Sample records for space physics lasp

  1. Technologies and Methods Used at the Laboratory for Atmospheric and Space Physics (LASP) to Serve Solar Irradiance Data

    NASA Technical Reports Server (NTRS)

    Pankratz, Chris; Beland, Stephane; Craft, James; Baltzer, Thomas; Wilson, Anne; Lindholm, Doug; Snow, Martin; Woods, Thomas; Woodraska, Don

    2018-01-01

    The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado in Boulder, USA operates the Solar Radiation and Climate Experiment (SORCE) NASA mission, as well as several other NASA spacecraft and instruments. Dozens of Solar Irradiance data sets are produced, managed, and disseminated to the science community. Data are made freely available to the scientific immediately after they are produced using a variety of data access interfaces, including the LASP Interactive Solar Irradiance Datacenter (LISIRD), which provides centralized access to a variety of solar irradiance data sets using both interactive and scriptable/programmatic methods. This poster highlights the key technological elements used for the NASA SORCE mission ground system to produce, manage, and disseminate data to the scientific community and facilitate long-term data stewardship. The poster presentation will convey designs, technological elements, practices and procedures, and software management processes used for SORCE and their relationship to data quality and data management standards, interoperability, NASA data policy, and community expectations.

  2. The New LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Baltzer, T.; Wilson, A.; Lindholm, D. M.; Snow, M. A.; Woodraska, D.; Pankratz, C. K.

    2017-12-01

    The New LASP Interactive Solar IRradiance Datacenter (LISIRD) The University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) has a long history of providing state of the art Solar instrumentation and datasets to the community. In 2005, LASP created a web interface called LISIRD which provided plotting of and access to a number of Solar Irradiance measured and modeled datasets, and it has been used extensively by members of the community both within and outside of LASP. In August of 2017, LASP is set to release a new version of LISIRD for use by anyone interested in viewing and downloading the datasets it serves. This talk will describe the new LISIRD with emphasis on features enabled by it to include: New and more functional plotting interfaces Better dataset browse and search capabilities More datasets Easier to add datasets from a wider array of resources Cleaner interface with better use of screen real estate Much easier to update metadata describing each dataset Much of this capability is leveraged off new infrastructure that will also be touched upon.

  3. The LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Pankratz, C. K.; Lindholm, D. M.; Snow, M.; Knapp, B.; Woodraska, D.; Templeman, B.; Woods, T. N.; Eparvier, F. G.; Fontenla, J.; Harder, J.; McClintock, W. E.

    2007-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) has been making space-based measurements of solar irradiance for many decades, and thus has established an extensive catalog of past and ongoing space- based solar irradiance measurements. In order to maximize the accessibility and usability of solar irradiance data and information from multiple missions, LASP is developing the LASP Interactive Solar IRradiance Datacenter (LISIRD) to better serve the needs of researchers, educators, and the general public. This data center is providing interactive and direct access to a comprehensive set of solar spectral irradiance measurements from the soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as state-of-the-art measurements of Total Solar Irradiance (TSI). LASP researchers are also responsible for an extensive set of solar irradiance models and historical solar irradiance reconstructions, which will also be accessible via this data center over time. LISIRD currently provides access to solar irradiance data sets from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments, spanning 1981 to the present, as well as a Lyman Alpha composite that is available from 1947 to the present. LISIRD also provides data products of interest to the space weather community, whose needs demand high time cadence and near real-time data delivery. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD's various interfaces.

  4. Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Ware DeWolfe, A.; Wilson, A.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.

    2011-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD, http://lasp.colorado.edu/lisird/) web site to provide access to a comprehensive set of solar irradiance measurements and related datasets. Current data holdings include products from NASA missions SORCE, UARS, SME, and TIMED-SEE. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as Total Solar Irradiance (TSI). Other datasets include solar indices, spectral and flare models, solar images, and more. The LISIRD web site features updated plotting, browsing, and download capabilities enabled by dygraphs, JavaScript, and Ajax calls to the LASP Time Series Server (LaTiS). In addition to the web browser interface, most of the LISIRD datasets can be accessed via the LaTiS web service interface that supports the OPeNDAP standard. OPeNDAP clients and other programming APIs are available for making requests that subset, aggregate, or filter data on the server before it is transported to the user. This poster provides an overview of the LISIRD system, summarizes the datasets currently available, and provides details on how to access solar irradiance data products through LISIRD's interfaces.

  5. Accessing Solar Irradiance Data Products From the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Ware Dewolfe, A.; Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M.; Woods, T. N.

    2009-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) is enhancing the LASP Interactive Solar IRradiance Datacenter (LISIRD) to provide access to a comprehensive set of solar spectral irradiance measurements. LISIRD has recently been updated to serve many new datasets and models, including sunspot index, photometric sunspot index, Lyman-alpha, and magnesium-II core-to-wing ratio. A new user interface emphasizes web-based interactive visualizations, allowing users to explore and compare this data before downloading it for analysis. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as wavelength-independent Total Solar Irradiance (TSI). Combined data from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments provide almost continuous coverage from 1981 to the present, while Hydrogen Lyman-alpha (121.6 nm) measurements / models date from 1947 to the present. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD interfaces at http://lasp.colorado.edu/lisird/.

  6. A Semantically Enabled Metadata Repository for Solar Irradiance Data Products

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Cox, M.; Lindholm, D. M.; Nadiadi, I.; Traver, T.

    2014-12-01

    The Laboratory for Atmospheric and Space Physics, LASP, has been conducting research in Atmospheric and Space science for over 60 years, and providing the associated data products to the public. LASP has a long history, in particular, of making space-based measurements of the solar irradiance, which serves as crucial input to several areas of scientific research, including solar-terrestrial interactions, atmospheric, and climate. LISIRD, the LASP Interactive Solar Irradiance Data Center, serves these datasets to the public, including solar spectral irradiance (SSI) and total solar irradiance (TSI) data. The LASP extended metadata repository, LEMR, is a database of information about the datasets served by LASP, such as parameters, uncertainties, temporal and spectral ranges, current version, alerts, etc. It serves as the definitive, single source of truth for that information. The database is populated with information garnered via web forms and automated processes. Dataset owners keep the information current and verified for datasets under their purview. This information can be pulled dynamically for many purposes. Web sites such as LISIRD can include this information in web page content as it is rendered, ensuring users get current, accurate information. It can also be pulled to create metadata records in various metadata formats, such as SPASE (for heliophysics) and ISO 19115. Once these records are be made available to the appropriate registries, our data will be discoverable by users coming in via those organizations. The database is implemented as a RDF triplestore, a collection of instances of subject-object-predicate data entities identifiable with a URI. This capability coupled with SPARQL over HTTP read access enables semantic queries over the repository contents. To create the repository we leveraged VIVO, an open source semantic web application, to manage and create new ontologies and populate repository content. A variety of ontologies were used in creating the triplestore, including ontologies that came with VIVO such as FOAF. Also, the W3C DCAT ontology was integrated and extended to describe properties of our data products that we needed to capture, such as spectral range. The presentation will describe the architecture, ontology issues, and tools used to create LEMR and plans for its evolution.

  7. The Colorado MESA Program and CU-LASP: A Model for After School Program/Research Institution Collaboratives

    NASA Astrophysics Data System (ADS)

    Nelson, G.; Cobabe-Ammann, E.

    2004-12-01

    Colorado MESA is an after school program operating throughout the state with a long track record in promoting science, math and engineering education to largely underserved K-12 student populations. Currently, 81 percent of MESA students are from groups underrepresented in the math/science careers, and 85 percent of MESA students come from low- and moderate-income families. Through a combination of weekly student programs, field trips to universities and industry partners, family orientations, individual academic counseling and required curriculum, Colorado MESA offers an opportunity for students to explore STEM subjects and careers that they might not otherwise have access to - with tangible results. In the Colorado MESA Class of 2003, 97 percent of students planned on entering college this fall, with 86 percent indicating that they will enroll in math/science-based majors. In the last year, the University of Colorado's Laboratory for Atmospheric and Space Physics, a large space and earth sciences institute, has relied on the Colorado MESA program as its primary K-12 partner in Education and Public Outreach. LASP incorporates MESA into its proposal writing opportunities, from E/PO additions to individual research proposals to mission-level educational programs. In addition to funding opportunities, LASP provides scientists and engineers in a variety of contexts and content areas, while MESA works to incorporate those resources into their after school programs. The interface between the after school programs and the research institution requires ongoing communication and coordination in order to evaluate and fine-tune curriculum and activities based on feedback from MESA advisors and teachers. Currently, the MESA/LASP partnership has funded programs in astrobiology, planetary sciences and engineering.

  8. All About EVE: Education and Public Outreach for the Extreme Ultraviolet Variability Experiment (EVE) of the NASA Solar Dynamic Observatory

    NASA Astrophysics Data System (ADS)

    Eparvier, F. G.; McCaffrey, M. S.; Buhr, S. M.

    2008-12-01

    With the aim of meeting NASA goals for education and public outreach as well as support education reform efforts including the National Science Education Standards, a suite of education materials and strategies have been developed by the Cooperative Institute for Environmental Sciences (CIRES) with the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado for the Extreme Ultraviolet Variability Experiment (EVE), which is an instrument aboard the Solar Dynamic Observatory. This paper will examine the education materials that have been developed for teachers in the classroom and scientists who are conducting outreach, including handouts, a website on space weather for teachers, a slideshow presentation about the overall Solar Dynamic Observatory mission, and a DVD with videos explaining the construction and goals of the EVE instrument, a tour of LASP, and an overview of space science careers. The results and potential transferability of a pilot project developed through this effort that engaged English Second Language learners in a semester-long course on space weather that incorporated the used of a Sudden Ionospheric Disturbance (SID) Monitor will be highlighted.

  9. Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Ware Dewolfe, A.; Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.

    2010-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD) to provide access to a comprehensive set of solar irradiance measurements. LISIRD has recently been updated to serve many new datasets and models, including data from SORCE, UARS-SOLSTICE, SME, and TIMED-SEE, and model data from the Flare Irradiance Spectral Model (FISM). The user interface emphasizes web-based interactive visualizations, allowing users to explore and compare this data before downloading it for analysis. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as wavelength-independent Total Solar Irradiance (TSI). Combined data from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments provide continuous coverage from 1981 to the present, while Lyman-alpha measurements, FISM daily data, and TSI models date from the 1940s to the present. LISIRD will also host Glory TSI data as part of the SORCE data system. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD’s interfaces.

  10. Emmision cross section of OI (135.6nm) at 100 eV resulting from electron-inpact dissociative excitation of O-2

    NASA Technical Reports Server (NTRS)

    Noren, C.; Kanik, I.; Ajello, J.; McCartney, P.; Makarov, O.; McClintock, W.; Drake, V.

    2001-01-01

    In this Letter, we report for the first time, the ratio of the O I (135.6 nm)/O I (130.4 nm) absolute emission cross sections from electron-impact dissociative excitation of O-2 at 100 eV using facilities located at the University of Colorado, Laboratory for Atmospheric and Space Physics (LASP).

  11. KSC-02pd2005

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- Workers prepare a Pegasus XL Expendable Launch Vehicle for detachment from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle nestled beneath, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  12. KSC-02pd2001

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- Workers prepare to remove a Pegasus XL Expendable Launch Vehicle from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle attached, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  13. KSC-02pd2002

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- A Pegasus XL Expendable Launch Vehicle is moments away from being removed from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle attached, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  14. KSC-02pd2003

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- Workers begin the process to remove a Pegasus XL Expendable Launch Vehicle from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle attached, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  15. A Functional Data Model Realized: LaTiS Deployments

    NASA Astrophysics Data System (ADS)

    Baltzer, T.; Lindholm, D. M.; Wilson, A.; Putnam, B.; Christofferson, R.; Flores, N.; Roughton, S.

    2016-12-01

    At prior AGU annual meetings, members of the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) Web Team have described work being done on a functional data model and the software framework called LaTis, that implements it. This presentation describes the evolution of LaTiS and presents several instances of LaTiS in operation today that demonstrate its various capabilities. With LaTiS, serving a new dataset can be a simple as adding a small descriptor file. From providing access to spacecraft telemetry data in a variety of forms for the LASP missions operation group, to providing access to scientific data for the MMS and MAVEN science teams, to server-side functionality such as fusing satellite visible and infrared data along with forecast model data into a Geotiff image for situational awareness purposes, LaTiS has demonstrated itself as a highly flexible, standards-based framework that provides easy data access, dynamic reformatting, and customizable server side functionality.

  16. Nuclear localisation of LASP-1 correlates with poor long-term survival in female breast cancer.

    PubMed

    Frietsch, J J; Grunewald, T G P; Jasper, S; Kammerer, U; Herterich, S; Kapp, M; Honig, A; Butt, E

    2010-05-25

    LIM and SH3 protein 1 (LASP-1) is a nucleo-cytoplasmatic signalling protein involved in cell proliferation and migration and is upregulated in breast cancer in vitro studies have shown that LASP-1 might be regulated by prostate-derived ETS factor (PDEF), p53 and/or LASP1 gene amplification. This current study analysed the prognostic significance of LASP-1 on overall survival (OS) in 177 breast cancer patients and addressed the suggested mechanisms of LASP-1-regulation. Nucleo-cytoplasmatic LASP-1-positivity of breast carcinoma samples was correlated with long-term survival, clinicopathological parameters, Ki67-positivity and PDEF expression. Rate of LASP1 amplification was determined in micro-dissected primary breast cancer cells using quantitative RT-PCR. Cell-phase dependency of nuclear LASP-1-localisation was studied in synchronised cells. In addition, LASP-1, PDEF and p53 expression was compared in cell lines of different tumour entities to define principles for LASP-1-regulation. We showed that LASP-1 overexpression is not due to LASP1 gene amplification. Moreover, no correlation between p53-mutations or PDEF-expression and LASP-1-status was observed. However, nuclear LASP-1-localisation in breast carcinomas is increased during proliferation with peak in G2/M-phase and correlated significantly with Ki67-positivity and poor OS. Our results provide evidence that nuclear LASP-1-positivity may serve as a negative prognostic indicator for long-term survival of breast cancer patients.

  17. KSC-02pd2016

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- A Pegasus XL Expendable Launch Vehicle is prepared for towing to the Multi-Purpose Payload Facility (MPPF) where it will undergo testing, verification, and three flight simulations prior to its scheduled launch. The vehicle, nestled beneath an Orbital Sciences L-1011 aircraft, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. It is commissioned to carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit in late January 2003. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  18. KSC-02pd2007

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- Workers supervise the placement of a transporter below a Pegasus XL Expendable Launch Vehicle before its detachment from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle nestled beneath, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  19. KSC-02pd2018

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- A Pegasus XL Expendable Launch Vehicle sits atop a transporter following its arrival in the Multi-Purpose Payload Facility (MPPF) where it will undergo testing, verification, and three flight simulations prior to its scheduled launch. The vehicle, nestled beneath an Orbital Sciences L-1011 aircraft, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. It is commissioned to carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit in late January 2003. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  20. KSC-02pd2012

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- Workers complete the final steps to detach a Pegasus XL Expendable Launch Vehicle from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle nestled beneath, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  1. KSC-02pd2010

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- A transporter is repositioned below a Pegasus XL Expendable Launch Vehicle before it is detached from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle nestled beneath, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  2. KSC-02pd2015

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- A Pegasus XL Expendable Launch Vehicle is prepared for towing to the Multi-Purpose Payload Facility (MPPF) where it will undergo testing, verification, and three flight simulations prior to its scheduled launch. The vehicle, nestled beneath an Orbital Sciences L-1011 aircraft, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. It is commissioned to carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit in late January 2003. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  3. KSC-02pd2006

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- A transporter is positioned below a Pegasus XL Expendable Launch Vehicle before its detachment from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle nestled beneath, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  4. Suppression of LIM and SH3 Domain Protein 1 (LASP1) Negatively Regulated by Androgen Receptor Delays Castration Resistant Prostate Cancer Progression.

    PubMed

    Dejima, Takashi; Imada, Kenjiro; Takeuchi, Ario; Shiota, Masaki; Leong, Jeffrey; Tombe, Tabitha; Tam, Kevin; Fazli, Ladan; Naito, Seiji; Gleave, Martin E; Ong, Christopher J

    2017-02-01

    LIM and SH3 domain protein 1 (LASP1) has been implicated in several human malignancies and has been shown to predict PSA recurrence in prostate cancer. However, the anti-tumor effect of LASP1 knockdown and the association between LASP1 and the androgen receptor (AR) remains unclear. The aim of this study is to clarify the significance of LASP1 as a target for prostate cancer, and to test the effect of silencing LASP1 in vivo using antisense oligonucleotides (ASO). A tissue microarray (TMA) was performed to characterize the differences in LASP1 expression in prostate cancer treated after hormone deprivation therapy. Flow cytometry was used to analyze cell cycle. We designed LASP1 ASO for knockdown of LASP1 in vivo studies. The expression of LASP1 in TMA was increased after androgen ablation and persisted in castration resistant prostate cancer (CRPC). Also in TMA, compared with LNCaP cell, LASP1 expression is elevated in CRPC cell lines (C4-2 and VehA cells). Interestingly, suppression of AR elevated LASP1 expression conversely, AR activation decreased LASP1 expression. Silencing of LASP1 reduced cell growth through G1 arrest which was accompanied by a decrease of cyclin D1. Forced overexpression of LASP1 promoted cell cycle and induced cell growth which was accompanied by an increase of cyclin D1. Systemic administration of LASP1 ASO with athymic mice significantly inhibited tumor growth in CRPC xenografts. These results indicate that LASP1 is negatively regulated by AR at the transcriptional level and promotes tumor growth through induction of cell cycle, ultimately suggesting that LASP1 may be a potential target in prostate cancer treatment. Prostate 77:309-320, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. LASP Time Series Server (LaTiS): Overcoming Data Access Barriers via a Common Data Model in the Middle Tier (Invited)

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Wilson, A.

    2010-12-01

    The Laboratory for Atmospheric and Space Physics at the University of Colorado has developed an Open Source, OPeNDAP compliant, Java Servlet based, RESTful web service to serve time series data. In addition to handling OPeNDAP style requests and returning standard responses, existing modules for alternate output formats can be reused or customized. It is also simple to reuse or customize modules to directly read various native data sources and even to perform some processing on the server. The server is built around a common data model based on the Unidata Common Data Model (CDM) which merges the NetCDF, HDF, and OPeNDAP data models. The server framework features a modular architecture that supports pluggable Readers, Writers, and Filters via the common interface to the data, enabling a workflow that reads data from their native form, performs some processing on the server, and presents the results to the client in its preferred form. The service is currently being used operationally to serve time series data for the LASP Interactive Solar Irradiance Data Center (LISIRD, http://lasp.colorado.edu/lisird/) and as part of the Time Series Data Server (TSDS, http://tsds.net/). I will present the data model and how it enables reading, writing, and processing concerns to be separated into loosely coupled components. I will also share thoughts for evolving beyond the time series abstraction and providing a general purpose data service that can be orchestrated into larger workflows.

  6. Aircraft Measurements for Understanding Air-Sea Coupling and Improving Coupled Model Predictions

    DTIC Science & Technology

    2013-09-30

    physical parameterizations of the coupled model in various large-scale forcing conditions. OBJECTIVES The NOAA WP-3D efforts of DYNAMO /LASP intend...various phases of the MJO; 3) to extend point measurements on island and ships to a broader area near the DYNAMO region; and 4) To obtain a suite of...upper ocean characteristics from a large number of AXBT/AXCTD data. In addition, as one of the unique measurement strategy of LASP/ DYNAMO WP-3D project

  7. Study and Demonstration of Planning and Scheduling Concepts for the Earth Observing System Data and Information System

    NASA Technical Reports Server (NTRS)

    Davis, Randal; Thalman, Nancy

    1993-01-01

    The University of Colorado's Laboratory for Atmospheric and Space Physics (CU/LASP) along with the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL) designed, implemented, tested, and demonstrated a prototype of the distributed, hierarchical planning and scheduling system comtemplated for the Earth Observing System (EOS) project. The planning and scheduling prototype made use of existing systems: CU/LASP's Operations and Science Instrument Support Planning and Scheduling (OASIS-PS) software package; GSFC's Request Oriented Scheduling Engine (ROSE); and JPL's Plan Integrated Timeliner 2 (Plan-It-2). Using these tools, four scheduling nodes were implemented and tied together using a new communications protocol for scheduling applications called the Scheduling Applications Interface Language (SAIL). An extensive and realistic scenario of EOS satellite operations was then developed and the prototype scheduling system was tested and demonstrated using the scenario. Two demonstrations of the system were given to NASA personnel and EOS core system (ECS) contractor personnel. A comprehensive volume of lessons learned was generated and a meeting was held with NASA and ECS representatives to review these lessons learned. A paper and presentation on the project's final results was given at the American Institute of Aeronautics and Astronautics Computing in Aerospace 9 conference.

  8. KSC-02pd2017

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- Workers in clean room attire supervise the delivery of a Pegasus XL Expendable Launch Vehicle to the Multi-Purpose Payload Facility (MPPF). Next, it will be moved into a highbay where it will undergo testing, verification, and three flight simulations prior to its scheduled launch. The vehicle, nestled beneath an Orbital Sciences L-1011 aircraft, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. It is commissioned to carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit in late January 2003. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with four instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  9. KSC-02pd2019

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- A Pegasus XL Expendable Launch Vehicle sits atop a transporter following its arrival in the Multi-Purpose Payload Facility (MPPF). Next, it will be moved into a highbay where it will undergo testing, verification, and three flight simulations prior to its scheduled launch. The vehicle, nestled beneath an Orbital Sciences L-1011 aircraft, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. It is commissioned to carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit in late January 2003. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  10. KSC-02pd2020

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- A Pegasus XL Expendable Launch Vehicle sits atop a transporter following its arrival in the Multi-Purpose Payload Facility (MPPF). Next, it will be moved into a highbay where it will undergo testing, verification, and three flight simulations prior to its scheduled launch. The vehicle, nestled beneath an Orbital Sciences L-1011 aircraft, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. It is commissioned to carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit in late January 2003. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  11. The effect of the flexibility of hydrogen bonding network on low-frequency motions of amino acids. Evidence from Terahertz spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Li, Yin; Lukács, András; Bordács, Sándor; Móczár, János; Nyitrai, Miklós; Hebling, János

    2018-02-01

    Low-frequency modes of L-Asp and L-Asn were studied in the range from 0.1 to 3.0 THz using time-domain Terahertz spectroscopy and density functional theory calculation. The results show that PBE-D2 shows more success than BLYP-D2 in prediction of THz absorption spectra. To compare their low-frequency modes, we adopted ;vibrational character ID strips; proposed by Schmuttenmaer and coworkers [Journal of Physical Chemistry B, 117, 10444(2013)]. We found that the most intense THz absorption peaks of two compounds both involve severe distortion of their hydrogen bonding networks. Due to less rigid hydrogen bonding network in L-Asp, the side chain (carboxyl group) of L-Asp exhibits larger motions than that (carboxamide group) of L-Asn in low-frequency modes.

  12. Tormenta Espacial: Engaging Spanish Speakers in the Planetarium and K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Salas, F.; Duncan, D.; Traub-Metlay, S.

    2008-06-01

    Reaching out to Spanish speakers is increasingly vital to workforce development and public support of space science projects. Building on a successful partnership with NASA's TIMED mission, LASP and Space Science Institute, Fiske Planetarium has translated its original planetarium show - ``Space Storm'' - into ``Tormenta Espacial.''

  13. KSC-02pd2014

    NASA Image and Video Library

    2002-12-18

    KENNEDY SPACE CENTER, FLA. -- A Pegasus XL Expendable Launch Vehicle is seen moments after being detached from the underside of an Orbital Sciences L-1011 aircraft and lowered onto a transporter. The aircraft, with the launch vehicle nestled beneath, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. Next, the vehicle will be towed to the Multi-Purpose Payload Facility (MPPF) where it will undergo testing, verification, and three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).

  14. KSC-02pd1655

    NASA Image and Video Library

    2002-10-26

    KENNEDY SPACE CENTER, FLA. -- A truck containing the Solar Radiation and Climate Experiment (SORCE) spacecraft arrives at KSC. The spacecraft will undergo final processing for launch. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  15. KSC-02pd1659

    NASA Image and Video Library

    2002-10-28

    KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility at KSC, workers unpack the Solar Radiation and Climate Experiment (SORCE) spacecraft. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  16. KSC-02pd1662

    NASA Image and Video Library

    2002-10-28

    KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Purpose Processing Facility at KSC help guide the Solar Radiation and Climate Experiment (SORCE) spacecraft onto a workstand. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  17. KSC-02pd1665

    NASA Image and Video Library

    2002-10-28

    KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Purpose Processing Facility at KSC look over the Solar Radiation and Climate Experiment (SORCE) spacecraft. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  18. L-Asp is a useful tool in the purification of the ionotropic glutamate receptor A2 ligand-binding domain.

    PubMed

    Krintel, Christian; Frydenvang, Karla; Ceravalls de Rabassa, Anna; Kaern, Anne M; Gajhede, Michael; Pickering, Darryl S; Kastrup, Jette S

    2014-05-01

    In purification of the ionotropic glutamate receptor A2 (GluA2) ligand-binding domain (LBD), L-Glu-supplemented buffers have previously been used for protein stabilization during the procedure. This sometimes hampers structural studies of low-affinity ligands, because L-Glu is difficult to displace, despite extensive dialysis. Here, we show that L-Asp binds to full-length GluA2 with low affinity (Ki = 0.63 mM) and to the GluA2 LBD with even lower affinity (Ki = 2.6 mM), and we use differential scanning fluorimetry to show that L-Asp is able to stabilize the isolated GluA2 LBD. We also show that L-Asp can replace L-Glu during purification, providing both equal yields and purity of the resulting protein sample. Furthermore, we solved three structures of the GluA2 LBD in the presence of 7.5, 50 and 250 mM L-Asp. Surprisingly, with 7.5 mM L-Asp, the GluA2 LBD crystallized as a mixed dimer, with L-Glu being present in one subunit, and neither L-Asp nor L-Glu being present in the other subunit. Thus, residual L-Glu is retained from the expression medium. On the other hand, only L-Asp was found at the binding site when 50 or 250 mM L-Asp was used for crystallization. The binding mode observed for L-Asp at the GluA2 LBD is very similar to that described for L-Glu. Taking our findings together, we have shown that L-Asp can be used instead of L-Glu for ligand-dependent stabilization of the GluA2 LBD during purification. This will enable structural studies of low-affinity ligands for lead optimization in structure-based drug design. Structural data are available in the Protein Data Bank under accession numbers 4O3B (7.5 mM L-Asp), 4O3C (50 mM L-Asp), and 4O3A (250 mM L-Asp). © 2014 FEBS.

  19. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein

    PubMed Central

    Orth, Martin F.; Cazes, Alex; Butt, Elke; Grunewald, Thomas G. P.

    2015-01-01

    The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities. PMID:25622104

  20. The MMS Science Data Center: Operations, Capabilities, and Resource.

    NASA Astrophysics Data System (ADS)

    Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.

    2015-12-01

    The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.

  1. Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1).

    PubMed

    Endres, Marcel; Kneitz, Susanne; Orth, Martin F; Perera, Ruwan K; Zernecke, Alma; Butt, Elke

    2016-09-27

    The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines.By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines.In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown.Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression.The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.

  2. KSC-02pd1661

    NASA Image and Video Library

    2002-10-28

    KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Purpose Processing Facility at KSC lift the Solar Radiation and Climate Experiment (SORCE) spacecraft to move it to a workstand. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  3. KSC-02pd1664

    NASA Image and Video Library

    2002-10-28

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Purpose Processing Facility at KSC, the Solar Radiation and Climate Experiment (SORCE) spacecraft rests in a horizontal position on a workstand after rotation and removal of its outer covering. SORCE arrived at Kennedy Space Center Oct. 26 to begin final processing. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  4. KSC-02pd1657

    NASA Image and Video Library

    2002-10-26

    KENNEDY SPACE CENTER, FLA. -- A container with the Solar Radiation and Climate Experiment (SORCE) spacecraft inside is offloaded at the Multi-Purpose Processing Facility at KSC. The spacecraft will undergo final processing for launch. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA's SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA's Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla.

  5. Lasp1 gene disruption is linked to enhanced cell migration and tumor formation Address for reprint requests and other correspondence: C. S. Chew, Inst. of Molecular Medicine and Genetics, Sanders R&E Bldg., Rm. CB 2803, Medical College of Georgia, Augusta, GA 30912-3175 (e-mail: cchew@mcg.edu).

    PubMed Central

    Zhang, Han; Chen, Xunsheng; Bollag, Wendy B.; Bollag, Roni J.; Sheehan, Daniel J.; Chew, Catherine S.

    2009-01-01

    Lasp1 is an actin-binding, signaling pathway-regulated phosphoprotein that is overexpressed in several cancers. siRNA knockdown in cell lines retards cell migration, suggesting the possibility that Lasp1 upregulation influences cancer metastasis. Herein, we utilized a recently developed gene knockout model to assess the role of Lasp1 in modulating nontransformed cell functions. Wound healing and tumor initiation progressed more rapidly in Lasp1−/− mice compared with Lasp1+/+ controls. Embryonic fibroblasts (MEFs) derived from Lasp1−/− mice also migrated more rapidly in vitro. These MEFs characteristically possessed increased focal adhesion numbers and displayed more rapid attachment compared with wild-type MEFs. Differential microarray analyses revealed alterations in message expression for proteins implicated in cell migration, adhesion, and cytoskeletal organization. Notably, the focal adhesion protein, lipoma preferred partner (LPP), a zyxin family member and putative Lasp1 binding protein, was increased about twofold. Because LPP gene disruption reduces cell migration, we hypothesize that LPP plays a role in enhancing the migratory capacity of Lasp1−/− MEFs, perhaps by modifying the subcellular localization of other motility-associated proteins. The striking contrast in the functional effects of loss of Lasp1 in innate cells compared with cell lines reveals distinct differences in mechanisms of motility and attachment in these models. PMID:19531578

  6. Face-selective crystal growth behavior of L-aspartic acid in the presence of L-asparagine

    NASA Astrophysics Data System (ADS)

    Sato, Hiroyasu; Doki, Norihito; Yoshida, Saki; Yokota, Masaaki; Shimizu, Kenji

    2016-02-01

    The kinetic mechanism of L-asparagine (L-Asn) action on L-aspartic acid (L-Asp) crystal growth, namely the face-selective effect of L-Asn on the L-Asp crystal growth rate in each direction, was examined. In the a-axis direction, the effect of L-Asn on the L-Asp crystal growth rate was small. Enhancement and inhibition of L-Asp crystal growth, and interestingly the dissolution of the L-Asp crystal face, were observed in the b-axis direction, depending on the amount of L-Asn added. In the c-axis direction, the L-Asp crystal growth rate decreased with the increase in the amount of L-Asn added, and the experimental results were well fitted with a Langmuir adsorption isotherm. The study showed that there were crystal growth conditions where enhancement and inhibition, as well as inhibition and dissolution, coexisted in the presence of an additive with a structure similar to the growing crystal.

  7. The glutaminase activity of l-asparaginase is not required for anticancer activity against ASNS-negative cells

    PubMed Central

    Chan, Wai Kin; Lorenzi, Philip L.; Anishkin, Andriy; Purwaha, Preeti; Rogers, David M.; Sukharev, Sergei; Rempe, Susan B.; Weinstein, John N.

    2014-01-01

    l-Asparaginase (l-ASP) is a key component of therapy for acute lymphoblastic leukemia. Its mechanism of action, however, is still poorly understood, in part because of its dual asparaginase and glutaminase activities. Here, we show that l-ASP’s glutaminase activity is not always required for the enzyme’s anticancer effect. We first used molecular dynamics simulations of the clinically standard Escherichia coli l-ASP to predict what mutated forms could be engineered to retain activity against asparagine but not glutamine. Dynamic mapping of enzyme substrate contacts identified Q59 as a promising mutagenesis target for that purpose. Saturation mutagenesis followed by enzymatic screening identified Q59L as a variant that retains asparaginase activity but shows undetectable glutaminase activity. Unlike wild-type l-ASP, Q59L is inactive against cancer cells that express measurable asparagine synthetase (ASNS). Q59L is potently active, however, against ASNS-negative cells. Those observations indicate that the glutaminase activity of l-ASP is necessary for anticancer activity against ASNS-positive cell types but not ASNS-negative cell types. Because the clinical toxicity of l-ASP is thought to stem from its glutaminase activity, these findings suggest the hypothesis that glutaminase-negative variants of l-ASP would provide larger therapeutic indices than wild-type l-ASP for ASNS-negative cancers. PMID:24659632

  8. University of Colorado CubeSat Student Projects as Successful Model for Teaching Students about Engineering Practices

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Li, X.; Woods, T. N.; Kohnert, R.

    2014-12-01

    There is a long history of cooperation between students at the University of Colorado, Boulder and professional engineers and scientists at LASP, which has led to many successful space missions with direct student involvement. The recent student-led missions include the Student Nitric Oxide Explorer (SNOE, 1998 - 2002), the Student Dust Counter (SDC) on New Horizons (2006 - present), the Colorado Student Space Weather Experiment (CSSWE), being a very successful NSF CubeSat that launched in September 2012, and the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat (launch will be in early 2015). Students are involved in all aspects of the design, and they experience the full scope of the mission process from concept, to fabrication and test, and mission operations. A significant part of the student involvement in the CubeSat projects is gained by using the CubeSat development as a focal point for an existing two-semester course sequence in CU's Aerospace Engineering Sciences (AES) Department: the Space Hardware Design section of Graduate Projects I & II (ASEN 5018 & ASEN 6028). The goal of these courses is to teach graduate students how to design and build systems using a requirement-based approach and fundamental systems engineering practices. The two-semester sequence takes teams of about 15 students from requirements definition and preliminary design through manufacturing, integration, and testing. In addition to the design process, students learn key professional skills such as working effectively in groups, finding solutions to open-ended problems, and actually building a system to their own set of specifications. The partnership between AES and LASP allows us to include engineering professionals in the mix, thus more effectively training science and engineering students for future roles in the civilian or commercial space industry. The mentoring process with LASP engineers helps to mitigate risk of the inexperience of the students and ensures consistent system engineer oversight for the multi-year CubeSat programs.

  9. Lasp1 misexpression influences chondrocyte differentiation in the vertebral column.

    PubMed

    Hermann-Kleiter, Natascha; Ghaffari-Tabrizi, Nassim; Blumer, Michael J F; Schwarzer, Christoph; Mazur, Magdalena A; Artner, Isabella

    2009-01-01

    The mouse mutant wavy tail Tg(Col1a1-lacZ)304ng was created through transgene insertion and exhibits defects of the vertebral column. Homozygous mutant animals have compressed tail vertebrae and wedge-shaped intervertebral discs, resulting in a meandering tail. Delayed closure of lumbar neural arches and lack of processus spinosi have been observed; these defects become most prominent during the transition from cartilage to bone. The spina bifida was resistant to folic acid treatment, while retinoic acid administration caused severe skeletal defects in the mutant, but none in wild type control animals. The transgene integrated at chromosome 11 band D, in an area of high gene density. The insertion site was located between the transcription start sites of the Rpl23 and Lasp1 genes. LASP1 (an actin binding protein involved in cell migration and survival) was found to be produced in resting and hypertrophic chondrocytes in the vertebrae. In mutant vertebrae, temporal and spatial misexpression of Lasp1 was observed, indicating that alterations in Lasp1 transcription are most likely responsible for the observed phenotype. These data reveal a yet unappreciated role of Lasp1 in chondrocyte differentiation during cartilage to bone transition.

  10. The Emirates Mars Mission Science Data Center

    NASA Astrophysics Data System (ADS)

    Craft, James; Hammadi, Omran Al; DeWolfe, Alexandria; Staley, Bryan; Schafer, Corey; Pankratz, Chris

    2017-04-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft. With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  11. The Emirates Mars Mission Science Data Center

    NASA Astrophysics Data System (ADS)

    Craft, J.; Al Hammadi, O.; DeWolfe, A. W.; Staley, B.; Schafer, C.; Pankratz, C. K.

    2017-12-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft.With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  12. Update on the Use of l-Asparaginase in Infants and Adolescent Patients with Acute Lymphoblastic Leukemia

    PubMed Central

    Andrade, Augusto F; Borges, Kleiton S; Silveira, Vanessa S

    2014-01-01

    Great improvements have been made in acute lymphoblastic leukemia (ALL) treatment in the past decades, especially due to the use of l-asparaginase (l-ASP). Despite the significant success rate, several side effects mainly caused by toxicity, asparaginase silent inactivation, and cellular resistance, encourage an open debate regarding the optimal dosage and formulation of l-ASP. Alternative sources of asparaginases have been constantly investigated in order to overcome hypersensitivity clinical toxicity. Additionally, genomic modulation as gene expression profiling, genetic polymorphisms, and epigenetic changes is also being investigated concerning their role in cellular resistance to l-ASP. Understanding the mechanisms that mediate the resistance to l-ASP treatment may bring new insights into ALL pathobiology and contribute to the development of more effective treatment strategies. In summary, this review presents an overview on l-ASP data and focuses on cellular mechanisms underlying resistance and alternative therapies for the use of asparaginase in childhood ALL treatment. PMID:25210485

  13. Senior Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused on the design, generation, characterization and application of genetically engineered and biological animal models of human disease, which are aimed at the development of targeted diagnostics and therapies. LASP contributes to advancing human health, developing new treatments, and improving existing treatments for cancer and other diseases while ensuring safe and humane treatment of animals. KEY ROLES/RESPONSIBILITIES The Senior Laboratory Animal Technician will be responsible for: Daily tasks associated with the care, breeding and treatment of research animals for experimental purposes Management of rodent breeding colonies consisting of multiple, genetically complex strains and associated record keeping and database management Colony management procedures including: tail clipping, animal identification, weaning Data entry consistent with complex colony management Collection of routine diagnostic samples Coordinating shipment of live animals and specimens Performing rodent experimental procedures including basic necropsy and blood collection Observation and recording of physical signs of animal health Knowledge of safe working practices using chemical carcinogen and biological hazards Work schedule may include weekend and holiday hours This position is in support of the Center for Cancer Research (CCR).

  14. Effect of glutamate, aspartate and related derivatives on cerebellar Purkinje cell dendrites in the rat: an in vitro study

    PubMed Central

    Crepel, F.; Dhanjal, S. S.; Sears, T. A.

    1982-01-01

    1. The responses of Purkinje cells to short duration (pulse) ionophoretic applications of L-aspartate (L-asp), L-glutamate (L-glu), N-methyl DL-aspartate (NMDLA) and quisqualic acid in their dendritic fields were studied in vitro on sagittal slices of lobules IX and X of the adult rat cerebellum. 2. Pulse application of L-asp or L-glu evoked transient and dose-dependent increases in the firing rate of the simple spikes recorded extracellularly as single units. When the ionophoretic electrode was positioned in the dendritic field of the Purkinje cells, the lowest thresholds for L-glu and L-asp mediated excitations of the cells were as low as 25 and 35 pC respectively, with a latency for maximal responses as brief as 7 ms. 3. In intracellular recordings these excitatory responses consisted of depolarizations of up to 18 mV in amplitude and with depolarizing slopes up to 0·52 mV/ms. They were generally unaccompanied by changes in cell input resistance in contrast to the marked decrease which occurred in response to steady applications of large doses of L-asp and L-glu. 4. The spatial distribution of the excitatory sites confirmed that the dendritic sensitivity to L-glu was greater than that of the soma and showed that the same was true for L-asp. In 34% of cells the sensitivity for L-asp declined markedly in the upper region of the molecular layer, whereas it remained high for L-glu; no such differential sensitivity was detected in the remaining 66% of cells. 5. Inhibitory responses, antagonized by 10-5 M-bicuculline in the bath, were also induced in Purkinje cells by L-glu and L-asp when the ionophoretic electrode was withdrawn from the excitatory sites by as little as 8 μm and up to 40 μm upward or downward along the track of parallel fibres or positioned as far as 250 μm laterally. 6. Whenever it was applied in the molecular layer, the pulse application of NMDLA elicited no excitatory response in Purkinje cells recorded extra or intracellularly. However, slow depolarizations accompanied by a slight increase in cell input resistance were obtained with steady applications of 20-50 nA of the drug for 20-30 s. 7. In contrast, pulse application of quisqualic acid appeared to have the same type of fast excitatory effect on Purkinje cells as L-asp and L-glu, but its potency was greater and its action more prolonged. Furthermore, its steady application led to an abrupt and marked decrease in cell membrane resistance. 8. The excitatory effects of L-asp, L-glu and quisqualic acid were antagonized by L-glutamic acid diethyl ester more consistently than by D-α-aminoadipate, suggesting together with previous observations that L-asp and L-glu act on Purkinje cells via quisqualic acid rather than via NMDLA receptors. PMID:6754909

  15. Neutropenia associated with vincristine and L-asparaginase induction chemotherapy for canine lymphoma.

    PubMed

    Northrup, Nicole C; Rassnick, Kenneth M; Snyder, Laura A; Stone, Michael S; Kristal, Orna; Cotter, Susan M; Moore, Antony S

    2002-01-01

    Vincristine (VCR) and L-asparaginase (L-ASP) are commonly used to treat canine lymphoma. As single agents, these drugs are not myelosuppressive. However, in combination, VCR and L-ASP cause severe neutropenia in some dogs. It has been recommended that L-ASP be administered 12-24 hours after VCR to minimize toxicity. The purpose of this retrospective study was to determine the prevalence of neutropenia after VCR/L-ASP induction therapy for canine lymphoma and to evaluate risk factors for myelosuppression, especially the interval between VCR and L-ASP administration. Medical records of 147 dogs were reviewed. L-ASP was given 0 (n = 50), 6 (n = 23), 18 (n = 20), or 24 (n = 54) hours after VCR. Forty percent of the dogs were neutropenic 7 days after VCR/L-ASP, and 18% had neutrophil counts of <1,000 cells/microL. The median neutrophil count was 3,712 cells/microL (range 0-30,968 cells/microL). No correlation was found between administration interval and day 7 neutrophil count (P = .84) or development of gastrointestinal signs, including vomiting (P = .80), diarrhea (P = .52), and decreased appetite (P = .30). No significant predictors of neutropenia were identified. Higher clinical stage and substage b were associated with decreased appetite after treatment (P = .04 and .01, respectively). Sixteen percent of the dogs were hospitalized. This study demonstrates that VCR/L-ASP induction for canine lymphoma may result in neutropenia but that separation of VCR and L-ASP administration may not be necessary to avoid toxicity.

  16. Quantitative determination of free D-Asp, L-Asp and N-methyl-D-aspartate in mouse brain tissues by chiral separation and Multiple Reaction Monitoring tandem mass spectrometry.

    PubMed

    Fontanarosa, Carolina; Pane, Francesca; Sepe, Nunzio; Pinto, Gabriella; Trifuoggi, Marco; Squillace, Marta; Errico, Francesco; Usiello, Alessandro; Pucci, Piero; Amoresano, Angela

    2017-01-01

    Several studies have suggested that free d-Asp has a crucial role in N-methyl d-Asp receptor-mediated neurotransmission playing very important functions in physiological and pathological processes. This paper describes the development of an analytical procedure for the direct and simultaneous determination of free d-Asp, l-Asp and N-methyl d-Asp in specimens of different mouse brain tissues using chiral LC-MS/MS in Multiple Reaction Monitoring scan mode. After comparing three procedures and different buffers and extraction solvents, a simple preparation procedure was selected the analytes of extraction. The method was validated by analyzing l-Asp, d-Asp and N-methyl d-Asp recovery at different spiked concentrations (50, 100 and 200 pg/μl) yielding satisfactory recoveries (75-110%), and good repeatability. Limits of detection (LOD) resulted to be 0.52 pg/μl for d-Asp, 0.46 pg/μl for l-Asp and 0.54 pg/μl for NMDA, respectively. Limits of quantification (LOQ) were 1.57 pg/μl for d-Asp, 1.41 pg/μl for l-Asp and 1.64 pg/μl for NMDA, respectively. Different concentration levels were used for constructing the calibration curves which showed good linearity. The validated method was then successfully applied to the simultaneous detection of d-Asp, l-Asp and NMDA in mouse brain tissues. The concurrent, sensitive, fast, and reproducible measurement of these metabolites in brain tissues will be useful to correlate the amount of free d-Asp with relevant neurological processes, making the LC-MS/MS MRM method well suited, not only for research work but also for clinical analyses.

  17. L-asparaginase inhibits invasive and angiogenic activity and induces autophagy in ovarian cancer

    PubMed Central

    Yu, Minshu; Henning, Ryan; Walker, Amanda; Kim, Geoffrey; Perroy, Alyssa; Alessandro, Riccardo; Virador, Victoria; Kohn, Elise C

    2012-01-01

    Recent work identified L-asparaginase (L-ASP) as a putative therapeutic target for ovarian cancer. We suggest that L-ASP, a dysregulator of glycosylation, would interrupt the local microenvironment, affecting the ovarian cancer cell—endothelial cell interaction and thus angiogenesis without cytotoxic effects. Ovarian cancer cell lines and human microvascular endothelial cells (HMVEC) were exposed to L-ASP at physiologically attainable concentrations and subjected to analyses of endothelial tube formation, invasion, adhesion and the assessment of sialylated proteins involved in matrix-associated and heterotypic cell adhesion. Marked reduction in HMVEC tube formation in vitro, HMVEC and ovarian cancer cell invasion, and heterotypic cell-cell and cell-matrix adhesion was observed (P < 0.05–0.0001). These effects were associated with reduced binding to ß1integrin, activation of FAK, and cell surface sialyl LewisX (sLex) expression. No reduction in HMVEC E-selectin expression was seen consistent with the unidirectional inhibitory actions observed. L-ASP concentrations were non-toxic to either ovarian cancer or HMVEC lines in the time frame of the assays. However, early changes of autophagy were observed in both cell types with induction of ATG12, beclin-1, and cleavage of LC-3, indicating cell injury did occur. These data and the known mechanism of action of L-ASP on glycosylation of nascent proteins suggest that L-ASP reduces of ovarian cancer dissemination and progression through modification of its microenvironment. The reduction of ovarian cancer cell surface sLex inhibits interaction with HMVEC and thus HMVEC differentiation into tubes, inhibits interaction with the local matrix reducing invasive behaviour, and causes cell injury initiating autophagy in tumour and vascular cells. PMID:22333033

  18. LISIRD: Where to go for Solar Irradiance Data

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Pankratz, C. K.; Lindholm, D. M.; Snow, M.; Knapp, B.; Woodraska, D.; Templeman, B.; Woods, T.; Eparvier, F.; Fontenla, J.; Harder, J.; Bill, M.

    2008-12-01

    LASP, the Laboratory for Atmospheric and Space Physics, has been providing web access to solar irradiance measurements, reference spectra, composites and model data covering the solar spectrum from .1 to 2400 nm through LISIRD, the LASP Interactive Solar IRradiance Datacenter. No single instrument can measure the solar spectral irradiance from X-rays to the IR, but the ensemble of LASP instruments can. LISIRD uses a single interface to provide easy, logical access to a variety of mission data, merged in time and wavelength. Daily space weather measurements are available, including total solar irradiance (TSI), Lyman Alpha (121 nm), Magnesium II Index (280 nm), He II (30.4 nm), FE XVI (33.5 nm), and the FUV continuum (145 to 165 nm). More recently, LISIRD has recently added the Whole Heliosphere Interval (WHI) Solar Irradiance time series, which provides a quiet sun reference spectra for the period of April 10-16 of 2008. LISIRD also recently added a composite solar spectral irradiance product over the range of 120 to 400 nm for the time period from November 8, 1978 to August 1, 2005. This product, created by Mathew Deland at SSAI, merges data from six different satellites into a single SSI product. And, we are currently adding a time series for daily solar spectral irradiance from 1950 to 2006, created by Judith Lean of the Naval Research Lab. This product adjusts observed irradiance for a given wavelength with parameters that represent known sources of variability at that wavelength. LISIRD remains committed to improving data access in a variety of ways. We are planning and developing a means for the broader community of scientists to easily determine data availability for a particular date range without having to know mission or instrument details. Improved data subsetting will allow users to request only the time range or spectra that users need, making data management generally easier. We expect to continue to enhance our data offerings. Future vision for LISIRD also includes integration of improved data visualization and analysis tools. We welcome contributions from solar science community members who wish to share data and tools they have developed. We also expect to integrate LISIRD with the Virtual Solar Observatory (VSO) and other relevant Virtual Observatories (VOs) for a more integrated and complete user experience. We are actively seeking input and feedback to improve LISIRD from interested users of this data. Towards this end we have provided a survey at our website and to AGU attendees. Those who use LISIRD and provide feedback will have the opportunity to help steer LISIRD development. Let us know what you would like to see and we will try to make it happen!

  19. Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  20. Senior Laboratory Animal Technician | Center for Cancer Research

    Cancer.gov

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  1. Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011

    DTIC Science & Technology

    2014-12-01

    20  Figure 8.  FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules

  2. Motivating and Facilitating Advancements in Space Weather Real-Time Data Availability: Factors, Data, and Access Methods

    NASA Astrophysics Data System (ADS)

    Pankratz, C. K.; Baker, D. N.; Jaynes, A. N.; Elkington, S. R.; Baltzer, T.; Sanchez, F.

    2017-12-01

    Society's growing reliance on complex and highly interconnected technological systems makes us increasingly vulnerable to the effects of space weather events - maybe more than for any other natural hazard. An extreme solar storm today could conceivably impact hundreds of the more than 1400 operating Earth satellites. Such an extreme storm could cause collapse of the electrical grid on continental scales. The effects on navigation, communication, and remote sensing of our home planet could be devastating to our social functioning. Thus, it is imperative that the scientific community address the question of just how severe events might become. At least as importantly, it is crucial that policy makers and public safety officials be informed by the facts on what might happen during extreme conditions. This requires essentially real-time alerts, warnings, and also forecasts of severe space weather events, which in turn demands measurements, models, and associated data products to be available via the most effective data discovery and access methods possible. Similarly, advancement in the fundamental scientific understanding of space weather processes is also vital, requiring that researchers have convenient and effective access to a wide variety of data sets and models from multiple sources. The space weather research community, as with many scientific communities, must access data from dispersed and often uncoordinated data repositories to acquire the data necessary for the analysis and modeling efforts that advance our understanding of solar influences and space physics on the Earth's environment. The Laboratory for Atmospheric and Space Physics (LASP), as a leading institution in both producing data products and advancing the state of scientific understanding of space weather processes, is well positioned to address many of these issues. In this presentation, we will outline the motivating factors for effective space weather data access, summarize the various data and models that are available, and present methods for meeting the data management and access needs of the disparate communities who require low-latency space weather data and information.

  3. Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management

    NASA Technical Reports Server (NTRS)

    Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony; hide

    2018-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.

  4. Cerebral venous thrombosis in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma during induction chemotherapy with l-asparaginase: The GRAALL experience.

    PubMed

    Couturier, Marie-Anne; Huguet, Françoise; Chevallier, Patrice; Suarez, Felipe; Thomas, Xavier; Escoffre-Barbe, Martine; Cacheux, Victoria; Pignon, Jean-Michel; Bonmati, Caroline; Sanhes, Laurence; Bories, Pierre; Daguindau, Etienne; Dorvaux, Véronique; Reman, Oumedaly; Frayfer, Jamile; Orvain, Corentin; Lhéritier, Véronique; Ifrah, Norbert; Dombret, Hervé; Hunault-Berger, Mathilde; Tanguy-Schmidt, Aline

    2015-11-01

    Central nervous system (CNS) thrombotic events are a well-known complication of acute lymphoblastic leukemia (ALL) induction therapy, especially with treatments including l-asparaginase (l-ASP). Data on risk factors and clinical evolution is still lacking in adult patients. We report on the clinical evolution of 22 CNS venous thrombosis cases occurring in 708 adults treated for ALL or lymphoblastic lymphoma (LL) with the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-induction protocol, which included eight L-ASP (6,000 IU/m(2) ) infusions. The prevalence of CNS thrombosis was 3.1%. CNS thrombosis occurred after a median of 18 days (range: 11-31) when patients had received a median of three l-ASP injections (range: 2-7). Patients with CNS thrombosis exhibited a median antithrombin (AT) nadir of 47.5% (range: 36-67%) at Day 17 (range: D3-D28), and 95% of them exhibited AT levels lower than 60%. There were no evident increase in hereditary thrombotic risk factors prevalence, and thrombosis occurred despite heparin prophylaxis which was performed in 90% of patients. Acquired AT deficiency was frequently detected in patients with l-ASP-based therapy, and patients with CNS thrombosis received AT prophylaxis (45%) less frequently than patients without CNS thrombosis (83%), P = 0.0002). CNS thrombosis was lethal in 5% of patients, while 20% had persistent sequelae. One patient received all planned l-ASP infusions without recurrence of CNS thrombotic whereas l-ASP injections were discontinued in 20 patients during the management of thrombosis without a significant impact on overall survival (P = 0.4). © 2015 Wiley Periodicals, Inc.

  5. GOES EXIS Quadruplets Together in a Clean Room "Nursery"

    NASA Image and Video Library

    2014-02-10

    Four Extreme Ultraviolet and X-ray Irradiance Sensors or EXIS instruments that will fly aboard four of NOAA's Geostationary Operational Environmental Satellite-R or GOES-R Series spacecraft were recently lined up like babies in a nursery. The EXIS Team at NOAA's Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado took a short timeout during the week of January 20, 2014 to take advantage of a rare photo opportunity. Each EXIS instrument will fly aboard one of the GOES-R series of spacecraft that include GOES-R, S, T, and U. All four EXIS instruments happened to be in the clean room at the same time. It is expected that this will probably be the last time that all four siblings will be in one place together as Flight Model 1 (seen on the left) is being shipped on February 3 to begin integration and testing onto the GOES-R spacecraft at a Lockheed Martin facility in Littleton, Colo. The other instruments have already dispersed to other areas at LASP for continued build and test operations. The EXIS instruments on the GOES-R series satellites are critical to understanding and monitoring solar irradiance in the upper atmosphere, that is, the power and effect of the Sun’s electromagnetic radiation per unit of area. EXIS will be able to detect solar flares that could interrupt communications and reduce navigational accuracy, affecting satellites, high altitude airlines and power grids on Earth. On board the EXIS are two main sensors, the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS), which will help scientists monitor activity on the sun. The GOES-R series is a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration and NASA. The GOES-R satellites will provide continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. For more information about the GOES-R series, visit: www.goes-r.gov Credit: NOAA/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. The NASA GOLD Mission: Exploring the Interface between Earth and Space

    NASA Astrophysics Data System (ADS)

    Mason, T.; Costanza, B.

    2017-12-01

    NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission will explore a little understood area close to home, but historically hard to observe: the interface between Earth and space, a dynamic area of near-Earth space that responds both to space weather above, and the lower atmosphere below. GOLD, scheduled to launch into geostationary orbit in early 2018, will collect observations with a 30-minute cadence, much higher than any mission that has come before it. This will enable GOLD to be the first mission to study the day-to-day weather of a region of space—the thermosphere and ionosphere—rather than its long-term climate. GOLD will explore the near-Earth space environment, which is home to astronauts, radio signals used to guide airplanes and ships, and satellites that provide our communications and GPS systems. GOLD's unprecedented images and data will enable research that can improve situational awareness to help protect astronauts, spacecraft, and humans on the ground. As part of the GOLD communications and outreach program, the Office of Communications & Outreach at the Laboratory for Atmospheric and Space Physics (LASP) is developing a suite of products and programs to introduce the science of the GOLD mission to a broad range of public audiences, including students, teachers, journalists, social media practitioners, and the wider planetary and Earth science communities. We plan to showcase with this poster some of the tools we are developing to achieve this goal.

  7. Structural similarity between β(3)-peptides synthesized from β(3)-homo-amino acids and aspartic acid monomers.

    PubMed

    Ahmed, Sahar; Sprules, Tara; Kaur, Kamaljit

    2014-07-01

    Formation of stable secondary structures by oligomers that mimic natural peptides is a key asset for enhanced biological response. Here we show that oligomeric β(3)-hexapeptides synthesized from L-aspartic acid monomers (β(3)-peptides 1, 5a, and 6) or homologated β(3)-amino acids (β(3)-peptide 2), fold into similar stable 14-helical secondary structures in solution, except that the former form right-handed 14-helix and the later form left-handed 14-helix. β(3)-Peptides from L-Asp monomers contain an additional amide bond in the side chains that provides opportunities for more hydrogen bonding. However, based on the NMR solution structures, we found that β(3)-peptide from L-Asp monomers (1) and from homologated amino acids (2) form similar structures with no additional side-chain interactions. These results suggest that the β(3)-peptides derived from L-Asp are promising peptide-mimetics that can be readily synthesized using L-Asp monomers as well as the right-handed 14-helical conformation of these β(3)-peptides (such as 1 and 6) may prove beneficial in the design of mimics for right-handed α-helix of α-peptides. © 2014 Wiley Periodicals, Inc.

  8. The Imaging X-Ray Polarimetry Explorer (IXPE): Overview

    NASA Technical Reports Server (NTRS)

    O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.; hide

    2017-01-01

    Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.

  9. Dust Measurements by the Student Dust Counter (SDC) onboard the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    James, David; Horanyi, Mihaly; Poppe, Andrew

    The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (7/2008), VSDC will have operated for about 500 days, covering an approximate distance of 1.2 to 10.5 AU. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses, Galileo and Cassini.

  10. Engaging Audiences in Planetary Science Through Visualizations

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.

    2017-12-01

    One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.

  11. [Comparison of the Effectiveness and Safety of Combined Chemotherapy with PEG-Asp for Treatment of ALL and T-NHL Patients].

    PubMed

    Xu, Yan; Wang, Jin; Yang, Nan; Bai, Ju; Zhang, Peng-Yu; Gu, Liu-Fang; Lei, Bo; Liu, Jie; Wang, Fang-Xia; Huang, Bing-Qiao; Zhang, Wang-Gang; He, Ai-Li; Cao, Xing-Mei; Chen, Yin-Xia; Ma, Xiao-Rong

    2016-04-01

    To explore the effectiveness and safety of combined chemotherapy with pegasparaginase (PEG-Asp) for treatment of patients with acute lymphoblastic leukemia (ALL) and T cell non-Hodgkin's lymphoma (T-NHL) patients. A total of 62 ALL or T-NHL patients were diagnosed and treated in our department and were enrolled in this study. Among them, 22 patients received the combined chemotherapy with PEG-Asp, while the other 40 patients received the standard chemotherapy with L-asparaginase (L-Asp) as the control. Therapeutic effectiveness, adverse effects, duration and expense of hospitalization, treatment-related mortality and survival were evaluated and compared in 2 different groups. In group of combined chemotherapy with PEG-Asp, the overall response rate was 90.91% (20 cases), among them CR rate and PR rate are 77.27% (17 cases) and 13.64% (3 cases), respectively. In the group of standard chemotherapy with L-Asp, the overall response rate was 87.5% (35 cases), among them CR rate and PR rate were 72.5% (29 cases) and 15% (6 cases), respectively. The difference neither between PEG-Asp and L-Asp chemotherapy groups nor between ALL and T-NHL subgroups was significant (P > 0.05). The 6-month and 12-month overall survival rates were not significantly different between the PEG-Asp and L-Asp chemotherapy groups, respectively (P > 0.05). The adverse effects were identified as degree 1-2 according to the WHO criteria of drug toxicity. Neither the adverse effects identified as degree 3-4 nor the treatment-related death were observed. Expect for allergy and hyperglycaemia, the difference of side-effect incidence between the two groups were not significant (P > 0.05). The treatment for all the patients in PEG-Asp chemotherapy group was completed, while the treatment with L-Asp was completed only in 29 cases. Moreover, both average duration and expense of hospitalization after the combined chemotherapy were less than the control. With higher response rate, lower drug toxicity and allergy incidence, the combined chemotherapy with PEG-Asp can replace the standard chemotherapy with L-Asp in the treatment of ALL and T-NHL. The optimization of the combined chemotheropeutic protocols for more cases and long-term survival rates need to further and deeply explorate.

  12. Subsurface Fluxes Beneath Large-Scale Convective Centers in the Indian Ocean: Coupled Air-Wave-Sea Processes in the Subtropics

    DTIC Science & Technology

    2013-09-30

    Figure 1 – Measurement systems installed on R/V Roger Revelle for DYNAMO /LASP. Inset map shows locations of land-based sounding stations...oceanographic moorings and the research vessels Mirai and Revelle during the intensive observation period of DYNAMO . The black line outlines the flight...under which each dominates. Transmission profile plus near-surface mixing measurements from LASP/ DYNAMO are being used to assess bounds on the

  13. L-Asparaginase monotherapy for EBV-positive T/NK lymphoproliferative diseases: A pilot Study.

    PubMed

    Jinta, Minako; Imadome, Ken-Ichi; Komatsu, Honami; Yoshimori, Mayumi; Kurata, Morito; Fujiwara, Shigeyoshi; Miura, Osamu; Arai, Ayako

    2015-03-30

    We investigated the effects of L-asparaginase (L-asp) on Epstein-Barr virus (EBV)-positive T/NK lymphoproliferative diseases (EBV-T/ NK-LPDs). Seven doses of L-asp (6,000 U/m2) were administered intravenously, with one dose administered on every alternate day. Five consecutive patients were enrolled. Three patients completed the treatment. The clinical symptoms resolved in 1 patient who started the administration 8 months after the onset, being the earliest among the 5 patients. Her EBV-DNA level in whole blood markedly decreased to 0.08 times of that before treatment, and the level in plasma became undetectable. In the other 2 patients whose administration was started 3 and 3.5 years after the onset, however, a remarkable improvement was not detected. Treatment was discontinued in 2 patients because of disease progression or idiopathic dystonia. The mRNA levels of asparagine synthetase in EBV-infected cells were examined. The level from the patient who responded to L-asp treatment was low, but it did not correlate with the effects in the other patients. Liver dysfunction (grades 2 and 3) was observed in 2 patients and neutropenia (grade 3) was noted in 1 patient. In conclusion, the effect of L-asp as monotherapy in EBV-T/NK-LPDs is limited, and early treatment initiation might be effective.

  14. KSC-2013-3838

    NASA Image and Video Library

    2013-11-05

    CAPE CANAVERAL, Fla. – The Mars Atmosphere and Volatile Evolution, or MAVEN, mission is being prepared for its scheduled launch on Nov 18, 2013 from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. It will arrive at Mars in fall 2014. After a five-week transition period during which it will get into its final orbit, deploy booms, and check out the science instruments, MAVEN will carry out its one-Earth-year primary mission. MAVEN will have enough fuel to survive for another six years and will act as a data relay for spacecraft on the surface, as well as continue to take important science data. MAVEN's principal investigator is based at the University of Colorado, Boulder's Laboratory for Atmospheric and Space Physics CU/LASP. The university provided science instruments and leads science operations, as well as education and public outreach, for the mission. NASA Goddard Space Flight Center NASA GSFC, Greenbelt, Md. manages the project and provided two of the science instruments for the mission. The University of California at Berkeley's Space Sciences Laboratory UCB/SSL provided science instruments for the mission. Lockheed Martin LM built the spacecraft and is responsible for mission operations. NASA's Jet Propulsion Laboratory NASA JPL in Pasadena, Calif., provides navigation support, Deep Space Network support, and Electra telecommunications relay hardware and operations. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Image credit: NASA

  15. Dust Measurements Between Earth and Saturn by the Venetia Burney Student Dust Counter of the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    James, D.; Poppe, A.; Horanyi, M.

    2008-12-01

    The Venetia Burney Student Dust Counter (VSDC) on the New Horizons mission is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the spacecraft as it traverses our solar system. VSDC is the first student-built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when a dust particle impacts them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (12/2008), VSDC will have operated for about 500 days, and will have data covering an approximate distance of 1.2 to 11.0 AU from the Sun. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses and Galileo.

  16. Dust Measurements On-board the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    Poppe, A.; James, D.; Horanyi, M.

    2007-12-01

    The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft was successfully commissioned on March 3, 2006 (DOY 2006/061). VSDC is a dust impact detector designed to map the dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and it is currently operated by a small group of undergraduate and graduate students at the Laboratory of Atmospheric and Space Physics (LASP), University of Colorado. By the time of this meeting (12/2007), VSDC will have operated for about 330 days, covering an approximate distance from 1.21 to 10 AU. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters, and the detection threshold is about a micron in particle radius. In this talk we will briefly review the VSDC instrument. The in-flight tests and calibrations, as well as our initial science results will be discussed. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the encounter with Jupiter. These measurements will be compared with earlier measurements by Ulysses, Galileo, and Cassini.

  17. Lauroyl-L-aspartate decreased food intake and body temperature in neonatal chicks.

    PubMed

    Erwan, E; Chowdhury, V S; Ito, K; Furuse, M

    2013-11-15

    We hypothesized that the effects of L- and D-amino acids might be influenced when conjugated with fatty acid. Thus, the effects of oral administration of lauroyl-L-aspartate (Lau-L-Asp) as well as lauroyl-D-aspartate (Lau-D-Asp) were examined. In Experiment 1, oral administration of both Lau-L-Asp and Lau-D-Asp decreased food intake while L- or D-Asp did not influence food intake. Interestingly, only Lau-L-Asp decreased body temperature. Experiment 2 was conducted to determine whether non-conjugated mixture of L-Asp plus lauric acid has same effects under ad libitum feeding conditions. Lau-L-Asp decreased food intake and body temperature, but L-Asp plus lauric acid did not show any effect studied. In Experiment 3, we found that Lau-L-Asp declined food intake as well as time-dependently suppressed the body temperature in fasted chicks. However, L-Asp plus lauric acid did not show any effect. These results suggest that Lau-L-Asp may exert anorexigenic and hypothermic actions in chicks. © 2013.

  18. Emirates Mars Mission (EMM) 2020 Overview

    NASA Astrophysics Data System (ADS)

    Amiri, S.; Sharaf, O.; AlMheiri, S.; AlRais, A.; Wali, M.; Al Shamsi, Z.; Al Qasim, I.; Al Harmoodi, K.; Al Teneiji, N.; Almatroushi, H. R.; Al Shamsi, M. R.; Altunaiji, E. S.; Lootah, F. H.; Badri, K. M.; McGrath, M.; Withnell, P.; Ferrington, N.; Reed, H.; Landin, B.; Ryan, S.; Pramann, B.; Brain, D.; Deighan, J.; Chaffin, M.; Holsclaw, G.; Drake, G.; Wolff, M. J.; Edwards, C. S.; Lillis, R. J.; Smith, M. D.; Forget, F.; Fillingim, M. O.; England, S.; Christensen, P. R.; Osterloo, M. M.; Jones, A. R.

    2017-12-01

    United Arab Emirates (UAE) has entered the space exploration race with the announcement of Emirates Mars Mission (EMM), the first Emirati mission to another planet, in 2014. Through this mission, UAE is to send an unmanned probe, called Hope probe, to be launched in summer 2020 and reach Mars by 2021 to coincide with UAE's 50th anniversary. The mission should be unique, and should aim for novel and significant discoveries that contributed to the ongoing work of the global space science community. EMM has passed its Mission Concept Review (MCR), System Requirements Review (SRR), System Design Review (SDR), Preliminary Design Review (PDR), and Critical Design Review (CDR) phases. The mission is led by the Mohammed Bin Rashid Space Centre (MBRSC), in partnership with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP), University of California Berkeley Space Sciences Laboratory (SSL), and Arizona State University (ASU) School of Earth and Space Exploration. The mission is designed to answer the following three science questions: (1) How does the Martian lower atmosphere respond globally, diurnally, and seasonally to solar forcing? (2) How do conditions throughout the Martian atmosphere affect rates of atmospheric escape? (3) How does the Martian exosphere behave temporally and spatially?. Each question is aligned with three mission objectives and four investigations that study the Martian atmospheric circulation and connections through measurements done using three instruments that image Mars in the visible, thermal infrared and ultraviolet wavelengths. Data will be collected around Mars for a period of an entire Martian year to provide scientists with valuable understanding of the changes to the Martian atmosphere today. The presentation will focus on the overviews of the mission and science objectives, instruments and spacecraft, as well as the ground and launch segments.

  19. Total and Spectral Solar Irradiance Sensor (TSIS) Project Status

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace

    2018-01-01

    TSIS-1 studies the Sun's energy input to Earth and how solar variability affects climate. TSIS-1 will measure both the total amount of light that falls on Earth, known as the total solar irradiance (TSI), and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance (SSI). TSIS-1 will provide the most accurate measurements of sunlight and continue the long-term climate data record. TSIS-1 includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload on the International Space Station (ISS). The TSIS-1 TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. NASA Goddard's TSIS project responsibilities include project management, system engineering, safety and mission assurance, and engineering oversight for TSIS-1. TSIS-1 was installed on the International Space Station in December 2017. At the end of the 90-day commissioning phase, responsibility for TSIS-1 operations transitions to the Earth Science Mission Operations (ESMO) project at Goddard for its 5-year operations. NASA contracts with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS-1, support for ISS integration, science operations of the TSIS-1 instrument, data processing, data evaluation, calibration and delivery to the Goddard Earth Science Data and Information Services Center (GES DISC).

  20. Spacecraft-environment interaction model cross comparison applied to Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Deca, J.; Markidis, S.; Marchand, R.; Guillemant, S.; Matéo Vélez, J.; Miyake, Y.; Usui, H.; Ergun, R.; Sturner, A. P.

    2013-12-01

    Given that our society becomes increasingly dependent on space technology, it is imperative to develop a good understanding of spacecraft-plasma interactions. Two main issues are important. First, one needs to be able to design a reliable spacecraft that can survive in the harsh solar wind conditions, and second a very good knowledge of the behaviour and plasma structure around the spacecraft is required to be able to interpret and correct measurements from onboard instruments and science experiments. In this work we present the results of a cross-comparison study between five spacecraft-plasma models (EMSES, iPic3D, LASP, PTetra, SPIS) used to simulate the interaction of the Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. The purpose of this cross-comparison is to assess the consistency and validity of the different numerical approaches from the similarities and differences of their predictions under well defined conditions, with attention to the implicit PIC code iPic3D, which has never been used for spacecraft-environment interaction studies before. The physical effects considered are spacecraft charging, photoelectron and secondary electron emission, the presence of a background magnetic field and density variations. The latter of which can cause the floating potential of SPP to go from negative to positive or visa versa, depending on the solar wind conditions, and spacecraft material properties. Simulation results are presented and compared with increasing levels of complexity in the physics to evaluate the sensitivity of the model predictions to certain physical effects. The comparisons focus particularly on spacecraft floating potential, detailed contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. Model predictions obtained with our different computational approaches are found to be in good agreement when the physical processes are treated similarly. The comparisons considered here indicate that, with the correct parameterization of important physical effects such as photoemission and secondary electron emission, our simulation models should have the required skill to predict details of satellite-plasma interaction physics with a high level of confidence. This work was supported by the International Space Science Institute in Bern Switzerland. The potential profile around the Solar Probe Plus spacecraft in orbital flow, from the iPic3D code. The physical model includes photo- and secondary electrons and a static magnetic field.

  1. Regulation of Cell Wall Plasticity by Nucleotide Metabolism in Lactococcus lactis*

    PubMed Central

    Solopova, Ana; Formosa-Dague, Cécile; Courtin, Pascal; Furlan, Sylviane; Veiga, Patrick; Péchoux, Christine; Armalyte, Julija; Sadauskas, Mikas; Kok, Jan; Hols, Pascal; Dufrêne, Yves F.; Kuipers, Oscar P.; Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2016-01-01

    To ensure optimal cell growth and separation and to adapt to environmental parameters, bacteria have to maintain a balance between cell wall (CW) rigidity and flexibility. This can be achieved by a concerted action of peptidoglycan (PG) hydrolases and PG-synthesizing/modifying enzymes. In a search for new regulatory mechanisms responsible for the maintenance of this equilibrium in Lactococcus lactis, we isolated mutants that are resistant to the PG hydrolase lysozyme. We found that 14% of the causative mutations were mapped in the guaA gene, the product of which is involved in purine metabolism. Genetic and transcriptional analyses combined with PG structure determination of the guaA mutant enabled us to reveal the pivotal role of the pyrB gene in the regulation of CW rigidity. Our results indicate that conversion of l-aspartate (l-Asp) to N-carbamoyl-l-aspartate by PyrB may reduce the amount of l-Asp available for PG synthesis and thus cause the appearance of Asp/Asn-less stem peptides in PG. Such stem peptides do not form PG cross-bridges, resulting in a decrease in PG cross-linking and, consequently, reduced PG thickness and rigidity. We hypothesize that the concurrent utilization of l-Asp for pyrimidine and PG synthesis may be part of the regulatory scheme, ensuring CW flexibility during exponential growth and rigidity in stationary phase. The fact that l-Asp availability is dependent on nucleotide metabolism, which is tightly regulated in accordance with the growth rate, provides L. lactis cells the means to ensure optimal CW plasticity without the need to control the expression of PG synthesis genes. PMID:27022026

  2. Racemization at the Asp 58 residue in αA-crystallin from the lens of high myopic cataract patients.

    PubMed

    Zhu, Xiang-Jia; Zhang, Ke-Ke; He, Wen-Wen; Du, Yu; Hooi, Michelle; Lu, Yi

    2018-02-01

    Post-translational modifications in lens proteins are key causal factors in cataract. As the most abundant post-translational modification in the lens, racemization may be closely related to the pathogenesis of cataract. Racemization of αA-crystallin, a crucial structural and heat shock protein in the human lens, could significantly influence its structure and function. In previous studies, elevated racemization from l-Asp 58 to d-isoAsp58 in αA-crystallin has been found in age-related cataract (ARC) lenses compared to normal aged human lenses. However, the role of racemization in high myopic cataract (HMC), which is characterized by an early onset of nuclear cataract, remains unknown. In the current study, apparently different from ARC, significantly increased racemization from l-Asp 58 to d-Asp 58 in αA-crystallin was identified in HMC lenses. The average racemization rates for each Asp isoform were calculated in ARC and HMC group. In ARC patients, the conversion of l-Asp 58 to d-isoAsp 58, up to 31.89%, accounted for the main proportion in racemization, which was in accordance with the previous studies. However, in HMC lenses, the conversion of l-Asp 58 to d-Asp 58, as high as 35.44%, accounted for the largest proportion of racemization in αA-crystallin. The different trend in the conversion of αA-crystallin by racemization, especially the elevated level of d-Asp 58 in HMC lenses, might prompt early cataractogenesis and a possible explanation of distinct phenotypes of cataract in HMC. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Emirates Mars Ultraviolet Spectrometer (EMUS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Lootah, F. H.; Almatroushi, H. R.; AlMheiri, S.; Holsclaw, G.; Deighan, J.; Chaffin, M.; Reed, H.; Lillis, R. J.; Fillingim, M. O.; England, S.

    2017-12-01

    The Emirates Mars Ultraviolet Spectrometer (EMUS) instrument is one of three science instruments on board the "Hope Probe" of the Emirates Mars Mission (EMM). EMM is a United Arab Emirates' (UAE) mission to Mars, launching in 2020, to explore the global dynamics of the Martian atmosphere, while sampling on both diurnal and seasonal timescales. The EMUS instrument is a far-ultraviolet imaging spectrograph that measures emissions in the spectral range 100-170 nm. Using a combination of its one-dimensional imaging and spacecraft motion, it will build up two-dimensional far-ultraviolet images of the Martian disk and near-space environment at several important wavelengths: the Lyman beta atomic hydrogen emission (102.6 nm), the Lyman alpha atomic hydrogen emission (121.6 nm), two atomic oxygen emissions (130.4 nm and 135.6 nm), and the carbon monoxide fourth positive group band emission (140 nm-170 nm). Radiances at these wavelengths will be used to derive the column abundance of atomic oxygen, and carbon monoxide in the Martian thermosphere, and the density of atomic oxygen and atomic hydrogen in the Martian exosphere both with spatial and sub-seasonal variability. The EMUS instrument consists of a single telescope mirror feeding a Rowland circle imaging spectrograph with selectable spectral resolution (1.3 nm, 1.8 nm, or 5 nm), and a photon-counting and locating detector (provided by the Space Sciences Laboratory at the University of California, Berkeley). The EMUS spatial resolution of less than 300 km on the disk is sufficient to characterize spatial variability in the Martian thermosphere (100-200 km altitude) and exosphere (>200 km altitude). The instrument is jointly developed by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and Mohammed Bin Rashid Space Centre (MBRSC) in Dubai, UAE.

  4. Emirates Mars Ultraviolet Spectrometer (EMUS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Almatroushi, Hessa; Lootah, Fatma; Holsclaw, Greg; Deighan, Justin; Chaffin, Michael; Lillis, Robert; Fillingim, Matthew; England, Scott; AlMheiri, Suhail; Reed, Heather

    2017-04-01

    The Emirates Mars Ultraviolet Spectrometer (EMUS) instrument is one of three science instruments to be carried on board the Emirate Mars Mission (EMM), the "Hope Probe". EMM is a United Arab Emirates' (UAE) mission to Mars launching in 2020 to explore the dynamics in the Martian atmosphere globally, while sampling on both diurnal and seasonal timescales. The EMUS instrument is a far-ultraviolet imaging spectrograph that measures emissions in the spectral range 100-170 nm. Using spacecraft motion, it will build up two-dimensional far-ultraviolet images of the Martian disk and near-space environment at several important wavelengths: Lyman beta atomic hydrogen emission (102.6 nm), Lyman alpha atomic hydrogen emission (121.6 nm), atomic oxygen emission (130.4 nm and 135.6 nm), and carbon monoxide fourth positive group band emission (140 nm-170 nm). Radiances at these wavelengths will be used to derive the column abundance of atomic oxygen, and carbon monoxide in the Martian thermosphere, and the density of atomic oxygen and atomic hydrogen in the Martian exosphere both with spatial and sub-seasonal variability. EMUS consists of a single telescope mirror feeding a Rowland circle imaging spectrograph capable of selectable spectral resolution (1.3 nm, 1.8 nm, or 5 nm) with a photon-counting and locating detector (provided by the Space Sciences Laboratory at the University of California, Berkeley). The EMUS spatial resolution of less than 300km on the disk is sufficient to characterize spatial variability in the Martian thermosphere (100-200 km altitude) and exosphere (>200 km altitude). The instrument is jointly developed by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and Mohammed Bin Rashid Space Centre (MBRSC) in Dubai, UAE

  5. Interoperable Solar Data and Metadata via LISIRD 3

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.

    2015-12-01

    LISIRD 3 is a major upgrade of the LASP Interactive Solar Irradiance Data Center (LISIRD), which serves several dozen space based solar irradiance and related data products to the public. Through interactive plots, LISIRD 3 provides data browsing supported by data subsetting and aggregation. Incorporating a semantically enabled metadata repository, LISIRD 3 users see current, vetted, consistent information about the datasets offered. Users can now also search for datasets based on metadata fields such as dataset type and/or spectral or temporal range. This semantic database enables metadata browsing, so users can discover the relationships between datasets, instruments, spacecraft, mission and PI. The database also enables creation and publication of metadata records in a variety of formats, such as SPASE or ISO, making these datasets more discoverable. The database also enables the possibility of a public SPARQL endpoint, making the metadata browsable in an automated fashion. LISIRD 3's data access middleware, LaTiS, provides dynamic, on demand reformatting of data and timestamps, subsetting and aggregation, and other server side functionality via a RESTful OPeNDAP compliant API, enabling interoperability between LASP datasets and many common tools. LISIRD 3's templated front end design, coupled with the uniform data interface offered by LaTiS, allows easy integration of new datasets. Consequently the number and variety of datasets offered by LISIRD has grown to encompass several dozen, with many more to come. This poster will discuss design and implementation of LISIRD 3, including tools used, capabilities enabled, and issues encountered.

  6. First Results from Colorado Student Space Weather Experiment (CSSWE): Differential Flux Measurements of Energetic Particles in a Highly Inclined Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Li, X.; Palo, S. E.; Kohnert, R.; Gerhardt, D.; Blum, L. W.; Schiller, Q.; Turner, D. L.; Tu, W.

    2012-12-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, scheduled for launch into a low-Earth, polar orbit after August 14th, 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles (SEP) reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP). The REPT instrument will fly onboard the NASA/Radiation Belt Storm Probes (RBSP) mission, which consists of two identical spacecraft scheduled to launch after August 23rd, 2012 that will go through the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3 MeV. Such differential flux measurements have significant science value, and a number of engineering challenges were overcome to enable these clean measurements to be made under the mass and power limits of a CubeSat. The CSSWE is an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project. We will report the first results from this exciting mission.

  7. Comparison of a CHOP-LAsp-based protocol with and without maintenance for canine multicentric lymphoma.

    PubMed

    Lautscham, E M; Kessler, M; Ernst, T; Willimzig, L; Neiger, R

    2017-03-25

    The recommendation to treat canine lymphoma with a discontinuous protocol is based on small case numbers and mostly historic controls. This study compares duration of first remission (DFR) and overall survival time (ST) with a discontinuous protocol to the same protocol with maintenance phase. 408 dogs were treated with a CHOP-LAsp (C=cyclophosphamide; H=hydroxydaunorubicin; O=Oncovin; P=prednisolone; LAsp=l-asparaginase)-based 28-week induction protocol. In 75 dogs (cohort 1), this was followed by a maintenance phase consisting of vincristine, chlorambucil and actinomycin-D with a total treatment duration of two years. In the subsequent 333 dogs, therapy was discontinued after induction (cohort 2). Median DFR and ST in cohort 1 were 216 and 375 days and 184 and 304 days in cohort 2. 6-Month, 1-year and 2-year survival rates in cohort 1 were 73 per cent, 50 per cent, 24 per cent and 67 per cent, 39 per cent, 21 per cent in cohort 2. There was no significant difference between the two protocols (P=0.291 for ST, P=0.071 for DFR). On multivariate analysis, corticosteroid pretreatment (P=0.005), thrombocytopenia at diagnosis (P=0.019), stage (P=0.009), substage b at relapse (P<0.001), age (P=0.002) and incomplete or unstable remission necessitating intensification of therapy (P=0.004) were negatively correlated with ST in both groups. This study supports the use of a discontinuous protocol for canine multicentric lymphoma. British Veterinary Association.

  8. Oral administration of D-aspartate, but not L-aspartate, depresses rectal temperature and alters plasma metabolites in chicks.

    PubMed

    Erwan, Edi; Chowdhury, Vishwajit Sur; Nagasawa, Mao; Goda, Ryosei; Otsuka, Tsuyoshi; Yasuo, Shinobu; Furuse, Mitsuhiro

    2014-07-25

    L-Aspartate (L-Asp) and D-aspartate (D-Asp) are physiologically important amino acids in mammals and birds. However, the functions of these amino acids have not yet been fully understood. In this study, we therefore examined the effects of L-Asp and D-Asp in terms of regulating body temperature, plasma metabolites and catecholamines in chicks. Chicks were first orally administered with different doses (0, 3.75, 7.5 and 15 mmol/kg body weight) of L- or D-Asp to monitor the effects of these amino acids on rectal temperature during 120 min of the experimental period. Oral administration of D-Asp, but not of L-Asp, linearly decreased the rectal temperature in chicks. Importantly, orally administered D-Asp led to a significant reduction in body temperature in chicks even under high ambient temperature (HT) conditions. However, centrally administered D-Asp did not significantly influence the body temperature in chicks. As for plasma metabolites and catecholamines, orally administered D-Asp led to decreased triacylglycerol and uric acid concentrations and increased glucose and chlorine concentrations but did not alter plasma catecholamines. These results suggest that oral administration of D-Asp may play a potent role in reducing body temperature under both normal and HT conditions. The alteration of plasma metabolites further indicates that D-Asp may contribute to the regulation of metabolic activity in chicks. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Emirates eXploration Imager (EXI) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    AlShamsi, Maryam; Wolff, Michael; Khoory, Mohammad; AlMheiri, Suhail; Jones, Andrew; Drake, Ginger; Osterloo, Mikki; Reed, Heather

    2017-04-01

    The Emirates eXploration Imager (EXI) instrument is one of three scientific instruments abroad the Emirate Mars Mission (EMM) spacecraft, "Hope". The planned launch window opens in the summer of 2020, with the goal of this United Arab Emirates (UAE) mission to explore the dynamics of the Martian atmosphere through global spatial sampling which includes both diurnal and seasonal timescales. A particular focus of the mission is the improvement of our understanding of the global circulation in the lower atmosphere and the connections to the upward transport of energy of the escaping atmospheric particles from the upper atmosphere. This will be accomplished using three unique and complementary scientific instruments. The subject of this presentation, EXI, is a multi-band camera capable of taking 12 megapixel images, which translates to a spatial resolution of better than 8 km with a well calibrated radiometric performance. EXI uses a selector wheel mechanism consisting of 6 discrete bandpass filters to sample the optical spectral region: 3 UV bands and 3 visible (RGB) bands. Atmospheric characterization will involve the retrieval of the ice optical depth using the 300-340 nm band, the dust optical depth in the 205-235nm range, and the column abundance of ozone with a band covering 245-275 nm. Radiometric fidelity is optimized while simplifying the optical design by separating the UV and VIS optical paths. The instrument is being developed jointly by the Laboratory for Atmospheric and Space Physics (LASP), University of California, Boulder, USA, and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE.

  10. Professional Development Workshops for the Media: A Model for Engaging Scientists and Journalists in Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Cobabe-Ammann, E.; Jakosky, B.

    2007-12-01

    Historically, there has been a delineation between those activities that promote the education of the general public (formal and information education) and those that involve journalists and the media (public affairs). However, over the last several years, there has been recognition that in the interest of "full spectrum science communication", journalists, who deliver more than 85% of the science news and content to the general public, may be legitimately seen as an audience for education activities. The goal of these activities is not primarily to promote a specific story, event or theme, but instead to broaden and deepen journalists' understanding of space science and to promote increased communication and understanding among journalists, scientists and educators. In the last several years, the Laboratory for Atmospheric and Space Physics has initiated workshops for the professional development of journalists as a cornerstone of its Education program. To date, workshops have covered Mars System Science, Life in Extreme Environments, Extrasolar Planets, Out Planets, and soon, the Role of Uncertainty in Climate Change. These programs bring together 20 elite journalists from both print and broadcast and 6-8 internationally recognized scientists in a 3-4 day encounter. Evaluation of past workshops suggests that the journalists not only feel that these workshops are a worthwhile use of their time, but that they impact the quality of their writing. Several indicated that the quality of the writing and its content had been noticed by their editor and allowed them to more easily 'pitch' space science stories when they were in the news. Many, including several regional journalists, commented that the workshop provided a level of background information that would help them for years to come. In this talk, we present the LASP media workshop model, talk about editorial barriers for journalists and the impact of the workshops, and discuss lessons learned that increase participation by the nation's leading media outlets.

  11. EOS Aura Mission Status at Earth Science Constellation MOWG Meeting @ LASP (Boulder, CO) April 13, 2016

    NASA Technical Reports Server (NTRS)

    Guit, William J.; Fisher, Dominic

    2016-01-01

    Presentation reflects EOS Aura mission status, spacecraft subsystems summary, recent and planned activities, inclination adjust maneuvers, propellant usage, orbit maintenance maneuvers, conjunction assessment events, orbital parameters trends and predictions.

  12. Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.

  13. LASP-01: Distribution of Mouse Embryonic Stem Cells Expressing MicroRNAs | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Laboratory Animal Sciences Program manages the expansion, processing, and distribution of1,501 genetically engineered mouse embryonic stem cell (mESC) linesharboring conditional microRNA transgenes. The Laboratory Animal Sciences Prog

  14. Louisiana Airport System Plan Five-Year Capital Improvement Program.

    DOT National Transportation Integrated Search

    1992-07-01

    The Louisiana Airport System Plan (LASP) Five-Year-Capital Improvement Program (CIP) is a development plan for all commercial service, reliever, and general aviation airports in Louisiana. It is a detailed listing of potential projects based on the a...

  15. New results from the Colorado CubeSat and comparison with Van Allen Probes data

    NASA Astrophysics Data System (ADS)

    Li, X.

    2013-05-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the NSF, launched into a highly inclined (650) low-Earth (490km x 790km) orbit on 09/13/12 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a simplified and miniaturized version of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP) of University of Colorado for NASA/Van Allen Probes mission, which consists of two identical spacecraft, launched on 08/30/12, that traverse the heart of the radiation belts in a low inclination (100) orbit. REPTile is designed to measure the directional differential flux of protons ranging from 9 to 40 MeV and electrons from 0.5 to >3.3 MeV. Three-month science mission (full success) was completed on 1/05/13. We are now into the extended mission phase, focusing on data analysis and modeling. REPTile measures a fraction of the total population that has small enough equatorial pitch angles to reach the altitude of CSSWE, thus measuring the precipitating population as well as the trapped population. These measurements are critical for understanding the loss of outer radiation belt electrons. New results from CSSWE and comparison with Van Allen Probes data will be presented. The CSSWE is also an ideal class project, involving over 65 graduate and undergraduate students and providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project.

  16. Emirates Mars Mission (EMM) Overview

    NASA Astrophysics Data System (ADS)

    Sharaf, Omran; Amiri, Sarah; AlMheiri, Suhail; Alrais, Adnan; Wali, Mohammad; AlShamsi, Zakareyya; AlQasim, Ibrahim; AlHarmoodi, Khuloud; AlTeneiji, Nour; Almatroushi, Hessa; AlShamsi, Maryam; AlAwadhi, Mohsen; McGrath, Michael; Withnell, Pete; Ferrington, Nicolas; Reed, Heather; Landin, Brett; Ryan, Sean; Pramann, Brian

    2017-04-01

    United Arab Emirates (UAE) has entered the space exploration race with the announcement of Emirates Mars Mission (EMM), the first Arab Islamic mission to another planet, in 2014. Through this mission, UAE is to send an unmanned probe, called Hope probe, to be launched in summer 2020 and reach Mars by 2021 to coincide with UAE's 50th anniversary. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit that has a periapsis altitude of 20,000 km, an apoapsis altitude of 43,000 km, and an inclination of 25 degrees. The mission is designed to (1) characterize the state of the Martian lower atmosphere on global scales and its geographic, diurnal and seasonal variability, (2) correlate rates of thermal and photochemical atmospheric escape with conditions in the collisional Martian atmosphere, and (3) characterize the spatial structure and variability of key constituents in the Martian exosphere. These objectives will be met by four investigations with diurnal variability on sub-seasonal timescales which are (1) determining the three-dimensional thermal state of the lower atmosphere, (2) determining the geographic and diurnal distribution of key constituents in the lower atmosphere, (3) determining the abundance and spatial variability of key neutral species in the thermosphere, and (4) determining the three-dimensional structure and variability of key species in the exosphere. EMM will collect these information about the Mars atmospheric circulation and connections through a combination of three distinct instruments that image Mars in the visible, thermal infrared and ultraviolet wavelengths and they are the Emirates eXploration Imager (EXI), the Emirates Mars InfraRed Spectrometer (EMIRS), and the EMM Mars Ultraviolet Spectrometer (EMUS). EMM has passed its Mission Concept Review (MCR), System Requirements Review (SRR), System Design Review (SDR), and Preliminary Design Review (PDR) phases. The mission is led by Emiratis from Mohammed Bin Rashid Space Centre, Dubai, UAE, and it will expand the nation's human capital through knowledge transfer programs set with international partners from the University of Colorado Laboratory for Atmospheric and Space Physics (LASP), University of California Berkeley Space Sciences Lab (SSL), and Arizona State University (ASU) School of Earth and Space Exploration.

  17. EOS Aqua Mission Status at Earth Science Constellation MOWG Meeting @ LASP April 13, 2016

    NASA Technical Reports Server (NTRS)

    Guit, William J.

    2016-01-01

    This presentation reflects the EOS Aqua mission status, spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage and lifetime estimate, orbital maintenance maneuvers, conjunction assessment high interest events, ground track error, spacecraft orbital parameters trends and predictions.

  18. "Tormenta Espacial" - Exploring The Sun-earth Connection With A Spanish-language Planetarium Show

    NASA Astrophysics Data System (ADS)

    Elteto, Attila; Salas, F.; Duncan, D.; Traub-Metlay, S.

    2007-10-01

    Reaching out to Spanish speakers is increasingly vital to workforce development and public support of space science projects. Building on a successful partnership with NASA's TIMED mission, LASP and Space Science Institute, Fiske Planetarium has translated its original planetarium show - "Space Storm” - into "Tormenta Espacial". This show explores the Sun-Earth connection and explains how solar activity affects technology and life on Earth. Solar scientists from NOAA's Space Environment Center and the University of Colorado at Boulder contributed to provide scientific accuracy. Show content and accompanying educational materials are aligned with state and national science standards. While designed for students in grades 6-8, this show has been positively evaluated by students from grades 4-10 and shown to the general public with favorable responses. Curricular materials extend the planetarium experience into the K-12 classroom so that students inspired and engaged by the show continue to see real-life applications and workplace opportunities. Fiske Planetarium offers both "Space Storm” and "Tormenta Espacial” to other planetariums at a minimal rate, including technical support for the life of the show. Thanks to a request from a planetarium in Belgium, a version of "Space Storm” is available with no spoken dialogue so that languages other than English or Spanish may be accommodated. Collaborative projects among planetariums, NASA missions (planned as well as active), research scientists and other parties keep EPO activities healthy and well-funded. Fiske Planetarium staff strive to develop and maintain partnerships throughout the EPO and informal education communities.

  19. LASP-03: Pharmacokinetics Evaluation in Kras/p53 Pancreatic Ductal Adenocarcinoma (PDAC) Mice | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Laboratory Animal Sciences Program will breed 24 KPC mice will be bred with the intent of generating a cohort of 18 animals with confirmed tumor-load matching the following enrollment criteria:female mice are considered eligible for enrollm

  20. The Louisiana Accelerated Schools Project First Year Evaluation Report.

    ERIC Educational Resources Information Center

    St. John, Edward P.; And Others

    The Louisiana Accelerated Schools Project (LASP) is a statewide network of schools that are changing from the traditional mode of schooling for at-risk students, which stresses remediation, to one of acceleration, which stresses accelerated learning for all students. The accelerated schools process provides a systematic approach to the…

  1. The new climate data record of total and spectral solar irradiance: Current progress and future steps

    NASA Astrophysics Data System (ADS)

    Coddington, Odele; Lean, Judith; Rottman, Gary; Pilewskie, Peter; Snow, Martin; Lindholm, Doug

    2016-04-01

    We present a climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. TSI and SSI are constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM), Spectral Irradiance Monitor (SIM), and SOlar Stellar Irradiance Comparison Experiment (SOLSTICE). We show that TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales and we assume that SSI measurements are reliable on solar rotational time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled TSI and SSI with the measurement record and with other solar irradiance models. We also discuss ongoing work to assess the sensitivity of the modeled irradiances to model assumptions, namely, the scaling of solar variability from rotational-to-cycle time scales and the representation of the sunspot darkening index.

  2. Magnetospheric Multiscale Instrument Suite Operations and Data System

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2015-01-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of approximately 100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SOC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and 'Scientist-in-the-Loop' (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  3. Magnetospheric Multiscale Instrument Suite Operations and Data System

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2016-03-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  4. LASP-04: Tolerance Evaluation of Experimental Compound in Kras/p53 Pancreatic Ductal Adenocarcinoma (PDAC) Mice | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Laboratory Animal Sciences Program will breed 18 KPC animals with the intent of generating a cohort of 12 animals with confirmed tumor-load matching the following enrollment criteria:female mice are considered eligible for enrollment when u

  5. LASP-06: Drug Efficacy in a Three-Arm Survival Study in Kras/p53 Pancreatic Ductal Adenocarcinoma (PDAC) Mice | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Laboratory Animal Sciences Program will induce breed 50 KPC animals with the intent of generating a cohort of 40 animals with confirmed tumor-load matching the following enrollment criteria:female mice are considered eligible for enrollment

  6. Gender differences in D-aspartic acid content in skull bone.

    PubMed

    Torikoshi-Hatano, Aiko; Namera, Akira; Shiraishi, Hiroaki; Arima, Yousuke; Toubou, Hirokazu; Ezaki, Jiro; Morikawa, Masami; Nagao, Masataka

    2012-12-01

    In forensic medicine, the personal identification of cadavers is one of the most important tasks. One method of estimating age at death relies on the high correlation between racemization rates in teeth and actual age, and this method has been applied successfully in forensic odontology for several years. In this study, we attempt to facilitate the analysis of racemized amino acids and examine the determination of age at death on the basis of the extent of aspartic acid (Asp) racemization in skull bones. The specimens were obtained from 61 human skull bones (19 females and 42 males) that underwent judicial autopsy from October 2010 to May 2012. The amount of D-Asp and L-Asp, total protein, osteocalcin, and collagen I in the skull bones was measured. Logistic regression analysis was performed for age, sex, and each measured protein. The amount of D-Asp in the female skull bones was significantly different from that in the male skull bones (p = 0.021), whereas the amount of L-Asp was similar. Thus, our study indicates that the amount of D-Asp in skull bones is different between the sexes.

  7. Muchas Caras: Engaging Spanish Speakers in the Planetarium and K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Traub-Metlay, Suzanne; Salas, F.

    2008-05-01

    Reaching out to Spanish speakers is increasingly vital to workforce development and public support of space science projects. Fiske Planetarium offers Spanish translations of our newest planetarium shows, such as "Las Muchas Caras del Telescopio Hubble” ("The Many Faces of Hubble") and "Tormenta Espacial” ("Space Storm"). Funded by NASA, "Las Muchas Caras...” showcases the people involved in successful use of the Hubble Space Telescope. From building and launching HST to how proposals are selected and data analyzed, "Las Muchas Caras...” engages viewers to see themselves in careers related to space science. Detailed interviews with real people who work with HST reveal the humanity behind the science. Awesome imagery provided by HST inspires viewers to look at the night sky themselves. In partnership with NASA's TIMED mission, LASP and Space Science Institute, Fiske Planetarium translated its original planetarium show - "Space Storm” - into "Tormenta Espacial". This show explores the Sun-Earth connection and explains how solar activity affects technology and life on Earth. Solar scientists from NOAA's Space Environment Center and the University of Colorado at Boulder contributed to provide scientific accuracy. Show content and accompanying educational materials are aligned with state and national science standards. Curricular materials extend the planetarium experience into the K-12 classroom so that students inspired and engaged by the show continue to see real-life applications and workplace opportunities. Fiske Planetarium offers "Las Muchas Caras...” and "Tormenta Espacial” to other planetariums at a minimal rate, including technical support for the life of the show. Versions of "The Many Faces of Hubble” and "Space Storm” are available with no spoken dialogue so that languages other than English or Spanish may be accommodated.

  8. LASP-05: Time Course Assessment of Tumor Response to Therapeutics in Kras/p53 Pancreatic Ductal Adenocarcinoma (PDAC) Mice | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Laboratory Animal Sciences Program will breed 25 KPC animals with the intent of generating a cohort of 20 animals with confirmed tumor-load matching the following enrollment criteria:female mice are considered eligible for enrollment when u

  9. Profiling System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A non-destructive testing system, originally developed for Langley Research Center, is sold commercially. The DyLASP Profilometer locates defects in composite and metallic materials and assemblies. It operates in real time and displays results as a contour map of the assembly with defects indicated by size and location. Applications are in non-destructive testing and evaluation, and the company will customize to user requirements.

  10. Effective amino acid composition of seaweeds inducing food preference behaviors in Aplysia kurodai.

    PubMed

    Nagahama, Tatsumi; Fujimoto, Kiyo; Takami, Shigemi; Kinugawa, Aiko; Narusuye, Kenji

    2009-07-01

    Aplysia kurodai feeds on Ulva but rejects Gelidium and Pachydictyon with distinct patterned jaw movements. We previously demonstrated that these movements are induced by taste alone. Thus some chemicals may contribute to induction of these responses. We explored the amino acids composition of Ulva, Gelidium and Pachydictyon extracts used during our taste-induced physiological experiments. These solutions contained many constituents. The concentrations of six amino acids (Asp, Asn, Glu, Gln, Phe, Tau) were obviously different in the three extract solutions. We explored patterned jaw movements following application of solutions containing a pure amino acid. We statistically compared the occurrence numbers of ingestion-like and rejection-like patterned jaw movements (positive and negative values, respectively) for each amino acid. Our results suggested that L-Asn tends to induce ingestion-like responses, likely resulting in a preference of Ulva. In contrast, L-Asp tends to induce rejection-like responses, likely resulting in aversion towards Pachydictyon. In addition, we demonstrated that L-Asn and L-Asp solutions were sufficient to induce muscle activity associated with ingestion-like or rejection-like responses in the jaw muscles of a semi-intact preparation.

  11. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    PubMed

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.

  12. Obituary: William A. Rense (1914-2008)

    NASA Astrophysics Data System (ADS)

    Cushman, Glen

    2009-12-01

    On March 28, 2008, the space research community lost another of its pioneers. William A. Rense, professor emeritus of physics at the University of Colorado in Boulder, who died in Estes Park, Colorado, following complications from cancer. He was 94. Bill, as he was widely known, was born in 1914 in Massillon, Ohio, the son of German immigrants. His was a large family - five brothers and one sister. His father, Joseph Rense, worked for the city of Cleveland while his mother, Rosalia (Luther) Rense was a housewife. As a child, Bill developed a love of astronomy which led him to earn a bachelor's degree in physics and astronomy from Case Western Reserve University in Cleveland, followed by master's and PhD degrees in physics at Ohio State University. He held teaching positions at Rutgers, University of Miami (Florida), Texas A & M, and Louisiana State University before taking his final appointment at CU in 1949. While teaching at LSU, he met and in 1942 married Wanda (Childs) Rense. In addition to teaching physics at CU, Bill did research in CU's Upper Air Laboratory. His early work there included studies of polarized light and its implications for the analysis of zodiacal light. He and his co-workers also began developing instrumentation to be flown above the Earth's atmosphere in sounding rockets. In 1952 he obtained the first photographic spectrogram of the solar Lyman-alpha line of hydrogen (121.6nm). This work was followed in 1956 by the first full disk spectroheliogram in Lyman-alpha. These results could not have been possible without the use of pointing control systems for sounding rockets. These "sun trackers" kept the payloads pointed at the sun long enough for the measurements to be made, and CU was a pioneer in their development. The expanding research venue led the Upper Air Laboratory to be renamed the Laboratory for Atmospheric and Space Physics (LASP), and Bill Rense was its first director. He continued his research into the properties of the solar atmosphere with high resolution observations of He I and He II (58.4 and 30.4 nm) and O I (130.5nm), as well as terrestrial atmospheric absorption measurements, utilizing the sun as an Extreme Ultraviolet source. In the meantime, the pointing control business proved to be so popular that it was transferred to a then-small local business owned by Ball Brothers Research Corporation. It is now the Ball Aerospace and Technologies Corporation. Bill retired from CU in 1980. He had a successful and productive career at LASP, but teaching was his first love. Besides teaching undergraduates, he trained graduate students and post-doctoral fellows in the latest research techniques. His family recalls the joy he took in teaching honors classes at their home in Boulder as well as the many letters he received from the students he inspired. He had a constantly enquiring mind and loved to share his curiosity with others, whether the subject was beat frequencies heard on a jet plane or stellar constellations seen from Estes Park. Bill was a devoted amateur naturalist and kept detailed records of the weather and of the first appearances of birds and flowers observed at his summer cabin in Allenspark, Colorado. One of his earliest publications concerned the nighttime observation of migrating birds, seen as they flew in front of the moon. It is a technique employed by birders as far back as 1902 and still used today. Working in collaboration with George H. Lowery, Curator of the Museum of Zoology at LSU, Bill established the observational ground rules that would enable ornithologists to determine the compass heading, altitude and density of birds along their nocturnal flyways. When people are asked what Bill Rense was like, a word that frequently comes up is "courtly". In all his transactions with other people, Bill was unfailingly soft spoken and gracious. When confronted with a profoundly bad idea, his typical response would be to say, "Well - that's different." In a field sometimes dominated by large egos, his unassuming manner may have been what made him stand out as a teacher and as a friend. A quote from Alexander Pope seems to fit him: "True politeness consists in being easy one's self, and in making everyone about one as easy as one can. William A. Rense is survived by his wife, Wanda Rense of Estes Park, Colorado, and three sons: William of Estes Park, John of Anchorage, Alaska, and Charles of Los Alamos, New Mexico. A memorial service was held on April 2, 2008, at Good Samaritan Village, Estes Park.

  13. LASP-02: In Vitro Cell Cytotoxicity Evaluation in Kras/p53 Pancreatic Ductal Adenocarcinoma (PDAC) Derived Mouse Cells | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Laboratory Animal Sciences Program will assess the in vitro potency of candidate compounds via a conventional cell-based toxicity assay (XTT living cell test) in a series of six drug concentrations (ranging from 0.1 nM to 50,000 nM) of a single a

  14. Incremental Value of Live/Real Time Three-Dimensional over Two-Dimensional Transesophageal Echocardiography in the Assessment of Atrial Septal Pouch.

    PubMed

    Elsayed, Mahmoud; Hsiung, Ming C; Meggo-Quiroz, L David; Elguindy, Mostafa; Uygur, Begum; Tandon, Rohit; Guvenc, Tolga; Keser, Nurgul; Vural, Mustafa G; Bulur, Serkan; Chahwala, Jugal R; Abtahi, Firoozeh; Nanda, Navin C

    2015-12-01

    An atrial septal pouch (ASP) results from partial fusion of the septum primum and the septum secundum, and depending on the site of fusion, the pouch can be left-sided (LASP) or right-sided (RASP). LASPs have been described in association with thrombi found in patients admitted with acute strokes, raising awareness of its potential cardioembolic role, especially in those with no other clearly identifiable embolic source. We retrospectively studied 39 patients in whom the presence of an ASP had been identified by three-dimensional transesophageal echocardiography (3DTEE) and who had a two-dimensional transesophageal echocardiogram (2DTEE) performed during the same clinical encounter. The incremental value provided by 3DTEE over 2DTEE included the detection of six ASPs not found by 2DTEE; the detection of two ASPs in the same subject (in four patients) not identified by 2DTEE; larger ASP measurements of length and height in over 80% of the cases; and measurement of the ASP width (elevational axis) for the calculation of the area of the ASP opening, because of its unique capability to view the pouch en face. In addition, the volume of ASP and of the echogenic masses contained in the ASP (four of 39 patients) could be calculated by 3DTEE, which is a superior parameter of size characterization when compared to individual dimensions. One of these patients who presented with ischemic stroke diagnosed by magnetic resonance imaging had a large (>2 cm) mass in a LASP, with echolucencies similar to those seen in thrombi and associated with clot lysis and resolution. This mass completely disappeared on anticoagulant therapy lending credence that it was most likely a thrombus. There was no history of stroke or any other type of embolic event in the other three patients with masses in ASP. In conclusion, this retrospective study highlights the incremental value of 3DTEE over 2DTEE in the comprehensive assessment and characterization of ASPs, which can aid in the clarification of their role in cryptogenic stroke patients. © 2015, Wiley Periodicals, Inc.

  15. Prepuberal Stimulation of 5-HT7-R by LP-211 in a Rat Model of Hyper-Activity and Attention-Deficit: Permanent Effects on Attention, Brain Amino Acids and Synaptic Markers in the Fronto-Striatal Interface

    PubMed Central

    Treno, Concetta; Gironi Carnevale, Ugo A.; Arra, Claudio; Nieddu, Maria; Pagano, Cristina; Illiano, Placido; Barbato, Fabiana; Carboni, Ezio; Laviola, Giovanni; Lacivita, Enza; Leopoldo, Marcello; Adriani, Walter; Sadile, Adolfo G.

    2014-01-01

    The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates. PMID:24709857

  16. The Time Series Data Server (TSDS) for Standards-Compliant, Convenient, and Efficient Access to Time Series Data

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Weigel, R. S.; Wilson, A.; Ware Dewolfe, A.

    2009-12-01

    Data analysis in the physical sciences is often plagued by the difficulty in acquiring the desired data. A great deal of work has been done in the area of metadata and data discovery, however, many such discoveries simply provide links that lead directly to a data file. Often these files are impractically large, containing more time samples or variables than desired, and are slow to access. Once these files are downloaded, format issues further complicate using the data. Some data servers have begun to address these problems by improving data virtualization and ease of use. However, these services often don't scale to large datasets. Also, the generic nature of the data models used by these servers, while providing greater flexibility, may complicate setting up such a service for data providers and limit sufficient semantics that would otherwise simplify use for clients, machine or human. The Time Series Data Server (TSDS) aims to address these problems within the limited, yet common, domain of time series data. With the simplifying assumption that all data products served are a function of time, the server can optimize for data access based on time subsets, a common use case. The server also supports requests for specific variables, which can be of type scalar, structure, or sequence. It also supports data types with higher level semantics, such as "spectrum." The TSDS is implemented using Java Servlet technology and can be dropped into any servlet container and customized for a data provider's needs. The interface is based on OPeNDAP (http://opendap.org) and conforms to the Data Acces Protocol (DAP) 2.0, a NASA standard (ESDS-RFC-004), which defines a simple HTTP request and response paradigm. Thus a TSDS server instance is a compliant OPeNDAP server that can be accessed by any OPeNDAP client or directly via RESTful web service requests. The TSDS reads the data that it serves into a common data model via the NetCDF Markup Language (NcML, http://www.unidata.ucar.edu/software/netcdf/ncml/) which enables dataset virtualization. An NcML file can expose a single file, a subset, or an aggregation of files as a single, logical dataset. With the appropriate NcML adapter, the TSDS can read data from its native format, eliminating the need for data providers to reformat their data and lowering the barrier for integration. Data can even be read via remote services which is important for enabling VxOs to be truly virtual. The TSDS provides reading, writing, and filtering capabilities through a modular framework. A collection of standard modules is available and customized modules are easy to create and integrate. This way the TSDS can read and write data in a variety of formats and apply filters to them an a manner customizable to meet the needs of both the data providers and consumers. The TSDS server is currently in use serving solar irradiance data from the LASP Interactive Solar IRradiance Datacenter (LISIRD, http://lasp.colorado.edu/lisird/), and is being introduced into the space physics virtual observatory community. The TSDS software is Open Source and available at SourceForge.

  17. Vibrational spectroscopic study, charge transfer interaction and nonlinear optical properties of L-asparaginium picrate: a density functional theoretical approach.

    PubMed

    Elleuch, Nabil; Amamou, Walid; Ben Ahmed, Ali; Abid, Younes; Feki, Habib

    2014-07-15

    Single crystals of L-asparaginium picrate (LASP) were grown by slow evaporation technique at room temperature and were the subject of an X-ray powder diffraction study to confirm the crystalline nature of the synthesized compound. FT-IR and Raman spectra were recorded and analyzed with the aid of the density functional theory (DFT) calculations in order to make a suitable assignment of the observed bands. The optimum molecular geometry, normal mode wavenumbers, infrared and Raman intensities and the first hyperpolarizability were investigated with the help of B3LYP method using 6-31G(d) basis set. The theoretical FT-IR and Raman spectra of LASP were simulated and compared with the experimental data. A good agreement was shown and a reliable vibrational assignment was made. Natural bond orbital (NBO) analysis was carried out to demonstrate the various inter and intramolecular interactions that are responsible for the stabilization of the title compound leading to high NLO activity. A study on the electronic properties was performed by time-dependent DFT (TD-DFT) approach. The lowering in the HOMO and LUMO energy gap explains the eventual charge transfer interactions that take place within the molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effective treatment for suppression of acrylamide formation in fried potato chips using L-asparaginase from Bacillus subtilis.

    PubMed

    Onishi, Yohei; Prihanto, Asep A; Yano, Shigekazu; Takagi, Kazuyoshi; Umekawa, Midori; Wakayama, Mamoru

    2015-10-01

    It has been reported that acrylamide, a potential carcinogen, is formed from the reaction of L-asparagine (L-Asn) and reducing sugars contained in foods during heating processes and free asparagine is a limiting factor for acrylamide formation. It has been reported that potato products such as potato chips, which are made through heating processes, contain high levels of acrylamide. To decrease the amount of L-Asn in potatoes using L-asparaginase, effective treatment conditions of sliced potatoes with the enzyme have been investigated. By treating sliced potatoes with Bacillus subtilis L-asparaginase II (BAsnase; 4 U/g potato), appriximately 40 % of L-Asn in the sliced potatoes was converted into L-aspartic acid (L-Asp). To make this enzyme more effective, prior to enzymatic treatment, sliced potatoes were freeze-thawed, dried at 90 °C for 20 min, and vacuum treated for 10 min under decompressed condition, resulting in the hydrolysis of approximately 90 % of L-Asn to L-Asp. The acrylamide content of BAsnase-treated fried potato chips decreased to below 20 % of that of BAsnase-untreated fried potato chips. Treatment conditions examined in this study were found to be effective to suppress the formation of acrylamide in fried potato chips.

  19. SPDF Data and Orbit Services Supporting Open Access, Use and Archiving of MMS Data

    NASA Astrophysics Data System (ADS)

    McGuire, R. E.; Bilitza, D.; Candey, R. M.; Chimiak, R.; Cooper, J. F.; Garcia, L. N.; Harris, B. T.; Johnson, R. C.; Kovalick, T. J.; Lal, N.; Leckner, H. A.; Liu, M. H.; Papitashvili, N. E.; Roberts, D. A.; Yurow, R. E.

    2015-12-01

    NASA's Space Physics Data Facility (SPDF) project is now serving MMS definitive and predictive interactive orbit plots, listings and conjunction calculations through our SSCWeb and 4D Orbit Viewer services. In March 2016 and in parallel with the MMS Science Data Center (SDC) at LASP, SPDF will begin publicly serving a complete set of MMS Level-2 and higher, survey and burst-mode science data products from all four spacecraft and all instruments. The initial Level-2 data available will be from September 2015 to early February 2016, with Level-2 products subsequently validated and publicly available with an approximate one month lag. All MMS Level-2 and higher data products are produced in standard CDF format with standard ISTP/SPDF metadata and will be served by SPDF through our CDAWeb data service, including our web services and associated APIs for IDL and Matlab users, and through direct FTP/HTTP directory browse and file downloads. SPDF's ingest, archival preservation and active serving of current MMS science data is part of our role as an active heliophysics final archive. SPDF's ingest of complete and current science data products from other active heliophysics missions with SPDF services will help enable coordinated and correlative MMS science analysis by the open international science community with current data from THEMIS, the Van Allen Probes and other missions including TWINS, Cluster, ACE, Wind, >120 ground magnetometer stations as well as instruments on the NOAA GOES and POES spacecraft. Please see the related Candey et.al. paper on "SPDF Ancillary Services and Technologies Supporting Open Access, Use and Archiving of MMS Data" for other aspects of what SPDF is doing. All SPDF data and services are available from the SPDF home page at http://spdf.gsfc.nasa.gov .

  20. Aircraft Measurements for Understanding Air-Sea Coupling and Improving Coupled Model Predictions

    DTIC Science & Technology

    2014-09-30

    layer thermodynamic properties across the DYNAMO domain during the suppressed and active phase of MJO; and 3) variability and distribution of upper ocean...structure during suppressed, active and restoring phase of MJO. One of the unique aspects of LASP/ DYNAMO WP-3D project was to supplement the point...observations by probing the atmospheric and oceanic variability across the DYNAMO domain. Adhering to this aspect, vertical cross section of lower

  1. An Investigation of Turbulent Heat Exchange in the Subtropics

    DTIC Science & Technology

    2014-09-30

    meteorological sensors aboard the research vessel the R/V Revelle during the DYNAMO field program. In situ meteorology and high-rate flux sensors operated...continuously while in the sampling period for DYNAMO Leg 3. This included all sensors operating during Leg 2 with the addition of a closed-path LI...stress; wave data; surface and near surface sea temperatures, salinity and currents; and other key variables specifically requested by DYNAMO /LASP PIs

  2. Stromal Gene Expression and Function in Primary Breast Tumors that Metastasize to Bone Cancer

    DTIC Science & Technology

    2006-07-01

    surrounding bone microenvironment were investigated by purifying endothelial cells from tumor-burdened and non-tumor burdened spines . 4T1...of Balb/c mice. Fresh resected tissue (normal fat pad, primary tumor tissue or the metastatic sites spine , femur and lung) was obtained and cell... Hedgehog signalling pathway: Lasp1, CREBBP/EP300 inhibitory protein 1 and FoxP1. Of interest as well are a number of differentially regulated ESTs

  3. Emirates eXploration Imager (EXI) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Al Shamsi, M. R.; Wolff, M. J.; Jones, A. R.; Khoory, M. A.; Osterloo, M. M.; AlMheiri, S.; Reed, H.; Drake, G.

    2017-12-01

    The Emirates eXploration Imager (EXI) instrument is one of three scientific instruments abroad the Emirate Mars Mission (EMM) spacecraft, "Hope". The planned launch window opens in the summer of 2020, with the goal of this United Arab Emirates (UAE) mission to explore the dynamics of the Martian atmosphere through global spatial sampling which includes both diurnal and seasonal timescales. A particular focus of the mission is the improvement of our understanding of the global circulation in the lower atmosphere and the connections to the upward transport of energy of the escaping atmospheric particles from the upper atmosphere. This will be accomplished using three unique and complementary scientific instruments. The subject of this presentation, EXI, is a multi-band, camera capable of taking 12 megapixel images, which translates to a spatial resolution of better than 8 km with a well calibrated radiometric performance. EXI uses a selector wheel mechanism consisting of 6 discrete bandpass filters to sample the optical spectral region: 3 UV bands and 3 visible (RGB) bands. Atmospheric characterization will involve the retrieval of the ice optical depth using the 300-340 nm band, the dust optical depth in the 205-235nm range, and the column abundance of ozone with a band covering 245-275 nm. Radiometric fidelity is optimized while simplifying the optical design by separating the UV and VIS optical paths. The instrument is being developed jointly by the Laboratory for Atmospheric and Space Physics (LASP), University of California, Boulder, USA, and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE. The development of analysis software (reduction and retrieval) is being enabled through an EXI Observation Simulator. This package will produce EXI-like images using a combination of realistic viewing geometry (NAIF and a "reference trajectory") and simulated radiance values that include relevant atmospheric conditions and properties (Global Climate Model, DISORT). These noiseless images can then have instrument effects added (e.g., read-noise, dark current, pixel sensitivity, etc) to allow for the direct testing of data compression schemes, calibration pipeline processing, and atmospheric retrievals.

  4. Advanced Technology in Small Packages Enables Space Science Research Nanosatellites: Examples from the NASA Miniature X-ray Solar Spectrometer CubeSat

    NASA Astrophysics Data System (ADS)

    Woods, T. N.

    2017-12-01

    Nanosatellites, including the CubeSat class of nanosatellites, are about the size of a shoe box, and the CubeSat modular form factor of a Unit (1U is 10 cm x 10 cm x 10 cm) was originally defined in 1999 as a standardization for students developing nanosatellites. Over the past two decades, the satellite and instrument technologies for nanosatellites have progressed to the sophistication equivalent to the larger satellites, but now available in smaller packages through advanced developments by universities, government labs, and space industries. For example, the Blue Canyon Technologies (BCT) attitude determination and control system (ADCS) has demonstrated 3-axis satellite control from a 0.5-Unit system with 8 arc-second stability using reaction wheels, torque rods, and a star tracker. The first flight demonstration of the BCT ADCS was for the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat. The MinXSS CubeSat mission, which was deployed in May 2016 and had its re-entry in May 2017, provided space weather measurements of the solar soft X-rays (SXR) variability using low-power, miniaturized instruments. The MinXSS solar SXR spectra have been extremely useful for exploring flare energetics and also for validating the broadband SXR measurements from the NOAA GOES X-Ray Sensor (XRS). The technology used in the MinXSS CubeSat and summary of science results from the MinXSS-1 mission will be presented. Web site: http://lasp.colorado.edu/home/minxss/

  5. ACRIM3 and the Total Solar Irradiance database

    NASA Astrophysics Data System (ADS)

    Willson, Richard C.

    2014-08-01

    The effects of scattering and diffraction on the observations of the ACRIMSAT/ACRIM3 satellite TSI monitoring mission have been characterized by the preflight calibration approach for satellite total solar irradiance (TSI) sensors implemented at the LASP/TRF (Laboratory for Atmospheric and Space Physics/Total Solar Irradiance Radiometer Facility). The TRF also calibrates the SI (International System of units) traceability to the NIST (National Institute of Standards and Technology) cryo-radiometric scale. ACRIM3's self-calibration agrees with NIST to within the uncertainty of the test procedure (˜500 ppm). A correction of ˜5000 ppm was found for scattering and diffraction that has significantly reduced the scale difference between the results of the ACRIMSAT/ACRIM3 and SORCE/TIM satellite experiments. Algorithm updates reflecting more than 10 years of mission experience have been made that further improve the ACRIM3 results by eliminating some thermally driven signal and increasing the signal to noise ratio. The result of these changes is a more precise and detailed picture of TSI variability. Comparison of the results from the ACRIM3, SORCE/TIM and SOHO/VIRGO satellite experiments demonstrate the near identical detection of TSI variability on all sub-annual temporal and amplitude scales during the TIM mission. The largest occurs at the rotational period of the primary solar activity longitudes. On the decadal timescale, while ACRIM3 and VIRGO results exhibit close agreement throughout, TIM exhibits a consistent 500 ppm upward trend relative to ACRIM3 and VIRGO. A solar magnetic activity area proxy for TSI has been used to demonstrate that the ACRIM TSI composite and its +0.037 %/decade TSI trend during solar cycles 21-23 is the most likely correct representation of the extant satellite TSI database. The occurrence of this trend during the last decades of the 20th century supports a more robust contribution of TSI variation to detected global temperature increase during this period than predicted by current climate models.

  6. The Glory Program: Global Science from a Unique Spacecraft Integration

    NASA Technical Reports Server (NTRS)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program. The plan for Glory is to minimize any changes to the spacecraft in order to meet the Glory requirements. This means that the instrument designs must adhere to the existing interfaces and capabilities as much as possible. Given Glory's unique history and the potential science return, the program is one of significant value to both the science community and the world. The findings Glory promises will improve our understanding of the drivers for global climate change for a minimal investment. The program hopes to show that reuse of existing government assets can result in a lower cost, and fully successful mission.

  7. SORCE 11 years after launch: What's new? What's next?

    NASA Astrophysics Data System (ADS)

    Cahalan, Robert; Kopp, Greg; Pilewskie, Peter; Richard, Erik; Woods, Tom

    2014-05-01

    We discuss recent changes in estimates of the Total Solar Irradiance (TSI) and the energy budget. We highlight the historic closing of the calibration gap between the suite of TSI instruments, due largely to comparisons made with a cryogenic Transfer Radiometer Facility (TRF) located at the University of Colorado, built by UCO/LASP with support from NASA and NIST. The resulting continuous record of TSI promises to be a milestone in improving understanding of the Sun's impact on Earth's climate. Climate models are sensitive not only to TSI, but also to variations in the Spectral Solar Irradiance (SSI), and the vertical profiles of temperature and ozone are especially sensitive to SSI variations. Variations in SSI need further study before they may be considered as firmly established as TSI variations, which themselves remain controversial, despite a strengthening consensus over the SORCE epoch. The TSIS SIM has recently undergone comprehensive end-to-end calibration in the LASP SSI Radiometry Facility (SRF) utilizing the NIST SIRCUS laser system covering 210 - 2400 nm for SSI, a facility not yet available when SORCE launched in 2003. With SORCE follow-on missions such as the Total and Spectral Solar Irradiance Sensor (TSIS), we anticipate narrowing uncertainties in SSI variability that will be important to improving our understanding of the climate responses to solar forcing. The long-term goal of improving the ability to monitor Earth's energy balance, and the energy imbalance that drives global warming, will need continued improvements in the measurement of both shortwave solar and longwave earth-emitted radiation.

  8. NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics

    NASA Astrophysics Data System (ADS)

    Volpon, Laurent; Tsan, Pascale; Majer, Zsuzsa; Vass, Elemer; Hollósi, Miklós; Noguéra, Valérie; Lancelin, Jean-Marc; Besson, Françoise

    2007-08-01

    Iturins are a group of antifungal produced by Bacillus subtilis. All are cyclic lipopeptides with seven α-amino acids of configuration LDDLLDL and one β-amino fatty acid. The bacillomycin L is a member of this family and its NMR structure was previously resolved using the sequence Asp-Tyr-Asn-Ser-Gln-Ser-Thr. In this work, we carefully examined the NMR spectra of this compound and detected an error in the sequence. In fact, Asp1 and Gln5 need to be changed into Asn1 and Glu5, which therefore makes it identical to bacillomycin Lc. As a consequence, it now appears that all iturinic peptides with antibiotic activity share the common β-amino fatty acid 8- L-Asn1- D-Tyr2- D-Asn3 sequence. To better understand the conformational influence of the acidic residue L-Asp1, present, for example in the inactive iturin C, the NMR structure of the synthetic analogue SCP [cyclo ( L-Asp1- D-Tyr2- D-Asn3- L-Ser4- L-Gln5- D-Ser6- L-Thr7-β-Ala8)] was determined and compared with bacillomycin Lc recalculated with the corrected sequence. In both cases, the conformers obtained were separated into two families of similar energy which essentially differ in the number and type of turns. A detailed analysis of both cyclopeptide structures is presented here. In addition, CD and FTIR spectra were performed and confirmed the conformational differences observed by NMR between both cyclopeptides.

  9. X-Band CubeSat Communication System Demonstration

    NASA Technical Reports Server (NTRS)

    Altunc, Serhat; Kegege, Obadiah; Bundick, Steve; Shaw, Harry; Schaire, Scott; Bussey, George; Crum, Gary; Burke, Jacob C.; Palo, Scott; O'Conor, Darren

    2015-01-01

    Today's CubeSats mostly operate their communications at UHF- and S-band frequencies. UHF band is presently crowded, thus downlink communications are at lower data rates due to bandwidth limitations and are unreliable due to interference. This research presents an end-to-end robust, innovative, compact, efficient and low cost S-band uplink and X-band downlink CubeSat communication system demonstration between a balloon and a Near Earth Network (NEN) ground system. Since communication systems serve as umbilical cords for space missions, demonstration of this X-band communication system is critical for successfully supporting current and future CubeSat communication needs. This research has three main objectives. The first objective is to design, simulate, and test a CubeSat S- and X-band communication system. Satellite Tool Kit (STK) dynamic link budget calculations and HFSS Simulations and modeling results have been used to trade the merit of various designs for small satellite applications. S- and X-band antennas have been tested in the compact antenna test range at Goddard Space Flight Center (GSFC) to gather radiation pattern data. The second objective is simulate and test a CubeSat compatible X-band communication system at 12.5Mbps including S-band antennas, X-band antennas, Laboratory for Atmospheric and Space Physics (LASP) /GSFC transmitter and an S-band receiver from TRL-5 to TRL-8 by the end of this effort. Different X-band communication system components (antennas, diplexers, etc.) from GSFC, other NASA centers, universities, and private companies have been investigated and traded, and a complete component list for the communication system baseline has been developed by performing analytical and numerical analysis. This objective also includes running simulations and performing trades between different X-band antenna systems to optimize communication system performance. The final objective is to perform an end-to-end X-band CubeSat communication system demonstration between a balloon and/or a sounding rocket and a Near Earth Network (NEN) ground system. This paper presents CubeSat communication systems simulation results, analysis of X-band and S-band antennas and RF front-end components, transceiver design, analysis and optimization of space-to-ground communication performance, subsystem development, as well as the test results for an end-to-end X-band CubeSat communication system demonstration. The outcome of this work will be used to pave the way for next generation NEN-compatible X-band CubeSat communication systems to support higher data rates with more advanced modulation and forward error correction (FEC) coding schemes, and to support and attract new science missions at lower cost. It also includes an abbreviated concept of operations for CubeSat users to utilize the NEN, starting from first contact with NASA's communication network and continuing through on-orbit operations.

  10. Total and Spectral Solar Irradiance Sensor (TSIS) Project Overview

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Wedge, Ronnice; Wu, Dong; Stello, Harry; Robinson, Renee

    2015-01-01

    The main objective of the Total and Spectral solar Irradiance Sensor (TSIS) is to acquire measurements to determine the direct and indirect effects of solar radiation on climate. TSIS total solar irradiance measurements will extend a 37-year long uninterrupted measurement record of incoming solar radiation, the dominant energy source driving the Earths climate and the most precise indicator of changes in the Suns energy output. TSIS solar spectral irradiance measurements will determine the regions of the Earths multi-layered atmosphere that are affected by solar variability, from which the solar forcing mechanisms causing changes in climate can be quantified. TSIS includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload. The TSIS TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. TSIS was originally planned for the nadir-pointing National Polar-orbiting Operational Environmental Satellite System (NPOESS) spacecraft. The TSIS instrument passed a Critical Design Review (CDR) for NPOESS in December 2009. In 2010, TSIS was re-planned for the Joint Polar Satellite System (JPSS) Polar Free Flyer (PFF). The TSIS TIM, SIM, and associated electronics were built, tested, and successfully completed pre-ship review as of December 2013.In early 2014, NOAA and NASA agreed to fly TSIS on the International Space Station (ISS). In the FY16 Presidents Budget, NASA assumes responsibility for the TSIS mission on ISS. The TSIS project includes requirements, interface, design, build and test of the TSIS payload, including an updated pointing system, for accommodation on the ISS. It takes advantage of the prior development of the TSIS sensors and electronics. The International Space Station (ISS) program contributions include launch services and robotic installation of the TSIS payload onto an ISS Express Logistics Carrier, mission operations, and communications. Total and Spectral solar irradiance data products will be produced, calibrated, and made publically available through the Goddard Earth Science Data and Information Services Center (GES DISC).The NASA GSFC TSIS project at GSFC is responsible for project management, system engineering, safety and mission assurance, and engineering oversight for the TSIS payload. The TSIS project has contracted with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS, support for ISS integration, science operations of the TSIS instrument, data processing, data evaluation and delivery to the GES DISC. TSIS will be delivered to Kennedy Space Center for integration in 2017, with launch and installation onto ISS planned for late 2017-early 2018. After a 90-day check-out period, NASA plans five years of TSIS operations.

  11. Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231.

    PubMed

    Moazzeni, Hamidreza; Najafi, Ali; Khani, Marzieh

    2017-08-01

    Some microRNAs have carcinogenic or tumor suppressive effects in breast cancer, which is the most common cancer in women worldwide. MiR-7 and miR-9 are tumor suppressor microRNAs, which induce apoptosis and inhibit proliferation in breast cancer cells. Moreover, miR-96 and miR-182 are onco-microRNAs that increase proliferation, migration, and tumorigenesis in breast cancer cells. This study aimed to identify the direct target genes of these four microRNAs in the human breast cancer cell lines MCF-7 and MDA-MB-231. Initially, bioinformatics tools were used to identify the target genes that have binding sites for miR-7, MiR-9, MiR-96, and miR-182 and are also associated with breast cancer. Subsequently, the findings of the bioinformatics analysis relating to the effects of these four microRNAs on the 3'-UTR activity of the potential target genes were confirmed using the dual luciferase assay in MCF-7 and MDA-MB-231 cells co-transfected with the vectors containing 3'-UTR segments of the target genes downstream of a luciferase coding gene and each of the microRNAs. Finally, the effects of microRNAs on the endogenous expression of potential target genes were assessed by the overexpression of each of the four microRNAs in MCF-7 and MDA-MB-231 cells. Respectively, three, three, three, and seven genes were found to have binding sites for miR-7, miR-9, miR-96, and miR-182 and were associated with breast cancer. The results of empirical studies including dual luciferase assays and real-time PCR confirmed that miR-7 regulates the expression of BRCA1 and LASP1; MiR-9 regulates the expression of AR; miR-96 regulates the expression of ABCA1; and miR-182 regulates the expression of NBN, TOX3, and LASP1. Taken together, our results suggest that the tumor suppressive effects of miR-7 may be mediated partly by regulating the expression of BRCA1 as a tumor suppressor gene in breast cancer. In addition, this microRNA and miR-182 may have effects on the nodal-positivity and tumor size of breast carcinoma through the regulation of LASP1. The tumor suppressive functions of miR-9 may be mediated partly by suppressing the expression of AR-an oncogene in breast cancer. Moreover, miR-96 may play an oncogenic role in breast cancer by suppressing the apoptosis through the regulation of ABCA1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Data reduction and calibration for LAMOST survey

    NASA Astrophysics Data System (ADS)

    Luo, Ali; Zhang, Jiannan; Chen, Jianjun; Song, Yihan; Wu, Yue; Bai, Zhongrui; Wang, Fengfei; Du, Bing; Zhang, Haotong

    2014-01-01

    There are three data pipelines for LAMOST survey. The raw data is reduced to one dimension spectra by the data reduction pipeline(2D pipeline), the extracted spectra are classified and measured by the spectral analysis pipeline(1D pipeline), while stellar parameters are measured by LASP pipeline. (a) The data reduction pipeline. The main tasks of the data reduction pipeline include bias calibration, flat field, spectra extraction, sky subtraction, wavelength calibration, exposure merging and wavelength band connection. (b) The spectra analysis pipeline. This pipeline is designed to classify and identify objects from the extracted spectra and to measure their redshift (or radial velocity). The PCAZ (Glazebrook et al. 1998) method is applied to do the classification and redshift measurement. (c) Stellar parameters LASP. Stellar parameters pipeline (LASP) is to estimate stellar atmospheric parameters, e.g. effective temperature Teff, surface gravity log g, and metallicity [Fe/H], for F, G and K type stars. To effectively determine those fundamental stellar measurements, three steps with different methods are employed. The first step utilizes the line indices to approximately define the effective temperature range of the analyzed star. Secondly, a set of the initial approximate values of the three parameters are given based on template fitting method. Finally, we exploit ULySS (Koleva et al. 2009) to give the final values of parameters through minimizing the χ 2 value between the observed spectrum and a multidimensional grid of model spectra which is generated by an interpolating of ELODIE library. There are two other classification for A type star and M type star. For A type star, standard MK system is employed (Gray et al. 2009) to give each object temperature class and luminosity type. For M type star, they are classified into subclasses by an improved Hammer method, and metallicity of each objects is also given. During the pilot survey, algorithms were improved and the pipelines were tested. The products of LAMOST survey will include extracted and calibrated spectra in FITS format, a catalog of FGK stars with stellar parameters, a catalog of M dwarf with subclass and metallicity, and a catalog of A type star with MK classification. A part of the pilot survey data, including about 319 000 high quality spectra with SNR > 10, a catalog of stellar parameters of FGK stars and another catalog of a subclass of M type stars have been released to the public in August 2012 (Luo et al. 2012). The general survey started from October 2012, and completed the first year survey. The formal data release one (DR1) is being prepared, which will include both pilot survey and first year general survey, and planed to be released under the LAMOST data policy.

  13. Sorce Observations of Solar Cycles 23 and 24 - What's New? What's Next?

    NASA Astrophysics Data System (ADS)

    Cahalan, R. F.; Kopp, G.; Pilewskie, P.; Richard, E. C.; Woods, T. N.

    2014-12-01

    We discuss recent changes in estimates of the Total Solar Irradiance (TSI, formerly "solar constant") and the energy budget. This more accurate value of TSI implies a more accurate estimate of the Sun's luminosity, and lifetime. We highlight the historic closing of the calibration gap between the suite of TSI instruments, due largely to comparisons made with a cryogenic Transfer Radiometer Facility (TRF) located at the University of Colorado, built by UCO/LASP with support from NASA and NIST. The resulting continuous record of TSI promises to be a milestone in improving understanding of the Sun's impact on Earth's climate. Climate models are sensitive not only to TSI, but also to variations in the Spectral Solar Irradiance (SSI), and the vertical profiles of temperature and ozone are especially sensitive to SSI variations. Variations in SSI need further study before they may be considered as firmly established as TSI variations, which themselves remain controversial, despite a strengthening consensus over the SORCE epoch. The TSIS SIM has recently undergone comprehensive end-to-end calibration in the LASP SSI Radiometry Facility (SRF) utilizing the NIST SIRCUS laser system covering 210-2400 nm for SSI, a facility not yet available when SORCE launched in 2003. With SORCE follow-on missions such as the Total and Spectral Solar Irradiance Sensor (TSIS), we anticipate narrowing uncertainties in SSI variability that will be important to improving our understanding of the climate responses to solar forcing. The long-term goal of improving the ability to monitor Earth's energy balance, and the energy imbalance that drives global warming, will need continued improvements in the measurement of both shortwave solar and longwave earth-emitted radiation.

  14. TIMED solar EUV experiment: preflight calibration results for the XUV photometer system

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Rodgers, Erica M.; Bailey, Scott M.; Eparvier, Francis G.; Ucker, Gregory J.

    1999-10-01

    The Solar EUV Experiment (SEE) on the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) mission will measure the solar vacuum ultraviolet (VUV) spectral irradiance from 0.1 to 200 nm. To cover this wide spectral range two different types of instruments are used: a grating spectrograph for spectra between 25 and 200 nm with a spectral resolution of 0.4 nm and a set of silicon soft x-ray (XUV) photodiodes with thin film filters as broadband photometers between 0.1 and 35 nm with individual bandpasses of about 5 nm. The grating spectrograph is called the EUV Grating Spectrograph (EGS), and it consists of a normal- incidence, concave diffraction grating used in a Rowland spectrograph configuration with a 64 X 1024 array CODACON detector. The primary calibrations for the EGS are done using the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF-III) in Gaithersburg, Maryland. In addition, detector sensitivity and image quality, the grating scattered light, the grating higher order contributions, and the sun sensor field of view are characterized in the LASP calibration laboratory. The XUV photodiodes are called the XUV Photometer System (XPS), and the XPS includes 12 photodiodes with thin film filters deposited directly on the silicon photodiodes' top surface. The sensitivities of the XUV photodiodes are calibrated at both the NIST SURF-III and the Physikalisch-Technische Bundesanstalt (PTB) electron storage ring called BESSY. The other XPS calibrations, namely the electronics linearity and field of view maps, are performed in the LASP calibration laboratory. The XPS and solar sensor pre-flight calibration results are primarily discussed as the EGS calibrations at SURF-III have not yet been performed.

  15. The Solar Dynamics Observatory: Your On-Orbit Eye on the Sun

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 into the partly cloudy skies above Cape Canaveral, Florida. Over the next month SDO moved into a 28 degree inclined geosynchronous orbit at the longitude of the ground station in New Mexico. SDO is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand and predict those solar variations that influence life on Earth and our technological systems. The SDO science investigations will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere as the solar wind, energetic particles, and variations in the solar irradiance. The SDO mission consists of three scientific investigations (AIA, EVE, and HMI), a spacecraft bus, and a dedicated Ka-band ground station to handle the 150 Mbps data flow. SDO continues a long tradition of NASA missions providing calibrated solar spectral irradiance data, in this case using multiple measurements of the irradiance and rocket underflights of the spacecraft. The other instruments on SDO will be used to explain and develop predictive models of the solar spectral irradiance in the extreme ultraviolet. Science teams at LMSAL, LASP, and Stanford are responsible for processing, analyzing, distributing, and archiving the science data. We will talk about the launch of SDO and describe the data and science it is providing to NASA.

  16. A Standard for Sharing and Accessing Time Series Data: The Heliophysics Application Programmers Interface (HAPI) Specification

    NASA Astrophysics Data System (ADS)

    Vandegriff, J. D.; King, T. A.; Weigel, R. S.; Faden, J.; Roberts, D. A.; Harris, B. T.; Lal, N.; Boardsen, S. A.; Candey, R. M.; Lindholm, D. M.

    2017-12-01

    We present the Heliophysics Application Programmers Interface (HAPI), a new interface specification that both large and small data centers can use to expose time series data holdings in a standard way. HAPI was inspired by the similarity of existing services at many Heliophysics data centers, and these data centers have collaborated to define a single interface that captures best practices and represents what everyone considers the essential, lowest common denominator for basic data access. This low level access can serve as infrastructure to support greatly enhanced interoperability among analysis tools, with the goal being simplified analysis and comparison of data from any instrument, model, mission or data center. The three main services a HAPI server must perform are 1. list a catalog of datasets (one unique ID per dataset), 2. describe the content of one dataset (JSON metadata), and 3. retrieve numerical content for one dataset (stream the actual data). HAPI defines both the format of the query to the server, and the response from the server. The metadata is lightweight, focusing on use rather than discovery, and the data format is a streaming one, with Comma Separated Values (CSV) being required and binary or JSON streaming being optional. The HAPI specification is available at GitHub, where projects are also underway to develop reference implementation servers that data providers can adapt and use at their own sites. Also in the works are data analysis clients in multiple languages (IDL, Python, Matlab, and Java). Institutions which have agreed to adopt HAPI include Goddard (CDAWeb for data and CCMC for models), LASP at the University of Colorado Boulder, the Particles and Plasma Interactions node of the Planetary Data System (PPI/PDS) at UCLA, the Plasma Wave Group at the University of Iowa, the Space Sector at the Johns Hopkins Applied Physics Lab (APL), and the tsds.org site maintained at George Mason University. Over the next year, the adoption of a uniform way to access time series data is expected to significantly enhance interoperability within the Heliophysics data environment. https://github.com/hapi-server/data-specification

  17. The Get Going to Mars campaign: an outreach experiment in art, literacy, and science

    NASA Astrophysics Data System (ADS)

    Renfrow, S.; Mason, T.; Christofferson, R.

    2013-12-01

    The 6-month Going to Mars campaign brought crowdsourcing to the next NASA Mars mission: a student art contest flooded us in the colorful imagination of children; a haiku contest gave us poetry about dunes and ice caps, love, humor, and our place in the universe; and a send-your-name activity connected MAVEN with tens of thousands of people. In this discussion, we'll dive into the statistics (1+ million page views, 15,000+ message submissions, 375+ art entries), the individual winners from small-town USA and across the globe, and the dirt and grit that made the Going to Mars campaign come alive. View the archived site at http://lasp.colorado.edu/home/maven/goingtomars.

  18. Global-scale Observations of the Limb and Disk (GOLD): Hosted Payload Accommodation on a Commercial Satellite

    NASA Astrophysics Data System (ADS)

    Lankton, M.; Eastes, R.; McClintock, W. E.; Pang, R.; Caffrey, R.; Krywonos, A.

    2013-12-01

    The Global-Scale Observations of the Limb and Disk (GOLD) mission will perform unprecedented imaging of the Earth's thermosphere and ionosphere (TI) system from geostationary (GEO) orbit. Flying as a hosted payload on a commercial communications satellite, GOLD takes advantage of the resource margins available in the early years of the commercial mission's planned 15-year life. This hosted payload approach is a pathfinder for cost-effective NASA science missions. The affordable ride to GEO makes it possible for an Explorer-class Mission of Opportunity to perform Far UltraViolet (FUV) imaging of nearly a complete hemisphere on a 30-minute cadence. This global-scale, high cadence imaging will enable GOLD to distinguish between spatial and temporal variations in the TI system caused by geomagnetic storms, variations in solar EUV, and forcing from the lower atmosphere. The most significant difference between developing instrumentation for a NASA-owned mission and accomplishing the same task for a commercial satellite is that communications satellites are procured on a faster schedule - 24 to 36 months from satellite contract to launch - than the instrument development. GOLD has partnered with SES Government Solutions (SES-GS), the comsat mission owner-operator, to define instrument interfaces and requirements that will be included in the eventual Request for Proposal to candidate spacecraft vendors. SES-GS launches 3 to 4 missions per year, which allows the GOLD-SES-GS partnership to match the instrument's launch readiness date with a suitable mission. In addition to making geostationary orbit accessible to a science instrument at relatively low cost, commercial communications satellites provides a host platform with very high reliability and long life, easy access to continuous high-speed data downlink and near-real-time data delivery, and stable pointing. SES-GS operates their satellite from established Telemetry, Tracking and Control (TT&C) centers. The GOLD Science Operations Center at the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will produce instrument command loads for uplink by the TT&C, receive data from the ground station, monitor instrument state of health, and perform quick-look data processing. The GOLD Science Data Center at the University of Central Florida will produce, distribute and archive science data products.

  19. Space physics and policy for contemporary society

    NASA Astrophysics Data System (ADS)

    Cassak, P. A.; Emslie, A. G.; Halford, A. J.; Baker, D. N.; Spence, H. E.; Avery, S. K.; Fisk, L. A.

    2017-04-01

    Space physics is the study of Earth's home in space. Elements of space physics include how the Sun works from its interior to its atmosphere, the environment between the Sun and planets out to the interstellar medium, and the physics of the magnetic barriers surrounding Earth and other planets. Space physics is highly relevant to society. Space weather, with its goal of predicting how Earth's technological infrastructure responds to activity on the Sun, is an oft-cited example, but there are many more. Space physics has important impacts in formulating public policy.

  20. Space physics strategy-implementation study. Volume 1: Goals, objectives, strategy. A report to the Space Physics Subcommittee of the Space Science and Applications Advisory Committee

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.

  1. Problems and programming for analysis of IUE high resolution data for variability

    NASA Technical Reports Server (NTRS)

    Grady, C. A.

    1981-01-01

    Observations of variability in stellar winds provide an important probe of their dynamics. It is crucial however to know that any variability seen in a data set can be clearly attributed to the star and not to instrumental or data processing effects. In the course of analysis of IUE high resolution data of alpha Cam and other O, B and Wolf-Rayet stars several effects were found which cause spurious variability or spurious spectral features in our data. Programming was developed to partially compensate for these effects using the Interactive Data language (IDL) on the LASP PDP 11/34. Use of an interactive language such as IDL is particularly suited to analysis of variability data as it permits use of efficient programs coupled with the judgement of the scientist at each stage of processing.

  2. Operational Real-time Forecast of MeV Electrons at Geosynchronous Orbit Based on ACE and GOES-10 Measurements

    NASA Astrophysics Data System (ADS)

    Li, X.; Temerin, M. A.; Monk, S.; Baker, D. N.; Reeves, G. D.

    2002-05-01

    The MeV electrons, also known as `killer electrons', have a deleterious impact on satellites through deep dielectric charging and the bodies of astronauts through radiation damage during extravehicular activity. Using a recently developed model based on the standard radial diffusion equation [Li et al., 2001], we show that the intensity of these MeV electrons at geosynchronous orbit can be quantitatively predicted 1-2 days in advance given knowledge of the solar wind. Our current model is operating in real-time, using real-time data from ACE and GOES-10, to make forecast of >2 MeV eletrons at geosynchronous orbit up to 48 hours in advance, the results are available on the web, currently updated every two hours (http://lasp.colorado.edu/~monk/xlf2.html).

  3. Effects of Distant Green Space on Physical Activity in Sydney, Australia.

    PubMed

    Chong, Shanley; Byun, Roy; Mazumdar, Soumya; Bauman, Adrian; Jalaludin, Bin

    2017-01-01

    The aim was to investigate the association between distant green space and physical activity modified by local green space. Information about physical activity, demographic and socioeconomic background at the individual level was extracted from the New South Wales Population Health Survey. The proportion of a postcode that was parkland was used as a proxy measure for access to parklands and was calculated for each individual. There was a significant relationship between distant green space and engaging in moderate-to-vigorous physical activity (MVPA) at least once a week. No significant relationship was found between adequate physical activity and distant green space. No significant relationships were found between adequate physical activity, engaging in MVPA, and local green space. However, if respondents lived in greater local green space (≥25%), there was a significant relationship between engaging in MVPA at least once a week and distance green space of ≥20%. This study highlights the important effect of distant green space on physical activity. Our findings also suggest that moderate size of local green space together with moderate size of distant green space are important levers for participation of physical activity.

  4. Overview of Space Station attached payloads in the areas of solar physics, solar terrestrial physics, and plasma processes

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.; Kropp, J.; Taylor, W. W. L.

    1986-01-01

    This paper outlines the currently planned utilization of the Space Station to perform investigations in solar physics, solar terrestrial physics, and plasma physics. The investigations and instrumentation planned for the Solar Terrestrial Observatory (STO) and its associated Space Station accommodation requirements are discussed as well as the planned placement of the STO instruments and typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the Space Station are outlined. These preliminary experiment concepts use the space environment around the Space Station as an unconfined plasma laboratory. In solar physics, the initial instrument complement and associated accommodation requirements of the Advanced Solar Observatory are described. The planned evolutionary development of this observatory is outlined, making use of the Space Station capabilities for servicing and instrument reconfiguration.

  5. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  6. Book Review: Dolores Knipp’s Understanding Space Weather and the Physics Behind It

    NASA Astrophysics Data System (ADS)

    Moldwin, Mark

    2012-08-01

    Delores Knipp's textbook Understanding Space Weather and the Physics Behind It provides a comprehensive resource for space physicists teaching in a variety of academic departments to introduce space weather to advanced undergraduates. The book benefits from Knipp's extensive experience teaching introductory and advanced undergraduate physics courses at the U.S. Air Force Academy. The fundamental physics concepts are clearly explained and are connected directly to the space physics concepts being discussed. To expand upon the relevant basic physics, current research areas and new observations are highlighted, with many of the chapters including contributions from a number of leading space physicists.

  7. Charging of Space Debris and Their Dynamical Consequences

    DTIC Science & Technology

    2016-01-08

    field of plasmas and space physics . 15. SUBJECT TERMS Space Plasma Physics , Space Debris 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...opens up potential new areas of fundamental and applied research in the field of plasmas and space physics ...object in a plasma”, accepted for publication in Physics of Plasmas. (attached as Annexure III) For details on (iv) please refer to the

  8. The Dynamic Family Home: a qualitative exploration of physical environmental influences on children's sedentary behaviour and physical activity within the home space.

    PubMed

    Maitland, Clover; Stratton, Gareth; Foster, Sarah; Braham, Rebecca; Rosenberg, Michael

    2014-12-24

    Recent changes in home physical environments, such as decreasing outdoor space and increasing electronic media, may negatively affect health by facilitating sedentariness and reducing physical activity. As children spend much of their time at home they are particularly vulnerable. This study qualitatively explored family perceptions of physical environmental influences on sedentary behaviour and physical activity within the home space. Home based interviews were conducted with 28 families with children aged 9-13 years (total n = 74 individuals), living in Perth, Australia. Families were stratified by socioeconomic status and selected to provide variation in housing. Qualitative methods included a family interview, observation and home tour where families guided the researcher through their home, enabling discussion while in the physical home space. Audio recordings were transcribed verbatim and thematically analysed. Emergent themes related to children's sedentariness and physical activity included overall size, space and design of the home; allocation of home space; equipment within the home space; perceived safety of the home space; and the changing nature of the home space. Families reported that children's activity options were limited when houses and yards were small. In larger homes, multiple indoor living rooms usually housed additional sedentary entertainment options, although parents reported that open plan home layouts could facilitate monitoring of children's electronic media use. Most families reported changing the allocation and contents of their home space in response to changing priorities and circumstances. The physical home environment can enhance or limit opportunities for children's sedentary behaviour and physical activity. However, the home space is a dynamic ecological setting that is amenable to change and is largely shaped by the family living within it, thus differentiating it from other settings. While size and space were considered important, how families prioritise the use of their home space and overcome the challenges posed by the physical environment may be of equal or greater importance in establishing supportive home environments. Further research is required to tease out how physical, social and individual factors interact within the family home space to influence children's sedentary behaviour and physical activity at home.

  9. Computational Physics for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.

    2004-01-01

    This paper presents viewgraphs on computational physics for space flight applications. The topics include: 1) Introduction to space radiation effects in microelectronics; 2) Using applied physics to help NASA meet mission objectives; 3) Example of applied computational physics; and 4) Future directions in applied computational physics.

  10. Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wenge; Pan, Haihua; Zhang, Zhisen

    Here, we show the chiral recognition and separation of aspartic acid (Asp) enantiomers by achiral brushite due to the asymmetries of their dynamical steps in its nonequilibrium states. Growing brushite has a higher adsorption affinity to d-Asp, while l-Asp is predominant on the dissolving brushite surface. Microstructural characterization reveals that chiral selection is mainly attributed to brushite [101] steps, which exhibit two different configurations during crystal growth and dissolution, respectively, with each preferring a distinct enantiomer due to this asymmetry. Because these transition step configurations have different stabilities, they subsequently result in asymmetric adsorption. Furthermore, by varying free energy barriersmore » through solution thermodynamic driving force (i.e., supersaturation), the dominant nonequilibrium intermediate states can be switched and chiral selection regulated. This finding highlights that the dynamic steps can be vital for chiral selection, which may provide a potential pathway for chirality generation through the dynamic nature.« less

  11. Switchable Chiral Selection of Aspartic Acids by Dynamic States of Brushite

    DOE PAGES

    Jiang, Wenge; Pan, Haihua; Zhang, Zhisen; ...

    2017-06-15

    Here, we show the chiral recognition and separation of aspartic acid (Asp) enantiomers by achiral brushite due to the asymmetries of their dynamical steps in its nonequilibrium states. Growing brushite has a higher adsorption affinity to d-Asp, while l-Asp is predominant on the dissolving brushite surface. Microstructural characterization reveals that chiral selection is mainly attributed to brushite [101] steps, which exhibit two different configurations during crystal growth and dissolution, respectively, with each preferring a distinct enantiomer due to this asymmetry. Because these transition step configurations have different stabilities, they subsequently result in asymmetric adsorption. Furthermore, by varying free energy barriersmore » through solution thermodynamic driving force (i.e., supersaturation), the dominant nonequilibrium intermediate states can be switched and chiral selection regulated. This finding highlights that the dynamic steps can be vital for chiral selection, which may provide a potential pathway for chirality generation through the dynamic nature.« less

  12. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    PubMed

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  13. [Reflections on physical spaces and mental spaces].

    PubMed

    Chen, Hung-Yi

    2013-08-01

    This article analyzes certain reciprocal impacts from physical spaces to mental spaces. If the epistemological construction and the spatial imagination from the subject of cogito or the social collectivities are able to influence the construction and creation of the physical spaces of that subject, then the context of that physical space may also affect the cognitive or social subject's mental cognition. This article applies the methodology of iconology from art history (E. Panofsky) and sociology (P. Bourdieu) to explore correlations between the creation of imaginative and physical spaces from the collective consciousness and mental cognition. The author uses Gilles Deleuses's opinion regarding the 17th-century Baroque style and contemporary social collective symptoms as an explanation. From these theoretical studies, the author analyzes the differences of spatial epistemology generated by Taiwan's special geological text. Finally, the author applies Michel Foucault's studies on spatial context to assess the possible application of this thesis of reciprocal impacts from mental spaces to physical spaces in a nursing context.

  14. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda.

    PubMed

    Koohsari, Mohammad Javad; Mavoa, Suzanne; Villanueva, Karen; Sugiyama, Takemi; Badland, Hannah; Kaczynski, Andrew T; Owen, Neville; Giles-Corti, Billie

    2015-05-01

    Public open spaces such as parks and green spaces are key built environment elements within neighbourhoods for encouraging a variety of physical activity behaviours. Over the past decade, there has been a burgeoning number of active living research studies examining the influence of public open space on physical activity. However, the evidence shows mixed associations between different aspects of public open space (e.g., proximity, size, quality) and physical activity. These inconsistencies hinder the development of specific evidence-based guidelines for urban designers and policy-makers for (re)designing public open space to encourage physical activity. This paper aims to move this research agenda forward, by identifying key conceptual and methodological issues that may contribute to inconsistencies in research examining relations between public open space and physical activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A Functional Approach to Hyperspectral Image Analysis in the Cloud

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Lindholm, D. M.; Coddington, O.; Pilewskie, P.

    2017-12-01

    Hyperspectral image volumes are very large. A hyperspectral image analysis (HIA) may use 100TB of data, a huge barrier to their use. Hylatis is a new NASA project to create a toolset for HIA. Through web notebook and cloud technology, Hylatis will provide a more interactive experience for HIA by defining and implementing concepts and operations for HIA, identified and vetted by subject matter experts, and callable within a general purpose language, particularly Python. Hylatis leverages LaTiS, a data access framework developed at LASP. With an OPeNDAP compliant interface plus additional server side capabilities, the LaTiS API provides a uniform interface to virtually any data source, and has been applied to various storage systems, including: file systems, databases, remote servers, and in various domains including: space science, systems administration and stock quotes. In the LaTiS architecture, data `adapters' read data into a data model, where server-side computations occur. Data `writers' write data from the data model into the desired format. The Hylatis difference is the data model. In LaTiS, data are represented as mathematical functions of independent and dependent variables. Domain semantics are not present at this level, but are instead present in higher software layers. The benefit of a domain agnostic, mathematical representation is having the power of math, particularly functional algebra, unconstrained by domain semantics. This agnosticism supports reusable server side functionality applicable in any domain, such as statistical, filtering, or projection operations. Algorithms to aggregate or fuse data can be simpler because domain semantics are separated from the math. Hylatis will map the functional model onto the Spark relational interface, thereby adding a functional interface to that big data engine.This presentation will discuss Hylatis goals, strategies, and current state.

  16. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    NASA Astrophysics Data System (ADS)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  17. Experiments of the origins of optical activity.

    PubMed

    Bonner, W A; Flores, J J

    1975-01-01

    Two recent reports claim that (1) aqueous L-aspartic acid polymerizes faster than D-Asp in the presence of kaolin at 90 degrees, and (2) L-phenylalanine is adsorbed by kaolin more extensively than D-Phe at pH 4(the reverse being true at pH2). The novelty of these observations and their potential significance for the origin of optical activity has prompted us to duplicate these experiments using more sensitive methods. L- and D, L-Asp in 0.01 M solution were incubated with kaolin at 90 degrees for 8 days. Careful examination of the aqueous residues from such experiments failed to demonstrate any preferential polymerization of L-Asp over D-Asp, or indeed any significant gross polymerization of Asp at all. In other experiments 0.001 M solutions of D, L-Phe at pH 6 and pH 2 were stirred with large excesses of kaolin for 24 hr, and the aqueous extracts from these mixtures were examined for gross adsorption using the amino acid analyzer. No significant gross adsorption was noted. We then looked for asymmetric adsorption in the aqueous residues using optical rotatory dispersion, gas chromatography and thin layer chromatography. By none of these analytical criteria could we find any evidence whatsoever for the preferential adsorption of D- versus L-Phe from either pH 6 or pH 2 solutions. Finally, in experiments bearing on the origin of optical activity by parity violation during beta-decay, we have irradiated solid samples of D-, L- and D,L-leucine in a 61700 Ci Sr-90 source at Oak Ridge National Lab. for 1.34 yr (total dose: 4.2 x 10(8) rad). Gas chromatographic examination of the (appropriately derivitized) recovered samples showed that the L-Leu was 16.7% decomposed, the D-Leu 11.4% and theD,L-Leu 13.8% decomposed. The recovered D,L-Leu sample had a gas-chromatographically determined enantiomeric composition of 50.8% D-leu and 49.2% L-Leu. These data, though very close to experimental error, may indicate a slight preferential radiolysis of L-Leu compared to D-Leu by the Bremsstrahlung from Sr-90 beta-decay. These high intensity irradiation experiments are being continued on a prolonged basis in order to reach more definitive conclusions.

  18. Research and technology: Fiscal year 1984 report

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics covered include extraterrestrial physics, high energy astrophysics, astronomy, solar physics, atmospheres, oceans, terrestrial physics, space technology, sensors, techniques, user space data systems, space communications and navigation, and system and software engineering.

  19. Space physics education via examples in the undergraduate physics curriculum

    NASA Astrophysics Data System (ADS)

    Martin, R.; Holland, D. L.

    2011-12-01

    The field of space physics is rich with examples of basic physics and analysis techniques, yet it is rarely seen in physics courses or textbooks. As space physicists in an undergraduate physics department we like to use research to inform teaching, and we find that students respond well to examples from magnetospheric science. While we integrate examples into general education courses as well, this talk will focus on physics major courses. Space physics examples are typically selected to illustrate a particular concept or method taught in the course. Four examples will be discussed, from an introductory electricity and magnetism course, a mechanics/nonlinear dynamics course, a computational physics course, and a plasma physics course. Space physics provides examples of many concepts from introductory E&M, including the application of Faraday's law to terrestrial magnetic storm effects and the use of the basic motion of charged particles as a springboard to discussion of the inner magnetosphere and the aurora. In the mechanics and nonlinear dynamics courses, the motion of charged particles in a magnetotail current sheet magnetic field is treated as a Newtonian dynamical system, illustrating the Poincaré surface-of-section technique, the partitioning of phase space, and the KAM theorem. Neural network time series analysis of AE data is used as an example in the computational physics course. Finally, among several examples, current sheet particle dynamics is utilized in the plasma physics course to illustrate the notion of adiabatic/guiding center motion and the breakdown of the adiabatic approximation. We will present short descriptions of our pedagogy and student assignments in this "backdoor" method of space physics education.

  20. Solar and Space Physics PhD Production and Job Availability: Implications for the Future of the Space Weather Research Workforce

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Morrow, C. A.; Moldwin, L. A.; Torrence, J.

    2012-12-01

    To assess the state-of-health of the field of Solar and Space Physics an analysis of the number of Ph.D.s produced and number of Job Postings each year was done for the decade 2001-2010. To determine the number of Ph.D's produced in the field, the University of Michigan Ph.D. Dissertation Archive (Proquest) was queried for Solar and Space Physics dissertations produced in North America. The field generated about 30 Ph.D. per year from 2001 to 2006, but then saw the number increase to 50 to 70 per year for the rest of the decade. Only 14 institutions account for the majority of Solar and Space Physics PhDs. To estimate the number of jobs available each year in the field, a compilation of the job advertisements listed in the American Astronomical Society's Solar Physics Division (SPD) and the American Geophysical Union's Space Physics and Aeronomy (SPA) electronic newsletters was done. The positions were sorted into four types (Faculty, Post-doctoral Researcher, and Scientist/Researcher or Staff), institution type (academic, government lab, or industry) and if the position was located inside or outside the United States. Overall worldwide, 943 Solar and Space Physics positions were advertised over the decade. Of this total, 52% were for positions outside the US. Within Solar Physics, 44% of the positions were in the US, while in Space Physics 57% of the positions were for US institutions. The annual average for positions in the US were 26.9 for Solar Physics and 31.5 for Space Physics though there is much variability year-to-year particularly in Solar Physics positions outside the US. A disconcerting trend is a decline in job advertisements in the last two years for Solar Physics positions and between 2009 and 2010 for Space Physics positions. For both communities within the US in 2010, the total job ads reached their lowest levels in the decade (14), approximately half the decadal average number of job advertisements.

  1. Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.

  2. Solar physics in the space age

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A concise and brief review is given of the solar physics' domain, and how its study has been affected by NASA Space programs which have enabled space based observations. The observations have greatly increased the knowledge of solar physics by proving some theories and challenging others. Many questions remain unanswered. To exploit coming opportunities like the Space Station, solar physics must continue its advances in instrument development, observational techniques, and basic theory. Even with the Advance Solar Observatory, other space based observation will still be required for the sure to be ensuing questions.

  3. Research and technology 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report presents the on-going research activities at the NASA Marshall Space Flight Center for the year 1988. The subjects presented are space transportation systems, shuttle cargo vehicle, materials processing in space, environmental data base management, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, aeronomy, atomic physics, rocket propulsion, materials and processes, telerobotics, and space systems.

  4. Space physics strategy: Implementation study. Volume 2: Program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In June, 1989, the Space Science and Applications Advisory Committee (SSAAC) authorized its Space Physics Subcommittee (SPS) to prepare a plan specifying the future missions, launch sequence, and encompassing themes of the Space Physics Division. The plan, now complete, is the product of a year-long study comprising two week-long workshops - in January and June 1990 - assisted by pre-workshop, inter-workshop, and post-workshop preparation and assessment activities. The workshops engaged about seventy participants, drawn equally from the Division's four science disciplines: cosmic and heliospheric physics, solar physics, magnetosphere physics, and ionosphere-thermosphere-mesospheric physics. An earlier report records the outcome of the first workshop; this is the report of the final workshop.

  5. A Science Strategy for Space Physics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report by the Committee on Solar and Space Physics and the Committee on Solar-Terrestrial Research recommends the major directions for scientific research in space physics for the coming decade. As a field of science, space physics has passed through the stage of simply looking to see what is out beyond Earth's atmosphere. It has become a 'hard' science, focusing on understanding the fundamental interactions between charged particles, electromagnetic fields, and gases in the natural laboratory consisting of the galaxy, the Sun, the heliosphere, and planetary magnetospheres, ionospheres, and upper atmospheres. The motivation for space physics research goes far beyond basic physics and intellectual curiosity, however, because long-term variations in the brightness of the Sun virtually affect the habitability of the Earth, while sudden rearrangements of magnetic fields above the solar surface can have profound effects on the delicate balance of the forces that shape our environment in space and on the human technology that is sensitive to that balance. The several subfields of space physics share the following objectives: to understand the fundamental laws or processes of nature as they apply to space plasmas and rarefied gases both on the microscale and in the larger complex systems that constitute the domain of space physics; to understand the links between changes in the Sun and the resulting effects at the Earth, with the eventual goal of predicting the significant effects on the terrestrial environment; and to continue the exploration and description of the plasmas and rarefied gases in the solar system.

  6. Book Review: Physics of the Space Environment

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1998-01-01

    Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.

  7. REU Solar and Space Physics Summer School

    NASA Astrophysics Data System (ADS)

    Snow, M. A.; Wood, E. L.

    2011-12-01

    The Research Experience for Undergrads (REU) program in Solar and Space Physics at the University of Colorado begins with a week of lectures and labs on Solar and Space Physics. The students in our program come from a variety of majors (physics, engineering, meteorology, etc.) and from a wide range of schools (small liberal arts colleges up through large research universities). The majority of the students have never been exposed to solar and space physics before arriving in Boulder to begin their research projects. We have developed a week-long crash course in the field using the expertise of scientists in Boulder and the labs designed by the Center for Integrated Space Weather Modeling (CISM).

  8. Green Space Visits among Adolescents: Frequency and Predictors in the PIAMA Birth Cohort Study.

    PubMed

    Bloemsma, Lizan D; Gehring, Ulrike; Klompmaker, Jochem O; Hoek, Gerard; Janssen, Nicole A H; Smit, Henriëtte A; Vonk, Judith M; Brunekreef, Bert; Lebret, Erik; Wijga, Alet H

    2018-04-30

    Green space may influence health through several pathways, for example, increased physical activity, enhanced social cohesion, reduced stress, and improved air quality. For green space to increase physical activity and social cohesion, spending time in green spaces is likely to be important. We examined whether adolescents visit green spaces and for what purposes. Furthermore, we assessed the predictors of green space visits. In this cross-sectional study, data for 1911 participants of the Dutch PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort were analyzed. At age 17, adolescents reported how often they visited green spaces for physical activities, social activities, relaxation, and to experience nature and quietness. We assessed the predictors of green space visits altogether and for different purposes by log-binomial regression. Fifty-three percent of the adolescents visited green spaces at least once a week in summer, mostly for physical and social activities. Adolescents reporting that a green environment was (very) important to them visited green spaces most frequently {adjusted prevalence ratio (PR) [95% confidence interval (CI)] very vs. not important: 6.84 (5.10, 9.17) for physical activities and 4.76 (3.72, 6.09) for social activities}. Boys and adolescents with highly educated fathers visited green spaces more often for physical and social activities. Adolescents who own a dog visited green spaces more often to experience nature and quietness. Green space visits were not associated with the objectively measured quantity of residential green space, i.e., the average normalized difference vegetation index (NDVI) and percentages of urban, agricultural, and natural green space in circular buffers around the adolescents' homes. Subjective variables are stronger predictors of green space visits in adolescents than the objectively measured quantity of residential green space. https://doi.org/10.1289/EHP2429.

  9. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.

    PubMed

    Miller, J; Zeitlin, C

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  10. Research and technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Activities of the Goddard Space Flight Center are described in the areas of planets and interplanetary media, comets, astronomy and high-energy physics, solar physics, atmospheres, terrestrial physics, ocean science, sensors and space technology, techniques, user space data systems, space communications and navigation, and system and software engineering. Flight projects and mission definition studies are presented, and institutional technology is described.

  11. Neighbourhood green space, physical function and participation in physical activities among elderly men: the Caerphilly Prospective study

    PubMed Central

    2014-01-01

    Background The built environment in which older people live plays an important role in promoting or inhibiting physical activity. Most work on this complex relationship between physical activity and the environment has excluded people with reduced physical function or ignored the difference between groups with different levels of physical function. This study aims to explore the role of neighbourhood green space in determining levels of participation in physical activity among elderly men with different levels of lower extremity physical function. Method Using data collected from the Caerphilly Prospective Study (CaPS) and green space data collected from high resolution Landmap true colour aerial photography, we first investigated the effect of the quantity of neighbourhood green space and the variation in neighbourhood vegetation on participation in physical activity for 1,010 men aged 66 and over in Caerphilly county borough, Wales, UK. Second, we explored whether neighbourhood green space affects groups with different levels of lower extremity physical function in different ways. Results Increasing percentage of green space within a 400 meters radius buffer around the home was significantly associated with more participation in physical activity after adjusting for lower extremity physical function, psychological distress, general health, car ownership, age group, marital status, social class, education level and other environmental factors (OR = 1.21, 95% CI 1.05, 1.41). A statistically significant interaction between the variation in neighbourhood vegetation and lower extremity physical function was observed (OR = 1.92, 95% CI 1.12, 3.28). Conclusion Elderly men living in neighbourhoods with more green space have higher levels of participation in regular physical activity. The association between variation in neighbourhood vegetation and regular physical activity varied according to lower extremity physical function. Subjects reporting poor lower extremity physical function living in neighbourhoods with more homogeneous vegetation (i.e. low variation) were more likely to participate in regular physical activity than those living in neighbourhoods with less homogeneous vegetation (i.e. high variation). Good lower extremity physical function reduced the adverse effect of high variation vegetation on participation in regular physical activity. This provides a basis for the future development of novel interventions that aim to increase levels of physical activity in later life, and has implications for planning policy to design, preserve, facilitate and encourage the use of green space near home. PMID:24646136

  12. Neighbourhood green space, physical function and participation in physical activities among elderly men: the Caerphilly Prospective study.

    PubMed

    Gong, Yi; Gallacher, John; Palmer, Stephen; Fone, David

    2014-03-19

    The built environment in which older people live plays an important role in promoting or inhibiting physical activity. Most work on this complex relationship between physical activity and the environment has excluded people with reduced physical function or ignored the difference between groups with different levels of physical function. This study aims to explore the role of neighbourhood green space in determining levels of participation in physical activity among elderly men with different levels of lower extremity physical function. Using data collected from the Caerphilly Prospective Study (CaPS) and green space data collected from high resolution Landmap true colour aerial photography, we first investigated the effect of the quantity of neighbourhood green space and the variation in neighbourhood vegetation on participation in physical activity for 1,010 men aged 66 and over in Caerphilly county borough, Wales, UK. Second, we explored whether neighbourhood green space affects groups with different levels of lower extremity physical function in different ways. Increasing percentage of green space within a 400 meters radius buffer around the home was significantly associated with more participation in physical activity after adjusting for lower extremity physical function, psychological distress, general health, car ownership, age group, marital status, social class, education level and other environmental factors (OR = 1.21, 95% CI 1.05, 1.41). A statistically significant interaction between the variation in neighbourhood vegetation and lower extremity physical function was observed (OR = 1.92, 95% CI 1.12, 3.28). Elderly men living in neighbourhoods with more green space have higher levels of participation in regular physical activity. The association between variation in neighbourhood vegetation and regular physical activity varied according to lower extremity physical function. Subjects reporting poor lower extremity physical function living in neighbourhoods with more homogeneous vegetation (i.e. low variation) were more likely to participate in regular physical activity than those living in neighbourhoods with less homogeneous vegetation (i.e. high variation). Good lower extremity physical function reduced the adverse effect of high variation vegetation on participation in regular physical activity. This provides a basis for the future development of novel interventions that aim to increase levels of physical activity in later life, and has implications for planning policy to design, preserve, facilitate and encourage the use of green space near home.

  13. Moving through Life-Space Areas and Objectively Measured Physical Activity of Older People.

    PubMed

    Portegijs, Erja; Tsai, Li-Tang; Rantanen, Taina; Rantakokko, Merja

    2015-01-01

    Physical activity-an important determinant of health and function in old age-may vary according to the life-space area reached. Our aim was to study how moving through greater life-space areas is associated with greater physical activity of community-dwelling older people. The association between objectively measured physical activity and life-space area reached on different days by the same individual was studied using one-week longitudinal data, to provide insight in causal relationships. One-week surveillance of objectively assessed physical activity of community-dwelling 70-90-year-old people in central Finland from the "Life-space mobility in old age" cohort substudy (N = 174). In spring 2012, participants wore an accelerometer for 7 days and completed a daily diary including the largest life-space area reached (inside home, outside home, neighborhood, town, and beyond town). The daily step count, and the time in moderate (incl. walking) and low activity and sedentary behavior were assessed. Differences in physical activity between days on which different life-space areas were reached were tested using Generalized Estimation Equation models (within-group comparison). Participants' mean age was 80.4±4.2 years and 63.5% were female. Participants had higher average step counts (p < .001) and greater moderate and low activity time (p < .001) on days when greater life-space areas were reached, from the home to the town area. Only low activity time continued to increase when moving beyond the town. Community-dwelling older people were more physically active on days when they moved through greater life-space areas. While it is unknown whether physical activity was a motivator to leave the home, intervention studies are needed to determine whether facilitation of daily outdoor mobility, regardless of the purpose, may be beneficial in terms of promoting physical activity.

  14. Design and implementation of space physics multi-model application integration based on web

    NASA Astrophysics Data System (ADS)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.

  15. Latency-Information Theory: The Mathematical-Physical Theory of Communication-Observation

    DTIC Science & Technology

    2010-01-01

    Werner Heisenberg of quantum mechanics; 3) the source-entropy and channel-capacity lossless performance bounds of Claude Shannon that guide...through noisy intel-space channels, and where the physical time-dislocations of intel-space exhibit a passing of time Heisenberg information...life-space sensor, and where the physical time- dislocations of life-space exhibit a passing of time Heisenberg information-uncertainty; and 4

  16. Instructional computing in space physics moves ahead

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Omidi, N.

    As the number of spacecraft stationed in the Earth's magnetosphere exponentiates and society becomes more technologically sophisticated and dependent on these spacebased resources, both the importance of space physics and the need to train people in this field will increase.Space physics is a very difficult subject for students to master. Both mechanical and electromagnetic forces are important. The treatment of problems can be very mathematical, and the scale sizes of phenomena are usually such that laboratory studies become impossible, and experimentation, when possible at all, must be carried out in deep space. Fortunately, computers have evolved to the point that they are able to greatly facilitate instruction in space physics.

  17. Time: the enigma of space

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.

    2017-08-01

    In this article we have based on the laws of physics to illustrate the enigma time as creating our physical space (i.e., the universe). We have shown that without time there would be no physical substances, no space and no life. In reference to Einstein's energy equation, we see that energy and mass can be traded, and every mass can be treated as an Energy Reservoir. We have further shown that physical space cannot be embedded in absolute empty space and cannot have any absolute empty subspace in it. Since all physical substances existed with time, our cosmos is created by time and every substance including our universe is coexisted with time. Although time initiates the creation, it is the physical substances which presented to us the existence of time. We are not alone with almost absolute certainty. Someday we may find a right planet, once upon a time, had harbored a civilization for a short period of light years.

  18. Paying attention to working memory: Similarities in the spatial distribution of attention in mental and physical space.

    PubMed

    Sahan, Muhammet Ikbal; Verguts, Tom; Boehler, Carsten Nicolas; Pourtois, Gilles; Fias, Wim

    2016-08-01

    Selective attention is not limited to information that is physically present in the external world, but can also operate on mental representations in the internal world. However, it is not known whether the mechanisms of attentional selection operate in similar fashions in physical and mental space. We studied the spatial distributions of attention for items in physical and mental space by comparing how successfully distractors were rejected at varying distances from the attended location. The results indicated very similar distribution characteristics of spatial attention in physical and mental space. Specifically, we found that performance monotonically improved with increasing distractor distance relative to the attended location, suggesting that distractor confusability is particularly pronounced for nearby distractors, relative to distractors farther away. The present findings suggest that mental representations preserve their spatial configuration in working memory, and that similar mechanistic principles underlie selective attention in physical and in mental space.

  19. Plasma Physics of the Subauroral Space Weather

    DTIC Science & Technology

    2016-03-20

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0068 TR-2016-0068 PLASMA PHYSICS OF THE SUBAURORAL SPACE WEATHER Evgeny V. Mishin, et al. 20 March 2016 Final...Oct 2013 to 30 Sep 2015 4. TITLE AND SUBTITLE Plasma Physics of the Subauroral Space Weather 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...5 4.3. Physics -based hybrid model with finite Larmor radius effects

  20. The space shuttle payload planning working groups. Volume 2: Atmospheric and space physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Atmospheric and Space Physics working group of the space shuttle mission planning activity are presented. The principal objectives defined by the group are: (1) to investigate the detailed mechanisms which control the near-space environment of the earth, (2) to perform plasma physics investigations not feasible in ground-based laboratories, and (3) to conduct investigations which are important in understanding planetary and cometary phenomena. The core instrumentation and laboratory configurations for conducting the investigations are defined.

  1. Green space definition affects associations of green space with overweight and physical activity.

    PubMed

    Klompmaker, Jochem O; Hoek, Gerard; Bloemsma, Lizan D; Gehring, Ulrike; Strak, Maciej; Wijga, Alet H; van den Brink, Carolien; Brunekreef, Bert; Lebret, Erik; Janssen, Nicole A H

    2018-01-01

    In epidemiological studies, exposure to green space is inconsistently associated with being overweight and physical activity, possibly because studies differ widely in their definition of green space exposure, inclusion of important confounders, study population and data analysis. We evaluated whether the association of green space with being overweight and physical activity depended upon definition of greenspace. We conducted a cross-sectional study using data from a Dutch national health survey of 387,195 adults. Distance to the nearest park entrance and surrounding green space, based on the Normalized Difference Vegetation Index (NDVI) or a detailed Dutch land-use database (TOP10NL), was calculated for each residential address. We used logistic regression analyses to study the association of green space exposure with being overweight and being moderately or vigorously physically active outdoors at least 150min/week (self-reported). To study the shape of the association, we specified natural splines and quintiles. The distance to the nearest park entrance was not associated with being overweight or outdoor physical activity. Associations of surrounding green space with being overweight or outdoor physical activity were highly non-linear. For NDVI surrounding greenness, we observed significantly decreased odds of being overweight [300m buffer, odds ratio (OR) = 0.88; 95% CI: 0.86, 0.91] and increased odds for outdoor physical activity [300m buffer, OR = 1.14; 95% CI: 1.10, 1.17] in the highest quintile compared to the lowest quintile. For TOP10NL surrounding green space, associations were mostly non-significant. Associations were generally stronger for subjects living in less urban areas and for the smaller buffers. Associations of green space with being overweight and outdoor physical activity differed considerably between different green space definitions. Associations were strongest for NDVI surrounding greenness. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  3. Applied Physics Lab Kennedy Space Center: Recent Contributions

    NASA Technical Reports Server (NTRS)

    Starr, Stan; Youngquist, Robert

    2006-01-01

    The mission of the Applied Physics Lab is: (1) Develop and deliver novel sensors and devices to support KSC mission operations. (2) Analyze operational issues and recommend or deliver practical solutions. (3) Apply physics to the resolution of long term space flight issues that affect space port operation on Earth or on other planets.

  4. The space physics analysis network

    NASA Astrophysics Data System (ADS)

    Green, James L.

    1988-04-01

    The Space Physics Analysis Network, or SPAN, is emerging as a viable method for solving an immediate communication problem for space and Earth scientists and has been operational for nearly 7 years. SPAN and its extension into Europe, utilizes computer-to-computer communications allowing mail, binary and text file transfer, and remote logon capability to over 1000 space science computer systems. The network has been used to successfully transfer real-time data to remote researchers for rapid data analysis but its primary function is for non-real-time applications. One of the major advantages for using SPAN is its spacecraft mission independence. Space science researchers using SPAN are located in universities, industries and government institutions all across the United States and Europe. These researchers are in such fields as magnetospheric physics, astrophysics, ionosperic physics, atmospheric physics, climatology, meteorology, oceanography, planetary physics and solar physics. SPAN users have access to space and Earth science data bases, mission planning and information systems, and computational facilities for the purposes of facilitating correlative space data exchange, data analysis and space research. For example, the National Space Science Data Center (NSSDC), which manages the network, is providing facilities on SPAN such as the Network Information Center (SPAN NIC). SPAN has interconnections with several national and international networks such as HEPNET and TEXNET forming a transparent DECnet network. The combined total number of computers now reachable over these combined networks is about 2000. In addition, SPAN supports full function capabilities over the international public packet switched networks (e.g. TELENET) and has mail gateways to ARPANET, BITNET and JANET.

  5. Space physics educational outreach

    NASA Technical Reports Server (NTRS)

    Copeland, Richard A.

    1995-01-01

    The goal of this Space Physics Educational Outreach project was to develop a laboratory experiment and classroom lecture on Earth's aurora for use in lower division college physics courses, with the particular aim of implementing the experiment and lecture at Saint Mary's College of California. The strategy is to teach physics in the context of an interesting natural phenomenon by investigating the physical principles that are important in Earth's aurora, including motion of charged particles in electric and magnetic fields, particle collisions and chemical reactions, and atomic and molecular spectroscopy. As a by-product, the undergraduate students would develop an appreciation for naturally occurring space physics phenomena.

  6. Challenges in Teaching Space Physics to Different Target Groups From Space Weather Forecasters to Heavy-weight Theorists

    NASA Astrophysics Data System (ADS)

    Koskinen, H. E.

    2008-12-01

    Plasma physics as the backbone of space physics is difficult and thus the space physics students need to have strong foundations in general physics, in particular in classical electrodynamics and thermodynamics, and master the basic mathematical tools for physicists. In many universities the number of students specializing in space physics at Master's and Doctoral levels is rather small and the students may have quite different preferences ranging from experimental approach to hard-core space plasma theory. This poses challenges in building up a study program that has both the variety and depth needed to motivate the best students to choose this field. At the University of Helsinki we require all beginning space physics students, regardless whether they enter the field as Master's or Doctoral degree students, to take a one-semester package consisting of plasma physics and its space applications. However, some compromises are necessary. For example, it is not at all clear, how thoroughly Landau damping should be taught at the first run or how deeply should the intricacies of collisionless reconnection be discussed. In both cases we have left the details to an optional course in advanced space physics, even with the risk that the student's appreciation of, e.g., reconnection may remain at the level of a magic wand. For learning experimental work, data analysis or computer simulations we have actively pursued arrangements for the Master's degree students to get a summer employments in active research groups, which usually lead to the Master's theses. All doctoral students are members of research groups and participate in experimental work, data analysis, simulation studies or theory development, or any combination of these. We emphasize strongly "learning by doing" all the way from the weekly home exercises during the lecture courses to the PhD theses which in Finland consist typically of 4-6 peer-reviewed articles with a comprehensive introductory part.

  7. Activating Public Space: How to Promote Physical Activity in Urban Environment

    NASA Astrophysics Data System (ADS)

    Kostrzewska, Małgorzata

    2017-10-01

    Physical activity is an essential component of a healthy lifestyle. The quality and equipment of urban public space plays an important role in promoting physical activity among people (residents, tourists). In order for recreation and sports activities to be undertaken willingly, in a safe and comprehensive manner, certain spatial conditions and requirements must be met. The distinctive feature of contemporary large cities is the disappearance of local, neighbourly relations, and the consequent loneliness, alienation, and atomization of the residents. Thus, the design of public spaces should be an expression of the values of social inclusion and integration. A properly designed urban space would encourage people to leave their homes and integrate, also by undertaking different forms of physical activities. This, in turn, can lead to raising the quality of the space, especially in the context of its “familiarization” and “domestication”. The aim of the research was to identify the architectural and urban features of the public spaces of contemporary cities that can contribute to the promotion of physical activity. The paper presents the research results and the case studies of such spatial solutions and examples of good practices, which invite residents to undertake different forms of physical activities in public spaces. The issue of the integrating, inclusionary, and social function of physical recreation and sport is discussed as well, and so are the possibilities of translating these values into physical characteristics of an urban space. The main conclusions are that taking into account the diverse needs of different social groups, participation in the design and construction process, aesthetic and interesting design, vicinity of the residence, open access for all age groups and the disabled would be the most important spatial determinants of a properly designed, physically activating public space. Strategies of planning the sports and recreation infrastructure should also make sure of their multifunctionality and variability in time to adjust it to the changing needs of the residents.

  8. Candidates for office 2004-2006

    NASA Astrophysics Data System (ADS)

    Timothy L. Killeen. AGU member since 1981. Director of the National Center for Atmospheric Research (NCAR); Senior Scientist, High Altitude Observatory; Adjunct Professor, University of Michigan. Major areas of interest include space physics and aeronomy remote sensing, and interdisciplinary science education. B.S., Physics and Astronomy (first class honors), 1972, University College London; Ph.D., Atomic and Molecular Physics, 1975, University College London. University of Michigan: Researcher and Professor of Atmospheric, Oceanic, and Space Sciences, 1978-2000 Director of the Space Physics Research Laboratory 1993-1998 Associate Vice-President for Research, 1997-2000. Visiting senior scientist at NASA Goddard Space Flight Center, 1992. Program Committee, American Association for the Advancement of Science; Council Member, American Meteorological Society; Editor-in-Chief, Journal of Atmospheric and Solar-Terrestrial Physics; Chair, Jerome K.Weisner National Policy Symposium on the Integration of Research and Education, 1999. Authored over 140 publications, 57 in AGU journals. Significant publications include: Interaction of low energy positrons with gaseous atoms and molecules, Atomic Physics, 4, 1975; Energetics and dynamics of the thermosphere, Reviews of Geophysics, 1987; The upper mesosphere and lower thermosphere, AGU Geophysical Monograph, 1995, Excellence in Teaching and Research awards, College of Engineering, University of Michigan; recipient of two NASA Achievement Awards; former chair, NASA Space Physics Subcommittee; former chair, National Science Foundation (NSF) Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) program; former member, NSF Advisory Committee for Geosciences, and chair of NSF's Atmospheric Sciences Subcommittee, 1999-2002 member, NASA Earth Science Enterprise Advisory Committee; member of various National Academy of Science/National Research Council Committees; cochair, American Association for the Advancement of Science National Meeting, 2003. AGU service includes: term as associate editor of Journal of Geophysical Research-Space Physics; chair, Panel on International Space Station; Global Climate Change Panel; Federal Budget Review Committee; member of AGU Program, Public Information, Awards, and Public Affairs committees; Chapman Conference Convener and Monograph editor; Section Secretary and Program Chair, Space and Planetary Relations Section; President of Space Physics and Aeronomy Section; AGU Council Member.

  9. 20th National Solar Physics Meeting

    NASA Astrophysics Data System (ADS)

    Dorotovic, Ivan

    2010-12-01

    These proceedings (ISBN: 978-80-85221-68-8) provide an overview of current research on solar physics, geophysics and space weather in the astronomical, geophysical and space physics institutions in the Slovak Republic and the Czech Republic. Several researchers from other countries participated in the meeting as well. The different parts address: solar interior, solar photosphere, chromosphere, corona, total solar eclipses, space weather, instrumentation. Most of the papers are published in Slovak and Czech, respectively. The proceedings are intended for researchers, graduate and PhD. students, workers of astronomical observatories interested in solar physics, geophysics and space weather.

  10. Playing in parallel: the effects of multiplayer modes in active video game on motivation and physical exertion.

    PubMed

    Peng, Wei; Crouse, Julia

    2013-06-01

    Although multiplayer modes are common among contemporary video games, the bulk of game research focuses on the single-player mode. To fill the gap in the literature, the current study investigated the effects of different multiplayer modes on enjoyment, future play motivation, and the actual physical activity intensity in an active video game. One hundred sixty-two participants participated in a one-factor between-subject laboratory experiment with three conditions: (a) single player: play against self pretest score; (b) cooperation with another player in the same physical space; (c) parallel competition with another player in separated physical spaces. We found that parallel competition in separate physical spaces was the optimal mode, since it resulted in both high enjoyment and future play motivation and high physical intensity. Implications for future research on multiplayer mode and play space as well as active video game-based physical activity interventions are discussed.

  11. Beyond Physical Activity: The Importance of Play and Nature-Based Play Spaces for Children's Health and Development.

    PubMed

    Herrington, Susan; Brussoni, Mariana

    2015-12-01

    The reduction of child obesity continues to be a challenge worldwide. Research indicates that playing outdoors, particularly in natural play spaces, boosts children's physical activity, potentially decreasing childhood obesity. We present evidence that natural play spaces also provide for more diverse forms of play for children of varying ages and competencies. This is crucial because play spaces designed expressly for physical activity may not increase physical activity among less active children. Moreover, when researchers only examine physical activity in play, they overlook the valuable contributions that play makes to other aspects of children's health and development. To enhance research on children and their play environments, we introduce the theory of play affordances. To assist in the creation of more natural play spaces, we describe the Seven Cs, an evidence-based approach for designing children's play spaces that promotes diverse play. We end with some preliminary insights from our current research using the Seven Cs to illustrate the connections between play, nature, and children's healthy development.

  12. Technique for forcing high Reynolds number isotropic turbulence in physical space

    NASA Astrophysics Data System (ADS)

    Palmore, John A.; Desjardins, Olivier

    2018-03-01

    Many common engineering problems involve the study of turbulence interaction with other physical processes. For many such physical processes, solutions are expressed most naturally in physical space, necessitating the use of physical space solutions. For simulating isotropic turbulence in physical space, linear forcing is a commonly used strategy because it produces realistic turbulence in an easy-to-implement formulation. However, the method resolves a smaller range of scales on the same mesh than spectral forcing. We propose an alternative approach for turbulence forcing in physical space that uses the low-pass filtered velocity field as the basis of the forcing term. This method is shown to double the range of scales captured by linear forcing while maintaining the flexibility and low computational cost of the original method. This translates to a 60% increase of the Taylor microscale Reynolds number on the same mesh. An extension is made to scalar mixing wherein a scalar field is forced to have an arbitrarily chosen, constant variance. Filtered linear forcing of the scalar field allows for control over the length scale of scalar injection, which could be important when simulating scalar mixing.

  13. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    Potter, P. Y.

    1990-01-01

    The annual report of the Marshall Space Flight Center for 1990 is presented. Brief summaries of research are presented for work in the fields of transportation systems, space systems, data systems, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, atomic physics, aeronomy, Earth science and applications, propulsion technology, materials and processes, structures and dynamics, automated systems, space systems, and avionics.

  14. An implementation plan for priorities in solar-system space physics

    NASA Technical Reports Server (NTRS)

    Krimigis, Stamatios M.; Athay, R. Grant; Baker, Daniel; Fisk, Lennard A.; Fredricks, Robert W.; Harvey, John W.; Jokipii, Jack R.; Kivelson, Margaret; Mendillo, Michael; Nagy, Andrew F.

    1985-01-01

    The scientific objectives and implementation plans and priorities of the Space Science Board in areas of solar physics, heliospheric physics, magnetospheric physics, upper atmosphere physics, solar-terrestrial coupling, and comparative planetary studies are discussed and recommended programs are summarized. Accomplishments of Skylab, Solar Maximum Mission, Nimbus-7, and 11 other programs are highlighted. Detailed mission plans in areas of solar and heliospheric physics, plasma physics, and upper atmospheric physics are also described.

  15. Proceedings of the Space Shuttle Sortie Workshop. Volume 2: Working group reports

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Details are presented on the mission planning progress in each of the working paper reports. The general topics covered are the following: space technology; materials processing and space manufacturing; communications and navigation; earth and ocean physics; oceanography; earth resources and surface environmental quality; meteorology and atmospheric environmental quality; life sciences; atmospheric and space physics; solar physics; high energy cosmic rays; X-ray and gamma ray astronomy; ultraviolet-optical astronomy; planetary astronomy; and infrared astronomy.

  16. Laboratory Experiments to Simulate and Investigate the Physics Underlying the Dynamics of Merging Solar Corona Structures

    DTIC Science & Technology

    2016-06-05

    have attended and made presen- tations at the annual APS Division of Plasma Physics Meeting, the bi-annual High Energy Laboratory Astrophysics meeting...the AFOSR Space Science Pro- gram Review, the SHINE solar physics meeting, the International Astrophysics Conference, and the workshop “Complex plasma...tor k and Resolving Space-time Ambiguity. GR-Space Physics . submitted. Bellan, P. M., Zhai, X., Chai, K. B., & Ha, B. N. 2015. Complex astrophysical

  17. Fighting the War above Iraq. Employing Space Forces to Defeat an Insurgency

    DTIC Science & Technology

    2007-05-01

    Before discussing the part space forces can play, we must first validate that current operations in Iraq actu­ ally require isolating the physical ...borders.”24 In order to overcome the previous challenges and achieve this objec­ tive, we can look for past attempts to isolate the physical ... physical battlespace through surveil­ lance will likely be countered. Space Forces’ Role We have seen that the need to isolate the physical battle­

  18. Physical Origins of Space Weather Impacts: Open Physics Questions

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    2011-12-01

    Beginning with the era of development of electrical telegraph systems in the early 19th century, physical processes in the space environment on the Sun, in the interplanetary medium, and around Earth have influenced the design and operations of ever-increasing and sophisticated technical systems, both in space and on the ground. Understanding of Earth's space environment has increased enormously in the last century and one-half. Nevertheless, many of the physical processes that produced effects on early cable and wireless technologies continue to plague modern-day systems. And as new technologies are developed for improved communications, surveillance, navigation, and conditions for human space flight, the solar-terrestrial environment often offers surprises to their safe, secure and uninterrupted operations. This talk will address some of the challenges that I see to the successful operations of some modern-day technical systems that are posed by significant deficiencies of understanding of physical processes operating from the Sun to the Earth.

  19. Implementation of the Boston University Space Physics Acquisition Center

    NASA Technical Reports Server (NTRS)

    Spence, Harlan E.

    1998-01-01

    The tasks carried out during this grant achieved the goals as set forth in the initial proposal. The Boston University Space Physics Acquisition CEnter (BUSPACE) now provides World Wide Web access to data from a large suite of both space-based and ground-based instruments, archived from different missions, experiments, or campaigns in which researchers associated with the Center for Space Physics (CSP) at Boston University have been involved. These archival data sets are in digital form and are valuable for retrospective data analysis studies of magnetospheric as well as ionospheric, thermospheric, and mesospheric physics. We have leveraged our grass-roots effort with the NASA seed money to establish dedicated hardware (computer and hard disk augmentation) and student support to grow and maintain the system. This leveraging of effort now permits easy access by the space physics community to many underutilized, yet important data sets, one example being that of the SCATHA satellite.

  20. Space, body, time and relationship experiences of recess physical activity: a qualitative case study among the least physical active schoolchildren.

    PubMed

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine; Troelsen, Jens; Schipperijn, Jasper

    2016-01-06

    Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. The study builds on ethnographic fieldwork in a public school in Denmark using a combination of participatory photo interviews and participant observation. Thirty-seven grade five children (11-12 years old) were grouped in quartiles based on their objectively measured daily physical activity levels. Eight children in the lowest activity quartile (six girls) were selected to participate in the study. To avoid stigmatising and to make generalisations more reliable we further recruited eight children from the two highest activity quartiles (four girls) to participate. An analysis of the least physically active children's "lived experiences" of space, body, time and relations revealed several key factors influencing their recess physical activity: perceived classroom safety, indoor cosiness, lack of attractive outdoor facilities, bodily dissatisfaction, bodily complaints, tiredness, feeling bored, and peer influence. We found that the four existential lifeworlds provided an in-depth understanding of the least physically active children's "lived experiences" of recess physical activity. Our findings imply that specific intervention strategies might be needed to increase the least physically active children's physical activity level. For example, rethinking the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and creating teacher organised play activities during recess.

  1. Centralising Space: The Physical Education and Physical Activity Experiences of South Asian, Muslim Girls

    ERIC Educational Resources Information Center

    Stride, Annette

    2016-01-01

    This paper explores the physical education (PE) and physical activity experiences of a group of South Asian, Muslim girls, a group typically marginalised in PE and physical activity research. The study responds to ongoing calls for research to explore across different spaces in young people's lives. Specifically, I draw on a…

  2. How does mental-physical multimorbidity express itself in lived time and space? A phenomenological analysis of encounters with depression and chronic physical illness.

    PubMed

    Coventry, Peter A; Dickens, Chris; Todd, Chris

    2014-10-01

    Mental-physical multimorbidity (the co-existence of mental and physical ill health) is highly prevalent and associated with significant impairments and high healthcare costs. While the sociology of chronic illness has developed a mature discourse on coping with long term physical illness the impact of mental and physical health have remained analytically separated, highlighting the need for a better understanding of the day-to-day complexities encountered by people living with mental-physical multimorbidity. We used the phenomenological paradigm of the lived body to elucidate how the experience of mental-physical multimorbidity shapes people's lifeworlds. Nineteen people with chronic obstructive pulmonary disease (COPD) and depression (defined as a score ≥8 on depression scale of Hospital Anxiety and Depression Scale) were recruited from secondary NHS care and interviewed at their homes. Data were analysed phenomenologically using van Manen's lifeworld existential framework of the lived body, lived time, lived space, lived relations. Additionally, we re-analysed data (using the same framework) collected from 13 people recruited from secondary NHS care with either COPD, rheumatoid arthritis, heart disease, or type 1 or type 2 diabetes and depression. The phenomenology of mental-physical multimorbidity was articulated through embodied and emotional encounters with day-to-day life in four ways: [a] participants' perception of lived time and lived space contracted; [b] time and [c] space were experienced as liminal categories, enforcing negative mood and temporal and spatial contraction; and [d] time and space could also be customised to reinstate agency and self-determination. Mental-physical multimorbidity negatively impacts on individuals' perceptions of lived time and lived space, leading to a loss of agency, heightened uncertainty, and poor well-being. Harnessing people's capacity to modify their experience of time and space may be a novel way to support people with mental-physical multimorbidity to live well with illness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Cade, W. B., III

    2016-12-01

    Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.

  4. Generic results of the space physics community survey

    NASA Technical Reports Server (NTRS)

    Sharma, Rikhi R.; Cohen, Nathaniel B.

    1993-01-01

    This report summarizes the results of a survey of the members of the space physics research community conducted in 1990-1991 to ascertain demographic information on the respondents and information on their views on a number of facets of their space physics research. The survey was conducted by questionnaire and the information received was compiled in a database and analyzed statistically. The statistical results are presented for the respondent population as a whole and by four different respondent cross sections: individual disciplines of space physics, type of employers, age groups, and research techniques employed. Data from a brief corresponding survey of the graduate students of respondents are also included.

  5. Creating Inclusive Physical Activity Spaces: The Case of Body-Positive Yoga.

    PubMed

    Pickett, Andrew C; Cunningham, George B

    2017-09-01

    Within the modern cultural climate, those in larger bodies face high levels of weight stigma, particularly in sport and physical activity spaces, which serves as a strong barrier to their participation. However, given the strong link between physical activity and general health and well-being for participants, it is important to explore strategies that encourage participation of these individuals. Thus, the current research examined strategies that physical activity instructors use to develop inclusive exercise spaces for all body sizes. This study employed a series of semistructured qualitative interviews (n = 9) with instructors of body-inclusive yoga classes to explore the ways in which they encourage participation for those in larger bodies. Emergent themes from the current study suggested support for 6 factors for creating body-inclusive physical activity spaces: authentic leadership, a culture of inclusion, a focus on health, inclusive language, leader social activism, and a sense of community. This study revealed that leaders must intentionally cultivate inclusion in their spaces to encourage those in nonconforming bodies to participate. These findings have important health and management implications for the sport and physical activity context and provide a basic outline of practical strategies that practitioners can use to foster inclusion in their spaces.

  6. Role of Fundamental Physics in Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava

    2004-01-01

    This talk will discuss the critical role that fundamental physics research plays for the human space exploration. In particular, the currently available technologies can already provide significant radiation reduction, minimize bone loss, increase crew productivity and, thus, uniquely contribute to overall mission success. I will discuss how fundamental physics research and emerging technologies may not only further reduce the risks of space travel, but also increase the crew mobility, enhance safety and increase the value of space exploration in the near future.

  7. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  8. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  9. On the physical Hilbert space of loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noui, Karim; Perez, Alejandro; Vandersloot, Kevin

    2005-02-15

    In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable, consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology.

  10. Report of the solar physics panel

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.; Fisher, Richard R.; Antiochos, Spiro; Brueckner, Guenter; Hoeksema, J. Todd; Hudson, Hugh; Moore, Ronald; Radick, Richard R.; Rottman, Gary; Scherrer, Philip

    1991-01-01

    Recent accomplishments in solar physics can be grouped by the three regions of the Sun: the solar interior, the surface, and the exterior. The future scientific problems and areas of interest involve: generation of magnetic activity cycle, energy storage and release, solar activity, solar wind and solar interaction. Finally, the report discusses a number of future space mission concepts including: High Energy Solar Physics Mission, Global Solar Mission, Space Exploration Initiative, Solar Probe Mission, Solar Variability Explorer, Janus, as well as solar physics on Space Station Freedom.

  11. The relationship of physical activity and overweight to objectively measured green space accessibility and use

    PubMed Central

    2013-01-01

    This study examines the association between objectively measured access to green space, frequency of green space use, physical activity, and the probability of being overweight or obese in the city of Bristol, England. Data from the Bristol Quality of Life in your Neighbourhood survey for 6,821 adults were combined with a comprehensive GIS database of neighbourhood and green space characteristics.. A range of green space accessibility measures were computed. Associations between accessibility and the odds of respondents achieving a recommended 30 minutes or more of moderate activity five times a week, or being overweight or obese, were examined using logistic regression. Results showed that the reported frequency of green space use declined with increasing distance. The study also found that respondents living closest to the type of green space classified as a Formal park were more likely to achieve the physical activity recommendation and less likely to be overweight or obese. The association with physical activity, but not with overweight or obesity, remained after adjustment for respondent characteristics, area deprivation, and a range of characteristics of the neighbourhood environment. The findings suggest that the provision of good access to green spaces in urban areas may help promote population physical activity. PMID:20060635

  12. Reference earth orbital research and applications investigations (blue book). Volume 3: Physics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The definition of physics experiments to be conducted aboard the space station is presented. The four functional program elements are: (1) space physics research laboratory, (2) plasma physics and environmental perturbation laboratory, (3) cosmic ray physics laboratory, and (4) physics and chemistry laboratory. The experiments to be conducted by each facility are defined and the crew member requirements to accomplish the experiments are presented.

  13. Reduced Pseudoneglect for Physical Space, but Not Mental Representations of Space, for Adults with Autistic Traits

    ERIC Educational Resources Information Center

    English, Michael C.; Maybery, Murray T.; Visser, Troy A.

    2017-01-01

    Neurotypical individuals display a leftward attentional bias, called pseudoneglect, for physical space (e.g. landmark task) and mental representations of space (e.g. mental number line bisection). However, leftward bias is reduced in autistic individuals viewing faces, and neurotypical individuals with autistic traits viewing "greyscale"…

  14. Place-People-Practice-Process: Using Sociomateriality in University Physical Spaces Research

    ERIC Educational Resources Information Center

    Acton, Renae

    2017-01-01

    Pedagogy is an inherently spatial practice. Implicit in much of the rhetoric of physical space designed for teaching and learning is an ontological position that assumes material space as distinct from human practice, often conceptualising space as causally (and simplistically) impacting upon people's behaviours. An alternative, and growing,…

  15. Space Particle Hazard Measurement and Modeling

    DTIC Science & Technology

    2016-09-01

    understand the interactions of the physical processes driving, then specify and ultimately predict the state of the energetic particle populations...Hudson, and B. T. Kress (2013), Direct observation of the CRAND proton radiation belt source, J. Geophys. Res. Space Physics , 118, doi:10.1002...anticritical temperature for spacecraft charging, J. Geophys Res.: Space Physics , 113, 2156-2202, doi: 10.1029/2008JA013161 2010 – Tested basic

  16. 5 CFR 792.230 - May an agency use appropriated funds to improve the physical space of the family child care homes...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... improve the physical space of the family child care homes or child care centers? 792.230 Section 792.230... EMPLOYEES' HEALTH AND COUNSELING PROGRAMS Agency Use of Appropriated Funds for Child Care Costs for Lower... May an agency use appropriated funds to improve the physical space of the family child care homes or...

  17. Space War Meets Info War: The Integration of Space and Information Operations

    DTIC Science & Technology

    2000-04-01

    spacelift, command and control of satellites, and surveillance and deconfliction of systems in space.” (4, xi) These operations provide the physical ...PSYOPS), electronic warfare (EW), physical attack/destruction, special information operations (SIO), and may include computer network attack. (3, viii... physical security, counter-deception, counter- propaganda, counter-intelligence, EW, and SIO. (3, viii) Information operations employ both lethal and non

  18. Space Biophysics: Accomplishments, Trends, Challenges

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.

    2015-01-01

    Physics and biology are inextricably linked. All the chemical and biological processes of life are dutifully bound to follow the rules and laws of physics. In space, these physical laws seem to turn on their head and biological systems, from microbes to humans, adapt and evolve in myriad ways to cope with the changed physical influences of the space environment. Gravity is the most prominent change in space that influences biology. In microgravity, the physical processes of sedimentation, density-driven convective flow, influence of surface tension and fluid pressure profoundly influence biology at the molecular and cellular level as well as at the whole-body level. Gravity sensing mechanisms are altered, structural and functional components of biology (such as bone and muscle) are reduced and changes in the way fluids and gasses behave also drive the way microbial systems and biofilms grow as well as the way plants and animals adapt. The radiation environment also effects life in space. Solar particle events and high energy cosmic radiation can cause serious damage to DNA and other biomolecules. The results can cause mutation, cellular damage or death, leading to health consequences of acute radiation damage or long-term health consequences such as increased cancer risk. Space Biophysics is the study and utilization of physical changes in space that cause changes in biological systems. The unique physical environment in space has been used successfully to grow high-quality protein crystals and 3D tissue cultures that could not be grown in the presence of unidirectional gravitational acceleration here on Earth. All biological processes that change in space have their root in a biophysical alteration due to microgravity and/or the radiation environment of space. In order to fully-understand the risks to human health in space and to fully-understand how humans, plants, animals and microbes can safely and effectively travel and eventually live for long periods beyond the protective environment of Earth, the biophysical properties underlying these changes must be studied, characterized and understood. This lecture reviews the current state of NASA biophysics research accomplishments and identifies future trends and challenges for biophysics research on the International Space Station and beyond.

  19. Space plasma branch at NRL

    NASA Astrophysics Data System (ADS)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  20. Space Science at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  1. The influence of neighbourhood green space on children's physical activity and screen time: findings from the longitudinal study of Australian children.

    PubMed

    Sanders, Taren; Feng, Xiaoqi; Fahey, Paul P; Lonsdale, Chris; Astell-Burt, Thomas

    2015-09-30

    It is often hypothesised that neighbourhood green space may help prevent well-known declines in physical activity and increases in sedentary behaviour that occur across childhood. As most studies in this regard are cross-sectional, the purpose of our study was to use longitudinal data to examine whether green space promotes active lifestyles as children grow older. Data came from participants (n = 4983; age = 4-5) of the Longitudinal Study of Australian Children, a nationally representative study on health and child development. Physical activity and screen time were measured biennially (2004-2012) using questionnaires and time use diaries. Quantity of neighbourhood green space was objectively measured using Australian Bureau of Statistics mesh block data for each participant's statistical area level 2. Multilevel regression was used to test for associations between physical activity and screen time with green space quantity, adjusting for socio-economic confounders. Boys living in areas with 10% more neighbourhood green space had a: 7% (95% CI = 1.02, 1.13) greater odds of choosing physically active pastimes; 8% (95 % CI = 0.85, 1.00) lower odds of not enjoying physical activity; 2.3 min reduction in weekend television viewing (95% CI = -4.00, -0.69); and 7% (95% CI = 1.02; 1.12) and 9% (95% CI = 1.03; 1.15) greater odds of meeting physical activity guidelines on weekdays and weekends, respectively. No statistically (or practically) significant results were observed for girls. Current provisions of neighbourhood green space may be more amenable to promoting active lifestyles among boys than girls. Research is needed to explore what types of green space promote active lifestyles in all children.

  2. Inner space/outer space - The interface between cosmology and particle physics

    NASA Astrophysics Data System (ADS)

    Kolb, Edward W.; Turner, Michael S.; Lindley, David; Olive, Keith; Seckel, David

    A collection of papers covering the synthesis between particle physics and cosmology is presented. The general topics addressed include: standard models of particle physics and cosmology; microwave background radiation; origin and evolution of large-scale structure; inflation; massive magnetic monopoles; supersymmetry, supergravity, and quantum gravity; cosmological constraints on particle physics; Kaluza-Klein cosmology; and future directions and connections in particle physics and cosmology.

  3. The association between objectively measured physical activity and life-space mobility among older people.

    PubMed

    Tsai, L-T; Portegijs, E; Rantakokko, M; Viljanen, A; Saajanaho, M; Eronen, J; Rantanen, T

    2015-08-01

    The purpose of this cross-sectional study was to investigate the association between objectively measured physical activity and life-space mobility in community-dwelling older people. Life-space refers to the spatial area a person purposefully moves through in daily life (bedroom, home, yard, neighborhood, town, and beyond) and life-space mobility to the frequency of travel and the help needed when moving through different life-space areas. The study population comprised community-living 75- to 90-year-old people {n = 174; median age 79.7 [interquartile range (IQR) 7.1]}, participating in the accelerometer substudy of Life-Space Mobility in Old Age (LISPE) project. Step counts and activity time were measured by an accelerometer (Hookie "AM20 Activity Meter") for 7 days. Life-space mobility was assessed with Life-Space Assessment (LSA) questionnaire. Altogether, 16% had a life-space area restricted to the neighborhood when moving independently. Participants with a restricted life space were less physically active and about 70% of them had exceptionally low values in daily step counts (≤ 615 steps) and moderate activity time (≤ 6.8 min). Higher step counts and activity time correlated positively with life-space mobility. Prospective studies are needed to clarify the temporal order of low physical activity level and restriction in life-space mobility. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Two Years of the STEREO Heliospheric Imagers: Invited Review

    DTIC Science & Technology

    2009-01-01

    impact of CMEs and CIRs on planets. The very nature of this area of research—which brings together aspects of solar physics, space -environmentphysics...Include area code) Standard Form 298 (Rev 8/98) Prescribed by ANSI Sid Z39 18 13. SUPPLEMENTARY NOTES (Continued) 1. Space Science and Technology...Department, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, 0X11OQX UK. 2. Space Environment Physics Group, School of Physics

  5. A Proposal to Study the Scientific Uses of Solar Electric Propulsion for Space Physics Missions

    NASA Technical Reports Server (NTRS)

    Kurth, William S.

    1999-01-01

    This effort was for the participation of Dr. William S. Kurth in the study of the application of spacecraft using solar electric propulsion (SEP) for a range of space physics missions. This effort included the participation of Dr. Kurth in the Tropix Science Definition Team but also included the generalization to various space physics and planetary missions, including specific Explorer mission studies.

  6. Orbit-Attitude Changes of Objects in Near Earth Space Induced by Natural Charging

    DTIC Science & Technology

    2017-05-02

    depends upon Earth’s magnetosphere. Typically, magneto-sphere models can be grouped under two classes: statistical and physics -based. The Physics ...models were primarily physics -based due to unavailability of sufficient space-data, but over the last three decades, with the availability of huge...Attitude Determination and Control,” Astrophysics and Space Sci- ence Library, Vol. 73, D. Reidel Publishing Company, London, 1978 [17] Fairfield

  7. Spacelab

    NASA Image and Video Library

    1983-11-28

    A Space Shuttle mission STS-9 onboard view show's Spacelab-1 (SL-1) module in orbiter Columbia's payload bay. Spacelab-1 was a cooperative venture of NASA and the European Space Agency. Scientists from eleven European nations plus Canada, Japan and the U.S. provided instruments and experimental procedures for over 70 different investigations in five research areas of disciplines: astronomy and solar physics, space plasma physics, atmospheric physics and Earth observations, life sciences and materials science.

  8. The Space-Time Topography of English Speakers

    ERIC Educational Resources Information Center

    Duman, Steve

    2016-01-01

    English speakers talk and think about Time in terms of physical space. The past is behind us, and the future is in front of us. In this way, we "map" space onto Time. This dissertation addresses the specificity of this physical space, or its topography. Inspired by languages like Yupno (Nunez, et al., 2012) and Bamileke-Dschang (Hyman,…

  9. Promoting Physical Activity Through the Shared Use of School Recreational Spaces: A Policy Statement From the American Heart Association

    PubMed Central

    Young, Deborah R.; Spengler, John O.; Frost, Natasha; Evenson, Kelly R.; Vincent, Jeffrey M.; Whitsel, Laurie

    2014-01-01

    Most Americans are not sufficiently physically active, even though regular physical activity improves health and reduces the risk of many chronic diseases. Those living in rural, non-White, and lower-income communities often have insufficient access to places to be active, which can contribute to their lower level of physical activity. The shared use of school recreational facilities can provide safe and affordable places for communities. Studies suggest that challenges to shared use include additional cost, liability protection, communication among constituencies interested in sharing space, and decision-making about scheduling and space allocation. This American Heart Association policy statement has provided recommendations for federal, state, and local decision-makers to support and expand opportunities for physical activity in communities through the shared use of school spaces. PMID:24134355

  10. Promoting physical activity through the shared use of school recreational spaces: a policy statement from the American Heart Association.

    PubMed

    Young, Deborah R; Spengler, John O; Frost, Natasha; Evenson, Kelly R; Vincent, Jeffrey M; Whitsel, Laurie

    2014-09-01

    Most Americans are not sufficiently physically active, even though regular physical activity improves health and reduces the risk of many chronic diseases. Those living in rural, non-White, and lower-income communities often have insufficient access to places to be active, which can contribute to their lower level of physical activity. The shared use of school recreational facilities can provide safe and affordable places for communities. Studies suggest that challenges to shared use include additional cost, liability protection, communication among constituencies interested in sharing space, and decision-making about scheduling and space allocation. This American Heart Association policy statement has provided recommendations for federal, state, and local decision-makers to support and expand opportunities for physical activity in communities through the shared use of school spaces.

  11. News Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2010-05-01

    Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

  12. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  13. Research and technology, fiscal year 1982

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.

  14. National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical Research Enterprise is performing vital research and technology development to extend the reach of human space flight.

  15. Inspire Your Students.

    ERIC Educational Resources Information Center

    Pine, William E.; Taylor, William W. L.

    1991-01-01

    Describes a science project, Interactive Space Physics Ionosphere Radio Experiments (INSPIRE), that allows students to work with physicists to address unanswered questions about the physics of space. (ZWH)

  16. Assessing the Associations Between Types of Green Space, Physical Activity, and Health Indicators Using GIS and Participatory Survey

    NASA Astrophysics Data System (ADS)

    Akpinar, A.

    2017-11-01

    This study explores whether specific types of green spaces (i.e. urban green spaces, forests, agricultural lands, rangelands, and wetlands) are associated with physical activity, quality of life, and cardiovascular disease prevalence. A sample of 8,976 respondents from the Behavioral Risk Factor Surveillance System, conducted in 2006 in Washington State across 291 zip-codes, was analyzed. Measures included physical activity status, quality of life, and cardiovascular disease prevalence (i.e. heart attack, angina, and stroke). Percentage of green spaces was derived from the National Land Cover Dataset and measured with Geographical Information System. Multilevel regression analyses were conducted to analyze the data while controlling for age, sex, race, weight, marital status, occupation, income, education level, and zip-code population and socio-economic situation. Regression results reveal that no green space types were associated with physical activity, quality of life, and cardiovascular disease prevalence. On the other hand, the analysis shows that physical activity was associated with general health, quality of life, and cardiovascular disease prevalence. The findings suggest that other factors such as size, structure and distribution (sprawled or concentrated, large or small), quality, and characteristics of green space might be important in general health, quality of life, and cardiovascular disease prevalence rather than green space types. Therefore, further investigations are needed.

  17. Gymnastics in Phase Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this listmore » are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.« less

  18. Autonomous perception and decision making in cyber-physical systems

    NASA Astrophysics Data System (ADS)

    Sarkar, Soumik

    2011-07-01

    The cyber-physical system (CPS) is a relatively new interdisciplinary technology area that includes the general class of embedded and hybrid systems. CPSs require integration of computation and physical processes that involves the aspects of physical quantities such as time, energy and space during information processing and control. The physical space is the source of information and the cyber space makes use of the generated information to make decisions. This dissertation proposes an overall architecture of autonomous perception-based decision & control of complex cyber-physical systems. Perception involves the recently developed framework of Symbolic Dynamic Filtering for abstraction of physical world in the cyber space. For example, under this framework, sensor observations from a physical entity are discretized temporally and spatially to generate blocks of symbols, also called words that form a language. A grammar of a language is the set of rules that determine the relationships among words to build sentences. Subsequently, a physical system is conjectured to be a linguistic source that is capable of generating a specific language. The proposed technology is validated on various (experimental and simulated) case studies that include health monitoring of aircraft gas turbine engines, detection and estimation of fatigue damage in polycrystalline alloys, and parameter identification. Control of complex cyber-physical systems involve distributed sensing, computation, control as well as complexity analysis. A novel statistical mechanics-inspired complexity analysis approach is proposed in this dissertation. In such a scenario of networked physical systems, the distribution of physical entities determines the underlying network topology and the interaction among the entities forms the abstract cyber space. It is envisioned that the general contributions, made in this dissertation, will be useful for potential application areas such as smart power grids and buildings, distributed energy systems, advanced health care procedures and future ground and air transportation systems.

  19. Natural world physical, brain operational, and mind phenomenal space-time

    NASA Astrophysics Data System (ADS)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanuel, Glory Ruth; Silva, Austin Ray

    Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460.more » Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.« less

  1. The extent of visual space inferred from perspective angles

    PubMed Central

    Erkelens, Casper J.

    2015-01-01

    Retinal images are perspective projections of the visual environment. Perspective projections do not explain why we perceive perspective in 3-D space. Analysis of underlying spatial transformations shows that visual space is a perspective transformation of physical space if parallel lines in physical space vanish at finite distance in visual space. Perspective angles, i.e., the angle perceived between parallel lines in physical space, were estimated for rails of a straight railway track. Perspective angles were also estimated from pictures taken from the same point of view. Perspective angles between rails ranged from 27% to 83% of their angular size in the retinal image. Perspective angles prescribe the distance of vanishing points of visual space. All computed distances were shorter than 6 m. The shallow depth of a hypothetical space inferred from perspective angles does not match the depth of visual space, as it is perceived. Incongruity between the perceived shape of a railway line on the one hand and the experienced ratio between width and length of the line on the other hand is huge, but apparently so unobtrusive that it has remained unnoticed. The incompatibility between perspective angles and perceived distances casts doubt on evidence for a curved visual space that has been presented in the literature and was obtained from combining judgments of distances and angles with physical positions. PMID:26034567

  2. How can laboratory plasma experiments contribute to space and &astrophysics?

    NASA Astrophysics Data System (ADS)

    Yamada, M.

    Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have provided the fundamental physics data for magnetic reconnection [1]. Linear plasma devices have been utilized to investigate Whistler waves and Alfven wave phenomena [2,3]. A rotating gallium disk experiment has been initiated to study magneto-rotational instability [4]. This talk also presents the most recent progress of these dedicated laboratory plasma research. 1. M. Yamada et al., Phys. Plasmas 4, 1936, (1997) 2. R. Stenzel, Phys. Rev. Lett. 65, 3001 (1991) 3. W. Gekelman et al, Plasma Phys. Contr. Fusion, v42, B15-B26, Suppl.12B (2000) 4. H. Ji, J. Goodman, A. Kageyama Mon. Not. R. Astron. Soc. 325, L1- (2001)

  3. 3DView: Space physics data visualizer

    NASA Astrophysics Data System (ADS)

    Génot, V.; Beigbeder, L.; Popescu, D.; Dufourg, N.; Gangloff, M.; Bouchemit, M.; Caussarieu, S.; Toniutti, J.-P.; Durand, J.; Modolo, R.; André, N.; Cecconi, B.; Jacquey, C.; Pitout, F.; Rouillard, A.; Pinto, R.; Erard, S.; Jourdane, N.; Leclercq, L.; Hess, S.; Khodachenko, M.; Al-Ubaidi, T.; Scherf, M.; Budnik, E.

    2018-04-01

    3DView creates visualizations of space physics data in their original 3D context. Time series, vectors, dynamic spectra, celestial body maps, magnetic field or flow lines, and 2D cuts in simulation cubes are among the variety of data representation enabled by 3DView. It offers direct connections to several large databases and uses VO standards; it also allows the user to upload data. 3DView's versatility covers a wide range of space physics contexts.

  4. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    NASA Technical Reports Server (NTRS)

    Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).

  5. Solo Life to Second Life: The Design of Physical and Virtual Learning Spaces Inspired by the Drama Classroom

    ERIC Educational Resources Information Center

    Nicholls, Jennifer; Philip, Robyn

    2012-01-01

    This paper explores the design of virtual and physical learning spaces developed for students of drama and theatre studies. What can we learn from the traditional drama workshop that will inform the design of drama and theatre spaces created in technology-mediated learning environments? The authors examine four examples of spaces created for…

  6. Inerton fields: very new ideas on fundamental physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnoholovets, Volodymyr

    2010-12-22

    Modern theories of everything, or theories of the grand unification of all physical interactions, try to describe the whole world starting from the first principles of quantum theory. However, the first principles operate with undetermined notions, such as the wave {psi}-function, particle, lepton and quark, de Broglie and Compton wavelengths, mass, electric charge, spin, electromagnetic field, photon, gravitation, physical vacuum, space, etc. From a logical point of view this means that such modern approach to the theory of everything is condemned to failure... Thus, what should we suggest to improve the situation? It seems quite reasonable to develop initially amore » theory of something, which will be able to clarify the major fundamental notions (listed above) that physics operates with every day. What would be a starting point in such approach? Of course a theory of space as such, because particles and all physical fields emerge just from space. After that, when a particle and fields (and hence the fields' carriers) are well defined and introduced in the well defined physical space, different kinds of interactions can be proposed and investigated. Moreover, we must also allow for a possible interaction of a created particle with the space that generated the appearance of the particle. The mathematical studies of Michel Bounias and the author have shown what the real physical space is, how the space is constituted, how it is arranged and what its elements are. Having constructed the real physical space we can then derive whatever we wish, in particular, such basic notions as mass, particle and charge. How are mechanics of such objects (a massive particle, a charged massive particle) organised? The appropriate theory of motion has been called a sub microscopic mechanics of particles, which is developed in the real physical space, not an abstract phase space, as conventional quantum mechanics does. A series of questions arise: can these two mechanics (submicroscopic and conventional quantum mechanics) be unified?, what can such unification bring new for us?, can such submicroscopic mechanics be a starting point for the derivation of the phenomenon of gravity?, can this new theory be a unified physical theory?, does the theory allow experimental verification? These major points have been clarified in detail. And, perhaps, the most intriguing aspect of the theory is the derivation of a new physical field associated with the notion of mass (or rather inertia of a particle, which has been called the inerton field and which represents a real sense of the particle's wave {psi}-function). This field emerges by analogy with the electromagnetic field associated with the notion of the electric charge. Yes, the postulated inerton field has being tested in a series of different experiments. Even more, the inerton field might have a number of practical applications...« less

  7. Kuipers works to remove the Marangoni Suface Fluid Physics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142784 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  8. Kuipers works to remove the Marangoni Suface Fluid Physics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142785 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  9. A summary of the OV1-19 satellite dose, depth dose, and linear energy transfer spectral measurements

    NASA Technical Reports Server (NTRS)

    Cervini, J. T.

    1972-01-01

    Measurements of the biophysical and physical parameters in the near earth space environment, specifically, the Inner Van Allen Belt are discussed. This region of space is of great interest to planners of the Skylab and the Space Station programs because of the high energy proton environment, especially during periods of increased solar activity. Many physical measurements of charged particle flux, spectra, and pitch angle distribution have been conducted and are programmed in the space radiation environment. Such predictions are not sufficient to accurately predict the effects of space radiations on critical biological and electronic systems operating in these environments. Some of the difficulties encountered in transferring from physical data to a prediction of the effects of space radiation on operational systems are discussed.

  10. The design and development of a space laboratory to conduct magnetospheric and plasma research

    NASA Technical Reports Server (NTRS)

    Rosen, A.

    1974-01-01

    A design study was conducted concerning a proposed shuttle-borne space laboratory for research on magnetospheric and plasma physics. A worldwide survey found two broad research disciplines of interest: geophysical studies of the dynamics and structure of the magnetosphere (including wave characteristics, wave-particle interactions, magnetospheric modifications, beam-plasma interactions, and energetic particles and tracers) and plasma physics studies (plasma physics in space, wake and sheath studies, and propulsion and devices). The Plasma Physics and Environmental Perturbation Laboratory (PPEPL) designed to perform experiments in these areas will include two 50-m booms and two maneuverable subsatellites, a photometer array, standardized proton, electron, and plasma accelerators, a high-powered transmitter for frequencies above 100 kHz, a low-power transmitter for VLF and below, and complete diagnostic packages. Problem areas in the design of a space plasma physics laboratory are indicated.

  11. Spacelab

    NASA Image and Video Library

    1983-01-01

    This photograph shows the Spacelab 1 module and pallet ready to be installed in the cargo bay of the Space Shuttle Orbiter Columbia at the Kennedy Space Center. The overall goal of the first Spacelab mission was to verify its Space performance through a variety of scientific experiments. The investigation selected for this mission tested the Spacelab hardware, flight and ground systems, and crew to demonstrate their capabilities for advanced research in space. However, Spacelab 1 was not merely a checkout flight or a trial run. Important research problems that required a laboratory in space were scheduled for the mission. Spacelab 1 was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. These fields were Astronomy and Solar Physics, Space Plasma Physics, Atmospheric Physics and Earth Observations, Life Sciences, and Materials Science. Spacelab 1 was launched aboard the Space Shuttle Columbia (STS-9 mission) on November 28, 1983.

  12. Being with woman: claiming midwifery space.

    PubMed

    Hunter, Louise

    2015-03-01

    Being 'with woman' is characterised as presence, a spiritual concept which is nevertheless bound up with physical space. In this article, the work of the American philosopher Judith Butler is used to explore the interplay between space and relationships in midwifery practice. Butler argues that relationships based on mutual recognition and respect define the actions possible within physical space. In midwifery, being with woman creates a therapeutic space necessary for the wellbeing and empowerment of women and midwives alike.

  13. Undeveloped green space and free-time physical activity in 11 to 13-year-old children.

    PubMed

    Janssen, Ian; Rosu, Andrei

    2015-02-21

    Research on the association between the physical environment and physical activity in children has focused on built and developed features or total green space. The impact of natural, undeveloped green spaces is unknown. The objective of this study was to determine whether the presence of undeveloped green spaces in the home neighborhood are associated with physical activity in 11 to 13-year-olds. This was a cross-sectional study of grade 6 to 8 urban residing Canadian students who participated in the 2009/10 Health Behaviour in School-Aged Children survey. Children self-reported the frequency they participated in physical activity in their free-time outside of school hours. Geographic Information Systems (GIS) were used to assess the proportion of land area within 1 km of participants' homes that was devoted to publicly accessible meadows (i.e., field vegetated primarily by grass and other non-woody plants) and treed areas (i.e., field vegetated primarily by trees and shrubs). Ordinal logistic regression models were used to examine the relationships between the undeveloped green space areas and free-time physical activity. Several intrapersonal, family, and neighborhood environment factors were controlled for in these regression models. The proportion of neighborhood land covered by meadows was not associated with the physical activity outcome (p > 0.6). However, the proportion of neighborhood land covered by treed areas was independently associated with the physical activity outcome (p = 0.02). For each additional 5% increase in the proportion of neighborhood land covered by treed areas there was a corresponding 5% increase (95% confidence interval: 1-10% increase) in the relative odds of increasing free-time physical activity outside of school hours. The physical activity levels of 11 to 13-year-old children was associated with the amount of space in their home neighborhood devoted to treed areas.

  14. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity.

    PubMed

    Hänchen, Anne; Rausch, Saskia; Landmann, Benjamin; Toti, Luigi; Nusser, Antje; Süssmuth, Roderich D

    2013-03-18

    The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    PubMed

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.

  16. Spacelab to Space Station; Proceedings of the International Symposium on Spacelab 1 - Results, Implications and Perspectives, Naples and Capri, Italy, June 11-16, 1984

    NASA Technical Reports Server (NTRS)

    Napolitano, L. G. (Editor)

    1985-01-01

    Consideration is given to the scientific objectives of the Spacelab program, a review of data obtained during the STS-9/Spacelab 1 mission on board the Shuttle, and the coordination of future Spacelab research among participating European nations. Among the specific fields of study covered by Spacelab 1 were space plasma physics, materials and fluid sciences and technology, astronomy and solar physics, and atmospheric physics and earth observations. Consideration is also given to the legal aspects of space manufacturing activities, the role of private industry in space-based manufacturing ventures, plant production and breeding in space, and the development of remote sensing systems for use in a microgravity environment.

  17. Time and space: undergraduate Mexican physics in motion

    NASA Astrophysics Data System (ADS)

    Candela, Antonia

    2010-09-01

    This is an ethnographic study of the trajectories and itineraries of undergraduate physics students at a Mexican university. In this work learning is understood as being able to move oneself and, other things (cultural tools), through the space-time networks of a discipline (Nespor in Knowledge in motion: space, time and curriculum in undergraduate physics and management. Routledge Farmer, London, 1994). The potential of this socio-cultural perspective allows an analysis of how students are connected through extended spaces and times with an international core discipline as well as with cultural features related to local networks of power and construction. Through an example, I show that, from an actor-network-theory (Latour in Science in action. Harvard University Press, Cambridge, 1987), that in order to understand the complexities of undergraduate physics processes of learning you have to break classroom walls and take into account students' movements through complex spatial and temporal traces of the discipline of physics. Mexican professors do not give classes following one textbook but in a moment-to-moment open dynamism tending to include undergraduate students as actors in classroom events extending the teaching space-time of the classroom to the disciplinary research work of physics. I also find that Mexican undergraduate students show initiative and display some autonomy and power in the construction of their itineraries as they are encouraged to examine a variety of sources including contemporary research articles, unsolved physics problems, and even to participate in several physicists' spaces, as for example being speakers at the national congresses of physics. Their itineraries also open up new spaces of cultural and social practices, creating more extensive networks beyond those associated with a discipline. Some economic, historical and cultural contextual features of this school of sciences are analyzed in order to help understanding the particular way students are encouraged to develop their autonomy.

  18. Physical Sciences Research Priorities and Plans in OBPR

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene

    2002-01-01

    This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.

  19. Solar and Space Physics: A Science for a Technological Society

    NASA Technical Reports Server (NTRS)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  20. Stealing Zeus’s Thunder: Physical Space-Control Advantages Against Hostile Satellites

    DTIC Science & Technology

    2006-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023956 TITLE: Stealing Zeus’s Thunder: Physical Space-Control Advantages ...e .d co ne t to a pj@naxwel af. ni Stealing eus’s Thunder Physical Space-Control Advantages against Hostile Satellites CAPT JOSEPH T. PAGE 11, USAF...and ICBM combat crew comander (Squadron Command Post) at he 741st Mi6sse Squadon, 91st Spae Wing, Minor AFB, North akota. 26 its advantage via active

  1. The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.

    2002-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  2. Ninth Conference on Space Simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The papers presented in this conference provided an international dialogue and a meaningful exchange in the simulation of space environments as well as the evolution of these technological advances into other fields. The papers represent a significant contribution to the understanding of space simulation problems and the utilization of this knowledge. The topics of the papers include; spacecraft testing; facilities and test equipment; system and subsystem test; life sciences, medicine and space; physical environmental factors; chemical environmental factors; contamination; space physics; and thermal protection.

  3. Studying the unfolding process of protein G and protein L under physical property space

    PubMed Central

    Zhao, Liling; Wang, Jihua; Dou, Xianghua; Cao, Zanxia

    2009-01-01

    Background The studies on protein folding/unfolding indicate that the native state topology is an important determinant of protein folding mechanism. The folding/unfolding behaviors of proteins which have similar topologies have been studied under Cartesian space and the results indicate that some proteins share the similar folding/unfolding characters. Results We construct physical property space with twelve different physical properties. By studying the unfolding process of the protein G and protein L under the property space, we find that the two proteins have the similar unfolding pathways that can be divided into three types and the one which with the umbrella-shape represents the preferred pathway. Moreover, the unfolding simulation time of the two proteins is different and protein L unfolding faster than protein G. Additionally, the distributing area of unfolded state ensemble of protein L is larger than that of protein G. Conclusion Under the physical property space, the protein G and protein L have the similar folding/unfolding behaviors, which agree with the previous results obtained from the studies under Cartesian coordinate space. At the same time, some different unfolding properties can be detected easily, which can not be analyzed under Cartesian coordinate space. PMID:19208146

  4. Social Distance Evaluation in Human Parietal Cortex

    PubMed Central

    Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi

    2009-01-01

    Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. “close friends” “high lord”). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space. PMID:19204791

  5. Astro Academy: Principia--A Suite of Physical Science Demonstrations Conducted Aboard the ISS

    ERIC Educational Resources Information Center

    McMurray, Andy

    2016-01-01

    Astro Academy: Principia is an education programme developed by the UK National Space Academy for the UK Space Agency (UKSA) and the European Space Agency (ESA). The Academy designed, constructed, flight-qualified and developed experimental procedures for a suite of physics and chemistry demonstration experiments that were conducted by ESA…

  6. Time and Space: Undergraduate Mexican Physics in Motion

    ERIC Educational Resources Information Center

    Candela, Antonia

    2010-01-01

    This is an ethnographic study of the trajectories and itineraries of undergraduate physics students at a Mexican university. In this work learning is understood as being able to move oneself and, other things (cultural tools), through the space-time networks of a discipline (Nespor in Knowledge in motion: space, time and curriculum in…

  7. Space-time-modulated stochastic processes

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  8. Highlights from the First Ever Demographic Study of Solar Physics, Space Physics, and Upper Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.

    2014-12-01

    Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.

  9. Physics issues of gamma ray burst emissions

    NASA Technical Reports Server (NTRS)

    Liang, Edison

    1987-01-01

    The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.

  10. Solar Physics in the Space Age.

    ERIC Educational Resources Information Center

    Dittmer, Phil D.; And Others

    This amply illustrated booklet provides a physical description of the sun as well as present and future tasks for solar physics study. The first chapter, an introduction, describes the history of solar study, solar study in space, and the relevance of solar study. The second chapter describes the five heliographic domains including the interior,…

  11. Phase space deformations in phantom cosmology

    NASA Astrophysics Data System (ADS)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  12. The impact of interventions to promote physical activity in urban green space: a systematic review and recommendations for future research.

    PubMed

    Hunter, Ruth F; Christian, Hayley; Veitch, Jenny; Astell-Burt, Thomas; Hipp, J Aaron; Schipperijn, Jasper

    2015-01-01

    Evidence is mounting on the association between the built environment and physical activity (PA) with a call for intervention research. A broader approach which recognizes the role of supportive environments that can make healthy choices easier is required. A systematic review was undertaken to assess the effectiveness of interventions to encourage PA in urban green space. Five databases were searched independently by two reviewers using search terms relating to 'physical activity', 'urban green space' and 'intervention' in July 2014. Eligibility criteria included: (i) intervention to encourage PA in urban green space which involved either a physical change to the urban green space or a PA intervention to promote use of urban green space or a combination of both; and (ii) primary outcome of PA. Of the 2405 studies identified, 12 were included. There was some evidence (4/9 studies showed positive effect) to support built environment only interventions for encouraging use and increasing PA in urban green space. There was more promising evidence (3/3 studies showed positive effect) to support PAprograms or PA programs combined with a physical change to the built environment, for increasing urban green space use and PA of users. Recommendations for future research include the need for longer term follow-up post-intervention, adequate control groups, sufficiently powered studies, and consideration of the social environment, which was identified as a significantly under-utilized resource in this area. Interventions that involve the use of PA programs combined with a physical change to the built environment are likely to have a positive effect on PA. Robust evaluations of such interventions are urgently required. The findings provide a platform to inform the design, implementation and evaluation of future urban green space and PAintervention research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    DTIC Science & Technology

    2012-04-20

    Observational Cosmology , NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771, USA 31 Enrico Fermi Institute, Department of Physics, and Kavli...Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA 32 Department of Physics and Astronomy, Rutgers, the State University...Austin, TX 78712, USA 59 Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), University of Pittsburgh, Pittsburgh, PA 15260, USA

  14. KSC-2012-6221

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist demonstrates a technology developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  15. KSC-2012-6220

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist describes technologies developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  16. Inertial frames and breakthrough propulsion physics

    NASA Astrophysics Data System (ADS)

    Millis, Marc G.

    2017-09-01

    The term ;Breakthrough Propulsion Physics; comes from the NASA project by that name which examined non-rocket space drives, gravity control, and faster-than-light travel. The focus here is on space drives and the related unsolved physics of inertial frames. A ;space drive; is a generic term encompassing any concept for using as-yet undiscovered physics to move a spacecraft instead of existing rockets, sails, or tethers. The collective state of the art spans mostly steps 1-3 of the scientific method: defining the problem, collecting data, and forming hypotheses. The key issues include (1) conservation of momentum, (2) absence of obvious reaction mass, and (3) the net-external thrusting requirement. Relevant open problems in physics include: (1) the sources and mechanisms of inertial frames, (2) coupling of gravitation to the other fundamental forces, and (3) the nature of the quantum vacuum. Rather than following the assumption that inertial frames are an immutable, intrinsic property of space, this paper revisits Mach's Principle, where it is posited that inertia is relative to the distant surrounding matter. This perspective allows conjectures that a space drive could impart reaction forces to that matter, via some as-yet undiscovered interaction with the inertial frame properties of space. Thought experiments are offered to begin a process to derive new hypotheses. It is unknown if this line of inquiry will be fruitful, but it is hoped that, by revisiting unsolved physics from a propulsion point of view, new insights will be gained.

  17. Physics of Colloids in Space: Flight Hardware Operations on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.

  18. An Adaptive Mesh Algorithm: Mesh Structure and Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-06-21

    The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented bymore » a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally sparse.« less

  19. Newton's Metaphysics of Space as God's Emanative Effect

    NASA Astrophysics Data System (ADS)

    Jacquette, Dale

    2014-09-01

    In several of his writings, Isaac Newton proposed that physical space is God's "emanative effect" or "sensorium," revealing something interesting about the metaphysics underlying his mathematical physics. Newton's conjectures depart from Plato and Aristotle's metaphysics of space and from classical and Cambridge Neoplatonism. Present-day philosophical concepts of supervenience clarify Newton's ideas about space and offer a portrait of Newton not only as a mathematical physicist but an independent-minded rationalist philosopher.

  20. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  1. Teaching Reciprocal Space to Undergraduates via Theory and Code Components of an IPython Notebook

    ERIC Educational Resources Information Center

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffrey D.

    2016-01-01

    In this technology report, a tool is provided for teaching reciprocal space to undergraduates in physical chemistry and materials science courses. Reciprocal space plays a vital role in understanding a material's electronic structure and physical properties. Here, we provide an example based on previous work in the "Journal of Chemical…

  2. Courses and Resources to Teach Space Physics to Standards

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.

    2008-12-01

    We have created four courses for teachers, and inquiry-based materials to go with them, that embed space physics concepts while teaching Space Physics to National and State standards. The state of Texas recently adopted a "4x4" standard, which makes the "recommended" graduation requirement for high school students to include four science and four math courses. Space Physics is not specifically listed as a topic, but falls naturally as part of three of the Texas High School courses: "Physics", "Astronomy" and "Earth and Space Science", a new course whose syllabus is being decided now. The national standards which are most relevant at the high school level are "Change, Constancy and Measurement", "Motions and Forces", "Interactions of Energy and Matter" and "Natural and Human-induced hazards" [National Science Ed Standards, 1996]. The "Texas Essential Knowledge and Skills" includes circuits, electricity and magnetism, and waves in their Physics course syllabus, and include "describe the Sun's effects on the Earth" in the Astronomy class. In the new Earth and Space Science class we expect that additional heliospheric concepts will be included. At Rice we have four Astronomy courses (and four Earth Science courses) for teachers, two of which involve a substantial space physics content. By taking those eight courses, plus a research project and another content or education elective, the teachers can earn a "Masters of Science Teaching" degree. In "Teaching Earth and Space Science" (ASTR 402) we dedicate about 4 weeks on the Sun and the Earth and its environment. The "Physics of Ham Radio" course (PHYS 401) has an even more relevant focus. That class introduces electricity and magnetism, with hands-on activities on circuits and electromagnetic waves. The students earn their "Technician" class amateur license by making at least 75 per cent on the first quiz, which allows them VHF and UHF broadcast privileges. The second half of the course covers more space weather topics including the ionosphere, solar activity, radio propagation and absorption, antennas, etc. Some students pass the more detailed "General" amateur license by the end of the semester, which allows them to transmit at HF frequencies. Ham radio clubs are becoming more interesting to students as internet-based and digital modes allow more extensive communication even with minimum licensing, and amateur radio clubs are an excellent resource to teachers who want to set up a station in their school. A Technician license can also allow even communication with the Space Station.

  3. Creating Inclusive Physical Activity Spaces: The Case of Body-Positive Yoga

    ERIC Educational Resources Information Center

    Pickett, Andrew C.; Cunningham, George B.

    2017-01-01

    Purpose: Within the modern cultural climate, those in larger bodies face high levels of weight stigma, particularly in sport and physical activity spaces, which serves as a strong barrier to their participation. However, given the strong link between physical activity and general health and well-being for participants, it is important to explore…

  4. Low-gravity fluid physics: A program overview

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview is presented of the microgravity fluid physics program at Lewis Research Center. One of the main reasons for conducting low gravity research in fluid physics is to study phenomena such as surface tension, interfacial contact angles, and diffusion independent of such gravitationally induced effects as buoyant convection. Fluid physics is at the heart of many space-based technologies including power systems, thermal control systems, and life support systems. Fundamental understanding of fluid physics is a key ingredient to successful space systems design. In addition to describing ground-based and space-based low-gravity facilities, selected experiments are presented which highlight Lewis work in fluid physics. These experiments can be categorized into five theme areas which summarize the work being conducted at Lewis for OSSA: (1) isothermal/iso-solutal capillary phenomena; (2) capillary phenomena with thermal/solutal gradients; (3) thermal-solutal convection; (4) first- and second-order phase transitions in a static fluid; and (5) multiphase flow.

  5. Overview of NASA Heliophysics and the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.

    2017-12-01

    In this paper, an overview is presented on the various activities within NASA that address space weather-related observations, model development, and research to operations. Specific to space weather, NASA formulates and implements, through the Heliophysics division, a national research program for understanding the Sun and its interactions with the Earth and the Solar System and how these phenomena impact life and society. NASA researches and prototypes new mission and instrument capabilities in this area, providing new physics-based algorithms to advance the state of solar, space physics, and space weather modeling.

  6. The Adventures of Space-Time

    NASA Astrophysics Data System (ADS)

    Bertolami, Orfeu

    Since the nineteenth century, it is known, through the work of Lobatchevski, Riemann, and Gauss, that spaces do not need to have a vanishing curvature. This was for sure a revolution on its own, however, from the point of view of these mathematicians, the space of our day to day experience, the physical space, was still an essentially a priori concept that preceded all experience and was independent of any physical phenomena. Actually, that was also the view of Newton and Kant with respect to time, even though, for these two space-time explorers, the world was Euclidean.

  7. Networks In Real Space: Characteristics and Analysis for Biology and Mechanics

    NASA Astrophysics Data System (ADS)

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.

  8. ISPAE Research Highlights 1995-1997

    NASA Technical Reports Server (NTRS)

    Harwell, Ken

    1997-01-01

    This paper presents ISPAE (Institute for Space Physics, Astrophysics and Education) research highlights from 1995-1997. The topics include: 1) High-Energy Astrophysics (Finding the smoking gun in gamma-ray bursts, Playing peekaboo with gamma ray bursts, and Spectral pulses muddle burst source study, Einstein was right: Black holes do spin, Astronomers find "one-man X-ray band", and Cosmic rays from the supernova next door?); 2) Solar Physics (Bright burst confirms solar storm model, Model predicts speed of solar wind in space, and Angry sunspots snap under the strain); 3) Gravitational Physics; 4) Tether Dynamics; and 5) Space Physics (Plasma winds blow form polar regions, De-SCIFERing thermal electrons, and UVI lets scientists see daytime aurora).

  9. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  10. Committee on solar and space physics

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    The Committee on Solar and Space Physics (CSSP) is the Committee of the Space Science Board (SSB) of the National Research Council that is responsible for providing scientific advice to NASA in areas of solar/solar-terrestrial/space-plasma physics. The committee, composed of members who serve 3-year terms, wishes to solicit comments from colleagues on topics of interest to them and related to issues in the field.Current subjects on which the committee is devoting considerable effort include the following: (a) considerations of data handling and data systems in solar-terrestrial research for the future (This is being carried out with the encouragement of the SSB and its Committee on Data Management. The activity is in collaboration with the Committee on Solar-Terrestrial Research (CSTR) of the Geophysics Research Board. The handling, integration, and dissemination of solar-terrestrial data obtained by all techniques will be addressed. Chairmen of the responsible subgroup are D. J. Williams (CSSP) and M. A. Shea (CSTR).); (b) consideration of the policies and issues associated with a revitalized Explorer satellite program responsive to the requirements of the solar-terrestrial physics community (Inputs of ideas for potential Explorer missions have been received from a wide range of the community and will be further elaborated upon by additional community participation. A number of these ideas and examples will form a portion of a report discussing solar-terrestrial science topics of high contemporary interest that could be well addressed with Explorerclass missions.); (c) inputs to a more comprehensive consideration of the requirements for theoretical research in all the space sciences (This is an overall task of the Space Science Board. The CSSP response relies heavily upon the Colgate committee report on space plasma physics.); (d) a future workshop, in collaboration with the Space Science Committee of the European Science foundation, on potential cooperative work in space plasma physics with European nations (Four major program items will be addressed, including reviews of several major scientific achievements within the field, a review of the status of solar and space plasma physics as academic subjects in the U.S. and in Western Europe, a review of future research programs, and a discussion of the forms of collaboration between the U.S. and European space plasma physics communities, with recommendations for the future. The workshop will be held in the U.S., tentatively during the 1982-83 academic year.); (e) continuing dialogue with NASA public relations officials and other knowledgeable individuals regarding the status of public knowledge of the results, importance, and applications of solar-terrestrial research.); (f) discussions with relevant officials concerning the issues of scientific funding in the United States, particularly as related to solar-terrestrial research.

  11. 14 CFR 1203b.105 - Use of non-deadly physical force when making an arrest.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of non-deadly physical force when making an arrest. 1203b.105 Section 1203b.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.105...

  12. 14 CFR 1203b.105 - Use of non-deadly physical force when making an arrest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of non-deadly physical force when making an arrest. 1203b.105 Section 1203b.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.105...

  13. 14 CFR 1203b.105 - Use of non-deadly physical force when making an arrest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of non-deadly physical force when making an arrest. 1203b.105 Section 1203b.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.105...

  14. 14 CFR 1203b.105 - Use of non-deadly physical force when making an arrest.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of non-deadly physical force when making an arrest. 1203b.105 Section 1203b.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.105...

  15. Level of Abstraction and Feelings of Presence in Virtual Space: Business English Negotiation in Open Wonderland

    ERIC Educational Resources Information Center

    Chen, Judy F.; Warden, Clyde A.; Tai, David Wen-Shung; Chen, Farn-Shing; Chao, Chich-Yang

    2011-01-01

    Virtual spaces allow abstract representations of reality that not only encourage student self-directed learning but also reinforce core content of the learning objective through visual metaphors not reproducible in the physical world. One of the advantages of such a space is the ability to escape the restrictions of the physical classroom, yet…

  16. NASA payload data book: Payload analysis for space shuttle applications, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Data describing the individual NASA payloads for the space shuttle are presented. The document represents a complete issue of the original payload data book. The subjects discussed are: (1) astronomy, (2) space physics, (3) planetary exploration, (4) earth observations (earth and ocean physics), (5) communications and navigation, (6) life sciences, (7) international rendezvous and docking, and (8) lunar exploration.

  17. School Libraries Are Essential: Meeting the Virtual Access and Collaboration Needs of the 21st-Century Learner and Teacher

    ERIC Educational Resources Information Center

    Darrow, Rob

    2009-01-01

    School librarians have excelled in providing a physical library space that is welcoming, making sure students have an inviting space to access print and digital materials, and developing collections that provide access for all ages of students. In the physical library space services such as collaborating with teachers and consulting with students…

  18. Space-weather assets developed by the French space-physics community

    NASA Astrophysics Data System (ADS)

    Rouillard, A. P.; Pinto, R. F.; Brun, A. S.; Briand, C.; Bourdarie, S.; Dudok De Wit, T.; Amari, T.; Blelly, P.-L.; Buchlin, E.; Chambodut, A.; Claret, A.; Corbard, T.; Génot, V.; Guennou, C.; Klein, K. L.; Koechlin, L.; Lavarra, M.; Lavraud, B.; Leblanc, F.; Lemorton, J.; Lilensten, J.; Lopez-Ariste, A.; Marchaudon, A.; Masson, S.; Pariat, E.; Reville, V.; Turc, L.; Vilmer, N.; Zucarello, F. P.

    2016-12-01

    We present a short review of space-weather tools and services developed and maintained by the French space-physics community. They include unique data from ground-based observatories, advanced numerical models, automated identification and tracking tools, a range of space instrumentation and interconnected virtual observatories. The aim of the article is to highlight some advances achieved in this field of research at the national level over the last decade and how certain assets could be combined to produce better space-weather tools exploitable by space-weather centres and customers worldwide. This review illustrates the wide range of expertise developed nationally but is not a systematic review of all assets developed in France.

  19. How Much Space Does a Library Need? Justifying Collections Space in an Electronic Age

    ERIC Educational Resources Information Center

    Butkovich, Nancy J.

    2010-01-01

    In 2002, plans to merge Penn State's Physical Sciences Library and Mathematics Library provoked a controversy in the Eberly College of Science over the size of the library needed to support its departments. The College contended that a physical collection no more than 5 years old was adequate. A study of astronomy, chemistry, mathematics, physics,…

  20. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.

    PubMed

    Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias

    2013-04-01

    Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.

  1. The contribution of travel-related urban zones, cycling and pedestrian networks and green space to commuting physical activity among adults - a cross-sectional population-based study using geographical information systems.

    PubMed

    Mäki-Opas, Tomi E; Borodulin, Katja; Valkeinen, Heli; Stenholm, Sari; Kunst, Anton E; Abel, Thomas; Härkänen, Tommi; Kopperoinen, Leena; Itkonen, Pekka; Prättälä, Ritva; Karvonen, Sakari; Koskinen, Seppo

    2016-08-11

    The current political agenda aims to promote active environments and physical activity while commuting to work, but research on it has provided mixed results. This study examines whether the proximity of green space and people's residence in different travel-related urban zones contributes to commuting physical activity. Population-based cross-sectional health examination survey, Health 2011 study, and geographical information system (GIS) data were utilized. The GIS data on green space and travel-related urban zones were linked to the individuals of the Health 2011 study, based on their home geocoordinates. Commuting physical activity was self-reported. Logistic regression models were applied, and age, gender, education, leisure-time and occupational physical activity were adjusted. Analyses were limited to those of working age, living in the core-urban areas of Finland and having completed information on commuting physical activity (n = 2 098). Home location in a pedestrian zone of a main centre (odds ratio = 1.63; 95 % confidence interval = 1.06-2.51) or a pedestrian zone of a sub-centre (2.03; 1.09-3.80) and higher proportion of cycling and pedestrian networks (3.28; 1.71-6.31) contributed to higher levels of commuting physical activity. The contribution remained after adjusting for all the environmental attributes and individuals. Based on interaction analyses, women living in a public transport zone were almost two times more likely to be physically active while commuting compared to men. A high proportion of recreational green space contributed negatively to the levels of commuting physical activity (0.73; 0.57-0.94) after adjusting for several background factors. Based on interaction analyses, individuals aged from 44 to 54 years and living in sub-centres, men living in pedestrian zones of sub-centres, and those individuals who are physically inactive during leisure-time were less likely to be physically active while commuting. Good pedestrian and cycling infrastructure may play an important role in promoting commuting physical activity among the employed population, regardless of educational background, leisure-time and occupational physical activity. Close proximity to green space and a high proportion of green space near the home may not be sufficient to initiate commuting physical activity in Finland, where homes surrounded by green areas are often situated in car-oriented zones far from work places.

  2. Affine Kac-Moody symmetric spaces related with A1^{(1)}, A2^{(1)},} A2^{(2)}

    NASA Astrophysics Data System (ADS)

    Nayak, Saudamini; Pati, K. C.

    2014-08-01

    Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A1^{(1)}, A2^{(1)}, A2^{(2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.

  3. Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    Weitz, Dave; Weeks, Eric; Gasser, Urs; Dinsmore, Tony; Mawley, Suliana; Segre, Phil; Cipelletti, Lucia

    2000-01-01

    This talk will present recent results from ground-based research to support the "Physics of Colloids in Space" project which is scheduled to fly in the ISS approximately one year from now. In addition, results supporting future planned flights will be discussed.

  4. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  5. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  6. Scientific uses of the space shuttle

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A survey was conducted to determine the possible missions which could be accomplished by the space shuttle. The areas of scientific endeavor which were considered are as follows: (1) atmospheric and space physics, (2) high energy astrophysics, (3) infrared astronomy, (4) optical and ultraviolet astronomy, (5) solar physics, (6) life sciences, and (7) planetary exploration. Specific projects to be conducted in these broader areas are defined. The modes of operation of the space shuttle are analyzed. Instruments and equipment required for conducting the experiments are identified.

  7. ESA's space science programme

    NASA Astrophysics Data System (ADS)

    Volonte, S.

    2018-04-01

    The Space Science Programme of ESA encompasses three broad areas of investigation, namely solar system science (the Sun, the planets and space plasmas), fundamental physics and space astronomy and astrophysics.

  8. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  9. Getting the Word Out: Undergradute Space Physics at Rice University

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Alexander, D.

    2006-12-01

    At Rice University we emphasize space physics in our non-major Physics and Astronomy undergraduate classes in addition to our graduate and majors program. In "ASTR 202" (solar system exploration for non- majors), we typically use a textbook which includes magnetospheric and auroral topics in it (many do not). In recent years, we have also created two new courses for undergraduates which highlight space physics. In spring 2005 we began PHYS 401, The Physics of Ham Radio, which includes a significant portion on the Sun, ionosphere, radio propagation, and space storms. It is a fun hands-on way to learn about circuits, electrical theory, antennas, and the effects of space weather, while creating a new hobby at the same time. The students are required to attempt the FCC "Technician" exam as their midterm exam, and all of the class members passed. This course is taken both by undergraduates and by local teachers in the Master of Science Teaching program (the teacher tuition is partially supported by CISM), and is offered every other year (it will be offered again in Spring 2007). In fall 2005 one of us (Alexander) started a new course, ASTR 243 "Exploring the Sun-Earth Connection", which focuses entirely on solar and space weather topics. It required the students to perform several projects over the course of the semester, and used many online resources. The feedback from the first session was very favorable, so it also will likely be offered every other year. Two of the students extended their experience by participating in summer research, one at an REU at the National Solar Observatory working on helioseismology data, and one at an international summer school in the U.K. where she focused on coronal heating. Thus with two courses in an every-other-year rotation, each academic year one undergraduate course in space physics is available at Rice. Furthermore, all senior majors are required to perform research, and each year several students choose a solar or space physics topic for their senior research, and often go on to graduate study at schools around the nation. Sun-Earth course page: http://www.owlnet.rice.edu/~astr243/ Ham radio course page: http://space.rice.edu/PHYS401/

  10. The link between perceived characteristics of neighbourhood green spaces and adults' physical activity in UK cities: analysis of the EURO-URHIS 2 Study.

    PubMed

    Ali, Omer; Di Nardo, Francesco; Harrison, Annie; Verma, Arpana

    2017-08-01

    Urban dwellers represent half the world's population and are increasing worldwide. Their health and behaviours are affected by the built environment and green areas may play a major role in promoting physical activity, thus decreasing the burden of chronic diseases, overweight and inactivity. However, the availability of green areas may not guarantee healthy levels of physical activity among the urban dwellers. It is therefore necessary to study how the perceived characteristics of green areas affect physical activity. Data from the EURO-URHIS 2 survey of residents of 13 cities across the UK were analyzed and a multivariable model was created in order to assess the association between their perceptions of the green areas in their neighbourhood and their engagement in physical activity. Results were adjusted for age, gender and other potential confounders. Those who felt unable to engage in active recreational activities in their local green spaces were significantly less likely to carry out moderate physical exercise for at least 60 min per week (adjusted OR: 0.50; 95% 0.37-0.68). Availability of green areas within walking distance did not affect engagement in physical activity. Other characteristics such as accessibility and safety may play an important role. This study showed that the presence of green space may not itself encourage the necessary preventative health behaviours to tackle physical inactivity in urban populations. Development of more appropriate green spaces may be required. Further research is needed to shed light on the types green spaces that are most effective. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  11. Through Microgravity and Towards the Stars: Microgravity and Strategic Research at Marshall's Biological and Physical Space Research Laboratory

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2003-01-01

    The Microgravity and Strategic research at Marshall s Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall s Biological and Physical Research Laboratory s scientists. In addition to Microgravity research the Station will enable research in "Strategic" Research Areas that focus on enabling humans to live, work, and explore the solar system safely. New research in Radiation Protection, Strategic Molecular Biology, and In-Space Fabrication will be introduced.

  12. Physical, chemical and biological characteristics of space flown tomato (Lycopersicum esculentum) seeds

    NASA Astrophysics Data System (ADS)

    Esyanti, Rizkita R.; Dwivany, Fenny M.; Almeida, Maria; Swandjaja, Leonita

    2016-11-01

    Several research showed that space flown treated seeds had a different characteristic with that of ground treated seed, which eventually produced a different characteristic of growth and productivity. Research was conducted to study the physical, chemical and biological properties, such as the rate of germination and the growth of tomato (Lycopersicum esculentum) space flown seeds compared with that of control one. Observations of physical properties using a SEM showed that there were pores on the surface of some tomato space flown seeds. Observations using a stereo and inverted microscope showed that the coat layer of space flown seeds was thinner than control seeds. The total mineral content in the control seeds (22.88%) was averagely higher than space flown seeds (18.66%), but the average carbohydrate content in control seed was lower (15.2 ± 2.79%) than the space flown seeds (9.02 ± 1.87%). The level of auxin (IAA) of control seeds (142 ± 6.88 ppm) was averagely lower than the space flown seeds (414 ± 78.84 ppm), whereas the level of cytokinins (zeatin) for the control seeds (381 ± 68.86 ppm) was higher than the space flown seeds (68 ± 9.53 ppm), and the level of gibberellin (GA3) for the control seeds (335 ± 10.7 ppm) was higher than the space flown seeds (184 ± 7.4 ppm). The results of this study showed that the physical and chemical properties of tomato space flown seeds were generally different compare with that to control seeds, so that it might also be resulted in different germination and growth characteristic. The germination test showed that space flown seeds had lower germination rate compare to control. The growth pattern indicated that planted space flown seeds generally grew better than control. However, those data were more homogenous in control seeds compare to that in space flown tomato seeds.

  13. Overview of the SHIELDS Project at LANL

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, D.; Vernon, L.; Woodroffe, J. R.; Toth, G.; Welling, D. T.; Yu, Y.; Birn, J.; Thomsen, M. F.; Borovsky, J.; Denton, M.; Albert, J.; Horne, R. B.; Lemon, C. L.; Markidis, S.; Young, S. L.

    2015-12-01

    The near-Earth space environment is a highly dynamic and coupled system through a complex set of physical processes over a large range of scales, which responds nonlinearly to driving by the time-varying solar wind. Predicting variations in this environment that can affect technologies in space and on Earth, i.e. "space weather", remains a big space physics challenge. We present a recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program that is developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to specify the dynamics of the hot (keV) particles (the seed population for the radiation belts) on both macro- and micro-scale, including important physics of rapid particle injection and acceleration associated with magnetospheric storms/substorms and plasma waves. This challenging problem is addressed using a team of world-class experts in the fields of space science and computational plasma physics and state-of-the-art models and computational facilities. New data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed in addition to physics-based models. This research will provide a framework for understanding of key radiation belt drivers that may accelerate particles to relativistic energies and lead to spacecraft damage and failure. The ability to reliably distinguish between various modes of failure is critically important in anomaly resolution and forensics. SHIELDS will enhance our capability to accurately specify and predict the near-Earth space environment where operational satellites reside.

  14. Future space. A new blueprint for business architecture.

    PubMed

    Huang, J

    2001-04-01

    Although the Internet is an essential conduit for many business activities, it isn't rendering the physical world any less important, as the failures of many Web merchants demonstrate. People need social and sensual contact. The companies that succeed will be those best able to integrate the physical and the virtual. But that requires a new kind of business architecture--a new approach to designing stores, offices, factories, and other spaces where business is conducted. The author, a faculty member at Harvard Graduate School of Design, provides practical guidelines to help managers and entrepreneurs think creatively about the structures in which their businesses operate. He outlines four challenges facing designers of such "convergent" structures, so-called because they function in both physical and virtual space: matching form to function, allowing visitors to visualize the presence of others, personalizing spaces, and choreographing connectivity. Using numerous examples, from a fashion retailer that wants to sell in stores as well as through a Web site to a radically new kind of consulate, the author shows how businesses can meet each challenge. For instance, allowing customers to visualize the presence of others means that visitors to a Web site should be given a sense of other site visitors. Personalizing physical and virtual spaces involves using databases to enable those spaces to adapt quickly to user preferences. The success of companies attempting to merge on-line and traditional operations will depend on many factors. But without a well-designed convergent architecture, no company will fully reap the synergies of physical space and Internet technology.

  15. Constraining the physical state by symmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatibene, L., E-mail: lorenzo.fatibene@unito.it; INFN - Sezione Torino - IS QGSKY; Ferraris, M.

    After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or bymore » an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. - Highlights: • Investigate the relation between the hole argument, covariance, determinism and physical state. • Show that if space is compact then any diffeomorphism is a gauge symmetry. • Show that if space is not compact then there may be more freedom in choosing gauge group.« less

  16. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  17. 14 CFR § 1203b.105 - Use of non-deadly physical force when making an arrest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of non-deadly physical force when making an arrest. § 1203b.105 Section § 1203b.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.105...

  18. Algebra and topology for applications to physics

    NASA Technical Reports Server (NTRS)

    Rozhkov, S. S.

    1987-01-01

    The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.

  19. Semantic e-Science in Space Physics - A Case Study

    NASA Astrophysics Data System (ADS)

    Narock, T.; Yoon, V.; Merka, J.; Szabo, A.

    2009-05-01

    Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.

  20. Research in space physics at the University of Iowa. [astronomical observatories, spaceborne astronomy, satellite observation

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1974-01-01

    Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.

  1. Physical performance is maintained in women consuming only foods used on the U.S. Space Shuttle.

    PubMed

    Gretebeck, R J; Siconolfi, S F; Rice, B; Lane, H W

    1994-11-01

    In-flight reductions in caloric intake, body weight, lean body mass (LBM), aerobic capacity, and other measures of physical performance have been consistent findings in the U.S. and Russian space programs. The diet provided for astronauts in space has been suggested as a possible contributor to these changes because food selection, preparation, and storage facilities are limited on spacecraft. In this ground-based study, consuming only foods used on the Space Shuttle for 28 d did not affect aerobic capacity, LBM, or measures of muscle strength or endurance in 12 healthy women (ages 28-47 years). However, normal consumption patterns were affected by restriction to the Space Shuttle diet, namely a proportional increase in carbohydrate consumed, with compensatory decreases in protein and fat. These results suggest that physical performance and LBM can be maintained under normal gravity conditions in active women who consume a Space Shuttle food-system diet for 28 d.

  2. Office of Biological and Physical Research: Overview Transitioning to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Crouch, Roger

    2004-01-01

    Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.

  3. The Space Puppets

    NASA Astrophysics Data System (ADS)

    Lago, M. Miguel; Esteban Berea, J.; Miñambres Fernández, M.; Rufino, M.

    2002-01-01

    This proposal is a response to the initiative "Physics on Stage 2" to excite interest in physics and science by a dance and puppetry performance. The purpose of this piece is to show the possibilities and characteristics of entertainment with space knowledge and education for the audience of teachers and children through a show. Two virtually opposite areas (science and arts), both generally inaccessible for children, will be introduced in a funny and amusing way, with the interaction of puppets. Education is not "fashion"... we need to develop an educational package to focus the attention of children on the uses of Space in everyday life. Our world today is mainly logic and mathematical. The presence of art in the children's lives is often scarce or even inexistent. With the performance children will gain a better understanding of space physics through the joy of a dance performance like an educational tool. Dance as body expression, is a very powerful tool to explain and interact with children and teachers. Through dance the physics of movement may be studied in a visual way, within the body's limits. We consider as priority the use of dance as well as theater (in this case, puppet theater) as an efficient and fun didactic method, which we may go further and explain in an imaginative funny way all those complex processes of physics, which are further unknown. Aiming to teach in a relaxing atmosphere the performance is based on the " Earth Space Alphabet", a first dictionary for Primary Schools combining Science, Space and Education... Did you ever realize that people are not interested in something because they do not understand the words or the meaning? The alphabet is intended to meet the overwhelming need that exists for education on space, and allows both teachers and children to learn about the "Art of Teaching Space" combining earth and space language linked by space technology. The performance explains many concepts of physics through a comet puppet, which travels in Space driving the dance artist on its tail. On the journey, they discover the alphabet letters, letters that make words, words which are concepts of physics, physics which is on the stage this stage being space. The teacher before, during and after the performance, will analyse, review and discuss through this simple tool "an alphabet", space vocabulary and also the meaning of communication and teaching. They will relate to the present situation of physics and science education in general and Space in particular and how to address this problem through our language. Instructions Name of Conference to which this abstract is53rd IAC submitted FirstFirst Submission Subrnission/Update/Correction/Withdrawal Title of Contribution in plain ASCII.The Space Puppets Author(s): a) Last Name, Initial(s) - b) LastMIGUEL LAGO., M. Name, lnitial(s) - c) etc. Number and Title or Abbreviation of SessionP. Space and Education Symposium to which this abstract is submitted.P.3. Educational and Outreach Name of Chairs of that SessionFrank Friedlaender and Dennis Stone Indicate any equipment you need in addition to the standard equipment: One overhead projector and screen will be available in ail IAC sessions. A limited number of LCD and 35mm slide projectors will be provided in sessions based on advance notice of need and availability of projectors. All presenters should bring copies of their computer presentations in overhead format in case LCD projection is not available for a specific session. Type of abstract file added/attached/sentWord file sent by e-mail separately Address of Main Author:Miguel Lago NameMónica. First Name Dept. Company/University: PO Box/Street:P.O. Box ZIP Code:D-22415 City: Country: Telephone: E-mail:+31 71 565 36 84 E-mail:+31 71 565 55 90 Have you obtained or will you obtain approval to attend the Congress? Yes Are you willing to present this paper at the IAC Public Outreach Program: Yes

  4. Mars Exploration: Is There Water on Mars? An Educator's Guide with Activities for Physical and Earth and Space Science.

    ERIC Educational Resources Information Center

    TERC, Cambridge, MA.

    This educator's guide discusses whether there is water on the planet Mars. The activities, written for grades 9-12, concern physical, earth, and space sciences. By experimenting with water as it changes state and investigating some effects of air pressure, students not only learn core ideas in physical science but can also deduce the water…

  5. Planetary atmospheric physics and solar physics research

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview is presented on current and planned research activities in the major areas of solar physics, planetary atmospheres, and space astronomy. The approach to these unsolved problems involves experimental techniques, theoretical analysis, and the use of computers to analyze the data from space experiments. The point is made that the research program is characterized by each activity interacting with the other activities in the laboratory.

  6. Recent measurements for hadrontherapy and space radiation: nuclear physics

    NASA Technical Reports Server (NTRS)

    Miller, J.

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  7. Introduction to the Space Physics Analysis Network (SPAN)

    NASA Technical Reports Server (NTRS)

    Green, J. L. (Editor); Peters, D. J. (Editor)

    1985-01-01

    The Space Physics Analysis Network or SPAN is emerging as a viable method for solving an immediate communication problem for the space scientist. SPAN provides low-rate communication capability with co-investigators and colleagues, and access to space science data bases and computational facilities. The SPAN utilizes up-to-date hardware and software for computer-to-computer communications allowing binary file transfer and remote log-on capability to over 25 nationwide space science computer systems. SPAN is not discipline or mission dependent with participation from scientists in such fields as magnetospheric, ionospheric, planetary, and solar physics. Basic information on the network and its use are provided. It is anticipated that SPAN will grow rapidly over the next few years, not only from the standpoint of more network nodes, but as scientists become more proficient in the use of telescience, more capability will be needed to satisfy the demands.

  8. Dual Vector Spaces and Physical Singularities

    NASA Astrophysics Data System (ADS)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  9. Formation and Decay of the Inner Electron Radiation Belt

    DTIC Science & Technology

    2017-01-09

    Colorado Boulder, Boulder, Colorado, USA, 4NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA, 5Department of Physics and Astronomy , Dartmouth...Colorado Boulder, Boulder, Colorado, USA, 4NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 5Department of Physics and Astronomy , Dartmouth

  10. FPEF (Fluid Physics Experiment Facility) for the planned MS (Marangoni Surface) experiment

    NASA Image and Video Library

    2009-07-01

    ISS020-E-016214 (1 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, prepares the Fluid Physics Experiment Facility (FPEF) for the planned Marangoni Surface experiment in the Kibo laboratory of the International Space Station.

  11. Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment

    NASA Astrophysics Data System (ADS)

    Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.

    2009-11-01

    The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.

  12. [The Museu da Saúde in Portugal: a physical space, a virtual space].

    PubMed

    Oliveira, Inês Cavadas de; Andrade, Helena Rebelo de; Miguel, José Pereira

    2015-12-01

    Museu da Saúde (Museum of Health) in Portugal, based on the dual concept of a multifaceted physical space and a virtual space, is preparing an inventory of its archive. So far, it has studied five of its collections in greater depth: tuberculosis, urology, psychology, medicine, and malaria. In this article, these collections are presented, and the specificities of developing museological activities within a national laboratory, Instituto Nacional de Saúde Doutor Ricardo Jorge, are also discussed, highlighting the issues of the store rooms and exhibition spaces, the inventory process, and the communication activities, with a view to overcoming the challenges inherent to operating in a non-museological space.

  13. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  14. Patient Perceptions of the Environment of Care in Which Their Healthcare is Delivered.

    PubMed

    LaVela, Sherri L; Etingen, Bella; Hill, Jennifer N; Miskevics, Scott

    2016-04-01

    To measure patients' perceptions of the environment of care (EOC), with a focus on the physical environment, in which healthcare is delivered. The EOC may impact patient experiences, care perceptions, and health outcomes. EOC may be improved through redesign of existing physical structures or spaces or by adding nurturing amenities. Demographics, health status, hospital use, and data on the environment (physical, comfort, orientation, and privacy) were collected via a mailed cross-sectional survey sent to patients seen at four hospital Centers of Innovation (COIs; that implemented many modifications to the healthcare environment to address physical, comfort, orientation, and privacy factors) and four matched controls, supplemented with checklist and VA administrative data. A modified Perceived Hospital Environment Quality Indicators instrument was used to measure patients' EOC perceptions. Respondents (3,321/5,117; 65% response) rated, [mean (SD)], exterior space highest, 3.09 (0.73), followed by interior space, 2.96 (0.74), and privacy, 2.44 (1.01). COIs had significantly higher ratings than controls on interior space (2.99 vs. 2.96, p = .02) and privacy (2.48 vs. 2.38, p = .005) but no differences for exterior space. Subscales with significantly higher ratings in COIs (vs. controls) in interior space were "spatial-physical comfort" and "orientation," for example, clean, good signage, spacious rooms, and for privacy included "not too crowded" and "able to talk without being overheard." Checklist findings confirmed the presence of EOC innovations rated highly by patients. Patients identified cleanliness, good signs/information points, adequate seating, nonovercrowding, and privacy for conversations as important. Hospital design modifications, with particular attention to the physical environment, can improve patient EOC perceptions. © The Author(s) 2015.

  15. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  16. Proceedings of the Workshop on the Scientific Applications of Clocks in Space

    NASA Technical Reports Server (NTRS)

    Maleki, Lute (Editor)

    1997-01-01

    The Workshop on Scientific Applications of Clocks in space was held to bring together scientists and technologists interested in applications of ultrastable clocks for test of fundamental theories, and for other science investigations. Time and frequency are the most precisely determined of all physical parameters, and thus are the required tools for performing the most sensitive tests of physical theories. Space affords the opportunity to make measurement, parameters inaccessible on Earth, and enables some of the most original and sensitive tests of fundamental theories. In the past few years, new developments in clock technologies have pointed to the opportunity for flying ultrastable clocks in support of science investigations of space missions. This development coincides with the new NASA paradigm for space flights, which relies on frequent, low-cost missions in place of the traditional infrequent and high-cost missions. The heightened interest in clocks in space is further advanced by new theoretical developments in various fields. For example, recent developments in certain Grand Unified Theory formalisms have vastly increased interest in fundamental tests of gravitation physics with clocks. The workshop included sessions on all related science including relativity and gravitational physics, cosmology, orbital dynamics, radio science, geodynamics, and GPS science and others, as well as a session on advanced clock technology.

  17. Physics and astrophysics from a lunar base; Proceedings of the 1st NASA Workshop, Stanford, CA, May 19, 20, 1989

    NASA Technical Reports Server (NTRS)

    Potter, A. E. (Editor); Wilson, T. L. (Editor)

    1990-01-01

    The present conference on physics and astrophysics from a lunar base encompasses space physics, cosmic ray physics, neutrino physics, experiments in gravitation and general relativity, gravitational radiation physics, cosmic background radiation, particle astrophysics, surface physics, and the physics of gamma rays and X-rays. Specific issues addressed include space-plasma physics research at a lunar base, prospects for neutral particle imaging, the atmosphere as particle detector, medium- and high-energy neutrino physics from a lunar base, muons on the moon, a search for relic supernovae antineutrinos, and the use of clocks in satellites orbiting the moon to test general relativity. Also addressed are large X-ray-detector arrays for physics experiments on the moon, and the measurement of proton decay, arcsec-source locations, halo dark matter and elemental abundances above 10 exp 15 eV at a lunar base.

  18. Phenomenological Modeling of Infrared Sources: Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming; Kwok, Sun (Editor)

    1993-01-01

    Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Znojil, Miloslav

    For many quantum models an apparent non-Hermiticity of observables just corresponds to their hidden Hermiticity in another, physical Hilbert space. For these models we show that the existence of observables which are manifestly time-dependent may require the use of a manifestly time-dependent representation of the physical Hilbert space of states.

  20. Kuipers during replacement of the Marangoni Surface Fluid Dynamics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142827 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  1. Special Relativity

    NASA Astrophysics Data System (ADS)

    Dixon, W. G.

    1982-11-01

    Preface; 1. The physics of space and time; 2. Affine spaces in mathematics and physics; 3. Foundations of dynamics; 4. Relativistic simple fluids; 5. Electrodynamics of polarisable fluids; Appendix: Vector and dyadic notation in three dimensions; Publications referred to in the text; Summary and index of symbols and conventions; Subject index.

  2. Statistical physics of the symmetric group.

    PubMed

    Williams, Mobolaji

    2017-04-01

    Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.

  3. Statistical physics of the symmetric group

    NASA Astrophysics Data System (ADS)

    Williams, Mobolaji

    2017-04-01

    Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.

  4. Navigating Mythic Space in the Digital Age

    ERIC Educational Resources Information Center

    Foley, Drew Thomas

    2012-01-01

    In prior ages, alternate worlds are associated with symbolic expressions of storied space, here termed "mythic space." The digital age brings new forms of virtual space that are co-existent with physical space. These virtual spaces may be understood as a contemporary representation of mythic space. This dissertation explores the paths by…

  5. [Musculoskeletal rehabilitation and bone. Musculoskeletal response to human space flight and physical countermeasures].

    PubMed

    Ohshima, Hiroshi

    2010-04-01

    The assembly of the Japanese Experiment Module "Kibo" to international space station was completed in 2009 and Koichi Wakata became the first Japanese station astronaut who spent more than 4 months in the station. Bone and muscle losses are significant medical concerns for long duration human space flight. Effective countermeasure program for bone loss and muscle atrophy is necessary to avoid post flight bone fracture and joint sprain after landing. The musculoskeletal response to human space flight and current physical countermeasure program for station astronauts are described.

  6. Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2004-01-01

    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.

  7. Exhaustive search system and method using space-filling curves

    DOEpatents

    Spires, Shannon V.

    2003-10-21

    A search system and method for one agent or for multiple agents using a space-filling curve provides a way to control one or more agents to cover an area of any space of any dimensionality using an exhaustive search pattern. An example of the space-filling curve is a Hilbert curve. The search area can be a physical geography, a cyberspace search area, or an area searchable by computing resources. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace.

  8. LECTURES ON PHYSICS, BIOPHYSICS, AND CHEMISTRY FOR HIGH SCHOOL SCIENCE TEACHERS GIVEN AT THE ERNEST O. LAWRENCE RADIATION LABORATORY, BERKELEY, CALIFORNIA, JUNE-AUGUST 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calhoon, E.C.; Starring, P.W. eds.

    1959-08-01

    Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less

  9. Study of energetic particle dynamics in Harbin Dipole eXperiment (HDX) on Space Plasma Environment Research Facility (SPERF)

    NASA Astrophysics Data System (ADS)

    Zhibin, W.; Xiao, Q.; Wang, X.; Xiao, C.; Zheng, J.; E, P.; Ji, H.; Ding, W.; Lu, Q.; Ren, Y.; Mao, A.

    2015-12-01

    Zhibin Wang1, Qingmei Xiao1, Xiaogang Wang1, Chijie Xiao2, Jinxing Zheng3, Peng E1, Hantao Ji1,5, Weixing Ding4, Quaming Lu6, Y. Ren1,5, Aohua Mao11 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China 150001 2 State Key Lab of Nuclear Physics & Technology, and School of Physics, Peking University, Beijing, China 100871 3ASIPP, Hefei, China, 230031 4University of California at Los Angeles, Los Angeles, CA, 90095 5Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 6University of Science and Technology of China, Hefei, China, 230026 A new terrella device for laboratory studies of space physics relevant to the inner magnetospheric plasmas, Harbin Dipole eXperiment (HDX), is scheduled to be built at Harbin Institute of Technology (HIT), China. HDX is one of two essential parts of Space Plasma Environment Research Facility (SPERF), which is a major national research facility for space physics studies. HDX is designed to provide a laboratory experimental platform to reproduce the earth's magnetospheric structure for investigations on the mechanism of acceleration/loss and wave-particle interaction of energetic particles in radiation belt, and on the influence of magnetic storms on the inner magnetosphere. It can be operated together with Harbin Reconnection eXperiment (HRX), which is another part of SPERF, to study the fundamental processes during interactions between solar wind and Earth's magnetosphere. In this presentation, the scientific goals and experimental plans for HDX, together with the means applied to generate the plasma with desired parameters, including multiple plasma sources and different kinds of coils with specific functions, as well as advanced diagnostics designed to be equipped to the facility for multi-functions, are reviewed. Three typical scenarios of HDX with operations of various coils and plasma sources to study specific physical processes in space plasmas will also be presented.

  10. Neighbourhood access to open spaces and the physical activity of residents: a national study.

    PubMed

    Witten, Karen; Hiscock, Rosemary; Pearce, Jamie; Blakely, Tony

    2008-09-01

    Increasing population levels of physical activity is high on the health agenda in many countries. There is some evidence that neighbourhood access to public open space can increase physical activity by providing easier and more direct access to opportunities for exercise. This national study examines the relationship between travel time access to parks and beaches, BMI and physical activity in New Zealand neighbourhoods. Access to parks and beaches, measured in minutes taken by a car, was calculated for 38,350 neighbourhoods nationally using Geographic Information Systems. Multilevel regression analyses were used to establish the significance of access to these recreational amenities as a predictor of BMI, and levels of physical activity and sedentary behaviour in the 12,529 participants, living in 1178 neighbourhoods, of the New Zealand Health Survey 2002/3. Neighbourhood access to parks was not associated with BMI, sedentary behaviour or physical activity, after controlling for individual-level socio-economic variables, and neighbourhood-level deprivation and urban/rural status. There was some evidence of a relationship between beach access and BMI and physical activity in the expected direction. This study found little evidence of an association between locational access to open spaces and physical activity.

  11. Alignment achieved? The learning landscape and curricula in health profession education.

    PubMed

    Nordquist, Jonas

    2016-01-01

    The overall aim of this review is to map the area around the topic of the relationship between physical space and learning and to then draw further potential implications from this for the specific area of health profession education. The nature of the review is a scoping review following a 5-step-model by Arksey & O'Malley. The charting of the data has been conducted with the help of the networked learning landscape framework from Nordquist and Laing. The majority of the research studies on classroom-scale level have focused on how technology may enable active learning. There are no identified research studies on the building-scale level. Hence, the alignment of curricula and physical learning spaces has scarcely been addressed in research from other sectors. In order to 'create a field', conclusions from both case studies and research in related areas must be identified and taken into account to provide insights into health profession education. Four areas have been identified as having potential for future development in health profession education: (i) active involvement of faculty members in the early stages of physical space development; (ii) further development of the assessment strategies for evaluating how physical space impacts learning; (iii) exploration of how informal spaces are being developed in other sectors; and (iv) initiating research projects in HPE to study how informal spaces impact on students' learning. Potentially, the results of this scoping review will result in better future research questions and better-designed studies in this new and upcoming academic field of aligning physical learning spaces and curricula in health profession education. © 2015 John Wiley & Sons Ltd.

  12. The space laboratory of University College London

    NASA Astrophysics Data System (ADS)

    Johnstone, Alan

    1994-10-01

    University College London was one of the first universities in the world to become involved in making scientific observations in space. Since its laboratory, the Mullard Space Science Laboratory was established, it has participated in 40 satellite missions and more than 200 sounding rocket experiments. Its scientific research in five fields, space plasma physics, high energy astronomy, solar astronomy, Earth remote sensing, and detector physics is internationally renowned. The scientific and technological expertise development through the construction and use of space instrumentation has been fed back into an educational program which leads to degrees at the three levels of B.Sc., M.Sc., and Ph.D.

  13. Physics: A Career for You?

    ERIC Educational Resources Information Center

    American Inst. of Physics, New York, NY.

    Information is provided for students who may be interested in pursuing a career in physics. This information includes the type of work done and areas studied by physicists in the following areas: nuclear physics, solid-state physics, elementary-particle physics, atomic/molecular/electron physics, fluid/plasma physics, space/planetary physics,…

  14. Investigations of Physical Processes in Microgravity Relevant to Space Electrochemical Power Systems

    NASA Technical Reports Server (NTRS)

    Lvovich, Vadim F.; Green, Robert; Jakupca, Ian

    2015-01-01

    NASA has performed physical science microgravity flight experiments in the areas of combustion science, fluid physics, material science and fundamental physics research on the International Space Station (ISS) since 2001. The orbital conditions on the ISS provide an environment where gravity driven phenomena, such as buoyant convection, are nearly negligible. Gravity strongly affects fluid behavior by creating forces that drive motion, shape phase boundaries and compress gases. The need for a better understanding of fluid physics has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low-gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena that are very relevant to management of fluid - gas separations in fuel cell and electrolysis systems. Experiments conducted in space have yielded rich results. These results provided valuable insights into fundamental fluid and gas phase behavior that apply to space environments and could not be observed in Earth-based labs. As an example, recent capillary flow results have discovered both an unexpected sensitivity to symmetric geometries associated with fluid container shape, and identified key regime maps for design of corner or wedge-shaped passive gas-liquid phase separators. In this presentation we will also briefly review some of physical science related to flight experiments, such as boiling, that have applicability to electrochemical systems, along with ground-based (drop tower, low gravity aircraft) microgravity electrochemical research. These same buoyancy and interfacial phenomena effects will apply to electrochemical power and energy storage systems that perform two-phase separation, such as water-oxygen separation in life support electrolysis, and primary space power generation devices such as passive primary fuel cell.

  15. Audiovisual Aids for Astronomy and Space Physics at an Urban College

    ERIC Educational Resources Information Center

    Moche, Dinah L.

    1973-01-01

    Discusses the use of easily available audiovisual aids to teach a one semester course in astronomy and space physics to liberal arts students of both sexes at Queensborough Community College. Included is a list of teaching aids for use in astronomy instruction. (CC)

  16. Nex-Gen Space Observatory

    NASA Image and Video Library

    2011-10-26

    Adam Reiss, recipient of the 2011 Nobel Prize in Physics and professor of astronomy and physics at Johns Hopkins University speaks at the presentation of the permanent exhibit of the James Webb Space Telescope at the Maryland Science Center on Wednesday, Oct. 26, 2011 in Baltimore. Photo Credit: (NASA/Carla Cioffi)

  17. Computational studies on non-succinimide-mediated stereoinversion mechanism of aspartic acid residues assisted by phosphate

    NASA Astrophysics Data System (ADS)

    Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Takahashi, Ohgi; Oda, Akifumi

    2018-03-01

    Although nearly all of the amino acids that constitute proteins are l-amino acids, d-amino acid residues in human proteins have been recently reported. d-amino acid residues cause a change in the three-dimensional structure of proteins, and d-aspartic acid (Asp) residues are considered to be one of the causes of age-related diseases. The stereoinversion of Asp residues in peptides and proteins is thought to proceed via a succinimide intermediate; however, it has been reported that stereoinversion can occur even under conditions where a succinimide intermediate cannot be formed. In order to elucidate the non-succinimide-mediated stereoinversion pathway, we investigated the stereoinversion of l-Asp to d-Asp catalysed by phosphate and estimated the activation barrier using B3LYP/6-31+G(d,p) density functional theory (DFT) calculations. For the DFT calculations, a model compound in which the Asp residue is capped with acetyl and methyl-amino groups on the N- and C-termini, respectively, was used. The calculated activation barrier was not excessively high for the stereoinversion to occur in vivo. Therefore, this stereoinversion mechanism may compete with the succinimide-mediated mechanism.

  18. Terbium-Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties.

    PubMed

    Ma, Baojin; Wu, Yu; Zhang, Shan; Wang, Shicai; Qiu, Jichuan; Zhao, Lili; Guo, Daidong; Duan, Jiazhi; Sang, Yuanhua; Li, Linlin; Jiang, Huaidong; Liu, Hong

    2017-02-28

    Terbium-aspartic acid (Tb-Asp) nanocrystals with chirality-dependent tunable fluorescent properties can be synthesized through a facile synthesis method through the coordination between Tb and Asp. Asp with different chirality (dextrorotation/d and levogyration/l) changes the stability of the coordination center following fluorescent absorption/emission ability differences. Compared with l-Asp, d-Asp can coordinate Tb to form a more stable center, following the higher quantum yield and longer fluorescence life. Fluorescence intensity of Tb-Asp linearly increases with increase ratio of d-Asp in the mixed chirality Tb-Asp system, and the fluorescent properties of Tb-Asp nanocrystals can be tuned by adjusting the chirality ratio. Tb-Asp nanocrystals possess many advantage, such as high biocompatibility, without any color in visible light irradiation, monodispersion with very small size, and long fluorescent life. Those characteristics will give them great potential in many application fields, such as low-cost antifake markers and advertisements using inkjet printers or for molds when dispersed in polydimethylsiloxane. In addition, europium can also be used to synthesize Eu-Asp nanoparticles. Importantly, the facile, low-cost, high-yield, mass-productive "green" process provides enormous advantages for synthesis and application of fluorescent nanocrystals, which will have great impact in nanomaterial technology.

  19. Synthesis of Al2O3 thin films using laser assisted spray pyrolysis (LASP)

    NASA Astrophysics Data System (ADS)

    Dhonge, Baban P.; Mathews, Tom; Tripura Sundari, S.; Krishnan, R.; Balamurugan, A. K.; Kamruddin, M.; Subbarao, R. V.; Dash, S.; Tyagi, A. K.

    2013-01-01

    The present study reports the development of a laser assisted ultrasonic spray pyrolysis technique and synthesis of dense optical alumina films using the same. In this technique ultrasonically generated aerosols of aluminum acetylacetonate dissolved in ethanol and a laser beam (Nd:YAG, CW, 1064 nm) were fed coaxially and concurrently through a quartz tube on to a hot substrate mounted on an X-Y raster stage. At the laser focused spot the precursor underwent solvent evaporation and solute sublimation followed by precursor vapor decomposition giving rise to oxide coating, the substrate is rastered to get large surface area coating. The surface morphology revealed coalescence of particles with increase in laser power. The observed particle sizes were 17 nm for films synthesized without laser and 18, 21 and 25 nm for films made with laser at 25, 38 and 50 W, respectively. Refractive index of the films synthesized increased from 1.56 to 1.62 as the laser power increased from 0 to 50 W. The stoichiometry of films was studied using XPS and the increase in interfacial layer thickness with laser power was observed from dynamic SIMS depth profiling and ellipsometry.

  20. Incorporation of metabolites into glycogen and lipids of the oyster, crassostrea virginica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, M.L.; Humphrey, C.L.

    1987-05-01

    Groups of oysters, either fed or unfed, were exposed to U-{sup 14}C labelled D-glucose, L-asp, L-leu, L-ala or acetate for 6 hrs. Except for the glucose trials, the disappearance of radioactivity from the saline of the unfed oysters was greater (83%) than for the fed animals (65%). With glucose, 88% of the radioactivity disappeared in each trial. The specific radioactivity of glycogen isolated from oysters exposed to labelled glucose, asp and ala was 1283, 468 and 8.22 dpm/mg glycogen respectively. Radioactivity was found primarily in the triacylglycerols and phospholipids (PL) in fed oysters and in PL only in unfed oysters.more » Phosphatidyl choline, phosphatidyl ethanolamine, and a fraction containing phosphatidyl serine and phosphatidyl inositol, had 32%, 25% and 35-40% of the radioactivity respectively. Incorporation of total radioactivity into PL was 70% lower in unfed vs. fed trials, but the distribution of counts among the phospholipids classes was unchanged. Glycogenesis does not appear to be a significant pathway in the oyster. Apparently well-fed oysters are able to store excess dietary calories as lipid. During periods of starvation exogenous small metabolites along with glucose from glycogen are catabolized.« less

  1. Measuring accessibility of sustainable transportation using space syntax in Bojonggede area

    NASA Astrophysics Data System (ADS)

    Suryawinata, B. A.; Mariana, Y.; Wijaksono, S.

    2017-12-01

    Changes in the physical structure of regional space as a result of the increase of planned and unplanned settlements in the Bojonggede area have an impact on the road network pattern system. Changes in road network patterns will have an impact on the permeability of the area. Permeability measures the extent to which road network patterns provide an option in traveling. If the permeability increases the travel distance decreases and the route of travel choice increases, permeability like this can create an easy access system and physically integrated. This study aims to identify the relationship of physical characteristics of residential area and road network pattern to the level of space permeability in Bojonggede area. By conducting this research can be a reference for the arrangement of circulation, accessibility, and land use in the vicinity of Bojonggede. This research uses quantitative method and space syntax method to see global integration and local integration on the region which become the parameter of permeability level. The results showed that the level of permeability globally and locally high in Bojonggede physical area is the physical characteristics of the area that has a grid pattern of road network grid.

  2. Perspective Space as a Model for Distance and Size Perception.

    PubMed

    Erkelens, Casper J

    2017-01-01

    In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception.

  3. Perspective Space as a Model for Distance and Size Perception

    PubMed Central

    2017-01-01

    In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception. PMID:29225765

  4. Affine Kac-Moody symmetric spaces related with A{sub 1}{sup (1)}, A{sub 2}{sup (1)}, A{sub 2}{sup (2)}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Saudamini, E-mail: anumama.nayak07@gmail.com; Pati, K. C., E-mail: kcpati@nitrkl.ac.in

    Symmetric spaces associated with Lie algebras and Lie groups which are Riemannian manifolds have recently got a lot of attention in various branches of Physics for their role in classical/quantum integrable systems, transport phenomena, etc. Their infinite dimensional counter parts have recently been discovered which are affine Kac-Moody symmetric spaces. In this paper we have (algebraically) explicitly computed the affine Kac-Moody symmetric spaces associated with affine Kac-Moody algebras A{sub 1}{sup (1)},A{sub 2}{sup (1)},A{sub 2}{sup (2)}. We hope these types of spaces will play similar roles as that of symmetric spaces in many physical systems.

  5. Gravitons as Embroidery on the Weave

    NASA Astrophysics Data System (ADS)

    Iwasaki, Junichi; Rovelli, Carlo

    We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.

  6. The Evolution of Universe as Splitting of the ``Non Existing'' and Space-Time Expansion

    NASA Astrophysics Data System (ADS)

    Nassikas, A. A.

    2010-09-01

    The purpose of this paper is to show that the creation of Universe can be regarded as a splitting process of the ``non existing'', ``where'' there is no space-time and that the expansion of Universe is due to the compatibility between the stochastic-quantum space-time created and the surrounding ``non existing''. In this way it is not required that space time should pre-exist in contrast, as it can be shown, to the Universe creation from vacuum theory. The present point of view can be derived on the basis of a Minimum Contradictions Physics according to which stochastic-quantum space-time is matter itself; there are (g)-mass and (em)-charge space-time which interact-communicate through photons [(g) or (em) particles with zero rest mass]. This point of view is compatible to the present knowledge of CERN and Fermi Lab experiments as well as to the neutron synthesis according to Rutherford, experimentally verified and theoretically explained through Hadronic Mechanics by R. M. Santilli. On the basis of the Minimum Contradictions Physics a quantum gravity formula is derived which implies either positive or negative gravitational acceleration; thus, bodies can be attracted while Universe can be expanded. Minimum Contradictions Physics, under certain simplifications, is compatible to Newton Mechanics, Relativity Theory and QM. This physics is compatible to language through which it is stated. On this basis the physical laws are the principles of language i.e.: the Classical Logic, the Sufficient Reason Principle the Communication Anterior-Posterior Axiom and the Claim for Minimum Contradictions; according to a theorem contradictions cannot be vanished.

  7. The Universality of Time Dilation and Space Contraction.

    ERIC Educational Resources Information Center

    Daly, Lisa N.; Horton, George K.

    1994-01-01

    Describes the extended general physics course taught at Rutgers University. The course presents to students at the high school algebra level the topic of analyzing a particular thought experiment that yields the time dilation formula and subsequently space contraction, velocity addition, and other 20th-century physics concepts. (MVL)

  8. Aligning Pedagogy with Physical Learning Spaces

    ERIC Educational Resources Information Center

    van Merriënboer, Jeroen J. G.; McKenney, Susan; Cullinan, Dominic; Heuer, Jos

    2017-01-01

    The quality of education suffers when pedagogies are not aligned with physical learning spaces. For example, the architecture of the triple-decker Victorian schools across England fits the information transmission model that was dominant in the industrial age, but makes it more difficult to implement student-centred pedagogies that better fit a…

  9. Curricular Space Allocated for Dance Content in Physical Education Teacher Education Programs: A Literature Review

    ERIC Educational Resources Information Center

    Marquis, Jenée Marie; Metzler, Mike

    2017-01-01

    This literature review examines curricular space allocated to activity based/movement content courses in Physical Education Teacher Education (PETE) pre-service programs, specifically focusing on how dance content knowledge and pedagogical content knowledge are addressed within those programs. This review includes original empirical research…

  10. Science and Technology Research Directions for the International Space Station

    DTIC Science & Technology

    1999-07-09

    investigations into solar studies, cosmic rays, the physical and chemical composition of the space environment, as well as the presence of dark matter in the...the mass distribution of the various cosmic rays? Where is the dark matter in the universe? (AMS: see Fundamental Physics section) Science and

  11. Challenges in Physical Characterization of Dim Space Objects: What Can We Learn from NEOs

    NASA Astrophysics Data System (ADS)

    Reddy, V.; Sanchez, J.; Thirouin, A.; Rivera-Valentin, E.; Ryan, W.; Ryan, E.; Mokovitz, N.; Tegler, S.

    2016-09-01

    Physical characterization of dim space objects in cis-lunar space can be a challenging task. Of particular interest to both natural and artificial space object behavior scientists are the properties beyond orbital parameters that can uniquely identify them. These properties include rotational state, size, shape, density and composition. A wide range of observational and non-observational factors affect our ability to characterize dim objects in cis-lunar space. For example, phase angle (angle between Sun-Target-Observer), temperature, rotational variations, temperature, and particle size (for natural dim objects). Over the last two decades, space object behavior scientists studying natural dim objects have attempted to quantify and correct for a majority of these factors to enhance our situational awareness. These efforts have been primarily focused on developing laboratory spectral calibrations in a space-like environment. Calibrations developed correcting spectral observations of natural dim objects could be applied to characterizing artificial objects, as the underlying physics is the same. The paper will summarize our current understanding of these observational and non-observational factors and present a case study showcasing the state of the art in characterization of natural dim objects.

  12. Spiro K. Antiochos Receives 2013 John Adam Fleming Medal: Citation

    NASA Astrophysics Data System (ADS)

    Klimchuk, James A.

    2014-01-01

    The John Adam Fleming Medal is awarded for "original research and technical leadership in geomagnetism, atmospheric electricity, aeronomy, space physics, and related sciences." Originality and technical leadership are exactly the characteristics that distinguish the research of Spiro K. Antiochos. Spiro possesses a truly unique combination of physical insight, creativity, and mastery of the concepts and mathematical and numerical tools of space physics. These talents have allowed him to develop completely original theories for major observational problems and to test and refine those theories using sophisticated numerical simulation codes that he himself helped to develop. Spiro's physical insight is especially impressive. He has an uncanny ability to identify the fundamental aspects of complex problems and to see physical connections where others do not. This can sometimes involve ideas that may initially seem counterintuitive to those with less creativity. Many of Spiro's revolutionary advances have opened up whole new areas of study and shaped the course of space physics. Examples include the breakout model for coronal mass ejections (CMEs), the S-web model for the slow solar wind, and the thermal nonequilibrium model for solar prominences. The breakout model is of special significance to AGU as it strives to promote science for the betterment of humanity. CMEs are enormous explosions on the Sun that can have major "space weather" impacts here on Earth. They affect technologies ranging from communication and navigation systems to electrical power grids. Breakout is the leading theory for why CMEs occur and may one day be the foundation for more accurate space weather forecasting.

  13. On the background independence of two-dimensional topological gravity

    NASA Astrophysics Data System (ADS)

    Imbimbo, Camillo

    1995-04-01

    We formulate two-dimensional topological gravity in a background covariant Lagrangian framework. We derive the Ward identities which characterize the dependence of physical correlators on the background world-sheet metric defining the gauge-slice. We point out the existence of an "anomaly" in Ward identitites involving correlators of observables with higher ghost number. This "anomaly" represents an obstruction for physical correlators to be globally defined forms on moduli space which could be integrated in a background independent way. Starting from the anomalous Ward identities, we derive "descent" equations whose solutions are cocycles of the Lie algebra of the diffeomorphism group with values in the space of local forms on the moduli space. We solve the descent equations and provide explicit formulas for the cocycles, which allow for the definition of background independent integrals of physical correlators on the moduli space.

  14. Space plasma physics at the Applied Physics Laboratory over the past half-century

    NASA Technical Reports Server (NTRS)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  15. [Contribution of natural spaces to human health and wellbeing].

    PubMed

    Claßen, Thomas; Bunz, Maxie

    2018-05-16

    Natural spaces and especially urban green and blue spaces have been recognised for a long time as spaces with great potential for protecting and promoting human health and well-being. They may affect human physical, mental and social health and well-being in various ways. On one hand, this comes to pass through reduction and moderation of potential environmental health risks (e. g. noise, particulate matter, heat), psycho-physiological effects of nature experience, as well as physical effects of exposure to natural compounds and elements. On the other hand, natural spaces can affect health and well-being indirectly e. g. through motivation of health promoting behaviour (e. g. more physical activity) and through use as outdoor meeting spaces, by decreasing aggression, and through the resulting positive effects on social well-being. Yet, some potential adverse health effects of nature and landscapes have been reported, too (e. g. insecurity or fear in confusing or unmaintained natural spaces, potential rivalry in usage, allergies or skin irritations due to natural elements, risk of communicable diseases from vectors). Against the background of positive effects of natural spaces, creating, restoring and enhancing urban green and blue spaces are often claimed in terms of sustainable and integrated urban development. But which associations and impacts exist between natural spaces and health? What are the resulting demands when integrating natural spaces for a health-promoting implementation practice? This overview article provides some answers to these questions.

  16. Model of Four-Dimensional Sub-Proton Euclidean Space with Real Time for Valence Quarks. Lagrangian Mechanics

    NASA Astrophysics Data System (ADS)

    Kreymer, E. L.

    2018-06-01

    The model of Euclidean space with imaginary time used in sub-hadron physics uses only part of it since this part is isomorphic to Minkowski space and has the velocity limit 0 ≤ ||v Ei|| ≤ 1. The model of four-dimensional Euclidean space with real time (E space), in which 0 ≤ ||v E|| ≤ ∞ is investigated. The vectors of this space have E-invariants, equal or analogous to the invariants of Minkowski space. All relations between physical quantities in E-space, after they are mapped into Minkowski space, satisfy the principles of SRT and are Lorentz-invariant, and the velocity of light corresponds to infinite velocity. Results obtained in the model are different from the physical laws in Minkowski space. Thus, from the model of the Lagrangian mechanics of quarks in a centrally symmetric attractive potential it follows that the energy-mass of a quark decreases with increase of the velocity and is equal to zero for v = ∞. This made it possible to establish the conditions of emission and absorption of gluons by quarks. The effect of emission of gluons by high-energy quarks was discovered experimentally significantly earlier. The model describes for the first time the dynamic coupling of the masses of constituent and current quarks and reveals new possibilities in the study of intrahardon space. The classical trajectory of the oscillation of quarks in protons is described.

  17. Fundamental Principles of Classical Mechanics: a Geometrical Perspectives

    NASA Astrophysics Data System (ADS)

    Lam, Kai S.

    2014-07-01

    Classical mechanics is the quantitative study of the laws of motion for oscopic physical systems with mass. The fundamental laws of this subject, known as Newton's Laws of Motion, are expressed in terms of second-order differential equations governing the time evolution of vectors in a so-called configuration space of a system (see Chapter 12). In an elementary setting, these are usually vectors in 3-dimensional Euclidean space, such as position vectors of point particles; but typically they can be vectors in higher dimensional and more abstract spaces. A general knowledge of the mathematical properties of vectors, not only in their most intuitive incarnations as directed arrows in physical space but as elements of abstract linear vector spaces, and those of linear operators (transformations) on vector spaces as well, is then indispensable in laying the groundwork for both the physical and the more advanced mathematical - more precisely topological and geometrical - concepts that will prove to be vital in our subject. In this beginning chapter we will review these properties, and introduce the all-important related notions of dual spaces and tensor products of vector spaces. The notational convention for vectorial and tensorial indices used for the rest of this book (except when otherwise specified) will also be established...

  18. How the built environment affects change in older people's physical activity: A mixed- methods approach using longitudinal health survey data in urban China.

    PubMed

    Zhou, Peiling; Grady, Sue C; Chen, Guo

    2017-11-01

    Although the general population in China is physically active, only 45% of older adults meet the World Health Organization's recommendation for weekly moderate-to-vigorous exercise, to achieve health benefits. This percentage is even lower (9.8%) in urban China. It is, therefore, important to understand the pathways by which physical activity behaviors are impacted by the built environment. This study utilized a mixed methods approach-interviews (n = 42) and longitudinal (2010-2015) health survey data (n = 3094) for older people residing in three neighborhoods in Huainan, a mid-sized city in Anhui Province, central eastern China. First, a content analysis of interview data was used to identify individual and built environment factors (motivators and barriers) that impacted physical activity within older people's activity spaces. Second, a multilevel path analysis was conducted using the health survey data to demonstrate the pathways by which these motivators and barriers contributed to the initiation, regulation, and maintenance of physical activity. This study found (a) that the liveliness of an apartment building and its proximity to functional spaces (fast-food stores, farmer's markets, supermarkets, pharmacies, schools, hospitals, PA facilities and natural and man-made water bodies) were important factors in attracting sedentary older people to initiate physical activity; (b) the social networks of apartment neighbors helped to initiate, regulate, and maintain physical activity; and housing closeness to functional spaces was important in maintaining physical activity, particularly for those older people with chronic diseases. To increase older people's overall physical activity, future interventions should focus on residential form and access to functional spaces, prior to investing in large-scale urban design interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. NASA breakthrough propulsion physics program

    NASA Astrophysics Data System (ADS)

    Millis, Marc G.

    1999-05-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  20. NASA Breakthrough Propulsion Physics Program

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  1. A unified framework for mesh refinement in random and physical space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Stinis, Panos

    In recent work we have shown how an accurate reduced model can be utilized to perform mesh renement in random space. That work relied on the explicit knowledge of an accurate reduced model which is used to monitor the transfer of activity from the large to the small scales of the solution. Since this is not always available, we present in the current work a framework which shares the merits and basic idea of the previous approach but does not require an explicit knowledge of a reduced model. Moreover, the current framework can be applied for renement in both randommore » and physical space. In this manuscript we focus on the application to random space mesh renement. We study examples of increasing difficulty (from ordinary to partial differential equations) which demonstrate the effciency and versatility of our approach. We also provide some results from the application of the new framework to physical space mesh refinement.« less

  2. Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrennikov, Andrei

    2010-08-15

    One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical randommore » fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory.« less

  3. Consortium for materials development in space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The status of the Consortium for Materials Development in Space (CMDS) is reviewed. Individual CMDS materials projects and flight opportunities on suborbital and orbital carriers are outlined. Projects include: surface coatings and catalyst production; non-linear optical organic materials; physical properties of immiscible polymers; nuclear track detectors; powdered metal sintering; iron-carbon solidification; high-temperature superconductors; physical vapor transport crystal growth; materials preparation and longevity in hyperthermal oxygen; foam formation; measurement of the microgravity environment; and commercial management of space fluids.

  4. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  5. Space astrophysics with large structures - CASES and P/OF. [Controls, Astrophysics, and Structures Experiment in Space and Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh S.; Davis, J. M.

    1990-01-01

    Space instruments for remote sensing, of the types used for astrophysics and solar-terrestrial physics among many disciplines, will grow to larger physical sizes in the future. The zero-g space environment does not inherently restrict such growth, because relatively lightweight structures can be used. Active servo control of the structures can greatly increase their size for a given mass. The Pinhole/Occulter Facility, a candidate Space Station attached payload, offers an example: it will achieve 0.2 arc s resolution by use of a 50-m baseline for coded-aperture telescopes for hard X-ray and gamma-ray imagers.

  6. Nex-Gen Space Observatory

    NASA Image and Video Library

    2011-10-26

    NASA, space science industry and government officials are seen in front of a full-size model of NASA's James Webb Space Telescope at the Maryland Science Center in Baltimore, Wednesday, Oct. 26, 2011. From left, back row are: Dr. John Grunsfeld, former astronaut and Deputy Director, Space Telescope Science Institute (STScI), Baltimore; Jeffrey Grant, VP and General Manager of the Space Systems Division, Northrop Grumman; Van Reiner, President and CEO of the Maryland Science Center, Baltimore and Adam Reiss, recipient of the 2011 Nobel Prize in Physics and professor of astronomy and physics at Johns Hopkins University. In the front row are NASA Deputy Administrator Lori Garver, left, and U.S. Senator Barbara Mikulski (D-Md.). Photo Credit: (NASA/Carla Cioffi)

  7. Black holes: theory and observations (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 December 2015)

    NASA Astrophysics Data System (ADS)

    2016-07-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Black holes: theory and observations," was held in the conference hall of the Lebedev Physical Institute, RAS, on 23 December 2015. The papers collected in this issue were written based on talks given at the session: (1) I D Novikov (Lebedev Physical Institute, Russian Academy of Sciences, Astro Space Center, Moscow; The Niels Bohr International Academy, The Niels Bohr Institute, Copenhagen; National Research Center 'Kurchatov Institute', Moscow) "Black holes, wormholes, and time machines"; (2) A M Cherepashchuk (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "Observing stellar-mass and supermassive black holes"; (3) N S Kardashev (Lebedev Physical Institute, Russian Academy of Sciences, Astro Space Center, Moscow) "Millimetron space project: a tool for researching black holes and wormholes." Papers written on the basis of oral presentations 1, 2 are published below. • Observing stellar mass and supermassive black holes, A M Cherepashchuk Physics-Uspekhi, 2016, Volume 59, Number 7, Pages 702-712 • Black holes, wormholes, and time machines, I D Novikov Physics-Uspekhi, 2016, Volume 59, Number 7, Pages 713-715

  8. Enabling Cross-Discipline Collaboration Via a Functional Data Model

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Wilson, A.; Baltzer, T.

    2016-12-01

    Many research disciplines have very specialized data models that are used to express the detailed semantics that are meaningful to that community and easily utilized by their data analysis tools. While invaluable to members of that community, such expressive data structures and metadata are of little value to potential collaborators from other scientific disciplines. Many data interoperability efforts focus on the difficult task of computationally mapping concepts from one domain to another to facilitate discovery and use of data. Although these efforts are important and promising, we have found that a great deal of discovery and dataset understanding still happens at the level of less formal, personal communication. However, a significant barrier to inter-disciplinary data sharing that remains is one of data access.Scientists and data analysts continue to spend inordinate amounts of time simply trying to get data into their analysis tools. Providing data in a standard file format is often not sufficient since data can be structured in many ways. Adhering to more explicit community standards for data structure and metadata does little to help those in other communities.The Functional Data Model specializes the Relational Data Model (used by many database systems)by defining relations as functions between independent (domain) and dependent (codomain) variables. Given that arrays of data in many scientific data formats generally represent functionally related parameters (e.g. temperature as a function of space and time), the Functional Data Model is quite relevant for these datasets as well. The LaTiS software framework implements the Functional Data Model and provides a mechanism to expose an existing data source as a LaTiS dataset. LaTiS datasets can be manipulated using a Functional Algebra and output in any number of formats.LASP has successfully used the Functional Data Model and its implementation in the LaTiS software framework to bridge the gap between disparate data sources and communities. This presentation will demonstrate the utility of the Functional Data Model and how it can be used to facilitate cross-discipline collaboration.

  9. The space shuttle payload planning working groups. Volume 8: Earth and ocean physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings and recommendations of the Earth and Ocean Physics working group of the space shuttle payload planning activity are presented. The requirements for the space shuttle mission are defined as: (1) precision measurement for earth and ocean physics experiments, (2) development and demonstration of new and improved sensors and analytical techniques, (3) acquisition of surface truth data for evaluation of new measurement techniques, (4) conduct of critical experiments to validate geophysical phenomena and instrumental results, and (5) development and validation of analytical/experimental models for global ocean dynamics and solid earth dynamics/earthquake prediction. Tables of data are presented to show the flight schedule estimated costs, and the mission model.

  10. Exploring theory space with Monte Carlo reweighting

    DOE PAGES

    Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; ...

    2014-10-13

    Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists andmore » experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less

  11. Establishment of the New Ecuadorian Solar Physics Phenomena Division

    NASA Astrophysics Data System (ADS)

    Lopez, E. D.

    2014-02-01

    Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. In this contribution, the above initiative is presented by inviting leaders of other scientific projects to deploy its instruments and to work with us providing the necessary support to the creation of this new strategic research center

  12. The NASA Microgravity Fluid Physics Program: Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Shaw, Nancy J.; Chiaramonte, Francis P.

    2003-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.

  13. The future of simulations for space applications

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.

    Space development has been rapidly increasing and there will be huge investment by business markets for space development and applications such as space factory and Solar Power Station (SPS). In such a situation, we would like to send a warning message regarding the future space simulations. It is widely recognized that space simulation have been contributing to the quantitative understanding of various plasma phenomena occurring in the solarterrestrial environment. In the current century, however, in addition to the conventional contribution to the solar-terrestrial physics, we also have to pay our attention to the application of space simulation for human activities in space. We believe that space simulations can be a a powerful and helpful tool for the understanding the spacecraft-environment interactions occurring in space development and applications. The global influence by exhausted heavy ions from electric propulsion on the plasmasphere can be also analyzed by the combination of MHD and particle simulations. The results obtained in the simulations can provide us very significant and beneficial information so that we can minimize the undesirable effects in space development and applications. 1 Brief history of ISSS and contribution to the space plasma physics Numerical simulation has been largely recognized as a powerful tool in the advance of space plasma physics. The International School for Space Simulation (ISSS) series was set up in order to emphasize such a recognition in the early eighties, on the common initiative of M. Ashour-Abdalla, R. Gendrin, T. Sato and myself. The preceding five ISSS's (in Japan, USA, France, Japan, and Japan again) have greatly contributed to the promotion of and advance of computer simulations as well as the education of students trying to start the simulation study for their own research objectives.

  14. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  15. Association of environment and policy characteristics on children's moderate-to-vigorous physical activity and time spent sedentary in afterschool programs.

    PubMed

    Ajja, Rahma; Clennin, Morgan N; Weaver, R Glenn; Moore, Justin B; Huberty, Jennifer L; Ward, Dianne S; Pate, Russell R; Beets, Michael W

    2014-12-01

    Afterschool programs are an important setting in which to promote children's physical activity. This study examines the association of environmental and policy characteristics on the moderate-to-vigorous physical activity and sedentary behavior of children attending afterschool programs. A total of 1302 children attending 20 afterschool programs across South Carolina wore accelerometers (ActiGraph GT3X+) for up to 4non-consecutive days. Policy-level characteristics were evaluated using the Healthy Afterschool Program Index-Physical Activity scale. Physical activity space was measured using a measuring wheel (indoor, ft(2)) and Geographical Information Systems software (outdoor, acres). The structure (free-play or organized) of activity opportunities was evaluated via direct observation. Time spent in moderate-to-vigorous physical activity and sedentary, both indoors and outdoors, was estimated using accelerometry. For every 5000 ft(2) of utilized indoor activity space an additional 2.4 and 3.3 min/day of sedentary behavior was observed among boys and girls, respectively. A higher ratio of free-play to organized play was associated with higher indoor sedentary behavior among boys and girls (3.9 min/day and 10.0 min/day, respectively). For every 1 acre of outdoor activity space used, an additional 2.7 min/day of moderate-to-vigorous physical activity was observed for boys. A higher free-play to organized play ratio was associated with higher outdoor moderate-to-vigorous physical activity for boys and girls (4.4 and 3.4 min/day increase, respectively). Policy characteristics were unrelated to moderate-to-vigorous physical activity levels and time spent sedentary. Findings indicate that policies and size of activity space had limited influence on moderate-to-vigorous physical activity and sedentary behavior, suggesting that a programmatic structure may be a more effective option to improve moderate-to-vigorous physical activity levels of children attending afterschool programs. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Visualization of Discontinuous Galerkin Based High-Order Methods

    DTIC Science & Technology

    2015-08-19

    function and the reference- to physical- space mapping functions. This formulation can be used to measure the quality of a high-order element and also for...to physical- space mapping functions. This formulation can be used to measure the quality of a high-order element and also for AMR. We find that the

  17. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  18. Physical, anthropometrical, and body composition characteristics of workers at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Lasley, M. L.

    1985-01-01

    At the Kennedy Space Center, workers are often exposed to cardiovascular and muscular stress in job-related activities which may require a high level of physical fitness in order to safely complete the work task. Similar tasks will be performed at other launch and landing facilities and in space for the Space Station. One such category includes workers who handle toxic propellants and must wear Self-Contained Atmospheric Protective Ensembles (SCAPE) that can weigh 56 lbs. with the air pack. These suits provide a significant physical challenge to many of the workers in terms of carrying this load while moving about and performing work. Furthermore, under some conditions, there is a significant thermal stress. The physical characteristics of these workers are, therefore, of consequence. The purpose of this study was to analyze the anthropometry, body composition, strength, power, endurance, flexibility, aerobic fitness, and blood variables of a representative sample of male KSC SCAPE workers and to compare them with characteristics of other male workers at KSC (total population N=110). Three separate comparisons were made.

  19. Is the local linearity of space-time inherited from the linearity of probabilities?

    NASA Astrophysics Data System (ADS)

    Müller, Markus P.; Carrozza, Sylvain; Höhn, Philipp A.

    2017-02-01

    The appearance of linear spaces, describing physical quantities by vectors and tensors, is ubiquitous in all of physics, from classical mechanics to the modern notion of local Lorentz invariance. However, as natural as this seems to the physicist, most computer scientists would argue that something like a ‘local linear tangent space’ is not very typical and in fact a quite surprising property of any conceivable world or algorithm. In this paper, we take the perspective of the computer scientist seriously, and ask whether there could be any inherently information-theoretic reason to expect this notion of linearity to appear in physics. We give a series of simple arguments, spanning quantum information theory, group representation theory, and renormalization in quantum gravity, that supports a surprising thesis: namely, that the local linearity of space-time might ultimately be a consequence of the linearity of probabilities. While our arguments involve a fair amount of speculation, they have the virtue of being independent of any detailed assumptions on quantum gravity, and they are in harmony with several independent recent ideas on emergent space-time in high-energy physics.

  20. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  1. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  2. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  3. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  4. 14 CFR 63.19 - Operations during physical deficiency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Operations during physical deficiency. 63... physical deficiency. No person may serve as a flight engineer or flight navigator during a period of known physical deficiency, or increase in physical deficiency, that would make him unable to meet the physical...

  5. Joining the yellow hub: Uses of the Simple Application Messaging Protocol in Space Physics analysis tools

    NASA Astrophysics Data System (ADS)

    Génot, V.; André, N.; Cecconi, B.; Bouchemit, M.; Budnik, E.; Bourrel, N.; Gangloff, M.; Dufourg, N.; Hess, S.; Modolo, R.; Renard, B.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.

    2014-11-01

    The interest for data communication between analysis tools in planetary sciences and space physics is illustrated in this paper via several examples of the uses of SAMP. The Simple Application Messaging Protocol is developed in the frame of the IVOA from an earlier protocol called PLASTIC. SAMP enables easy communication and interoperability between astronomy software, stand-alone and web-based; it is now increasingly adopted by the planetary sciences and space physics community. Its attractiveness is based, on one hand, on the use of common file formats for exchange and, on the other hand, on established messaging models. Examples of uses at the CDPP and elsewhere are presented. The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (Automated Multi Dataset Analysis, http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search and cataloging. Besides AMDA, the 3DView (http://3dview.cdpp.eu/) tool provides immersive visualizations and is further developed to include simulation and observational data. These tools and their interactions with each other, notably via SAMP, are presented via science cases of interest to planetary sciences and space physics communities.

  6. Space age health care delivery

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1977-01-01

    Space age health care delivery is being delivered to both NASA astronauts and employees with primary emphasis on preventive medicine. The program relies heavily on comprehensive health physical exams, health education, screening programs and physical fitness programs. Medical data from the program is stored in a computer bank so epidemiological significance can be established and better procedures can be obtained. Besides health care delivery to the NASA population, NASA is working with HEW on a telemedicine project STARPAHC, applying space technology to provide health care delivery to remotely located populations.

  7. Augmenting Phase Space Quantization to Introduce Additional Physical Effects

    NASA Astrophysics Data System (ADS)

    Robbins, Matthew P. G.

    Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.

  8. IMPs, EGOs, and Skyhooks

    NASA Astrophysics Data System (ADS)

    McDonald, Frank B.

    1996-05-01

    In the October 1994 issue of the Journal of Geophysical Research, J. Simpson, E. Parker, and C. Sonnett wrote of the early history of space physics. Previously, J. Van Allen had written a monogram on the genesis of magnetospheric physics, and H. Newell (``Above the atmosphere'') and J. Naugle (``First among equals'') had given excellent accounts of the initial development of the space sciences within NASA and the broader research community. I write as a member of the second generation or Junior Pioneers who profited greatly from the foundation laid down by the Pioneers of the era. With the second wave it was possible to fully participate in the dramatic expansion of the nation's space science program that occurred in the 1960s. In this brief memoir, I give a personal recollection of this period and try to relate it to some of the current developments in space physics.

  9. Physics of the Space Environment

    NASA Astrophysics Data System (ADS)

    Vasyliünas, Vytenis M.

    This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of magnetosphereionosphere coupling.

  10. Multi-objective optimisation and decision-making of space station logistics strategies

    NASA Astrophysics Data System (ADS)

    Zhu, Yue-he; Luo, Ya-zhong

    2016-10-01

    Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.

  11. Harmonic field in knotted space

    NASA Astrophysics Data System (ADS)

    Duan, Xiuqing; Yao, Zhenwei

    2018-04-01

    Knotted fields enrich a variety of physical phenomena, ranging from fluid flows, electromagnetic fields, to textures of ordered media. Maxwell's electrostatic equations, whose vacuum solution is mathematically known as a harmonic field, provide an ideal setting to explore the role of domain topology in determining physical fields in confined space. In this work, we show the uniqueness of a harmonic field in knotted tubes, and reduce the construction of a harmonic field to a Neumann boundary value problem. By analyzing the harmonic field in typical knotted tubes, we identify the torsion driven transition from bipolar to vortex patterns. We also analogously extend our discussion to the organization of liquid crystal textures in knotted tubes. These results further our understanding about the general role of topology in shaping a physical field in confined space, and may find applications in the control of physical fields by manipulation of surface topology.

  12. Light Microscopy Module: On-Orbit Microscope Planned for the Fluids Integrated Rack on the International Space Station

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.

    2002-01-01

    The Light Microscopy Module (LMM) is planned as a remotely controllable, automated, on-orbit facility, allowing flexible scheduling and control of physical science and biological science experiments within the Fluids Integrated Rack (FIR) on the International Space Station. Initially four fluid physics experiments in the FIR will use the LMM the Constrained Vapor Bubble, the Physics of Hard Spheres Experiment-2, Physics of Colloids in Space-2, and Low Volume Fraction Entropically Driven Colloidal Assembly. The first experiment will investigate heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments will investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties.

  13. Cyber physical systems role in manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Al-Ali, A. R.; Gupta, Ragini; Nabulsi, Ahmad Al

    2018-04-01

    Empowered by the recent development in single System-on-Chip, Internet of Things, and cloud computing technologies, cyber physical systems are evolving as a major controller during and post the manufacturing products process. In additional to their real physical space, cyber products nowadays have a virtual space. A product virtual space is a digital twin that is attached to it to enable manufacturers and their clients to better manufacture, monitor, maintain and operate it throughout its life time cycles, i.e. from the product manufacturing date, through operation and to the end of its lifespan. Each product is equipped with a tiny microcontroller that has a unique identification number, access code and WiFi conductivity to access it anytime and anywhere during its life cycle. This paper presents the cyber physical systems architecture and its role in manufacturing. Also, it highlights the role of Internet of Things and cloud computing in industrial manufacturing and factory automation.

  14. Exactly solvable quantum cosmologies from two killing field reductions of general relativity

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Smolin, Lee

    1989-11-01

    An exact and, possibly, general solution to the quantum constraints is given for the sector of general relativity containing cosmological solutions with two space-like, commuting, Killing fields. The dynamics of these model space-times, which are known as Gowdy space-times, is formulated in terms of Ashtekar's new variables. The quantization is done by using the recently introduced self-dual and loop representations. On the classical phase space we find four explicit physical observables, or constants of motion, which generate a GL(2) symmetry group on the space of solutions. In the loop representations we find that a complete description of the physical state space, consisting of the simultaneous solutions to all of the constraints, is given in terms of the equivalence classes, under Diff(S1), of a pair of densities on the circle. These play the same role that the link classes play in the loop representation solution to the full 3+1 theory. An infinite dimensional algebra of physical observables is found on the physical state space, which is a GL(2) loop algebra. In addition, by freezing the local degrees of freedom of the model, we find a finite dimensional quantum system which describes a set of degenerate quantum cosmologies on T3 in which the length of one of the S1's has gone to zero, while the area of the remaining S1×S1 is quantized in units of the Planck area. The quantum kinematics of this sector of the model is identical to that of a one-plaquette SU(2) lattice gauge theory.

  15. Modeling the Magnetospheric X-ray Emission from Solar Wind Charge Exchange with Verification from XMM-Newton Observations

    DTIC Science & Technology

    2016-08-26

    Journal of Geophysical Research: Space Physics Modeling the magnetospheric X-ray emission from solar wind charge exchange with verification from XMM...Newton observations Ian C. Whittaker1, Steve Sembay1, Jennifer A. Carter1, AndrewM. Read1, Steve E. Milan1, andMinna Palmroth2 1Department of Physics ...observations, J. Geophys. Res. Space Physics , 121, 4158–4179, doi:10.1002/2015JA022292. Received 21 DEC 2015 Accepted 26 FEB 2016 Accepted article online 29

  16. The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earth--and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond. While the accomplishments of the past decades have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. This report organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond: Challenge 1: Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona. Challenge 2: Understanding heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar medium. Challenge 3: Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences. Challenge 4: Understanding the basic physical principles manifest in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.

  17. Quantum Opportunities and Challenges for Fundamental Sciences in Space

    NASA Technical Reports Server (NTRS)

    Yu, Nan

    2012-01-01

    Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.

  18. An Overview of Advanced Concepts for Launch

    DTIC Science & Technology

    2012-02-09

    Loads, System. --- Space Platforms Unfeasible. --- Space Elevator Materials, O, µmeteoroids, weather, vibrations.. Asteroid Mining Breakthrough...Unfeasible. --- Space Elevator Materials, O, µmeteoroids, weather, vibrations.. Asteroid Mining Breakthrough Physics No known feasible concepts

  19. Evaluation of physical and chemical changes in pharmaceuticals flown on space missions.

    PubMed

    Du, Brian; Daniels, Vernie R; Vaksman, Zalman; Boyd, Jason L; Crady, Camille; Putcha, Lakshmi

    2011-06-01

    Efficacy and safety of medications used for the treatment of astronauts in space may be compromised by altered stability in space. We compared physical and chemical changes with time in 35 formulations contained in identical pharmaceutical kits stowed on the International Space Station (ISS) and on Earth. Active pharmaceutical content (API) was determined by ultra- and high-performance liquid chromatography after returning to Earth. After stowage for 28 months in space, six medications aboard the ISS and two of matching ground controls exhibited changes in physical variables; nine medications from the ISS and 17 from the ground met the United States Pharmacopeia (USP) acceptance criteria for API content after 28 months of storage. A higher percentage of medications from each flight kit had lower API content than the respective ground controls. The number of medications failing API requirement increased as a function of time in space, independent of expiration date. The rate of degradation was faster in space than on the ground for many of the medications, and most solid dosage forms met USP standard for dissolution after storage in space. Cumulative radiation dose was higher and increased with time in space, whereas temperature and humidity remained similar to those on the ground. Exposure to the chronic low dose of ionizing radiation aboard the spacecraft as well as repackaging of solid dosage forms in flight-specific dispensers may adversely affect stability of pharmaceuticals. Characterization of degradation profiles of unstable formulations and identification of chemical attributes of stability in space analog environments on Earth will facilitate development of space-hardy medications.

  20. Girls InSpace project: A new space physics outreach initiative.

    NASA Astrophysics Data System (ADS)

    Abe Pacini, A.; Tegbaru, D.; Max, A., Sr.

    2017-12-01

    We present here the concept and state-of-art of the new space physics youth education and outreach initiative called "Girls InSpace project". The project goal is to spread quality scientific information to underrepresented groups, motivate girls in STEM and promote gender equality in the Space Physics area. Initially, the "Girls InSpace project" will be available in two languages (Portuguese and English) aiming to reach out to the youth of Brazil, United States, Nigeria, South Africa, Ethiopia and Angola. Eventually, the material will be translated to French and Spanish, focusing on French-speaking countries in Africa and Latin America. The project spans a collection of four books about a group of young girls and their adventures (always related to the sky and simultaneously introducing earth and space science concepts). Ancillary content such as a webpage, mobile applications and lesson plans are also in development. The books were written by a Space Physicist PhD woman, illustrated by a Brazilian young artist and commented by senior female scientists, creating positive role models for the next generation of girls in STEM. The story lines were drawn around the selected topics of astronomy and space physics, introducing scientific information to the target readers (girls from 8-13 years old) and enhancing their curiosity and critical thinking. The books instill the readers to explore the available extra web-content (with images, videos, interviews with scientists, real space data, coding and deeper scientific information) and game apps (with Virtual Reality components and real space images). Moreover, for teachers K-12, a collection of lesson plans will be made available, aiming to facilitate scientific content discussed in the books and inside classroom environments. Gender bias in STEM reported earlier this year in Nature and based on a study of the American Geophysical Union's member database showed a competitive disadvantage for women in the Earth and Space Sciences. The AGU has since challenged the scientific community to act and support gender balance initiatives as crucial path to progress. This project aligns well with AGU's mission and similar-thinking organizations, and aims to educate and promote development of young girls in underrepresented communities.

  1. Socio-environmental correlates of physical activity in patients with chronic obstructive pulmonary disease (COPD)

    PubMed Central

    Arbillaga-Etxarri, Ane; Gimeno-Santos, Elena; Barberan-Garcia, Anael; Benet, Marta; Borrell, Eulàlia; Dadvand, Payam; Foraster, Maria; Marín, Alicia; Monteagudo, Mònica; Rodriguez-Roisin, Robert; Vall-Casas, Pere; Vilaró, Jordi; Garcia-Aymerich, Judith

    2017-01-01

    Background Study of the causes of the reduced levels of physical activity in patients with COPD has been scarce and limited to biological factors. Aim To assess the relationship between novel socio-environmental factors, namely dog walking, grandparenting, neighbourhood deprivation, residential surrounding greenness and residential proximity to green or blue spaces, and amount and intensity of physical activity in COPD patients. Methods This cross-sectional study recruited 410 COPD patients from five Catalan municipalities. Dog walking and grandparenting were assessed by questionnaire. Neighbourhood deprivation was assessed using the census Urban Vulnerability Index, residential surrounding greenness by the satellite-derived Normalized Difference Vegetation Index, and residential proximity to green or blue spaces as living within 300 m of such a space. Physical activity was measured during 1 week by accelerometer to assess time spent on moderate-to-vigorous physical activity (MVPA) and vector magnitude units (VMU) per minute. Findings Patients were 85% male, had a mean (SD) age of 69 (9) years, and post-bronchodilator FEV1 of 56 (17) %pred. After adjusting for age, sex, socio-economic status, dyspnoea, exercise capacity and anxiety in a linear regression model, both dog walking and grandparenting were significantly associated with an increase both in time in MVPA (18 min/day (p<0.01) and 9 min/day (p<0.05), respectively) and in physical activity intensity (76 VMU/min (p=0.05) and 59 VMUs/min (p<0.05), respectively). Neighbourhood deprivation, surrounding greenness and proximity to green or blue spaces were not associated with physical activity. Conclusions Dog walking and grandparenting are associated with a higher amount and intensity of physical activity in COPD patients. Trial registration number Pre-results, NCT01897298. PMID:28250201

  2. The Impact of Space Experiments on our Knowledge of the Physics of the Universe

    NASA Astrophysics Data System (ADS)

    Giovannelli, Franco; Sabau-Graziati, Lola

    2004-05-01

    With the advent of space experiments it was demonstrated that cosmic sources emit energy practically across all the electromagnetic spectrum via different physical processes. Several physical quantities give witness to these processes which usually are not stationary; those physical observable quantities are then generally variable. Therefore simultaneous multifrequency observations are strictly necessary in order to understand the actual behaviour of cosmic sources. Space experiments have opened practically all the electromagnetic windows on the Universe. A discussion of the most important results coming from multifrequency photonic astrophysics experiments will provide new inputs for the advance of the knowledge of the physics, very often in its more extreme conditions. A multitude of high quality data across practically the whole electromagnetic spectrum came at the scientific community's disposal a few years after the beginning of the Space Era. With these data we are attempting to explain the physics governing the Universe and, moreover, its origin, which has been and still is a matter of the greatest curiosity for humanity. In this paper we will try to describe the last steps of the investigation born with the advent of space experiments, to note upon the most important results and open problems still existing, and to comment upon the perspectives we can reasonably expect. Once the idea of this paper was well accepted by ourselves, we had the problem of how to plan the exposition. Indeed, the exposition of the results can be made in different ways, following several points of view, according to: - a division in diffuse and discrete sources; - different classes of cosmic sources; - different spectral ranges, which implies in turn a sub-classification in accordance with different techniques of observations; - different physical emission mechanisms of electromagnetic radiation; - different vehicles used for launching the experiments (aircraft, balloons, rockets, satellites, observatories). In order to exhaustively present The Impact of Space Experiments on our Knowledge of the Physics of the Universe it would then have been necessary to write a kind of Encyclopaedia of the Astronomical Space Research, which is not our desire. On the contrary, since our goal is to provide an useful tool for the reader who has not specialized in space astrophysics and for the students, we decided to write this paper in the form of a review, the length of which can be still considered reasonable, taking into account the complexity of the arguments discussed. Because of the impossibility of realizing a complete picture of the physics governing the Universe, we were obliged to select how to proceed, the subjects to be discussed the more or the less, or those to be rejected. Because this work was born in the Ph.D. thesis of one of us (LSG) (Sabau-Graziati, 1990) we decided to follow the `astronomical tradition' used there, namely: the spectral energy ranges. Although such energy ranges do not determine physical objects (even if in many cases such ranges are used to define the sources as: radio, infrared, optical, ultraviolet, X-ray, γ-ray emitters), they do determine the methods of study, and from the technical point of view they define the technology employed in the relative experiments. However, since then we have decided to avoid a deep description of the experiments, satellites, and observatories, simply to grant a preference to the physical results, rather than to technologies, however fundamental for obtaining those results. The exposition, after an introduction (Section 1) and some crucial results from space astronomy (Section 2), has been focussed into three parts: the physics of the diffuse cosmic sources deduced from space experiments (Section 3), the physics of cosmic rays from ground- and space-based experiments (Section 4), and the physics of discrete cosmic sources deduced from space experiments (Section 5). In this first part of the paper we have used the logic of describing the main results obtained in different energy ranges, which in turn characterize the experiments on board space vehicles. Within each energy range we have discussed the contributions to the knowledge of various kind of cosmic sources coming from different experiments. And this part is mainly derived by the bulk of the introductory part of LSG's Ph.D. thesis. In the second part of the paper, starting from Section 6, we have preferred to discuss several classes of cosmic sources independently of the energy ranges, mainly focussing the results from a multifrequency point of view, making a preference for the knowledge of the physics governing the whole class. This was decided also because of the multitude of new space experiments launched in the last fifteen years, which would have rendered almost impossible a discussion of the results divided into energy ranges without weakening the construction of the entire puzzle. We do not pretend to cover every aspect of every subject considered under the heading of the physics of the universe. Instead a cross section of essays on historical, modern, and philosophical topics are offered and combined with personal views into tricks of the space astrophysics trade. The reader is, then, invited to accept this paper even though it obviously lacks completeness and the arguments discussed are certainly biased by a selection effect owed essentially to our knowledge, and to it being of a reasonable length. Some parts of it could seem, in certain sense, to belong to an older paper, in which the `news' is not reported. But this is owed to our own choice, just in full accord with the goals of the text: we want to present those results which have, in our opinion, been really important, in the development of the science. These impacting results do not necessarily constitute the last news. This text was formally closed just on the day of the launch of the INTEGRAL satellite: October 17, 2002. After that date only finishing touches have been added.

  3. Friendship, Physicality, and Physical Education: An Exploration of the Social and Embodied Dynamics of Girls' Physical Education Experiences

    ERIC Educational Resources Information Center

    Hills, Laura

    2007-01-01

    Physical education represents a dynamic social space where students experience and interpret physicality in a context that accentuates peer relationships and privileges particular forms of embodiment. This article focuses on girls' understandings of physicality with respect to the organisation of physical education and more informal social…

  4. Transforming community access to space science models

    NASA Astrophysics Data System (ADS)

    MacNeice, Peter; Hesse, Michael; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti

    2012-04-01

    Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.

  5. Transforming Community Access to Space Science Models

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Heese, Michael; Kunetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti

    2012-01-01

    Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.

  6. Microgravity Science Glovebox (MSG) Space Sciences's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jordan, Lee P.

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.

  7. Spacelab

    NASA Image and Video Library

    1983-01-01

    This photograph shows the Spacelab-1 module and Spacelab access turnel being installed in the cargo bay of orbiter Columbia for the STS-9 mission. The oribiting laboratory, built by the European Space Agency, is capable of supporting many types of scientific research that can best be performed in space. The Spacelab access tunnel, the only major piece of Spacelab hardware made in the U.S., connects the module with the mid-deck level of the orbiter cabin. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were: astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1, was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.

  8. Does office space occupation matter? The role of the number of persons per enclosed office space, psychosocial work characteristics, and environmental satisfaction in the physical and mental health of employees.

    PubMed

    Herbig, B; Schneider, A; Nowak, D

    2016-10-01

    The study examined the effects of office space occupation, psychosocial work characteristics, and environmental satisfaction on physical and mental health of office workers in small-sized and open-plan offices as well as possible underlying mechanisms. Office space occupation was characterized as number of persons per one enclosed office space. A total of 207 office employees with similar jobs in offices with different space occupation were surveyed regarding their work situation (psychosocial work characteristics, satisfaction with privacy, acoustics, and control) and health (psychosomatic complaints, irritation, mental well-being, and work ability). Binary logistic and linear regression analyses as well as bootstrapped mediation analyses were used to determine associations and underlying mechanisms. Employee health was significantly associated with all work characteristics. Psychosocial work stressors had the strongest relation to physical and mental health (OR range: 1.66-3.72). The effect of office space occupation on employee health was mediated by stressors and environmental satisfaction, but not by psychosocial work resources. As assumed by sociotechnical approaches, a higher number of persons per enclosed office space was associated with adverse health effects. However, the strongest associations were found with psychosocial work stressors. When revising office design, a holistic approach to work (re)design is needed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Moon Bases as Initial ``Space Society'' Trials: Utilizing Astrosociology to Make Space Settlements Livable

    NASA Astrophysics Data System (ADS)

    Pass, Jim

    2007-01-01

    As we prepare to go back to the Moon on a permanent basis, it behooves us to take advantage of our return to the Moon by increasing our knowledge base so as to make all aspects of survival possible. The standard approach remains fixed on meeting the challenges related to power, physical habitat, and others associated with the physical environment and personal survival. While this traditional facet of space settlement must be addressed in a successful manner, the other set of variables to the equation for human survival in space receive little attention. In other words, we tend to focus so strongly on getting to a location and setting up a physical habitat that we overlook what it will require to survive in our new social world once the physical environment is functioning properly. We should take care now to begin formal consideration of the psychological, social, and cultural realities that will exist once we arrive. Plans starting with the very first Moon base should integrate research objectives that both (1) construct the integral physical elements of an isolated habitat and (2) study how the new social system operates subsequently. In fact, we should involve social scientists in planning as many of the latter issues as possible before the mission begins. This dual approach will serve as a first step to acquiring the critical knowledge necessary for human beings to live in isolated space environments situated too far away from the Earth that practical assistance is not readily available. Astrosociology, being a multidisciplinary social scientific field, can serve to unite social scientists interested in space research to work together on this issue and others in a formal manner. This, in turn, will make it possible for them to collaborate with space scientists and engineers in order to foster a fully comprehensive approach to make space settlements livable on a long-term basis. This collaboration, involving natural scientists and social scientists working together for the common goal of implementing sustainable space societies and conducting relevant research to improve the next project, represents a fundamental shift to a new paradigm currently unfamiliar. This paper lays out the basics for this new paradigm, for consideration by both the social science community and the space community.

  10. 14 CFR 1259.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... definitions shall apply: (a) Field related to space means any academic discipline or field of study (including the physical, natural and biological sciences, and engineering, space technology, education, economics... activities in the fields related to space: (i) Research; (ii) Training; or (iii) Advisory services. (j) Space...

  11. NASA Central Operation of Resources for Educators (CORE): Educational Materials Catalog

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This catalog contains order information for video cassettes with topics such as: aeronautics, earth science, weather, space exploration/satellites, life sciences, energy, living in space, manned spaceflight, social sciences, space art, space sciences, technology education and utilization, and mathematics/physics.

  12. Physical Education, Junior Division: Grades 4, 5, 6. Curriculum J.5.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto.

    This manual was prepared to give teachers assistance in carrying out programs in physical education in grades 4, 5, and 6. Because many schools have space and equipment deficiencies, some emphasis has been placed on improvisation and the fullest possible use of available space and equipment. The manual is divided into two sections: organization…

  13. The Disciplinary and Pleasurable Spaces of Boys' PE--The Art of Distributions

    ERIC Educational Resources Information Center

    Gerdin, Göran

    2016-01-01

    In taking heed of the so-called "spatial turn" in social theory this paper explores how the spatial intersects with boys' performances of gender and (dis)pleasures in school physical education (PE). In particular, the paper aims to contribute to our understanding of how the organisation and implementation of physical and social spaces in…

  14. Importance of Nuclear Physics to NASA's Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.

  15. The James Webb Space Telescope: Inspiration and Context for Physics and Chemistry Teaching

    ERIC Educational Resources Information Center

    Hillier, Dan; Johnston, Tania; Davies, John

    2012-01-01

    This article describes the design, delivery, evaluation and impact of a CPD course for physics and chemistry teachers. A key aim of the course was to use the context of the James Webb Space Telescope project to inspire teachers and lead to enriched teaching of STEM subjects. (Contains 1 box and 3 figures.)

  16. What Happens in the Arcade Shouldn't Stay in the Arcade: Lessons for Classroom Design

    ERIC Educational Resources Information Center

    Whitmore, Kathryn F.; Laurich, Lindsay

    2010-01-01

    What features of the physical environment in video game arcades lead kids to be so engaged? How can analysis of arcade space inform language arts teachers' decisions about designing classroom environments? This article presents an analysis of physical space in video game arcades and participants' positions therein to suggest how language arts…

  17. In-space fabrication of thin-film structures

    NASA Technical Reports Server (NTRS)

    Lippman, M. E.

    1972-01-01

    A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission.

  18. Radiation Physics for Space and High Altitude Air Travel

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  19. Microgravity Platforms

    NASA Technical Reports Server (NTRS)

    Del Basso, Steve

    2000-01-01

    The world's space agencies have been conducting microgravity research since the beginning of space flight. Initially driven by the need to understand the impact of less than- earth gravity physics on manned space flight, microgravity research has evolved into a broad class of scientific experimentation that utilizes extreme low acceleration environments. The U.S. NASA microgravity research program supports both basic and applied research in five key areas: biotechnology - focusing on macro-molecular crystal growth as well as the use of the unique space environment to assemble and grow mammalian tissue; combustion science - focusing on the process of ignition, flame propagation, and extinction of gaseous, liquid, and solid fuels; fluid physics - including aspects of fluid dynamics and transport phenomena; fundamental physics - including the study of critical phenomena, low-temperature, atomic, and gravitational physics; and materials science - including electronic and photonic materials, glasses and ceramics, polymers, and metals and alloys. Similar activities prevail within the Chinese, European, Japanese, and Russian agencies with participation from additional international organizations as well. While scientific research remains the principal objective behind these program, all hope to drive toward commercialization to sustain a long range infrastructure which .benefits the national technology and economy. In the 1997 International Space Station Commercialization Study, conducted by the Potomac Institute for Policy Studies, some viable microgravity commercial ventures were identified, however, none appeared sufficiently robust to privately fund space access at that time. Thus, government funded micro gravity research continues on an evolutionary path with revolutionary potential.

  20. Modeling of carbonate reservoir variable secondary pore space based on CT images

    NASA Astrophysics Data System (ADS)

    Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.

    2017-12-01

    Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.

  1. Specification of the Surface Charging Environment with SHIELDS

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, J. D.; Vernon, L.; Woodroffe, J. R.; Brito, T.; Toth, G.; Welling, D. T.; Yu, Y.; Albert, J.; Birn, J.; Borovsky, J.; Denton, M.; Horne, R. B.; Lemon, C.; Markidis, S.; Thomsen, M. F.; Young, S. L.

    2016-12-01

    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure, i.e. "space weather", remains a big space physics challenge. A recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and microscale. Important physics questions related to rapid particle injection and acceleration associated with magnetospheric storms and substorms as well as plasma waves are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. In addition to physics-based models (like RAM-SCB, BATS-R-US, and iPIC3D), new data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed. Simulations with the SHIELDS framework of the near-Earth space environment where operational satellites reside are presented. Further model development and the organization of a "Spacecraft Charging Environment Challenge" by the SHIELDS project at LANL in collaboration with the NSF Geospace Environment Modeling (GEM) Workshop and the multi-agency Community Coordinated Modeling Center (CCMC) to assess the accuracy of SCE predictions are discussed.

  2. Understanding older adults' usage of community green spaces in Taipei, Taiwan.

    PubMed

    Pleson, Eryn; Nieuwendyk, Laura M; Lee, Karen K; Chaddah, Anuradha; Nykiforuk, Candace I J; Schopflocher, Donald

    2014-01-27

    As the world's population ages, there is an increasing need for community environments to support physical activity and social connections for older adults. This exploratory study sought to better understand older adults' usage and perceptions of community green spaces in Taipei, Taiwan, through direct observations of seven green spaces and nineteen structured interviews. Descriptive statistics from observations using the System for Observing Play and Recreation in Communities (SOPARC) confirm that older adults use Taipei's parks extensively. Our analyses of interviews support the following recommendations for age-friendly active living initiatives for older adults: make green spaces accessible to older adults; organize a variety of structured activities that appeal to older adults particularly in the morning; equip green spaces for age-appropriate physical activity; and, promote the health advantages of green spaces to older adults.

  3. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  4. Understanding Older Adults’ Usage of Community Green Spaces in Taipei, Taiwan

    PubMed Central

    Pleson, Eryn; Nieuwendyk, Laura M.; Lee, Karen K.; Chaddah, Anuradha; Nykiforuk, Candace I. J.; Schopflocher, Donald

    2014-01-01

    As the world’s population ages, there is an increasing need for community environments to support physical activity and social connections for older adults. This exploratory study sought to better understand older adults’ usage and perceptions of community green spaces in Taipei, Taiwan, through direct observations of seven green spaces and nineteen structured interviews. Descriptive statistics from observations using the System for Observing Play and Recreation in Communities (SOPARC) confirm that older adults use Taipei’s parks extensively. Our analyses of interviews support the following recommendations for age-friendly active living initiatives for older adults: make green spaces accessible to older adults; organize a variety of structured activities that appeal to older adults particularly in the morning; equip green spaces for age-appropriate physical activity; and, promote the health advantages of green spaces to older adults. PMID:24473116

  5. Physical examination during space flight

    NASA Technical Reports Server (NTRS)

    Harris, B. A. Jr; Billica, R. D.; Bishop, S. L.; Blackwell, T.; Layne, C. S.; Harm, D. L.; Sandoz, G. R.; Rosenow, E. C. 3rd

    1997-01-01

    OBJECTIVE: To develop techniques for conducting a physical examination in microgravity and to describe and document the physiologic changes noted with use of a modified basic physical examination. DESIGN: On the basis of data gathered from physical examinations on KC-135 flights, three physical variables were assessed serially in astronauts during two shuttle missions (of 8- and 10-day duration, respectively). Preflight, in-flight, and postflight examinations were conducted by trained physician-astronauts or flight surgeons, who used this modified examination. MATERIAL AND METHODS: Five male and two female crewmembers participated in the "hands-on" physical examination of all physiologic systems except the genitourinary system. Level of edema, intensity of bowel sounds, and peripheral reflexes were assessed and graded. RESULTS: This investigation identified unique elements of a physical examination performed during space flight that will assist in the development of standard methods for conducting examinations of astronauts in weightlessness. In addition, demonstrable changes induced by microgravity were noted in most physiologic systems examined. CONCLUSION: The data support the hypothesis that the microgravity examination differs from that conducted on earth or in a 1g environment. In addition, alterations in the physiologic response can be detected with use of hands-on technique. These data are invaluable in the development of optimal medical care for humans in space.

  6. Radiation health research, 1986 - 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection of 225 abstracts of radiation research sponsored by NASA during the period 1986 through 1990 is reported. Each abstract was categorized within one of four discipline areas: physics, biology, risk assessment, and microgravity. Topic areas within each discipline were assigned as follows: Physics - atomic physics, nuclear science, space radiation, radiation transport and shielding, and instrumentation; Biology - molecular biology, cellular radiation biology, tissue, organs and organisms, radioprotectants, and plants; Risk assessment - radiation health and epidemiology, space flight radiation health physics, inter- and intraspecies extrapolation, and radiation limits and standards; and Microgravity. When applicable subareas were assigned for selected topic areas. Keywords and author indices are provided.

  7. Rumors of transcendence in physics

    NASA Astrophysics Data System (ADS)

    Pollard, William G.

    1984-10-01

    There are several hints in physics of a domain of external reality transcendent to three-dimensional space and time. This paper calls attention to several of these intimations of a real world beyond the natural order. Examples are the complex state functions in configuration space of quantum mechanics, the singularity at the birth of the universe, the anthropic principle, the role of chance in evolution, and the unaccountable fruitfulness of mathematics for physics. None of these examples touch on the existence or activity of God, but they do suggest that external reality may be much richer than the natural world which it is the task of physics to describe.

  8. Physical design correlates of efficiency and safety in emergency departments: a qualitative examination.

    PubMed

    Pati, Debajyoti; Harvey, Thomas E; Pati, Sipra

    2014-01-01

    The objective of this study was to explore and identify physical design correlates of safety and efficiency in emergency department (ED) operations. This study adopted an exploratory, multimeasure approach to (1) examine the interactions between ED operations and physical design at 4 sites and (2) identify domains of physical design decision-making that potentially influence efficiency and safety. Multidisciplinary gaming and semistructured interviews were conducted with stakeholders at each site. Study data suggest that 16 domains of physical design decisions influence safety, efficiency, or both. These include (1) entrance and patient waiting, (2) traffic management, (3) subwaiting or internal waiting areas, (4) triage, (5) examination/treatment area configuration, (6) examination/treatment area centralization versus decentralization, (7) examination/treatment room standardization, (8) adequate space, (9) nurse work space, (10) physician work space, (11) adjacencies and access, (12) equipment room, (13) psych room, (14) staff de-stressing room, (15) hallway width, and (16) results waiting area. Safety and efficiency from a physical environment perspective in ED design are mutually reinforcing concepts--enhancing efficiency bears positive implications for safety. Furthermore, safety and security emerged as correlated concepts, with security issues bearing implications for safety, thereby suggesting important associations between safety, security, and efficiency.

  9. Conceptual design for the Space Station Freedom fluid physics/dynamics facility

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.

    1993-01-01

    A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.

  10. Science in Orbit

    NASA Technical Reports Server (NTRS)

    Weber, Mary Ellen

    2005-01-01

    This talk presents the excitement of doing science in space. It reviews some of the effects of the physical adaptations that the body undergoes to the lower gravity of space. It also discusses the role of the scientist in the space environment. It also discusses the potential uses of space development, particularly with the use of the space station.

  11. An Investigation of State Educational Twitter Hashtags (SETHS) as Affinity Spaces

    ERIC Educational Resources Information Center

    Rosenberg, Joshua M.; Greenhalgh, Spencer P.; Koehler, Matthew J.; Hamilton, Erica R.; Akcaoglu, Mete

    2016-01-01

    Affinity spaces are digital or physical spaces in which participants interact with one another around content of shared interest and through a common portal (or platform). Among teachers, some of the largest affinity spaces may be those organized around hashtags on Twitter: These spaces are public, largely unmoderated, and thriving, yet very…

  12. Spacelab

    NASA Image and Video Library

    1983-01-01

    This double exposure image shows Spacelab-1 in the cargo bay of orbiter Columbia. From top to bottom inside the cargo bay are the Spacelab Access Turnel, which is connected to the mid-deck of the orbiter; the Spacelab module, a pressurized module in which scientists conduct experiments not possible on Earth; and Spacelab pallets, which can hold instruments for the experiments requiring direct exposure to space. The first Spacelab mission, Spacelab-1, sponsored jointly and shared equally by NASA and the European Space Agency, was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The disciplines represented by these experiments were astronomy and solar physics, earth observations, space plasma physics, materials sciences, atmospheric physics, and life sciences. International in nature, Spacelab-1 conducted experiments from the United States, Japan, the Netherlands, United Kingdom, Beluga, France, Germany, Italy, and Switzerland. Spacelab-1 was launched from the Kennedy Space Center on November 28, 1983 aboard the orbiter Columbia (STS-9). The Marshall Space Flight Center was responsible for managing the Spacelab missions.

  13. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  14. Developing and Applying Synthesis Models of Emerging Space Systems

    DTIC Science & Technology

    2016-03-01

    enables the exploration of small satellite physical trade -offs early in the conceptual design phase of the DOD space acquisition process. Early...provide trade space insights that can assist DOD space acquisition professionals in making better decisions in the conceptual design phase. More informed

  15. 78 FR 20696 - NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-042] NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space... topics: --Overview of Research in Space Life and Physical Sciences --Space Station and Future Exploration...

  16. What makes a space invader? Passenger perceptions of personal space invasion in aircraft travel.

    PubMed

    Lewis, Laura; Patel, Harshada; D'Cruz, Mirabelle; Cobb, Sue

    2017-11-01

    The invasion of personal space is often a contributory factor to the experience of discomfort in aircraft passengers. This paper presents a questionnaire study which investigated how air travellers are affected by invasions of personal space and how they attempt to adapt to, or counter, these invasions. In support of recent findings on the factors influencing air passenger comfort, the results of this study indicate that the invasion of personal space is not only caused by physical factors (e.g. physical contact with humans or objects), but also other sensory factors such as noise, smells or unwanted eye contact. The findings of this study have implications for the design of shared spaces. Practitioner Summary: This paper presents a questionnaire study which investigated personal space in an aircraft environment. The results highlight the factors which affect the perception of personal space invasion in aircraft and can therefore inform the design of aircraft cabin environments to enhance the passenger experience.

  17. Articulation of Spatial and Geometrical Knowledge in Problem Solving with Technology at Primary School

    ERIC Educational Resources Information Center

    Soury-Lavergne, Sophie; Maschietto, Michela

    2015-01-01

    Our paper focuses on the relationship between spatial and geometrical knowledge in problem solving situations at primary school. We have created tasks that involve three different spaces: physical space, graphical space and geometrical space. We aim to study the specific role of graphical space as a bridge between the other two spaces using paper…

  18. From black holes to quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, N.

    1987-01-01

    Since modern physics now deals simultaneously with quantum theory, general relativity, cosmology and elementary particle physics, this volume caters to the need for a book of such a wide scope of interest. Aspects of grand unification, the thermodynamics of space-time, the loss of quantum coherence and the problem of time are expertly treated within a unified presentation. Contents: Introduction; The Global Structure of Space-time in the Classical Theory of General Relativity; Connection between the Structure of the Space-time and the Propagation of Quantum Fields; The Different Approaches to Quantization; Outlook and Conclusions.

  19. Multipurpose Spaces

    ERIC Educational Resources Information Center

    Gordon, Douglas

    2010-01-01

    The concept of multipurpose spaces in schools is certainly not new. Especially in elementary schools, the combination of cafeteria and auditorium (and sometimes indoor physical activity space as well) is a well-established approach to maximizing the use of school space and a school district's budget. Nonetheless, there continue to be refinements…

  20. Obstacle avoidance handling and mixed integer predictive control for space robots

    NASA Astrophysics Data System (ADS)

    Zong, Lijun; Luo, Jianjun; Wang, Mingming; Yuan, Jianping

    2018-04-01

    This paper presents a novel obstacle avoidance constraint and a mixed integer predictive control (MIPC) method for space robots avoiding obstacles and satisfying physical limits during performing tasks. Firstly, a novel kind of obstacle avoidance constraint of space robots, which needs the assumption that the manipulator links and the obstacles can be represented by convex bodies, is proposed by limiting the relative velocity between two closest points which are on the manipulator and the obstacle, respectively. Furthermore, the logical variables are introduced into the obstacle avoidance constraint, which have realized the constraint form is automatically changed to satisfy different obstacle avoidance requirements in different distance intervals between the space robot and the obstacle. Afterwards, the obstacle avoidance constraint and other system physical limits, such as joint angle ranges, the amplitude boundaries of joint velocities and joint torques, are described as inequality constraints of a quadratic programming (QP) problem by using the model predictive control (MPC) method. To guarantee the feasibility of the obtained multi-constraint QP problem, the constraints are treated as soft constraints and assigned levels of priority based on the propositional logic theory, which can realize that the constraints with lower priorities are always firstly violated to recover the feasibility of the QP problem. Since the logical variables have been introduced, the optimization problem including obstacle avoidance and system physical limits as prioritized inequality constraints is termed as MIPC method of space robots, and its computational complexity as well as possible strategies for reducing calculation amount are analyzed. Simulations of the space robot unfolding its manipulator and tracking the end-effector's desired trajectories with the existence of obstacles and physical limits are presented to demonstrate the effectiveness of the proposed obstacle avoidance strategy and MIPC control method of space robots.

  1. Squeezing of Particle Distributions by Expanding Magnetic Turbulence and Space Weather Variability

    NASA Astrophysics Data System (ADS)

    Ruffolo, D. J.; Tooprakai, P.; Seripienlert, A.; Chuychai, P.; Matthaeus, W. H.

    2014-12-01

    Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes can cause radiation damage to satellites, spacecraft, and astronauts, which motivates examination of the transport of high-energy solar ions to Earth orbit. Ions of low kinetic energy (up to ˜2sim 2 MeV/nucleon) from impulsive solar events exhibit abrupt changes due to filamentation of magnetic connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tube-like structures persist to Earth orbit. By employing a corresponding spherical two-component model of Alfv'enic (slab) and 2D magnetic fluctuations to trace simulated trajectories in the solar wind, we show that the distribution of high-energy (E≥1Egeq1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity due to the conical shape of the flux structures, which results from the expanding flow of the solar wind. It is difficult to observationally determine what polarity of flux structure the Earth is in at a given time, so this transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction. Partially supported by the Thailand Research Fund, a Postdoctoral Fellowship from the Thailand Center of Excellence in Physics, a Research Fellowship from the Faculty of Science, Mahidol University, the U.S. NSF (AGS-1063439 and SHINE AGS-1156094), NASA (Heliophysics Theory NNX08AI47G & NNX11AJ44G), and the Solar Probe Plus/ISIS project. KEYWORDS: [7807] SPACE PLASMA PHYSICS / Charged particle motion and acceleration, [7863] SPACE PLASMA PHYSICS / Turbulence, [2118] INTERPLANETARY PHYSICS / Energetic particles, solar, [7984] SPACE WEATHER / Space radiation environment

  2. Future Experiments to Measure Liquid-Gas Phase Change and Heat Transfer Phenomena on the International Space Station

    NASA Astrophysics Data System (ADS)

    Tóth, Balázs; Development; Operations Teams, ESA's Science Management, Payload; Teams, Science; Industry, Space

    2012-06-01

    The article presents the approach of the European Space Agency to promote research in weightlessness and in particular onboard the International Space Station. In order to maximize the return on investments, a strong international scientific collaboration is encouraged. These Science Teams support the preparation and utilisation of the flight hardware and exploit the measurement data. In the domain of physical sciences the topics dealt with at the time of writing the present paper cover fundamental physics, fluid physics, material sciences research and specific preparatory studies in anticipation of space exploration missions. The present article focuses on two-phase (liquid-gas phase change) heat transfer related experiments. These activities cover evaporation driven thermocapillary convection, pool- and flow boiling, evaporation and condensation of films together with wettability realted issues on both reference and structured surfaces, and heat pipe systems. Some hardware are in an advanced state of development, the feasibility of some was studied or is under definition at the time of the preparation of this paper. The objectives of the experiments are described together with their expected capabilities. Beyond the understanding of mostly fundamental physical processes, the data of all the described experiments are intended to be used to validate theoretical approaches and numerical tools, which are often developed by the Science Teams in parallel with the the flight hardware design activities of space industry.

  3. Advances in terrestrial physics research at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1987-01-01

    Some past, current, and future terrestrial physics research activities at NASA/Goddard Space Flight Center are described. The uses of satellites and sensors, such as Tiros, Landsat, Nimbus, and SMMR, for terrestrial physics research are discussed. The spaceborne data are applicable for monitoring and studying vegetation, snow, and ice dynamics; geological features; soil moisture; water resources; the geoid of the earth; and the earth's magnetic field. Consideration is given to improvements in remote sensing systems and data records and the Earth Observing System sensor concepts.

  4. Fluid physics, thermodynamics, and heat transfer experiments in space

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.

    1975-01-01

    An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.

  5. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation

    NASA Astrophysics Data System (ADS)

    Yuan, Luqi; Xiao, Meng; Lin, Qian; Fan, Shanhui

    2018-03-01

    We show that a single ring resonator undergoing dynamic modulation can be used to create a synthetic space with an arbitrary dimension. In such a system, the phases of the modulation can be used to create a photonic gauge potential in high dimensions. As an illustration of the implication of this concept, we show that the Haldane model, which exhibits nontrivial topology in two dimensions, can be implemented in the synthetic space using three rings. Our results point to a route toward exploring higher-dimensional topological physics in low-dimensional physical structures. The dynamics of photons in such synthetic spaces also provides a mechanism to control the spectrum of light.

  6. Space Weather Research Presented at the 2007 AGU Fall Meeting

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2007-12-01

    AGU's 47th annual Fall Meeting, held 10-14 December 2007 in San Francisco, Calif., was the largest gathering of geoscientists in the Union's history. More than 14,600 people attended. The Space Physics and Aeronomy (SPA) sections sported excellent turnout, with more than 1300 abstracts submitted over 114 poster and oral sessions. Topics discussed that related to space weather were manifold: the nature of the Sun-Earth system revealed through newly launched satellites, observations and models of ionospheric convection, advances in the understanding of radiation belt physics, Sun-Earth coupling via energetic coupling, data management and archiving into virtual observatories, and the applications of all this research to space weather forecasting and prediction.

  7. Exploring the Use of Online Space in an Elementary School

    ERIC Educational Resources Information Center

    Lye, Sze Yee; Abas, Suriati; Tay, Lee Yong; Saban, Fadilah

    2012-01-01

    This paper analysed how three teacher-researchers of Singapore's elementary school used online space extensively in Grade 2-Grade 4 classrooms. Such online space, made possible by free and readily available web 2.0 and open source applications, was meant to complement the physical learning space as such space can allow learning activities, which…

  8. Biological effects and physics of solar and galactic cosmic radiation, Part B; Proceedings of a NATO Advanced Study Institute on Biological Effects and Physics of Solar and Galactic Cosmic Radiation, Algarve, Portugal, Oct. 13-23, 1991

    NASA Technical Reports Server (NTRS)

    Swenberg, Charles E. (Editor); Horneck, Gerda (Editor); Stassinopoulos, E. G. (Editor)

    1993-01-01

    Since there is an increasing interest in establishing lunar bases and exploring Mars by manned missions, it is important to develop appropriate risk estimates and radiation protection guidelines. The biological effects and physics of solar and galactic cosmic radiation are examined with respect to the following: the radiation environment of interplanetary space, the biological responses to radiation in space, and the risk estimates for deep space missions. There is a need for a long-term program where ground-based studies can be augmented by flight experiments and an international standardization with respect to data collection, protocol comparison, and formulation of guidelines for future missions.

  9. Dynamics of physical performance during long-duration space flight (first results of "Countermeasure" experiment).

    PubMed

    Popov, D V; Khusnutdinova, D R; Shenkman, B S; Vinogradova, O L; Kozlovskaya, I B

    2004-07-01

    The efficacy of countermeasure exercise for diminishing disturbances induced by microgravity in motor system and its visceral supply during different stages of long-duration flight was evaluated. The results of both bicycle and locomotor testing indicate that physical fitness of cosmonaut does not become worse in the course of the long-duration flight. On the contrary, the lowest fitness was recorded at the first stage of mission, just after one month of flight. The "dead period" at the beginning of space flight seems to be a manifestation of the acute decrease in physical condition on transition from 1 G to microgravity, when none of the regular countermeasure regimes is sufficiently effective and acute increase of volume and intensity of training is impossible under the conditions of space flight.

  10. The impact of physical navigation on spatial organization for sensemaking.

    PubMed

    Andrews, Christopher; North, Chris

    2013-12-01

    Spatial organization has been proposed as a compelling approach to externalizing the sensemaking process. However, there are two ways in which space can be provided to the user: by creating a physical workspace that the user can interact with directly, such as can be provided by a large, high-resolution display, or through the use of a virtual workspace that the user navigates using virtual navigation techniques such as zoom and pan. In this study we explicitly examined the use of spatial sensemaking techniques within these two environments. The results demonstrate that these two approaches to providing sensemaking space are not equivalent, and that the greater embodiment afforded by the physical workspace changes how the space is perceived and used, leading to increased externalization of the sensemaking process.

  11. Reactivation of Latent Viruses in Space

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mehta, S. K.; Tyring, S. K.; Lugg, D. J.

    1999-01-01

    Reactivation of latent viruses is an important health risk for people working and living in physically isolated extreme environments such as Antarctica and space. Preflight quarantine does not significantly reduce the risk associated with latent viruses, however, pharmaceutical countermeasures are available for some viruses. The molecular basis of latency is not fully understood, but physical and psychosocial stresses are known to initiate the reactivation of latent viruses. Presumably, stress induced changes in selected hormones lead to alterations in the cell- mediated immune (CMI) response resulting in increased shedding of latent viruses. Limited access to space makes the use of ground-based analogs essential. The Australian Antarctic stations serve as a good stress model and simulate many aspects of space flight. Closed environmental chambers have been used to simulate space flight since the Skylab missions and have also proven to be a valuable analog of selected aspects of space flight.

  12. Use of discrete chromatic space to tune the image tone in a color image mosaic

    NASA Astrophysics Data System (ADS)

    Zhang, Zuxun; Li, Zhijiang; Zhang, Jianqing; Zheng, Li

    2003-09-01

    Color image process is a very important problem. However, the main approach presently of them is to transfer RGB colour space into another colour space, such as HIS (Hue, Intensity and Saturation). YIQ, LUV and so on. Virutally, it may not be a valid way to process colour airborne image just in one colour space. Because the electromagnetic wave is physically altered in every wave band, while the color image is perceived based on psychology vision. Therefore, it's necessary to propose an approach accord with physical transformation and psychological perception. Then, an analysis on how to use relative colour spaces to process colour airborne photo is discussed and an application on how to tune the image tone in colour airborne image mosaic is introduced. As a practice, a complete approach to perform the mosaic on color airborne images via taking full advantage of relative color spaces is discussed in the application.

  13. Space Telescope Systems Description Handbook

    NASA Technical Reports Server (NTRS)

    Carter, R. E.

    1985-01-01

    The objective of the Space Telescope Project is to orbit a high quality optical 2.4-meter telescope system by the Space Shuttle for use by the astronomical community in conjunction with NASA. The scientific objectives of the Space Telescope are to determine the constitution, physical characteristics, and dynamics of celestial bodies; the nature of processes which occur in the extreme physical conditions existing in stellar objects; the history and evolution of the universe; and whether the laws of nature are universal in the space-time continuum. Like ground-based telescopes, the Space Telescope was designed as a general-purpose instrument, capable of utilizing a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic will allow the Space Telescope to be effectively used as a national facility, capable of supporting the astronomical needs for an international user community and hence making contributions to man's needs. By using the Space Shuttle to provide scientific instrument upgrading and subsystems maintenance, the useful and effective operational lifetime of the Space Telescope will be extended to a decade or more.

  14. "Lomonosov" Satellite—Space Observatory to Study Extreme Phenomena in Space

    NASA Astrophysics Data System (ADS)

    Sadovnichii, V. A.; Panasyuk, M. I.; Amelyushkin, A. M.; Bogomolov, V. V.; Benghin, V. V.; Garipov, G. K.; Kalegaev, V. V.; Klimov, P. A.; Khrenov, B. A.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Svertilov, S. I.; Zotov, M. Y.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Lee, J.; Jeong, S.; Kim, M. B.; Jeong, H. M.; Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Runov, A.; Turner, D.; Strangeway, R. J.; Caron, R.; Biktemerova, S.; Grinyuk, A.; Lavrova, M.; Tkachev, L.; Tkachenko, A.; Martinez, O.; Salazar, H.; Ponce, E.

    2017-11-01

    The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organizations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-Zatsepin-Kuzmin (GZK) cutoff; Ultraviolet (UV) transient luminous events in the upper atmosphere; Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.

  15. Space Handbook, Eighth Revision, July 1970.

    ERIC Educational Resources Information Center

    Brewer, Donald A., Ed.

    "Space Handbook" is used as the text for the Fundamentals of Space Operations Course of the Air University Institute of Professional Development, Maxwell Air Force Base, Alabama. The text familiarizes the student with basic physical laws and these aspects of aerospace science as indicated by chapter titles: The Space Environment; Orbital…

  16. Earth Orbital Science, Space in the Seventies.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is part of the "Space in the Seventies" series and reviews the National Aeronautics and Space Administration's (NASA) earth orbital scientific research programs in progress and those to be pursued in the coming decade. Research in space physics is described in Part One in these areas: interplanetary monitoring platforms, small…

  17. The Future of Space Astronomy.

    ERIC Educational Resources Information Center

    Field, George B.

    1984-01-01

    Discusses various aspects of space astronomy, considering advantages, the space telescope and ground-based astronomy, an orbiting astrophysics facility, solar physics, and other areas. Indicates that earth-based astronomy will continue to be carried out there and space astronomy will be limited to observations that can be carried out only from…

  18. Always-on Education and Hybrid Learning Spaces

    ERIC Educational Resources Information Center

    Trentin, Guglielmo

    2016-01-01

    The possibility of being always connected to the Internet and/or the mobile network (hence the term "always-on") is increasingly blurring the borderline between physical and digital spaces, introducing a new concept of space, known as "hybrid." Innovative forms of teaching have been developing in hybrid spaces for some time…

  19. Moisture in Crawl Spaces

    Treesearch

    Anton TenWolde; Samuel V. Glass

    2013-01-01

    Crawl space foundations can be designed and built to avoid moisture problems. In this article we provide a brief overview of crawl spaces with emphasis on the physics of moisture. We review trends that have been observed in the research literature and summarize cur-rent recommendations for moisture control in crawl spaces.

  20. Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture.

    PubMed

    Suma, Evan A; Lipps, Zachary; Finkelstein, Samantha; Krum, David M; Bolas, Mark

    2012-04-01

    Walking is only possible within immersive virtual environments that fit inside the boundaries of the user's physical workspace. To reduce the severity of the restrictions imposed by limited physical area, we introduce "impossible spaces," a new design mechanic for virtual environments that wish to maximize the size of the virtual environment that can be explored with natural locomotion. Such environments make use of self-overlapping architectural layouts, effectively compressing comparatively large interior environments into smaller physical areas. We conducted two formal user studies to explore the perception and experience of impossible spaces. In the first experiment, we showed that reasonably small virtual rooms may overlap by as much as 56% before users begin to detect that they are in an impossible space, and that the larger virtual rooms that expanded to maximally fill our available 9.14 m x 9.14 m workspace may overlap by up to 31%. Our results also demonstrate that users perceive distances to objects in adjacent overlapping rooms as if the overall space was uncompressed, even at overlap levels that were overtly noticeable. In our second experiment, we combined several well-known redirection techniques to string together a chain of impossible spaces in an expansive outdoor scene. We then conducted an exploratory analysis of users' verbal feedback during exploration, which indicated that impossible spaces provide an even more powerful illusion when users are naive to the manipulation.

  1. The Role of Theory and Modeling in the International Living with a Star Program

    NASA Technical Reports Server (NTRS)

    Hesse, M.

    2004-01-01

    Today, theory and modeling play a critical role in our quest to understand the connection between solar eruptive phenomena, and their impacts in interplanetary space and in the near-Earth space environment. This new role is based on two developments, one related to the goal of basic physical understanding, and the other to space weather-related applications. When targeting physical our focus is shifting away from investigations aiming at basic discoveries, to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical explanations that need to be verified or falsified by empirical evidence. Within this paradigm, a much more tight integration between theory modeling, and space flight mission design and execution is not only beneficial, but essential. One of the prime objectives of space weather research, on the other hand, is the prediction of space environmental conditions for the benefit of humans and their assets in near-Earth space and on the ground, as well as on solar system bodies like Mars that are of interest to exploration by humans. By its very nature, prediction requires modeling, which, in turn, requires understanding. We will present an overview of the role of theory and modeling within the International Living With a Star program. Specifically, we will focus on an assessment of present-day and future capabilities, as well as on strategies for tight integration of theory and modeling in space science investigations.

  2. [A review on urban metabolism research based on physical space entities for environmental management].

    PubMed

    Liu, Ye; Liu, Dan

    2015-07-01

    Urban metabolism is a basic theory for coping with global environmental problems, which is coherent with the aims of national environmental management. This paper analyzed the concept of urban metabolism, and pointed out the meaning for urban metabolism in physical space entities; reviewed the current methods for urban metabolism and its merits and shortages; analyzed the system boundaries, connotation, and methodologies; and summarized the advances on urban meta-bolism practices in physical space entities. At last, we made conclusions that there were shortages, including conception system, basic theory system, and interdisciplinary integrated theory system in current urban metabolism research, and the current cases studied in urban metabolism were limited and not suitable to the harmony development between society, economy, and environment. In the future, we need to strengthen comparison between different case studies from different countries, develop the prior modes of typical urban metabolism research, identify the mechanism for urban ecosystem, and strengthen the spatial decision support system of environmental management taking urban spatial entity spaces as units.

  3. Exploring short-GRB afterglow parameter space for observations in coincidence with gravitational waves

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Resmi, L.; Misra, Kuntal; Pai, Archana; Arun, K. G.

    2018-03-01

    Short duration Gamma Ray Bursts (SGRB) and their afterglows are among the most promising electromagnetic (EM) counterparts of Neutron Star (NS) mergers. The afterglow emission is broad-band, visible across the entire electromagnetic window from γ-ray to radio frequencies. The flux evolution in these frequencies is sensitive to the multidimensional afterglow physical parameter space. Observations of gravitational wave (GW) from BNS mergers in spatial and temporal coincidence with SGRB and associated afterglows can provide valuable constraints on afterglow physics. We run simulations of GW-detected BNS events and assuming that all of them are associated with a GRB jet which also produces an afterglow, investigate how detections or non-detections in X-ray, optical and radio frequencies can be influenced by the parameter space. We narrow down the regions of afterglow parameter space for a uniform top-hat jet model, which would result in different detection scenarios. We list inferences which can be drawn on the physics of GRB afterglows from multimessenger astronomy with coincident GW-EM observations.

  4. Specification of the near-Earth space environment with SHIELDS

    DOE PAGES

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard; ...

    2017-11-26

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less

  5. The use of virtual fiducials in image-guided kidney surgery

    NASA Astrophysics Data System (ADS)

    Glisson, Courtenay; Ong, Rowena; Simpson, Amber; Clark, Peter; Herrell, S. D.; Galloway, Robert

    2011-03-01

    The alignment of image-space to physical-space lies at the heart of all image-guided procedures. In intracranial surgery, point-based registrations can be used with either skin-affixed or bone-implanted extrinsic objects called fiducial markers. The advantages of point-based registration techniques are that they are robust, fast, and have a well developed mathematical foundation for the assessment of registration quality. In abdominal image-guided procedures such techniques have not been successful. It is difficult to accurately locate sufficient homologous intrinsic points in imagespace and physical-space, and the implantation of extrinsic fiducial markers would constitute "surgery before the surgery." Image-space to physical-space registration for abdominal organs has therefore been dominated by surfacebased registration techniques which are iterative, prone to local minima, sensitive to initial pose, and sensitive to percentage coverage of the physical surface. In our work in image-guided kidney surgery we have developed a composite approach using "virtual fiducials." In an open kidney surgery, the perirenal fat is removed and the surface of the kidney is dotted using a surgical marker. A laser range scanner (LRS) is used to obtain a surface representation and matching high definition photograph. A surface to surface registration is performed using a modified iterative closest point (ICP) algorithm. The dots are extracted from the high definition image and assigned the three dimensional values from the LRS pixels over which they lie. As the surgery proceeds, we can then use point-based registrations to re-register the spaces and track deformations due to vascular clamping and surgical tractions.

  6. Specification of the near-Earth space environment with SHIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less

  7. The concept of physical surface in nuclear matter

    NASA Astrophysics Data System (ADS)

    Mazilu, Nicolae; Agop, Maricel

    2015-02-01

    The main point of a physical definition of surface forces in the matter in general, especially in the nuclear matter, is that the curvature of surfaces and its variation should be physically defined. The forces are therefore just the vehicles of introducing physics. The problem of mathematical definition of a surface in term of the curvature parameters thus naturally occurs. The present work addresses this problem in terms of the asymptotic directions of a surface in a point. A physical meaning of these parameters is given, first in terms of inertial forces, then in terms of a differential theory of colors, whereby the space of curvature parameters is identified with the color space. The work concludes with an image of the evolution of a local portion of a surface.

  8. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  9. Exercise during long term exposure to space: Value of exercise during space exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    There appear to be two general physiological reasons why exercise will be beneficial to space travelers who will experience a weightless and isolated environment for many months or a few years: (1) to alleviate or prevent tissue atrophy (principally bone and muscle), to maintain cardiovascular function, and to prevent deleterious changes in extracellular and cellular fluid volumes and plasma constituents, especially electrolytes; and (2) to maintain whole organism functional physical and physiological status with special reference to neuromuscular coordination (physical skill) and physical fitness (muscle strength and power, flexibility, and aerobic endurance). The latter reason also relates well to the ability of the crew members to resist both general and local fatigue and thus ensure consistent physical performance. Various forms of exercise, performed regularly, could help alleviate boredom and assist the travelers in coping with stress, anxiety, and depression. The type, frequency, duration and intensity of exercise and ways of ensuring that crew members engage in it are discussed.

  10. Space radiation health research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)

    1993-01-01

    The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.

  11. Survey of current situation in radiation belt modeling

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.

    2004-01-01

    The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.

  12. Cyber threat impact assessment and analysis for space vehicle architectures

    NASA Astrophysics Data System (ADS)

    McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.

    2014-06-01

    This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.

  13. History of science, physics, and art: a complex approach in Brazilian syllabuses

    NASA Astrophysics Data System (ADS)

    Braga, Marco; Guerra, Andreia; Reis, José Claudio

    2013-09-01

    This paper is about new contents that can be introduced into science education. It is a description of an experience aimed at introducing a complex approach into the final grade of a Brazilian elementary school. The aim is to show the transformation of the conception of space and time from the Middle Ages with the physics of Aristotle to the 20th century, when a new conception arose with the physics of Einstein. These changes were accompanied by new visions of space and time in both physics and arts. Comparison between these two expressions of human culture is used to introduce science as a human construct inserted into history.

  14. US space flight experience. Physical exertion and metabolic demand of extravehicular activity: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Moore, Thomas P.

    1989-01-01

    A review of physical exertion and metabolic demands of extravehicular activity (EVA) on U.S. astronauts is given. Information is given on EVA during Gemini, Apollo and Skylab missions. It is noted that nominal EVA's should not be overstressful from a cardiovascular standpoint; that manual-intensive EVA's such as are planned for the construction phase of the Space Station can and will be demanding from a muscular standpoint, primarily for the upper extremities; that off-nominal unplanned EVA's can be physically demanding both from an endurance and from a muscular standpoint; and that crewmembers should be physically prepared and capable of performing these EVA's at any time during the mission.

  15. Implementation of small group discussion as a teaching method in earth and space science subject

    NASA Astrophysics Data System (ADS)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  16. Research on natural lighting in reading spaces of university libraries in Jinan under the perspective of energy-efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Zengzhang

    2017-11-01

    The natural lighting design in the reading spaces of university libraries not only influences physical and mental health of readers but also concerns the energy consumption of the libraries. The scientific and rational design of natural lighting is the key to the design of energy saving for physical environment of the reading space. The paper elaborates the present situation and existed problems of natural lighting in reading spaces of university libraries across Jinan region based on characteristics of light climate of Jinan region and concrete utilization of reading spaces in university libraries, and combining field measurement, survey, research and data analysis of reading spaces in Shandong Women’s University’s library. The paper, under the perspective of energy-efficiency, puts forward proposals to improve natural lighting in the reading spaces of university libraries from five aspects, such as adjustment of interior layout, optimization of outer windows design, employment of the reflector panel, design lighting windows on inner walls and utilization of adjustable sun shading facilities.

  17. Concepts and technology development towards a platform for macroscopic quantum experiments in space

    NASA Astrophysics Data System (ADS)

    Kaltenbaek, Rainer

    Tremendous progress has been achieved in space technology over the last decade. This technological heritage promises enabling applications of quantum technology in space already now or in the near future. Heritage in laser and optical technologies from LISA Pathfinder comprises core technologies required for quantum optical experiments. Low-noise micro-thruster technology from GAIA allows achieving an impressive quality of microgravity, and passive radiative cooling approaches as in the James Webb Space Telescope may be adapted for achieving cryogenic temperatures. Developments like these have rendered space an increasingly attractive platform for quantum-enhanced sensing and for fundamental tests of physics using quantum technology. In particular, there already have been significant efforts towards ralizing atom interferometry and atomic clocks in space as well as efforts to harness space as an environment for fundamental tests of physics using quantum optomechanics and high-mass matter-wave interferometry. Here, we will present recent efforts in spacecraft design and technology development towards this latter goal in the context of the mission proposal MAQRO.

  18. Exploring interspace: open space opportunities in dense urban areas

    Treesearch

    Paul H. Gobster; Kathleen E. Dickhut

    1995-01-01

    Using ideas from landscape ecology, this paper explores how small open spaces can aid urban forestry efforts in dense urban areas. A case study in Chicago illustrates the physical and social lessons learned in dealing with these spaces.

  19. High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters

    DTIC Science & Technology

    2016-06-01

    space propulsion . This effort consists of numerical model development, physical model development, and systematic studies of the non-linear plasma...studies of the physical characteristics of Field Reversed Configuration (FRC) plasma for advanced space propulsion . This effort consists of numerical...FRCs for propulsion application. Two of the most advanced designs are based on the theta-pinch formation and the RMF formation mechanism, which

  20. Space colonization.

    PubMed

    Parrish, Clyde F

    2003-12-01

    A series of workshops were sponsored by the Physical Science Division of NASA's Office of Biological and Physical Research to address operational gravity-compliant in-situ resource utilization and life support techologies. Workshop participants explored a Mars simulation study on Devon Island, Canada; the processing of carbon dioxide in regenerative life support systems; space tourism; rocket technology; plant growth research for closed ecological systems; and propellant extraction of planetary regoliths.

Top