibrarY of Congress for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1996-1990 and continues the series of annual chronologies published by NASA. The present volume returns to the format used in the Astronautics and Aeronautics, 1979-1984: A Chronology volume. It also integrates in a single table the information presented in two or three previous publications.
Astronautics and Aeronautics, 1991-1995: A Chronology
NASA Technical Reports Server (NTRS)
Gawdiak, Ihor Y. (Compiler); Shetland, Charles (Compiler)
2000-01-01
This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the Library of Congress and RSIS for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1991-1995 and continues the series of annual chronologies published by NASA. The present volume uses the format of the previous edition of this series, Astronautics and Aeronautics, 1986-1990: A Chronology. It also integrates, in the appendices, information presented in previous publication
Networks Technology Conference
NASA Technical Reports Server (NTRS)
Tasaki, Keiji K. (Editor)
1993-01-01
The papers included in these proceedings represent the most interesting and current topics being pursued by personnel at GSFC's Networks Division and supporting contractors involved in Space, Ground, and Deep Space Network (DSN) technical work. Although 29 papers are represented in the proceedings, only 12 were presented at the conference because of space and time limitations. The proceedings are organized according to five principal technical areas of interest to the Networks Division: Project Management; Network Operations; Network Control, Scheduling, and Monitoring; Modeling and Simulation; and Telecommunications Engineering.
Microgravity science and applications: Program tasks and bibliography for FY 1992
NASA Technical Reports Server (NTRS)
1993-01-01
This report is a compilation of the FY 1992 Principal Investigator program task descriptions funded by the Microgravity Science and Applications Division (MSAD), NASA Headquarters, Washington, DC. The document also provides a bibliography of FY 1992 publications and presentations cited by MSAD Principal Investigators, and an index of the Principal Investigators and their affiliations. The purpose of the document is to provide an overview and progress report for the funded tasks for scientists and researchers in industry, university, and government communities. The tasks are grouped into three categories appropriate to the type of research being done-space flight, ground based, and advanced technology development-and by science discipline. The science disciplines are: biotechnology, combustion science,, electronic materials, fluid physics, fundamental physics, glass and ceramics, metals and alloys, and protein crystal growth.
The ATLAS Experiment: Mapping the Secrets of the Universe (LBNL Summer Lecture Series)
Barnett, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physics Division
2018-01-12
Summer Lecture Series 2007: Michael Barnett of Berkeley Lab's Physics Division discusses the ATLAS Experiment at the European Laboratory for Particle Physics' (CERN) Large Hadron Collider. The collider will explore the aftermath of collisions at the highest energy ever produced in the lab, and will recreate the conditions of the universe a billionth of a second after the Big Bang. The ATLAS detector is half the size of the Notre Dame Cathedral and required 2000 physicists and engineers from 35 countries for its construction. Its goals are to examine mini-black holes, identify dark matter, understand antimatter, search for extra dimensions of space, and learn about the fundamental forces that have shaped the universe since the beginning of time and will determine its fate.
A chaotic modified-DFT encryption scheme for physical layer security and PAPR reduction in OFDM-PON
NASA Astrophysics Data System (ADS)
Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Li, Qiliang; Zhou, Zhao; Yang, Xuelin
2018-05-01
This letter proposes a modified discrete Fourier transform (DFT) encryption scheme with multi-dimensional chaos for the physical layer security and peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing passive optical network (OFDM-PON) system. This multiple-fold encryption algorithm is mainly composed by using the column vectors permutation and the random phase encryption in the standard DFT matrix, which can create ∼10551 key space. The transmission of ∼10 Gb/s encrypted OFDM signal is verified over 20-km standard single mode fiber (SMF). Moreover, experimental results show that, the proposed scheme can achieve ∼2.6-dB PAPR reduction and ∼1-dB improvement of receiver sensitivity if compared with the common OFDM-PON.
Obituary: Herbert Gursky, 1930-2006
NASA Astrophysics Data System (ADS)
Doschek, George; Dahlburg, Jill
2007-12-01
Dr. Herbert Gursky, Acting Associate Director of Research for the Naval Research Laboratory's (NRL's) Systems Directorate, and formerly Superintendent of the Space Science Division and Chief Scientist of the E. O. Hulburt Center for Space Research. Dr. Gursky died following a long illness on late Friday afternoon, December 1, 2006. Dr. Gursky was a great friend, valued colleague, and distinguished researcher who will be missed greatly. Dr. Gursky was born in Bronx, New York, on May 27, 1930. He was educated in secondary schools in Miami, Florida, and received a Bachelor's Degree from the University of Florida in 1951. He did graduate work in physics at Vanderbilt University (Master's degree in 1953) and Princeton University (Doctorate degree in 1959). His first professional position was at Columbia University as an instructor in the Physics Department from 1958 to 1961. In 1961, he joined American Science and Engineering, Inc. (AS&E) in Cambridge, Massachusetts, as a senior scientist and rose to the position of Vice President, Space Research in 1967. In 1973 he joined the Smithsonian Astrophysical Observatory (SAO) as a supervisory astrophysicist. In 1974, Dr. Gursky was appointed Professor in the Practice of Astronomy at Harvard University and in 1976 was named Associate Director of the Center for Astrophysics for the Division of Optical and Infrared Astronomy. In 1981, Dr. Gursky joined NRL as Superintendent of its Space Science Division and Chief Scientist of the E. O. Hulburt Center for Space Research. He moved to the position of Acting Associate Director of Research for NRL's Systems Directorate in 2006. Dr. Gursky's primary research interests were in the area of X-ray astronomy. He published more than 100 articles in this area and edited two books on the subject. Before arriving at NRL, he was the principal investigator for NASA-sponsored space programs on the Astronomical Netherlands Satellite (ANS) and the High Energy Astrophysics Observatory (HEAO)-1 satellite, and a co-investigator on numerous other rocket and satellite experiments. At AS&E, Dr. Gursky managed research activities encompassing solar physics and magnetospheric research, and at SAO, he managed programs of ground-based astronomy and infrared astronomy. At SAO, he oversaw the completion of the Multiple Mirror Telescope, a joint program of SAO and the University of Arizona, comprising a 4.5-meter (equivalent) telescope of novel design that is situated at Mount Hopkins in Arizona. Dr. Gursky's work at NRL involved direction of a broad-ranging research effort involving about fifty Ph.D. scientists conducting investigations in the areas of high-energy astronomy, solar physics, solar terrestrial effects and atmospheric science. NRL is the corporate research laboratory for the Navy and has the responsibility for assuring that future Navy systems take full advantage of all available technology and scientific understandings. Dr. Gursky had the ability to distill and seize the most important nuggets from any research program and envision its application to a variety of new problems and directions. In numerous areas of atmospheric, solar and space science technology, Dr. Gursky recognized key scientific issues and their potential DoD applications. In solar physics, he spurred the development of semi-empirical modeling to predict solar storms that has been successfully transitioned to operational systems. He also supported participation in all NASA and other agency Sun-Earth connection orbiting space programs which resulted in a succession of spectacularly successful experiments in solar physics such as the high resolution rocket spectrograph and its flight on the NASA Spacelab 2, the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the NASA Upper Atmosphere Research Satellite, the Bragg crystal spectrometer solar flare experiment on the Japanese Yohkoh spacecraft, and the Large Angle and Spectrometric Coronagraph Experiment (LASCO) and extreme ultraviolet imaging telescope (EIT) on the ESA/NASA Solar and Heliospheric Observatory. These experiments have shed considerable light on how solar activity affects the near-Earth environment with many potential space weather applications. In high-energy astronomy, Dr. Gursky made many contributions. He provided scientific oversight for the Advanced Research and Global Observation Satellite (ARGOS) Space Test Program spacecraft that contained five NRL instruments: the Unconventional Stellar Aspect (USA) experiment, the Global Imaging Monitor of the Ionosphere (GIMI), the High Resolution Airglow/Aurora Spectroscopy (HIRAAS) experiment, the Extreme Ultraviolet Imaging Photometer (EUVIP), and the Coherent Electromagnetic Radio Tomography (CERTO) instrument. He continued his interest in X-ray astronomy with the USA experiment, which obtained observations of many celestial sources such as galactic binary X-ray sources and pulsars. Always with an eye toward applications, Dr. Gursky was interested in using X-ray sources, specifically X-ray pulsars, as precise clocks to provide spacecraft with autonomous timing and navigation. Dr. Gursky also supported research in gamma ray astrophysics, such as the development of NRL's Oriented Scintillation Spectrometer Experiment (OSSE) for the NASA Compton Gamma Ray Observatory (CGRO) satellite, and analysis of solar flare gamma ray spectra obtained from the NASA Solar Maximum Mission. In atmospheric science, Dr. Gursky particularly encouraged practical applications of basic research. He recognized the importance of remote sensing for space weather, which resulted in the development at NRL of operational ultraviolet sensors on Defense Meteorological Satellite Program (DMSP) spacecraft that are now providing environmental data products to the Air Force Space Weather Agency. He initiated a program in middle atmosphere research that has been enormously successful and has spawned numerous experimental and theoretical advances, such as the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) to measure trace constituents in the middle atmosphere such as the hydroxyl radical (OH). Dr. Gursky supported the development of theoretical middle atmosphere models such as the Mountain Wave Forecast Model that was used to predict flight conditions for allied aircraft during operations Southern Watch, Enduring Freedom, and Iraqi Freedom, which has been a boon to stratospheric flight operations over mountainous terrain. He also supported the HIRAAS experiment on ARGOS. Dr. Gursky provided outstanding leadership in the continued development of the United States space program. Under his stewardship, the NRL Space Science Division substantially expanded its leadership role in understanding the space environment and its effects on military and civilian systems. The Laboratory and the world are now witnessing the newest results of his scientific acumen and sound decision-making as exemplified in the very recent successful completions and launches of these major Space Science Division instruments: Delivery of GLAST LAT (September 2006): Delivery of the collaborative NRL Large Area Telescope (LAT) for the NASA Gamma Ray Large Area Space Telescope (GLAST) satellite integration; when deployed, GLAST will measure the most energetic processes in the universe — from X-ray bursts, black holes, neutron stars, and solar flares — and has the potential to discover previously unknown relics of the Big Bang; Launch of SOLAR-B (September 2006): The Japan Aerospace Exploration Agency's Hinode (Japanese for Sunrise, formerly known as SOLAR-B) launched September 23 carrying NRL's collaborative Extreme-ultraviolet Imaging Spectrometer (EIS), which achieved first light on October 28. EIS is now observing emission lines produced by highly ionized elements in the solar coronal and upper transition region of the Sun's atmosphere. Space Science Division scientists expect much exciting science concerning the coupling of solar activity to the near-Earth space environment to be produced by the EIS instrument; and, Launch of STEREO (October 2006): NASA's Solar Terrestrial Relations Observatory (STEREO) launched 25 October, carrying the collaborative NRL Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) instruments suite, which is currently successfully functioning in the pre-commissioning phase. The instruments onboard STEREO's twin spacecraft will make observations to help NRL researchers construct the first-ever three-dimensional views of coronal mass ejections, vital data — in complement with the long-operational NRL-built NASA LASCO — for understanding how the Sun creates space weather Perhaps Dr. Gursky's most personal research successes were as a member of the group that made the discovery of cosmic X-ray sources in 1961, his work with sounding rockets that culminated in the optical identification of the bright X-ray source Scorpius X1 in 1966, his work on clusters of galaxies and the diffuse X-ray background from the Uhuru Satellite and the discovery of X-ray bursters on the ANS satellite.
Physical qualities and activity profiles of sub-elite and recreational Australian football players.
Stein, Josh G; Gabbett, Tim J; Townshend, Andrew D; Dawson, Brian T
2015-11-01
To investigate the relationship between physical qualities and match activity profiles of recreational Australian football players. Prospective cohort study. Forty players from three recreational Australian football teams (Division One, Two and Three) underwent a battery of fitness tests (vertical jump, 10 and 40 m sprint, 6 m × 30 m repeated sprint test, Yo-Yo intermittent recovery level Two and 2-km time trial). The activity profiles of competitive match-play were quantified using 10-Hz Global Positioning System units. Division One players possessed greater maximum velocity, Yo-Yo level Two and 2-km time trial performances than Division Two and Three players. In addition, Division One players covered greater relative distance, and relative distances at moderate- and high-intensities during match-play than Division Two and Three players. Division Two players had better 2-km time trial performances than Division Three players. Positive associations (P < 0.05) were found between 10 m acceleration, maximum velocity, Yo-Yo level Two and 2-km time trial performances and relative distance, and relative distances covered at moderate- and high-intensities during match-play. Moderate relationships were found between vertical jump and relative distance and high-intensity running. Sub-elite Australian football players competing at a higher level exhibit greater physical qualities and match-play activity profiles than lesser-skilled recreational players. Acceleration and maximum velocity, 2-km time trial and Yo-Yo level Two performances discriminate between players of different playing levels, and are related to physical match performance in recreational Australian football. The development of these qualities is likely to contribute to improved match performance in recreational Australian football players. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Mercury Orbiter: Report of the Science Working Team
NASA Technical Reports Server (NTRS)
Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.
1991-01-01
The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Pollock, Steven J.
2014-01-01
Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE), provide rich, fine-grained information about students' reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase…
Life sciences recruitment objectives
NASA Technical Reports Server (NTRS)
Keefe, J. Richard
1992-01-01
The goals of the Life Sciences Division of the Office of Space Sciences and Application are to ensure the health, well being and productivity of humans in space and to acquire fundamental scientific knowledge in space life sciences. With these goals in mind Space Station Freedom represents substantial opportunities and significant challenges to the Life Sciences Division. For the first time it will be possible to replicate experimental data from a variety of simultaneously exposed species with appropriate controls and real-time analytical capabilities over extended periods of time. At the same time, a system for monitoring and ameliorating the physiological adaptations that occur in humans subjected to extended space flight must be evolved to provide the continuing operational support to the SSF crew. To meet its goals, and take advantage of the opportunities and overcome the challenges presented by Space Station Freedom, the Life Sciences Division is developing a suite of discipline-focused sequence. The research phase of the Life Sciences Space Station Freedom Program will commence with the utilization flights following the deployment of the U.S. laboratory module and achievement of Man Tended Capability. Investigators that want the Life Sciences Division to sponsor their experiment on SSF can do so in one of three ways: submitting a proposal in response to a NASA Research Announcement (NRA), submitting a proposal in response to an Announcement of Opportunity (AO), or submitting an unsolicited proposal. The scientific merit of all proposals will be evaluated by peer review panels. Proposals will also be evaluated based on relevance to NASA's missions and on the results of an Engineering and Cost Analyses. The Life Sciences Division expects that the majority of its funding opportunities will be announced through NRA's. It is anticipated that the first NRA will be released approximately three years before first element launch (currently scheduled for late 1995). Subsequent NRA's will be released on a rotating two year cycle.
NASA space life sciences research and education support program
NASA Technical Reports Server (NTRS)
Jones, Terri K.
1995-01-01
USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.
NASA Technical Reports Server (NTRS)
Zeller, Mary V.; Lei, Jih-Fen
2002-01-01
The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.
Atmospheric and Geophysical Sciences Division Program Report, 1988--1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-06-01
In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.
Studio optics: Adapting interactive engagement pedagogy to upper-division physics
NASA Astrophysics Data System (ADS)
Sorensen, Christopher M.; McBride, Dyan L.; Rebello, N. Sanjay
2011-03-01
The use of interactive engagement strategies to improve learning in introductory physics is not new, but have not been used as often for upper-division physics courses. We describe the development and implementation of a Studio Optics course for upper-division physics majors at Kansas State University. The course adapts a three-stage Karplus learning cycle and other elements to foster an environment that promotes learning through an integration of lecture, laboratories, and problem solving. Some of the instructional materials are described. We discuss the evaluation of the course using data collected from student interviews, a conceptual survey, an attitudinal survey, and the instructor's reflections. Overall, students responded positively to the new format and showed modest gains in learning. The instructor's experiences compared favorably with the traditional course that he had taught in the past.
The NASA Materials Science Research Program - It's New Strategic Goals and Plans
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.
2003-01-01
In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.
Near Field HF Antenna Pattern Measurement Method Using an Antenna Pattern Range
2015-12-01
Year 2015 by the Applied Electromagnetics Branch (Code 52250) of the System of Systems (SoS) & Platform Design Division (Code 52200), Space and...Head SoS & Platform Design Division iii EXECUTIVE SUMMARY The Antenna Pattern Range (APR) is an essential measurement facility operated at Space...14 1 INTRODUCTION Accurate characterization of antennas designed to support the warfighter is a critical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, andmore » technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center.« less
The Application and Future Direction of the SPASE Metadata Standard in the U.S. and Worldwide
NASA Astrophysics Data System (ADS)
King, Todd; Thieman, James; Roberts, D. Aaron
2013-04-01
The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has been stable since January 2011. The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. In development are modifications to accommodate simulation and model data, as well as enhancements to describe data accessibility. These additions will add features to describe a broader range of data types. In keeping with a SPASE principle of back-compatibility, these changes will not affect the data descriptions already generated for instrument-related datasets. We also look at the long term commitment by NASA to support the SPASE effort and how SPASE metadata can enable value-added services.
Activities of the Structures Division, Lewis Research Center
NASA Technical Reports Server (NTRS)
1990-01-01
The purpose of the NASA Lewis Research Center, Structures Division's 1990 Annual Report is to give a brief, but comprehensive, review of the technical accomplishments of the Division during the past calendar year. The report is organized topically to match the Center's Strategic Plan. Over the years, the Structures Division has developed the technology base necessary for improving the future of aeronautical and space propulsion systems. In the future, propulsion systems will need to be lighter, to operate at higher temperatures and to be more reliable in order to achieve higher performance. Achieving these goals is complex and challenging. Our approach has been to work cooperatively with both industry and universities to develop the technology necessary for state-of-the-art advancement in aeronautical and space propulsion systems. The Structures Division consists of four branches: Structural Mechanics, Fatigue and Fracture, Structural Dynamics, and Structural Integrity. This publication describes the work of the four branches by three topic areas of Research: (1) Basic Discipline; (2) Aeropropulsion; and (3) Space Propulsion. Each topic area is further divided into the following: (1) Materials; (2) Structural Mechanics; (3) Life Prediction; (4) Instruments, Controls, and Testing Techniques; and (5) Mechanisms. The publication covers 78 separate topics with a bibliography containing 159 citations. We hope you will find the publication interesting as well as useful.
NASA Technical Reports Server (NTRS)
Hermann, M.; Johnson, L.
1994-01-01
For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing us with a clear picture of this region of space. The George C. Marshall Space Flight Center (MSFC) is responsible for defining the IMI mission which will study this region of space. NASA's Space Physics Division of the Office of Space Science placed the IMI third in its queue of Solar Terrestrial Probe missions for launch in the 1990's. A core instrument complement of three images (with the potential addition of one or more mission enhancing instruments) will fly in an elliptical, polar earth orbit with an apogee of 44,600 km and a perigee of 4,800 km. This paper will address the mission objectives, spacecraft design consideration, interim results of the MSFC concept definition study, and future plans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Authority of the Chief, Accounting Division... ASSIGNMENTS AND REVIEW OF ACTION UNDER ASSIGNMENTS Assignment of Functions to Staff Members § 385.21 Authority of the Chief, Accounting Division, Office of Budget and Policy, Federal Transit Administration. The...
Joy Osborne, MS, MPA | Division of Cancer Prevention
Joy Osborne is the ARC Director for the Division of Cancer Prevention and the Division of Cancer Control and Population Sciences. The ARC (Administrative Resource Center) provides services to DCP in the areas of budget, contracts, grants, human resources, travel, space and facilities, and other administrative areas. Joy came to NCI in 1992 as a Presidential Management Intern
Nano Goes Magnetic to Attract Big Business
NASA Technical Reports Server (NTRS)
2006-01-01
Glenn Research Center has combined state-of-the-art electrical designs with complex, computer-aided analyses to develop some of today s most advanced power systems, in space and on Earth. The center s Power and On-Board Propulsion Technology Division is the brain behind many of these power systems. For space, this division builds technologies that help power the International Space Station, the Hubble Space Telescope, and Earth-orbiting satellites. For Earth, it has woven advanced aerospace power concepts into commercial energy applications that include solar and nuclear power generation, battery and fuel cell energy storage, communications and telecommunications satellites, cryocoolers, hybrid and electric vehicles, and heating and air-conditioning systems.
40Gbit/s MDM-WDM Laguerre-Gaussian Mode with Equalization for Multimode Fiber in Access Networks
NASA Astrophysics Data System (ADS)
Fazea, Yousef; Amphawan, Angela
2018-04-01
Modal dispersion is seen as the primary impairment for multimode fiber. Mode division multiplexing (MDM) is a promising technology that has been realized as a favorable technology for considerably upsurges the capacity and distance of multimode fiber in conjunction with Wavelength Division Multiplexing (WDM) for fiber-to-the-home. This paper reveals the importance of an equalization technique in conjunction with controlling the modes spacing of mode division multiplexing-wavelength division multiplexing of Laguerre-Gaussian modes to alleviate modal dispersion for multimode fiber. The effects of channel spacing of 20 channels MDM-WDM were examined through controlling the azimuthal mode number and the radial mode number of Laguerre-Gaussian modes. A data rate of 40Gbit/s was achieved for a distance of 1,500 m for MDM-WDM.
Laboratory electron exposure of TSS-1 thermal control coating
NASA Technical Reports Server (NTRS)
Vaughn, J. A.; Mccollum, M.; Carruth, M. R., Jr.
1995-01-01
RM400, a conductive thermal control coating, was developed for use on the exterior shell of the tethered satellite. Testing was performed by the Engineering Physics Division to quantify effects of the space environment on this coating and its conductive and optical properties. Included in this testing was exposure of RM400 to electrons with energies ranging from 0.1 to 1 keV, to simulate electrons accelerated from the ambient space plasma when the tethered satellite is fully deployed. During this testing, the coating was found to luminesce, and a prolonged exposure of the coating to high-energy electrons caused the coating to darken. This report describes the tests done to quantify the degradation of the thermal control properties caused by electron exposure and to measure the luminescence as a function of electron energy and current density to the satellite.
NASA Technical Reports Server (NTRS)
Bales, K. S.
1983-01-01
The objectives, expected results, approach, and milestones for research projects of the IPAD Project Office and the impact dynamics, structural mechanics, and structural dynamics branches of the Structures and Dynamics Division are presented. Research facilities are described. Topics covered include computer aided design; general aviation/transport crash dynamics; aircraft ground performance; composite structures; failure analysis, space vehicle dynamics; and large space structures.
Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit.
Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo
2016-12-21
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10 -9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.
Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit
NASA Astrophysics Data System (ADS)
Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo
2016-12-01
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.
Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit
Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo
2016-01-01
Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than −30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10−9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers. PMID:28000735
Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model.
Papasavvas, Christoforos A; Wang, Yujiang; Trevelyan, Andrew J; Kaiser, Marcus
2015-09-01
Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics.
If Gravity is Geometry, is Dark Energy just Arithmetic?
NASA Astrophysics Data System (ADS)
Czachor, Marek
2017-04-01
Arithmetic operations (addition, subtraction, multiplication, division), as well as the calculus they imply, are non-unique. The examples of four-dimensional spaces, R+4 and (- L/2, L/2)4, are considered where different types of arithmetic and calculus coexist simultaneously. In all the examples there exists a non-Diophantine arithmetic that makes the space globally Minkowskian, and thus the laws of physics are formulated in terms of the corresponding calculus. However, when one switches to the `natural' Diophantine arithmetic and calculus, the Minkowskian character of the space is lost and what one effectively obtains is a Lorentzian manifold. I discuss in more detail the problem of electromagnetic fields produced by a pointlike charge. The solution has the standard form when expressed in terms of the non-Diophantine formalism. When the `natural' formalsm is used, the same solution looks as if the fields were created by a charge located in an expanding universe, with nontrivially accelerating expansion. The effect is clearly visible also in solutions of the Friedman equation with vanishing cosmological constant. All of this suggests that phenomena attributed to dark energy may be a manifestation of a miss-match between the arithmetic employed in mathematical modeling, and the one occurring at the level of natural laws. Arithmetic is as physical as geometry.
USDA-ARS?s Scientific Manuscript database
This work is devoted to review the new scientific divisions that emerged in agrophysics in the last 10-15 years. Among them are the following: 1) application of Adaptive Neuro-Fuzzy Inference System (ANFIS), 2) development and application of fuzzy indicator modeling, 3) agrophysical and physic-tech...
NASA Technical Reports Server (NTRS)
Jones, L. D.
1979-01-01
The Space Environment Test Division Post-Test Data Reduction Program processes data from test history tapes generated on the Flexible Data System in the Space Environment Simulation Laboratory at the National Aeronautics and Space Administration/Lyndon B. Johnson Space Center. The program reads the tape's data base records to retrieve the item directory conversion file, the item capture file and the process link file to determine the active parameters. The desired parameter names are read in by lead cards after which the periodic data records are read to determine parameter data level changes. The data is considered to be compressed rather than full sample rate. Tabulations and/or a tape for generating plots may be output.
The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research
NASA Astrophysics Data System (ADS)
Engebretson, Mark; Zesta, Eftyhia
2017-11-01
A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.
2008-06-09
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center, key personnel brief the media on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, launch scheduled for June 11. From left are Dr. Jon Morse, director of NASA's Astrophysics Division; Omar Baez, NASA launch director/launch manager at Kennedy; Kris Walsh, director of the Delta NASA and Commercial Programs with United Launch Alliance; Kevin Grady, GLAST project manager at NASA's Goddard Space Flight Center; Dr. Steven Ritz, GLAST project scientist/astrophysicist at Goddard; and Joel Tumbiolo, the U.S. Air Force Delta II launch weather officer with the 45th Weather Squadron at Cape Canaveral Air Force Station. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Ponomarev, Artem; Plante, Ianik; Hada, Megumi; George, Kerry; Wu, Honglu
2015-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a recently developed model, in which chromosomes simulated by NASARTI (NASA Radiation Tracks Image) is combined with nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS (Relativistic Ion Tracks) in a voxelized space. The model produces the number of DSBs, as a function of dose for high-energy iron, oxygen, and carbon ions, and He ions. The combined model calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The merged computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The merged model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation.
NASA Astrophysics Data System (ADS)
2014-12-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled "A little something from physics for medicine", was held on 23 April 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Rumyantsev S A (D Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Moscow) "Translational medicine as a basis of progress in hematology/oncology"; (2) Akulinichev S V (Institute for Nuclear Research, RAS, Moscow) "Promising nuclear medicine research at the INR, RAS"; (3) Nikitin P P (Prokhorov General Physics Institute, RAS, Moscow) "Biosensorics: new possibilities provided by marker-free optical methods and magnetic nanoparticles for medical diagnostics"; (4) Alimpiev S S, Nikiforov S M, Grechnikov A A (Prokhorov General Physics Institute, RAS, Moscow) "New approaches in laser mass-spectrometry of organic objects". The publication of the article based on the oral report No. 2 is presented below. • Promising nuclear medicine research in the Institute for Nuclear Research, Russian Academy of Sciences, V V Akulinichev Physics-Uspekhi, 2014, Volume 57, Number 12, Pages 1239-1243
NASA Technical Reports Server (NTRS)
Tarver, William J.
2012-01-01
Learning Objectives are: (1) Understand the unique work environment of astronauts. (2) Understand the effect microgravity has on human physiology (3) Understand how NASA Space Medicine Division is mitigating the health risks of space missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less
Construction of a Solid State Research Facility, Building 3150. Environmental Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
The Department of Energy (DOE) proposes to construct a new facility to house the Materials Synthesis Group (MSG) and the Semiconductor Physics Group (SPG) of the Solid State Division, Oak Ridge National Laboratory (ORNL). The location of the proposed action is Roane County, Tennessee. MSG is involved in the study of crystal growth and the preparation and characterization of advanced materials, such as high-temperature superconductors, while SPG is involved in semiconductor physics research. All MSG and a major pardon of SPG research activities are now conducted in Building 2000, a deteriorating structure constructed in the 1940. The physical deterioration ofmore » the roof; the heating, ventilation, and air conditioning (HVAC) system; and the plumbing make this building inadequate for supporting research activities. The proposed project is needed to provide laboratory and office space for MSG and SPG and to ensure that research activities can continue without interruption due to deficiencies in the building and its associated utility systems.« less
The historicity of the physics class: enactments, mimes and imitation
NASA Astrophysics Data System (ADS)
Bergwik, Staffan
2014-06-01
This essay discusses Anna Danielsson's article "In the physics class: university physics students' enactments of class and gender in the context of laboratory work". The situated co-construction of knowledge and identity forms the crucial vantage point and I argue that it is a point of intersection between the history of science and research in science education. The former can provide a valuable understanding of the historicity of learning science. I thus highlight the importance of knowledge as situated in time and space, for instance the importance of the historical division between "head and hand" clearly visible in the discourse of Danielsson's informants. Moreover, the article discusses how identity is produced in specific knowledge contexts through repeated performances. The article closes by briefly suggesting analytical alternatives, in particular "belonging" and "imitation". Both draw on post-structuralist ideas about the citational nature of identity. Belonging is created by citing and reinstating norms. Imitating knowledge, identity and norms is an issue that should be brought to the fore when we speak of education and training.
The NASA Space Life Sciences Training Program: Accomplishments Since 2013
NASA Technical Reports Server (NTRS)
Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth
2017-01-01
The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.
Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division
Jordan, Shawn N.; Davies, Tim; Zhuravlev, Yelena; Dumont, Julien; Shirasu-Hiza, Mimi
2016-01-01
Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation. PMID:26728855
46 CFR 108.173 - Class I, Division 2 locations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... locations. The following are Class I, Division 2 locations: (a) An enclosed space that has any open portion... mud pit. (b) A location in the weather that is— (1) Within the boundaries of the drilling derrick up...
Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model
Papasavvas, Christoforos A.; Wang, Yujiang; Trevelyan, Andrew J.; Kaiser, Marcus
2016-01-01
Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks: subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition, transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and, consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of pathological neural dynamics. PMID:26465514
Contingency Operations Support to NASA Johnson Space Center Medical Operations Division
NASA Technical Reports Server (NTRS)
Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien
2005-01-01
The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.
1997-04-04
STS-83 Payload Specialist Roger K. Crouch is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. He is the Chief Scientist of the NASA Microgravity Space and Applications Division. He also has served as a Program Scientist for previous Spacelab microgravity missions and is an expert in semiconductor crystal growth. Since Crouch has more than 25 years of experience as a materials scientist, he will be concentrating on the five physics of materials processing experiments in the Middeck Glovebox Facility on the Blue shift. He will also share the workload with Thomas by monitoring the materials furnace experiments during this time. Crouch and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 2:00 p.m. EST, April 4
Hardware Architecture Study for NASA's Space Software Defined Radios
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John
2008-01-01
This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.; Smith, Carl R.; Liebetreu, John; Hill, Gary; Mortensen, Dale J.; Andro, Monty; Scardelletti, Maximilian C.; Farrington, Allen
2008-01-01
This report defines a hardware architecture approach for software-defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general-purpose processors, digital signal processors, field programmable gate arrays, and application-specific integrated circuits (ASICs) in addition to flexible and tunable radiofrequency front ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and interfaces. The modules are a logical division of common radio functions that compose a typical communication radio. This report describes the architecture details, the module definitions, the typical functions on each module, and the module interfaces. Tradeoffs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify a physical implementation internally on each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
Multiple Autonomous Discrete Event Controllers for Constellations
NASA Technical Reports Server (NTRS)
Esposito, Timothy C.
2003-01-01
The Multiple Autonomous Discrete Event Controllers for Constellations (MADECC) project is an effort within the National Aeronautics and Space Administration Goddard Space Flight Center's (NASA/GSFC) Information Systems Division to develop autonomous positioning and attitude control for constellation satellites. It will be accomplished using traditional control theory and advanced coordination algorithms developed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). This capability will be demonstrated in the discrete event control test-bed located at JHU/APL. This project will be modeled for the Leonardo constellation mission, but is intended to be adaptable to any constellation mission. To develop a common software architecture. the controllers will only model very high-level responses. For instance, after determining that a maneuver must be made. the MADECC system will output B (Delta)V (velocity change) value. Lower level systems must then decide which thrusters to fire and for how long to achieve that (Delta)V.
ERIC Educational Resources Information Center
Systems Architects, Inc., Randolph, MA.
A practical system for producing a union catalog of titles in the collections of the Library of Congress Division for the Blind and Physically Handicapped (DBPH), its regional network, and related agencies from a machine-readable data base is presented. The DBPH organization and operations and the associated regional library network are analyzed.…
Overview of NASA Glenn Research Center's Communications and Intelligent Systems Division
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2016-01-01
The Communications and Intelligent Systems Division provides expertise, plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for application in current and future aeronautics and space systems.
78 FR 20563 - Use of Meeting Rooms and Public Spaces
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... and Public Spaces AGENCY: National Archives and Records Administration (NARA). ACTION: Proposed rule..., local, and tribal governmental institutions using public space for official government functions pay... Archives Building? (a) Direct your request to use space to Special Events (Partnerships Division), National...
NASA Astrophysics Data System (ADS)
Ferretti, S.; Amadori, K.; Boccalatte, A.; Alessandrini, M.; Freddi, A.; Persiani, F.; Poli, G.
2002-01-01
The UNIBO team composed of students and professors of the University of Bologna along with technicians and engineers from Alenia Space Division and Siad Italargon Division, took part in the 3rd Student Parabolic Flight Campaign of the European Space Agency in 2000. It won the student competition and went on to take part in the Professional Parabolic Flight Campaign of May 2001. The experiment focused on "dendritic growth in aluminium alloy weldings", and investigated topics related to the welding process of aluminium in microgravity. The purpose of the research is to optimise the process and to define the areas of interest that could be improved by new conceptual designs. The team performed accurate tests in microgravity to determine which phenomena have the greatest impact on the quality of the weldings with respect to penetration, surface roughness and the microstructures that are formed during the solidification. Various parameters were considered in the economic-technical optimisation, such as the type of electrode and its tip angle. Ground and space tests have determined the optimum chemical composition of the electrodes to offer longest life while maintaining the shape of the point. Additionally, the power consumption has been optimised; this offers opportunities for promoting the product to the customer as well as being environmentally friendly. Tests performed on the Al-Li alloys showed a significant influence of some physical phenomena such as the Marangoni effect and thermal diffusion; predictions have been made on the basis of observations of the thermal flux seen in the stereophotos. Space transportation today is a key element in the construction of space stations and future planetary bases, because the volumes available for launch to space are directly related to the payload capacity of rockets or the Space Shuttle. The research performed gives engineers the opportunity to consider completely new concepts for designing structures for space applications. In fact, once the optimised parameters are defined for welding in space, it could be possible to weld different parts directly in orbit to obtain much larger sizes and volumes, for example for space tourism habitation modules. The second relevant aspect is technology transfer obtained by the optimisation of the TIG process on aluminium which is often used in the automotive industry as well as in mass production markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger ofmore » another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs.« less
Physics of the Cosmos (PCOS) Technology Development Program Overview
NASA Astrophysics Data System (ADS)
Pham, B. Thai; Clampin, M.; Werneth, R. L.
2014-01-01
The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.
2018-01-01
The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.
46 CFR 108.173 - Class I, Division 2 locations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... m (10 ft.) of a possible source of gas release; or (3) Within 1.5 m (5 ft.) of the boundaries of any...) Within 1.5 m (5 ft.) of a semi-enclosed Class I, Division 1 location indicated in § 108.171(b); or (2) Within 1.5 m (5 ft.) of a Class I, Division 1 space indicated in § 108.171(e). (d) A semi-enclosed area...
46 CFR 108.173 - Class I, Division 2 locations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... m (10 ft.) of a possible source of gas release; or (3) Within 1.5 m (5 ft.) of the boundaries of any...) Within 1.5 m (5 ft.) of a semi-enclosed Class I, Division 1 location indicated in § 108.171(b); or (2) Within 1.5 m (5 ft.) of a Class I, Division 1 space indicated in § 108.171(e). (d) A semi-enclosed area...
46 CFR 108.173 - Class I, Division 2 locations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... m (10 ft.) of a possible source of gas release; or (3) Within 1.5 m (5 ft.) of the boundaries of any...) Within 1.5 m (5 ft.) of a semi-enclosed Class I, Division 1 location indicated in § 108.171(b); or (2) Within 1.5 m (5 ft.) of a Class I, Division 1 space indicated in § 108.171(e). (d) A semi-enclosed area...
46 CFR 108.173 - Class I, Division 2 locations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... m (10 ft.) of a possible source of gas release; or (3) Within 1.5 m (5 ft.) of the boundaries of any...) Within 1.5 m (5 ft.) of a semi-enclosed Class I, Division 1 location indicated in § 108.171(b); or (2) Within 1.5 m (5 ft.) of a Class I, Division 1 space indicated in § 108.171(e). (d) A semi-enclosed area...
Berkeley Lab - Materials Sciences Division
; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Facilities & Space Planning
NASA Technical Reports Server (NTRS)
1985-01-01
From its inception, the main charter of Life Sciences has been to define biomedical requirements for the design and development of spacecraft systems and to participate in NASA's scientific exploration of the universe. The role of the Life Sciences Division is to: (1) assure the health, well being and productivity of all individuals who fly in space; (2) study the origin, evolution, and distribution of life in the universe; and (3) to utilize the space environment as a tool for research in biology and medicine. The activities, programs, and accomplishments to date in the efforts to achieve these goals are detailed and the future challenges that face the division as it moves forward from the shuttle era to a permanent manned presence in space space station's are examined.
Physics division annual report 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayer, K., ed.
2001-10-04
This report summarizes the research performed in 2000 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory and medium energy physics research, and accelerator research and development. As the Nuclear Science Advisory Committee and the nuclear science community create a new long range plan for the field in 2001, it is clear that the research of the Division is closely aligned with and continues to help define the national goals of our field. The NSAC 2001 Long Range Plan recommends as themore » highest priority for major new construction the Rare Isotope Accelerator (RIA), a bold step forward for nuclear structure and nuclear astrophysics. The accelerator R&D in the Physics Division has made major contributions to almost all aspects of the RIA design concept and the community was convinced that this project is ready to move forward. 2000 saw the end of the first Gammasphere epoch at ATLAS, One hundred Gammasphere experiments were completed between January 1998 and March 2000, 60% of which used the Fragment Mass Analyzer to provide mass identification in the reaction. The experimental program at ATLAS then shifted to other important research avenues including proton radioactivity, mass measurements with the Canadian Penning Trap and measurements of high energy gamma-rays in nuclear reactions with the MSU/ORNL/Texas A&M BaF{sub 2} array. ATLAS provided 5460 beam-research hours for user experiments and maintained an operational reliability of 95%. Radioactive beams accounted for 7% of the beam time. ATLAS also provided a crucial test of a key RIA concept, the ability to accelerate multiple charge states in a superconducting heavy-ion linac. This new capability was immediately used to increase the performance for a scheduled experiment. The medium energy program continued to make strides in examining how the quark-gluon structure of matter impacts the structure of nuclei and extended the exquisite sensitivity of the Atom-Trap-Trace-Analysis technique to new species and applications. All of this progress was built on advances in nuclear theory, which the Division pursues at the quark, hadron, and nuclear collective degrees of freedom levels. These are just a few of the highlights in the Division's research program. The results reflect the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.« less
NASA Astrophysics Data System (ADS)
Chasteen, Stephanie V.; Wilcox, Bethany; Caballero, Marcos D.; Perkins, Katherine K.; Pollock, Steven J.; Wieman, Carl E.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] In response to the need for a scalable, institutionally supported model of educational change, the Science Education Initiative (SEI) was created as an experiment in transforming course materials and faculty practices at two institutions—University of Colorado Boulder (CU) and University of British Columbia. We find that this departmentally focused model of change, which includes an explicit focus on course transformation as supported by a discipline-based postdoctoral education specialist, was generally effective in impacting courses and faculty across the institution. In CU's Department of Physics, the SEI effort focused primarily on upper-division courses, creating high-quality course materials, approaches, and assessments, and demonstrating an impact on student learning. We argue that the SEI implementation in the CU Physics Department, as compared to that in other departments, achieved more extensive impacts on specific course materials, and high-quality assessments, due to guidance by the physics education research group—but with more limited impact on the departmental faculty as a whole. We review the process and progress of the SEI Physics at CU and reflect on lessons learned in the CU Physics Department in particular. These results are useful in considering both institutional and faculty-led models of change and course transformation.
Physics division. Progress report for period ending September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, S.J.
1997-04-01
This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Divisionmore » have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.« less
NASA Astrophysics Data System (ADS)
Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras
2017-11-01
A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.
NASA Technical Reports Server (NTRS)
Aliyev, A. A.; Mekhti-Zade, E. R.; Mashinskiy, A. L.; Alekperov, U. K.
1986-01-01
Physiological and cytogenetic changes in the Welsh onion plants induced by a short (82 days) and long term (522 days) space flight are expressed in decrease of seed germination, inhibition of stem growth, depression of cell division in root meristem, and increase in the number of structural chromosome rearrangements. The treatment of such plants with solutions of a-tocopherol, auxin, and kinetin decreased the level of chromosome aberrations to the control one and normalized cell divisions and growth partly or completely.
Second NASA Workshop on Wiring for Space Applications
NASA Technical Reports Server (NTRS)
1994-01-01
This document contains the proceedings of the Second NASA Workshop on Wiring for Space Applications held at NASA LeRC in Cleveland, OH, 6-7 Oct. 1993. The workshop was sponsored by NASA Headquarters Code QW Office of Safety and Mission Quality, Technical Standards Division and hosted by NASA LeRC, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry, and academia presented and discussed topics on arc tracking phenomena, wiring system design, insulation constructions, and system protection. Presentation materials provided by the various speakers are included in this document.
Communications and Intelligent Systems Division - Division Overview
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2017-01-01
This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition,and systems development for application in current and future aeronautics and space communications systems.
Communications and Intelligent Systems Division - Division Overview
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2017-01-01
This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition, and systems development for application in current and future aeronautics and space communications systems.
New Directions in NASA's Materials Science Program
NASA Technical Reports Server (NTRS)
Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.
Space Station communications and tracking systems modeling and RF link simulation
NASA Technical Reports Server (NTRS)
Tsang, Chit-Sang; Chie, Chak M.; Lindsey, William C.
1986-01-01
In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort.
NASA Astrophysics Data System (ADS)
Tian, Huiping; Shen, Guansheng; Liu, Weijia; Ji, Yuefeng
2013-07-01
An integrated model of photonic crystal (PC) demultiplexer that can be used to combine dense wavelength-division multiplexing (DWDM) and coarse wavelength-division multiplexing (CWDM) systems is first proposed. By applying the PC demultiplexer, dense channel spacing 0.8 nm and coarse channel spacing 20 nm are obtained at the same time. The transmission can be improved to nearly 90%, and the crosstalk can be decreased to less than -18 dB by enlarging the width of the bus waveguide. The total size of the device is 21×42 μm2. Four channels on one side of the demultiplexer can achieve DWDM in the wavelength range between 1575 and 1578 nm, and the other four channels on the other side can achieve CWDM in the wavelength range between 1490 and 1565 nm, respectively. The demonstrated demultiplexer can be applied in the future CWDM and DWDM system, and the architecture costs can be significantly reduced.
Argonne Physics Division Colloquium
and the birth of gravitational wave astronomy Host: Seamus Riordan 11 May 2018 18 May 2018 Laura University of Illinois at Chicago Physics Department Colloquia Northwestern University Physics and Astronomy
ERIC Educational Resources Information Center
School Science Review, 1976
1976-01-01
Described are 13 physics experiments/demonstrations applicable to introductory physics courses. Activities include: improved current balance, division circuits, liquid pressure, convection, siphons, oscillators and modulation, electrical resistance, soap films, Helmholtz coils, radioactive decay, and springs. (SL)
Statistical physics inspired energy-efficient coded-modulation for optical communications.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2012-04-15
Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America
HEP Division Argonne National Laboratory
Argonne National Laboratory Environmental Safety & Health DOE Logo Home Division ES&H ... Search Argonne Home >High Energy Physics> Environmental Safety & Health Environmental Safety & Health New Employee Training */ ?> Office Safety: Checklist (Submitted Checklists) Submitted
How-to-Do-It: Hands-on Activities that Relate Mendelian Genetics to Cell Division.
ERIC Educational Resources Information Center
McKean, Heather R.; Gibson, Linda S.
1989-01-01
Presented is an activity designed to connect Mendelian laws with the physical processes of cell division. Included are materials production, procedures and worksheets for the meiosis-mitosis game and a genetics game. (CW)
2003-08-20
KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Space Station Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.
NEUTRON PHYSICS DIVISION ANNUAL PROGRESS REPORT. Period Ending September 1, 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-01-11
A total of 74 subsections are included in the report. The information in 4 subsections was previously abstracted in NSA. Separate abstracts were prepared for 38 of the subsections. Those sections for which no abstracts were prepared contain information on prompt neutron lifetime, Rover critical experiments, Pu/sup 239/ fission, neutron decay, the O5R code, alpha scattering, 8 and P wavelengths, proton scattering, deuteron scattering, local optical potentials, N. S. Savamah radiation leakage, reactor shielding, cross section data analysis, gamma transport, gamma energy deposition, gaussian integration, data interpolation, neutron scattering, neutron energy deposition, space vehicles, computer analyses, shielding, positron sources, andmore » secondary particles. (J.R.D.)« less
The Ampere and Electrical Standards
Elmquist, Randolph E.; Cage, Marvin E.; Tang, Yi-hua; Jeffery, Anne-Marie; Kinard, Joseph R.; Dziuba, Ronald F.; Oldham, Nile M.; Williams, Edwin R.
2001-01-01
This paper describes some of the major contributions to metrology and physics made by the NIST Electricity Division, which has existed since 1901. It was one of the six original divisions of the National Bureau of Standards. The Electricity Division provides dc and low-frequency calibrations for industrial, scientific, and research organizations, and conducts research on topics related to electrical metrology and fundamental constants. The early work of the Electricity Division staff included the development of precision standards, such as Rosa and Thomas standard resistors and the ac-dc thermal converter. Research contributions helped define the early international system of measurement units and bring about the transition to absolute units based on fundamental principles and physical and dimensional measurements. NIST research has helped to develop and refine electrical standards using the quantum Hall effect and the Josephson effect, which are both based on quantum physics. Four projects covering a number of voltage and impedance measurements are described in detail. Several other areas of current research at NIST are described, including the use of the Internet for international compatibility in metrology, determination of the fine-structure and Planck constants, and construction of the electronic kilogram. PMID:27500018
Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making
NASA Astrophysics Data System (ADS)
Modir, Bahar
In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I will lay out a new theoretical framework based in epistemic framing that separates the problem solving space into four frames divided along two axes. The first axis models students' framing in math and physics, expanded through the second axis of conceptual problem solving and algorithmic problem solving. I use this framework to show how students navigate problem solving. Lastly, I will use this developed framework to interpret existing difficulties in quantum mechanics.
2015-02-07
CAPE CANAVERAL, Fla. – A prelaunch briefing at NASA’s Kennedy Space Center in Florida brings media up to date on preparations for the liftoff of NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. From left are Michael Curie, moderator, NASA Public Affairs, Stephen Volz, assistant administrator of the NOAA Satellite and Information Service, Tom Berger, director of the NOAA Space Weather Prediction Center, Steven Clarke, NASA Joint Agency Satellite Division director for the agency’s Science Mission Directorate, Col. D. Jason Cothern, Space Demonstrations Division chief at Kirtland Air Force Base in Albuquerque, New Mexico, and Hans Koenigsmann, vice president of mission assurance at SpaceX. DSCOVR will launch aboard a SpaceX Falcon 9 rocket. The mission is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Jim Grossman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Susan M.
These slides are the updated overview presentation for the TV monitor in 3-1415-Lobby at Los Alamos National Laboratory (LANL). It gives an overview of the Materials Physics and Applications Division, including descriptions of the leaders, where researchers are fellows (such as APS or OSA), the newest LANL fellows at MPA, and many other researchers who have won prizes. Finally, MPA's research accomplishments and focuses are detailed.
Our Hidden Past: Biology, Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Ray; Congdon, Charles; Bervin, Barry
After World War II, vacant buildings at Y-12 and a growing new Biology Division for which there was not adequate space at Oak Ridge National Laboratory combined to provide a home for genetic research at Y-12. In January 1949, the Biology Division moved into Building 9210.
76 FR 59172 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... topics: --Astrophysics Division Update. --James Webb Space Telescope Follow-Up. --Wide Field Infrared...
78 FR 41305 - Use of Meeting Rooms and Public Spaces
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
.... NARA-2013-033 RIN 3095-AB77 Use of Meeting Rooms and Public Spaces AGENCY: National Archives and..., and tribal governmental institutions using public space for official government functions pay fees to... Archives Building? (a) Direct your request to use space to Special Events (Partnerships Division), National...
76 FR 30232 - Office of Commercial Space Transportation Safety Approval Performance Criteria
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space... levels associated with suborbital space flight. The reduced gravity levels are: --0.00 g 0.05 g for 17... Division (AST-200), FAA Office of Commercial Space Transportation (AST), 800 Independence Avenue, SW., Room...
A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space
NASA Technical Reports Server (NTRS)
Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.
2000-01-01
We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.
Origin of Marshall Space Flight Center (MSFC)
2004-04-15
Twelve scientific specialists of the Peenemuende team at the front of Building 4488, Redstone Arsenal, Huntsville, Alabama. They led the Army's space efforts at ABMA before transfer of the team to National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC). (Left to right) Dr. Ernst Stuhlinger, Director, Research Projects Office; Dr. Helmut Hoelzer, Director, Computation Laboratory: Karl L. Heimburg, Director, Test Laboratory; Dr. Ernst Geissler, Director, Aeroballistics Laboratory; Erich W. Neubert, Director, Systems Analysis Reliability Laboratory; Dr. Walter Haeussermarn, Director, Guidance and Control Laboratory; Dr. Wernher von Braun, Director Development Operations Division; William A. Mrazek, Director, Structures and Mechanics Laboratory; Hans Hueter, Director, System Support Equipment Laboratory;Eberhard Rees, Deputy Director, Development Operations Division; Dr. Kurt Debus, Director Missile Firing Laboratory; Hans H. Maus, Director, Fabrication and Assembly Engineering Laboratory
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2010 CFR
2010-01-01
... inorganic chemistry; chemical physics; atomic physics; photochemistry; radiation chemistry; thermodynamics... is comprised of the subfields metallurgy, ceramics, solid state physics, materials chemistry, and... listed below. (a) Applied Plasma Physics (APP) This Division seeks to develop that body of physics...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.
1986-08-01
This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.
Physics Division progress report for period ending June 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)
NASA Astrophysics Data System (ADS)
2011-10-01
An Astrophysics and Astronomy scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the Conference Hall of the P N Lebedev Physical Institute, RAS, on 26 January 2011. The following reports were put on the session's agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Cherepashchuk A M (Sternberg Astronomical Institute, Moscow State University, Moscow) "Investigation of X-ray sources"; (2) Shustov B M (Institute of Astronomy, Russian Academy of Sciences, Moscow) "Asteroid and comet hazards: physical and other aspects"; (3) Sazhin M V (Sternberg Astronomical Institute, Moscow State University, Moscow) "Search for cosmic strings"; (4) Zakharov A F (Russian Federation State Scientific Center 'A I Alikhanov Institute for Theoretical and Experimental Physics', Moscow) "Exoplanet search using gravitational microlensing". Papers written on the basis of the reports are published below. • Optical investigations of X-ray binary systems, A M Cherepashchuk Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1061-1067 • Asteroid and comet hazards: the role of physical sciences in solving the problem, B M Shustov Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1068-1071 • Search for cosmic strings using optical and radio astronomy methods, O S Sazhina, M V Sazhin, M Capaccioli, G Longo Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1072-1077 • Search for exoplanets using gravitational microlensing, A F Zakharov Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1077-1084
NASA Technical Reports Server (NTRS)
Porter, Derrick
2014-01-01
The Mission Operations Directorate (MOD) is responsible for the training, planning and performance of all U.S. manned operations in space. Within this directorate all responsibilities are divided up into divisions. The EVA, Robotics & Crew Systems Operations Division performs ground operations and trains astronauts to carry out some of the more "high action" procedures in space. For example they orchestrate procedures like EVAs, or ExtraVehicular Activities (spacewalks), and robotics operations external to the International Space Station (ISS). The robotics branch of this division is responsible for the use of the Mobile Servicing System (MSS). This system is a combination of two robotic mechanisms and a series of equipment used to transport them on the ISS. The MSS is used to capture and position visiting vehicles, transport astronauts during EVAs, and perform external maintenance tasks on the ISS. This branch consists of two groups which are responsible for crew training and flight controlling, respectively. My first co-op tour took place Fall 2013. During this time I was given the opportunity to work in the robotics operations branch of the Mission Operations Directorate at NASA's Johnson Space Center. I was given a variety of tasks that encompassed, at a base level, all the aspects of the branch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radman, Ali M
The Division of Natural Sciences and Mathematics is housed in the Wilson-Booker Science Building (WBSB) which previously consisted of six classrooms, a lecture room, three biology laboratories, one physics laboratory, one chemistry laboratory, one research laboratory, and three computer laboratories. However, due to rapid expansion in STEM majors, there was a dire need for more classroom and laboratory space to accommodate this expansion. Further, since the College started integrating research into the curriculum in 2004 in order to keep pace with the national trend in science education, it has become apparent that one small research laboratory that accommodates 10 studentsmore » will not keep pace with the growing needs of the new students interested in research. Therefore , it became imperative to add another research laboratory to augment the existing one. Thus, the new instrumentation/Research Laboratory will provide space for the new equipment and research space for an additional 8 - 10 students. In addition, the new WBSB wing also houses a Biochemisty/Molecular Biology Laboratory, an Organic Chemistry laboratory, an Animal Laboratory, a Seminar Room, two spacious classrooms, and 3 Faculty Offices. The impact of the new facility will be far-reaching.« less
1997-07-01
STS-94 Payload Specialist Roger K. Crouch is helped into his launch/entry suit by a suit technician in the Operations and Checkout (O&C) Building after the suit has been given a pressure test. He is the Chief Scientist of the NASA Microgravity Space and Applications Division. He also has served as a Program Scientist for previous Spacelab microgravity missions and is an expert in semiconductor crystal growth. Since Crouch has more than 25 years of experience as a materials scientist, he will be concentrating on the five physics of materials processing experiments in the Middeck Glovebox Facility on the Blue shift. He will also share the workload with Thomas by monitoring the materials furnace experiments during this time. Crouch and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 1:50 p.m. EDT, July 1. The launch window was opened 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reached the space center
2008-06-09
CAPE CANAVERAL, Fla. -- At left, Public Information Officer George Diller moderates a media briefing on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, launch scheduled for June 11. On the panel next to Diller are Dr. Jon Morse, director of NASA's Astrophysics Division; Omar Baez, NASA launch director/launch manager at Kennedy; Kris Walsh, director of the Delta NASA and Commercial Programs with United Launch Alliance; Kevin Grady, GLAST project manager at NASA's Goddard Space Flight Center; Dr. Steven Ritz, GLAST project scientist/astrophysicist at Goddard; and Joel Tumbiolo, the U.S. Air Force Delta II launch weather officer with the 45th Weather Squadron at Cape Canaveral Air Force Station. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
An FPGA computing demo core for space charge simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jinyuan; Huang, Yifei; /Fermilab
2009-01-01
In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computedmore » using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.« less
Solid State Division progress report for period ending September 30, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Watson, D.M.
1985-03-01
During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)
First NASA Workshop on Wiring for Space Applications
NASA Technical Reports Server (NTRS)
Hammond, Ahmad (Compiler); Stavnes, Mark W. (Compiler)
1994-01-01
This document contains the proceedings of the First NASA Workshop on Wiring for Space Applications held at NASA Lewis Research Center in Cleveland, OH, July 23-24, 1991. The workshop was sponsored by NASA Headquarters Code QE Office of Safety and Mission Quality, Technical Standards Division and hosted by the NASA Lewis Research Center, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry and academia presented and discussed topics on arc tracking phenomena, wiring applications and requirements, and new candidate insulation materials and constructions. Presentation materials provided by the various speakers are included in this document.
Spaceport Command and Control System Software Development
NASA Technical Reports Server (NTRS)
Glasser, Abraham
2017-01-01
The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires a large amount of intensive testing that will properly measure the capabilities of the system. Automating the test procedures would save the project money from human labor costs, as well as making the testing process more efficient. Therefore, the Exploration Systems Division (formerly the Electrical Engineering Division) at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.
THE SEMIGROUP OF METRIC MEASURE SPACES AND ITS INFINITELY DIVISIBLE PROBABILITY MEASURES
EVANS, STEVEN N.; MOLCHANOV, ILYA
2015-01-01
A metric measure space is a complete, separable metric space equipped with a probability measure that has full support. Two such spaces are equivalent if they are isometric as metric spaces via an isometry that maps the probability measure on the first space to the probability measure on the second. The resulting set of equivalence classes can be metrized with the Gromov–Prohorov metric of Greven, Pfaffelhuber and Winter. We consider the natural binary operation ⊞ on this space that takes two metric measure spaces and forms their Cartesian product equipped with the sum of the two metrics and the product of the two probability measures. We show that the metric measure spaces equipped with this operation form a cancellative, commutative, Polish semigroup with a translation invariant metric. There is an explicit family of continuous semicharacters that is extremely useful for, inter alia, establishing that there are no infinitely divisible elements and that each element has a unique factorization into prime elements. We investigate the interaction between the semigroup structure and the natural action of the positive real numbers on this space that arises from scaling the metric. For example, we show that for any given positive real numbers a, b, c the trivial space is the only space that satisfies a ⊞ b = c . We establish that there is no analogue of the law of large numbers: if X1, X2, … is an identically distributed independent sequence of random spaces, then no subsequence of 1n⊞k=1nXk converges in distribution unless each Xk is almost surely equal to the trivial space. We characterize the infinitely divisible probability measures and the Lévy processes on this semigroup, characterize the stable probability measures and establish a counterpart of the LePage representation for the latter class. PMID:28065980
NASA Technical Reports Server (NTRS)
Herren, B.
1992-01-01
In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.
Annual Report, 1979-1980. New York City Technical College.
ERIC Educational Resources Information Center
New York City Technical Coll., Brooklyn. Div. of Continuing Education and Extension Services.
Funding, enrollments, and outcomes are reported for the programs offered during 1979-1980 by New York City Technical College's Division of Continuing Education and Extension Services. The report's introduction analyzes enrollment in the division, summarizes external evaluation of selected programs, and examines problems of staffing, space, and the…
Information sciences and human factors overview
NASA Technical Reports Server (NTRS)
Holcomb, Lee B.
1988-01-01
An overview of program objectives of the Information Sciences and Human Factors Division of NASA's Office of Aeronautics and Space Technology is given in viewgraph form. Information is given on the organizational structure, goals, the research and technology base, telerobotics, systems autonomy in space operations, space sensors, humans in space, space communications, space data systems, transportation vehicle guidance and control, spacecraft control, and major program directions in space.
NASA Astrophysics Data System (ADS)
2013-05-01
A scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 17 December 2012.The following reports were put on the session's agenda posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Dianov E M (Fiber Optics Research Center, RAS, Moscow) "On the threshold of a peta era"; (2) Zabrodskii A G (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Scientists' contribution to the great victory in WWII using the example of the Leningrad (now A F Ioffe) Physical Technical Institute"; (3) Ilkaev R I (Russian Federal Nuclear Center --- All-Russian Research Institute of Experimental Physics, Sarov) "Major stages of the Soviet Atomic Project"; (4) Cherepashchuk A M (Sternberg State Astronomical Institute of Lomonosov Moscow State University, Moscow) "History of the Astronomy history ". Papers written on the basis of the reports are published below. • On the Threshold of Peta-era, E M Dianov Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 486-492 • Scientists' contribution to the Great Victory in WWII on the example of the Leningrad (now A F Ioffe) Physical Technical Institute, A G Zabrodskii Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 493-502 • Major stages of the Atomic Project, R I Ilkaev Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 502-509 • History of the Universe History, A M Cherepashchuk Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 509-530
Learning Spaces as a Strategic Priority
ERIC Educational Resources Information Center
George, Gene; Erwin, Tom; Barnes, Briony
2009-01-01
In April 2007 Butler Community College made learning spaces one of its five strategic priorities. The college had just completed a major renovation of the work spaces for the IT division and had started a project to build a student union and create informal learning spaces at the Andover campus. With learning spaces becoming a strategic priority,…
77 FR 38090 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update --James Webb Space Telescope Update --Wide-Field Infrared Survey Telescope Report...
Progress at LAMPF: Clinton P. Anderson Meson Physics Facility. Progress report, January-June 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allred, J.C.
1981-09-01
Progress at LAMPF is the semiannual progress report of the MP Division of the Los Alamos National Laboratory. The report includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions.
1962-01-01
Dr. Wernher von Braun, Director of the Marshall Space Flight Center (MSFC), during his tour of the Space information Division of North American Aviation (NAA) in Downey, California, where the Saturn SII stage was developed.
Atmospheric Science Data Center
2017-04-13
... a consortium of Canadian companies and funded by the Space Science Division of the Canadian Space Agency. MOPITT measurements ... request only. Please contact User Services . News: April 2012 A small systematic error in the MOPITT ...
76 FR 19147 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance... announces the following meeting. Name: LIGO Laboratory Annual Review at Livingston Observatory for Physics...: Partially Closed. Contact Person: Thomas Carruthers, Program Director, Division of Physics, National Science...
Meyerhofer, D. D.; Mauel, M. E.
2016-05-18
The 57th annual meeting of the APS Division of Plasma Physics (DPP) was held November 16–20, 2015 in Savannah, Georgia. The meeting brings together researchers (undergraduate students through retirees) from all areas of plasma physics. 1887 abstracts were included in the program, approximately 200 more than the previous year. The presentations included five invited review talks, 97 invited talks, three invited postdeadline talks, and four tutorials. Furthermore, there were approximately 1780 contributed presentations, with about 40% oral and 60% poster. Three mini-conferences were held concurrently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyerhofer, D. D.; Mauel, M. E.
The 57th annual meeting of the APS Division of Plasma Physics (DPP) was held November 16–20, 2015 in Savannah, Georgia. The meeting brings together researchers (undergraduate students through retirees) from all areas of plasma physics. 1887 abstracts were included in the program, approximately 200 more than the previous year. The presentations included five invited review talks, 97 invited talks, three invited postdeadline talks, and four tutorials. Furthermore, there were approximately 1780 contributed presentations, with about 40% oral and 60% poster. Three mini-conferences were held concurrently.
Physics division progress report for period ending September 30 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, A.B.
1992-03-01
This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)
2003-08-20
KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Orbiter Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.
1977-08-01
A workman reams holes to the proper size and aligment in the Space Shuttle Main Engine's main injector body, through which propellants will pass through on their way into the engine's combustion chamber. Rockwell International's Rocketdyne Division plant produced the engines under contract to the Marshall Space Flight Center.
The Treatment and Destruction Branch (TDB) of NRMRL's Land Remediation and Pollution Control Division (LRPCD) produces and publishes highly technical and scientific documents relating to TDB's research. TDB conducts bioremediation and physical/chemical treatment research. The res...
The Treatment and Destruction Branch (TDB) of NRMRL's Land Remediation and Pollution Control Division (LRPCD) produces and publishes highly technical and scientific articles relating to TDB's research. TDB conducts bioremediation and physical/chemical treatment research. The rese...
The Treatment and Destruction Branch (TDB) of NRMRL's Land Remediation and Pollution Control Division (LRPCD)produces and publishes highly specialized technical and scientific documents relating to TDB's research. TDB conducts bioremediation and physical/chemical treatment resear...
The Treatment and Destruction Branch (TDB) of NRMRL's Land Remediation and Pollution Control Division (LRPCD) produces and publishes highly technical and scientific documents relating to TDB's research. TDB conducts bioremediation and physical/chemical treatment research. The res...
The Treatment and Destruction Branch (TDB) of NRMRL's Land Remediation and Pollution Control Division (LRPCD) produces and publishes highly technical and scientific documents relating to TDB's research. TDB conducts bioremediation and physical/chemical treatment research. The res...
Monitor and Control of the Deep-Space network via Secure Web
NASA Technical Reports Server (NTRS)
Lamarra, N.
1997-01-01
(view graph) NASA lead center for robotic space exploration. Operating division of Caltech/Jet Propulsion Laboratory. Current missions, Voyagers, Galileo, Pathfinder, Global Surveyor. Upcoming missions, Cassini, Mars and New Millennium.
2007-04-13
Yuri's Night at Ames a celebration of the first human in space. Ames Planetary Scientist with the Space Science Division Dr Chris McKay addresses a audience about Mars and life in extreme environments.
14 CFR 1203.409 - Exceptional cases.
Code of Federal Regulations, 2010 CFR
2010-01-01
....409 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION INFORMATION SECURITY PROGRAM... Information Security Program Committee, Security Division, Washington, DC 20546 for a classification..., to the Director, Information Security Oversight Office, GSA, for a determination. ...
Holographic fluorescence mapping using space-division matching method
NASA Astrophysics Data System (ADS)
Abe, Ryosuke; Hayasaki, Yoshio
2017-10-01
Three-dimensional mapping of fluorescence light sources was performed by using self-interference digital holography. The positions of the sources were quantitatively determined by using Gaussian fitting of the axial and lateral intensity distributions obtained from diffraction calculations through position calibration from the observation space to the sample space. A space-division matching method was developed to perform the mapping of many fluorescence light sources, in this experiment, 500 nm fluorescent nanoparticles fixed in gelatin. A fluorescence digital holographic microscope having a 60 × objective lens with a numerical aperture of 1.25 detected 13 fluorescence light sources in a measurable region with a radius of ∼ 20 μm and a height of ∼ 5 μm. It was found that the measurable region had a conical shape resulting from the overlap between two beams.
Long-range ordered vorticity patterns in living tissue induced by cell division
NASA Astrophysics Data System (ADS)
Rossen, Ninna S.; Tarp, Jens M.; Mathiesen, Joachim; Jensen, Mogens H.; Oddershede, Lene B.
2014-12-01
In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range dynamics induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the conditions during vessel formation or around blood clots. Cell divisions induce long-range, well-ordered vortex patterns extending several cell diameters away from the division site, in spite of the system’s low Reynolds number. Our experimental results are reproduced by a hydrodynamic continuum model simulating division as a local pressure increase corresponding to a local tension decrease. Such long-range physical communication may be crucial for embryonic development and for healing tissue, for instance around blood clots.
77 FR 14441 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance... announces the following meeting. Name: LIGO Annual Review Site Visit at Hanford Observatory for Physics...: Partially Closed. Contact Person: Thomas Carruthers, Program Director, Division of Physics, National Science...
76 FR 66998 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance... announces the following meeting. Name: LIGO Annual Review Site Visit at Hanford Observatory for Physics...: Partially Closed. Contact Person: Thomas Carruthers, Program Director, Division of Physics, National Science...
Accurate Cell Division in Bacteria: How Does a Bacterium Know Where its Middle Is?
NASA Astrophysics Data System (ADS)
Howard, Martin; Rutenberg, Andrew
2004-03-01
I will discuss the physical principles lying behind the acquisition of accurate positional information in bacteria. A good application of these ideas is to the rod-shaped bacterium E. coli which divides precisely at its cellular midplane. This positioning is controlled by the Min system of proteins. These proteins coherently oscillate from end to end of the bacterium. I will present a reaction-diffusion model that describes the diffusion of the Min proteins, and their binding/unbinding from the cell membrane. The system possesses an instability that spontaneously generates the Min oscillations, which control accurate placement of the midcell division site. I will then discuss the role of fluctuations in protein dynamics, and investigate whether fluctuations set optimal protein concentration levels. Finally I will examine cell division in a different bacteria, B. subtilis. where different physical principles are used to regulate accurate cell division. See: Howard, Rutenberg, de Vet: Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87 278102 (2001). Howard, Rutenberg: Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102 (2003). Howard: A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335 655-663 (2004).
NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs
NASA Technical Reports Server (NTRS)
Pham, Thai; Seery, Bernard; Ganel, Opher
2016-01-01
The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the Astrophysics Division's main investment method to mature technologies that will be identified by study teams set up to inform the 2020 Decadal Survey process on several large astrophysics mission concepts.
NASA Astrophysics Data System (ADS)
Pham, Thai; Thronson, Harley; Seery, Bernard; Ganel, Opher
2016-07-01
The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" "How did galaxies, stars, and planets come to be?" and "Are we alone?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos2 (PCOS), Cosmic Origins3 (COR), and Exoplanet Exploration Program4 (ExEP) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the Astrophysics Division's main investment method to mature technologies that will be identified by study teams set up to inform the 2020 Decadal Survey process on several large astrophysics mission concepts.
Biomedical Research Division significant accomplishments for FY 1983
NASA Technical Reports Server (NTRS)
Martello, N. V.
1984-01-01
Various research and technology activities of Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, human behavior and performance, general biomedical research, and gravitational biology.
Shared Education in Contested Spaces: How Collaborative Networks Improve Communities and Schools
ERIC Educational Resources Information Center
Duffy, Gavin; Gallagher, Tony
2017-01-01
Societies which suffer from ethnic and political divisions are often characterised by patterns of social and institutional separation, and sometimes these divisions remain even after political conflict has ended. This has occurred in Northern Ireland where there is, and remains, a long-standing pattern of parallel institutions and services for the…
NASA Astrophysics Data System (ADS)
2012-10-01
A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled 'Plasmonics', was held in the Conference Hall of the Lebedev Physical Institute, RAS on 21 February 2012. The following reports were put on the session agenda posted on the website www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Kukushkin I V, Murav'ev V M (Institute of Solid State Physics, RAS, Chernogolovka, Moscow region) "Terahertz plasmonics"; (2) Lozovik Yu E (Institute of Spectroscopy, RAS, Troitsk, Moscow region) "Plasmonics and magnetoplasmonics based on graphene and a topological insulator"; (3) Protsenko I E (P N Lebedev Physical Institute, RAS, Moscow) "Dipole nanolaser"; (4) Vinogradov A P, Andrianov E S, Pukhov A A, Dorofeenko A V (Institute for Theoretical and Applied Electrodynamics, RAS, Moscow), Lisyansky A A (Queens College of the City University of New York, USA) "Quantum plasmonics of metamaterials: loss compensation using spasers"; (5) Klimov V V (Lebedev Physical Institute, RAS, Moscow) "Quantum theory of radiation of optically active molecules in the vicinity of chiral nano-meta-particles". The papers written on the basis of oral reports 2-5 are published below. • Plasmonics and magnetoplasmonics based on graphene and a topological insulator, Yu E Lozovik Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1035-1039 • Theory of the dipole nanolaser, I E Protsenko Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1040-1046 • Quantum plasmonics of metamaterials: loss compensation using spasers, A P Vinogradov, E S Andrianov, A A Pukhov, A V Dorofeenko, A A Lisyansky Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1046-1053 • Using chiral nano-meta-particles to control chiral molecule radiation, V V Klimov, D V Guzatov Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1054-1058
2013-04-26
CAPE CANAVERAL, Fla. – The winning students of the 2013 DuPont Challenge Science Essay Competition show off their awards after a ceremony at the Kennedy Space Center Visitor Complex in Florida. From left are Junior Division first runner-up Gaurav Garg of Beckendorff Junior High in Katy, Texas Senior Division grand prize winner Jacob Yoshitake of Marshall Middle School in San Diego, Calif. Senior Division first runner-up Laura Herman of Pine Crest School in Fort Lauderdale, Fla. and Senior Division grand prize awardee Hugo Yen of Troy High in Fullerton, Calif. and Marc Doyle, Dupont's global marketing and product director. The challenge, now in its 27th year, reaches out to students from grades seven through 12 from all 50 states and Canada. More than 200,000 students entered the competition. The DuPont Challenge aims to inspire students to excel and achieve in scientific writing and pursue careers in science, technology, engineering and mathematics STEM. The challenge honors space shuttle Challenger's STS-51L crew members who gave their lives while furthering the cause of exploration and discovery. For more information on the challenge, go to http://thechallenge.dupont.com/sponsors/nasa.php.
NASA’s Walter Olson poses in the New Energy Conversion Laboratory
1963-07-21
Walter Olson, Chief of the Chemistry and Energy Conversion Division, examines equipment in the new Energy Conversion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Energy Conversion Laboratory, built in 1961 and 1962, was a modest one-story brick structure with 30,000 square feet of working space. It was used to study fundamental elements pertaining to the conversion of energy into electrical power. The main application for this was space power, but in the 1970s it would also be applied for terrestrial applications. Olson joined the Lewis staff as a fuels and combustion researcher in 1942 and was among a handful or researchers who authored the new laboratory’s first technical report. The laboratory reorganized after the war and Olson was placed in charge of three sections of researchers in the Combustion Branch. They studied combustion and fuels for turbojets, ramjets, and small rockets. In 1950, Olson was named Chief of the entire Fuels and Combustion Research Division. In 1960 Olson was named Chief of the new Chemistry and Energy Conversion Division. It was in this role that Olson advocated for the construction of the Energy Conversion Laboratory. The new division expanded its focus from just fuels and combustion to new sources of energy and power such as solar cells, fuels cells, heat transfer, and thermionics.
Annual Safety Education Review 1972.
ERIC Educational Resources Information Center
American Association for Health, Physical Education, and Recreation, Washington, DC.
This booklet presents articles completed in 1972 by the Division of Safety Education of the American Association for Health, Physical Education, and Recreation. The introductory article contains the accomplishments of the division in 1971-72. The major points covered are planning conferences, conventions and meetings; revising the operating code…
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and
Su, Tiehui; Scott, Ryan P; Djordjevic, Stevan S; Fontaine, Nicolas K; Geisler, David J; Cai, Xinran; Yoo, S J B
2012-04-23
We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of -2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states. © 2012 Optical Society of America
32 CFR 644.140 - Physical protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...
32 CFR 644.140 - Physical protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 4 2013-07-01 2013-07-01 false Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...
32 CFR 644.140 - Physical protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 4 2014-07-01 2013-07-01 true Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...
32 CFR 644.140 - Physical protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...
32 CFR 644.140 - Physical protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...
Dr. von Braun Tours the North American Aviation
NASA Technical Reports Server (NTRS)
1962-01-01
Dr. Wernher von Braun, Director of the Marshall Space Flight Center (MSFC), during his tour of the Space information Division of North American Aviation (NAA) in Downey, California, where the Saturn SII stage was developed.
Dr. von Braun tours the North American Aviation
NASA Technical Reports Server (NTRS)
1962-01-01
Dr. Wernher von Braun, Director of the Marshall Space Flight Center (MSFC), during his tour of the Space Information Division of North American Aviation (NAA) in Downey, California, where the Saturn SII stage was developed.
Mangalam, Madhur; Desai, Nisarg; Singh, Mewa
2015-01-01
A practical approach to understanding lateral asymmetries in body, brain, and cognition would be to examine the performance advantages/disadvantages associated with the corresponding functions and behavior. In the present study, we examined whether the division of labor in hand usage, marked by the preferential usage of the two hands across manual operations requiring maneuvering in three-dimensional space (e.g., reaching for food, grooming, and hitting an opponent) and those requiring physical strength (e.g., climbing), is associated with higher hand performance in free-ranging bonnet macaques, Macaca radiata. We determined the extent to which the macaques exhibit laterality in hand usage in an experimental unimanual and a bimanual food-reaching task, and the extent to which manual laterality is associated with hand performance in an experimental hand-performance-differentiation task. We observed negative relationships between (a) the latency in food extraction by the preferred hand in the hand-performance-differentiation task (wherein, lower latency implies higher performance), the preferred hand determined using the bimanual food-reaching task, and the normalized difference between the performance of the two hands, and (b) the normalized difference between the performance of the two hands and the absolute difference between the laterality in hand usage in the unimanual and the bimanual food-reaching tasks (wherein, lesser difference implies higher manual specialization). Collectively, these observations demonstrate that the division of labor between the two hands is associated with higher hand performance. PMID:25806511
1983-11-04
Division AREA & WORK UNIT NUMBERS . Department of Chemistry Howard University Washington, D. C. 20059 NR-051-733 1t. CONTROLLING OFFICE NAME AND...Journal of Physical Chemistry Laser Chemistry Division Department of Chemistry Howard University Washington, D. C. 20059 November 4, 1983 *Reproduction in...Victor McCrary, David Zakheim, and William M. Jackson Laser Chemistry Division Chemistry Departmient Howard University Washington, D.C.. 20059 ABSTRACT The
2015-02-07
CAPE CANAVERAL, Fla. – A prelaunch briefing at NASA’s Kennedy Space Center in Florida brings media up to date on preparations for the liftoff of NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR. From left are Michael Curie, moderator, NASA Public Affairs, Stephen Volz, assistant administrator of the NOAA Satellite and Information Service, Tom Berger, director of the NOAA Space Weather Prediction Center, Steven Clarke, NASA Joint Agency Satellite Division director for the agency’s Science Mission Directorate, Col. D. Jason Cothern, Space Demonstrations Division chief at Kirtland Air Force Base in Albuquerque, New Mexico, and Hans Koenigsmann, vice president of mission assurance at SpaceX, and Mike McAleenan, launch weather officer with the U.S. Air Force 45th Weather Squadron. DSCOVR will launch aboard a SpaceX Falcon 9 rocket. The mission is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett
2015-02-07
CAPE CANAVERAL, Fla. – Launch and mission officials prepare for the start of a prelaunch briefing at NASA’s Kennedy Space Center in Florida regarding NOAA’s Deep Space Climate Observatory mission, or DSCOVR. From left are Michael Curie, moderator, NASA Public Affairs, Stephen Volz, assistant administrator of the NOAA Satellite and Information Service, Tom Berger, director of the NOAA Space Weather Prediction Center, Steven Clarke, NASA Joint Agency Satellite Division director for the agency’s Science Mission Directorate, Col. D. Jason Cothern, Space Demonstrations Division chief at Kirtland Air Force Base in Albuquerque, New Mexico, and Hans Koenigsmann, vice president of mission assurance at SpaceX, and Mike McAleenan, launch weather officer with the U.S. Air Force 45th Weather Squadron. DSCOVR will launch aboard a SpaceX Falcon 9 rocket. The mission is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett
Glynn, Jonathan M; Froehlich, John E; Osteryoung, Katherine W
2008-09-01
Chloroplasts arose from a free-living cyanobacterial endosymbiont and divide by binary fission. Division involves the assembly and constriction of the endosymbiont-derived, tubulin-like FtsZ ring on the stromal surface of the inner envelope membrane and the host-derived, dynamin-like ARC5 ring on the cytosolic surface of the outer envelope membrane. Despite the identification of many proteins required for plastid division, the factors coordinating the internal and external division machineries are unknown. Here, we provide evidence that this coordination is mediated in Arabidopsis thaliana by an interaction between ARC6, an FtsZ assembly factor spanning the inner envelope membrane, and PDV2, an ARC5 recruitment factor spanning the outer envelope membrane. ARC6 and PDV2 interact via their C-terminal domains in the intermembrane space, consistent with their in vivo topologies. ARC6 acts upstream of PDV2 to localize PDV2 (and hence ARC5) to the division site. We present a model whereby ARC6 relays information on stromal FtsZ ring positioning through PDV2 to the chloroplast surface to specify the site of ARC5 recruitment. Because orthologs of ARC6 occur in land plants, green algae, and cyanobacteria but PDV2 occurs only in land plants, the connection between ARC6 and PDV2 represents the evolution of a plant-specific adaptation to coordinate the assembly and activity of the endosymbiont- and host-derived plastid division components.
Initial Results from Awesome VLF Receiver Installed in Ecuador
NASA Astrophysics Data System (ADS)
Lopez, Ericson
2012-07-01
In this work we present the first results that we have derived from analysis of data obtained using the Atmospheric Weather Electromagnetic System for Observation Modeling and Education (Awesome) VLF receiver, designed and developed by Stanford University, USA. The receiver was installed under inter-institutional cooperation in the emerging Space Science division of the Quito Astronomical Observatory, and it is working properly since 2010. We have describe the performance characteristic of the Awesome system and the importance of having receivers at equator for monitoring the ionosphere and magnetosphere, recepting extremely low frequencies (ELF;30-3000 Hz) and very low frequencies (VLF; 3-30 KHz) electromagnetic waves, in order to better understanding the physical processes which take place in these media.
1999-05-12
The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.
Microgravity science and applications program tasks, 1991 revision
NASA Technical Reports Server (NTRS)
1992-01-01
Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.
The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stagg, Elizabeth
2004-01-01
In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.
NASA's Laboratory Astrophysics Workshop: Opening Remarks
NASA Technical Reports Server (NTRS)
Hasan, Hashima
2002-01-01
The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.
Cryogenic fluid management in space
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1988-01-01
Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.
Advanced multiple access concepts in mobile satellite systems
NASA Technical Reports Server (NTRS)
Ananasso, Fulvio
1990-01-01
Some multiple access strategies for Mobile Satellite Systems (MSS) are discussed. These strategies were investigated in the context of three separate studies conducted for the International Maritime Satellite Organization (INMARSAT) and the European Space Agency (ESA). Satellite-Switched Frequency Division Multiple Access (SS-FDMA), Code Division Multiple Access (CDMA), and Frequency-Addressable Beam architectures are addressed, discussing both system and technology aspects and outlining advantages and drawbacks of either solution with associated relevant hardware issues. An attempt is made to compare the considered option from the standpoint of user terminal/space segment complexity, synchronization requirements, spectral efficiency, and interference rejection.
Space division multiplexing chip-to-chip quantum key distribution.
Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo
2017-09-29
Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.
2017-12-08
NASA Kennedy Space Center's Engineering Director Pat Simpkins, at left, talks with Michael E. Johnson, a project engineer; and Emilio Cruz, deputy division chief in the Laboratories, Development and Testing Division, inside the Prototype Development Laboratory. A banner signing event was held to mark the successful delivery of a liquid oxygen test tank, called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
Origins of the Sexual Division of Labor.
ERIC Educational Resources Information Center
Leibowitz, Lila
An interactive, biosocial model of early hominids presents evidence that physical sex differences are not the basis for the sexual division of labor as is commonly believed. Production (the deliberate collection and distribution of food) developed among early hominids as a prerequisite for survival. Although the population appears to have had…
The North Carolina Division of Public Health's vision for healthy and sustainable communities.
Thomas, Cathy; Rhew, Lori K; Petersen, Ruth
2012-01-01
The North Carolina Division of Public Health is working to improve access to physical activity through changes in the built environment by participating in the Healthy Environments Collaborative and by leading the state's Communities Putting Prevention to Work project and the Shape Your World movement.
Using Physical Models to Explain a Division Algorithm.
ERIC Educational Resources Information Center
Vest, Floyd
1985-01-01
Develops a division algorithm in terms of familiar manipulations of concrete objects and presents it with a series of questions for diagnosis of students' understanding of the algorithm in terms of the concrete model utilized. Also offers general guidelines for using concrete illustrations to explain algorithms and other mathematical principles.…
NASA Astrophysics Data System (ADS)
2011-08-01
A scientific session of the general meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) dedicated to the 50th anniversary of the creation of lasers was held in the Conference Hall of the Lebedev Physical Institute, RAS, on 13 December 2010. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A, Bagaev S N Opening speech; (2) Bratman V L, Litvak A G, Suvorov E V (Institute of Applied Physics, RAS, Nizhny Novgorod) "Mastering the terahertz domain: sources and applications"; (3) Balykin V I (Institute of Spectroscopy, RAS, Troitsk, Moscow region) "Ultracold atoms and atom optics"; (4) Ledentsov N N (Ioffe Physical Technical Institute, RAS, St. Petersburg) "New-generation surface-emitting lasers as the key element of the computer communication era"; (5) Krasil'nik Z F (Institute for the Physics of Microstructures, RAS, Nizhny Novgorod) "Lasers for silicon optoelectronics"; (6) Shalagin A M (Institute of Automation and Electrometry, Siberian Branch, RAS, Novosibirsk) "High-power diode-pumped alkali metal vapor lasers"; (7) Kul'chin Yu N (Institute for Automation and Control Processes, Far Eastern Branch, RAS, Vladivostok) "Photonics of self-organizing biomineral nanostructures"; (8) Kolachevsky N N (Lebedev Physical Institute, RAS, Moscow) "Laser cooling of rare-earth atoms and precision measurements". The papers written on the basis of reports 2-4, 7, and 8 are published below.Because the paper based on report 6 was received by the Editors late, it will be published in the October issue of Physics-Uspekhi together with the material related to the Scientific Session of the Physical Sciences Division, RAS, of 22 December 2010. • Mastering the terahertz domain: sources and applications, V L Bratman, A G Litvak, E V Suvorov Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 837-844 • Ultracold atoms and atomic optics, V I Balykin Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 844-852 • New-generation vertically emitting lasers as a key factor in the computer communication era, N N Ledentsov, J A Lott Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 853-858 • The photonics of self-organizing biomineral nanostructures, Yu N Kulchin Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 858-863 • Laser cooling of rare-earth atoms and precision measurements, N N Kolachevsky Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 863-870
An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Randal Scott
CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less
Clarke, Frank Wigglesworth
1890-01-01
The present bulletin represents work finished in the Division of Chemistry and Physics during the fiscal year 1888—'89, and resembles in general design and purpose its predecessors, Nos. 9, 27, 42, 55, and 60. It covers, however, only a part of the work actually accomplished, for some investigations are not yet completed, others will appear in special bulletins now in course of preparation, and many analyses will be published in forthcoming reports of the field geologists.
NASA Technical Reports Server (NTRS)
2003-01-01
Dennis Grounds recently finished a one-year assignment at NASA Headquarters in the Office of Bioastronautics as the Acting Flight Program Manager He has returned to Johnson Space Center (JSC), where he is Director of the International Space Station Bioastronautics Research Program Office with the NASA Life Sciences Projects Division. Under his management, the Human Research Facility (HRF) was developed to support a broad range of scientific investigations pertaining to human adaptation to the spaceflight environment and issues of human space exploration. The HRF rack was developed to international standards in order to be compatible with payloads developed anywhere in the world, thereby streamlining the process of getting payloads on the Space Station. Grounds has worked with NASA for more than 15 years. Prior to joining ISS, he worked with General Electric as a manager of payloads and analysis in support of the NASA Life Science Projects Division at JSC. ASK spoke with Grounds in Washington, D.C., during his Headquarters assignment.
Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling
NASA Astrophysics Data System (ADS)
Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin
2018-01-01
In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.
Parallel optoelectronic trinary signed-digit division
NASA Astrophysics Data System (ADS)
Alam, Mohammad S.
1999-03-01
The trinary signed-digit (TSD) number system has been found to be very useful for parallel addition and subtraction of any arbitrary length operands in constant time. Using the TSD addition and multiplication modules as the basic building blocks, we develop an efficient algorithm for performing parallel TSD division in constant time. The proposed division technique uses one TSD subtraction and two TSD multiplication steps. An optoelectronic correlator based architecture is suggested for implementation of the proposed TSD division algorithm, which fully exploits the parallelism and high processing speed of optics. An efficient spatial encoding scheme is used to ensure better utilization of space bandwidth product of the spatial light modulators used in the optoelectronic implementation.
NASA Astrophysics Data System (ADS)
A. Khan, M.; Qayyum, A.; I., Ahmed; T., Iqbal; A. Khan, A.; Waleed, R.; Mohuddin, B.; Malik, M.
2016-07-01
Not Available Supported by the Department of Physics, the University of AJK, High Tech. Centralized Instrumentation Lab, the University of AJK, Pakistan and the Experimental Physics Division, and the National Center for Physics, Islamabad Pakistan.
NASA Exploration Forum: Human Path to Mars
2014-04-29
Sam Scimemi, Director of NASA's International Space Station Division, second from left, Phil McAlister, Director of NASA's Commercial Spaceflight Division, third from left, Dan Dumbacher, Deputy Associate Administrator of NASA's Exploration Systems Development, center, Michele Gates, Senior Technical Advisor of NASA's Human Exploration and Operations Mission Directorate, second from right, and Jason Crusan, Director of NASA's Advanced Exploration Systems Division, right, sit on a panel during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)
NASA Exploration Forum: Human Path to Mars
2014-04-29
Sam Scimemi, Director of NASA's International Space Station Division, left, Phil McAlister, Director of NASA's Commercial Spaceflight Division, second from left, Dan Dumbacher, Deputy Associate Administrator of NASA's Exploration Systems Development, center, Michele Gates, Senior Technical Advisor of NASA's Human Exploration and Operations Mission Directorate, second from right, and Jason Crusan, Director of NASA's Advanced Exploration Systems Division, right, sit on a panel during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)
Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL
linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group energy security, heavy ion physics, nuclear astrophysics, physics beyond the standard model, neutrino
Physics Division progress report for period ending September 30, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-12-01
Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)
Twelve Scientific Specialists of the Peenemuende Team
NASA Technical Reports Server (NTRS)
2004-01-01
Twelve scientific specialists of the Peenemuende team at the front of Building 4488, Redstone Arsenal, Huntsville, Alabama. They led the Army's space efforts at ABMA before transfer of the team to National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC). (Left to right) Dr. Ernst Stuhlinger, Director, Research Projects Office; Dr. Helmut Hoelzer, Director, Computation Laboratory: Karl L. Heimburg, Director, Test Laboratory; Dr. Ernst Geissler, Director, Aeroballistics Laboratory; Erich W. Neubert, Director, Systems Analysis Reliability Laboratory; Dr. Walter Haeussermarn, Director, Guidance and Control Laboratory; Dr. Wernher von Braun, Director Development Operations Division; William A. Mrazek, Director, Structures and Mechanics Laboratory; Hans Hueter, Director, System Support Equipment Laboratory;Eberhard Rees, Deputy Director, Development Operations Division; Dr. Kurt Debus, Director Missile Firing Laboratory; Hans H. Maus, Director, Fabrication and Assembly Engineering Laboratory
Wavelength division multiplexing of chaotic secure and fiber-optic communications.
Zhang, Jian-Zhong; Wang, An-Bang; Wang, Juan-Fen; Wang, Yun-Cai
2009-04-13
Wavelength division multiplexing (WDM) transmission of chaotic optical communication (COC) and conventional fiber-optic communication (CFOC) is numerically confirmed and analyzed. For an 80-km-long two-channel communication system, a 1-Gb/s secure message in COC channel and 10-Gb/s digital signal in CFOC channel are simultaneously achieved with 100 GHz channel spacing. Our numerical simulations demonstrate that the COC and CFOC can realize no-crosstalk transmission of 80 km when the peak power of CFOC channel is less than 8dBm. We also find that the crosstalk between COC and CFOC does not depend on channel spacing when the channel spacing exceeds 100GHz. Moreover, the crosstalk does not limit channel number by comparing the synchronization performance of COC in four- and six-channel WDM systems.
Publications - GMC 252 | Alaska Division of Geological & Geophysical
DGGS GMC 252 Publication Details Title: Kemik sandstone - petrology, physical properties, and facies of Continental Margins Program, 1995, Kemik sandstone - petrology, physical properties, and facies of outcrop
Apollo 40th Anniversary History Panel
2009-07-15
Michael Neufeld, chair of the division of space history at the National Air and Space Museum, speaks during an Apollo History and Legacy roundtable discussion, Thursday, July 16, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Human Resources General
46 CFR 127.225 - Structural fire protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... wheelhouses, containing accommodation, service and control spaces, facing the cargo area must be constructed of steel and comply with §§ 32.56-20, 32.56-21, and 32.56-22 of this chapter. (d) Cargo pump rooms must be separated from accommodation spaces, service spaces, and control stations by A-60 divisions. (e...
Space Science Educational Media Resources, A Guide for Junior High School Teachers.
ERIC Educational Resources Information Center
McIntyre, Kenneth M.
This guide, developed by a panel of teacher consultants, is a correlation of educational media resources with the "North Carolina Curricular Bulletin for Eighth Grade Earth and Space Science" and the state adopted textbook, pModern Earth Science." The three major divisions are (1) the Earth in Space (Astronomy), (2) Space…
Geometric Reasoning in an Active-Engagement Upper-Division E&M Classroom
ERIC Educational Resources Information Center
Cerny, Leonard Thomas
2012-01-01
A combination of theoretical perspectives is used to create a rich description of student reasoning when facing a highly-geometric electricity and magnetism problem in an upper-division active-engagement physics classroom at Oregon State University. Geometric reasoning as students encounter problem situations ranging from familiar to novel is…
Solid State Division progress report for period ending March 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Hinton, L.W.
1992-09-01
During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.
Can Peer Instruction Be Effective in Upper-Division Computer Science Courses?
ERIC Educational Resources Information Center
Bailey Lee, Cynthia; Garcia, Saturnino; Porter, Leo
2013-01-01
Peer Instruction (PI) is an active learning pedagogical technique. PI lectures present students with a series of multiple-choice questions, which they respond to both individually and in groups. PI has been widely successful in the physical sciences and, recently, has been successfully adopted by computer science instructors in lower-division,…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
... overview of research activities from the NCTR Division of Bioinformatics and Computational Biology and the Division of Systems Biology. The SAB will also receive and update from the subcommittee on Immunotoxicology... advisory committee meetings and will make every effort to accommodate persons with physical disabilities or...
A 400 Gbps/100 m free-space optical link
NASA Astrophysics Data System (ADS)
Lin, Chun-Yu; Lu, Hai-Han; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Wang, Yun-Chieh; Chi, Jing-Kai
2017-02-01
A 400 Gbps/100 m free-space optical (FSO) link with dense-wavelength-division-multiplexing (DWDM)/space-division-multiplexing (SDM) techniques and a doublet lens scheme is proposed. To the best of our knowledge, this is the first time that a link adopting DWDM and SDM techniques and a doublet lens scheme has demonstrated a 400 Gbps/100 m FSO link. The experimental results show that the free-space transmission rate is significantly enhanced by the DWDM and SDM techniques, and the free-space transmission distance is greatly increased by the doublet lens scheme. A 16-channel FSO link with a total transmission rate of 400 Gbps (25 Gbps/λ × 16 λ = 400 Gbps) over a 100 m free-space link is successfully demonstrated. Such a 400 Gbps/100 m DWDM/SDM FSO link provides the advantages of optical wireless communications for high transmission rates and long transmission distances, which is very useful for high-speed and long-haul light-based WiFi (LiFi) applications.
2003-08-20
KENNEDY SPACE CENTER, FLA. - Japanese and American students gather at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The Japanese girls are from Urawa Daiichi Girls High School, Urawa, Japan. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The American students are from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.
NASA Astrophysics Data System (ADS)
Pollock, Steven
2013-04-01
At most universities, including the University of Colorado, upper-division physics courses are taught using a traditional lecture approach that does not make use of many of the instructional techniques that have been found to improve student learning at the introductory level. We are transforming several upper-division courses using principles of active engagement and learning theory, guided by the results of observations, interviews, and analysis of student work at CU and elsewhere. In this talk I outline these transformations, including the development of faculty consensus learning goals, clicker questions, tutorials, modified homeworks, and more. We present evidence of the effectiveness of these transformations relative to traditional courses, based on student grades, interviews, and through research-based assessments of student conceptual mastery and student attitudes. Our results suggest that many of the tools that have been effective in introductory courses are effective for our majors, and that further research is warranted in the upper-division environment. (See www.colorado.edu/sei/departments/physics.htm for materials)
Principles and Methods of Adapted Physical Education and Recreation.
ERIC Educational Resources Information Center
Arnheim, Daniel D.; And Others
This text is designed for the elementary and secondary school physical educator and the recreation specialist in adapted physical education and, more specifically, as a text for college courses in adapted and corrective physical education and therapeutic recreation. The text is divided into four major divisions: scope, key teaching and therapy…
78 FR 25101 - Proposal Review Panel for Physics, Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics, Notice of Meeting In accordance... Physics, 1208 Date and Time: Tuesday, April 30, 2013; 8:00 a.m.-6:00 p.m., Wednesday, May 1, 2013, 8:00 a... Meeting: Partially Closed. Contact Person: Mark Coles, Director of Large Facilities, Division of Physics...
Solid State Division annual progress report for period ending December 31, 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, M.K.; Young, F.W. Jr.
1976-05-01
Research activities are reported in programs on theoretical solid state physics, physical properties of solids, radiation effects in metals, neutron scattering, research materials, and isotope research materials. (JRD)
75 FR 10328 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... Person: Dr. Morris L. Aizenman, Senior Science Associate, Directorate for Mathematical and Physical... Directorate; Report of NSF Advisory Working Groups; Meeting of MPSAC with Divisions within MPS Directorate...
2003-01-16
After four decades of contribution to America's space program, George Hopson, manager of the Space Shuttle Main Engine Project at Marshall Space Flight Center, accepted NASA's Distinguished Service Medal. Awarded to those who, by distinguished ability or courage, have made a personal contribution to the NASA mission, NASA's Distinguished Service Medal is the highest honor NASA confers. Hopson's contributions to America's space program include work on the country's first space station, Skylab; the world's first reusable space vehicle, the Space Shuttle; and the International Space Station. Hopson joined NASA's Marshall team as chief of the Fluid and Thermal Systems Branch in the Propulsion Division in 1962, and later served as chief of the Engineering Analysis Division of the Structures and Propulsion Laboratory. In 1979, he was named director of Marshall's Systems Dynamics Laboratory. In 1981, he was chosen to head the Center's Systems Analysis and Integration. Seven years later, in 1988, Hopson was appointed associate director for Space Transportation Systems and one year later became the manager of the Space Station Projects Office at Marshall. In 1994, Hopson was selected as deputy director for Space Systems in the Science and Engineering Directorate at Marshall where he supervised the Chief Engineering Offices of both marned and unmanned space systems. He was named manager of the Space Shuttle Main Engine Project in 1997. In addition to the Distinguished Service Medal, Hopson has also been recognized with the NASA Outstanding Leadership Medal and NASA's Exceptional Service Medal.
Neurons the decision makers, Part I: The firing function of a single neuron.
Saaty, Thomas
2017-02-01
This paper is concerned with understanding synthesis of electric signals in the neural system based on making pairwise comparisons. Fundamentally, every person and every animal are born with the talent to compare stimuli from things that share properties in space or over time. Comparisons always need experience to distinguish among things. Pairwise comparisons are numerically reciprocal. If a value is assigned to the larger of two elements that have a given property when compared with the smaller one, then the smaller has the reciprocal of that value when compared with the larger. Because making comparisons requires the reciprocal property, we need mathematics that can cope with division. There are four division algebras that would allow us to use our reciprocals arising from comparisons: The real numbers, the complex numbers, the non-commutative quaternions and the non-associative octonions. Rather than inferring function as from electric flow in a network, in this paper we infer the flow from function. Neurons fire in response to stimuli and their firings vary relative to the intensities of the stimuli. We believe neurons use some kind of pairwise comparison mechanism to determine when to fire based on the stimuli they receive. The ideas we develop here about flows are used to deduce how a system based on this kind of firing determination works and can be described. Furthermore the firing of neurons requires continuous comparisons. To develop a formula describing the output of these pairwise comparisons requires solving Fredholm's equation of the second kind which is satisfied if and only if a simple functional equation has solutions. The Fourier transform of the real solution of this equation leads to inverse square laws like those that are common in physics. The Fourier transform applied to a complex valued solution leads to Dirac type of firings. Such firings are dense in the very general fields of functions known as Sobolev spaces and thus can be used to represent the very diverse phenomena in and around us. The non-commutative solution in quaternions can be interpreted as rotations in space. The also non-commutative and non-associative solution in octonions has yet to be adequately interpreted outside physics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids.
Desmaison, Annaïck; Guillaume, Ludivine; Triclin, Sarah; Weiss, Pierre; Ducommun, Bernard; Lobjois, Valérie
2018-06-08
Multicellular tumour spheroids are used as a culture model to reproduce the 3D architecture, proliferation gradient and cell interactions of a tumour micro-domain. However, their 3D characterization at the cell scale remains challenging due to size and cell density issues. In this study, we developed a methodology based on 3D light sheet fluorescence microscopy (LSFM) image analysis and convex hull calculation that allows characterizing the 3D shape and orientation of cell nuclei relative to the spheroid surface. By using this technique and optically cleared spheroids, we found that in freely growing spheroids, nuclei display an elongated shape and are preferentially oriented parallel to the spheroid surface. This geometry is lost when spheroids are grown in conditions of physical confinement. Live 3D LSFM analysis of cell division revealed that confined growth also altered the preferential cell division axis orientation parallel to the spheroid surface and induced prometaphase delay. These results provide key information and parameters that help understanding the impact of physical confinement on cell proliferation within tumour micro-domains.
NASA Astrophysics Data System (ADS)
Slavin, James
M. H. Acũa (2), B. J. Anderson (3), D. N. Baker (4), M. Benna (2), S. A. Boardsen (1), G. n Gloeckler (5), R. E. Gold (3), G. C. Ho (3), H. Korth (3), S. M. Krimigis (3), S. A. Livi (6), R. L. McNutt Jr. (3), J. M. Raines (5), M. Sarantos (1), D. Schriver (7), S. C. Solomon (8), P. Travnicek (9), and T. H. Zurbuchen (5) (1) Heliophysics Science Division, NASA GSFC, Greenbelt, MD 20771, USA, (2) Solar System Exploration Division, NASA GSFC, Greenbelt, MD 20771, USA, (3) The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA, (4) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA, (5) Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA (6) Southwest Research Institute, San Antonio, TX 28510, USA, (7) Institute for Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024, USA, (8) Department of Terrestrial Magnetism, Carnegie Institution of Washington, DC 20015, USA, and (9) Institute of Atmospheric Physics, Prague, Czech Republic, 14131 MESSENGER's 14 January 2008 encounter with Mercury has provided new observations of the solar wind interaction with this planet. Here we report initial results concerning this miniature magnetosphere's response to the north-south component of the interplanetary magnetic field (IMF). This is the component of the IMF that is expected to exert the greatest influence over the structure of the magnetopause and the processes responsible for energy transfer into the magnetosphere. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through this small magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of welldeveloped flux transfer events (FTEs) was observed in the magnetosheath following some of these southward-Bz intervals. The inbound magnetopause crossing in the magnetic field measurements is consistent with a transition from the magnetosheath into the plasma sheet. Immediately following MESSENGER's entry into the magnetosphere, rotational perturbations in the magnetic field similar to those seen at the Earth in association with large-scale plasma sheet vortices driven by Kelvin-Helmholtz waves along the magnetotail boundary at the Earth are observed. The outbound magnetopause occurred during northward IMF Bz and had the characteristics of a tangential discontinuity. These new observations have important implications for our understanding of energy transfer into Mercury's magnetosphere.
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2014-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2012-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.
Genome organization during the cell cycle: unity in division.
Golloshi, Rosela; Sanders, Jacob T; McCord, Rachel Patton
2017-09-01
During the cell cycle, the genome must undergo dramatic changes in structure, from a decondensed, yet highly organized interphase structure to a condensed, generic mitotic chromosome and then back again. For faithful cell division, the genome must be replicated and chromosomes and sister chromatids physically segregated from one another. Throughout these processes, there is feedback and tension between the information-storing role and the physical properties of chromosomes. With a combination of recent techniques in fluorescence microscopy, chromosome conformation capture (Hi-C), biophysical experiments, and computational modeling, we can now attribute mechanisms to many long-observed features of chromosome structure changes during cell division. Apparent conflicts that arise when integrating the concepts from these different proposed mechanisms emphasize that orchestrating chromosome organization during cell division requires a complex system of factors rather than a simple pathway. Cell division is both essential for and threatening to proper genome organization. As interphase three-dimensional (3D) genome structure is quite static at a global level, cell division provides an important window of opportunity to make substantial changes in 3D genome organization in daughter cells, allowing for proper differentiation and development. Mistakes in the process of chromosome condensation or rebuilding the structure after mitosis can lead to diseases such as cancer, premature aging, and neurodegeneration. WIREs Syst Biol Med 2017, 9:e1389. doi: 10.1002/wsbm.1389 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
2009-12-10
Korean High Level Delegation Visit Ames Certer Director and various Senior staff: John Hines, Ames Center Chief Technologist (middel left) explains operations at the LADEE lab to Soon-Duk Bae, Deputy Director, Big Science Policy Division, Ministry of Educaiton, Science Technology, Young-Mok Hyun, Deputy Director, Space Development Division, Ministry of Educaiton, Science Technology, Seorium Lee, Senior Researcher, International Relations Korea Aerospace Research Institute.
Research and technology activities at Ames Research Center's Biomedical Research Division
NASA Technical Reports Server (NTRS)
Martello, N.
1985-01-01
Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.
2013-04-26
CAPE CANAVERAL, Fla. - The winning students and their teachers of the 2013 DuPont Challenge Science Essay Competition show off their awards after a ceremony at the Kennedy Space Center Visitor Complex in Florida. From left are sponsoring teacher Angela Weeks and Junior Division first runner-up Gaurav Garg of Beckendorff Junior High in Katy, Texas sponsoring teacher Elaine Gillum and Senior Division grand prize winner Jacob Yoshitake of Marshall Middle School in San Diego, Calif. Senior Division first runner-up Laura Herman and sponsoring teacher Jennifer Gordinier of Pine Crest School in Fort Lauderdale, Fla. and Senior Division grand prize awardee Hugo Yen and sponsoring teacher Nga Ngo of Troy High in Fullerton, Calif. The challenge, now in its 27th year, reaches out to students from grades seven through 12 from all 50 states and Canada. More than 200,000 students entered the competition. The DuPont Challenge aims to inspire students to excel and achieve in scientific writing and pursue careers in science, technology, engineering and mathematics STEM. The challenge honors space shuttle Challenger's STS-51L crew members who gave their lives while furthering the cause of exploration and discovery. For more information on the challenge, go to http://thechallenge.dupont.com/sponsors/nasa.php.
2008-04-18
CAPE CANAVERAL, Fla. -- During a break in presentations at NASA’s Future Forum in Miami, astronaut Steve Frick and former astronaut Carl Walz sign autographs. Frick served as commander of the STS-122 shuttle mission. Walz is now director of NASA’s Advanced Capabilities Division. The forum focused on how space exploration benefits Florida's economy. The event, which included presentations and panels, was held at the University of Miami's BankUnited Center. Among those participating were NASA Deputy Administrator Shana Dale, astronaut Carl Walz, director of the Advanced Capabilities Division in NASA's Exploration Systems Mission Directorate, and Russell Romanella, director, International Space Station and Spacecraft Processing. Photo credit: NASA/Kim Shiflett
The JPL Resource Allocation Planning and Scheduling Office (RAPSO) process
NASA Technical Reports Server (NTRS)
Morris, D. G.; Burke, E. S.
2002-01-01
The Jet Propulsion Laboratory's Resource Allocation Planning and Scheduling Office is chartered to divide the limited amount of tracking hours of the Deep Space Network amongst the various missions in as equitable allotment as can be achieved. To best deal with this division of assets and time, an interactive process has evolved that promotes discussion with agreement by consensus between all of the customers that use the Deep Space Network (DSN). Aided by a suite of tools, the task of division of asset time is then performed in three stages of granularity. Using this approach, DSN loads are either forecasted or scheduled throughout a moving 10-year window.
Long life technology work at Rockwell International Space Division
NASA Technical Reports Server (NTRS)
Huzel, D. K.
1974-01-01
This paper presents highlights of long-life technology oriented work performed at the Space Division of Rockwell International Corporation under contract to NASA. This effort included evaluation of Saturn V launch vehicle mechanical and electromechanical components for potential extended life capabilities, endurance tests, and accelerated aging experiments. A major aspect was evaluation of the components at the subassembly level (i.e., at the interface between moving surfaces) through in-depth wear analyses and assessments. Although some of this work is still in progress, preliminary conclusions are drawn and presented, together with the rationale for each. The paper concludes with a summary of the effort still remaining.
Effects of Polyhydroxybutyrate Production on Cell Division
NASA Technical Reports Server (NTRS)
Miller, Kathleen; Rahman, Asif; Hadi, Masood Z.
2015-01-01
Synthetic biological engineering can be utilized to aide the advancement of improved long-term space flight. The potential to use synthetic biology as a platform to biomanufacture desired equipment on demand using the three dimensional (3D) printer on the International Space Station (ISS) gives long-term NASA missions the flexibility to produce materials as needed on site. Polyhydroxybutyrates (PHBs) are biodegradable, have properties similar to plastics, and can be produced in Escherichia coli using genetic engineering. Using PHBs during space flight could assist mission success by providing a valuable source of biomaterials that can have many potential applications, particularly through 3D printing. It is well documented that during PHB production E. coli cells can become significantly elongated. The elongation of cells reduces the ability of the cells to divide and thus to produce PHB. I aim to better understand cell division during PHB production, through the design, building, and testing of synthetic biological circuits, and identify how to potentially increase yields of PHB with FtsZ overexpression, the gene responsible for cell division. Ultimately, an increase in the yield will allow more products to be created using the 3D printer on the ISS and beyond, thus aiding astronauts in their missions.
78 FR 2293 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-10
... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... meeting includes the following topics: --Astrophysics Division Update --NASA Astrophysics Roadmapping It...
STS-127 crew during their food tasting session.
2008-06-19
JSC2008-E-047939 (19 June 2008) --- NASA astronaut Christopher J. Cassidy and Canadian Space Agency astronaut Julie Payette, both STS-127 mission specialists, participate in a food tasting session in the Flight Projects Division Laboratory at NASA's Johnson Space Center.
78 FR 66384 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-05
... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update --Presentation of Astrophysics Roadmap --Reports from Program Analysis Groups...
Code of Federal Regulations, 2010 CFR
2010-01-01
... conducted at the Johnson Space Center by certified examiners approved by the Director, Life Sciences... examination will be conducted at Johnson Space Center by certified examiners approved by the Director, Life Sciences Division, NASA Headquarters). (iv) Submitting its recommendations for payload specialists through...
Code of Federal Regulations, 2014 CFR
2014-01-01
... conducted at the Johnson Space Center by certified examiners approved by the Director, Life Sciences... examination will be conducted at Johnson Space Center by certified examiners approved by the Director, Life Sciences Division, NASA Headquarters). (iv) Submitting its recommendations for payload specialists through...
Code of Federal Regulations, 2013 CFR
2013-01-01
... conducted at the Johnson Space Center by certified examiners approved by the Director, Life Sciences... examination will be conducted at Johnson Space Center by certified examiners approved by the Director, Life Sciences Division, NASA Headquarters). (iv) Submitting its recommendations for payload specialists through...
Code of Federal Regulations, 2011 CFR
2011-01-01
... conducted at the Johnson Space Center by certified examiners approved by the Director, Life Sciences... examination will be conducted at Johnson Space Center by certified examiners approved by the Director, Life Sciences Division, NASA Headquarters). (iv) Submitting its recommendations for payload specialists through...
Code of Federal Regulations, 2012 CFR
2012-01-01
... conducted at the Johnson Space Center by certified examiners approved by the Director, Life Sciences... examination will be conducted at Johnson Space Center by certified examiners approved by the Director, Life Sciences Division, NASA Headquarters). (iv) Submitting its recommendations for payload specialists through...
Geologic Materials Center - Policy and Facilities | Alaska Division of
tours are free of charge. Viewing Rooms Public viewing room has five roller tables with 150 linear feet of sample layout space Three private viewing rooms with 25 linear feet of roller table layout space
Wang, Yi-Wen; Yuan, Jin-Qiang; Gao, Xin; Yang, Xian-Yu
2012-12-01
There are six micronuclear divisions during conjugation of Paramecium caudatum: three prezygotic and three postzygotic divisions. Four haploid nuclei are formed during the first two meiotic prezygotic divisions. Usually only one meiotic product is located in the paroral cone (PC) region at the completion of meiosis, which survives and divides mitotically to complete the third prezygotic division to yield a stationary and a migratory pronucleus. The remaining three located outside of the PC degenerate. The migratory pronuclei are then exchanged between two conjugants and fuse with the stationary pronuclei to form synkarya, which undergo three successive divisions (postzygotic divisions). However, little is known about the surviving mechanism of the PC nuclei. In the current study, stage-specific appearance of cytoplasmic microtubules (cMTs) was indicated during the third prezygotic division by immunofluorescence labeling with anti-alpha tubulin antibodies surrounding the surviving nuclei, including the PC nuclei and the two types of prospective pronuclei. This suggested that cMTs were involved in the formation of a physical barrier, whose function may relate to sequestering and protecting the surviving nuclei from the major cytoplasm, where degeneration of extra-meiotic products occurs, another important nuclear event during the third prezygotic division.
Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma
2016-08-04
Killian1 1Department of Physics and Astronomy , Rice University, Houston, Texas 77005, USA 2Theoretical Division, Los Alamos National Laboratory, Los...2] L. Spitzer, Physics of Fully Ionized Gases, Interscience Tracts on Physics and Astronomy (Interscience Publishers, New York, 1962), Vol. 3. [3] L
Supplemental Instruction in Physical Chemistry I
ERIC Educational Resources Information Center
Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth
2016-01-01
Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…
Title: Public Comment on Department of Health and Human Services (DHHS) 2018 Physical Activity Guidelines Author: Wayne E. Cascio, Director, Environmental Public Health Division, US EPA Abstract: In the 2008 Physical Activity Guidelines, the effects of air pollution and advers...
Introduction to Orbital Sciences Corporation
NASA Technical Reports Server (NTRS)
1991-01-01
A general overview of the Orbital Sciences Corporation (OSC) is presented. The following topics are covered: (1) manpower, facilities, and financial growth; (2) organization and management team; (3) the Space Data Division organization; (4) the Chandler facility; (5) Space Data-Products and Services; (6) space transportation systems; (7) spacecraft and space support systems; (8) turn-key suborbital launch services and support systems; and (9) OSC suborbital booster performance.
NASA Astrophysics Data System (ADS)
Sousa, J. B.
1991-01-01
The 10th General Conference of the Condensed Matter Division of the European Physical Society was held in Lisbon from 9 to 12 April 1990; it was attended by 670 scientists from 28 countries of Europe and overseas. Following the tradition of the series, the Lisbon EPS Conference covered most of the relevant topics in Condensed Matter Physics, organized in three major Symposia: Soft Matter and Polymers, Solid State Physics and The Physics of Materials for future Electronics. The last Symposium was jointly organized with the European Materials Research Society, starting a timely cooperation between both European Societies in important scientific and technological areas of common interest. The Conference included 4 plenary lectures, 69 invited talks and 440 contributions in poster sessions. The present volume T35 of the Topical Issues of Physica Scripta, contains papers of the invited talks. The motivation of this volume is to present a wider information of the contents of the Conference, and also to offer to the participants, and in particular to the younger ones, the opportunity of a deeper personal analysis of the ideas and concepts that have been under discussion during the four days of the Conference. The local organization of the Conference was the responsibility of the Portuguese Physical Society, through its Division of Condensed Matter Physics. The event substituted in 1990 the Iberian Symposium on Condensed Matter Physics, which is regularly and alternatively organized in Spain and Portugal every two years, under the special sponsorship of Unesco. We wish to express our thanks to the Conference Committees, to the authors and the individuals who contributed to the contents of the Conference. A special acknowledgement is due to the Sponsors for their generous support of this event.
76 FR 14996 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
.... Aizenman, Senior Science Associate, Directorate for Mathematical and Physical Sciences, Room 1005, National... Committee of Visitors Report of NSF Advisory Working Groups Meeting of MPSAC with Divisions within MPS...
NSF Support for Physics at the Undergraduate Level: A View from Inside
NASA Astrophysics Data System (ADS)
McBride, Duncan
2015-03-01
NSF has supported a wide range of projects in physics that involve undergraduate students. These projects include NSF research grants in which undergraduates participate; Research Experiences for Undergraduates (REU) centers and supplements; and education grants that range from upper-division labs that may include research, to curriculum development for upper- and lower-level courses and labs, to courses for non-majors, to Physics Education Research (PER). The NSF Divisions of Physics, Materials Research, and Astronomy provide most of the disciplinary research support, with some from other parts of NSF. I recently retired as the permanent physicist in NSF's Division of Undergraduate Education (DUE), which supports the education grants. I was responsible for a majority of DUE's physics grants and was involved with others overseen by a series of physics rotators. There I worked in programs entitled Instrumentation and Laboratory Improvement (ILI); Course and Curriculum Development (CCD); Course, Curriculum, and Laboratory Improvement (CCLI); Transforming Undergraduate STEM Education (TUES); and Improving Undergraduate STEM Education (IUSE). NSF support has enabled physics Principal Investigators to change and improve substantially the way physics is taught and the way students learn physics. The most important changes are increased undergraduate participation in physics research; more teaching using interactive engagement methods in classes; and growth of PER as a legitimate field of physics research as well as outcomes from PER that guide physics teaching. In turn these have led, along with other factors, to students who are better-prepared for graduate school and work, and to increases in the number of undergraduate physics majors. In addition, students in disciplines that physics directly supports, notably engineering and chemistry, and increasingly biology, are better and more broadly prepared to use their physics education in these fields. I will describe NSF support for undergraduate physics with both statistics and examples. In addition I will talk about trends in support for undergraduate physics at NSF and speculate about directions such support might go. Contents of this paper reflect the opinions of the author and do not necessarily reflect those of the National Science Foundation.
Women of the Solar Physics Division
NASA Astrophysics Data System (ADS)
Dupree, Andrea K.
2007-05-01
In 1970, when the Solar Physics Division was established, the invitation to become a founding member of the Division was extended by the Organizing Committee to a group of 61 solar scientists of which 4 were women (6.6%). At the first SPD meeting in Huntsville AL (1970), 11% of the papers were given by women. Near that time (1973), women accounted for 8% of all AAS members. The representation of women in the SPD has more than doubled in percentage since the first years. Currently, women comprise about 15.5% of SPD members which, however, is less than the percentage in the AAS general membership (18%) in March 2007. In the 37 years that the SPD has existed, women have frequently held the office of Treasurer and Secretary of the Division and made notable contributions. Elske V.P. Smith was elected the first Treasurer of the SPD and that began a long tradition. Women appear to be considered exceptionally trustworthy since they have been reelected and occupied the position of Treasurer for 75% of the available terms. The Office of SPD Secretary has seen a woman for 13% of the terms. Yet women are practically absent among those in the top leadership positions and in the lists of prize winners of the SPD. Among the 21 SPD Chairs, only 1 woman, Judith T. Karpen, has held that office. The Hale Prize has been awarded 19 times in almost 3 decades, and all of the awardees have been men. Several aspects of the participation of women and their contributions to the Solar Physics Division of the AAS will be reviewed, and compared to that of the AAS and astronomy in general.
Harry Mergler with His Modified Differential Analyzer
1951-06-21
Harry Mergler stands at the control board of a differential analyzer in the new Instrument Research Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The differential analyzer was a multi-variable analog computation machine devised in 1931 by Massachusetts Institute of Technology researcher and future NACA Committee member Vannevar Bush. The mechanical device could solve computations up to the sixth order, but had to be rewired before each new computation. Mergler modified Bush’s differential analyzer in the late 1940s to calculate droplet trajectories for Lewis’ icing research program. In four days Mergler’s machine could calculate what previously required weeks. NACA Lewis built the Instrument Research Laboratory in 1950 and 1951 to house the large analog computer equipment. The two-story structure also provided offices for the Mechanical Computational Analysis, and Flow Physics sections of the Physics Division. The division had previously operated from the lab’s hangar because of its icing research and flight operations activities. Mergler joined the Instrument Research Section of the Physics Division in 1948 after earning an undergraduate degree in Physics from the Case Institute of Technology. Mergler’s focus was on the synthesis of analog computers with the machine tools used to create compressor and turbine blades for jet engines.
Micro- and Macroscale Ideas of Current among Upper-Division Electrical Engineering Students
ERIC Educational Resources Information Center
Adam, Gina C.; Harlow, Danielle B.; Lord, Susan M.; Kautz, Christian H.
2017-01-01
The concept of electric current is fundamental in the study of electrical engineering (EE). Students are often exposed to this concept in their daily lives and early in middle school education. Lower-division university courses are usually limited to the study of passive electronic devices and simple electric circuits. Semiconductor physics is an…
78 FR 20356 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... password [email protected] The agenda for the meeting includes the following topics: --Astrophysics Division...
76 FR 66998 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
... Committee; Astrophysics Subcommittee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... open to the public. The agenda for the meeting includes the following topic: --Astrophysics Division...
78 FR 31977 - NASA Applied Sciences Advisory Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-061] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee (ASAC). This Committee functions in an advisory capacity to the Director, Earth Science Division. The...
Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment
NASA Technical Reports Server (NTRS)
1999-01-01
The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.
NASA Technical Reports Server (NTRS)
Carpenter, L. (Editor)
1980-01-01
Accomplishments and future plans are described for the following areas: (1) geology - geobotanical indicators and geopotential data; (2) modeling magnetic fields; (3) modeling the structure, composition, and evolution of the Earth's crust; (4) global and regional motions of the Earth's crust and earthquake occurrence; (5) modeling geopotential from satellite tracking data; (6) modeling the Earth's gravity field; (7) global Earth dynamics; (8) sea surface topography, ocean dynamics; and geophysical interpretation; (9) land cover and land use; (10) physical and remote sensing attributes important in detecting, measuring, and monitoring agricultural crops; (11) prelaunch studies using LANDSAT D; (12) the multispectral linear array; (13) the aircraft linear array pushbroom radiometer; and (14) the spaceborne laser ranging system.
Microgravity Science and Applications Program tasks, 1990 revision
NASA Technical Reports Server (NTRS)
1991-01-01
The active research tasks as of the end of the fiscal year 1990 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications are compiled. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report includes an introductory description of the program, the strategy and overall goal; an index of principle investigators; and a description of each task. A list of recent publications is also provided. The tasks are grouped into six major categories: electronic materials; solidification of metals, alloys, and composites; fluid dynamics and transport phenomena; biotechnology; glasses and ceramics; combustion; experimental technology; facilities; and Physics And Chemistry Experiments (PACE). The tasks are divided into ground-based and flight experiments.
"It's gym, like g-y-m not J-i-m": Exploring the role of place in the gendering of physical activity.
Coen, Stephanie E; Rosenberg, Mark W; Davidson, Joyce
2018-01-01
Physical activity is a highly gendered health behaviour, with women less likely than men to meet internationally accepted physical activity guidelines. In this article, we take up recent arguments on the potential of indoor spaces to illuminate processes shaping health, together with social theories of gender, to conceptualize the place of the gym as a window into understanding and intervening in wider gender disparities in physical activity. Using a triangulated strategy of qualitative methods, including semi-structured interviews, drawing, and journaling with men and women in a mid-sized Canadian city, we examine how gender influences exercise practices and mobilities in gym environments. Results of our thematic analysis reveal three socio-spatial processes implicated in the gendering of physical activity: 1) embodying gender ideals, 2) policing gender performance, and 3) spatializing gender relations. A fourth theme illustrates the situated agency some individuals enact to disrupt gendered divisions. Although women were unduly disadvantaged, both women and men experienced significant limitations on their gym participation due to the presiding gendered social context of the gym. Gender-transformative interventions that go beyond engaging women to comprehensively contend with the place-based gender relations that sustain gender hegemony are needed. While gyms are potentially sites for health promotion, they are also places where gendered inequities in health opportunities emerge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flexible wavelength de-multiplexer for elastic optical networking.
Zhou, Rui; Gutierrez Pascual, M Deseada; Anandarajah, Prince M; Shao, Tong; Smyth, Frank; Barry, Liam P
2016-05-15
We report an injection locked flexible wavelength de-multiplexer (de-mux) that shows 24-h frequency stability of 1 kHz for optical comb-based elastic optical networking applications. We demonstrate 50 GHz, 87.5 GHz equal spacing and 6.25G-25G-50 GHz, 75G-50G-100 GHz unequal spacing for the de-multiplexer outputs. We also implement an unequally spaced (75G-50G-100 GHz), mixed symbol rate (12.5 GBaud and 40 GBaud) and modulation format (polarization division multiplexed quadrature phase shift keying and on-off keying) wavelength division multiplexed transmission system using the de-multiplexer outputs. The results show 0.6 dB receiver sensitivity penalty, at 7% hard decision forward error correction coding limit, of the 100 km transmitted de-mux outputs when compared to comb source seeding laser back-to-back.
Underwater optical communications using orbital angular momentum-based spatial division multiplexing
NASA Astrophysics Data System (ADS)
Willner, Alan E.; Zhao, Zhe; Ren, Yongxiong; Li, Long; Xie, Guodong; Song, Haoqian; Liu, Cong; Zhang, Runzhou; Bao, Changjing; Pang, Kai
2018-02-01
In this paper, we review high-capacity underwater optical communications using orbital angular momentum (OAM)-based spatial division multiplexing. We discuss methods to generate and detect blue-green optical data-carrying OAM beams as well as various underwater effects, including attenuation, scattering, current, and thermal gradients on OAM beams. Attention is also given to the system performance of high-capacity underwater optical communication links using OAM-based space division multiplexing. The paper closes with a discussion of a digital signal processing (DSP) algorithm to mitigate the inter-mode crosstalk caused by thermal gradients.
Identity Statuses in Upper-Division Physics Students
ERIC Educational Resources Information Center
Irving, Paul W.; Sayre, Eleanor C.
2016-01-01
We use the theories of identity statuses and communities of practice to describe three different case studies of students finding their paths through undergraduate physics and developing a physics subject-specific identity. Each case study demonstrates a unique path that reinforces the link between the theories of communities of practice and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelson, P.H.
The bulk of the Division's effort concerned nuclear physics and accelerator development, but work in the areas of nuclear data, research applicable to the magnetic fusion project, atomic and molecular physics, and high-energy physics is also recounted. Lists of publications, technical talks, personnel, etc., are included. Individual reports with sufficient data are abstracted separately. (RWR)
Physical Disabilities: Education and Related Services, Fall 1999-Spring 2000.
ERIC Educational Resources Information Center
Kulik, Barbara J., Ed.
2000-01-01
These two journal issues discuss topics relating to the physical and health disabilities of children and adults. The first issue contains the following articles: (1) "Position Statement on Specialized Health Care Procedures," by the Council for Exceptional Children's Division on Physical and Health Disabilities that calls for all…
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Shalkhauser, Mary JO
1991-01-01
Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.
Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1992-01-01
A circuit switching architecture is described for a 30/20 GHz frequency division, multiple access uplink/time division multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Shalkhauser, Mary JO
1992-01-01
A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.
Background Perchlorate Source Identification Technical Guidance
2013-12-01
Sciences Branch (Code 71752) of the Advanced Systems and Applied Sciences Division (Code 71700), Space and Naval Warfare Systems Center (SSC Pacific), San...Head Advanced Systems & Applied Sciences Division iii EXECUTIVE SUMMARY The objective of this document is to outline the approach, tools, and...Helium HMX Octahydro-1,3,5,7-Tetranitro-1,3,5,7- Tetrazocine IR Installation Restoration IRIS Integrated Risk Information System IR-MS Isotope-Ratio
2009-12-10
Korean High Level Delegation Visit Ames Certer Director and various Senior staff: Dan Andrews give presentation about LCROSS/LRO to Seorium Lee, Senior Researcher, International Relations Korea Aerospace Research Institute, Soon-Duk Bae, Deputy Director, Big Science Policy Division, Ministry of Educaiton, Science Technology, Young-Mok Hyun, Deputy Director, Space Development Division, Ministry of Educaiton, Science Technology, Seorium Lee, Senior Researcher, International Relations Korea Aerospace Research Institute.
A Fundamental Study of the Electromagnetic Properties of Advanced Composite Materials
1978-07-01
MKDC), Space and Missile Systems Organization (SAMSO). Aeronautical System Division (ASD), Electronic Systems Division ( ESD ), Air Force Avionics...discussions, the work reported involved only one fiber type--Thornel T300 as used in Narmco 5208 pre-preg tapes . Individual graphite fibers have radii... teflon coated tweezers to separate individual fibers from the bundle. Microscopic observation and a steady hand during this procedure improved the
Hiking shared-use single-track trails: a look at hikers and hunters along the Falls Lake Trail
Christopher M. Snow; Roger L. Moore
2007-01-01
The Falls Lake Trail, a 26.8-mile, single-track pedestrian trail located near the Research Triangle Region of North Carolina, traverses lands managed by the United States Army Corps of Engineers; North Carolina Division of Parks and Recreation; North Carolina Division of Wildlife Resources; and Wake County Parks, Recreation and Open Space. The non-profit trail advocacy...
Ego Network Analysis of Upper Division Physics Student Survey
NASA Astrophysics Data System (ADS)
Brewe, Eric
2017-01-01
We present the analysis of student networks derived from a survey of upper division physics students. Ego networks focus on the connections that center on one person (the ego). The ego networks in this talk come from a survey that is part of an overall project focused on understanding student retention and persistence. The theory underlying this work is that social and academic integration are essential components to supporting students continued enrollment and ultimately graduation. This work uses network analysis as a way to investigate the role of social and academic interactions in retention and persistence decisions. We focus on student interactions with peers, on mentoring interactions with physics department faculty, and on engagement in physics groups and how they influence persistence. Our results, which are preliminary, will help frame the ongoing research project and identify ways in which departments can support students. This work supported by NSF grant #PHY 1344247.
Report of work done in the division of chemistry and physics, mainly during the fiscal year 1889-90
Clarke, Frank Wigglesworth
1891-01-01
This bulletin, like the bulletins issued in previous years and numbered 9, 27, 42, 55, 60, and 64, contains a partial record of work completed in the chemical and physical laboratories of the Survey Turing one tiscAl year. It represents, however, only a portion of the whole work done, for various investigations, begun during the year 1859—'90, are still unfinished; many analyses are reserved for publication in other reports; and certain of the larger researches, notably the physical studies of Dr. Barns, will appear in independent form as separate bulletins. In the annual reports of the Director of the Survey a tolerably complete summary of the work done in the Division of Chemistry and Physics is always given, and such summaries, taken in connection with these bulletins, convey.a fair idea of the amount of ground actually covered.
SpaceX CRS-10 Post Launch News Conference
2017-02-19
In the Press Site auditorium of NASA's Kennedy Space Center in Florida, Pam Underwood, manager of the Operations Integration Division of the Federal Aviation Administration Office of Commercial Space Transportation, speaks to the news media at a post-launch news conference following the liftoff of SpaceX CRS-10, a commercial resupply services mission to the International Space Station. SpaceX CRS-10 lifted off atop a Falcon 9 rocket from Kennedy's Launch Complex 39A at 9:39 a.m. EST.
The NASA Space Radiation Health Program
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Sulzman, F. M.
1994-01-01
The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.
Fine Collimator Grids Using Silicon Metering Structure
NASA Technical Reports Server (NTRS)
Eberhard, Carol
1998-01-01
The project Fine Collimator Grids Using Silicon Metering Structure was managed by Dr. Carol Eberhard of the Electromagnetic Systems & Technology Department (Space & Technology Division) of TRW who also wrote this final report. The KOH chemical etching of the silicon wafers was primarily done by Dr. Simon Prussin of the Electrical Engineering Department of UCLA at the laboratory on campus. Moshe Sergant of the Superconductor Electronics Technology Department (Electronics Systems & Technology Division) of TRW and Dr. Prussin were instrumental in developing the low temperature silicon etching processes. Moshe Sergant and George G. Pinneo of the Microelectronics Production Department (Electronics Systems & Technology Division) of TRW were instrumental in developing the processes for filling the slots etched in the silicon wafers with metal-filled materials. Their work was carried out in the laboratories at the Space Park facility. Moshe Sergant is also responsible for the impressive array of Scanning Electron Microscope images with which the various processes were monitored. Many others also contributed their time and expertise to the project. I wish to thank them all.
46 CFR 116.415 - Fire control boundaries.
Code of Federal Regulations, 2013 CFR
2013-10-01
... conditions are met: (1) The space in question is surrounded by A-Class divisions or extends to the outer... various spaces must meet the requirements of Table 116.415(b). Table 116.415 (b)—Bulkheads Spaces (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) Control Space (1) B-0 A-0 A-0 A-0 A-15 A-60 A-60 A-0...
NASA Technical Reports Server (NTRS)
Harmon, Timothy J.
1992-01-01
This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.
Collaboration space division in collaborative product development based on a genetic algorithm
NASA Astrophysics Data System (ADS)
Qian, Xueming; Ma, Yanqiao; Feng, Huan
2018-02-01
The advance in the global environment, rapidly changing markets, and information technology has created a new stage for design. In such an environment, one strategy for success is the Collaborative Product Development (CPD). Organizing people effectively is the goal of Collaborative Product Development, and it solves the problem with certain foreseeability. The development group activities are influenced not only by the methods and decisions available, but also by correlation among personnel. Grouping the personnel according to their correlation intensity is defined as collaboration space division (CSD). Upon establishment of a correlation matrix (CM) of personnel and an analysis of the collaboration space, the genetic algorithm (GA) and minimum description length (MDL) principle may be used as tools in optimizing collaboration space. The MDL principle is used in setting up an object function, and the GA is used as a methodology. The algorithm encodes spatial information as a chromosome in binary. After repetitious crossover, mutation, selection and multiplication, a robust chromosome is found, which can be decoded into an optimal collaboration space. This new method can calculate the members in sub-spaces and individual groupings within the staff. Furthermore, the intersection of sub-spaces and public persons belonging to all sub-spaces can be determined simultaneously.
76 FR 14106 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update. It is imperative that the meeting be held on these dates to accommodate the...
2014-12-02
CAPE CANAVERAL, Fla. – At NASA Headquarters in Washington and the Kennedy Space Center in Florida, NASA leaders spoke to members of the new media about how the first flight of the new Orion spacecraft is a first step in the agency's plans to send humans to Mars. Seen on a video monitor at Kennedy, Headquarter participants, from the left are: Trent Perrotto of NASA Public Affairs, Jason Crusan, director of Advanced Exploration Systems Division of Human Exploration and Operations Mission Directorate, Jim Reuther, deputy associate administrator for Programs, Space Technology Mission Directorate, and Jim Green, director of Planetary Division of the Science Mission Directorate. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
Orion Journey to Mars, L-2 Briefing
2014-12-02
At NASA Headquarters in Washington and the Kennedy Space Center in Florida, NASA leaders spoke to members of the new media about how the first flight of the new Orion spacecraft is a first step in the agency's plans to send humans to Mars. Seen on a video monitor at Kennedy, Headquarter participants, from the left are: Trent Perrotto of NASA Public Affairs, Jason Crusan, director of Advanced Exploration Systems Division of Human Exploration and Operations Mission Directorate, Jim Reuther, deputy associate administrator for Programs, Space Technology Mission Directorate, and Jim Green, director of Planetary Division of the Science Mission Directorate. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
The Optical Fiber Array Bundle Assemblies for the NASA Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Switzer, Rob; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; MacMurphy, Shawn
2008-01-01
The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufactured at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.
NASA Astrophysics Data System (ADS)
2011-01-01
A joint scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) and the scientific councils of the P N Lebedev Physical Institute, RAS and the A M Prokhorov General Physics Institute, RAS dedicated to the 50th anniversary of the advent of the laser was held in the conference hall of the Lebedev Physical Institute on 21 April 2010. The following reports were put on the session's agenda posted on the website www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Alferov Zh I (A F Ioffe Physical-Technical Institute RAS, St. Petersburg) "Semiconductor heterostructure lasers"; (2) Bagaev S N (Institute of Laser Physics, Siberian Branch, RAS, Novosibirsk) "Ultrahigh-resolution spectra and their fundamental application"; (3) Masalov A V (P N Lebedev Physical Institute, RAS, Moscow) "Optical Department of the Lebedev Physical Institute: early work on lasers"; (4) Garnov S V, Shcherbakov I A (A M Prokhorov General Physics Institute, RAS, Moscow) "Laser sources of megavolt terahertz pulses"; (5) Sergeev A M, Khazanov E A (Institute of Applied Physics, RAS, Nizhny Novgorod) "Structural functions of a developed turbulence"; (6) Popov Yu M (P N Lebedev Physical Institute, RAS, Moscow) "The early history of semiconductor lasers"; (7) Manenkov A A (A M Prokhorov General Physics Institute, RAS, Moscow) "Self-focusing laser pulses: current state and future prospects". The papers written on the basis of reports 3, 4, 6, and 7 are published below. A comprehensive version of report 5 prepared in the form of a review paper is published in this issue of Physics-Uspekhi on p. 9. • Optical Department of the Lebedev Physical Institute: early work on lasers, A V Masalov Physics-Uspekhi, 2011, Volume 54, Number 1, Pages 87-91 • Laser methods for generating megavolt terahertz pulses, S V Garnov, I A Shcherbakov Physics-Uspekhi, 2011, Volume 54, Number 1, Pages 91-96 • The early history of the injection laser, Yu M Popov Physics-Uspekhi, 2011, Volume 54, Number 1, Pages 96-100 • Self-focusing of laser pulses: current state and future prospects, A A Manenkov Physics-Uspekhi, 2011, Volume 54, Number 1, Pages 100-104
NASA Technical Reports Server (NTRS)
Levine, Jack
1988-01-01
Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.
Chemistry Division. Quarterly progress report for period ending June 30, 1949
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1949-09-14
Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less
The doctrine of integration in psychiatry and the pre-Socratics.
Plastow, Michael
2009-02-01
The notion of the integration of the mental and the physical, and of a number of other divisions, is widely promoted in psychiatry. René Descartes is often held responsible for divisions that appear in our profession and in our practice. The wish for integration, though, fails to recognize the way in which such divisions might be fundamental and necessary in our profession. This paper describes the endeavour in psychiatry and in Western thought more generally to cover up such divisions. It traces the drive towards integration to the origins of contemporary thought in Plato and Aristotle, in order to examine what preceded such thought. The pre-Socratic thinkers were able to articulate fundamental and radical divisions, an ability which has been lost since the writings of Plato and Aristotle. A reappraisal of the pre-Socratics can lead to a reconsideration of the ongoing attempt to cover over the necessary divisions which mark our clinical practice, in order to be able to value what is most fundamental in our profession.
Particle trapping and beam transport issues in laser driven accelerators
NASA Astrophysics Data System (ADS)
Gwenael, Fubiani; Wim, Leemans; Eric, Esarey
2000-10-01
The LWFA and colliding pulses [1][2] sheme are capable of producing very compact electron bunches where the longitudinal size is much smaller than the transverse size. In this case, even if the electrons are relativistic, space charge force can affect the longitudinal and transverse bunch properties [3][4]. In the Self-modulated regime and the colliding pulse sheme, electrons are trapped from the background plasma and rapidly accelerated. We present theoretical studies of the generation and transport of electron bunches in LWFAs. The space charge effect induced in the bunch is modelled assuming the bunch is ellipsoid like. Beam transport in vacuum, comparison between gaussian and waterbag distribution, comparison between envelope model and PIC simulation will be discussed. This work is supported by the Director, Office of Science, Office of High Energy & Nuclear Physics, High Energy Physics Division, of the U.S Department of Energy, under Contract No. DE-AC03-76SF00098 [1]E.Esarey et al.,IEEE Trans. Plasma Sci. PS-24,252 (1996); W.P. Leemans et al, ibidem, 331. [2]D. Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996); E.Esarey et al., Phys. Rev. Lett. 79, 2682 (1997); C.B Schroeder et al., Phys. Rev. E59, 6037 (1999) [3]DESY M87-161 (1987); DESY M88-013 (1988) [4] R.W. Garnett and T.P Wangler, IEEE Part. Acce. Conf. (1991)
a Perspective on the Magic Square and the "special Unitary" Realization of Real Simple Lie Algebras
NASA Astrophysics Data System (ADS)
Santander, Mariano
2013-07-01
This paper contains the last part of the minicourse "Spaces: A Perspective View" delivered at the IFWGP2012. The series of three lectures was intended to bring the listeners from the more naive and elementary idea of space as "our physical Space" (which after all was the dominant one up to the 1820s) through the generalization of the idea of space which took place in the last third of the 19th century. That was a consequence of first the discovery and acceptance of non-Euclidean geometry and second, of the views afforded by the works of Riemann and Klein and continued since then by many others, outstandingly Lie and Cartan. Here we deal with the part of the minicourse which centers on the classification questions associated to the simple real Lie groups. We review the original introduction of the Magic Square "á la Freudenthal", putting the emphasis in the role played in this construction by the four normed division algebras ℝ, ℂ, ℍ, 𝕆. We then explore the possibility of understanding some simple real Lie algebras as "special unitary" over some algebras 𝕂 or tensor products 𝕂1 ⊗ 𝕂2, and we argue that the proper setting for this construction is not to confine only to normed division algebras, but to allow the split versions ℂ‧, ℍ‧, 𝕆‧ of complex, quaternions and octonions as well. This way we get a "Grand Magic Square" and we fill in all details required to cover all real forms of simple real Lie algebras within this scheme. The paper ends with the complete lists of all realizations of simple real Lie algebras as "special unitary" (or only unitary when n = 2) over some tensor product of two *-algebras 𝕂1, 𝕂2, which in all cases are obtained from ℝ, ℂ, ℂ‧, ℍ, ℍ‧, 𝕆, 𝕆‧ as sets, endowing them with a *-conjugation which usually but not always is the natural complex, quaternionic or octonionic conjugation.
Ultraviolet, visible, and gravity astrophysics: A plan for the 1990's
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's Office of Space Science and Applications (OSSA) receives advice on scientific strategy and priorities from the U.S. National Academy of Sciences. Guidance to the OSSA Astrophysics Division, in particular, is provided by dedicated academy committees, ad hoc study groups, and, at ten-year intervals, by broadly mandated astronomy and astrophysics survey committees charged with making recommendations for the coming decade. Many of the academy's recommendations have important implications for the conduct of ultraviolet and visible-light astronomy from space. Moreover, these areas are now poised for an era of rapid growth. Through technological progress, ultraviolet astronomy has already risen from a novel observational technique four decades ago to the mainstream of astronomical research today. Recent developments in space technology and instrumentation have the potential to generate comparably dramatic strides in observational astronomy within the next ten years. In 1989, the Ultraviolet and Visible Astrophysics Branch of the OSSA Astrophysics Division recognized the need for a new, long-range plan that would implement the academy's recommendations in a way that yielded the most advantageous use of new technology. NASA's Ultraviolet, Visible, and Gravity Astrophysics Management Operations Working Group was asked to develop such a plan for the 1990's. Since the branch holds programmatic responsibility for space research in gravitational physics and relativity, as well as for ultraviolet and visible-light astrophysics, missions in those areas were also included. The working group met throughout 1989 and 1990 to survey current astrophysical problems, assess the potential of new technologies, examine prior academy recommendations, and develop the implementation plan. The present report is the product of those deliberations. Key astrophysical questions to be addressed cover topics such as the structure and evolution of the early universe, energetics of active galactic nuclei, stellar winds in massive stars, sources powered by accretion, composition and state of the interstellar medium, nature of the galactic halo, chromospheric activity in cool stars, and formation of stars and planetary systems. This document provides a review of these questions, program concerns, and the recommended implementation plan for the 1990's.
Zero Gravity Research Facility User's Guide
NASA Technical Reports Server (NTRS)
Thompson, Dennis M.
1999-01-01
The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.
ERIC Educational Resources Information Center
Hay, James G., Ed.
This is a collection of significant papers by leading authorities, compiled by the American Association of Health, Physical Education, and Recreation's Kinesiology Committee of the Physical Education Division. The following papers are included in this collection: "Supporting Biomechanics Subject Matter in the Undergraduate Curriculum";…
Meeting moved due to discriminatory law
NASA Astrophysics Data System (ADS)
Kruesi, Liz
2016-09-01
The American Physical Society (APS) has relocated the 2018 annual meeting of the Division of Atomic, Molecular and Optical Physics (DAMOP) over concerns about a new state law that discriminates against members of the lesbian, gay, bisexual and transgender (LGBT) community.
Health and Safety Research Division progress report, July 1, 1984-September 30, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This report summarizes progress made for the period July 1984 through September 1985. Sections describe research in health studies, dosimetry and biophysical transport, biological and radiation physics, chemical physics, and risk analysis. (ACR)
Bayesian Research at the NASA Ames Research Center,Computational Sciences Division
NASA Technical Reports Server (NTRS)
Morris, Robin D.
2003-01-01
NASA Ames Research Center is one of NASA s oldest centers, having started out as part of the National Advisory Committee on Aeronautics, (NACA). The site, about 40 miles south of San Francisco, still houses many wind tunnels and other aviation related departments. In recent years, with the growing realization that space exploration is heavily dependent on computing and data analysis, its focus has turned more towards Information Technology. The Computational Sciences Division has expanded rapidly as a result. In this article, I will give a brief overview of some of the past and present projects with a Bayesian content. Much more than is described here goes on with the Division. The web pages at http://ic.arc. nasa.gov give more information on these, and the other Division projects.
ERIC Educational Resources Information Center
Stanley, Jacob T.; Su, Weifeng; Lewandowski, H. J.
2017-01-01
We demonstrate how students' use of modeling can be examined and assessed using student notebooks collected from an upper-division electronics lab course. The use of models is a ubiquitous practice in undergraduate physics education, but the process of constructing, testing, and refining these models is much less common. We focus our attention on…
The Effects of Ejection Seat Cushion Design on Physical Fatigue and Cognitive Performance
2006-11-01
Protection Division Biomechanics Branch Wright-Patterson AFB Ohio 45433-7947 Approved for public release; distribution is unlimited. NOTICE...ADDRESS(ES *Air Force Materiel Command Air Force Research Laboratory Human Effectiveness Directorate Biosciences & Protection Division Biomechanics ...Dayton, Ohio. Analyses of the data were accomplished by the Biomechanics Branch, Human Effectiveness Directorate of the Air Force Research Laboratory
An Evaluation of the Model School Division (MSD) Preschool Program for the School Year 1973-74.
ERIC Educational Resources Information Center
District of Columbia Public Schools, Washington, DC. Dept. of Research and Evaluation.
This study was designed to assess the extent to which children served by the Model Schools Division Preschool Program developed socially, intellectually, physically and emotionally during the 1973-74 school year. This evaluation was also designed to measure the appropriateness of the learning environment and the amount of services provided by the…
Colorado Upper-Division Electrostatics Diagnostic: A Conceptual Assessment for the Junior Level
ERIC Educational Resources Information Center
Chasteen, Stephanie V.; Pepper, Rachel E.; Caballero, Marcos D.; Pollock, Steven J.; Perkins, Katherine K.
2012-01-01
As part of an effort to systematically improve our junior-level E&M I course, we have developed a tool to assess student conceptual learning of electrostatics at the upper division. Together with a group of physics faculty, we established a list of learning goals for the course that, with results from student observations and interviews,…
NASA Astrophysics Data System (ADS)
Xu, Yuming; Yu, Jianjun; Li, Xinying; Xiao, Jiangnan
2017-07-01
We experimentally demonstrate 4 lanes of 416-Gb/s discrete multi-tone (DMT) transmission with 50-GHz channel spacing. This is the first demonstration of 4 × 100 G transmission with less than 100-GHz channel spacing and it can be compatible with dense wavelength division multiplexing (DWDM).
2003-08-20
KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, place a floral tribute to the crew of Columbia at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The group was also meeting with American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.
2003-08-20
KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, carry a floral tribute to the crew of Columbia to place at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The group was also meeting with American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.
Management implications of brood division in Golden-winged Warblers: Chapter 10
Peterson, Sean M.; Streby, Henry M.; Andersen, David E.
2016-01-01
Brood division in the postfledging period is a common avian behavior that is not well understood. Brood division has been reported in Golden-winged Warblers (Vermivora chrysoptera), but it is not known how common this behavior is, whether males and females exhibit different strategies related to parental care and habitat use, or how brood division might influence management strategies. We radiomarked fledglings and monitored divided broods of Golden-winged Warblers from fledging until independence from parental care at three sites in the western Great Lakes region from 2010 to 2012 to assess differences in strategies between male and female parents and to consider possible management implications. Male - and female-reared sub-broods exhibited different space use during the dependent post-fledging period despite similar fledgling survivial, cover-type use, and microhabitat use. By independence, female-reared sub-broods traveled over twice as far from the nest (mean = 461 ± 81) SE m) as male-reared sub-broods (164 ± 41 m). Additionally, female-reared sub-broods traveled over three times as far from the natal patch edge (35 ± 72 m) as male-reared sub-broods (108 ± 36 m). Without accounting for differential space use by male- and female-reared sub-broods, we would have reported broods traveling 292 (± 46 m) from the nest and 214 (± 40m) from the natal patch edge - distances that do not reflect how far females move sub-broods. Parental strategies differ between sexes with regard to movement patterns, and we recommend incorporating the differences in space use between sexes in future management plans for Golden-winged Warblers and other species that employ brood division. Specifically, management actions might be most effective when they are applied at spatial scales large enough to incorporate the habitat requirements of both sexes throughout the entire reproductive season.
The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology
ERIC Educational Resources Information Center
Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani
2015-01-01
We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…
An Evaluation of Student Team Teaching in Sophomore Physics Classes. Final Report.
ERIC Educational Resources Information Center
Thrasher, Paul H.
In the present document the effectiveness of a student team teaching technique is evaluated in comparison with the lecture method. The team teaching technique, previously used for upper division and graduate physics courses, was, for this study, used in a sophomore physics, electricity and magnetism course for engineers, mathematicians, chemists,…
Understanding Introductory Students' Application of Integrals in Physics from Multiple Perspectives
ERIC Educational Resources Information Center
Hu, Dehui
2013-01-01
Calculus is used across many physics topics from introductory to upper-division level college courses. The concepts of differentiation and integration are important tools for solving real world problems. Using calculus or any mathematical tool in physics is much more complex than the straightforward application of the equations and algorithms that…
Books for the Blind and Physically Handicapped. Fourth Edition.
ERIC Educational Resources Information Center
Haycraft, Howard
The article discusses library services available for the blind and the physically handicapped at the Division for the Blind and Physically Handicapped of the Library of Congress and at regional libraries. Topics covered include conditions and eligibility for service, with talking book service provided for individuals who cannot read or use…
ERIC Educational Resources Information Center
American Alliance for Health, Physical Education, Recreation, and Dance, Houston, TX. Southern District.
The proceedings of the division meetings on health, physical education, and recreation are presented here. Topics include bioethics, cardiopulmonary resuscitation, sexuality, dance, athletics, movement education, outdoor education, and physical fitness. The proceedings of the business meeting are presented as well. (DS)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... and General Physics Corporation Excluding Workers of the Global Purchasing and Supply Chain Division... plants. The company reports that workers leased from General Physics Corporation were employed on-site at..., Technical Center. The Department has determined that on-site workers from General Physics Corporation were...
NASA Technical Reports Server (NTRS)
1987-01-01
Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.
NASA Astrophysics Data System (ADS)
Skiff, Fred; Davidson, Ronald C.
2013-05-01
Each year, the annual meeting of the APS Division of Plasma Physics (DPP) brings together a broad representation of the many active subfields of plasma physics and enjoys an audience that is equally diverse. The meeting was well attended and largely went as planned despite the interventions of hurricane Sandy which caused the city of Providence to shut-down during the first day of the conference. The meeting began on Monday morning with a review of the physics of cosmic rays, 2012 being the 100th year since their discovery, which illustrated the central importance of plasma physics to astrophysical problems. Subsequent reviews covered the importance of tokamak plasma boundaries, progress towards ignition on the National Ignition Facility (NIF), and magnetized plasma turbulence. The Maxwell prize address, by Professor Liu Chen, covered the field of nonlinear Alfvén wave physics. Tutorial lectures were presented on the verification of gyrokinetics, new capabilities in laboratory astrophysics, magnetic flux compression, and tokamak plasma start-up.
Transforming a fourth year modern optics course using a deliberate practice framework
NASA Astrophysics Data System (ADS)
Jones, David J.; Madison, Kirk W.; Wieman, Carl E.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] We present a study of active learning pedagogies in an upper-division physics course. This work was guided by the principle of deliberate practice for the development of expertise, and this principle was used in the design of the materials and the orchestration of the classroom activities of the students. We present our process for efficiently converting a traditional lecture course based on instructor notes into activities for such a course with active learning methods. Ninety percent of the same material was covered and scores on common exam problems showed a 15% improvement with an effect size greater than 1 after the transformation. We observe that the improvement and the associated effect size is sustained after handing off the materials to a second instructor. Because the improvement on exam questions was independent of specific problem topics and because the material tested was so mathematically advanced and broad (including linear algebra, Fourier transforms, partial differential equations, and vector calculus), we expect the transformation process could be applied to most upper-division physics courses having a similar mathematical base.
Space-Time Processing for Tactical Mobile Ad Hoc Networks
2010-05-01
Spatial Diversity and Imperfect Channel Estimation on Wideband MC- DS - CDMA and MC- CDMA " IEEE Transactions on Communications, Vol. 57, No. 10, pp. 2988...include direct sequence code division multiple access ( DS - CDMA ), Frequency Hopped (FH) CDMA and Orthogonal Frequency Division Multiple Access (OFDMA...capability, LPD/LPI, and operability in non-continuous spectrum. In addition, FH- CDMA is robust to the near-far problem, while DS - CDMA requires
Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array
2010-10-01
and potentially the Lunar Radio Array. Subject headings: instrumentation: interferometers — methods : observational — radio continuum: gen- eral 1Remote...Sensing Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 USA 2NASA Lunar Science Institute, NASA Ames Research Center...Moffett Field, CA 94035 USA 3Space Science Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375-5382 USA 4Praxis, Inc
2009-12-10
Korean High Level Delegation Visit Ames Certer Director and various Senior staff: John Hines, Ames Center Chief Technologist (middel left) explains PharmaSat (small Satellites) to Soon-Duk Bae, Deputy Director, Big Science Policy Division, Ministry of Educaiton, Science Technology, Young-Mok Hyun, Deputy Director, Space Development Division, Ministry of Educaiton, Science Technology, Seorium Lee, Senior Researcher, International Relations Korea Aerospace Research Institute. Unkonw person at the end of table.
2013-04-26
CAPE CANAVERAL, Fla. - The winning students and their teachers of the 2013 DuPont Challenge Science Essay Competition show off their awards after a ceremony at the Kennedy Space Center Visitor Complex in Florida. From left are, Kelvin Manning, the center's associate deputy director sponsoring teacher Angela Weeks and Junior Division first runner-up Gaurav Garg of Beckendorff Junior High in Katy, Texas sponsoring teacher Elaine Gillum and Senior Division grand prize winner Jacob Yoshitake of Marshall Middle School in San Diego, Calif. Senior Division first runner-up Laura Herman and sponsoring teacher Jennifer Gordinier of Pine Crest School in Fort Lauderdale, Fla. and Senior Division grand prize awardee Hugo Yen and sponsoring teacher Nga Ngo of Troy High in Fullerton, Calif. The challenge, now in its 27th year, reaches out to students from grades seven through 12 from all 50 states and Canada. More than 200,000 students entered the competition. The DuPont Challenge aims to inspire students to excel and achieve in scientific writing and pursue careers in science, technology, engineering and mathematics STEM. The challenge honors space shuttle Challenger's STS-51L crew members who gave their lives while furthering the cause of exploration and discovery. For more information on the challenge, go to http://thechallenge.dupont.com/sponsors/nasa.php.
NASA Technical Reports Server (NTRS)
Schatten, Heide
1996-01-01
The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.
NASA Astrophysics Data System (ADS)
Chaudhary, Sushank; Amphawan, Angela
2017-11-01
In an attempt to meet the goal of distributing millimeter-wave (mm-wave) signals, recent years have witnessed significant relevance being given to combining radio frequency with optical fiber technologies. The future of radio-over-free-space-optics technology aims to build a universal platform for distributing millimeter waves for wireless local area networks without using expensive optical fibers. This work is focused on simultaneous transmission of four independent OFDM-based channels, each carrying 20 Gbps to 40 GHz data, by mode-division multiplexing of Laguerre-Gaussian mode with vortex lens and Hermite-Gaussian mode to realize a total transmission of 80 Gbps to 160 GHz data over 50-km free-space optical link. Moreover, the performance of the proposed system is also evaluated under the influence of various atmospheric turbulences, such as light fog, thin fog, and thick fog.
Space medicine research publications: 1984-1986
NASA Technical Reports Server (NTRS)
Wallace, Janice S.
1988-01-01
A list is given of the publications of investigators supported by the Biomedical Research and Clinical Medicine Programs of the Space Medicine and Biology Branch, Life Sciences Division, Office of Space Science and Applications. It includes publications entered into the Life Sciences Bibliographic Database by the George Washington University as of December 31, 1986. Publications are organized into the following subject areas: Clinical Medicine, Space Human Factors, Musculoskeletal, Radiation and Environmental Health, Regulatory Physiology, Neuroscience, and Cardiopulmonary.
Moving Beyond Earth Gallery Opening
2009-11-18
David H. DeVorkin, Senior Curator, Astronomy and the Space Sciences Division of Space History, at the Smithsonian's National Air and Space Museum, speaks during a press briefing at the new "Moving Beyond Earth," exhibition at the museum in Washingon, Wednesday, Nov. 18, 2009. Moving Beyond Earth is an immersive exhibition that places visitors "in orbit" in the shuttle and space-station era to explore recent human spaceflight and future possibilities. Photo Credit: (NASA/Paul E. Alers)
NASA Technical Reports Server (NTRS)
1989-01-01
The Life Science Division of the NASA Office of Space Science and Applications (OSSA) describes its plans for assuring the health, safety, and productivity of astronauts in space, and its plans for acquiring further fundamental scientific knowledge concerning space life sciences. This strategic implementation plan details OSSA's goals, objectives, and planned initiatives. The following areas of interest are identified: operational medicine; biomedical research; space biology; exobiology; biospheric research; controlled ecological life support; flight programs and advance technology development; the life sciences educational program; and earth benefits from space life sciences.
Recent Pharmacology Studies on the International Space Station
NASA Technical Reports Server (NTRS)
Wotring, Virginia
2014-01-01
The environment on the International Space Station (ISS) includes a variety of potential stressors including the absence of Earth's gravity, elevated exposure to radiation, confined living and working quarters, a heavy workload, and high public visibility. The effects of this extreme environment on pharmacokinetics, pharmacodynamics, and even on stored medication doses, are not yet understood. Dr. Wotring will discuss recent analyses of medication doses that experienced long duration storage on the ISS and a recent retrospective examination of medication use during long-duration spaceflights. She will also describe new pharmacology experiments that are scheduled for upcoming ISS missions. Dr. Virginia E. Wotring is a Senior Scientist in the Division of Space Life Sciences in the Universities Space Research Association, and Pharmacology Discipline Lead at NASA's Johnson Space Center, Human Heath and Countermeasures Division. She received her doctorate in Pharmacological and Physiological Science from Saint Louis University after earning a B.S. in Chemistry at Florida State University. She has published multiple studies on ligand gated ion channels in the brain and spinal cord. Her research experience includes drug mechanisms of action, drug receptor structure/function relationships and gene & protein expression. She joined USRA (and spaceflight research) in 2009. In 2012, her book reviewing pharmacology in spaceflight was published by Springer: Space Pharmacology, Space Development Series.
Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1
NASA Technical Reports Server (NTRS)
Estes, Ronald H. (Editor)
1993-01-01
This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.
NASA Technical Reports Server (NTRS)
Hartman, Kathy; Weidow, David; Hadaegh, Fred
1999-01-01
Breakthrough technology development is critical to securing the future of our space industry. The National Aeronautics and Space Administration (NASA) Cross-Enterprise Technology Development Program (CETDP) is developing critical space technologies that enable innovative and less costly missions, and spawn new mission opportunities through revolutionary, long-term, high-risk, high-payoff technology advances. The CETDP is a NASA-wide activity managed by the Advanced Technology and Mission Studies Division (AT&MS) at Headquarters Office of Space Science. Program management for CETDP is distributed across the multiple NASA Centers and draws on expertise throughout the Agency. The technology research activities are organized along Project-level divisions called thrust areas that are directly linked to the Agency's goals and objectives of the Enterprises: Earth Science, Space Science, Human Exploration and Development of Space; and the Office of the Chief Technologist's (OCT) strategic technology areas. Cross-Enterprise technology is defined as long-range strategic technologies that have broad potential to span the needs of more than one Enterprise. Technology needs are identified and prioritized by each of the primary customers. The thrust area manager (TAM) for each division is responsible for the ultimate success of technologies within their area, and can draw from industry, academia, other government agencies, other CETDP thrust areas, and other NASA Centers to accomplish the goals of the thrust area. An overview of the CETDP and description of the future directions of the thrust area called Distributed Spacecraft are presented in this paper. Revolutionary technologies developed within this thrust area will enable the implementation of a spatially distributed network of individual vehicles, or assets, collaborating as a single collective unit, and exhibiting a common system-wide capability to accomplish a shared objective. With such a capability, new Earth and space science measurement concepts become a reality.
NASA Technical Reports Server (NTRS)
Hartman, Kathy; Weidow, David; Hadaegh, Fred
1999-01-01
Breakthrough technology development is critical to securing the future of our space industry. The National Aeronautics and Space Administration (NASA) Cross-Enterprise Technology Development Program (CETDP) is developing critical space technologies that enable innovative and less costly missions, and spawn new mission opportunities through revolutionary, long-term, high-risk, high-payoff technology advances. The CETDP is a NASA-wide activity managed by the Advanced Technology and Mission Studies Division (AT&MS) at Headquarters Office of Space Science. Program management for CETDP is distributed across the multiple NASA Centers and draws on expertise throughout the Agency. The technology research activities are organized along Project-level divisions called thrust areas that are directly linked to the Agency's goals and objectives of the Enterprises: Earth Science, Space Science, Human Exploration and Development of Space; and the Office of the Chief Technologist's (OCT) strategic technology areas. Cross-Enterprise technology is defined as long-range strategic technologies that have broad potential to span the needs of more than one Enterprise. Technology needs are identified and prioritized by each of the primary customers. The thrust area manager (TAM) for each division is responsible for the ultimate success of technologies within their area, and can draw from industry, academia, other government agencies, other CETDP thrust areas, and other NASA Centers to accomplish the goals of the thrust area. An overview of the CETDP and description of the future directions of the thrust area called Distributed Spacecraft are presented in this paper. Revolutionary technologies developed within this thrust area will enable the implementation of a spatially distributed network of individual vehicles, or assets, collaborating as a single collective unit, and exhibiting a common system-wide capability to accomplish a shared objective. With such a capability, new Earth and space science measurement concepts become a reality.
14 CFR 1262.310 - Payment of award.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION EQUAL ACCESS TO JUSTICE ACT IN AGENCY... Division, NASA Headquarters, Washington, DC 20546. (b) The Agency will pay the amount awarded to the applicant within 60 days, if feasible, unless judicial review of the award or of the underlying decision of...
Tooling for War: Military Transformation in the Industrial Age
1994-09-01
Ivan M. Aviation versus Submarines. Wright-Patterson AFB: Foreign Technology Division, 1971. V 214 .S71; Report Lit. AD 723 558. United States. Cong...Brown, Neville. New Strateav Through Space. Leicester, England; New York: Leicester UP, 1990. UGK 1012 .B879 1990. Canan , James W. War in Space. New
Chinese-English Aviation and Space Dictionary.
ERIC Educational Resources Information Center
Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.
The Aviation and Space Dictionary is the second of a series of Chinese-English technical dictionaries under preparation by the Foreign Technology Division, United States Air Force Systems Command. The purpose of the series is to provide rapid reference tools for translators, abstracters, and research analysts concerned with scientific and…
Space directorate research and technology accomplishments for fiscal year 1987
NASA Technical Reports Server (NTRS)
Avery, Don E.
1988-01-01
The major accomplishments and test highlights of the Space Directorate of NASA Langley Research Center for FY87 are presented. Accomplishments and test highlights are listed by Division and Branch. This information should be useful in coordinating programs with government organizations, universities, and industry in areas of mutual interest.
Space directorate research and technology accomplishments for FY 1988
NASA Technical Reports Server (NTRS)
Avery, Don E. (Compiler)
1989-01-01
The major accomplishments and test highlights for FY 1988 that occurred in the Space Dirctorate are given. Accomplishments and test highlights are presented by Division and Branch. The presented information will be useful in program coordination with government organizations, universities, and industry in areas of mutual interest.
A New Direction for the NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.
A New Direction for NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)
2001-01-01
NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.
Quantum correlations are weaved by the spinors of the Euclidean primitives
2018-01-01
The exceptional Lie group E8 plays a prominent role in both mathematics and theoretical physics. It is the largest symmetry group associated with the most general possible normed division algebra, namely, that of the non-associative real octonions, which—thanks to their non-associativity—form the only possible closed set of spinors (or rotors) that can parallelize the 7-sphere. By contrast, here we show how a similar 7-sphere also arises naturally from the algebraic interplay of the graded Euclidean primitives, such as points, lines, planes and volumes, which characterize the three-dimensional conformal geometry of the ambient physical space, set within its eight-dimensional Clifford-algebraic representation. Remarkably, the resulting algebra remains associative, and allows us to understand the origins and strengths of all quantum correlations locally, in terms of the geometry of the compactified physical space, namely, that of a quaternionic 3-sphere, S3, with S7 being its algebraic representation space. Every quantum correlation can thus be understood as a correlation among a set of points of this S7, computed using manifestly local spinors within S3, thereby extending the stringent bounds of ±2 set by Bell inequalities to the bounds of ±22 on the strengths of all possible strong correlations, in the same quantitatively precise manner as that predicted within quantum mechanics. The resulting geometrical framework thus overcomes Bell’s theorem by producing a strictly deterministic and realistic framework that allows a locally causal understanding of all quantum correlations, without requiring either remote contextuality or backward causation. We demonstrate this by first proving a general theorem concerning the geometrical origins of the correlations predicted by arbitrarily entangled quantum states, and then reproducing the correlations predicted by the EPR-Bohm and the GHZ states. The raison d’être of strong correlations turns out to be the Möbius-like twists in the Hopf bundles of S3 and S7. PMID:29893385
NASA Technical Reports Server (NTRS)
Nowakowski, Barbara S.; Palmer, Wesley F.
1985-01-01
This document catalogs Space Shuttle hand-held Earth observations photography which was collected on the Space Transportation System (STS) 41-G mission of October 1984. The catalog includes the following data for each of 2480 frames: geographical name, feature description, latitude and longitude, percentage of cloud cover, look direction and tilt, lens focal length, exposure evaluation, stereopairs, and orbit number. The catalog is a product of the Space Shuttle Earth Observations Project, Solar System Exploration Division, Space and Life Sciences Directorate, of the National Aeronautics and Space Administration, Lyndon B. Johnson Space Center.
Shielding analyses for repetitive high energy pulsed power accelerators
NASA Astrophysics Data System (ADS)
Jow, H. N.; Rao, D. V.
Sandia National Laboratories (SNL) designs, tests and operates a variety of accelerators that generate large amounts of high energy Bremsstrahlung radiation over an extended time. Typically, groups of similar accelerators are housed in a large building that is inaccessible to the general public. To facilitate independent operation of each accelerator, test cells are constructed around each accelerator to shield it from the radiation workers occupying surrounding test cells and work-areas. These test cells, about 9 ft. high, are constructed of high density concrete block walls that provide direct radiation shielding. Above the target areas (radiation sources), lead or steel plates are used to minimize skyshine radiation. Space, accessibility and cost considerations impose certain restrictions on the design of these test cells. SNL Health Physics division is tasked to evaluate the adequacy of each test cell design and compare resultant dose rates with the design criteria stated in DOE Order 5480.11. In response, SNL Health Physics has undertaken an intensive effort to assess existing radiation shielding codes and compare their predictions against measured dose rates. This paper provides a summary of the effort and its results.
Integrative Physical and Cognitive Training Development to Better Meet Airman Mission Requirements
2015-07-26
Warfighter Interface Division Applied Neuroscience Branch Wright-Patterson AFB OH 45433 711 HPW/RHCP 11. SPONSOR/MONITOR’S REPORT NUMBER(S...Interface Division) and Erica Johnson (AFRL, Applied Neuroscience Branch) for their contributions in technical development and manuscript editing that...Liston C. Hobson J. Stickgold, R. Cognitive flexibility across the sleep–wake cycle: REM-sleep enhancement of anagram problem solving. Cogn Brain
Hormiga-Sánchez, Claudia M; Alzate-Posada, Martha L; Borrell, Carme; Palència, Laia; Rodríguez-Villamizar, Laura A; Otero-Wandurraga, Johanna A
2016-04-01
Objectives To estimate the prevalence of occupation-, transportation- and leisure-related physical activity, its compliance with recommendations, and to explore its association with demographic and socioeconomic variables in men and women of the Department of Santander (Colombia). Methods The sample consisted of 2421 people between 15 and 64 years of age, participants in the Risk Factors for Chronic Diseases of Santander cross-sectional study, developed in 2010. The Global Physical Activity Questionnaire was used for data collection. Age-adjusted prevalence ratios were calculated and multivariate analysis models were built by sex using robust Poisson regression. Results The prevalence of occupational and leisure physical activity and compliance with recommendations were lower in women. Sexual division of labor and a low socioeconomic level negatively influenced physical activity in women, limiting the possibility of practice of those principally engaged in unpaid work at home. Young or single men and those living in higher socioeconomic areas were more likely to practice physical activity in leisure time and meet recommendations. Conclusion Physical activity surveillance and related public policies should take into account the inequalities between the practice of men and women related to their socioeconomic conditions and the sexual division of labor.
Optical Measurements on Solid Specimens of Solid Rocket Motor Exhaust and Solid Rocket Motor Slag
NASA Technical Reports Server (NTRS)
Roberts, F. E., III
1991-01-01
Samples of aluminum slag were investigated to aid the Earth Science and Applications Division at the Marshall Space Flight Center (MSFC). Alumina from space motor propellant exhaust and space motor propellant slag was examined as a component of space refuse. Thermal emittance and solar absorptivity measurements were taken to support their comparison with reflectance measurements derived from actual debris. To determine the similarity between the samples and space motor exhaust or space motor slag, emittance and absorbance results were correlated with an examination of specimen morphology.
Brief, embedded, spontaneous metacognitive talk indicates thinking like a physicist
NASA Astrophysics Data System (ADS)
Sayre, Eleanor C.; Irving, Paul W.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] Instructors and researchers think "thinking like a physicist" is important for students' professional development. However, precise definitions and observational markers remain elusive. We reinterpret popular beliefs inventories in physics to indicate what physicists think thinking like a physicist entails. Through discourse analysis of upper-division students' speech in natural settings, we show that students may appropriate or resist these elements. We identify a new element in the physicist speech genre: brief, embedded, spontaneous metacognitive talk (BESM talk). BESM talk communicates students' in-the-moment enacted expectations about physics as a technical field and a cultural endeavor. Students use BESM talk to position themselves as physicists or nonphysicists. Students also use BESM talk to communicate their expectations in four ways: understanding, confusion, spotting inconsistencies, and generalized expectations.
Unified quantitative characterization of epithelial tissue development
Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru
2015-01-01
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: http://dx.doi.org/10.7554/eLife.08519.001 PMID:26653285
The Scope & Sequence of Fitness Education for PreK-16 Programs: NASPE Fitness Education Project
ERIC Educational Resources Information Center
National Association for Sport and Physical Education, 2012
2012-01-01
In May 2006, the National Association for Sport and Physical Education (NASPE) received funding from the Centers for Disease Control and Prevention's (CDC) Division of Adolescent and School Health to improve the quality and quantity of physical education and physical activity programs across the United States. The cooperative agreement project…
ERIC Educational Resources Information Center
Cardinal, Bradley J.; And Others
Consistent with the Year 2000 National Health Promotion and Disease Prevention Objectives, this paper presents a proposal for a Wellness Clinician/Research specialization within the existing Master of Education in Physical Education degree program offered by the Division of Health, Physical Education, and Recreation at Wayne State University…
ERIC Educational Resources Information Center
Gambari, Amosa Isiaka; Yusuf, Mudasiru Olalere; Thomas, David Akpa
2015-01-01
This study examined the effectiveness of computer-assisted instruction on Student Team Achievement Division (STAD) and Learning Together (LT) cooperative learning strategies on Nigerian secondary students' achievement and motivation in physics. The effectiveness of computer assisted instructional package (CAI) for teaching physics concepts in…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
... may be addressed to: Dr. Marc Garland, Program Manager, Office of Nuclear Physics, Office of Science... Management Division, Office of Nuclear Physics, Office of Science, U.S. Department of Energy, Germantown..., Office of Nuclear Physics, Office of Science. [FR Doc. 2013-05444 Filed 3-7-13; 8:45 am] BILLING CODE...
Summaries of FY 1982 research in the chemical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-09-01
The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energymore » technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.« less
Enzyme clustering accelerates processing of intermediates through metabolic channeling
Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.
2015-01-01
We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299
A Polymer-Dispersed Liquid Crystal-Based Dynamic Gain Equalizer
NASA Astrophysics Data System (ADS)
Barge, M.; Battarel, D.; de Bougrenet de La Tocnaye, J. L.
2005-08-01
This paper presents results obtained with a spatial light modulator (SLM) using a polymer-dispersed liquid-crystal (LC) material to provide dynamic gain equalization (DGE) for wavelength-division multiplexing (WDM) networks. We show the benefit of using a nonchannelized approach to adjust some physical parameters such as the ripple and the maximum obtainable attenuation slope for the spectra to be equalized. Particular attention is paid here to polarization dependence that can result from parasitic anisotropic multiple path interferences as well as induced anisotropy due to a planar transverse field when using a free-space SLM structure. In this frame, we demonstrate an original approach using a depolarizing prism that is only appropriate to such choice of material and that mitigates these effects. Finally, material engineering to widen the operating temperature range is also shortly presented in this paper.
Tracing the Attention of Moving Citizens
NASA Astrophysics Data System (ADS)
Wu, Lingfei; Wang, Cheng-Jun
2016-09-01
With the widespread use of mobile computing devices in contemporary society, our trajectories in the physical space and virtual world are increasingly closely connected. Using the anonymous smartphone data of 1 × 105 users in a major city of China, we study the interplay between online and offline human behaviors by constructing the mobility network (offline) and the attention network (online). Using the network renormalization technique, we find that they belong to two different classes: the mobility network is small-world, whereas the attention network is fractal. We then divide the city into different areas based on the features of the mobility network discovered under renormalization. Interestingly, this spatial division manifests the location-based online behaviors, for example shopping, dating, and taxi-requesting. Finally, we offer a geometric network model to help us understand the relationship between small-world and fractal networks.
NASA Astrophysics Data System (ADS)
Wilder, Phillip
2015-12-01
This response builds upon Marie Paz Morales' "Influence of culture and language sensitive physics on science attitude achievement" by exploring how an expanded understanding of the ubiquitous nature of adolescent literacy practices and identities challenge traditional notions of "in school" and "out of school" cultural spaces. Listening to the "third voices" of adolescents can promote a deeper understanding of the complex literate lives of Pangasinan students and inform both the official and the enacted culturally sensitive curriculum. To hear the literate lives of adolescents is to push back against politically dehumanizing and "de-literacizing" neo-liberal educational policies and practices which privilege a singular, whitewashed view of literacy in order to standardize curriculum and instruction, preserve power in the hands of the powerful, and exacerbate socio-economic, racial, ethnic, and linguistic divisions.
Sethi, Kriti; Palani, Saravanan; Cortés, Juan C. G.; Sato, Mamiko; Sevugan, Mayalagu; Ramos, Mariona; Vijaykumar, Shruthi; Osumi, Masako; Naqvi, Naweed I.; Ribas, Juan Carlos; Balasubramanian, Mohan
2016-01-01
Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast. PMID:27749909
Sethi, Kriti; Palani, Saravanan; Cortés, Juan C G; Sato, Mamiko; Sevugan, Mayalagu; Ramos, Mariona; Vijaykumar, Shruthi; Osumi, Masako; Naqvi, Naweed I; Ribas, Juan Carlos; Balasubramanian, Mohan
2016-10-01
Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast.
Somatotype analysis of elite boxing athletes compared with nonathletes for sports physiotherapy.
Noh, Ji-Woong; Kim, Ju-Hyun; Kim, Mee-Young; Lee, Jeong-Uk; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Jeon, Hye-Joo; Lee, Won-Deok; Kwak, Taek-Yong; Jang, Sung-Ho; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan
2014-08-01
[Purpose] The purpose of this study was to show somatotype and physical characteristic differences between elite boxing athletes and non-athletes. [Methods] The somatotypes of 23 elite boxing athletes and 23 nonathletes were measured with the Heath-Carter method. The subjects were divided into four weight divisions as follows: lightweight, light middleweight, middleweight, and heavyweight class. [Results] The endomorphic component values of the boxing athletes were lower than those of the nonathletes. However, the mesomorphic component values of the boxing athletes were higher than those of the nonathletes. There was no significant difference in the ectomorphic component between the two groups. The higher weight divisions tended to have higher values of height, weight, and BMI than the lower weight divisions. The higher weight divisions also tended to have higher values for the endomorphic and mesomorphic components and a lower value for the ectomorphic component than the lower weight divisions. The group of nonathletes consisted of eight endomorphs, four mesomorphs, six ectomorphs, and five central types. Among the boxing athletes, there were 16 mesomorphic, four ectomorphic, and two central types and one endomorphic type. Subdividing the athletes into 13 somatotypes resulted in five balanced mesomorphs, five endomorphic mesomorphs, five mesomorph-ectomorphs, three mesomorph-endomorphs, two mesomorphic ectomorphs, two central types, and one ectomorphic mesomorph type. [Conclusion] The data from this study provides in part physical characteristics of elite boxing athletes that can be used to establish a reference for systemic study of sports physiotherapy.
Fusion Energy Division progress report, 1 January 1990--31 December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.
1994-03-01
The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less