Sample records for space processing experiments

  1. Overview of materials processing in space activity at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Chassay, R. P.; Moore, W. W.; Ruff, R. C.; Yates, I. C.

    1984-01-01

    An overview of activities involving the Space Transportation System (STS), now in the operational phase, and results of some of the current space experiments, as well as future research opportunities in microgravity environment, are presented. The experiments of the Materials Processing in Space Program flown on the STS, such as bioseparation processes, isoelectric focusing, solidification and crystal growth processes, containerless processes, and the Materials Experiment Assembly experiments are discussed. Special consideration is given to the experiments to be flown aboard the Spacelab 3 module, the Fluids Experiments System, and the Vapor Crystal Growth System. Ground-based test facilities and planned space research facilities, as well as the nature of the commercialization activities, are briefly explained.

  2. Descriptions of Space Processing Applications Rocket (SPAR) experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J. (Editor)

    1979-01-01

    The experiments for all the Space Processing Applications Rocket experiments, including those flown on previous Space Processing flights as well as those under development for future flights are described. The experiment objective, rationale, approach, and results or anticipated results are summarized.

  3. Artist rendition of the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The preliminary design for the Space Experiment Research and Processing Laboratory (SERPL) at Kennedy Space Center is shown in this artist's rendition. The SERPL is a planned 100,000-square- foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  4. Location for the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the planned locations of the Space Experiment Research and Processing Laboratory (SERPL) and the Space Station Commerce Park at Kennedy Space Center. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for the planned 400- acre commerce park.

  5. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  6. Kennedy Space Center Launch and Landing Support

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer

    2010-01-01

    The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.

  7. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  8. Space Experiment Concepts: Cup-Burner Flame Extinguishment

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki

    2004-01-01

    Space Fire Suppression Processes & Technology. Space experiment concepts of cup-burner flame extinguishment have been conceived to address to the key issues (i.e., organizing questions) in space fire suppression. Cup-burner flame extinguishment experiment can reveal physical and chemical suppression processes and provide agent effectiveness data useful for technology development of space fire suppression systems in various reduced-gravity platforms.

  9. Materials processing in space, 1980 science planning document. [crystal growth, containerless processing, solidification, bioprocessing, and ultrahigh vacuum processes

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    The scientific aspects of the Materials Processing in Space program are described with emphasis on the major categories of interest: (1) crystal growth; (2) solidification of metals, alloys, and composites; (3) fluids and chemical processes; (4) containerless processing, glasses, and refractories; (5) ultrahigh vacuum processes; and (6) bioprocessing. An index is provided for each of these areas. The possible contributions that materials science experiments in space can make to the various disciplines are summarized, and the necessity for performing experiments in space is justified. What has been learned from previous experiments relating to space processing, current investigations, and remaining issues that require resolution are discussed. Recommendations for the future direction of the program are included.

  10. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. I.

    1977-01-01

    The manner in which the weightless, containerless nature of in-space processing can be successfully utilized to improve the quality of infrared transmitting chalcogenide glasses is determined. The technique of space processing chalcogenide glass was developed, and the process and equipment necessary to do so was defined. Earthbound processing experiments with As2S3 and G28Sb12Se60 glasses were experimented with. Incorporated into these experiments is the use of an acoustic levitation device.

  11. Survey Analysis of Materials Processing Experiments Aboard STS-47: Spacelab J

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum (TM) is a survey outline of materials processing experiments aboard Space Shuttle Mission STS-47: Spacelab J, a joint venture between NASA and the National Space Development Agency of Japan. The mission explored materials processing experiments including electronics and crystal growth materials, metals and alloys, glasses and ceramics, and fluids. Experiments covered include Growth of Silicone Spherical Crystals and Surface Oxidation, Growth Experiment of Narrow Band-Gap Semiconductor Lead-Tin-Tellurium Crystals in Space, Study on Solidification of Immiscible Alloys, Fabrication of Very-Low-Density, High-Stiffness Carbon Fiber/Aluminum Hybridized Composites, High Temperature Behavior of Glass, and Study of Bubble Behavior. The TM underscores the historical significance of these experiments in the context of materials processing in space.

  12. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  13. Utilization of Space Station Freedom for technology research

    NASA Technical Reports Server (NTRS)

    Avery, Don E.

    1992-01-01

    Space Station Freedom presents a unique opportunity for technology developers to conduct research in the space environment. Research can be conducted in the pressurized volume of the Space Station's laboratories or attached to the Space Station truss in the vacuum of space. Technology developers, represented by the Office of Aeronautics and Space Technology (OAST), will have 12 percent of the available Space Station resources (volume, power, data, crew, etc.) to use for their research. Most technologies can benefit from research on Space Station Freedom and all these technologies are represented in the OAST proposed traffic model. This traffic model consists of experiments that have been proposed by technology developers but not necessarily selected for flight. Experiments to be flown in space will be selected through an Announcement of Opportunity (A.O.) process. The A.O. is expected to be released in August, 1992. Experiments will generally fall into one of the 3 following categories: (1) Individual technology experiments; (2) Instrumented Space Station; and (3) Guest investigator program. The individual technology experiments are those that do not instrument the Space Station nor directly relate to the development of technologies for evolution of Space Station or development of advanced space platforms. The Instrumented Space Station category is similar to the Orbiter Experiments Program and allows the technology developer to instrument subsystems on the Station or develop instrumentation packages that measure products or processes of the Space Station for the advancement of space platform technologies. The guest investigator program allows the user to request data from Space Station or other experiments for independent research. When developing an experiment, a developer should consider all the resources and infrastructure that Space Station Freedom can provide and take advantage of these to the maximum extent possible. Things like environment, accommodations, carriers, and integration should all be taken into account. In developing experiments at Langley Research Center, an iterative approach is proving useful. This approach uses Space Station utilization and subsystem experts to advise and critique experiment designs to take advantage of everything the Space Station has to offer. Also, solid object modeling and animation computer tools are used to fully visualize the experiment and its processes. This process is very useful for attached payloads and allows problems to be detected early in the experiment design phase.

  14. KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  15. Processing materials in space - The history and the future

    NASA Technical Reports Server (NTRS)

    Chassay, Roger; Carswell, Bill

    1987-01-01

    The development of materials processing in space, and some of the Soyuz, Apollo, Skylab, and Shuttle orbital materials experiments are reviewed. Consideration is given to protein crystal growth, electrophoresis, low-gravity isoelectric focusing, phase partitioning, a monodisperse latex reactor, semiconductor crystal growth, solution crystal growth, the triglycine sulfate experiment, vapor crystal growth experiments, the mercuric iodide experiment, electronic and electrooptical materials, organic thin films and crystalline solids, deep undercooling of metals and alloys, magnetic materials, immiscible materials, metal solidification research, reluctant glass-forming materials, and containerless glass formation. The space processing apparatuses and ground facilities, for materials processing are described. Future facilities for commercial research, development, and manufacturing in space are proposed.

  16. Potential utilization of glass experiments in space

    NASA Technical Reports Server (NTRS)

    Kreidl, N. J.

    1984-01-01

    Materials processing in space utilizing the microgravity environment is discussed; glass processing in particular is considered. Attention is given to the processing of glass shells, critical cooling rate and novel glasses, gel synthesis of glasses, immiscibility, surface tension, and glass composites. Soviet glass experiments in space are also enumerated.

  17. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  18. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  19. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  20. KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  1. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  2. First among equals: The selection of NASA space science experiments

    NASA Technical Reports Server (NTRS)

    Naugle, John E.

    1990-01-01

    The process is recounted by which NASA and the scientific community have, since 1958, selected individual experiments for NASA space missions. It explores the scientific and organizational issues involved in the selection process and discusses the significance of the process in the character and accomplishments of U.S. space activities.

  3. KSC-04PD-0008

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  4. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata looks over the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata looks over the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  5. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  6. Materials processing in space: Early experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Herring, H. W.

    1980-01-01

    The characteristics of the space environment were reviewed. Potential applications of space processing are discussed and include metallurgical processing, and processing of semiconductor materials. The behavior of fluid in low gravity is described. The evolution of apparatus for materials processing in space was reviewed.

  7. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  8. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  9. KSC-00padig018

    NASA Image and Video Library

    2000-05-02

    The preliminary design for the Space Experiment Research and Processing Laboratory (SERPL) at Kennedy Space Center is shown in this artist's rendition. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park

  10. Acoustic levitation technique for containerless processing at high temperatures in space

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.; Danley, Thomas J.

    1988-01-01

    High temperature processing of a small specimen without a container has been demonstrated in a set of experiments using an acoustic levitation furnace in the microgravity of space. This processing technique includes the positioning, heating, melting, cooling, and solidification of a material supported without physical contact with container or other surface. The specimen is supported in a potential energy well, created by an acoustic field, which is sufficiently strong to position the specimen in the microgravity environment of space. This containerless processing apparatus has been successfully tested on the Space Shuttle during the STS-61A mission. In that experiment, three samples wer successfully levitated and processed at temperatures from 600 to 1500 C. Experiment data and results are presented.

  11. KSC-00padig019

    NASA Image and Video Library

    2000-05-02

    Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park

  12. KSC00padig019

    NASA Image and Video Library

    2000-05-02

    Researchers perform tests at Kennedy Space Center. New facilities for such research will be provided at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park

  13. KSC-00PADIG-020

    NASA Image and Video Library

    2002-05-02

    This diagram shows the planned locations of the Space Experiment Research and Processing Laboratory (SERPL) and the Space Station Commerce Park at Kennedy Space Center. The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for the planned 400-acre Commerce Park.

  14. Processing Materials in Space

    NASA Technical Reports Server (NTRS)

    Zoller, L. K.

    1982-01-01

    Suggested program of material processing experiments in space described in 81 page report. For each experiment, report discusses influence of such gravitational effects as convection, buoyancy, sedimentation, and hydrostatic pressure. Report contains estimates of power and mission duration required for each experiment. Lists necessary equipment and appropriate spacecraft.

  15. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  17. KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) releases a tray extended from inside the Pressurized Module, or PM, that he was working with. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions. The JEM/PM is in the Space Station Processing Facility.

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) releases a tray extended from inside the Pressurized Module, or PM, that he was working with. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions. The JEM/PM is in the Space Station Processing Facility.

  18. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  19. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  20. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  1. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  2. Materials processing in zero gravity. [space manufacturing

    NASA Technical Reports Server (NTRS)

    Wuenscher, H. F.

    1973-01-01

    Manufacturing processes which are expected to show drastic changes in a space environment due to the absence of earth gravity are classified according to (1) buoyancy and thermal convection sensitive processes and (2) processes where molecular forces like cohesion and adhesion remain as the relatively strongest and hence controlling factors. Some specific process demonstration experiments carried out during the Apollo 14 mission and in the Skylab program are described. These include chemical separation by electrophoresis, the M551 metals melting experiment, the M552 exothermic brazing experiment, the M553 sphere forming experiment, the M554 composite casting experiment, and the M555 gallium arsenide crystal growth experiment.

  3. KSC-04PD-0003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  4. KSC-04PD-0007

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  5. KSC-04PD-0002

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  6. KSC-04PD-0001

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  7. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  8. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  9. Space Processing Applications Rocket (SPAR) project: SPAR 10

    NASA Technical Reports Server (NTRS)

    Poorman, R. (Compiler)

    1986-01-01

    The Space Processing Applications Rocket Project (SPAR) X Final Report contains the compilation of the post-flight reports from each of the Principal Investigators (PIs) on the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space. The SPAR project was coordinated and managed by MSFC as part of the Microgravity Science and Applications (MSA) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters. This technical memorandum is directed entirely to the payload manifest flown in the tenth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled, Containerless Processing Technology, SPAR Experiment 76-20/3; Directional Solidification of Magnetic Composites, SPAR Experiment 76-22/3; Comparative Alloy Solidification, SPAR Experiment 76-36/3; and Foam Copper, SPAR Experiment 77-9/1R.

  10. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  11. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  12. KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, processes one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, processes one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  13. KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Michelle Crouch talk in a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Michelle Crouch talk in a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  14. KENNEDY SPACE CENTER, FLA. - Dynamac employees Debbie Wells, Michelle Crouch and Larry Burns are silhouetted as they talk inside a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees Debbie Wells, Michelle Crouch and Larry Burns are silhouetted as they talk inside a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  15. KENNEDY SPACE CENTER, FLA. - Ivan Rodriguez, with Bionetics, and Michelle Crouch and Larry Burns, with Dynamac, carry boxes of equipment into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Ivan Rodriguez, with Bionetics, and Michelle Crouch and Larry Burns, with Dynamac, carry boxes of equipment into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  16. KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  17. Space processing applications rocket project. SPAR 8

    NASA Technical Reports Server (NTRS)

    Chassay, R. P. (Editor)

    1984-01-01

    The Space Processing Applications Rocket Project (SPAR) VIII Final Report contains the engineering report prepared at the Marshall Space Flight Center (MSFC) as well as the three reports from the principal investigators. These reports also describe pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication, and testing, all of which are expected to contribute immeasurably to an improved comprehension of materials processing in space. This technical memorandum is directed entirely to the payload manifest flown in the eighth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled Glass Formation Experiment SPAR 74-42/1R, Glass Fining Experiment in Low-Gravity SPAR 77-13/1, and Dynamics of Liquid Bubbles SPAR Experiment 77-18/2.

  18. KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

    NASA Image and Video Library

    2003-11-05

    KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.

  19. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE will be unpacked for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  20. Aerial Views of KSC

    NASA Image and Video Library

    2003-07-23

    The Space Experiment Research and Processing Laboratory (SERPL) is a major new research facility under construction at the International Space Research Park located on KSC. Being developed as a partnership between KSC and the State of Florida, it will serve as the primary gateway to the International Space Station for science experiments and as a world-class home to ground-based investigations in fundamental and applied biological science. NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  1. Longevity of a Paramecium cell clone in space: Hypergravity experiments as a basis for microgravity experiments

    NASA Astrophysics Data System (ADS)

    Kato, Yuko; Mogami, Yoshihiro; Baba, Shoji A.

    We proposed a space experiment aboard International Space Station to explore the effects of microgravity on the longevity of a Paramecium cell clone. Earlier space experiments in CYTOS and Space Lab D-1 demonstrated that Paramecium proliferated faster in space. In combination with the fact that aging process in Paramecium is largely related to the fission age, the results of the proliferation experiment in space may predict that the longevity of Paramecium decreases when measured by clock time. In preparation of the space experiment, we assessed the aging process under hypergravity, which is known to reduce the proliferation rate. As a result, the length of autogamy immaturity increased when measured by clock time, whereas it remained unchanged by fission age. It is therefore expected that autogamy immaturity in the measure of the clock time would be shortened under microgravity. Since the length of clonal life span of Paramecium is related to the length of autogamy immaturity, the result of hypergravity experiment supports the prediction that the clonal longevity of Paramecium under microgravity decreases. Effects of gravity on proliferation are discussed in terms of energetics of swimming during gravikinesis and gravitaxis of Paramecium.

  2. Space Life Sciences Lab

    NASA Image and Video Library

    2003-10-09

    The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is a state-of-the-art facility built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor is the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  3. KSC-04PD-0005

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install new equipment for gas chromatography and mass spectrometry in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  4. Space Station Freedom as an engineering experiment station: An overview

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  5. The Information Science Experiment System - The computer for science experiments in space

    NASA Technical Reports Server (NTRS)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  6. Preparation and evaluation of Apollo 14 composite experiments

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1971-01-01

    An account is given of the work aimed at flight experiments on Apollo 14, in relation to space manufacturing processes. Evaluation of suitable materials, definition of in-flight processing procedures, preparation of preprocessed materials and delivery, and evaluation of the space-processed samples after return from the Apollo 14 flight are presented.

  7. Onboard experiment data support facility, task 1 report. [space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.

  8. Veggie Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, at right, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  9. Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.

  10. Space experiment development process

    NASA Technical Reports Server (NTRS)

    Depauw, James F.

    1987-01-01

    Described is a process for developing space experiments utilizing the Space Shuttle. The role of the Principal Investigator is described as well as the Principal Investigator's relation with the project development team. Described also is the sequence of events from an early definition phase through the steps of hardware development. The major interactions between the hardware development program and the Shuttle integration and safety activities are also shown. The presentation is directed to people with limited Shuttle experiment experience. The objective is to summarize the development process, discuss the roles of major participants, and list some lessons learned. Two points should be made at the outset. First, no two projects are the same so the process varies from case to case. Second, the emphasis here is on Code EN/Microgravity Science and Applications Division (MSAD).

  11. Mechanical design of a lidar system for space applications - LITE

    NASA Technical Reports Server (NTRS)

    Crockett, Sharon K.

    1990-01-01

    The Lidar In-Space Technology Experiment (LITE) is a Shuttle experiment that will demonstrate the first use of a lidar system in space. Its design process must take into account not only the system design but also the unique design requirements for spaceborne experiment.

  12. Space Processing Applications Rocket project SPAR III

    NASA Technical Reports Server (NTRS)

    Reeves, F.

    1978-01-01

    This document presented the engineering report and science payload III test report and summarized the experiment objectives, design/operational concepts, and final results of each of five scientific experiments conducted during the third Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1976. The five individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Liquid Mixing, Interaction of Bubbles with Solidification Interfaces, Epitaxial Growth of Single Crystal Film, Containerless Processing of Beryllium, and Contact and Coalescence of Viscous Bodies.

  13. Close interpersonal proximity modulates visuomotor processing of object affordances in shared, social space.

    PubMed

    Saccone, Elizabeth J; Szpak, Ancret; Churches, Owen; Nicholls, Michael E R

    2018-01-01

    Research suggests that the human brain codes manipulable objects as possibilities for action, or affordances, particularly objects close to the body. Near-body space is not only a zone for body-environment interaction but also is socially relevant, as we are driven to preserve our near-body, personal space from others. The current, novel study investigated how close proximity of a stranger modulates visuomotor processing of object affordances in shared, social space. Participants performed a behavioural object recognition task both alone and with a human confederate. All object images were in participants' reachable space but appeared relatively closer to the participant or the confederate. Results revealed when participants were alone, objects in both locations produced an affordance congruency effect but when the confederate was present, only objects nearer the participant elicited the effect. Findings suggest space is divided between strangers to preserve independent near-body space boundaries, and in turn this process influences motor coding for stimuli within that social space. To demonstrate that this visuomotor modulation represents a social phenomenon, rather than a general, attentional effect, two subsequent experiments employed nonhuman joint conditions. Neither a small, Japanese, waving cat statue (Experiment 2) nor a metronome (Experiment 3) modulated the affordance effect as in Experiment 1. These findings suggest a truly social explanation of the key interaction from Experiment 1. This study represents an important step toward understanding object affordance processing in real-world, social contexts and has implications broadly across fields of social action and cognition, and body space representation.

  14. Engineering the Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Couch, Richard H.; Moore, Chris L.

    1992-01-01

    The Lidar In-space Technology Experiment (LITE) is being developed by NASA for flight on the Space Shuttle in early 1994. A discussion of the NASA four-phase design process is followed by a short history of the experiment heritage. The instrument is then described at the subsystem level from an engineering point of view, with special emphasis on the laser and the receiver. Some aspects of designing for the space environment are discussed, as well as the importance of contamination control, and product assurance. Finally, the instrument integration and test process is described and the current status of the instrument development is given.

  15. Space processing applications rocket project SPAR 4, engineering report

    NASA Technical Reports Server (NTRS)

    Reeves, F. (Compiler)

    1980-01-01

    The materials processing experiments in space, conducted on the SPAR 4 Black Brant VC rocket, are described and discussed. The SPAR 4 payload configuration, the rocket performance, and the flight sequence are reported. The results, analyses, and anomalies of the four experiments are discussed. The experiments conducted were the uniform dispersions of crystallization processing, the contained polycrstalline solidification in low gravity, the containerless processing of ferromagnetic materials, and the containerless processing technology. The instrumentation operations, payload power relay anomaly, relay postflight operational test, and relay postflight shock test are reported.

  16. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Russ Romanella, director of International Space Station and Spacecraft Processing. Seated at right are Bill Parsons, director of Kennedy Space Center; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  17. OAST Technology for the Future. Executive Summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program (IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the space environment. A secondary objective was to review the current NASA (In-Reach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  18. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Bill Parsons, director of Kennedy Space Center. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  19. OA-7 Veggie Series 1 Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  20. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  1. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  2. Giving Children Space: A Phenomenological Exploration of Student Experiences in Space Science Inquiry

    ERIC Educational Resources Information Center

    Horne, Christopher R.

    2011-01-01

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived…

  3. Mission planning for space based satellite surveillance experiments with the MSX

    NASA Technical Reports Server (NTRS)

    Sridharan, R.; Fishman, T.; Robinson, E.; Viggh, H.; Wiseman, A.

    1994-01-01

    The Midcourse Space Experiment is a BMDO-sponsored scientific satellite set for launch within the year. The satellite will collect phenomenology data on missile targets, plumes, earth limb backgrounds and deep space backgrounds in the LWIR, visible and ultra-violet spectral bands. It will also conduct functional demonstrations for space-based space surveillance. The Space-Based Visible sensor, built by Lincoln Laboratory, Massachusetts Institute of Technology, is the primary sensor on board the MSX for demonstration of space surveillance. The SBV Processing, Operations and Control Center (SPOCC) is the mission planning and commanding center for all space surveillance experiments using the SBV and other MSX instruments. The guiding principle in the SPOCC Mission Planning System was that all routine functions be automated. Manual analyst input should be minimal. Major concepts are: (I) A high level language, called SLED, for user interface to the system; (2) A group of independent software processes which would generally be run in a pipe-line mode for experiment commanding but can be run independently for analyst assessment; (3) An integrated experiment cost computation function that permits assessment of the feasibility of the experiment. This paper will report on the design, implementation and testing of the Mission Planning System.

  4. First Materials Science Research Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  5. Tank Pressure Control Experiment on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.

  6. KSC-97PC1462

    NASA Image and Video Library

    1997-09-15

    United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). A technician is working on the Advanced Automated Directional Solidification Furnace (AADSF), which will be used by researchers to study the solidification of semiconductor materials in microgravity. Scientists will be able to better understand how microgravity influences the solidification process of these materials and develop better methods for controlling that process during future Space flights and Earth-based production. All STS-87 experiments are scheduled for launch on Nov. 19 from KSC

  7. KSC-2010-5494

    NASA Image and Video Library

    2010-11-04

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) sits in its cargo element work stand, where technicians will continue to process the experiment for launch. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller

  8. KSC-2010-5493

    NASA Image and Video Library

    2010-11-04

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) sits in its cargo element work stand, where technicians will continue to process the experiment for launch. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller

  9. Automated Space Processing Payloads Study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An investigation is described which examined the extent to which the experiment hardware and operational requirements can be met by automatic control and material handling devices; payload and system concepts are defined which make extensive use of automation technology. Topics covered include experiment requirements and hardware data, capabilities and characteristics of industrial automation equipment and controls, payload grouping, automated payload conceptual design, space processing payload preliminary design, automated space processing payloads for early shuttle missions, and cost and scheduling.

  10. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  11. Spacelab 3 vapor crystal growth experiment

    NASA Technical Reports Server (NTRS)

    Schnepple, W.; Vandenberg, L.; Skinner, N.; Ortale, C.

    1987-01-01

    The Space Shuttle Challenger, with Spacelab 3 as its payload, was launched into orbit April 29, 1985. The mission, number 51-B, emphasized materials processing in space, although a wide variety of experiments in other disciplines were also carried onboard. One of the materials processing experiments on this flight is described, specifically the growth of single crystals of mercuric iodide by physical vapor transport.

  12. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  13. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  14. Space processing economics

    NASA Technical Reports Server (NTRS)

    Bredt, J. H.

    1974-01-01

    Two types of space processing operations may be considered economically justified; they are manufacturing operations that make profits and experiment operations that provide needed applied research results at lower costs than those of alternative methods. Some examples from the Skylab experiments suggest that applied research should become cost effective soon after the space shuttle and Spacelab become operational. In space manufacturing, the total cost of space operations required to process materials must be repaid by the value added to the materials by the processing. Accurate estimates of profitability are not yet possible because shuttle operational costs are not firmly established and the markets for future products are difficult to estimate. However, approximate calculations show that semiconductor products and biological preparations may be processed on a scale consistent with market requirements and at costs that are at least compatible with profitability using the Shuttle/Spacelab system.

  15. The Role of Structural Models in the Solar Sail Flight Validation Process

    NASA Technical Reports Server (NTRS)

    Johnston, John D.

    2004-01-01

    NASA is currently soliciting proposals via the New Millennium Program ST-9 opportunity for a potential Solar Sail Flight Validation (SSFV) experiment to develop and operate in space a deployable solar sail that can be steered and provides measurable acceleration. The approach planned for this experiment is to test and validate models and processes for solar sail design, fabrication, deployment, and flight. These models and processes would then be used to design, fabricate, and operate scaleable solar sails for future space science missions. There are six validation objectives planned for the ST9 SSFV experiment: 1) Validate solar sail design tools and fabrication methods; 2) Validate controlled deployment; 3) Validate in space structural characteristics (focus of poster); 4) Validate solar sail attitude control; 5) Validate solar sail thrust performance; 6) Characterize the sail's electromagnetic interaction with the space environment. This poster presents a top-level assessment of the role of structural models in the validation process for in-space structural characteristics.

  16. KSC-04PD-0006

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  17. Veggie Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, at right, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. At far left is Dena Richmond, ESC configuration management. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  18. The Wake Shield Facility: A space experiment platform

    NASA Technical Reports Server (NTRS)

    Allen, Joseph P.

    1991-01-01

    Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.

  19. Experiments Using a Ground-Based Electrostatic Levitator and Numerical Modeling of Melt Convection for the Iron-Cobalt System in Support of Space Experiments

    NASA Astrophysics Data System (ADS)

    Lee, Jonghyun; SanSoucie, Michael P.

    2017-08-01

    Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.

  20. KSC-07pd0896

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. At the podium is Dr. Kichiro Imagawa, project manager of the JEM Development Project Team for JAXA. Seated at right are Russ Romanella, director of International Space Station and Spacecraft Processing; Bill Parsons, director of Kennedy Space Center; Melanie Saunders, associate manager of the International Space Station Program at Johnson Space Center; and Dominic Gorie, commander on mission STS-123 that will deliver the module to the space station. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  1. Materials processing in space: An introduction to the G-480 payload

    NASA Technical Reports Server (NTRS)

    Butow, Steven J.

    1988-01-01

    The Space Research and Development Organization at San Jose State University designed and developed a small self-contained payload (designated G-480 by NASA) which will perform four materials science experiments in low Earth orbit aboard the Space Shuttle. These experiments are categorized under two areas of investigation: corrosion and electrodeposition. While none of these experiments have previously been performed in space, both government and industry have expressed great interest in these and related areas of materials processing and engineering. A brief history of the G-480 project development is given along with a description of each experiment, followed by a tour of the G-480 payload. Expected results are discussed along with the function, design and operation of the payload hardware and software.

  2. A new approach to electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.

    1990-01-01

    Previous electrophoresis experiments performed in space are reviewed. There is sufficient data available from the results of these experiments to show that they were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. Redesigning laboratory chambers and operating procedures developed on Earth for space without understanding both the advantages and disadvantages of the microgravity environment has yielded poor separations of both cells and proteins. However, electrophoreris is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.

  3. The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

  4. KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  5. Toward a space materials systems program

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1981-01-01

    A program implementation model is presented which covers the early stages of space material processing and manufacturing. The model includes descriptions of major program elements, development and experiment requirements in space materials processing and manufacturing, and an integration of the model into NASA's long range plans as well as its evolution from present Materials Processing in Space plans.

  6. Design of a water electrolysis flight experiment

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Grigger, David J.; Thompson, C. Dean; Cusick, Robert J.

    1993-01-01

    Supply of oxygen (O2) and hydrogen (H2) by electolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missios. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. The Electrolysis Performance Improvement Concept Study (EPICS) flight experiment described herein is sponsored by NASA Headquarters as a part of the In-Space Technology Experiment Program (IN-STEP). The objective of the EPICS is to further contribute to the improvement of the SEF technology, specifially by demonstrating and validating the SFE electromechanical process in microgravity as well as investigating perrformance improvements projected possible in a microgravity environment. This paper defines the experiment objective and presents the results of the preliminary design of the EPICS. The experiment will include testing three subscale self-contained SFE units: one containing baseline components, and two units having variations in key component materials. Tests will be conducted at varying current and thermal condition.

  7. KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  8. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  9. Aerial Views of KSC

    NASA Image and Video Library

    2003-07-23

    The Space Experiment Research and Processing Laboratory (SERPL) is a major new research facility under construction at the International Space Research Park located on KSC. At right is S.R. 3, which leads into the Center from Merritt Island. Being developed as a partnership between KSC and the State of Florida, SERPL will serve as the primary gateway to the International Space Station for science experiments and as a world-class home to ground-based investigations in fundamental and applied biological science. NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  10. The Microgravity Research Experiments (MICREX) Data Base

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments) was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigator (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes thE MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  11. The Microgravity Research Experiments (MICREX) Data Base. Volume 2

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  12. The Microgravity Research Experiments (MICREX) Data Base. Volume 1

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J.C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  13. The Microgravity Research Experiments (MICREX) Data Base, Volume 4

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical Memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  14. Electrophoresis operations in space

    NASA Technical Reports Server (NTRS)

    Richman, D. W.

    1982-01-01

    Application of electrophoresis in space processing is described. Spaceborne experiments in areas such as biological products and FDA approved drugs are discussed. These experiments will be carried on shuttle payloads.

  15. KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  16. KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  17. KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Space Station Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Space Station Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

  18. Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.

    DTIC Science & Technology

    safety tested, and flew hardware we call the Microencapsulation in Space (MIS) experiment. The MIS experiment flew on Space Shuttle Discovery...of the same composition. From our experience, these improved properties should improve the release properties of microencapsulated drugs and...eliminate unwanted residual process aids. Furthermore, it is likely that microencapsulation in space will let us encapsulate drugs that cannot be microencapsulated on the earth

  19. KSC-98pc1137

    NASA Image and Video Library

    1998-09-23

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test (HOST) is suspended above its work stand in the Space Station Processing Facility before moving it to its payload canister. The HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry other payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker (IEH-3), and the SPACEHAB single module with experiments on space flight and the aging process

  20. KSC-98pc1036

    NASA Image and Video Library

    1998-09-04

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test (HOST) is checked out by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  1. Materials Processing in Space (MPS) program description

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Insight is provided into the scientific rotationale for materials processing in space (MPS), and a comprehensive and cohesive approach for implementation and integration of the many, diverse aspects of MPS is described. The programmatic and management functions apply to all projects and activities implemented under MPS. It is intended that specific project plans, providing project unique details, will be appended to this document for endeavors such as the Space Processing Applications Rocket (SPAR) Project, the Materials Experiment Assembly (MEA) Project, the MPS/Spacelab (MPS/SL) Project, and the Materials Experiment Carrier (MEC) Payloads.

  2. OAST Technology for the Future. Volume 2 - Critical Technologies, Themes 1-4

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which. require validation in the space environment. A secondary objective was to review the current NASA (InReach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  3. Launch and landing site science processing for ISS utilization

    NASA Astrophysics Data System (ADS)

    Shao, Mimi; van Twest, Jacqueline; van den Ende, Oliver; Gruendel, Douglas; Wells, Deborah; Moyer, Jerry; Heuser, Jan; Etheridge, Guy

    2000-01-01

    Since 1986, Kennedy Space Center (KSC) has provided support to over 500 spaceflight experiments from NASA, international agencies, academic institutions, commercial entities, and the military sector. The experiments cover a variety of science disciplines including molecular, cellular, developmental biology, chemistry, physiology, and material sciences. KSC supports simulation, pre-flight, in-flight, and post-flight processing of flight hardware, specimens, and data at the primary and secondary landing sites. Science processing activities for spaceflight experiments occurs at the Life Science Support Facility (Hangar L) on the Cape Canaveral Air Station (CCAS) and select laboratories in the Industrial Area at KSC. Planning is underway to meet the challenges of the International Space Station (ISS). ISS support activities are expected to exceed the current launch site capability. KSC plans to replace the current facilities with Space Experiments Research and Processing Laboratory (SERPL), a collaborative effort between NASA and the State of Florida. This facility will be the cornerstone of a larger Research Park at KSC and is expected to foster relations between commercial industry and academia in areas related to space research. .

  4. Study of Fluid Experiment System (FES)/CAST/Holographic Ground System (HGS)

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Cummings, Rick; Jones, Brian

    1992-01-01

    The use of holographic and schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The HGS facility at MSFC has been primary resource in researching this capability. Consequently, scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS Crystal Growth and the casting and solidification technology (CAST) experiments that were flown on the International Microgravity Laboratory (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment worked in space. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.

  5. KSC-20170216-MH-LCH01-0001-CRS_10_APH_Apex_4_and_Veggie_processing-3145683(H.265)

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant Experiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX CRS-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  6. KSC-06pd1686

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, processing continues on the Japanese Experiment Module (JEM) for its flight to the International Space Station (ISS). The JEM, developed by the Japan Aerospace Exploration Agency (JAXA) for installation on the ISS, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  7. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.

  8. Process material management in the Space Station environment

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  9. KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  10. Linguistic and Perceptual Mapping in Spatial Representations: An Attentional Account.

    PubMed

    Valdés-Conroy, Berenice; Hinojosa, José A; Román, Francisco J; Romero-Ferreiro, Verónica

    2018-03-01

    Building on evidence for embodied representations, we investigated whether Spanish spatial terms map onto the NEAR/FAR perceptual division of space. Using a long horizontal display, we measured congruency effects during the processing of spatial terms presented in NEAR or FAR space. Across three experiments, we manipulated the task demands in order to investigate the role of endogenous attention in linguistic and perceptual space mapping. We predicted congruency effects only when spatial properties were relevant for the task (reaching estimation task, Experiment 1) but not when attention was allocated to other features (lexical decision, Experiment 2; and color, Experiment 3). Results showed faster responses for words presented in Near-space in all experiments. Consistent with our hypothesis, congruency effects were observed only when a reaching estimate was requested. Our results add important evidence for the role of top-down processing in congruency effects from embodied representations of spatial terms. Copyright © 2017 Cognitive Science Society, Inc.

  11. Zeolite crystal growth in space - What has been learned

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

    1993-01-01

    Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

  12. In-space experiment on thermoacoustic convection heat transfer phenomenon-experiment definition

    NASA Technical Reports Server (NTRS)

    Parang, M.; Crocker, D. S.

    1991-01-01

    The definition phase of an in-space experiment in thermoacoustic convection (TAC) heat transfer phenomenon is completed and the results are presented and discussed in some detail. Background information, application and potential importance of TAC in heat transfer processes are discussed with particular focus on application in cryogenic fluid handling and storage in microgravity space environment. Also included are the discussion on TAC space experiment objectives, results of ground support experiments, hardware information, and technical specifications and drawings. The future plans and a schedule for the development of experiment hardware (Phase 1) and flight tests and post-flight analysis (Phase 3/4) are also presented. The specific experimental objectives are rapid heating of a compressible fluid and the measurement of the fluid temperature and pressure and the recording and analysis of the experimental data for the establishment of the importance of TAC heat transfer process. The ground experiments that were completed in support of the experiment definition included fluid temperature measurement by a modified shadowgraph method, surface temperature measurements by thermocouples, and fluid pressure measurements by strain-gage pressure transducers. These experiments verified the feasibility of the TAC in-space experiment, established the relevance and accuracy of the experimental results, and specified the nature of the analysis which will be carried out in the post-flight phase of the report.

  13. NBS (National Bureau of Standards): Materials measurements. [space processing experiments

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1983-01-01

    Work directed toward the measurement of materials properties important to the design and interpretation of space processing experiments and determinations of how the space environment may offer a unique opportunity for performing improved measurements and producing materials with improved properties is reported. Surface tensions and their variations with temperature and impurities; convection during undirectional solidification; and measurement of the high temperature thermophysical properties of tungsten group liquids and solids are discussed and results are summarized.

  14. KENNEDY SPACE CENTER, FLA. - The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is installed into the payload bay of the Space Shuttle Orbiter Columbia in Orbiter Processing Facility 1. The Spacelab long crew transfer tunnel that leads from the orbiter's crew airlock to the module is also aboard, as well as the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia's payload bay. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments.

    NASA Image and Video Library

    1997-02-13

    KENNEDY SPACE CENTER, FLA. - The Microgravity Science Laboratory-1 (MSL-1) Spacelab module is installed into the payload bay of the Space Shuttle Orbiter Columbia in Orbiter Processing Facility 1. The Spacelab long crew transfer tunnel that leads from the orbiter's crew airlock to the module is also aboard, as well as the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia's payload bay. During the scheduled 16-day STS-83 mission, the MSL-1 will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments.

  15. A path to in-space welding and to other in-space metal processing technologies using Space Shuttle small payloads

    NASA Technical Reports Server (NTRS)

    Tamir, David

    1992-01-01

    As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.

  16. OAST Technology for the Future. Volume 3 - Critical Technologies, Themes 5-8

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the 5 ace environment. A secondary objective was to review the current NASA (In-Reach and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  17. The mechanism of valence-space metaphors: ERP evidence for affective word processing.

    PubMed

    Xie, Jiushu; Wang, Ruiming; Chang, Song

    2014-01-01

    Embodied cognition contends that the representation and processing of concepts involve perceptual, somatosensory, motoric, and other physical re-experiencing information. In this view, affective concepts are also grounded in physical information. For instance, people often say "feeling down" or "cheer up" in daily life. These phrases use spatial information to understand affective concepts. This process is referred to as valence-space metaphor. Valence-space metaphors refer to the employment of spatial information (lower/higher space) to elaborate affective concepts (negative/positive concepts). Previous studies have demonstrated that processing affective words affects performance on a spatial detection task. However, the mechanism(s) behind this effect remain unclear. In the current study, we hypothesized that processing affective words might produce spatial information. Consequently, spatial information would affect the following spatial cue detection/discrimination task. In Experiment 1, participants were asked to remember an affective word. Then, they completed a spatial cue detection task while event-related potentials were recorded. The results indicated that the top cues induced enhanced amplitude of P200 component while participants kept positive words relative to negative words in mind. On the contrary, the bottom cues induced enhanced P200 amplitudes while participants kept negative words relative to positive words in mind. In Experiment 2, we conducted a behavioral experiment that employed a similar paradigm to Experiment 1, but used arrows instead of dots to test the attentional nature of the valence-space metaphor. We found a similar facilitation effect as found in Experiment 1. Positive words facilitated the discrimination of upper arrows, whereas negative words facilitated the discrimination of lower arrows. In summary, affective words might activate spatial information and cause participants to allocate their attention to corresponding locations. Valence-space metaphors might be grounded in attention allocation.

  18. Line drawing of STS-34 middeck experiment Polymer Morphology (PM)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-34 middeck experiment Polymer Morphology (PM) and its apparatus is illustrated in this line drawing. Apparatus for the experiment, developed by 3M, includes a Fournier transform infrared (FTIR) spectrometer, an automatic sample manipulating system and a process control and data acquisition computer known as the Generic Electronics Module (GEM). STS-34 mission specialists will interface with the PM experiment through a small, NASA-supplied laptop computer that is used as an input and output device for the main PM computer. PM experiment is an organic materials processing experiment designed to explore the effects of microgravity on polymeric materials as they are processed in space and is being conducted by 3M's Space Research and Applications Laboratory.

  19. KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Orbiter Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Orbiter Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

  20. Space shuttle recommendations based on aircraft maintenance experience

    NASA Technical Reports Server (NTRS)

    Spears, J. M.; Fox, C. L.

    1972-01-01

    Space shuttle design recommendations based on aircraft maintenance experience are developed. The recommendations are specifically applied to the landing gear system, nondestructive inspection techniques, hydraulic system design, materials and processes, and program support.

  1. Veggie Harvest

    NASA Image and Video Library

    2017-10-27

    Charles Spern, project manager on the Engineering Services Contract, communicates instructions for the Veggie system to astronaut Joe Acaba on the International Space Station. Spern is in the Experiment Monitoring Room in the Space Station Processing Facility at Kennedy Space Center in Florida. Three different varieties of plants from the Veg-03D plant experiment were harvested.

  2. Space processes for extended low-G testing

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.; Gorham, D. J.

    1973-01-01

    Results of an investigation of verifying the capabilities of space processes in ground based experiments at low-g periods are presented. Limited time experiments were conducted with the processes. A valid representation of the complete process cycle was achieved at low-g periods ranging from 40 to 390 seconds. A minimum equipment inventory, is defined. A modular equipment design, adopted to assure low cost and high program flexibility, is presented as well as procedures and data established for the synthesis and definition of dedicated and mixed rocket payloads.

  3. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, 18 plant pillows for the Veg-03 experiment have been prepared for delivery to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  4. Space Environmental Effects on Materials and Processes

    NASA Technical Reports Server (NTRS)

    Sabbann, Leslie M.

    2009-01-01

    The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.

  5. Bioprocessing in Space

    NASA Technical Reports Server (NTRS)

    Morrison, D. R. (Compiler)

    1977-01-01

    Proceedings are presented of the 1976 NASA Colloquium on bioprocessing in space. The program included general sessions and formal presentations on the following topics: NASA's Space Shuttle, Spacelab, and space-processing programs; the known unusual behavior of materials in space; space-processing experiment results; cell biology, gravity sensors in cells, space electrophoresis of living cells, new approaches to biosynthesis of biologicals from cell culture in space, and zero-g fermentation concepts; and upcoming flight opportunities and industrial application planning studies already underway.

  6. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Hubble Space Telescope Orbiting Systems Test (HOST) is checked out by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar- observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  7. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is moved inside the Space Shuttle Processing Facility. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  8. KSC-98pc1039

    NASA Image and Video Library

    1998-09-04

    Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is moved inside the Space Shuttle Processing Facility. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  9. KSC-98pc1037

    NASA Image and Video Library

    1998-09-04

    The Hubble Space Telescope Orbiting Systems Test (HOST)is being raised to a workstand by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  10. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

  11. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) gets information about the facility while on a tour of KSC. Behind the group is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) gets information about the facility while on a tour of KSC. Behind the group is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  12. Space Station Planetology Experiments (SSPEX)

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Williams, R. J. (Editor)

    1986-01-01

    A meeting of 50 planetary scientists considered the uses of the Space Station to support experiments in their various disciplines. Abstracts (28) present concepts for impact and aeolian processes, particle formation and interaction, and other planetary science experiments. Summaries of the rationale, hardware concepts, accomodations, and recommendations are included.

  13. KSC-03pd2710

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata is dressed in protective clothing before entering the Pressurized Module, or PM, behind him. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  14. Space Processing Applications Rocket project, SPAR 1

    NASA Technical Reports Server (NTRS)

    Reeves, F. (Compiler); Chassay, R. (Compiler)

    1976-01-01

    The experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight are summarized. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: solidification of Pb-Sb eutectic, feasibility of producing closed-cell metal foams, characterization of rocket vibration environment by measurement of mixing of two liquids, uniform dispersions of crystallization processing, direct observation of solidification as a function of gravity levels, casting thoria dispersion-strengthened interfaces, contained polycrystalline solidification, and preparation of a special alloy for manufacturing of magnetic hard superconductor under zero-g environment.

  15. Research experiences on materials science in space aboard Salyut and Mir

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.

    1992-01-01

    From 1980 through 1991 approximately 500 materials processing experiments were performed aboard the space stations Salyut 6, Salyut 7 and Mir. This includes work on catalysts, polymers, metals and alloys, optical materials, superconductors, electronic crystals, thin film semiconductors, super ionic crystals, ceramics, and protein crystals. Often the resulting materials were surprisingly superior to those prepared on earth. The Soviets were the first to fabricate a laser (CdS) from a crystal grown in space, the first to grow a heterostructure in space, the first super ionic crystal in space, the first crystals of CdTe and its alloys, the first zeolite crystals, the first protein crystals, the first chromium disilicide glass, etc. The results were used to optimize terrestrial materials processing operations in Soviet industry. The characteristics of these three space stations are reviewed, along with the advantages of a space station for materials research, and the problems encountered by the materials scientists who used them. For example, the stations and the materials processing equipment were designed without significant input from the scientific community that would be using them. It is pointed out that successful results have been achieved also by materials processing at high gravity in large centrifuges. This research is also continuing around the world, including at Clarkson University. It is recommended that experiments be conducted in centrifuges in space, in order to investigate the acceleration regime between earth's gravity and the microgravity achieved in orbiting space stations. One cannot expect to understand the influence of gravity on materials processing from only two data points, earth's gravity and microgravity. One must also understand the influence of fluctuations in acceleration on board space stations, the so-called 'g-jitter.' This paper is presented in outline and graphical form.

  16. Analysis of microgravity space experiments Space Shuttle programmatic safety requirements

    NASA Technical Reports Server (NTRS)

    Terlep, Judith A.

    1996-01-01

    This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.

  17. KSC-98pc864

    NASA Image and Video Library

    1998-07-16

    KENNEDY SPACE CENTER, FLA. -- STS-95 Mission Specialist Stephen K. Robinson injects water into the base of the seed container where plants will grow during the upcoming mission. This is part of the Biological Research in Canisters (BRIC) experiment which is at the SPACEHAB Payload Processing Facility, Cape Canaveral, Fla. This experiment will fly in SPACEHAB in Discovery’s payload bay. STS-95 is scheduled to launch from pad 39B at KSC on Oct. 29, 1998. The mission also includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as experiments on space flight and the aging process

  18. KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  19. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  20. First results from the PROTEIN experiment on board the International Space Station

    NASA Astrophysics Data System (ADS)

    Decanniere, Klaas; Potthast, Lothar; Pletser, Vladimir; Maes, Dominique; Otalora, Fermin; Gavira, Jose A.; Pati, Luis David; Lautenschlager, Peter; Bosch, Robert

    On March 15 2009 Space Shuttle Discovery was launched, carrying the Process Unit of the Protein Crystallization Diagnostics Facility (PCDF) to the International Space Station. It contained the PROTEIN experiment, aiming at the in-situ observation of nucleation and crystal growth behaviour of proteins. After installation in the European Drawer Rack (EDR) and connection to the PCDF Electronics Unit, experiment runs were performed continuously for 4 months. It was the first time that protein crystallization experiments could be modified on-orbit in near real-time, based on data received on ground. The data included pseudo-dark field microscope images, interferograms, and Dynamic Light Scattering data. The Process Unit with space grown crystals was returned to ground on July 31 2009. Results for the model protein glucose isomerase (Glucy) from Streptomyces rubiginosus crystallized with ammonium sulfate will be reported concerning nucleation and the growth from Protein and Impurities Depletion Zones (PDZs). In addition, results of x-ray analyses for space-grown crystals will be given.

  1. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  2. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    PubMed

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  3. Making sense from space-time data in laboratory experiments on space plasma processes

    NASA Technical Reports Server (NTRS)

    Gekelman, Walter; Bamber, James; Leneman, David; Vincena, Steve; Maggs, James; Rosenberg, Steve

    1995-01-01

    A number of visualization techniques are discussed in a laboratory experiment designed to study phenomena that occur in space. Visualization tools are used to design the apparatus, collect data, and make one-, two-, and three-dimensional plots of the results. These tools are an indispensable part of the experiment because the data sets are hundreds of megabytes in size and rapid turnaround is required.

  4. The metaphor of experience and the experience of metaphor: critical reflection on a contemplative process toward aliveness and compassion.

    PubMed

    Kuchan, Karen L

    2009-01-01

    An epistemological web invites critical reflection and the possibility of new ideas emerging in the space between experience and different ways of thinking. A web offers a postmodern method of a hermeneutic of experience and a way of knowing that creates space for a robust, flexible, dynamic process of critical reflection and discovery. The following article utilizes an inter-textual epistemological web (see Figure 1, p. 4) to answer the question, "Do metaphors of experience and experiences of metaphor during contemplative healing prayer with a spiritual director nurture a transformational process toward aliveness and compassion?" How can one discover and communicate this reality in dialog with Hebrew scripture, psychoanalytic theory, affective neuroscience and ways of thinking about contemplative transformation?

  5. The service telemetry and control device for space experiment “GRIS”

    NASA Astrophysics Data System (ADS)

    Glyanenko, A. S.

    2016-02-01

    Problems of scientific devices control (for example, fine control of measuring paths), collecting auxiliary (service information about working capacity, conditions of experiment carrying out, etc.) and preliminary data processing are actual for any space device. Modern devices for space research it is impossible to imagine without devices that didn't use digital data processing methods and specialized or standard interfaces and computing facilities. For realization of these functions in “GRIS” experiment onboard ISS for purposes minimization of dimensions, power consumption, the concept “system-on-chip” was chosen and realized. In the programmable logical integrated scheme by Microsemi from ProASIC3 family with maximum capacity up to 3M system gates, the computing kernel and all necessary peripherals are created. In this paper we discuss structure, possibilities and resources the service telemetry and control device for “GRIS” space experiment.

  6. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1999-01-01

    This presentation discuss the Marshall Space Flight Center Operations and Responsibilities. These are propulsion, microgravity experiments, international space station, space transportation systems, and advance vehicle research.

  7. Preparation of composite materials in space. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1973-01-01

    A study to define promising materials, significant processing criteria, and the related processing techniques and apparatus for the preparation of composite materials in space was conducted. The study also established a program for zero gravity experiments and the required developmental efforts. The following composite types were considered: (1) metal-base fiber and particle composites, including cemented compacts, (2) controlled density metals, comprising plain and reinforced metal foams, and (3) unidirectionally solidified eutectic alloys. A program of suborbital and orbital experiments for the 1972 to 1978 time period was established to identify materials, processes, and required experiment equipment.

  8. KSC-98pc1139

    NASA Image and Video Library

    1998-09-23

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test (HOST), one of the payloads on the STS-95 mission, is placed inside its payload canister in the Space Station Processing Facility. The canister is 65 feet long, 18 feet wide and 18 feet, 7 inches high. The HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry other payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker (IEH-3), and the SPACEHAB single module with experiments on space flight and the aging process

  9. KSC-98pc1138

    NASA Image and Video Library

    1998-09-23

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test (HOST), one of the payloads on the STS-95 mission, is suspended above its payload canister in the Space Station Processing Facility. The canister is 65 feet long, 18 feet wide and 18 feet, 7 inches high. The HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry other payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker (IEH-3), and the SPACEHAB single module with experiments on space flight and the aging process

  10. KSC-98pc1136

    NASA Image and Video Library

    1998-09-23

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test Platform (HOST) is lifted off its work stand in the Space Station Processing Facility before moving it to its payload canister. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry other payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker (IEH-3), and the SPACEHAB single module with experiments on space flight and the aging process

  11. KSC-97pc762

    NASA Image and Video Library

    1997-05-01

    KENNEDY SPACE CENTER, FLA. -- KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  12. KSC-97pc763

    NASA Image and Video Library

    1997-05-01

    KENNEDY SPACE CENTER, FLA. -- KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  13. Microstructure and Macrosegregation Study of Directionally Solidified Al-7Si Samples Processed Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Erdman, R. G.; Poirier, David R.; Tewari, S.N.; Grugel, R. N.

    2014-01-01

    This talk reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). The DS-experiments have been carried out under 1-g at Cleveland State University (CSU) and under low-g on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially-processed samples and the ISS-processed samples. We have observed that the primary dendrite arm spacings of two samples grown in the low-g environment of the ISS show good agreement with a dendrite-growth model based on diffusion controlled growth. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosgregation. In order to process DS-samples aboard the ISS, dendritic-seed crystals have to partially remelted in a stationary thermal gradient before the DS is carried out. Microstructural changes and macrosegregation effects during this period are described.

  14. Definition of smolder experiments for Spacelab

    NASA Technical Reports Server (NTRS)

    Summerfield, M.; Messina, N. A.; Ingram, L. S.

    1979-01-01

    The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities.

  15. KSC-03pd2711

    NASA Image and Video Library

    2003-09-24

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in protective clothing, talks with workers before entering the Pressurized Module, or PM, behind him. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.

  16. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  17. Project Explorer's unique experiments: Get Away Special #007

    NASA Technical Reports Server (NTRS)

    Henderson, A. J., Jr.

    1986-01-01

    The Project Explorer payload represents the first attempt at broadcasting digitized voice signals via a Space Shuttle flight on amateur radio frequencies. These amateur ham-radio frequencies will be transmitting real time data while the experiments are operating. Experiments 1, 2, and 3 represent the work of students ranging from materials processing to the science of biology. Experiment 1 will study the solidification of two hypereutectic alloys, lead-antimony and aluminum-copper. Experiment 2 will investigate the examination and growth of radish seeds in space. Experiment 3 will examine the electrochemical growth process of potassium tetrocyonoplatinate hydrate crystals and Experiment 4 involves amateur radio transmissions, monitoring and support of the entire Get Away Special (GAS) 007 payload.

  18. RoMPS concept review automatic control of space robot

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Robot operated Material Processing in Space (RoMPS) experiment is being performed to explore the marriage of two emerging space commercialization technologies: materials processing in microgravity and robotics. This concept review presents engineering drawings and limited technical descriptions of the RoMPS programs' electrical and software systems.

  19. Early Visual Deprivation Alters Multisensory Processing in Peripersonal Space

    ERIC Educational Resources Information Center

    Collignon, Olivier; Charbonneau, Genevieve; Lassonde, Maryse; Lepore, Franco

    2009-01-01

    Multisensory peripersonal space develops in a maturational process that is thought to be influenced by early sensory experience. We investigated the role of vision in the effective development of audiotactile interactions in peripersonal space. Early blind (EB), late blind (LB) and sighted control (SC) participants were asked to lateralize…

  20. Early space experiments in materials processing

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1979-01-01

    A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se.

  1. Space Processing Applications Rocket project, SPAR 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Experiment objectives, design/operational concepts, and final results are summarized for six materials science experiments conducted during the second space processing applications rocket mission flown by NASA. The individual experiments discussed are: (1) solidification of Pb-Sb eutectic; (2) feasibility of producing closed-cell metal foams; (3) direct observation of dendrite remelting and macrosegregation in castings; (4) agglomeration in immiscible liquids; (5) casting dispersion - strengthened composites at zero gravity; and (6) solidification behavior of Al-In alloys under zero gravity conditions.

  2. Summaries of early materials processing in space experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Mason, D.

    1979-01-01

    Objectives, methods, and results of low-gravity materials processing experiments are summarized, and a bibliography of published results for each experiment is provided. Included are drop tower experiments, the Apollo demonstration experiments, the skylab experiments and demonstration experiments, and the Apollo-Soyuz experiments and demonstrations. The findings of these experiments in the fields of crystal growth, metallurgy, and fluid behavior are summarized.

  3. Multi-mission space science data processing systems - Past, present, and future

    NASA Technical Reports Server (NTRS)

    Stallings, William H.

    1990-01-01

    Packetized telemetry that is consistent with the international Consultative Committee for Space Data Systems (CCSDS) has been baselined for future NASA missions such as Space Station Freedom. Some experiences from past and present multimission systems are examined, including current experiences in implementing a CCSDS standard packetized data processing system, relative to the effectiveness of the multimission approach in lowering life cycle cost and the complexity of meeting new mission needs. It is shown that the continued effort toward standardization of telemetry and processing support will permit the development of multimission systems needed to meet the increased requirements of future NASA missions.

  4. Public school teachers in the U.S. evaluate the educational impact of student space experiments launched by expendable vehicles, aboard Skylab, and aboard Space Shuttle.

    PubMed

    Burkhalter, B B; McLean, J E; Curtis, J P; James, G S

    1991-12-01

    Space education is a discipline that has evolved at an unprecedented rate over the past 25 years. Although program proceedings, research literature, and historical documentation have captured fragmented pieces of information about student space experiments, the field lacks a valid comprehensive study that measures the educational impact of sounding rockets, Skylab, Ariane, AMSAT, and Space Shuttle. The lack of this information is a problem for space educators worldwide which led to a national study with classroom teachers. Student flown experiments continue to offer a unique experiential approach to teach students thinking and reasoning skills that are imperative in the current international competitive environment in which they live and will work. Understanding the history as well as the current status and educational spin-offs of these experimental programs strengthens the teaching capacity of educators throughout the world to develop problem solving skills and various higher mental processes in the schools. These skills and processes enable students to use their knowledge more effectively and efficiently long after they leave the classroom. This paper focuses on student space experiments as a means of motivating students to meet this educational goal successfully.

  5. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  6. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, research scientists prepare the plant pillows for the Veg-03 experiment that will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. Matt Romeyn, a NASA pathways intern, measures out the calcined clay, or space dirt, for one of the plant pillows. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  7. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  8. Japanese Experiment Module (JEM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Japanese Experiment Module (JEM) pressure module is removed from its shipping crate and moved across the floor of the Space Station Processing Facility at Kennedy Space Center (KSC) to a work stand. A research laboratory, the pressurized module is the first element of the JEM, named 'Kibo' (Hope) to arrive at KSC. Japan's primary contribution to the International Space Station, the module will enhance unique research capabilities of the orbiting complex by providing an additional environment in which astronauts will conduct experiments. The JEM also includes an exposed facility or platform for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  9. Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned

    NASA Technical Reports Server (NTRS)

    Housch, Helen

    2008-01-01

    This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?

  10. Study of FES/CAST/HGS

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Cummings, Rick; Jones, Brian

    1992-01-01

    The microgravity materials processing program has been instrumental in providing the crystal growth community with an experimental environment to better understand the phenomena associated with the growing of crystals. In many applications one may pursue the growth of large single crystals which cannot be grown on earth due to convective driven flows. A microgravity environment is characterized by neither convection of buoyancy. Consequently superior crystals are able to be grown in space. On the other hand, since neither convection nor buoyancy dominates the fluid flow in a microgravity environment, then lesser dominating phenomena can affect crystal growth, such as surface driven flows or diffusion limited solidification. In the case of experiments that are to be flown in space using the Fluid Experiments System (FES), diffusion limited growth should be the dominating phenomenon. The use of holographic and Schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The Holographic Ground System (HGS) facility at MSFC has been a primary resource in researching this capability. Consequently scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS (triglycine sulfate) Crystal Growth and the Casting and Solidification Technology (CAST) experiments that were flown on the International Microgravity Lab (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment in space worked. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.

  11. Containerless preparation of advanced optical glasses: Experiment 77F095

    NASA Technical Reports Server (NTRS)

    Happe, R. A.; Kim, K. S.

    1982-01-01

    Containerless processing of optical glasses was studied in preparation for space shuttle MEA flight experiments. Ground based investigation, experiment/hardware coordination activities and development of flight experiment and sample characterization plans were investigated. In the ground based investigation over 100 candidate glass materials for space processing were screened and promising compositions were identified. The system of Nb2O5-TiO2-CaO was found to be very rich with containerless glass compositions and as extensive number of the oxides combinations were tried resulting in a glass formation ternary phase diagram. The frequent occurrence of glass formation by containerless processing among the compositions for which no glass formations were previously reported indicated the possibility and an advantage of containerless processing in a terrestrial environment.

  12. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Hubble Space Telescope Orbiting Systems Test (HOST)is being raised to a workstand by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  13. Automated space processing payloads study. Volume 2, book 2: Technical report, appendices A through E. [instrument packages and space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Experiment hardware and operational requirements for space shuttle experiments are discussed along with payload and system concepts. Appendixes are included in which experiment data sheets, chamber environmental control and monitoring, method for collection and storage of electrophoretically-separated samples, preliminary thermal evaluation of electromagnetic levitation facilities L1, L2, and L3, and applicable industrial automation equipment are discussed.

  14. KSC-07pd3322

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians install the second Materials International Space Station Experiments, or MISSE, in space shuttle Endeavour's payload bay. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  15. Space processing applications payload equipment study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hammel, R. L.

    1974-01-01

    A study was conducted to derive and collect payload information on the anticipated space processing payload requirements for the Spacelab and space shuttle orbiter planning activities. The six objectives generated by the study are defined. Concepts and requirements for space processing payloads to accommodate the performance of the shuttle-supported research phase are analyzed. Diagrams and tables of data are developed to show the experiments involved, the power requirements, and the payloads for shared missions.

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-22

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

  17. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-22

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.

  18. Spacelab

    NASA Image and Video Library

    1992-01-01

    The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), The French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. This photograph shows Astronaut Norman Thagard performing the fluid experiment at the Fluid Experiment System (FES) facility inside the laboratory module. The FES facility had sophisticated optical systems for imaging fluid flows during materials processing, such as experiments to grow crystals from solution and solidify metal-modeling salts. A special laser diagnostic technique recorded the experiments, holograms were made for post-flight analysis, and video was used to view the samples in space and on the ground. Managed by the Marshall Space Flight Center (MSFC), the IML-1 mission was launched on January 22, 1992 aboard the Shuttle Orbiter Discovery (STS-42).

  19. KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dr. Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dr. Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  20. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    PubMed Central

    Jerath, Ravinder; Crawford, Molly W.; Barnes, Vernon A.

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system. PMID:26379573

  1. Experiments Conducted Aboard the International Space Station: The Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI): A Current Study of Results

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C> ; Hua, F.; Anilkumar, A. V.

    2006-01-01

    Experiments in support of the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI) were conducted aboard the International Space Station (ISS) with the goal of promoting our fundamental understanding of melting dynamics , solidification phenomena, and defect generation during materials processing in a microgravity environment. Through the course of many experiments a number of observations, expected and unexpected, have been directly made. These include gradient-driven bubble migration, thermocapillary flow, and novel microstructural development. The experimental results are presented and found to be in good agreement with models pertinent to a microgravity environment. Based on the space station results, and noting the futility of duplicating them in Earth s unit-gravity environment, attention is drawn to the role ISS experimentslhardware can play to provide insight to potential materials processing techniques and/or repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.

  2. Stratospheric Aerosol and Gas Experiment, SAGE III on ISS, An Earth Science Mission on the International Space Station, Schedule Risk Analysis, A Project Perspective

    NASA Technical Reports Server (NTRS)

    Bonine, Lauren

    2015-01-01

    The presentation provides insight into the schedule risk analysis process used by the Stratospheric Aerosol and Gas Experiment III on the International Space Station Project. The presentation focuses on the schedule risk analysis process highlighting the methods for identification of risk inputs, the inclusion of generic risks identified outside the traditional continuous risk management process, and the development of tailored analysis products used to improve risk informed decision making.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-20

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  4. KSC-98pc855

    NASA Image and Video Library

    1998-07-16

    KENNEDY SPACE CENTER, FLA. -- STS-95 crew members look over the Osteoporosis Experiment in Orbit (OSTEO) during a SPACEHAB familiarization tour and briefing in the SPACEHAB Payload Processing Facility in Cape Canaveral. Seated from left are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai of the National Space Development Agency of Japan (NASDA), and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. Standing, from left, are STS-95 Commander Curtis L. Brown and Canadian Space Agency representative Duncan Burnside. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery

  5. KSC-07pd0902

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Experiment Logistics Module Pressurized Section of the Japanese Experiment Module sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Space Agency (JAXA) officials welcomed the arrival of the logistics module, which will be delivered to the space station on mission STS-123. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  6. Panel summary of recommendations

    NASA Technical Reports Server (NTRS)

    Dunbar, Bonnie J.; Coleman, Martin E.; Mitchell, Kenneth L.

    1990-01-01

    The following Space Station internal contamination topics were addressed: past flight experience (Skylab and Spacelab missions); present flight activities (Spacelabs and Soviet Space Station Mir); future activities (materials science and life science experiments); Space Station capabilities (PPMS, FMS, ECLSS, and U.S. Laboratory overview); manned systems/crew safety; internal contamination detection; contamination control - stowage and handling; and contamination control - waste gas processing. Space Station design assumptions are discussed. Issues and concerns are discussed as they relate to (1) policy and management, (2) subsystem design, (3) experiment design, and (4) internal contamination detection and control. The recommendations generated are summarized.

  7. Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2004-01-01

    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.

  8. Abstracts, Third Space Processing Symposium, Skylab results

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Skylab experiments results are reported in abstracts of papers presented at the Third Space Processing Symposium. Specific areas of interest include: exothermic brazing, metals melting, crystals, reinforced composites, glasses, eutectics; physics of the low-g processes; electrophoresis, heat flow, and convection demonstrations flown on Apollo missions; and apparatus for containerless processing, heating, cooling, and containing materials.

  9. Transplantable tissue growth-a commercial space venture

    NASA Astrophysics Data System (ADS)

    Giuntini, Ronald E.; Vardaman, William K.

    1997-01-01

    Rantek was incorporated in 1984 to pursue research toward product development in space based biotechnology. The company has maintained an aggressive experiment flight program since 1989 having flown biotechnology experiments in six Consort rockets flights, one Joust rocket flight and eight Space Shuttle missions. The objective of these flights was to conduct a series of research experiments to resolve issues affecting transplantable tissue growth feasibility. The purpose of the flight research was to determine the behavior of lymphocyte mixing, activation, magnetic mixing and process control, drug studies in a model leukemia cell line, and various aspects of the hardware system process control in the low gravity of space. The company is now preparing for a two Space Shuttle flight program as precursors to a sustained, permanent, commercial venture at the Space Station. The shuttle flights will enable new, larger scale tissue growth systems to be tested to determine fundamental process control sensitivity and growth rates unique to a number of tissue types. The answer to these issues will ultimately determine the commercial viability of the Rantek Biospace program. This paper addresses considerations that will drive the cost of a space venture-the largest cost driver will be the cost to and from the station and the cost at the station.

  10. The Pore Formation and Mobility Investigation: A Case Study for Conducting Research on the International Space Station in Support of Exploration

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Mingo, C.; Jeter, L.; Volz, M. P.

    2005-01-01

    The Pore Formation and Mobility Investigation (PFMI) is being conducted in the Microgravity Science Glovebox (MSG) aboard the International Space Station (ISS) with the goal of understanding bubble generation and interactions during controlled directional solidification processing. Through the course of the experiments, beginning in September 2002, a number of key factors pertinent to solidification processing of materials in a microgravity environment have been directly observed, measured, and modeled. Though most experiments ran uninterrupted, on four separate occasions malfunctions to the PFMI hardware and software were experienced that required crew intervention, including in-space repair. Fortunately, each repair attempt was successful and restored the PFMI apparatus to a fully functional condition. Based on PFMI results and lessons learned, the intent of this presentation is to draw attention to the role ISS experiments/hardware can play in providing insight to potential fabrication processing techniques and repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.

  11. The Pore Formation and Mobility Investigation: A Summary of Conducted Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Volz, M. P.; Anilkumar, A.

    2006-01-01

    The Pore Formation and Mobility Investigation (PFMI) is being conducted in the Microgravity Science Glovebox (MSG) aboard the International Space Station (ISS) with the goal of understanding bubble generation and interactions during controlled directional solidification processing. Through the course of the experiments, beginning in September 2002, a number of key factors pertinent to solidification processing of materials in a microgravity environment have been directly observed, measured, and modeled. Though most experiments ran uninterrupted, on four separate occasions malfunctions to the PFMI hardware and software were experienced that required crew intervention, including in-space repair. Fortunately, each repair attempt was successful and restored the PFMI apparatus to a fully functional condition. Based on PFMI results and lessons learned, the intent of this presentation is to draw attention to the role ISS experiments/hardware can play in providing insight to potential fabrication processing techniques and repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.

  12. ECOSTRESS Arrival and Processing

    NASA Image and Video Library

    2018-04-09

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) has arrived in its shipping container. The container is being inspected and thoroughly cleaned prior to opening. ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.

  13. Budgeting Academic Space

    ERIC Educational Resources Information Center

    Harris, Watson

    2011-01-01

    There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…

  14. KSC-20171002-MH-CSH01_0001-MISSE_Arrival_Integration_H265-3170951

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE is unpacked and moved for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  15. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  16. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  17. ECOSTRESS Unbagging

    NASA Image and Video Library

    2018-04-10

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is inspected shortly after arrival. ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.

  18. ECOSTRESS Unbagging

    NASA Image and Video Library

    2018-04-10

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is removed from its shipping container. ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.

  19. Analyzing the Chemical and Spectral Effects of Pulsed Laser Irradiation to Simulate Space Weathering of a Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.

    2017-01-01

    Space weathering processes alter the chemical composition, microstructure, and spectral characteristics of material on the surfaces of airless bodies. The mechanisms driving space weathering include solar wind irradiation and the melting, vaporization and recondensation effects associated with micrometeorite impacts e.g., [1]. While much work has been done to understand space weathering of lunar and ordinary chondritic materials, the effects of these processes on hydrated carbonaceous chondrites is poorly understood. Analysis of space weathering of carbonaceous materials will be critical for understanding the nature of samples returned by upcoming missions targeting primitive, organic-rich bodies (e.g., OSIRIS-REx and Hayabusa 2). Recent experiments have shown the spectral properties of carbonaceous materials and associated minerals are altered by simulated weathering events e.g., [2-5]. However, the resulting type of alteration i.e., reddening vs. bluing of the reflectance spectrum, is not consistent across all experiments [2-5]. In addition, the microstructural and crystal chemical effects of many of these experiments have not been well characterized, making it difficult to attribute spectral changes to specific mineralogical or chemical changes in the samples. Here we report results of a pulsed laser irradiation experiment on a chip of the Murchison CM2 carbonaceous chondrite to simulate micrometeorite impact processing.

  20. Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang

    2016-10-01

    Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.

  1. Mission Possible: BioMedical Experiments on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Bopp, E.; Kreutzberg, K.

    2011-01-01

    Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.

  2. Spacelab

    NASA Image and Video Library

    1992-01-01

    This photograph shows activities during the International Microgravity Laboratory-1 (IML-1) mission (STS-42) in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center. Members of the Fluid Experiment System (FES) group monitor the progress of their experiment through video at the POCC. The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research. The mission was to explore, in depth, the complex effects of weightlessness on living organisms and materials processing. The crew conducted experiments on the human nervous system's adaptation to low gravity and the effects on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Low gravity materials processing experiments included crystal growth from a variety of substances such as enzymes, mercury, iodine, and virus. The International space science research organizations that participated in this mission were: The U.S. National Aeronautics and Space Administion, the European Space Agency, the Canadian Space Agency, the French National Center for Space Studies, the German Space Agency, and the National Space Development Agency of Japan. The POCC was the air/ground communication charnel used between astronauts aboard the Spacelab and scientists, researchers, and ground control teams during the Spacelab missions. The facility made instantaneous video and audio communications possible for scientists on the ground to follow the progress and to send direct commands of their research almost as if they were in space with the crew.

  3. Summary of biological spaceflight experiments with cells.

    PubMed

    Dickson, K J

    1991-07-01

    Numerous biological experiments with cells have been conducted in space, and the importance of these experiments and this area of study is continually becoming evident. This contribution is a compilation of available information about spaceflight experiments with cells for the purpose of providing a single source of information for those interested in space gravitational cell biology. Experiments focused on a study of the effects of gravity and its absence on cells, cell function, and basic cellular processes have been included. Experiments include those involving viruses, bacteriophage, unicellular organisms, lower fungi, and animal and plant cell and tissue cultures, but exclude experiments with cells that were carried on a flight as part of a whole organism and later removed for study, and experiments with fertilized eggs. In addition, experiments in biotechnology, in which the microgravity environment is employed to study cell purification, cell fusion, protein crystallization, and similar processes, have not been included. Spaceflight experiments conducted by scientists from the U.S., U.S.S.R., and other countries and flown onboard sounding rockets (TEXUS, MAXUS, Consort), biosatellites (Biosatellite II, Cosmos), and various crewed spacecraft including the space shuttle (STS) and Soyuz, and space stations (Salyut, Mir) have been included, as well as high altitude balloon flights. Balloon flights are not spaceflights but can and are used as controls for the effects of space radiation, since organisms carried on balloons may be exposed to some of the same radiation as those taken into space, yet continue to be exposed to Earth's gravitational force. Parabolic flights on aircraft during which periods of microgravity of less than a minute are achieved have arbitrarily been excluded, because even though numerous experiments have been conducted, few results have been published.

  4. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, research scientists prepare the plant pillows for the Veg-03 experiment that will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. Matt Romeyn, a NASA pathways intern, inserts a measured amount of calcined clay, or space dirt, into one of the plant pillows. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  5. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  6. On the hitchhiker Robot Operated Materials Processing System: Experiment data system

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Jenstrom, Del

    1995-01-01

    The Space Shuttle Discovery STS-64 mission carried the first American autonomous robot into space, the Robot Operated Materials Processing System (ROMPS). On this mission ROMPS was the only Hitchhiker experiment and had a unique opportunity to utilize all Hitchhiker space carrier capabilities. ROMPS conducted rapid thermal processing of the one hundred semiconductor material samples to study how micro gravity affects the resulting material properties. The experiment was designed, built and operated by a small GSFC team in cooperation with industry and university based principal investigators who provided the material samples and data interpretation. ROMPS' success presents some valuable lessons in such cooperation, as well as in the utilization of the Hitchhiker carrier for complex applications. The motivation of this paper is to share these lessons with the scientific community interested in attached payload experiments. ROMPS has a versatile and intelligent material processing control data system. This paper uses the ROMPS data system as the guiding thread to present the ROMPS mission experience. It presents an overview of the ROMPS experiment followed by considerations of the flight and ground data subsystems and their architecture, data products generation during mission operations, and post mission data utilization. It then presents the lessons learned from the development and operation of the ROMPS data system as well as those learned during post-flight data processing.

  7. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  8. Microgravity Science Glovebox Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  9. Whitson looks at the ADVASC Soybean plant growth experiment in the U.S. Laboratory

    NASA Image and Video Library

    2002-07-10

    ISS005-E-07212 (10 July 2002) --- NASA Astronaut Peggy Whitson, Expedition 5 International Space Station (ISS) science officer, looks at the Advanced Astroculture (ADVASC) Soybean plant growth experiment as part of Expediting the Process of Experiments to the Space Station (EXPRESS) Rack 4 located in the U.S. Laboratory Destiny.

  10. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The petri plates are wrapped in black cloth and kept cold (+4 degrees Celsius) to prevent them from germinating prior to the experiment start on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  11. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, research scientists prepare the plant pillows for the Veg-03 experiment that will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. Dr. Mathew Mickens, a post-doctoral researcher, inserts a bonding agent into one of the Veg-03 plant pillows. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  12. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, sews up the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  13. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, precisely sews up the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  14. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, prepares to sew the end of a bag that contains one of the Veg-03 plant pillows. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  15. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, plant pillows for the Veg-03 experiment are prepared for delivery to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. Dr. Mathew Mickens, a post-doctoral researcher, inserts a bonding agent into one of the Veg-03 plant pillows. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  16. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  17. Space processing applications payload equipment study. Volume 2A: Experiment requirements

    NASA Technical Reports Server (NTRS)

    Smith, A. G.; Anderson, W. T., Jr.

    1974-01-01

    An analysis of the space processing applications payload equipment was conducted. The primary objective was to perform a review and an update of the space processing activity research equipment requirements and specifications that were derived in the first study. The analysis is based on the six major experimental classes of: (1) biological applications, (2) chemical processes in fluids, (3) crystal growth, (4) glass technology, (5) metallurgical processes, and (6) physical processes in fluids. Tables of data are prepared to show the functional requirements for the areas of investigation.

  18. KSC-98pc1038

    NASA Image and Video Library

    1998-09-04

    Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is lowered onto a workstand in the Space Shuttle Processing Facility. To the right can be seen the Rack Insertion Device and Leonardo, a Multi-Purpose Logistics Module. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  19. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency, looks at the inside of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese Aerospace and Exploration Agency, looks at the inside of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. He and other crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  20. KSC-07pd3320

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  1. KSC-07pd3321

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, the second of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd3319

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  3. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  4. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  5. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  6. ECOSTRESS Unbagging

    NASA Image and Video Library

    2018-04-10

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers removed protective wrapping from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.

  7. KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  8. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  9. KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

    NASA Image and Video Library

    2003-06-04

    KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

  10. A data base describing low-gravity fluids and materials processing experiments

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J. C.

    1992-01-01

    A data base documenting information on approximately 600 fluids and materials processing experiments performed in a low-gravity environment has been prepared at NASA Marshall Space Flight Center (MSFC). The compilation was designed to document all such experimental efforts performed: (1) on U.S. manned space vehicles; (2) on payloads deployed from U.S. manned space vehicles; and (3) on all domestic and international sounding rocket programs (excluding those of the U.S.S.R. and China). Identification of major (reported) sources of significant anomalies during 100 of the experiments is reported and discussed. Further, a preliminary summary of the number of these 100 investigations which experienced an anomaly affecting a certain percentage of the experimental results/objectives is presented.

  11. KSC-97PC1457

    NASA Image and Video Library

    1997-09-15

    United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Here, a technician is monitoring the Confined Helium Experiment, or CHeX, that will use microgravity to study one of the basic influences on the behavior and properties of materials by using liquid helium confined between silicon disks. CHeX and several other experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC

  12. KSC-07pd0898

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, stands in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The module will be delivered to the space station on mission STS-123. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  13. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    NASA Technical Reports Server (NTRS)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  14. Development of the COMmerical Experiment Transporter (COMET)

    NASA Technical Reports Server (NTRS)

    Pawlick, Joseph F., Jr.

    1990-01-01

    In order to commercialize space, this nation must develop a well defined path through which the Centers for the Commercial Development of Space (CCDS's) and their industrial partners and counterparts can exploit the advantages of space manufacturing and processing. Such a capability requires systems, a supporting infrastructure, and funding to become a viable component of this nation's economic strength. This paper follows the development of the COMmercial Experiment Program (COMET) from inception to its current position as the country's first space program dedicated to satisfying the needs of industry: an industry which must investigate the feasibility of space based processes, materials, and prototypes. With proposals now being evaluated, much of the COMET story is yet to be written, however concepts and events which led to it's current status and the plans for implementation may be presented.

  15. STS-95 crew members participate in a SPACEHAB familiarization

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 crew members look over the Osteoporosis Experiment in Orbit (OSTEO) during a SPACEHAB familiarization tour and briefing in the SPACEHAB Payload Processing Facility in Cape Canaveral. Seated from left are Mission Specialist Scott E. Parazynski, Payload Specialist Chiaki Mukai of the National Space Development Agency of Japan (NASDA), and Payload Specialist John H. Glenn Jr., who also is a senator from Ohio. Standing, from left, are STS-95 Commander Curtis L. Brown and Canadian Space Agency representative Duncan Burnside. STS-95 will feature a variety of research payloads, including the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Platform, the International Extreme Ultraviolet Hitchhiker, and experiments on space flight and the aging process. STS-95 is targeted for an Oct. 29 launch aboard the Space Shuttle Discovery.

  16. KSC-03PD-2644

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASAs life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA- sponsored research. About 20 percent of the facility will be available for use by Floridas university researchers through the Florida Space Research Institute.

  17. Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS), part 3. Volume 3: Requirements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The performance, design and verification requirements for the space Construction Automated Fabrication Experiment (SCAFE) are defined. The SCAFE program defines, develops, and demonstrates the techniques, processes, and equipment required for the automatic fabrication of structural elements in space and for the assembly of such elements into a large, lightweight structure. The program defines a large structural platform to be constructed in orbit using the space shuttle as a launch vehicle and construction base.

  18. EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space

    NASA Astrophysics Data System (ADS)

    Koepke, Mark

    2008-07-01

    The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this special issue serve to synthesise our current understanding of processes related to the coupling and feedback at disparate scales. Categories of topics included here are (1) ionospheric physics and (2) Alfvén-wave physics, both of which are related to the particle acceleration responsible for auroral displays, (3) whistler-mode triggering mechanism, which is relevant to radiation-belt dynamics, (4) plasmoid encountering a barrier, which has applications throughout the realm of space and astrophysical plasmas, and (5) laboratory investigations of the entire magnetosphere or the plasma surrounding the magnetosphere. The papers are ordered from processes that take place nearest the Earth to processes that take place at increasing distances from Earth. Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modeling and/or laboratory experiments. Observations from space-borne instruments are typically interpreted using theoretical models developed to predict the properties and dynamics of space and astrophysical plasmas. The usefulness of customized laboratory experiments for providing confirmation of theory by identifying, isolating, and studying physical phenomena efficiently, quickly, and economically has been demonstrated in the past. The benefits of laboratory experiments to investigating space-plasma physics are their reproducibility, controllability, diagnosability, reconfigurability, and affordability compared to a satellite mission or rocket campaign. Certainly, the plasma being investigated in a laboratory device is quite different from that being measured by a spaceborne instrument; nevertheless, laboratory experiments discover unexpected phenomena, benchmark theoretical models, develop physical insight, establish observational signatures, and pioneer diagnostic techniques. Explicit reference to such beneficial laboratory contributions is occasionally left out of the citations in the space-physics literature in favor of theory-paper counterparts and, thus, the scientific support that laboratory results can provide to the development of space-relevant theoretical models is often under-recognized. It is unrealistic to expect the dimensional parameters corresponding to space plasma to be matchable in the laboratory. However, a laboratory experiment is considered well designed if the subset of parameters relevant to a specific process shares the same phenomenological regime as the subset of analogous space parameters, even if less important parameters are mismatched. Regime boundaries are assigned by normalizing a dimensional parameter to an appropriate reference or scale value to make it dimensionless and noting the values at which transitions occur in the physical behavior or approximations. An example of matching regimes for cold-plasma waves is finding a 45° diagonal line on the log--log CMA diagram along which lie both a laboratory-observed wave and a space-observed wave. In such a circumstance, a space plasma and a lab plasma will support the same kind of modes if the dimensionless parameters are scaled properly (Bellan 2006 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press) p 227). The plasma source, configuration geometry, and boundary conditions associated with a specific laboratory experiment are characteristic elements that affect the plasma and plasma processes that are being investigated. Space plasma is not exempt from an analogous set of constraining factors that likewise influence the phenomena that occur. Typically, each morphologically distinct region of space has associated with it plasma that is unique by virtue of the various mechanisms responsible for the plasma's presence there, as if the plasma were produced by a unique source. Boundary effects that typically constrain the possible parameter values to lie within one or more restricted ranges are inescapable in laboratory plasma. The goal of a laboratory experiment is to examine the relevant physics within these ranges and extrapolate the results to space conditions that may or may not be subject to any restrictions on the values of the plasma parameters. The interrelationship between laboratory and space plasma experiments has been cultivated at a low level and the potential scientific benefit in this area has yet to be realized. The few but excellent examples of joint papers, joint experiments, and directly relevant cross-disciplinary citations are a direct result of the emphasis placed on this interrelationship two decades ago. Building on this special issue Plasma Physics and Controlled Fusion plans to create a dedicated webpage to highlight papers directly relevant to this field published either in the recent past or in the future. It is hoped that this resource will appeal to the readership in the laboratory-experiment and space-plasma communities and improve the cross-fertilization between them.

  19. Programmatic and economic challenges for commercial space processing

    NASA Astrophysics Data System (ADS)

    Overfelt, Tony; Watkins, John

    1997-01-01

    The International Space Station is the largest cooperative space project in history and is likely to be industry's most viable access to the low-g environment for long duration materials processing experiments. Such access will provide unique and competitive research capabilities to industry if private sector entities can commercially utilize the Space Station for their industrial projects. Although ``commercial utilization'' implies a variety of things to different people, the key industrial issues are frequent, reliable, and economical access to space as well as protection of private sector intellectual property rights. This paper discusses how these key issues will influence the programmatic and economic challenges for commercial space processing in the future Space Station era.

  20. KSC-03PD-1460

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, processes one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  1. Space Station Biological Research Project: Reference Experiment Book

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine (Editor); Wade, Charles (Editor)

    1996-01-01

    The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.

  2. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, research scientists prepare the plant pillows for the Veg-03 experiment that will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. Matt Romeyn, a NASA pathways intern, measures out the calcined clay, or space dirt, for one of the plant pillows. To his right is Dr. Gioia Massa, NASA payload scientist for Veggie. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  3. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered and secured onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  4. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as MISSE is lifted by crane from its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  5. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  6. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as a crane is used to lift MISSE out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  7. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians work to attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  8. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  9. Radiation Hardening by Software Techniques on FPGAs: Flight Experiment Evaluation and Results

    NASA Technical Reports Server (NTRS)

    Schmidt, Andrew G.; Flatley, Thomas

    2017-01-01

    We present our work on implementing Radiation Hardening by Software (RHBSW) techniques on the Xilinx Virtex5 FPGAs PowerPC 440 processors on the SpaceCube 2.0 platform. The techniques have been matured and tested through simulation modeling, fault emulation, laser fault injection and now in a flight experiment, as part of the Space Test Program- Houston 4-ISS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0). This work leverages concepts such as heartbeat monitoring, control flow assertions, and checkpointing, commonly used in the High Performance Computing industry, and adapts them for use in remote sensing embedded systems. These techniques are extremely low overhead (typically <1.3%), enabling a 3.3x gain in processing performance as compared to the equivalent traditionally radiation hardened processor. The recently concluded STP-H4 flight experiment was an opportunity to upgrade the RHBSW techniques for the Virtex5 FPGA and demonstrate them on-board the ISS to achieve TRL 7. This work details the implementation of the RHBSW techniques, that were previously developed for the Virtex4-based SpaceCube 1.0 platform, on the Virtex5-based SpaceCube 2.0 flight platform. The evaluation spans the development and integration with flight software, remotely uploading the new experiment to the ISS SpaceCube 2.0 platform, and conducting the experiment continuously for 16 days before the platform was decommissioned. The experiment was conducted on two PowerPCs embedded within the Virtex5 FPGA devices and the experiment collected 19,400 checkpoints, processed 253,482 status messages, and incurred 0 faults. These results are highly encouraging and future work is looking into longer duration testing as part of the STP-H5 flight experiment.

  10. International Space Station in Orbit

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after deparating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-20

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after separating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistic Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  12. Design analysis of levitation facility for space processing applications. [Skylab program, space shuttles

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Kornrumpf, W. P.; Napaluch, L. J.; Harden, J. D., Jr.; Walden, J. P.; Stockhoff, E. H.; Wouch, G.; Walker, L. H.

    1974-01-01

    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand.

  13. Video requirements for materials processing experiments in the space station US laboratory

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.

    1989-01-01

    Full utilization of the potential of the materials research on the Space Station can be achieved only if adequate means are available for interactive experimentation between the science facilities and ground-based investigators. Extensive video interfaces linking these three elements are the only alternative for establishing a viable relation. Because of the limit in the downlink capability, a comprehensive complement of on-board video processing, and video compression is needed. The application of video compression will be an absolute necessity since it's effectiveness will directly impact the quantity of data which will be available to ground investigator teams, and their ability to review the effects of process changes and the experiment progress. Video data compression utilization on the Space Station is discussed.

  14. A technician monitors the CHeX, a USMP-4 experiment which will be flown on STS-87, in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Here, a technician is monitoring the Confined Helium Experiment, or CHeX, that will use microgravity to study one of the basic influences on the behavior and properties of materials by using liquid helium confined between silicon disks. CHeX and several other experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC.

  15. Aerosol and cloud observations from the Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Winker, D. M.

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.

  16. Genes In Space-5

    NASA Image and Video Library

    2018-04-13

    iss055e020319 (April 13, 2018) --- Flight Engineer Ricky Arnold processes of samples inside the Miniature Polymerase Chain Reaction (miniPCR) for the Genes In Space-5 experiment. The research gathered from Genes in Space-5 may be valuable in the development of procedures to maintain astronaut health and prevent an increased risk of cancer on deep space missions. The investigation also provides a deeper understanding of the human immune system, while giving student researchers a direct connection to the space program and offering hands-on educational experiences on Earth and promoting involvement in STEM fields.

  17. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 1: Data processing and transfer panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The data processing and transfer technology areas that need to be developed and that could benefit from space flight experiments are identified. Factors considered include: user requirements, concepts in 'Outlook for Space', and cost reduction. Major program thrusts formulated are an increase in end-to-end information handling and a reduction in life cycle costs.

  18. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-21

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, research scientists prepare the plant pillows for the Veg-03 experiment that will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. From left, are Matt Romeyn, NASA pathways intern; Dr. Gioia Massa, NASA payload scientist for Veggie; and Dr. Mathew Mickens, a post-doctoral researcher. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  19. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, workers monitor progress as a huge crane is used to remove the top of the crate carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  20. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Inside the Space Station Processing Facility, the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is revealed after the top of the crate is removed. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  1. Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS): ACCESS Accommodation Study Report

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L. (Editor); Wefel, John P. (Editor)

    1999-01-01

    In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.

  2. Design space construction of multiple dose-strength tablets utilizing bayesian estimation based on one set of design-of-experiments.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-01-01

    Design spaces for multiple dose strengths of tablets were constructed using a Bayesian estimation method with one set of design of experiments (DoE) of only the highest dose-strength tablet. The lubricant blending process for theophylline tablets with dose strengths of 100, 50, and 25 mg is used as a model manufacturing process in order to construct design spaces. The DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) for theophylline 100-mg tablet. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) of the 100-mg tablet were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. Three experiments under an optimal condition and two experiments under other conditions were performed using 50- and 25-mg tablets, respectively. The response surfaces of the highest-strength tablet were corrected to those of the lower-strength tablets by Bayesian estimation using the manufacturing data of the lower-strength tablets. Experiments under three additional sets of conditions of lower-strength tablets showed that the corrected design space made it possible to predict the quality of lower-strength tablets more precisely than the design space of the highest-strength tablet. This approach is useful for constructing design spaces of tablets with multiple strengths.

  3. KSC-07pd0636

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module, known as Kibo. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  4. Traffic model for commercial payloads in the Materials Experiment Assembly (MEA). [market research in commercial space processing

    NASA Technical Reports Server (NTRS)

    Tietzel, F. A.

    1979-01-01

    One hundred individuals representing universities, technical institutes, government agencies, and industrial facilities were surveyed to determine potential commercial use of a self-contained, automated assembly for the space processing of materials during frequent shuttle flights for the 1981 to 1987 period. The approach used and the results of the study are summarized. A time time-phased projection (traffic model) of commercial usage of the materials experiment assembly is provided.

  5. KSC-06pd1684

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians install piping insulation on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  6. KSC-06pd1685

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians install piping insulation on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  7. KSC-06pd1682

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a Japan Aerospace Exploration Agency (JAXA) technician inspects the wiring on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  8. KSC-06pd1683

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japan Aerospace Exploration Agency (JAXA) technicians inspect the wiring on the Japanese Experiment Module (JEM). The JEM, developed by JAXA for use on the International Space Station, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  9. KSC-06pd1687

    NASA Image and Video Library

    2006-07-28

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) awaits its flight to the International Space Station (ISS). The JEM, developed by the Japan Aerospace Exploration Agency (JAXA) for installation on the ISS, is named Kibo -- which means "hope" in Japanese -- and will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Research conducted in Kibo will focus on space medicine, biology, Earth observations, material production, biotechnology and communications. Photo credit: NASA/Amanda Diller

  10. Certain problems of space biotechnology

    NASA Technical Reports Server (NTRS)

    Gilyarov, V. N.

    1980-01-01

    Experiments in the field of biotechnology conducted by the USA Apollo and Skylab space probes are described, as well as the joint Soviet-American Apollo-Soyuz Test Project (ASTP). Experiments in electrophoretic separation in space of biological compounds in a liquid medium are detailed. Space processing of vaccines and separation of human and animal cells are described. Methyl-cellulose, a coating for use in electrophoresis was developed. Erythropoietin, which stimulates the formation of red blood corpuscles in bone marrow, was obtained in pure form.

  11. Pathfinder

    NASA Image and Video Library

    2004-04-15

    Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  12. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is lowered onto a workstand in the Space Shuttle Processing Facility. To the right can be seen the Rack Insertion Device and Leonardo, a Multi-Purpose Logistics Module. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  13. The PROCESS experiment: an astrochemistry laboratory for solid and gaseous organic samples in low-earth orbit.

    PubMed

    Cottin, Hervé; Guan, Yuan Yong; Noblet, Audrey; Poch, Olivier; Saiagh, Kafila; Cloix, Mégane; Macari, Frédérique; Jérome, Murielle; Coll, Patrice; Raulin, François; Stalport, Fabien; Szopa, Cyril; Bertrand, Marylène; Chabin, Annie; Westall, Frances; Chaput, Didier; Demets, René; Brack, André

    2012-05-01

    The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.

  14. Double-slit experiment in momentum space

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2016-08-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  15. KSC-07pd0635

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd0632

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd0626

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  18. KSC-07pd0628

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd0627

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd0629

    NASA Image and Video Library

    2007-03-12

    KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is tied up at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  1. KSC-07pd3316

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians help lift the first of the Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd3317

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove another Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd3315

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove one of two Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd3318

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is moved across facility toward space shuttle Endeavour. The MISSE is part of the payload onboard Endeavour for mission STS-123 and will be installed in the payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  5. The amusic brain: lost in music, but not in space.

    PubMed

    Tillmann, Barbara; Jolicoeur, Pierre; Ishihara, Masami; Gosselin, Nathalie; Bertrand, Olivier; Rossetti, Yves; Peretz, Isabelle

    2010-04-21

    Congenital amusia is a neurogenetic disorder of music processing that is currently ascribed to a deficit in pitch processing. A recent study challenges this view and claims the disorder might arise as a consequence of a general spatial-processing deficit. Here, we assessed spatial processing abilities in two independent samples of individuals with congenital amusia by using line bisection tasks (Experiment 1) and a mental rotation task (Experiment 2). Both amusics and controls showed the classical spatial effects on bisection performance and on mental rotation performance, and amusics and controls did not differ from each other. These results indicate that the neurocognitive impairment of congenital amusia does not affect the processing of space.

  6. Developmental Changes in Face Processing Skills.

    ERIC Educational Resources Information Center

    Mondloch, Catherine J.; Geldart, Sybil; Maurer, Daphne; Le Grand, Richard

    2003-01-01

    Two experiments examined the impact of slow development of processing differences among faces in the spacing among facial features (second-order relations). Computerized tasks involving various face-processing skills were used. Results of experiment with 6-, 8-, and 10-year-olds and with adults indicated that slow development of sensitivity to…

  7. Laser Welding in Space

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1989-01-01

    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power.

  8. Final science results: Spacelab J

    NASA Technical Reports Server (NTRS)

    Leslie, Fred (Editor)

    1995-01-01

    This report contains a brief summary of the mission science conducted aboard Spacelab J (SL-J), a joint venture between the National Aeronautics and Space Administration (NASA) and the National Space Development Agency (NASDA) of Japan. The scientific objectives of the mission were to conduct a variety of material and life science experiments utilizing the weightlessness and radiation environment of an orbiting Spacelab. All 43 experiments were activated; 24 in microgravity sciences (material processing, crystal growth, fluid physics, and acceleration measurement) and 19 in life sciences (physiology, developmental biology, radiation effects, separation processes, and enzyme crystal growth). In addition, more than a dozen experiments benefited from the extra day through either additional experiment runs or extended growth time.

  9. Technicians monitor USMP-4 experiments being prepared for flight on STS-87 in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians are monitoring experiments on the United States Microgravity Payload-4 (USMP-4) in preparation for its scheduled launch aboard STS-87 on Nov. 19 from Kennedy Space Center (KSC). USMP-4 experiments are prepared in the Space Station Processing Facility at KSC. The large white vertical cylinder in the center of the photo is the Advanced Automated Directional Solidification Furnace (AADSF), which is a sophisticated materials science facility used for studying a common method of processing semiconductor crystals called directional solidification. The white horizontal tube to the right is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment.

  10. KSC-07pd0899

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham and Chuong Nguyen, payload manager and deputy payload manager respectively for the International Space Station, stand in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  11. G-38, G-39 and G-40: Art in space, a divergent exploration

    NASA Technical Reports Server (NTRS)

    Mcshane, J. W.

    1986-01-01

    The results of the Get Away Special (GAS) Arts-Science payload G-38, processed in orbit on board the Space Shuttle Challenger during mission 41-G STS 17, October 5 to 13, l984 are explained. The payload G-38 was created as a unified Arts-Science payload that simultaneously explored the process of vapor deposition in the vacuum and weightlessness of the shuttle environment and created a series of space sculptures utilizing this process. The purpose of the experiment was to test the sputter deposition process in space and to create five subtle spherical sculptures with metallic coatings of gold, silver, platinum and chrome.

  12. Approach to design space from retrospective quality data.

    PubMed

    Puñal Peces, Daniel; García-Montoya, Encarna; Manich, Albert; Suñé-Negre, Josep Maria; Pérez-Lozano, Pilar; Miñarro, Montse; Ticó, Josep Ramon

    2016-01-01

    Nowadays, the entire manufacturing process is based on the current GMPs, which emphasize the reproducibility of the process, and companies have a lot of recorded data about their processes. The establishment of the design space (DS) from retrospective data for a wet compression process. A design of experiments (DoE) with historical data from 4 years of industrial production has been carried out using the experimental factors as the results of the previous risk analysis and eight key parameters (quality specifications) that encompassed process and quality control data. Software Statgraphics 5.0 was applied, and data were processed to obtain eight DS as well as their safe and working ranges. Experience shows that it is possible to determine DS retrospectively, being the greatest difficulty in handling and processing of high amounts of data; however, the practicality of this study is very interesting as it let have the DS with minimal investment in experiments since actual production batch data are processed statistically.

  13. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  14. Exothermic furnace module development. [space processing

    NASA Technical Reports Server (NTRS)

    Darnell, R. R.; Poorman, R. M.

    1982-01-01

    An exothermic furnace module was developed to rapidly heat and cool a 0.820-in. (2.1 cm) diameter by 2.75-in. (7.0 cm) long TZM molybdenum alloy crucible. The crucible contains copper, oxygen, and carbon for processing in a low-g environment. Peak temperatures of 1270 C were obtainable 3.5 min after start of ignition, and cooling below 950 C some 4.5 min later. These time-temperature relationships were conditioned for a foam-copper experiment, Space Processing Applications Rocket experiment 77-9, in a sounding rocket having a low-g period of 5 min.

  15. Health monitoring of Japanese payload specialist: Autonomic nervous and cardiovascular responses under reduced gravity condition (L-0)

    NASA Technical Reports Server (NTRS)

    Sekiguchi, Chiharu

    1993-01-01

    In addition to health monitoring of the Japanese Payload Specialists (PS) during the flight, this investigation also focuses on the changes of cardiovascular hemodynamics during flight which will be conducted under the science collaboration with the Lower Body Negative Pressure (LBNP) Experiment of NASA. For the Japanese, this is an opportunity to examine firsthand the effects of microgravity of human physiology. We are particularly interested in the adaption process and how it relates to space motion sickness and cardiovascular deconditioning. By comparing data from our own experiment to data collected by others, we hope to understand the processes involved and find ways to avoid these problems for future Japanese astronauts onboard Space Station Freedom and other Japanese space ventures. The primary objective of this experiment is to monitor the health condition of Japanese Payload Specialists to maintain a good health status during and after space flight. The second purpose is to investigate the autonomic nervous system's response to space motion sickness. To achieve this, the function of the autonomic nervous system will be monitored using non-invasive techniques. Data obtained will be employed to evaluate the role of autonomic nervous system in space motion sickness and to predict susceptibility to space motion sickness. The third objective is evaluation of the adaption process of the cardiovascular system to microgravity. By observation of the hemodynamics using an echocardiogram we will gain insight on cardiovascular deconditioning. The last objective is to create a data base for use in the health care of Japanese astronauts by obtaining control data in experiment L-O in the SL-J mission.

  16. Partial Gravity Biological Tether Experiment on the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Wallace, S.; Graham, L.

    2018-02-01

    A tether-based partial gravity bacterial biological experiment represents a viable biological experiment to investigate the fundamental internal cellular processes between altered levels of gravity and cellular adaption.

  17. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, the JEM Experiment Logistics Module Pressurized Section is lowered onto a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  18. Visualization experiences and issues in Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Wright, John; Burleigh, Scott; Maruya, Makoto; Maxwell, Scott; Pischel, Rene

    2003-01-01

    The panelists will discuss their experiences in collecting data in deep space, transmitting it to Earth, processing and visualizing it here, and using the visualization to drive the continued mission. This closes the loop, making missions more responsive to their environment, particularly in-situ operations on planetary surfaces and within planetary atmospheres.

  19. The Long Duration Exposure Facility (LDEF). Mission 1 Experiments.

    ERIC Educational Resources Information Center

    Clark, Lenwood G., Ed.; And Others

    The Long Duration Exposure Facility (LDEF) has been designed to take advantage of the two-way transportation capability of the space shuttle by providing a large number of economical opportunities for science and technology experiments that require modest electrical power and data processing while in space and which benefit from postflight…

  20. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  1. KSC-2013-3041

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Optical Payload for Lasercomm Science, or OPALS, experiment has been unpacked in a test cell at a Space Station Processing Facility offline laboratory. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  2. KSC-2013-3039

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians move the Optical Payload for Lasercomm Science, or OPALS, experiment into the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  3. KSC-2013-3042

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Optical Payload for Lasercomm Science, or OPALS, experiment has been uncovered in a test cell at a Space Station Processing Facility offline laboratory. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  4. KSC-2013-3036

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians prepare to move the Optical Payload for Lasercomm Science, or OPALS, experiment into the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  5. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, Michele Koralewicz, a mechanical technician with EASI on the Engineering Services Contract, prepares to sew up the end of a bag that contains one of the Veg-03 plant pillows. In the foreground are all of the other plant pillows that need to be sealed. The Veg-03 experiment will be delivered to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  6. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Shawn Stephens, Engineering Services Contract, and Dr. Anna Lisa Paul confirm proper orientation of the plates for launch prior to turnover to cold stowage. Dr. Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  7. Fungi in space--literature survey on fungi used for space research.

    PubMed

    Kern, V D; Hock, B

    1993-09-01

    A complete review of the scientific literature on experiments involving fungi in space is presented. This review begins with balloon experiments around 1935 which carried fungal spores, rocket experiments in the 1950's and 60's, satellite and moon expeditions, long-time orbit experiments and Spacelab missions in the 1980's and 90's. All these missions were aimed at examining the influence of cosmic radiation and weightlessness on genetic, physiological, and morphogenetic processes. During the 2nd German Spacelab mission (D-2, April/May 1993), the experiment FUNGI provided the facilities to cultivate higher basidiomycetes over a period of 10 d in orbit, document gravimorphogenesis and chemically fix fruiting bodies under weightlessness for subsequent ultrastructural analysis. This review shows the necessity of space travel for research on the graviperception of higher fungi and demonstrates the novelty of the experiment FUNGI performed within the framework of the D-2 mission.

  8. Japanese Experiment Module arrival

    NASA Image and Video Library

    2007-03-29

    Several components for delivery to the International Space Station sit in test stands inside the Space Station Processing Facility highbay. To the right, from back to front, are the Japanese Experiment Module, the Raffaello multi-purpose logistics module, and the European Space Agency's Columbus scientific research module. To the left in front is the starboard truss segment S5. Behind it is the test stand that will hold the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  9. KSC-97pc764

    NASA Image and Video Library

    1997-05-01

    KSC payload processing employees in Orbiter Processing Facility 1 prepare the Space Shuttle Orbiter Columbia’s crew airlock and payload bay for the reinstallation of the Spacelab long transfer tunnel that leads from the airlock to the Microgravity Science Laboratory-1 (MSL-1) Spacelab module. The tunnel was taken out after the STS-83 mission to allow better access to the MSL-1 module during reservicing operations to prepare it for for the STS-94 mission. That space flight is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  10. KSC-2010-5492

    NASA Image and Video Library

    2010-11-04

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) sits in its cargo element work stand, where more processing will take place. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller

  11. Space Station - The base for tomorrow's electronic industry

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1985-01-01

    The potential value of space material processing on the Space Station for the electronics industry is examined. The primary advantages of the space environment for producing high-purity semiconductors and electrooptical materials are identified as the virtual absence of gravity (suppressing buoyancy-driven convection in melts and density segregation of alloys) and the availabilty of high vacuum (with high pumping speed and heat rejection). The recent history of material development and processing technology in the electronics industry is reviewed, and the principal features of early space experiments are outlined.

  12. KSC-03PD-2405

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Space Station Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students visit.

  13. Historical data and analysis for the first five years of KSC STS payload processing

    NASA Technical Reports Server (NTRS)

    Ragusa, J. M.

    1986-01-01

    General and specific quantitative and qualitative results were identified from a study of actual operational experience while processing 186 science, applications, and commercial payloads for the first 5 years of Space Transportation System (STS) operations at the National Aeronautics and Space Administration's (NASA) John F. Kennedy Space Center (KSC). All non-Department of Defense payloads from STS-2 through STS-33 were part of the study. Historical data and cumulative program experiences from key personnel were used extensively. Emphasis was placed on various program planning and events that affected KSC processing, payload experiences and improvements, payload hardware condition after arrival, services to customers, and the impact of STS operations and delays. From these initial considerations, operational drivers were identified, data for selected processing parameters collected and analyzed, processing criteria and options determined, and STS payload results and conclusions reached. The study showed a significant reduction in time and effort needed by STS customers and KSC to process a wide variety of payload configurations. Also of significance is the fact that even the simplest payloads required more processing resources than were initially assumed. The success to date of payload integration, testing, and mission operations, however, indicates the soundness of the approach taken and the methods used.

  14. Working memory capacity and the spacing effect in cued recall.

    PubMed

    Delaney, Peter F; Godbole, Namrata R; Holden, Latasha R; Chang, Yoojin

    2018-07-01

    Spacing repetitions typically improves memory (the spacing effect). In three cued recall experiments, we explored the relationship between working memory capacity and the spacing effect. People with higher working memory capacity are more accurate on memory tasks that require retrieval relative to people with lower working memory capacity. The experiments used different retention intervals and lags between repetitions, but were otherwise similar. Working memory capacity and spacing of repetitions both improved memory in most of conditions, but they did not interact, suggesting additive effects. The results are consistent with the ACT-R model's predictions, and with a study-phase recognition process underpinning the spacing effect in cued recall.

  15. G-38, 39 and 40: An artist's exploration of space. [using the space environment to create orbiting sphere configurations

    NASA Technical Reports Server (NTRS)

    Mcshane, J. W.; Coursen, C. D.

    1984-01-01

    Three experiments are described which use space processing technology in the formation of and coating of bubbles and spheres to be orbited as sculptures visible from Earth. In one experiment, a 22,000 m1 sphere is to ride into orbit containing a 15 psi Earth atmosphere. Once in orbit, a controller directs a valve to open, linking the sphere to a vacuum of space. Technologies used in the fabrication of these art forms include vacuum film deposition and large bubble formation in the space environment.

  16. KSC-97PC1460

    NASA Image and Video Library

    1997-09-15

    United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Seen in the foreground at right is the USMP-4 logo with the acronyms of its experiments. Above the American flag at left is the MEPHISTO experiment, a cooperative American and French investigation of the fundamentals of crystal growth. Scientists will study changes in solidification rates, temperature, and interface shape of an alloy to understand how these changes affect composition and properties of the metal produced. Under the multi-layer insulation with the American flag and mission logo is the Space Acceleration Measurement System, or SAMS, which measures the microgravity conditions in which the experiments are conducted. All USMP-4 experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC

  17. Electromagnetic containerless processing requirements and recommended facility concept and capabilities for space lab

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1974-01-01

    Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.

  18. Accommodation requirements for microgravity science and applications research on space station

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Holland, L. R.; Wear, W. O.

    1985-01-01

    Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.

  19. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, John Carver, a project manager with Jacobs Technology checks the Advanced Plant Experiment, or APEX, experiment as it is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  20. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Donald Houzer, a QinetiQ North America mechanical technician checks out the Advanced Plant Experiment, or APEX, experiment as it is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  1. Defining process design space for monoclonal antibody cell culture.

    PubMed

    Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A

    2010-08-15

    The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.

  2. KSC-02pd0736

    NASA Image and Video Library

    2002-05-16

    KENNEDY SPACE CENTER, FLA. - Suspended from the overhead crane, the SHI Research Double Module (SHI/RDM) travels across the Space Station Processing Facility to the payload canister waiting at right. The module will be placed in the canister for transport to the Orbiter Processing Facility where it will be installed in Columbia's payload bay for mission STS-107. SHI/RDM is the primary payload of the research mission, with experiments ranging from material sciences to life sciences (many rats). Also part of the payload is the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. STS-107 is scheduled to launch July 19, 2002

  3. Planning for Space Station Freedom laboratory payload integration

    NASA Technical Reports Server (NTRS)

    Willenberg, Harvey J.; Torre, Larry P.

    1989-01-01

    Space Station Freedom is being developed to support extensive missions involving microgravity research and applications. Requirements for on-orbit payload integration and the simultaneous payload integration of multiple mission increments will provide the stimulus to develop new streamlined integration procedures in order to take advantage of the increased capabilities offered by Freedom. The United States Laboratory and its user accommodations are described. The process of integrating users' experiments and equipment into the United States Laboratory and the Pressurized Logistics Modules is described. This process includes the strategic and tactical phases of Space Station utilization planning. The support that the Work Package 01 Utilization office will provide to the users and hardware developers, in the form of Experiment Integration Engineers, early accommodation assessments, and physical integration of experiment equipment, is described. Plans for integrated payload analytical integration are also described.

  4. Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.; Miller, Teresa Y.

    1988-01-01

    The development of a space continuous flow electrophoresis system (CFES) is discussed. The objectives of the experiment were: (1) to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the McDonnell Douglass CFES instrument and compare its separation resolution and sample throughput with related devices on Earth, and (2) to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as samples of concentration effects. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was principally due to the mismatch of electrical conductivity between the sample and buffer.

  5. KSC01padig062

    NASA Image and Video Library

    2001-02-08

    At a groundbreaking ceremony at KSC, Florida’s Lt. Gov. Frank Brogan expresses his support of the Center’s growth and important role of technology, especially through the International Space Station. The groundbreaking is for a roadway, to be known as Space Commerce Way, that will serve the public by providing a 24-hour access route through KSC from S.R. 3 to the NASA Causeway and KSC Visitor Complex. It is the start of a construction project that includes the Space Experiment Research & Processing Laboratory (SERPL). The project is enabled by a partnership and collaboration between NASA and the State of Florida to create a vital resource for international and commercial space customers. SERPL is considered a magnet facility, and will support the development and processing of life sciences experiments destined for the International Space Station and accommodate NASA, industry and academic researchers performing associated biological research

  6. KSC-03PD-1950

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  7. KSC-03PD-1954

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto points to other Space Station elements. Behind him is the Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  8. KSC-03PD-1951

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (center) joins others for a tour. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of the newest Space Station module, the Japanese Experiment Module/pressurized module.

  9. X-34 Technology Demonstrator in High Bay

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  10. A method to accelerate creation of plasma etch recipes using physics and Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Chopra, Meghali J.; Verma, Rahul; Lane, Austin; Willson, C. G.; Bonnecaze, Roger T.

    2017-03-01

    Next generation semiconductor technologies like high density memory storage require precise 2D and 3D nanopatterns. Plasma etching processes are essential to achieving the nanoscale precision required for these structures. Current plasma process development methods rely primarily on iterative trial and error or factorial design of experiment (DOE) to define the plasma process space. Here we evaluate the efficacy of the software tool Recipe Optimization for Deposition and Etching (RODEo) against standard industry methods at determining the process parameters of a high density O2 plasma system with three case studies. In the first case study, we demonstrate that RODEo is able to predict etch rates more accurately than a regression model based on a full factorial design while using 40% fewer experiments. In the second case study, we demonstrate that RODEo performs significantly better than a full factorial DOE at identifying optimal process conditions to maximize anisotropy. In the third case study we experimentally show how RODEo maximizes etch rates while using half the experiments of a full factorial DOE method. With enhanced process predictions and more accurate maps of the process space, RODEo reduces the number of experiments required to develop and optimize plasma processes.

  11. KSC-07pd0633

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd0634

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside onto a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd0631

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers in the hold of a ship attach a crane to the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The ship brought the module from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd0630

    NASA Image and Video Library

    2007-03-13

    KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is ready for lifting out of the hold of the ship that brought it from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett

  15. Free-decay time-domain modal identification for large space structures

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung M.; Vanhorn, David A.; Doiron, Harold H.

    1992-01-01

    Concept definition studies for the Modal Identification Experiment (MIE), a proposed space flight experiment for the Space Station Freedom (SSF), have demonstrated advantages and compatibility of free-decay time-domain modal identification techniques with the on-orbit operational constraints of large space structures. Since practical experience with modal identification using actual free-decay responses of large space structures is very limited, several numerical and test data reduction studies were conducted. Major issues and solutions were addressed, including closely-spaced modes, wide frequency range of interest, data acquisition errors, sampling delay, excitation limitations, nonlinearities, and unknown disturbances during free-decay data acquisition. The data processing strategies developed in these studies were applied to numerical simulations of the MIE, test data from a deployable truss, and launch vehicle flight data. Results of these studies indicate free-decay time-domain modal identification methods can provide accurate modal parameters necessary to characterize the structural dynamics of large space structures.

  16. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-010 (20 May 1996) --- Soon after leaving the cargo bay of the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload goes through its inflation process, backdropped over clouds. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  17. Containerless processing of glass forming melts in space

    NASA Technical Reports Server (NTRS)

    Day, D. E.; Ray, C. S.

    1988-01-01

    The near weightlessness of a material in the reduced gravity environment of space offers the opportunity of melting and cooling glass forming compositions without a container. This reduces the heterogeneous nucleation/crystallization which usually occurs at the walls of the container, thereby, extending the range of glass forming compositions. Based primarily on this idea, containerless glass forming experiments, which used a single axis acoustic levitator/furnace (SAAL), were conducted on SPAR rocket flights, 6 and 8, and on Space Shuttle mission, STS-7 and STS-61A. The experiments on the Space Shuttle were designed to include other studies related to melt homogenization and mixing, development of techniques for preparing uncontaminated preflight samples, and simple shaping experiments.

  18. KSC-07pd0895

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  19. Is power-space a continuum? Distance effect during power judgments.

    PubMed

    Jiang, Tianjiao; Zhu, Lei

    2015-12-01

    Despite the increasing evidence suggesting that power processing can activate vertical space schema, it still remains unclear whether this power-space is dichotomic or continuous. Here we tested the nature of the power-space by the distance effect, a continuous property of space cognition. In two experiments, participants were required to judge the power of one single word (Experiment 1) or compare the power of two words presented in pairs (Experiment 2). The power distance was indexed by the absolute difference of power ratings. Results demonstrated that reaction time decreased with the power distance, whereas accuracy increased with the power distance. The findings indicated that different levels of power were presented as different vertical heights, implying that there was a common mechanism underlying space and power cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. KSC-2010-4934

    NASA Image and Video Library

    2010-09-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians begin the process of attaching an overhead hoist to the Alpha Magnetic Spectrometer (AMS) for its move to a rotation stand to begin processing for flight. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller

  1. View of MISSE 8 during EVA 1

    NASA Image and Video Library

    2011-05-20

    iss027e034948 (5/20/2011) --- Close-up view of Materials International Space Station Experiment (MISSE) 8 and ExPRESS (Expedite the Processing of Experiments to Space Station) Logistics Carrier-2 (ELC-2) taken during MISSE 8 installation. Image was taken by Extravehicular crewmember 1 (EV1) during Expedition 27 / STS-134 Extravehicular Activity 1 (EVA 1).

  2. Use of space for development of commercial plant natural products

    NASA Astrophysics Data System (ADS)

    Draeger, Norman A.

    1997-01-01

    Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol.

  3. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  4. Space Station Freedom pressurized element interior design process

    NASA Technical Reports Server (NTRS)

    Hopson, George D.; Aaron, John; Grant, Richard L.

    1990-01-01

    The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described.

  5. KSC-07pd0903

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Japanese Experiment Module (JEM) sits on top of a stand in the Space Station Processing Facility. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the Experiment Logistics Module Pressurized Section of the JEM, which will be delivered to the space station on mission STS-123. The JEM will fly on mission STS-124. The module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  6. KSC-07pd0897

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, journalists and photographers ask Japanese astronaut Takao Doi about the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that he will accompany on mission STS-123 to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the logistics module. The logistics module will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  7. KSC-97PC1382

    NASA Image and Video Library

    1997-09-08

    United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). This horizontal tube is known as MEPHISTO, the French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. This experiment, designed for the study of solidification (or freezing) during the growth cycle of liquid materials used for semiconductor crystals, aims to aid in the development of techniques for growing higher quality crystals on Earth. All STS-87 experiments are scheduled for launch on Nov. 19 from KSC

  8. KSC-03PD-1459

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  9. Spaces of Innovation: Experiences from Two Small High-Tech Firms

    ERIC Educational Resources Information Center

    Heiskanen, Tuula; Heiskanen, Hannu

    2011-01-01

    Purpose: By comparing two small high-tech firms specialising in medical technology this article seeks to answer the following questions: What are the key characteristics of innovation processes in the case firms? How do the mutual relationships between mental, social and physical spaces explain the different pathways in the innovation processes in…

  10. KSC-03PD-2138

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (left) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  11. A hitchhiker's guide to an ISS experiment in under 9 months.

    PubMed

    Nadir, Andrei James; Sato, Kevin

    2017-01-01

    The International Space Station National Laboratory gives students a platform to conduct space-flight science experiments. To successfully take advantage of this opportunity, students and their mentors must have an understanding of how to develop and then conduct a science project on international space station within a school year. Many factors influence the speed in which a project progresses. The first step is to develop a science plan, including defining a hypothesis, developing science objectives, and defining a concept of operation for conducting the flight experiment. The next step is to translate the plan into well-defined requirements for payload development. The last step is a rapid development process. Included in this step is identifying problems early and negotiating appropriate trade-offs between science and implementation complexity. Organizing the team and keeping players motivated is an equally important task, as is employing the right mentors. The project team must understand the flight experiment infrastructure, which includes the international space station environment, payload resource requirements and available components, fail-safe operations, system logs, and payload data. Without this understanding, project development can be impacted, resulting in schedule delays, added costs, undiagnosed problems, and data misinterpretation. The information and processes for conducting low-cost, rapidly developed student-based international space station experiments are presented, including insight into the system operations, the development environment, effective team organization, and data analysis. The details are based on the Valley Christian Schools (VCS, San Jose, CA) fluidic density experiment and penicillin experiment, which were developed by 13- and 14-year-old students and flown on ISS.

  12. Organics in Space: Results from Space Exposure Platforms and Nanosatellites

    NASA Technical Reports Server (NTRS)

    Foing, B. H.; Ehrenfreund, P.; Salama, Farid; Contreras, Cesar Sanchez; Sciamma O'Brien, Ella; Bejaoui, Salma

    2015-01-01

    A series of successful laboratory astrophysics experiments performed on International Space Station(ISS) external platforms such as EXPOSE have provided insights into the evolution of organic and biological materials in space and planetary environments. The study of the reactions, destruction, and longevity of organics in the space environment is of fundamental interest. To provide an accurate outer space environment for extended durations, exposure experiments in low Earth orbit have been conducted in the last decades in order to examine the consequences of actual space conditions including combinations of solar and cosmic radiation, space vacuum, and microgravity. The OOREOS (OrganismORganic Exposure to Orbital Stresses) nanosatellite studied in situ during the 6-month primary and 1-year extended mission the photochemical processing of selected PAHs in low Earth orbit (650 km altitude); results were autonomously telemetered to Earth. We report on the methods and flight preparation of samples for space exposure platforms and results on the stability of organic thin-films. The UV-vis degradation process of thin-films was recorded over time, which revealed intriguing and counter-intuitive photolytic kinetics that will be re-investigated on the ISS in a space environment.

  13. KSC-2013-3027

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technician uses a forklift to remove the Optical Payload for Lasercomm Science, or OPALS, experiment from a truck at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  14. KSC-2013-3035

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians move the Optical Payload for Lasercomm Science, or OPALS, experiment from the air lock into an offline laboratory at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  15. KSC-2013-3028

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technician uses a forklift to remove the Optical Payload for Lasercomm Science, or OPALS, experiment from a truck at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  16. KSC-2013-3030

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a forklift is used to move the Optical Payload for Lasercomm Science, or OPALS, experiment to the air lock entrance at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  17. KSC-2013-3033

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technicians monitor the progress as a forklift is used to lower the Optical Payload for Lasercomm Science, or OPALS, experiment near the air lock entrance at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  18. KSC-2013-3040

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians uncover and check the Optical Payload for Lasercomm Science, or OPALS, experiment in a test cell at a Space Station Processing Facility offline laboratory. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  19. KSC-2013-3032

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technician uses a forklift to move the Optical Payload for Lasercomm Science, or OPALS, experiment to the air lock entrance at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  20. KSC-2013-3029

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a forklift is used to move the Optical Payload for Lasercomm Science, or OPALS, experiment to the air lock entrance at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  1. KSC-2013-3038

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. --At NASA’s Kennedy Space Center in Florida, technicians uncover and check the Optical Payload for Lasercomm Science, or OPALS, experiment in a test cell at a Space Station Processing Facility offline laboratory. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  2. KSC-2013-3037

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians prepare to uncover and check the Optical Payload for Lasercomm Science, or OPALS, experiment in a test cell at a Space Station Processing Facility offline laboratory. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  3. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Eric Morris from the cold stowage group fits items into the Double Cold Bag (DCB) which is a non-powered container that keeps the APEX petri plates at +4 degrees Celsius during launch and ascent.. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  4. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The 30 petri plates are bundled into groups of 10 and placed into one of three science kits. The science kits allow easy handling when the crew removes the plates from cold stowage on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  5. KSC-07pd0891

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcome the arrival of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, to the Kennedy Space Center. Seen here at right are JAXA representatives, including Japanese astronaut Takao Doi (center of front row), who is a crew member for mission STS-123 that will deliver the module to the space station. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  6. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - T-cell science team member Miya Yoshida, of the Hughes-Fulford Laboratory in San Francisco, Calif., works in a biosafety hood during preflight experiment preparations in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  7. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., at the microscope, examines T-cells as part of preflight experiment operations in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  8. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, R. J.

    1986-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or floatation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacites with small quantities of gas which are recirculated over the sample is described. This system should be adaptable to reduced gravity space experiments requiring redox control. Experiments done conventionally and those done using this technique yield identical results done in a 1-g field.

  9. Onboard experiment data support facility. Task 2 report: Definition of onboard processing requirements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.

  10. A regenerable carbon dioxide removal and oxygen recovery system for the Japanese Experiment Module.

    PubMed

    Otsuji, K; Hirao, M; Satoh, S

    1987-01-01

    The Japanese Space Station Program is now under Phase B study by the National Space Development Agency of Japan in participation with the U.S. Space Station Program. A Japanese Space Station participation will be a dedicated pressurized module to be attached to the U.S. Space Station, and is called Japanese Experiment Module (JEM). Astronaut scientists will conduct various experimental operations there. Thus an environment control and life support system is required. Regenerable carbon dioxide removal and collection technique as well as oxygen recovery technique has been studied and investigated for several years. A regenerable carbon dioxide removal subsystem using steam desorbed solid amine and an oxygen recovery subsystem using Sabatier methane cracking have a good possibility for the application to the Japanese Experiment Module. Basic performance characteristics of the carbon dioxide removal and oxygen recovery subsystem are presented according to the results of a fundamental performance test program. The trace contaminant removal process is also investigated and discussed. The solvent recovery plant for the regeneration of various industrial solvents, such as hydrocarbons, alcohols and so on, utilizes the multi-bed solvent adsorption and steam desorption process, which is very similar to the carbon dioxide removal subsystem. Therefore, to develop essential components including adsorption tank (bed), condenser. process controller and energy saving system, the technology obtained from the experience to construct solvent recovery plant can be easily and effectively applicable to the carbon dioxide removal subsystem. The energy saving efficiency is evaluated for blower power reduction, steam reduction and waste heat utilization technique. According to the above background, the entire environment control and life support system for the Japanese Experiment Module including the carbon dioxide removal and oxygen recovery subsystem is evaluated and proposed.

  11. In-Flight Thermal Performance of the Lidar In-Space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Roettker, William

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) was developed at NASA s Langley Research Center to explore the applications of lidar operated from an orbital platform. As a technology demonstration experiment, LITE was developed to gain experience designing and building future operational orbiting lidar systems. Since LITE was the first lidar system to be flown in space, an important objective was to validate instrument design principles in such areas as thermal control, laser performance, instrument alignment and control, and autonomous operations. Thermal and structural analysis models of the instrument were developed during the design process to predict the behavior of the instrument during its mission. In order to validate those mathematical models, extensive engineering data was recorded during all phases of LITE's mission. This inflight engineering data was compared with preflight predictions and, when required, adjustments to the thermal and structural models were made to more accurately match the instrument s actual behavior. The results of this process for the thermal analysis and design of LITE are presented in this paper.

  12. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The HOST (the Hubble Space Telescope Orbital Systems Test) payload is uncrated in the Space Station Processing Facility (SSPF). HOST is scheduled to fly on the STS-95 mission, planned for launch on Oct. 29, 1998. The mission includes other research payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  13. KSC-97pc761

    NASA Image and Video Library

    1997-05-01

    KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments

  14. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  15. KSC-2011-2201

    NASA Image and Video Library

    2011-03-10

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, processing continues for the Alpha Magnetic Spectrometer-2 (AMS). AMS is a particle physics detector, designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson

  16. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    An overhead crane moves the JEM Experiment Logistics Module Pressurized Section above the floor of the Space Station Processing Facility to a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  17. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, an overhead crane moves the JEM Experiment Logistics Module Pressurized Section toward a scale (at left) for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  18. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    The JEM Experiment Logistics Module Pressurized Section is lifted from its shipping crate in the Space Station Processing Facility. The module will be moved to a scale for weight and center-of-gravity measurements and then to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  19. JEM Experiment Logistics Module Pressurized Section

    NASA Image and Video Library

    2007-04-02

    In the Space Station Processing Facility, an overhead crane lifts the JEM Experiment Logistics Module Pressurized Section from its shipping container and moves it toward a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.

  20. History of Los Alamos Participation in Active Experiments in Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pongratz, Morris B.

    Beginning with the Teak nuclear test in 1958, Los Alamos has a long history of participation in active experiments in space. The last pertinent nuclear tests were the five explosions as part of the Dominic series in 1962. The Partial Test Ban Treaty signed in August 1963 prohibited all test detonations of nuclear weapons except for those conducted underground. Beginning with the “Apple” thermite barium release in June 1968 Los Alamos has participated in nearly 100 non-nuclear experiments in space, the last being the NASA-sponsored “AA-2” strontium and europium doped barium thermite releases in the Arecibo beam in July ofmore » 1992. The rationale for these experiments ranged from studying basic plasma processes such as gradientdriven structuring and velocity-space instabilities to illuminating the convection of plasmas in the ionosphere and polar cap to ionospheric depletion experiments to the B.E.A.R. 1-MeV neutral particle beam test in 1989. This report reviews the objectives, techniques and diagnostics of Los Alamos participation in active experiments in space.« less

  1. Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.

    1999-01-01

    Solidification experiments, especially microgravity solidification experiments are often hampered by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there are currently no effective means of preventing their formation or eliminating their adverse effects, particularly, during low-g experiments. Marangoni Convection caused by these voids can drastically change the transport processes in the melt and, therefore, introduce enormous difficulties in interpreting the results of the space investigations. Recent microgravity experiments by Matthiesen, Andrews, and Fripp are all good examples of how the presence of voids and bubbles affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. In this work we examine mixing caused by Marangoni convection generated by voids and bubbles in the melt during both 1-g and low-g solidification experiments. The objective of the research is to perform a detailed and comprehensive combined numerical-experimental study of Marangoni convection caused by voids during the solidification process and to show how it can affect segregation and growth conditions by modifying the flow, temperature, and species concentration fields in the melt. While Marangoni convection generated by bubbles and voids in the melt can lead to rapid mixing that would negate the benefits of microgravity processing, it could be exploited in some terrestrial processing to ensure effective communication between a melt/solid interface and a gas phase stoichiometry control zone. Thus we hope that this study will not only aid us in interpreting the results of microgravity solidification experiments hampered by voids and bubbles but to guide us in devising possible means of minimizing the adverse effects of Marangoni convection in future space experiments or of exploiting its beneficial mixing features in ground-based solidification.

  2. Effect of low gravity on calcium metabolism and bone formation (L-7)

    NASA Technical Reports Server (NTRS)

    Suda, Tatsuo

    1993-01-01

    Recently, attention has been focused on the disorders of bone and calcium metabolism during space flight. The skeletal system has evolved on the Earth under 1-g. Space flights under low gravity appear to cause substantial changes in bone and calcium homeostasis of the animals adapted to 1-g. A space experiment for the First Materials Processing Test (FMPT) was proposed to examine the effects of low gravity on calcium metabolism and bone formation using chick embryos loaded in a space shuttle. This space experiment was proposed based on the following two experimental findings. First, it has been reported that bone density decreases significantly during prolonged space flight. The data obtained from the US Skylab and the U.S.S.R. Salyut-6 cosmonauts have also documented that the degree of bone loss is related to the duration of space flight. Second, the US-Soviet joints space experiment demonstrated that the decrease in bone density under low gravity appears to be due to the decrease in bone formation rather than the increase in bone resorption. The purpose of our space experiment is, therefore, to investigate further the mechanisms of bone growth under low gravity using fertilized chick embryos.

  3. Welding Experiments of Aluminum Alloy by Space GHTA Welding at ISS Orbital Pressure

    NASA Astrophysics Data System (ADS)

    Suita, Yoshikazu; Takai, Daisuke; Sugiyama, Satoshi; Terajima, Noboru; Tsukuda, Yoshiyuki; Fujisawa, Shoichiro; Imagawa, Kichiro

    As a feasible welding method in space, the authors previously proposed the space GHTA (Gas Hollow Tungsten Arc) welding process. However, space GHTA welding with a high-frequency device for arc start may cause electromagnetic noise problems for the computer equipment placed on the ISS (International Space Station). Therefore, in this report, welding experiments of space GHTA welding using aluminum alloy with a high-voltage DC device for arc start were carried out at the ISS orbital pressure, 10-5 Pa. It is clear from the experiments using a high-voltage DC device in a high-vacuum condition, that there is a shifting phenomenon in which the spark discharge shifts to either a glow discharge or an arc discharge when starting the arc. Welding projects in space need an arc discharge, so we investigated the effects of welding parameters on the arc formation ratio. As a result, space GHTA welding with a high-voltage DC device can be used for arc start when welding at the ISS orbital pressure.

  4. Visualization of solidification front phenomena

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.

    1993-01-01

    Directional solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental platform which minimizes variables in solidification experiments. Because of the wide-spread use of this experimental technique in space-based research, it has become apparent that a better understanding of all the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible.

  5. Duque works at the MSG for PromISS 2 in the Lab during Expedition Seven / 8 OPS

    NASA Image and Video Library

    2003-10-27

    ISS008-E-05015 (27 October 2003) --- European Space Agency (ESA) astronaut Pedro Duque of Spain works with the Cervantes mission experiment PROMISS in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS). This experiment will investigate the growth processes of proteins in weightless conditions.

  6. Duque works at the MSG for PromISS 2 in the Lab during Expedition Seven / 8 OPS

    NASA Image and Video Library

    2003-10-27

    ISS008-E-05029 (27 October 2003) --- European Space Agency (ESA) astronaut Pedro Duque of Spain works with the Cervantes mission experiment PROMISS in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS). This experiment will investigate the growth processes of proteins in weightless conditions.

  7. Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The techniques, processes, and equipment required for automatic fabrication and assembly of structural elements in space using the space shuttle as a launch vehicle and construction base were investigated. Additional construction/systems/operational techniques, processes, and equipment which can be developed/demonstrated in the same program to provide further risk reduction benefits to future large space systems were included. Results in the areas of structure/materials, fabrication systems (beam builder, assembly jig, and avionics/controls), mission integration, and programmatics are summarized. Conclusions and recommendations are given.

  8. KSC-03PD-2406

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Japanese girls from Urawa Daiichi Girls High School, Urawa, Japan, pose for a group photo during a visit to the Orbiter Processing Facility. They were awarded the trip to Kennedy Space Center when their experiments were chosen to fly on mission STS-107. The girls are accompanied by American students from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station/Payload Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students visit.

  9. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  10. Localization of one-photon state in space and Einstein-Podolsky-Rosen paradox in spontaneous parametric down conversion

    NASA Technical Reports Server (NTRS)

    Penin, A. N.; Reutova, T. A.; Sergienko, A. V.

    1992-01-01

    An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.

  11. Localization of one-photon state in space and Einstein-Podolsky-Rosen paradox in spontaneous parametric down conversion

    NASA Astrophysics Data System (ADS)

    Penin, A. N.; Reutova, T. A.; Sergienko, A. V.

    1992-02-01

    An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.

  12. Technicians monitor USMP-4 experiments being prepared for flight on STS-87 in the SSPF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians are monitoring experiments on the United States Microgravity Payload-4 (USMP-4) in preparation for its scheduled launch aboard STS-87 on Nov. 19 from Kennedy Space Center (KSC). USMP-4 experiments are prepared in the Space Station Processing Facility at KSC. The large white vertical cylinder at the right of the photo is the Advanced Automated Directional Solidification Furnace (AADSF ), which is a sophisticated materials science facility used for studying a common method of processing semiconductor crystals called directional solidification. The technician in the middle of the photo is leaning over MEPHISTO, a cooperative American-French investigation of the fundamentals of crystal growth.

  13. Data processing for a cosmic ray experiment onboard the solar probes Helios 1 and 2: Experiment 6

    NASA Technical Reports Server (NTRS)

    Mueller-Mellin, R.; Green, G.; Iwers, B.; Kunow, H.; Wibberenz, G.; Fuckner, J.; Hempe, H.; Witte, M.

    1982-01-01

    The data processing system for the Helios experiment 6, measuring energetic charged particles of solar, planetary and galactic origin in the inner solar system, is described. The aim of this experiment is to extend knowledge on origin and propagation of cosmic rays. The different programs for data reduction, analysis, presentation, and scientific evaluation are described as well as hardware and software of the data processing equipment. A chronological presentation of the data processing operation is given. Procedures and methods for data analysis which were developed can be used with minor modifications for analysis of other space research experiments.

  14. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, Richard J.

    1987-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or flotation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacities with small quantities of gas which are recirculated over the sample. This system could be adaptable to reduced gravity space experiments requiring redox control.

  15. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-044 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over the Grand Canyon. After the IAE completed its inflation process in free-flight, this view was photographed with a large format still camera. The activity came on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  16. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-022 (20 May 1996) --- After leaving the cargo bay of the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload goes through the final stages its inflation process, backdropped over clouds and blue water. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  17. The Era of International Space Station Research: Discoveries and Potential of an Unprecedented Laboratory in Space

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2011-01-01

    The assembly of the International Space Station was completed in early 2011. Its largest research instrument, the Alpha Magnetic Spectrometer is planned for launch in late April. Unlike any previous laboratory in space, the ISS offers a long term platform where scientists can operate experiments rapidly after developing a new research question, and extend their experiments based on early results. This presentation will explain why having a laboratory in orbit is important for a wide variety of experiments that cannot be done on Earth. Some of the most important results from early experiments are already having impacts in areas such as health care, telemedicine, and disaster response. The coming decade of full utilization offers the promise of new understanding of the nature of physical and biological processes and even of matter itself.

  18. Space Manufacturing: The Next Great Challenge

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Curreri, Peter; Sharpe, Jonathan B.; Colberg, Wendell R.; Vickers, John H.

    1998-01-01

    Space manufacturing encompasses the research, development and manufacture necessary for the production of any product to be used in near zero gravity, and the production of spacecraft required for transporting research or production devices to space. Manufacturing for space, and manufacturing in space will require significant breakthroughs in materials and manufacturing technology, as well as in equipment designs. This report reviews some of the current initiatives in achieving space manufacturing. The first initiative deals with materials processing in space, e.g., processing non-terrestrial and terrestrial materials, especially metals. Some of the ramifications of the United States Microgravity Payloads fourth (USMP-4) mission are discussed. Some problems in non-terrestrial materials processing are mentioned. The second initiative is structures processing in space. In order to accomplish this, the International Space Welding Experiment was designed to demonstrate welding technology in near-zero gravity. The third initiative is advancements in earth-based manufacturing technologies necessary to achieve low cost access to space. The advancements discussed include development of lightweight material having high specific strength, and automated fabrication and manufacturing methods for these materials.

  19. Foreign Experience in Training Future Engineering Educators for Modeling Technological Processes

    ERIC Educational Resources Information Center

    Bokhonko, Yevhen

    2017-01-01

    The article deals with the study of foreign experience in training engineering educators for modeling technological processes. It has been stated that engineering education is a field that is being dramatically developed taking into account the occurring changes in educational paradigms, global higher education space, national higher education…

  20. Space Processing Applications Rocket (SPAR) project SPAR 7

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.

    1983-01-01

    The postflight reports of each of the Principal Investigators of three selected science payloads are presented in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). Pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition are described including design, fabrication and testing. Containerless processing technology, containerless processing bubble dynamics, and comparative alloy solidification are the experiments discussed.

  1. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    Drs. Rob Ferl and Anna-Lisa Paul in a cold room in the Kennedy Space Center Processing Facility with the petri plates they prepped at the University of Florida for APEX-04. Paul is the principal investigator (PI) and Ferl is co-PI. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  2. Model and on-orbit study of the International space station contamination processes by jets of its orientation thrusters

    NASA Astrophysics Data System (ADS)

    Yarygin, V. N.; Gerasimov, Yu I.; Krylov, A. N.; Prikhodko, V. G.; Skorovarov, A. Yu; Yarygin, I. V.

    2017-11-01

    The main objective of this paper is to describe the current state of research for the problem of the International Space Station contamination by plumes of its orientation thrusters. Results of experiments carried out at the Institute of Thermophysics SB RAS modeling space vehicles orientation thruster’s plumes are presented and experimental setup is discussed. A novel approach to reduction of contamination by thrusters with the help of special gas-dynamic protective devices mounted at the exit part of the nozzle is suggested. The description and results of on-orbit experiment at the International Space Station are given. Results show good agreement for model and on-orbit experiments validating our approach.

  3. Biotechnological experiments in space flights on board of space stations

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other factors of space flight change direction of biological processes, and show a possibility to get special kinds of bioproducts with new properties.

  4. KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  5. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  6. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.

  7. Active and Passive Technology Integration: A Novel Approach for Managing Technology's Influence on Learning Experiences in Context-Aware Learning Spaces

    ERIC Educational Resources Information Center

    Laine, Teemu H.; Nygren, Eeva

    2016-01-01

    Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…

  8. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare nearmore » solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.« less

  9. Optimization of the Ethanol Recycling Reflux Extraction Process for Saponins Using a Design Space Approach

    PubMed Central

    Gong, Xingchu; Zhang, Ying; Pan, Jianyang; Qu, Haibin

    2014-01-01

    A solvent recycling reflux extraction process for Panax notoginseng was optimized using a design space approach to improve the batch-to-batch consistency of the extract. Saponin yields, total saponin purity, and pigment yield were defined as the process critical quality attributes (CQAs). Ethanol content, extraction time, and the ratio of the recycling ethanol flow rate and initial solvent volume in the extraction tank (RES) were identified as the critical process parameters (CPPs) via quantitative risk assessment. Box-Behnken design experiments were performed. Quadratic models between CPPs and process CQAs were developed, with determination coefficients higher than 0.88. As the ethanol concentration decreases, saponin yields first increase and then decrease. A longer extraction time leads to higher yields of the ginsenosides Rb1 and Rd. The total saponin purity increases as the ethanol concentration increases. The pigment yield increases as the ethanol concentration decreases or extraction time increases. The design space was calculated using a Monte-Carlo simulation method with an acceptable probability of 0.90. Normal operation ranges to attain process CQA criteria with a probability of more than 0.914 are recommended as follows: ethanol content of 79–82%, extraction time of 6.1–7.1 h, and RES of 0.039–0.040 min−1. Most of the results of the verification experiments agreed well with the predictions. The verification experiment results showed that the selection of proper operating ethanol content, extraction time, and RES within the design space can ensure that the CQA criteria are met. PMID:25470598

  10. Study for identification of Beneficial uses of Space (BUS). Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The quantification of required specimen(s) from space processing experiments, the typical EMI measurements and estimates of a typical RF source, and the integration of commercial payloads into spacelab were considered.

  11. Main results and experience obtained on Mir space station and experiment program for Russian segment of ISS.

    PubMed

    Utkin, V F; Lukjashchenko, V I; Borisov, V V; Suvorov, V V; Tsymbalyuk, M M

    2003-07-01

    This article presents main scientific and practical results obtained in course of scientific and applied research and experiments on Mir space station. Based on Mir experience, processes of research program formation for the Russian Segment of the ISS are briefly described. The major trends of activities planned in the frames of these programs as well as preliminary results of increment research programs implementation in the ISS' first missions are also presented. c2003 Elsevier Science Ltd. All rights reserved.

  12. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The HOST (the Hubble Space Telescope Orbital Systems Test) payload is moved into the high bay of the Space Station Processing Facility (SSPF). HOST is scheduled to fly on the STS- 95 mission, planned for launch on Oct. 29, 1998. The mission includes other research payloads such as the Spartan solar- observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  13. Changes in the representation of space and time while listening to music

    PubMed Central

    Schäfer, Thomas; Fachner, Jörg; Smukalla, Mario

    2013-01-01

    Music is known to alter people's ordinary experience of space and time. Not only does this challenge the concept of invariant space and time tacitly assumed in psychology but it may also help us understand how music works and how music can be understood as an embodied experience. Yet research about these alterations is in its infancy. This review is intended to delineate a future research agenda. We review experimental evidence and subjective reports of the influence of music on the representation of space and time and present prominent approaches to explaining these effects. We discuss the role of absorption and altered states of consciousness and their associated changes in attention and neurophysiological processes, as well as prominent models of human time processing and time experience. After integrating the reviewed research, we conclude that research on the influence of music on the representation of space and time is still quite inconclusive but that integrating the different approaches could lead to a better understanding of the observed effects. We also provide a working model that integrates a large part of the evidence and theories. Several suggestions for further research in both music psychology and cognitive psychology are outlined. PMID:23964254

  14. Changes in the representation of space and time while listening to music.

    PubMed

    Schäfer, Thomas; Fachner, Jörg; Smukalla, Mario

    2013-01-01

    Music is known to alter people's ordinary experience of space and time. Not only does this challenge the concept of invariant space and time tacitly assumed in psychology but it may also help us understand how music works and how music can be understood as an embodied experience. Yet research about these alterations is in its infancy. This review is intended to delineate a future research agenda. We review experimental evidence and subjective reports of the influence of music on the representation of space and time and present prominent approaches to explaining these effects. We discuss the role of absorption and altered states of consciousness and their associated changes in attention and neurophysiological processes, as well as prominent models of human time processing and time experience. After integrating the reviewed research, we conclude that research on the influence of music on the representation of space and time is still quite inconclusive but that integrating the different approaches could lead to a better understanding of the observed effects. We also provide a working model that integrates a large part of the evidence and theories. Several suggestions for further research in both music psychology and cognitive psychology are outlined.

  15. A review of the findings of the plasma diagnostic package and associated laboratory experiments: Implications of large body/plasma interactions for future space technology

    NASA Technical Reports Server (NTRS)

    Murphy, Gerald B.; Lonngren, Karl E.

    1986-01-01

    The discoveries and experiments of the Plasma Diagnostic Package (PDP) on the OSS 1 and Spacelab 2 missions are reviewed, these results are compared with those of other space and laboratory experiments, and the implications for the understanding of large body interactions in a low Earth orbit (LEO) plasma environment are discussed. First a brief review of the PDP investigation, its instrumentation and experiments is presented. Next a summary of PDP results along with a comparison of those results with similar space or laboratory experiments is given. Last of all the implications of these results in terms of understanding fundamental physical processes that take place with large bodies in LEO is discussed and experiments to deal with these vital questions are suggested.

  16. Life cycle of Arabidopsis thaliana under microgravity condition in the International Space Station Kibo module

    NASA Astrophysics Data System (ADS)

    Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Kamisaka, Seiichiro; Yano, Sachiko; Shimazu, Toru; Tamaoki, Daisuke; Tanigaki, Fumiaki; Kasahara, Haruo; Yashiro, Umi; Suto, Takamichi; Yamaguchi, Takashi; Kasahara, Hirokazu

    2012-07-01

    Gravity is an important environmental factors for growth and development of plants throughout their life cycle. We have designed an experiment, which is called Space Seed, to examine the effects of microgravity on the seed to seed life cycle of plants. We have carried out this experiment using a newly developed apparatus, which is called the Plant Experiment Unit (PEU) and installed in the Cell Biology Experiment Facility (CBEF) onboard International Space Station (ISS). The CBEF is equipped with a turntable generating artificial gravity to perform 1-G control experiment as well as micro-G experiment on board. Arabidopsis thaliana seeds sown on dry rockwool in PEUs were transported from Kennedy Space Center to the ISS Kibo module by Space Shuttle Discovery in STS-128 mission. This experiment was started on Sep. 10, 2009 and terminated on Nov. 11, 2009. Arabidopsis seeds successfully germinated, and the plants passed through both vegetative and reproductive processes, such as formation of rosette leaves, bolting of inflorescence stems, flowering, formation of siliques and seeds. Vegetative and reproductive growth were compared among micro-G plants, 1-G control, and the ground control.

  17. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  18. An Innovation Teaching Experience Following Guidelines of European Space of Higher Education in the Interactive Learning

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Rodríguez, M. L.; Ramos-Ridao, A. F.; Pasadas, M.; Priego, I.

    The Area of Environmental Technology in Department of Civil Engineering has developed an innovation education project, entitled Application of new Information and Communication Technologies in Area of Environmental Technology teaching, to create a Web site that benefits both parties concerned in teaching-learning process, teachers and students. Here teachers conduct a supervised teaching and students have necessary resources to guide their learning process according to their capacities and possibilities. The project has also included a pilot experience to introduce European Space of Higher Education (ESHE) new teaching concept based on student's work, in one subject of Environmental Science degree, considering interactive learning complementary to presence teaching. The experience has showed strength and weakness of the method and it is the beginning in a gradual process to guide e-learning education in future.

  19. Novel method to construct large-scale design space in lubrication process utilizing Bayesian estimation based on a small-scale design-of-experiment and small sets of large-scale manufacturing data.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-12-01

    A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.

  20. KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  1. KENNEDY SPACE CENTER, FLA. - Capt. Winston Scott, executive director of the Florida Space Authority, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Capt. Winston Scott, executive director of the Florida Space Authority, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  2. KSC-02pd0754

    NASA Image and Video Library

    2002-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-107 Payload Commander Michael Anderson (left) and 107 Payload Specialist Ilan Ramon, with the Israeli Space Agency, look at one of the main engines on Columbia. A research mission, STS-107 will carry as the primary payload the first flight of the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. Another payload is FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) comprising Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. STS-107 is scheduled to launch July 11, 2002

  3. KSC-02pd0753

    NASA Image and Video Library

    2002-05-24

    KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon (left), with the Israeli Space Agency, and Payload Commander Michael Anderson pause during a payload check in the Orbiter Processing Facility. A research mission, STS-107 will carry as the primary payload the first flight of the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. Another payload is FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) comprising Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. STS-107 is scheduled to launch July 11, 2002

  4. Expedite the Processing of Unpressurized Payloads to the International Space Station Using the ExPRESS Pallet

    NASA Technical Reports Server (NTRS)

    Bacskay, Allen S.; Gilbert, Paul A. (Technical Monitor)

    2002-01-01

    The Expedite the PRocessing of Experiments to Space Station (ExPRESS) Pallet will be used as an experiment platform for external/unpressurized payloads to be flown aboard the International Space Station (ISS). The purpose of the ExPRESS Pallet is to provide an easy access to the ISS for Scientific Investigators that require an external platform for their experiment hardware. As the name of the ExPRESS Pallet implies, the objective of the ExPRESS program is to provide a simplified integration process in a short time period (24 months) for payloads to be flown on the ISS. The ExPRESS Pallet provides unique opportunities for research across many science disciplines, including earth observation, communications, solar and deep space viewing, and long-term exposure. The ExPRESS Pallet provides access to Ram, Wake, Nadir, Zenith and Earth Limb for viewing and exposure to the space environment. The ExPRESS Pallet will provide standard physical payload interfaces, and a standard integration template. The ExPS consists of the Pallet structure, payload Adapters, a subsystem assembly that includes data controller, power distribution and conversion, and Extra Vehicular Robotics compatibility. The ExPRESS Pallet provides the capability to changeout payloads on-orbit via the ExPRESS Pallet Adapter (ExPA). The following paragraphs will describe the Services and Accommodations available to the Payload developers by the ExPRESS Pallet and a brief description of the Integration process. More detailed information on the ExPRESS Pallet can be found in the ExPRESS Pallet Payload Accommodations Handbook, SSP 52000-PAH-EPP.

  5. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  6. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  7. KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.

  8. Effects of Spatial Experiences & Cognitive Styles in the Solution Process of Space-Based Design Problems in the First Year of Architectural Design Education

    ERIC Educational Resources Information Center

    Erkan Yazici, Yasemin

    2013-01-01

    There are many factors that influence designers in the architectural design process. Cognitive style, which varies according to the cognitive structure of persons, and spatial experience, which is created with spatial data acquired during life are two of these factors. Designers usually refer to their spatial experiences in order to find solutions…

  9. Payload Processing for Mice Drawer System

    NASA Technical Reports Server (NTRS)

    Brown, Judy

    2007-01-01

    Experimental payloads flown to the International Space Station provide us with valuable research conducted in a microgravity environment not attainable on earth. The Mice Drawer System is an experiment designed by Thales Alenia Space Italia to study the effects of microgravity on mice. It is designed to fly to orbit on the Space Shuttle Utilization Logistics Flight 2 in October 2008, remain onboard the International Space Station for approximately 100 days and then return to earth on a following Shuttle flight. The experiment apparatus will be housed inside a Double Payload Carrier. An engineering model of the Double Payload Carrier was sent to Kennedy Space Center for a fit check inside both Shuttles, and the rack that it will be installed in aboard the International Space Station. The Double Payload Carrier showed a good fit quality inside each vehicle, and Thales Alenia Space Italia will now construct the actual flight model and continue to prepare the Mice Drawer System experiment for launch.

  10. Microgravity metal processing: from undercooled liquids to bulk metallic glasses

    PubMed Central

    Hofmann, Douglas C; Roberts, Scott N

    2015-01-01

    Bulk metallic glasses (BMGs) are a novel class of metal alloys that are poised for widespread commercialization. Over 30 years of NASA and ESA (as well as other space agency) funding for both ground-based and microgravity experiments has resulted in fundamental science data that have enabled commercial production. This review focuses on the history of microgravity BMG research, which includes experiments on the space shuttle, the ISS, ground-based experiments, commercial fabrication and currently funded efforts. PMID:28725709

  11. Transcript of proceedings: National Aeronautics and Space Administration, Goddard Space Flight Center, 1972 GSFC Battery Workshop, first day

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of the 1972 NASA/Goddard Battery Workshop are reported. Topics discussed include: separators, materials and processing, test and storage experience, and improved energy density systems.

  12. KSC01padig063

    NASA Image and Video Library

    2001-02-08

    Center Director Roy Bridges Jr. addresses attendees at a groundbreaking ceremony held on S.R. 3. The groundbreaking is for a roadway, to be known as Space Commerce Way, that will serve the public by providing a 24-hour access route through KSC from S.R. 3 to the NASA Causeway and KSC Visitor Complex. It is the start of a construction project that includes the Space Experiment Research & Processing Laboratory (SERPL). The project is enabled by a partnership and collaboration between NASA and the State of Florida to create a vital resource for international and commercial space customers. Among the participants and guests seated under the tent are (in front row, at right) Florida’s Lt. Gov. Frank Brogan and Congressman Dave Weldon. SERPL is considered a magnet facility, and will support the development and processing of life sciences experiments destined for the International Space Station and accommodate NASA, industry and academic researchers performing associated biological research

  13. Use of space for development of commercial plant natural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draeger, N.A.

    1997-01-01

    Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol. {copyright} {ital 1997 American Institute of Physics.}

  14. SpaceX-3 KSC Payloads: Biotube, Bric, Apex2-2

    NASA Image and Video Library

    2014-03-07

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, equipment supporting the Advanced Plant Experiment, or APEX, experiment is being prepared for launch to the International Space Station aboard a SpaceX Dragon spacecraft. The APEX investigation examines white spruce, picea glauca, to understand the influence of gravity on plant physiology, growth, and on the genetics of wood formation. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  15. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    NASA Technical Reports Server (NTRS)

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  16. Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

  17. Developing better artificial bones.

    PubMed

    Flinn, Edward D

    2003-01-01

    Researchers at the Center for Commercial Applications of Combustion in Space at the Colorado School of Mines are preparing the Space-DRUMS (Dynamically Responding Ultrasonic Matrix Systems) materials processing facility for transport to the International Space Station. The Space-DRUMS uses acoustic pressure beams to maintain the position of a suspended liquid or solid. Space-DRUMS will be used to extend experiments with tricalcium phosphate in the development of artificial bone material.

  18. Chapter 8: Materials for Exploration Systems

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2017-01-01

    Materials science and processing research in space can be thought of as a field of study that began with the sounding rocket experiments in the 1950s. Material science studies of the lunar surface materials returned during the Apollo missions enabled the study of lunar resource utilization. The study of materials science and processing in space continued with over 30 years of microgravity materials processing research which continues today in the International Space Station. These studies are the technical foundation that could enable lower cost human exploration through the use of in-situ propellant production, the production of energy from space resources, and the eventual establishment of a substantial portion of humanity living self sufficiently off Earth.

  19. Spacelab

    NASA Image and Video Library

    1994-07-08

    This is a Space Shuttle Columbia (STS-65) onboard photo of the second International Microgravity Laboratory (IML-2) in the cargo bay with Earth in the background. Mission objectives of IML-2 were to conduct science and technology investigations that required the low-gravity environment of space, with emphasis on experiments that studied the effects of microgravity on materials processes and living organisms. Materials science and life sciences are two of the most exciting areas of microgravity research because discoveries in these fields could greatly enhance the quality of life on Earth. If the structure of certain proteins can be determined by examining high-quality protein crystals grown in microgravity, advances can be made to improve the treatment of many human diseases. Electronic materials research in space may help us refine processes and make better products, such as computers, lasers, and other high-tech devices. The 14-nation European Space Agency (ESA), the Canadian Space Agency (SCA), the French National Center for Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DARA/DLR), and the National Space Development Agency of Japan (NASDA) participated in developing hardware and experiments for the IML missions. The missions were managed by NASA's Marshall Space Flight Center. The Orbiter Columbia was launched from the Kennedy Space Center on July 8, 1994 for the IML-2 mission.

  20. KSC-2013-3026

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- The Optical Payload for Lasercomm Science, or OPALS, an optical technology demonstration experiment, arrives at the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  1. AMPS sciences objectives and philosophy. [Atmospheric, Magnetospheric and Plasmas-in-Space project on Spacelab

    NASA Technical Reports Server (NTRS)

    Schmerling, E. R.

    1975-01-01

    The Space Shuttle will open a new era in the exploration of earth's near-space environment, where the weight and power capabilities of Spacelab and the ability to use man in real time add important new features. The Atmospheric, Magnetospheric, and Plasmas-in-Space project (AMPS) is conceived of as a facility where flexible core instruments can be flown repeatedly to perform different observations and experiments. The twin thrusts of remote sensing of the atmosphere below 120 km and active experiments on the space plasma are the major themes. They have broader implications in increasing our understanding of plasma physics and of energy conversion processes elsewhere in the universe.

  2. Study of industry requirements that can be fulfilled by combustion experimentation aboard space station

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.

    1988-01-01

    The purpose of this study is to define the requirements of commercially motivated microgravity combustion experiments and the optimal way for space station to accommodate these requirements. Representatives of commercial organizations, universities and government agencies were contacted. Interest in and needs for microgravity combustion studies are identified for commercial/industrial groups involved in fire safety with terrestrial applications, fire safety with space applications, propulsion and power, industrial burners, or pollution control. From these interests and needs experiments involving: (1) no flow with solid or liquid fuels; (2) homogeneous mixtures of fuel and air; (3) low flow with solid or liquid fuels; (4) low flow with gaseous fuel; (5) high pressure combustion; and (6) special burner systems are described and space station resource requirements for each type of experiment provided. Critical technologies involving the creation of a laboratory environment and methods for combining experimental needs into one experiment in order to obtain effective use of space station are discussed. Diagnostic techniques for monitoring combustion process parameters are identified.

  3. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  4. KSC-2010-4397

    NASA Image and Video Library

    2010-08-18

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, shipping containers packed with tools and flight support equipment for orbital replacement units are ready for their trip to the Japanese Aerospace Exploration Agency's Tanegashima Space Center. There, the six units, including the flex hose rotary coupler, will be processed for launch to the International Space Station aboard HTV-2, scheduled for Jan. 20, 2011. HTV-2 is an uncrewed cargo transporter that will be launched by the H-IIB launch vehicle. It is designed to deliver up to 6 tons of supplies, including food, clothes and experiment devices to the space station. Photo credit: NASA/Jack Pfaller

  5. Analytical study of space processing of immiscible materials for superconductors and electrical contacts

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Collings, E. W.; Abbott, W. H.; Maringer, R. E.

    1977-01-01

    The results of a study conducted to determine the role space processing or materials research in space plays in the superconductor and electrical contact industries are presented. Visits were made to manufacturers, users, and research organizations connected with these products to provide information about the potential benefits of the space environment and to exchange views on the utilization of space facilities for manufacture, process development, or research. In addition, space experiments were suggested which could result in improved terrestrial processes or products. Notable examples of these are, in the case of superconductors, the development of Nb-bronze alloys (Tsuei alloys) and, in the electrical contact field, the production of Ag-Ni or Ag-metal oxide alloys with controlled microstructure for research and development activities as well as for product development. A preliminary experimental effort to produce and evaluate rapidly cooled Pb-Zn and Cu-Nb-Sn alloys in order to understand the relationship between microstructure and superconducting properties and to simulate the fine structure potentially achievable by space processing was also described.

  6. Crystal growth in a low gravity environment

    NASA Technical Reports Server (NTRS)

    Carruthers, J. R.

    1977-01-01

    Crystal growth in microgravity possesses several distinct technological advantages over earth-bound processes; containerless handling and reduction of density gradient driven as well as sedimentation flows. Experiments performed in space to date have been basically reproductions of processes currently used on earth and the results have clarified our understanding of crystal growth dynamics. In addition, both unresolved problems and areas requiring further study on earth have been identified. Future work in space processing of materials must address these areas of study as soon as possible if the full potential of a space environment to develop new techniques and materials is to be realized.

  7. KSC-97PC1458

    NASA Image and Video Library

    1997-09-15

    United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). The large white vertical cylinder in the center of the photo is the Advanced Automated Directional Solidification Furnace (AADSF) and the horizontal tube to the left of it is MEPHISTO, a French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. Seen at right behind the AADSF in the circular white cover is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment. Under the multi-layer insulation with the American flag and mission logo is the Space Acceleration Measurement System, or SAMS, which measures the microgravity conditions in which the experiments are conducted. All of these experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC

  8. KSC-97PC1461

    NASA Image and Video Library

    1997-09-15

    United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). The large white vertical cylinder in the middle of the photo is the Advanced Automated Directional Solidification Furnace (AADSF) and the horizontal tube to its left is MEPHISTO, the French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. Seen to the right of the AADSF is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment. Under the multi-layer insulation with the American flag and mission logo is the Space Acceleration Measurement System, or SAMS, which measures the microgravity conditions in which the experiments are conducted. All of these experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC

  9. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Chang, C. E.; Shlichta, P. J.; Chen, P. S.; Kim, C. K.

    1974-01-01

    Two crystal growth processes considered for spacelab experiments were studied to anticipate and understand phenomena not ordinarily encountered on earth. Computer calculations were performed on transport processes in floating zone melting and on growth of a crystal from solution in a spacecraft environment. Experiments intended to simulate solution growth at micro accelerations were performed.

  10. Introducing new technologies into Space Station subsystems

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Mollakarimi, Cindy L.

    1989-01-01

    A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

  11. Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS), part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The techniques, processes, and equipment required for automatic fabrication and assembly of structural elements in using Shuttle as a launch vehicle, and construction were defined. Additional construction systems operational techniques, processes, and equipment which can be developed and demonstrated in the same program to provide further risk reduction benefits to future large space systems were identified and examined.

  12. Persons' various experiences of learning processes in patient education for osteoarthritis, a qualitative phenomenographic approach.

    PubMed

    Larsson, Ingalill; Sundén, Anne; Ekvall Hansson, Eva

    2018-03-30

    Patient education (PE) is a core treatment of osteoarthritis (OA) with the aim to increase persons' knowledge, self-efficacy, and empowerment. To describe person's various experiences of learning processes in PE for OA. Phenomenography. Semi-structured interviews were performed with the same persons, pre- (11) and post- (9) education. Various experiences on learning processes were found and were described in an outcome space. Achieving knowledge describes self-regulated learning and strongly relates to Control, which describes a high order cognitive learning skill, and minor to Confirm, which describes a cognitive learning skill based on recognition and application. Receiving knowledge describes the expectancy of learning regulated from the educator and strongly relates to Comply, which describes a low-order cognitive learning skill, and minor to Confirm. Different experiences of motivation and learning impact on persons' learning processes which, in turn, influence the persons' capability to accomplish self-efficacy and empowerment. The outcome space may serve as a basis for discussions between healthcare educators involved in PE to better understand what learning implies and to develop PE further.

  13. Design Space Approach in Optimization of Fluid Bed Granulation and Tablets Compression Process

    PubMed Central

    Djuriš, Jelena; Medarević, Djordje; Krstić, Marko; Vasiljević, Ivana; Mašić, Ivana; Ibrić, Svetlana

    2012-01-01

    The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content) using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force) and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs) were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors. PMID:22919295

  14. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - From left, T-cell science team members Emily Martinez, Miya Yoshida and Tara Candelario, of the Hughes-Fulford Laboratory, San Francisco, Calif., discuss preflight and post-flight experiment operations with researcher and principal investigator Dr. Millie Hughes-Fulford in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  15. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - T-cell science team member Tara Candelario of the Hughes-Fulford Laboratory, San Francisco, Calif., at the microscope, discusses preflight and post-flight experiment operations with researcher and principal investigator Dr. Millie Hughes-Fulford in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida as T-cell science team members Emily Martinez, left, and Miya Yoshida look on. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  16. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford of the Hughes-Fulford Laboratory, San Francisco, Calif., at right, plans preflight and post-flight experiment operations with T-cell science team members Emily Martinez, left, and Tara Candelario in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  17. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and former NASA payload specialist Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., discusses her laboratory's T-cell experiment and the impact the research may have on aging adults and their immune systems with an interviewer in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  18. Veggie Harvest

    NASA Image and Video Library

    2017-10-27

    Nicole Dufour, flight integration lead, communicates directly with astronaut Joe Acaba during installation of NASA’s Advanced Plant Habitat in the Japanese Kibo module on the International Space Station. Dufour is in the Experiment Monitoring Room in the Space Station Processing Facility at Kennedy Space Center in Florida. The procedures to install the system took about six hours.

  19. Cognitive Operations on Space and Their Impact on the Precision of Location Memory

    ERIC Educational Resources Information Center

    Lansdale, Mark; Humphries, Joyce; Flynn, Victoria

    2013-01-01

    Learning about object locations in space usually involves the summation of information from different experiences of that space and requires various cognitive operations to make this possible. These processes are poorly understood and, in the extreme, may not occur--leading to mutual exclusivity of memories (Baguley, Lansdale, Lines, & Parkin,…

  20. Seed Planting in Veggie Pillows

    NASA Image and Video Library

    2017-08-08

    Outredgeous red leaf lettuce, Mizuna mustard and Waldmann's green lettuce are growing in the Veggie control system in the ISS environment simulator chamber in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Growth in the chamber mimics the growth of plant experiments in the Veggie plant growth system on the International Space Station.

  1. KENNEDY SPACE CENTER, FLA. - Japanese and American students gather at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The Japanese girls are from Urawa Daiichi Girls High School, Urawa, Japan. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The American students are from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Japanese and American students gather at the STS-107 memorial stone at the Spacehab facility, Cape Canaveral, Fla. The Japanese girls are from Urawa Daiichi Girls High School, Urawa, Japan. The group was awarded the trip to Florida when their experiments were chosen to fly on mission STS-107. The American students are from Melbourne and Jacksonville, Fla. The National Space Development Agency of Japan (NASDA) and the KSC International Space Station and Payloads Processing Directorate worked with the NASA KSC Education Programs and University Research Division to coordinate the students’ visit.

  2. KSC-06pd0971

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane settles the Columbus module onto a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  3. KSC-06pd0970

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Columbus module toward a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  4. KSC-07pd0893

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  5. KSC-07pd0894

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module. Photo credit: NASA/George Shelton

  6. KENNEDY SPACE CENTER, FLA. - Frank T. Brogan, president of the Florida Atlantic University, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Frank T. Brogan, president of the Florida Atlantic University, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  7. KSC-03PD-1953

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (left) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  8. KSC-03PD-1952

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Executive Director of NASDA Koji Yamamoto (right) looks at the newly arrived Japanese Experiment Module (JEM)/pressurized module. Mr. Yamamoto is at KSC for a welcome ceremony involving the arrival of JEM.

  9. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  10. Pore Formation and Mobility Furnace within the MSG

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Richard Grugel, a materials scientist at NASA's Marshall Space Flight in Huntsville, Ala., examines the furnace used to conduct his Pore Formation and Mobility Investigation -- one of the first two materials science experiments to be conducted on the International Space Station. This experiment studies materials processes similar to those used to make components used in jet engines. Grugel's furnace was installed in the Microgravity Science Glovebox through the circular port on the side. In space, crewmembers are able to change out samples using the gloves on the front of the facility's work area.

  11. Material Science

    NASA Image and Video Library

    2003-01-22

    Dr. Richard Grugel, a materials scientist at NASA's Marshall Space Flight in Huntsville, Ala., examines the furnace used to conduct his Pore Formation and Mobility Investigation -- one of the first two materials science experiments to be conducted on the International Space Station. This experiment studies materials processes similar to those used to make components used in jet engines. Grugel's furnace was installed in the Microgravity Science Glovebox through the circular port on the side. In space, crewmembers are able to change out samples using the gloves on the front of the facility's work area.

  12. KSC-2009-1069

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the MAXI (Monitor of All-sky X-ray Image) is moved toward the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES, where it will be installed. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann

  13. KSC-2009-1066

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the MAXI (Monitor of All-sky X-ray Image) is waiting to be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann

  14. KSC-2009-1067

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the MAXI (Monitor of All-sky X-ray Image) before it is installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann

  15. KSC-2009-1065

    NASA Image and Video Library

    2009-01-08

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the MAXI (Monitor of All-sky X-ray Image) is waiting to be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann

  16. KSC-2009-1090

    NASA Image and Video Library

    2009-01-09

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lowers the ICS Exposed Facility, or ICS-EF, onto the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES, for installation. The ICS-EF is composed of several components, including an antenna, pointing mechanism, frequency converters, high-power amplifier and various sensors including the Earth sensor, Sun sensor and inertial reference unit. The ICS-EF is part of space shuttle Endeavour's payload on the STS-127 mission, targeted for launch on May 15. Photo credit: NASA/Jim Grossmann

  17. KSC-2009-1085

    NASA Image and Video Library

    2009-01-09

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers prepare the ICS Exposed Facility, ICS-EF, to be lifted and installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ICS-EF is composed of several components, including an antenna, pointing mechanism, frequency converters, high-power amplifier and various sensors including the Earth sensor, Sun sensor and inertial reference unit. The ICS-EF is part of space shuttle Endeavour's payload on the STS-127 mission, targeted for launch on May 15. Photo credit: NASA/Jim Grossmann

  18. KSC-97PC1379

    NASA Image and Video Library

    1997-09-08

    United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Seen in the foreground at right is the Isothermal Dendritic Growth Experiment (IDGE), which will be used to study the dendritic solidification of molten materials in the microgravity environment. The metallic breadbox-like structure behind the IDGE is the Confined Helium Experiment (CHeX) that will study one of the basic influences on the behavior and properties of materials by using liquid helium confined between solid surfaces and microgravity. The large white vertical cylinder at left is the Advanced Automated Directional Solidification Furnace (AADSF) and the horizontal tube behind it is MEPHISTO, the French acronym for a cooperative American-French investigation of the fundamentals of crystal growth. Just below the left end of MEPHISTO is the Space Acceleration Measurement System, or SAMS, which measures the microgravity conditions in which the experiments are conducted. All of these experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC

  19. Spectral decomposition of asteroid Itokawa based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho

    2018-01-01

    The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.

  20. Data Analysis of a Space Experiment: Common Software Tackles Uncommon Task

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    1998-01-01

    Presented here are the software adaptations developed by laboratory scientists to process the space experiment data products from three experiments on two International Microgravity Laboratory Missions (IML-1 and IML-2). The challenge was to accommodate interacting with many types of hardware and software developed by both European Space Agency (ESA) and NASA aerospace contractors, where data formats were neither commercial nor familiar to scientists. Some of the data had been corrupted by bit shifting of byte boundaries. Least-significant/most-significant byte swapping also occurred as might be expected for the various hardware platforms involved. The data consisted of 20 GBytes per experiment of both numerical and image data. A significant percentage of the bytes were consumed in NASA formatting with extra layers of packetizing structure. It was provided in various pieces to the scientists on magnetic tapes, Syquest cartridges, DAT tapes, CD-ROMS, analog video tapes, and by network FIP. In this paper I will provide some science background and present the software processing used to make the data useful in the months after the missions.

Top