Science.gov

Sample records for space radiation imaging

  1. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  2. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  3. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  4. NASA Radiation Track Image GUI for Assessing Space Radiation Biological Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Cucinotta, Francis A.

    2006-01-01

    The high-charge high-energy (HZE) ion components of the galactic cosmic rays when compared to terrestrial forms of radiations present unique challenges to biological systems. In this paper we present a deoxyribonucleic acid (DNA) breakage model to visualize and analyze the impact of chromatin domains and DNA loops on clustering of DNA damage from X rays, protons, and HZE ions. Our model of DNA breakage is based on a stochastic process of DNA double-strand break (DSB) formulation that includes the amorphous model of the radiation track and a polymer model of DNA packed in the cell nucleus. Our model is a Monte-Carlo simulation based on a randomly located DSB cluster formulation that accomodates both high- and low-linear energy transfer radiations. We demonstrate that HZE ions have a strong impact on DSB clustering, both along the chromosome length and in the nucleus volume. The effects of chromosomal domains and DNA loops on the DSB fragment-size distribution and the spatial distribution of DSB in the nucleus were studied. We compare our model predictions with the spatial distribution of DSB obtained from experiments. The implications of our model predictions for radiation protection are discussed.

  5. Space Radiation Program Element

    NASA Technical Reports Server (NTRS)

    Krenek, Sam

    2008-01-01

    This poster presentation shows the various elements of the Space Radiation Program. It reviews the program requirements: develop and validate standards, quantify space radiation human health risks, mitigate risks through countermeasures and technologies, and treat and monitor unmitigated risks.

  6. Radiation effects in space

    SciTech Connect

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs.

  7. Radiation effects in space

    SciTech Connect

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented. (ACR)

  8. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Li, Hongsheng; Wan, Honglin; Chen, Jinhu; Gong, Guanzhong; Wang, Hongjun; Wang, Liming; Yin, Yong

    2012-08-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5-8% for mono-modality and 10-14% for multi-modality registration under the same condition. Furthermore, clinical application by adaptive

  9. Radiation protection in space

    SciTech Connect

    Blakely, E.A.; Fry, R.J.M.

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  10. Electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram K.; Wilson, John W.; Youngquist, Robert C.

    2008-09-01

    For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.

  11. The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Bourdarie, Sebastien; Xapsos, Michael A.

    2008-01-01

    The effects of the space radiation environment on spacecraft systems and instruments are significant design considerations for space missions. Astronaut exposure is a serious concern for manned missions. In order to meet these challenges and have reliable, cost-effective designs, the radiation environment must be understood and accurately modeled. The nature of the environment varies greatly between low earth orbits, higher earth orbits and interplanetary space. There are both short-term and long-term variations with the phase of the solar cycle. In this paper we concentrate mainly on charged particle radiations. Descriptions of the radiation belts and particles of solar and cosmic origin are reviewed. An overview of the traditional models is presented accompanied by their application areas and limitations. This is followed by discussion of some recent model developments.

  12. Fabric space radiators

    SciTech Connect

    Antoniak, Z.I.; Krotiuk, W.J.; Webb, B.J.; Prater, J.T.; Bates, J.M.

    1988-01-01

    Future Air Force space missions will require thermal radiators that both survive in the hostile space environment and stow away for minimal bulk during launch. Advances in all aspects of radiator design, construction, and analysis will be necessary to enable such future missions. Currently, the best means for obtaining high strength along with flexibility is through structures known as fabrics. The development of new materials and bonding techniques has extended the application range of fabrics into areas traditionally dominated by monolithic and/or metallic structures. Given that even current spacecraft heat rejection considerations tend to dominate spacecraft design and mass, the larger and more complex designs of the future face daunting challenges in thermal control. Ceramic fabrics bonded to ultra-thin metal liners (foils) have the potential of achieving radiator performance levels heretofore unattainable, and of readily matching the advances made in other branches of spacecraft design. The research effort documented here indicates that both pumped loops and heat pipes constructed in ceramic fabrics stand to benefit in multiple ways. Flexibility and low mass are the main advantages exhibited by fabric radiators over conventional metal ones. We feel that fabric radiators have intrinsic merits not possessed by any other radiator design and need to be researched further. 26 refs., 16 figs., 17 tabs.

  13. Space radiation studies

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1986-01-01

    Instrument design and data analysis expertise was provided in support of several space radiation monitoring programs. The Verification of Flight Instrumentation (VFI) program at NASA included both the Active Radiation Detector (ARD) and the Nuclear Radiation Monitor (NRM). Design, partial fabrication, calibration and partial data analysis capability to the ARD program was provided, as well as detector head design and fabrication, software development and partial data analysis capability to the NRM program. The ARD flew on Spacelab-1 in 1983, performed flawlessly and was returned to MSFC after flight with unchanged calibration factors. The NRM, flown on Spacelab-2 in 1985, also performed without fault, not only recording the ambient gamma ray background on the Spacelab, but also recording radiation events of astrophysical significance.

  14. Space Radiation Cancer Risks

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2007-01-01

    Space radiation presents major challenges to astronauts on the International Space Station and for future missions to the Earth s moon or Mars. Methods used to project risks on Earth need to be modified because of the large uncertainties in projecting cancer risks from space radiation, and thus impact safety factors. We describe NASA s unique approach to radiation safety that applies uncertainty based criteria within the occupational health program for astronauts: The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in the radiation cancer projection model. NASA s acceptable level of risk for ISS and their new lunar program have been set at the point-estimate of a 3-percent risk of exposure induced death (REID). Tissue-averaged organ dose-equivalents are combined with age at exposure and gender-dependent risk coefficients to project the cumulative occupational radiation risks incurred by astronauts. The 95% CL criteria in practice is a stronger criterion than ALARA, but not an absolute cut-off as is applied to a point projection of a 3% REID. We describe the most recent astronaut dose limits, and present a historical review of astronaut organ doses estimates from the Mercury through the current ISS program, and future projections for lunar and Mars missions. NASA s 95% CL criteria is linked to a vibrant ground based radiobiology program investigating the radiobiology of high-energy protons and heavy ions. The near-term goal of research is new knowledge leading to the reduction of uncertainties in projection models. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. The current model for projecting space radiation

  15. Protection from Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Clowdsley, M. S.; Cucinotta, F. A.; Badhwar, G. D.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.

    2000-01-01

    The exposures anticipated for our astronauts in the anticipated Human Exploration and Development of Space (HEDS) will be significantly higher (both annual and carrier) than any other occupational group. In addition, the exposures in deep space result largely from the Galactic Cosmic Rays (GCR) for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate [1,2]. The purpose of this presentation is to evaluate our current understanding of radiation protection with laboratory and flight experimental data and to discuss recent improvements in interaction models and transport methods.

  16. Protection from space radiation

    SciTech Connect

    Tripathi, R.K.; Wilson, J.W.; Shinn, J.L.

    2000-07-01

    The exposures anticipated for astronauts in the anticipated human exploration and development of space will be significantly higher (both annual and carrier) than for any other occupational group. In addition, the exposures in deep space result largely from galactic cosmic rays for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer defined protection quantities (quality factors) may not be appropriate. The authors evaluate their current understanding of radiation protection with laboratory and flight experimental data and discuss recent improvements in interaction models and transport methods.

  17. Accepting space radiation risks.

    PubMed

    Schimmerling, Walter

    2010-08-01

    The human exploration of space inevitably involves exposure to radiation. Associated with this exposure are multiple risks, i.e., probabilities that certain aspects of an astronaut's health or performance will be degraded. The management of these risks requires that such probabilities be accurately predicted, that the actual exposures be verified, and that comprehensive records be maintained. Implicit in these actions is the fact that, at some point, a decision has been made to accept a certain level of risk. This paper examines ethical and practical considerations involved in arriving at a determination that risks are acceptable, roles that the parties involved may play, and obligations arising out of reliance on the informed consent paradigm seen as the basis for ethical radiation risk acceptance in space.

  18. The space radiation environment

    SciTech Connect

    Robbins, D.E.

    1997-04-30

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u{sup -1} to over a GeV u{sup -1}. These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d{sup -1} depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d{sup -1}. In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d{sup -1}. Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h{sup -1}. For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y{sup -1} at solar maximum and 580 mSv y{sup -1} at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv.

  19. Space Radiation Research at NASA

    NASA Technical Reports Server (NTRS)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  20. Space radiation studies

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two Active Radiation Dosimeters (ARD's) flown on Spacelab 1, performed without fault and were returned to Space Science Laboratory, MSFC for recalibration. During the flight, performance was monitored at the Huntsville Operations Center (HOSC). Despite some problems with the Shuttle data system handling the verification flight instrumentation (VFI), it was established that the ARD's were operating normally. Postflight calibrations of both units determined that sensitivities were essentially unchanged from preflight values. Flight tapes were received for approx. 60 percent of the flight and it appears that this is the total available. The data was analyzed in collaboration with Space Science Laboratory, MSFC. Also, the Nuclear Radiation Monitor (NRM) was assembled and tested at MSFC. Support was rendered in the areas of materials control and parts were supplied for the supplementary heaters, dome gas-venting device and photomultiplier tube housing. Performance characteristics of some flight-space photomultipliers were measured. The NRM was flown on a balloon-borne test flight and subsequently performed without fault on Spacelab-2. This data was analyzed and published.

  1. Operational Aspects of Space Radiation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session FA4, the discussion focuses on the following topics: Solar Particle Events and the International Space Station; Radiation Environment on Mir and ISS Orbits During the Solar Cycle; New approach to Radiation Risk Assessment; An Industrial Method to Predict Major Solar Flares for a Better Protection of Human Beings in Space; Description of the Space Radiation Control System for the Russian Segment of ISS; Orbit Selection and Its Impact on Radiation Warning Architecture for a Human Mission to Mars; and Space Nuclear Power - Technology, Policy and Risk Considerations in Human Missions to Mars.

  2. Time encoded radiation imaging

    DOEpatents

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  3. Stereo images from space

    NASA Astrophysics Data System (ADS)

    Sabbatini, Massimo; Collon, Maximilien J.; Visentin, Gianfranco

    2008-02-01

    The Erasmus Recording Binocular (ERB1) was the first fully digital stereo camera used on the International Space Station. One year after its first utilisation, the results and feedback collected with various audiences have convinced us to continue exploiting the outreach potential of such media, with its unique capability to bring space down to earth, to share the feeling of weightlessness and confinement with the viewers on earth. The production of stereo is progressing quickly but it still poses problems for the distribution of the media. The Erasmus Centre of the European Space Agency has experienced how difficult it is to master the full production and distribution chain of a stereo system. Efforts are also on the way to standardize the satellite broadcasting part of the distribution. A new stereo camera is being built, ERB2, to be launched to the International Space Station (ISS) in September 2008: it shall have 720p resolution, it shall be able to transmit its images to the ground in real-time allowing the production of live programs and it could possibly be used also outside the ISS, in support of Extra Vehicular Activities of the astronauts. These new features are quite challenging to achieve in the reduced power and mass budget available to space projects and we hope to inspire more designers to come up with ingenious ideas to built cameras capable to operate in the hash Low Earth Orbit environment: radiations, temperature, power consumption and thermal design are the challenges to be met. The intent of this paper is to share with the readers the experience collected so far in all aspects of the 3D video production chain and to increase awareness on the unique content that we are collecting: nice stereo images from space can be used by all actors in the stereo arena to gain consensus on this powerful media. With respect to last year we shall present the progress made in the following areas: a) the satellite broadcasting live of stereo content to D

  4. Biology relevant to space radiation

    SciTech Connect

    Fry, R.J.M.

    1996-08-01

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors.

  5. Radiation imaging system

    DOEpatents

    Immel, David M.; Bobbit, III, John T.; Plummer, Jean R.; Folsom, Matthew D.; Serrato, Michael G.

    2016-03-22

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  6. Radiation imaging system

    DOEpatents

    Bobbitt, III, John T.; Immel, David M.; Folsom, Matthew D.; Plummer, Jean R.; Serrato, Michael G.

    2016-06-28

    A radiation imaging system includes a casing and a camera disposed inside the casing. A first field of view through the casing exposes the camera to light from outside of the casing. An image plate is disposed inside the casing, and a second field of view through the casing to the image plate exposes the image plate to high-energy particles produced by a radioisotope outside of the casing. An optical reflector that is substantially transparent to the high-energy particles produced by the radioisotope is disposed with respect to the camera and the image plate to reflect light to the camera and to allow the high-energy particles produced by the radioisotope to pass through the optical reflector to the image plate.

  7. Radiation and Human Space Exploration

    NASA Video Gallery

    Just outside the protective layer of Earth’s atmosphere and magnetosphere, is a universe full of radiation. What happens to our bodies when we leave the surface of Earth to travel in space or visit...

  8. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    DOE PAGES

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; ...

    2015-04-29

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.

  9. Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging

    PubMed Central

    Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; Hofmann, F.; Clark, J. N.; Harder, R. J.; Vine, D. J.; Abbey, B.

    2015-01-01

    For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources. PMID:26798804

  10. Space radiation health program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.

  11. Modeling the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.

    2006-01-01

    There has been a renaissance of interest in space radiation environment modeling. This has been fueled by the growing need to replace long time standard AP-9 and AE-8 trapped particle models, the interplanetary exploration initiative, the modern satellite instrumentation that has led to unprecedented measurement accuracy, and the pervasive use of Commercial off the Shelf (COTS) microelectronics that require more accurate predictive capabilities. The objective of this viewgraph presentation was to provide basic understanding of the components of the space radiation environment and their variations, review traditional radiation effects application models, and present recent developments.

  12. Space station thermal control surfaces. [space radiators

    NASA Technical Reports Server (NTRS)

    Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.

    1979-01-01

    Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.

  13. Space Radiation and Bone Loss.

    PubMed

    Willey, Jeffrey S; Lloyd, Shane A J; Nelson, Gregory A; Bateman, Ted A

    2011-01-01

    Exposure to ionizing radiation may negatively impact skeletal integrity during extended spaceflight missions to the moon, Mars, or near-Earth asteroids. However, our understanding of the effects of radiation on bone is limited when compared to the effects of weightlessness. In addition to microgravity, astronauts will be exposed to space radiation from solar and cosmic sources. Historically, radiation exposure has been shown to damage both osteoblast precursors and local vasculature within the irradiated volume. The resulting suppression of bone formation and a general state of low bone-turnover is thought to be the primary contributor to bone loss and eventual fracture. Recent investigations using mouse models have identified a rapid, but transient, increase in osteoclast activity immediately after irradiation with both spaceflight and clinically-relevant radiation qualities and doses. Together with a chronic suppression of bone formation after radiation exposure, this acute skeletal damage may contribute to long-term deterioration of bone quality, potentially increasing fracture risk. Direct evidence for the damaging effects of radiation on human bone are primarily demonstrated by the increased incidence of fractures at sites that absorb high doses of radiation during cancer therapy: exposures are considerably higher than what could be expected during spaceflight. However, both the rapidity of bone damage and the chronic nature of the changes appear similar between exposure scenarios. This review will outline our current knowledge of space and clinical exploration exposure to ionizing radiation on skeletal health.

  14. Shielding from space radiations

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken; Badavi, Forooz F.

    1991-01-01

    Progress during the period of 1 Jun. - 1 Dec. 1991 is presented. An analytical solution to heavy ion transport equation in terms of Green's function formalism is developed. The mathematical development is recasted into efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code is also applied to accelerator boundary conditions to allow code validation in laboratory experiments.

  15. Shielding from Space Radiations

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken; Badavi, Francis F.

    1998-01-01

    This Final Progress Report for NCC-1-178 presents the details of the engineering development of an analytical/computational solution to the heavy ion transport equation in terms of a multi-layer Green's function formalism as applied to the Small Spacecraft Technology Initiative (SSTI) program. The mathematical developments are recasted into a series of efficient computer codes for space applications. The efficiency of applied algorithms is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The codes may also be applied to the accelerator boundary conditions to allow code validation in laboratory experiments. Correlations with experiments for the isotopic version of the code with 59 and 80 isotopes present for a two layers target material in water has been verified.

  16. Shielding from space radiations

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.

    1993-01-01

    This Progress Report covering the period of 1 June 1993 to 1 Dec. 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of a one-layer Green's function formalism. The mathematical developments are recasted into an efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 80 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented.

  17. Shielding from space radiations

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.

    1993-01-01

    This Progress Report covering the period of 1 June 1993 to 1 Dec. 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of a one-layer Green's function formalism. The mathematical developments are recasted into an efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 80 isotopes present for a single layer target material, for the case of an Iron beam projectile at 600 MeV/nucleon in water is presented.

  18. Shielding from space radiations

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken; Badavi, Forooz F.; Tripathi, Ram K.

    1993-01-01

    This Progress Report covering the period of December 1, 1992 to June 1, 1993 presents the development of an analytical solution to the heavy ion transport equation in terms of Green's function formalism. The mathematical development results are recasted into a highly efficient computer code for space applications. The efficiency of this algorithm is accomplished by a nonperturbative technique of extending the Green's function over the solution domain. The code may also be applied to accelerator boundary conditions to allow code validation in laboratory experiments. Results from the isotopic version of the code with 59 isotopes present for a single layer target material, for the case of an iron beam projectile at 600 MeV/nucleon in water is presented. A listing of the single layer isotopic version of the code is included.

  19. Radiation imaging apparatus

    DOEpatents

    Anger, H.O.; Martin, D.C.; Lampton, M.L.

    1983-07-26

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

  20. Radiation imaging apparatus

    DOEpatents

    Anger, Hal O.; Martin, Donn C.; Lampton, Michael L.

    1983-01-01

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

  1. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Fry, Dan; Lee, Kerry

    2010-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during a deep space exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between research and operations . The real, practical work to enable a permanent human presence away from Earth has already begun

  2. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    PubMed Central

    Hu, Lingzhi; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Traughber, Melanie; Muzic, Raymond F.

    2014-01-01

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2∗ = 1/T2∗, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2∗ of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2∗ of human skull was measured as 0.2–0.3 ms−1 depending on the specific region, which is more than ten times greater than the R2∗ of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone

  3. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    SciTech Connect

    Hu, Lingzhi E-mail: raymond.muzic@case.edu; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr. E-mail: raymond.muzic@case.edu

    2014-10-15

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2{sup ∗} = 1/T2{sup ∗}, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2{sup ∗} of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2{sup ∗} of human skull was measured as 0.2–0.3 ms{sup −1} depending on the specific region, which is more than ten times greater than the R2{sup ∗} of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in

  4. Space radiation protection: Destination Mars.

    PubMed

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure.

  5. Space radiation protection: Destination Mars

    NASA Astrophysics Data System (ADS)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure.

  6. Scattered Radiation Emission Imaging: Principles and Applications

    PubMed Central

    Nguyen, M. K.; Truong, T. T.; Morvidone, M.; Zaidi, H.

    2011-01-01

    Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically, it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential applications in various fields. PMID:21747823

  7. Mitigation of Space Radiation Effects

    NASA Astrophysics Data System (ADS)

    Atwell, William

    2012-02-01

    During low earth orbit and deep space missions, humans and spacecraft systems are exposed to high energy particles emanating from basically three sources: geomagnetically-trapped protons and electrons (Van Allen Belts), extremely high energy galactic cosmic radiation (GCR), and solar proton events (SPEs). The particles can have deleterious effects if not properly shielded. For humans, there can be a multitude of harmful effects depending on the degree of exposure. For spacecraft systems, especially electronics, the effects can range from single event upsets (SEUs) to catastrophic effects such as latchup and burnout. In addition, some materials, radio-sensitive experiments, and scientific payloads are subject to harmful effects. To date, other methods have been proposed such as electrostatic and electromagnetic shielding, but these approaches have not proven feasible due to cost, weight, and safety issues. The only method that has merit and has been effective is bulk or parasitic shielding. In this paper, we discuss in detail the sources of the space radiation environment, spacecraft, human, and onboard systems modeling methodologies, transport of these particles through shielding materials, and the calculation of the dose effects. In addition, a review of the space missions to date and a discussion of the space radiation mitigation challenges for lunar and deep space missions such as lunar outposts and human missions to Mars are presented.

  8. Survivable pulse power space radiator

    DOEpatents

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  9. Survivable pulse power space radiator

    DOEpatents

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  10. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Rutledge, R.; Semones, E. J.; Johnson, A. S.; Guetersloh, S.; Fry, D.; Stoffle, N.; Lee, K.

    2008-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight -- and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between "research" and "operations". The real, practical work to enable a permanent human presence away from Earth has already begun.

  11. Biology relevant to space radiation

    SciTech Connect

    Fry, R.J.M.

    1997-04-30

    There are only very limited data on the health effects to humans from the two major components of the radiations in space, namely protons and heavy ions. As a result, predictions of the accompanying effects must be based either on (1) data generated through studies of experimental systems exposed on earth at rates and fluences higher than those in space, or (2) extrapolations from studies of gamma and x rays. Better information is needed about the doses, dose rates, and the energy and LET spectra of the radiations at the organ level that are anticipated to be encountered during extended space missions. In particular, there is a need for better estimates of the relationship between radiation quality and biological effects. In the case of deterministic effects, it is the threshold that is important. The possibility of the occurrence of a large solar particle event (SPE) requires that such effects be considered during extended space missions. Analyses suggest, however, that it is feasible to provide sufficient shielding so as to reduce such effects to acceptable levels, particularly if the dose rates can be limited. If these analyses prove correct, the primary biological risks will be the stochastic effects (latent cancer induction). The contribution of one large SPE to the risk of stochastic effects while undesirable will not be large in comparison to the potential total dose on a mission of long duration.

  12. Medical imaging: the radiation issue.

    PubMed

    Einstein, Andrew J

    2009-06-01

    The collective doses of ionizing radiation to Western populations have risen dramatically in the past three decades. Preliminary data on changes in radiation dose to the US population indicate that this increase has been driven largely by medical imaging, to which cardiovascular imaging modalities-such as nuclear stress testing, invasive coronary angiography, and cardiovascular CT-contribute greatly. Given the putative association between low-dose radiation exposure and cancer risk, which most experts agree is supported by the available evidence, the 'radiation issue' in medical imaging has garnered increasing interest. This opinion piece focuses on changes in the use of and doses from medical imaging, the relationship between radiation dose and cancer risk and the controversy surrounding this subject, and clinical implications of radiation exposure from imaging tests.

  13. Space radiator simulation system analysis

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A transient heat transfer analysis was carried out on a space radiator heat rejection system exposed to an arbitrarily prescribed combination of aerodynamic heating, solar, albedo, and planetary radiation. A rigorous analysis was carried out for the radiation panel and tubes lying in one plane and an approximate analysis was used to extend the rigorous analysis to the case of a curved panel. The analysis permits the consideration of both gaseous and liquid coolant fluids, including liquid metals, under prescribed, time dependent inlet conditions. The analysis provided a method for predicting: (1) transient and steady-state, two dimensional temperature profiles, (2) local and total heat rejection rates, (3) coolant flow pressure in the flow channel, and (4) total system weight and protection layer thickness.

  14. Radiation Assurance for the Space Environment

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; LaBel, Kenneth A.; Poivey, Christian

    2004-01-01

    The space radiation environment can lead to extremely harsh operating conditions for spacecraft electronic systems. A hardness assurance methodology must be followed to assure that the space radiation environment does not compromise the functionality and performance of space-based systems during the mission lifetime. The methodology includes a definition of the radiation environment, assessment of the radiation sensitivity of parts, worst-case analysis of the impact of radiation effects, and part acceptance decisions which are likely to include mitigation measures.

  15. Cardiac imaging: does radiation matter?

    PubMed Central

    Einstein, Andrew J.; Knuuti, Juhani

    2012-01-01

    The use of ionizing radiation in cardiovascular imaging has generated considerable discussion. Radiation should not be considered in isolation, but rather in the context of a careful examination of the benefits, risks, and costs of cardiovascular imaging. Such consideration requires an understanding of some fundamental aspects of the biology, physics, epidemiology, and terminology germane to radiation, as well as principles of radiological protection. This paper offers a concise, contemporary perspective on these areas by addressing pertinent questions relating to radiation and its application to cardiac imaging. PMID:21828062

  16. Review of image-guided radiation therapy.

    PubMed

    Jaffray, David; Kupelian, Patrick; Djemil, Toufik; Macklis, Roger M

    2007-01-01

    Image-guided radiation therapy represents a new paradigm in the field of high-precision radiation medicine. A synthesis of recent technological advances in medical imaging and conformal radiation therapy, image-guided radiation therapy represents a further expansion in the recent push for maximizing targeting capabilities with high-intensity radiation dose deposition limited to the true target structures, while minimizing radiation dose deposited in collateral normal tissues. By improving this targeting discrimination, the therapeutic ratio may be enhanced significantly. The principle behind image-guided radiation therapy relies heavily on the acquisition of serial image datasets using a variety of medical imaging platforms, including computed tomography, ultrasound and magnetic resonance imaging. These anatomic and volumetric image datasets are now being augmented through the addition of functional imaging. The current interest in positron-emitted tomography represents a good example of this sort of functional information now being correlated with anatomic localization. As the sophistication of imaging datasets grows, the precise 3D and 4D positions of the target and normal structures become of great relevance, leading to a recent exploration of real- or near-real-time positional replanning of the radiation treatment localization coordinates. This 'adaptive' radiotherapy explicitly recognizes that both tumors and normal tissues change position in time and space during a multiweek course of treatment, and even within a single treatment fraction. As targets and normal tissues change, the attenuation of radiation beams passing through these structures will also change, thus adding an additional level of imprecision in targeting unless these changes are taken into account. All in all, image-guided radiation therapy can be seen as further progress in the development of minimally invasive highly targeted cytotoxic therapies with the goal of substituting remote

  17. The effects of space radiation on flight film

    SciTech Connect

    Holly, M.H.

    1995-09-01

    The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.

  18. The effects of space radiation on flight film

    NASA Technical Reports Server (NTRS)

    Holly, Mark H.

    1995-01-01

    The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.

  19. Heat pipe radiators for space

    NASA Technical Reports Server (NTRS)

    Sellers, J. P.

    1976-01-01

    Analysis of the data heat pipe radiator systems tested in both vacuum and ambient environments was continued. The systems included (1) a feasibility VCHP header heat-pipe panel, (2) the same panel reworked to eliminate the VCHP feature and referred to as the feasibility fluid header panel, and (3) an optimized flight-weight fluid header panel termed the 'prototype.' A description of freeze-thaw thermal vacuum tests conducted on the feasibility VCHP was included. In addition, the results of ambient tests made on the feasibility fluid header are presented, including a comparison with analytical results. A thermal model of a fluid header heat pipe radiator was constructed and a computer program written. The program was used to make a comparison of the VCHP and fluid-header concepts for both single and multiple panel applications. The computer program was also employed for a parametric study, including optimum feeder heat pipe spacing, of the prototype fluid header.

  20. Space Radiation Transport Methods Development

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Tripathi, R.; Qualls, G.; Cucinotta, F.; Prael, R.; Norbury, J.

    Early space radiation shield code development relied on Monte Carlo methods for proton, neutron and pion transport and made important contributions to the space program. More recently Monte Carlo code LAHET has been upgraded to include high-energy multiple-charged light ions for GCR simulations and continues to be expanded in capability. To compensate for low computational efficiency, Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representations of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process and resolving shielding issues usually had a negative impact on the design. We evaluate the implications of these common one-dimensional assumptions on the evaluation of the Shuttle internal radiation field. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be

  1. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  2. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  3. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  4. Space Radiation, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.

    Described is the protection from space radiation afforded the earth by the atmosphere, ionosphere, and magnetic field. The importance of adequate instruments is emphasized by noting how refinements of radiation detection instruments was necessary for increased understanding of space radiation. The role of controversy and accident in the research…

  5. Radiation from Cardiac Imaging Tests

    MedlinePlus

    ... thought you would like to see the Circulation web site. Your Personal Message Send Message Share on Social Media Radiation From Cardiac Imaging Tests Andrew J. Einstein Circulation. 2013; 127: e495-e497 , ...

  6. Space radiation and cardiovascular disease risk.

    PubMed

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-12-26

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.

  7. Space radiation and cardiovascular disease risk

    PubMed Central

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-01-01

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293

  8. Overview of NASA's space radiation research program

    NASA Technical Reports Server (NTRS)

    Schimmerling, Walter

    2003-01-01

    NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.

  9. Overview of NASA's space radiation research program.

    PubMed

    Schimmerling, Walter

    2003-06-01

    NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.

  10. The NASA Space Radiation Health Program

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Sulzman, F. M.

    1994-01-01

    The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.

  11. Radiation dosimetry and biophysical models of space radiation effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Shavers, Mark R.; George, Kerry

    2003-01-01

    Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems.

  12. Hubble Space Telescope Image

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronomers using the Hubble Space Telescope (HST) have identified what may be the most luminous star known; a celestial mammoth that releases up to 10-million times the power of the Sun and is big enough to fill the diameter of Earth's orbit. The star unleashes as much energy in six seconds as our Sun does in one year. The image, taken by a UCLA-led team with the recently installed Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard the HST, also reveals a bright nebula, created by extremely massive stellar eruptions. The UCLA astronomers estimate that the star, called the Pistol Star, (for the pistol shaped nebula surrounding it), is approximately 25,000 light-years from Earth, near the center of our Milky Way galaxy. The Pistol Star is not visible to the eye, but is located in the direction of the constellation Sagittarius, hidden behind the great dust clouds along the Milky Way

  13. Imaging radiation detector with gain

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1984-01-01

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  14. Imaging radiation detector with gain

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1982-07-21

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  15. Radiation energy conversion in space

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1979-01-01

    Topics discussed at the third NASA conference on radiant energy conversion are reviewed. The unconcentrated-photovoltaic-generation version of a solar power satellite is described, noting that it will consist of a 21.3 x 5.3-sq-km silicon-solar-cell array expected to provide 17 Gw of electrical power, with 1 km in diam transmitters oriented to beam 2.45 GHz microwave power to two receiving/rectifying 'rectennas' on earth. The Solares space-energy-system concept, designed for providing a large fraction of the world's energy needs at costs comparable to those of future coal/nuclear alternative, is considered, as are subsystems for improving the economics of the solar power satellite. A concept proposing the use of relativistic-electron-storage rings for electron-beam energy transmission and storage, and a report on the production of a high temperature plasma with concentrated solar radiation are taken into account. Laser-conversion systems, including the direct-solar-pumped space laser, and the telec-powered spacecraft, are discussed.

  16. NASA Space Radiation Program Integrative Risk Model Toolkit

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  17. [Solar cosmic radiation and the radiation hazard of space flight].

    PubMed

    Miroshnichenko, L I

    1983-01-01

    Present-day data on the spectrum of solar radiation in the source and near the Earth are discussed as applied to the radiation safety of crewmembers and electronics onboard manned and unmanned spacecraft. It is shown that the slope of the solar radiation spectrum changes (flattens) in the low energy range. Quantitative information about absolute solar radiation fluxes near the Earth is summarized in relation to the most significant flares of 1956--1978. The time-related evolution of the solar radiation spectrum in the interplanetary space is described in quantitative terms (as illustrated by the solar flare of 28 September 1961). It is indicated that the nonmonotonic energy dependence of the transport path of solar radiation in the interplanetary space should be taken into consideration. It is demonstrated that the diffusion model of propagation can be verified using solar radiation measurements in space flights.

  18. Space Radiation and the Brain

    NASA Astrophysics Data System (ADS)

    Hampson, R. E.

    Solar and cosmic radiation pose a number of physiological challenges to human spaceflight outside the protective region of Earth's magnetosphere. Aside from well-described effects of radiation on the blood-forming tissues of the hematopoietic system, there is increasing evidence of direct effects of radiation on the brain as evidenced by studies showing longitudinal decline in memory and cognitive function following radiation specifically directed at brain tissue. These indications strengthen the need to more fully research effects of radiation - particular those components associated with solar wind and galactic cosmic radiation - on the nervous system of mammals from rodents to humans.

  19. A survey of space radiation effects

    NASA Technical Reports Server (NTRS)

    Hill, C. W.

    1980-01-01

    The effects of space radiation and its significance for space missions, as they increase in scope, duration, and complexity are discussed. Type of radiation hazard may depend on location or on special equipment used. It is emphasized that it is necessary to search for potential radiation problems in the design stage of a mission. Problem areas such as radiation damage to solar cells and the revolutionary advances are discussed. Radiation effect to electronics components other than solar cells, and several specialized areas such as radioactivity and luminescence are also examined.

  20. Space Radiation Transport Methods Development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.

  1. Space shuttle L-tube radiator testing

    NASA Technical Reports Server (NTRS)

    Phillips, M. A.

    1976-01-01

    A series of tests were conducted to support the development of the Orbiter Heat Rejection System. The details of the baseline radiator were defined by designing, fabricating, and testing representative hardware. The tests were performed in the Space Environmental Simulation Laboratory Chamber A. An IR source was used to simulate total solar and infrared environmental loads on the flowing shuttle radiators panel. The thermal and mechanical performance of L tube space radiators and their thermal coating were established.

  2. Overview of the NASA space radiation laboratory

    SciTech Connect

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; Lowenstein, Derek; Rusek, Adam

    2016-11-11

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  3. Overview of the NASA space radiation laboratory.

    PubMed

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; Lowenstein, Derek; Rusek, Adam

    2016-11-01

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. This work contains a general overview of NSRL structure, capabilities and operation.

  4. Overview of the NASA space radiation laboratory

    NASA Astrophysics Data System (ADS)

    La Tessa, Chiara; Sivertz, Michael; Chiang, I.-Hung; Lowenstein, Derek; Rusek, Adam

    2016-11-01

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. This work contains a general overview of NSRL structure, capabilities and operation.

  5. Modeling Space Radiation with Radiomimetic Agent Bleomycin

    NASA Technical Reports Server (NTRS)

    Lu, Tao

    2017-01-01

    Space radiation consists of proton and helium from solar particle events (SPE) and high energy heavy ions from galactic cosmic ray (GCR). This mixture of radiation with particles at different energy levels has different effects on biological systems. Currently, majority studies of radiation effects on human were based on single-source radiation due to the limitation of available method to model effects of space radiation on living organisms. While NASA Space Radiation Laboratory is working on advanced switches to make it possible to have a mixed field radiation with particles of different energies, the radiation source will be limited. Development of an easily available experimental model for studying effects of mixed field radiation could greatly speed up our progress in our understanding the molecular mechanisms of damage and responses from exposure to space radiation, and facilitate the discovery of protection and countermeasures against space radiation, which is critical for the mission to Mars. Bleomycin, a radiomimetic agent, has been widely used to study radiation induced DNA damage and cellular responses. Previously, bleomycin was often compared to low low Linear Energy Transfer (LET) gamma radiation without defined characteristics. Our recent work demonstrated that bleomycin could induce complex clustered DNA damage in human fibroblasts that is similar to DNA damage induced by high LET radiation. These type of DNA damage is difficult to repair and can be visualized by gamma-H2Ax staining weeks after the initial insult. The survival ratio between early and late plating of human fibroblasts after bleomycin treatment is between low LET and high LET radiation. Our results suggest that bleomycin induces DNA damage and other cellular stresses resembling those resulted from mixed field radiation with both low and high LET particles. We hypothesize that bleomycin could be used to mimic space radiation in biological systems. Potential advantages and limitations of

  6. Aiming Optimum Space Radiation Protection using Regolith.

    NASA Astrophysics Data System (ADS)

    Masuda, Daisuke; Nagamatsu, Aiko; Indo, Hiroko; Iwashita, Yoichiro; Suzuki, Hiromi; Shimazu, Toru; Yano, Sachiko; Tanigaki, Fumiaki; Ishioka, Noriaki; Mukai, Chiaki; Majima, Hideyuki J.

    Radiation protection of space radiation is very important factor in manned space activity on the moon. At the construction of lunar base, low cost radiation shielding would be achieved using regolith that exists on the surface of the moon. We studied radiation shielding ability of regolith as answer the question, how much of depth would be necessary to achieve minimum radiation protection. We estimated the shielding ability of regolith against each atomic number of space radiation particles. Using stopping power data of ICRU REPORT49 and 73, we simulated the approximate expression (function of the energy of the atomic nucleus as x and the atomic number as Z) of the stopping power for the space proton particle (nucleus of H) against silicon dioxide (SiO2), aluminum oxide (Al2O3), and iron (Fe), which are the main components of regolith. Based on the expression, we applied the manipulation to the other particles of space radiation to up to argon particle (Ar). These simulated expressions complied well the data of ICRU REPORT49 and 73 except alpha particle (nucleus of He). The simulation values of stop-ping power of ten elements from potassium to nickel those we had no data in ICRU REPORT were further simulated. Using the obtained expressions, the relationship between the radiation absorbed dose and depth of a silicon dioxide was obtained. The space radiation relative dose with every depth in the moon could be estimated by this study.

  7. Seismic Imager Space Telescope

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; Ampuero, Jean Paul; Leprince, Sebastien; Michel, Remi

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  8. Radiation effects on video imagers

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Bujnosek, J. J.; Jaramillo, S. A.; Walton, R. B.; Martinez, T. M.; Black, J. P.

    Radiation sensitivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analyzing stored photocharge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented.

  9. Radiation effects on video imagers

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Bujnosek, J. J.; Jaramillo, S. A.; Walton, R. B.; Martinez, T. M.

    1986-02-01

    Radiation senstivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analysing stored photo-charge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented.

  10. Confined Space Imager (CSI) Software

    SciTech Connect

    Karelilz, David

    2013-07-03

    The software provides real-time image capture, enhancement, and display, and sensor control for the Confined Space Imager (CSI) sensor system The software captures images over a Cameralink connection and provides the following image enhancements: camera pixel to pixel non-uniformity correction, optical distortion correction, image registration and averaging, and illumination non-uniformity correction. The software communicates with the custom CSI hardware over USB to control sensor parameters and is capable of saving enhanced sensor images to an external USB drive. The software provides sensor control, image capture, enhancement, and display for the CSI sensor system. It is designed to work with the custom hardware.

  11. Space radiation and cataracts in astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Jones, J.; Iszard, G.; Murrey, J.; Djojonegro, B.; Wear, M.

    2001-01-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  12. Space radiation and cataracts in astronauts.

    PubMed

    Cucinotta, F A; Manuel, F K; Jones, J; Iszard, G; Murrey, J; Djojonegro, B; Wear, M

    2001-11-01

    For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.

  13. DoD Space Radiation Concerns.

    DTIC Science & Technology

    1992-07-15

    cosmic - ray transport. NASA TM X-2440, 1972:117-122. DoD Space Radiation Concerns 8 2. Atkins SG, Small JT, McFarland TH. Military Man-in Space (MMIS...136. 29. Silberberg R, Tsao CH, Adams JH Jr., Letaw JR. Radiation doses and LET distributions of cosmic rays . Rad. Res., 1984, 98:209-226. 30. Stauber...levels on mission success and completion. Natural Radiation Trapped Radiation Belts Galactic Cosmic Rays (GCR) Solar Particle Events (SPEs) Man-Made

  14. Space, Atmospheric, and Terrestrial Radiation Environments

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Dyer, C. S.; Stassinopoulos, E. G.

    2003-01-01

    The progress on developing models of the radiation environment since the 1960s is reviewed with emphasis on models that can be applied to predicting the performance of microelectronics used in spacecraft and instruments. Space, atmospheric, and ground environments are included. It is shown that models must be adapted continually to account for increased understanding of the dynamics of the radiation environment and the changes in microelectronics technology. The IEEE Nuclear and Space Radiation Effects Conference is a vital forum to report model progress to the radiation effects research community.

  15. Space Radiation and its Associated Health Consequences

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2007-01-01

    During space travel, astronauts are exposed to energetic particles of a complex composition and energy distribution. For the same amount of absorbed dose, these particles can be much more effective than X- or gamma rays in the induction of biological effects, including cell inactivation, genetic mutations, cataracts, and cancer induction. Several of the biological consequences of space radiation exposure have already been observed in astronauts. This presentation will introduce the space radiation environment and discuss its associated health risks. Accurate assessment of the radiation risks and development of respective countermeasures are essential for the success of future exploration missions to the Moon and Mars.

  16. Potential health effects of space radiation

    NASA Technical Reports Server (NTRS)

    Yang, Chui-Hsu; Craise, Laurie M.

    1993-01-01

    Crewmembers on missions to the Moon or Mars will be exposed to radiation belts, galactic cosmic rays, and possibly solar particle events. The potential health hazards due to these space radiations must be considered carefully to ensure the success of space exploration. Because there is no human radioepidemiological data for acute and late effects of high-LET (Linear-Energy-Transfer) radiation, the biological risks of energetic charged particles have to be estimated from experimental results on animals and cultured cells. Experimental data obtained to date indicate that charged particle radiation can be much more effective than photons in causing chromosome aberrations, cell killing, mutation, and tumor induction. The relative biological effectiveness (RBE) varies with biological endpoints and depends on the LET of heavy ions. Most lesions induced by low-LET radiation can be repaired in mammalian cells. Energetic heavy ions, however, can produce large complex DNA damages, which may lead to large deletions and are irreparable. For high-LET radiation, therefore, there are less or no dose rate effects. Physical shielding may not be effective in minimizing the biological effects on energetic heavy ions, since fragments of the primary particles can be effective in causing biological effects. At present the uncertainty of biological effects of heavy particles is still very large. With further understanding of the biological effects of space radiation, the career doses can be kept at acceptable levels so that the space radiation environment need not be a barrier to the exploitation of the promise of space.

  17. The NASA Space Radiation Research Program

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2006-01-01

    We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.

  18. Deep Space Test Bed for Radiation Studies

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan

    2006-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other Exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation and flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status.

  19. Visualization Method for Space Radiation Environments

    NASA Astrophysics Data System (ADS)

    Farrell, Joseph

    2000-11-01

    VISUALIZATION METHOD FOR SPACE RADIATION FLUX CONTOURS By using electron and proton radiation environment models (NASA AE8 and AP8), we have developed a method for rapidly visualizing radiation flux data in near-Earth space. Iso-flux contours are computed as implicit function surfaces, with the radiation environment models providing the numerical function calls needed. The surfaces are displayed as a function of solar minimum or maximum, particle energy range, and flux level. Because the underlying governing magnetic fields have a greatly varying spatial dependence as a function of position about the Earth, a special coordinate grid is used to optimize the computational speed for the surface to be displayed. The method visually demonstrates the energy dependence, tilt, center-offset, and anisotropy of the radiation belts surrounding the Earth, including a means of displaying the South Atlantic Anomaly for low Earth orbits. Sponsored by NASA Marshall Space Flight Center, Contract GS-35F-4461G, Order H-32485D.

  20. Radiation risk and human space exploration.

    PubMed

    Schimmerling, W; Cucinotta, F A; Wilson, J W

    2003-01-01

    Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented.

  1. Radiation risk and human space exploration

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Cucinotta, F. A.; Wilson, J. W.

    2003-01-01

    Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. Published by Elsevier Science Ltd on behalf of COSPAR.

  2. Space Radiation Program Element Tissue Sharing Initiative

    NASA Technical Reports Server (NTRS)

    Wu, H.; Huff, J. L.; Simonsen, L. C.

    2014-01-01

    Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, SRPE is taking the initiative to promote tissue sharing among the scientists in the space radiation research community. This initiative is enthusiastically supported by the community members as voiced in the responses to a recent survey. For retrospective tissue samples, an online platform will be established for the PIs to post a list of the available samples, and to exchange information with the potential recipients. For future animal experiments, a tissue sharing policy is being developed by SRPE.

  3. Near-Earth Space Radiation Models

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  4. Radiation Hardness Assurance for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Day, John H. (Technical Monitor)

    2002-01-01

    The space radiation environment can lead to extremely harsh operating conditions for on-board electronic box and systems. The characteristics of the radiation environment are highly dependent on the type of mission (date, duration and orbit). Radiation accelerates the aging of the electronic parts and material and can lead to a degradation of electrical performance; it can also create transient phenomena on parts. Such damage at the part level can induce damage or functional failure at electronic box, subsystem, and system levels. A rigorous methodology is needed to ensure that the radiation environment does not compromise the functionality and performance of the electronics during the system life. This methodology is called hardness assurance. It consists of those activities undertaken to ensure that the electronic piece parts placed in the space system perform to their design specifications after exposure to the space environment. It deals with system requirements, environmental definitions, part selection, part testing, shielding and radiation tolerant design. All these elements should play together in order to produce a system tolerant to.the radiation environment. An overview of the different steps of a space system hardness assurance program is given in section 2. In order to define the mission radiation specifications and compare these requirements to radiation test data, a detailed knowledge of the space environment and the corresponding electronic device failure mechanisms is required. The presentation by J. Mazur deals with the Earth space radiation environment as well as the internal environment of a spacecraft. The presentation by J. Schwank deals with ionization effects, and the presentation by T. Weatherford deals with Single particle Event Phenomena (SEP) in semiconductor devices and microcircuits. These three presentations provide more detailed background to complement the sections 3 and 4. Part selection and categorization are discussed in section

  5. Simple Benchmark Specifications for Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C. Jr.; Aghara, Sukesh K.

    2013-01-01

    This report defines space radiation benchmark specifications. This specification starts with simple, monoenergetic, mono-directional particles on slabs and progresses to human models in spacecraft. This report specifies the models and sources needed to what the team performing the benchmark needs to produce in a report. Also included are brief descriptions of how OLTARIS, the NASA Langley website for space radiation analysis, performs its analysis.

  6. The Near-Earth Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  7. Space radiation environment monitoring onboard Chinese spacecrafts

    NASA Astrophysics Data System (ADS)

    Wang, Shijin; Xu, Ying; Zhang, Xianguo

    The space particle radiation can cause harsh hazards to spacecraft performance and lifetime. Numerous operational anomalies and several Chinese satellites failures have been attributed to radiation effects. The failure of FY-1 satellite, in 1991, increased awareness of space radiation effects and enhanced monitoring in situ. From then on, Space Environment Monitors (SEM) have been widely used in a great number of Chinese spacecrafts, such as SZ-4 manned spacecraft, FY-1, FY-3 sun-synchronous orbit satellites, FY-2 geo-synchronous orbit satellite, CE-1 lunar probe satellite, and so on. In particular, the SJ-4 and the SJ-5 satellites, which were used for special experiments of space radiation and theirs effects on spacecrafts, had been launched in 1990's. The sustained space radiation monitoring on LEO and GEO has accumulated a mass of data and can promote studies for empirical model of space radiation. In this article, monitoring at the Chinese spacecrafts from 1990's to the predictive future will be described, and cross-calibration of data and their typical results will be given.

  8. Radiation-tolerant imaging device

    DOEpatents

    Colella, N.J.; Kimbrough, J.R.

    1996-11-19

    A barrier at a uniform depth for an entire wafer is used to produce imaging devices less susceptible to noise pulses produced by the passage of ionizing radiation. The barrier prevents charge created in the bulk silicon of a CCD detector or a semiconductor logic or memory device from entering the collection volume of each pixel in the imaging device. The charge barrier is a physical barrier, a potential barrier, or a combination of both. The physical barrier is formed by an SiO{sub 2} insulator. The potential barrier is formed by increasing the concentration of majority carriers (holes) to combine with the electron`s generated by the ionizing radiation. A manufacturer of CCD imaging devices can produce radiation-tolerant devices by merely changing the wafer type fed into his process stream from a standard wafer to one possessing a barrier beneath its surface, thus introducing a very small added cost to his production cost. An effective barrier type is an SiO{sub 2} layer. 7 figs.

  9. Radiation-tolerant imaging device

    DOEpatents

    Colella, Nicholas J.; Kimbrough, Joseph R.

    1996-01-01

    A barrier at a uniform depth for an entire wafer is used to produce imaging devices less susceptible to noise pulses produced by the passage of ionizing radiation. The barrier prevents charge created in the bulk silicon of a CCD detector or a semiconductor logic or memory device from entering the collection volume of each pixel in the imaging device. The charge barrier is a physical barrier, a potential barrier, or a combination of both. The physical barrier is formed by an SiO.sub.2 insulator. The potential barrier is formed by increasing the concentration of majority carriers (holes) to combine with the electron's generated by the ionizing radiation. A manufacturer of CCD imaging devices can produce radiation-tolerant devices by merely changing the wafer type fed into his process stream from a standard wafer to one possessing a barrier beneath its surface, thus introducing a very small added cost to his production cost. An effective barrier type is an SiO.sub.2 layer.

  10. 2014 Space Radiation Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2014 Space Radiation Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Radiation Program Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 21, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated Research Plan for the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure (Degen Risk). The SRP also received a status update on the Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), the Risk of Acute Radiation Syndromes Due to Solar Particle Events (ARS Risk), and the Risk of Radiation Carcinogenesis (Cancer Risk). The SRP thought the teleconference was very informative and that the Space Radiation Program Element did a great job of outlining where the Element is with respect to our state of knowledge on the risks of carcinogenesis, central nervous system effects, and the risk of cardiovascular disease and other degenerative tissue effects from exposure to space radiation. The SRP was impressed with the quality of research that is being conducted and the progress the Space Radiation Program Element has made in the past year. While much work has been done, the SRP had a few remaining questions regarding the broad applicability of these findings to a manned deep space mission (in terms of cognitive function, the paradigms were still hippocampal based and also using Alzheimer disease models). The SRP believes that NASA should consider developing an approach to follow astronauts long-term (beyond retirement) for potential side-effects/risks of space exposure that may be unknown. Radiation toxicities often occur decades after exposure, and potential consequences would be missed if intensified exams stop after retirement of the astronauts. In addition, while cancer is one

  11. Space Radiation and Risks to Human Health

    NASA Technical Reports Server (NTRS)

    Huff, Janice L.

    2014-01-01

    The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.

  12. Radiation Hardness Assurance (RHA) for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Buchner, Stephen

    2007-01-01

    This presentation discusses radiation hardness assurance (RHA) for space systems, providing both the programmatic aspects of RHA and the RHA procedure. RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the space radiation environment. RHA also pertains to environment definition, part selection, part testing, spacecraft layout, radiation tolerant design, and mission/system/subsystems requirements. RHA procedure consists of establishing mission requirements, defining and evaluating the radiation hazard, selecting and categorizing the appropriate parts, and evaluating circuit response to hazard. The RHA approach is based on risk management and is confined only to parts, it includes spacecraft layout, system/subsystem/circuit design, and system requirements and system operations. RHA should be taken into account in the early phases of a program including the proposal and feasibility analysis phases.

  13. Biological countermeasures in space radiation health

    NASA Technical Reports Server (NTRS)

    Kennedy, Ann R.; Todd, Paul

    2003-01-01

    Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. The major types of radiation considered to be of importance during space travel are protons and particles of high atomic number and high energy (HZE particles). It is now clear that biological countermeasures can be used to prevent or reduce the levels of biological consequences resulting from exposure to protons or HZE particles, including the induction of cancer, immunosuppression and neurological defects caused by these types of ionizing radiation. Research related to the dietary additions of agents to minimize the risks of developing health-related problems which can result from exposure to space radiations is reviewed.

  14. Space radiation dosimetry using bubble detectors.

    PubMed

    Ing, H; Mortimer, A

    1994-10-01

    Bubble detectors--a new development in radiation detection--has only recently been used for radiation measurements in space. One important characteristic of the bubble detector is that it operates on a phenomenon which bears considerable resemblance to biological response. Recent experimental results from irradiating bubble detectors with high-energy heavy ions point to the need to re-examine the methodology used for assessing space radiation and the relevance of conventional quantities such as dose equivalent for space dosimetry. It may be that biological hazard associated with the intensely ionizing events--associated with nuclear fragmentation but delivering relatively small dose equivalent--may be much more important than that associated with lightly ionizing events which comprise the bulk of the conventional radiation dose equivalent.

  15. Relating space radiation environments to risk estimates

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    A number of considerations must go into the process of determining the risk of deleterious effects of space radiation to travelers. Among them are (1) determination of the components of the radiation environment (particle species, fluxes and energy spectra) which will encounter, (2) determination of the effects of shielding provided by the spacecraft and the bodies of the travelers which modify the incident particle spectra and mix of particles, and (3) determination of relevant biological effects of the radiation in the organs of interest. The latter can then lead to an estimation of risk from a given space scenario. Clearly, the process spans many scientific disciplines from solar and cosmic ray physics to radiation transport theeory to the multistage problem of the induction by radiation of initial lesions in living material and their evolution via physical, chemical, and biological processes at the molecular, cellular, and tissue levels to produce the end point of importance.

  16. Radiation protection guidelines for space missions

    SciTech Connect

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs.

  17. Radiation protection for manned space activities

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  18. Space Instrumentation: Imaging Interferometry

    NASA Astrophysics Data System (ADS)

    Böker, T.; Murdin, P.

    2000-11-01

    Because of the degrading effects of the Earth's turbulent atmosphere, the spatial resolution achieved by ground-based OPTICAL ASTRONOMY is limited to the extent of the SEEING disk—the image of a point source (e.g. a single star), taken through the atmosphere. The size of the seeing disk is independent of telescope diameter, but changes only with wavelength and climatic conditions—about 0.5'' at t...

  19. Space Object Imaging

    DTIC Science & Technology

    1976-03-01

    Twyman -Green interferometer , their wavefront distortion has been measured at less than one-eighth wavelength over their entire surfaces. The...1.5 m telescope as a receiver to obtain an image of a cooperative stationary target located at the AMOS West Maui site, a distance of...frequency components up to 1 GHz) combined with a Fabry- Perot interferometer (for monitoring, frequency components greater than 1 GHz). The

  20. Biosentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.; Marina, Diana B.; Parra, Macarena P.; Boone, Travis D.; Tan, Ming; Ricco, Antonio J.; Straume, Tore N.; Lusby, Terry C.; Harkness, T.; Reiss-Bubenheim, Debra; Brent, R.; Bhattacharya, Sharmila

    2014-01-01

    Ionizing radiation presents a major challenge to human exploration and long-term residence in space. The deep-space radiation spectrum includes highly energetic particles that generate double strand breaks (DSBs), deleterious DNA lesions that are usually repaired without errors via homologous recombination (HR), a conserved pathway in all eukaryotes. While progress identifying and characterizing biological radiation effects using Earth-based facilities has been significant, no terrestrial source duplicates the unique space radiation environment.We are developing a biosensor-based nanosatellite to fly aboard NASAs Space Launch System Exploration Mission 1, expected to launch in 2017 and reach a 1AU (astronomic unit) heliocentric orbit. Our biosensor (called BioSentinel) uses the yeast S. cerevisiae to measure DSBs in response to ambient space radiation. The BioSentinel strain contains engineered genetic defects that prevent growth until and unless a radiation-induced DSB near a reporter gene activates the yeasts HR repair mechanisms. Thus, culture growth and metabolic activity directly indicate a successful DSB-and-repair event. In parallel, HR-defective and wild type strains will provide survival data. Desiccated cells will be carried within independent culture microwells, built into 96-well microfluidic cards. Each microwell set will be activated by media addition at different time points over 18 months, and cell growth will be tracked continuously via optical density. One reserve set will be activated only in the occurrence of a solar particle event. Biological measurements will be compared to data provided by onboard physical dosimeters and to Earth-based experiments.BioSentinel will conduct the first study of biological response to space radiation outside Low Earth Orbit in over 40 years. BioSentinel will thus address strategic knowledge gaps related to the biological effects of space radiation and will provide an adaptable platform to perform human

  1. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  2. Uncertainty Analysis in Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  3. Radiation: Behavioral Implications in Space

    DTIC Science & Technology

    1988-01-01

    anti-histamine were done with monkeys and rats [26,27]. Chlorpheniramine attenuated PD up to 30 min post-irradiation, but after that time, monkey...PD for 30 min seems to be a com- mon denominator already noted with chlorpheniramine . However, to be an acceptable agent for use in space, the final BR

  4. Calibration method for video and radiation imagers

    DOEpatents

    Cunningham, Mark F.; Fabris, Lorenzo; Gee, Timothy F.; Goddard, Jr., James S.; Karnowski, Thomas P.; Ziock, Klaus-peter

    2011-07-05

    The relationship between the high energy radiation imager pixel (HERIP) coordinate and real-world x-coordinate is determined by a least square fit between the HERIP x-coordinate and the measured real-world x-coordinates of calibration markers that emit high energy radiation imager and reflect visible light. Upon calibration, a high energy radiation imager pixel position may be determined based on a real-world coordinate of a moving vehicle. Further, a scale parameter for said high energy radiation imager may be determined based on the real-world coordinate. The scale parameter depends on the y-coordinate of the moving vehicle as provided by a visible light camera. The high energy radiation imager may be employed to detect radiation from moving vehicles in multiple lanes, which correspondingly have different distances to the high energy radiation imager.

  5. Radiation Effects in the Space Telecommunications Environment

    SciTech Connect

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  6. Cancer Risk Assessment for Space Radiation

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Predicting the occurrence of human cancer following exposure to any agent causing genetic damage is a difficult task. This is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within any given clinically normal individual. The radiation health research priorities for enabling long-duration human exploration of space were established in the 1996 NRC Report entitled "Radiation Hazards to Crews of Interplanetary Missions: Biological Issues and Research Strategies". This report emphasized that a 15-fold uncertainty in predicting radiation-induced cancer incidence must be reduced before NASA can commit humans to extended interplanetary missions. That report concluded that the great majority of this uncertainty is biologically based, while a minority is physically based due to uncertainties in radiation dosimetry and radiation transport codes. Since that report, the biologically based uncertainty has remained large, and the relatively small uncertainty associated with radiation dosimetry has increased due to the considerations raised by concepts of microdosimetry. In a practical sense, however, the additional uncertainties introduced by microdosimetry are encouraging since they are in a direction of lowered effective dose absorbed through infrequent interactions of any given cell with the high energy particle component of space radiation. The biological uncertainty in predicting cancer risk for space radiation derives from two primary facts. 1) One animal tumor study has been reported that includes a relevant spectrum of particle radiation energies, and that is the Harderian gland model in mice. Fact #1: Extension of cancer risk from animal models, and especially from a single study in an animal model, to humans is inherently uncertain. 2) One human database

  7. Radiation shielding for future space exploration missions

    NASA Astrophysics Data System (ADS)

    DeWitt, Joel Michael

    Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical

  8. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.

    PubMed

    Miller, J; Zeitlin, C

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven.

  9. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory

    NASA Astrophysics Data System (ADS)

    Miller, J.; Zeitlin, C.

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven.

  10. Space Radar Image of Canberra, Australia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Australia's capital city, Canberra, is shown in the center of this spaceborne radar image. Images like this can help urban planners assess land use patterns. Heavily developed areas appear in bright patchwork patterns of orange, yellow and blue. Dense vegetation appears bright green, while cleared areas appear in dark blue or black. Located in southeastern Australia, the site of Canberra was selected as the capital in 1901 as a geographic compromise between Sydney and Melbourne. Design and construction of the city began in 1908 under the supervision of American architect Walter Burley-Griffin. Lake Burley-Griffin is located above and to the left of the center of the image. The bright pink area is the Parliament House. The city streets, lined with government buildings, radiate like spokes from the Parliament House. The bright purple cross in the lower left corner of the image is a reflection from one of the large dish-shaped radio antennas at the Tidbinbilla, Canberra Deep Space Network Communication Complex, operated jointly by NASA and the Australian Space Office. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 10, 1994, onboard the space shuttle Endeavour. The image is 28 kilometers by 25 kilometers (17 miles by 15 miles) and is centered at 35.35 degrees south latitude, 149.17 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Office of Mission to Planet Earth.

  11. Cancer Risk Assessment for Space Radiation

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    Predicting the occurrence of human cancer following exposure to any agent causing genetic damage is a difficult task. This is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within any given clinically normal individual. The radiation health research priorities for enabling long-duration human exploration of space were established in the 1996 NRC Report entitled 'Radiation Hazards to Crews of Interplanetary Missions: Biological Issues and Research Strategies'. This report emphasized that a 15-fold uncertainty in predicting radiation-induced cancer incidence must be reduced before NASA can commit humans to extended interplanetary missions. That report concluded that the great majority of this uncertainty is biologically based, while a minority is physically based due to uncertainties in radiation dosimetry and radiation transport codes. Since that report, the biologically based uncertainty has remained large, and the relatively small uncertainty associated with radiation dosimetry has increased due to the considerations raised by concepts of microdosimetry. In a practical sense, however, the additional uncertainties introduced by microdosimetry are encouraging since they are in a direction of lowered effective dose absorbed through infrequent interactions of any given cell with the high energy particle component of space radiation. Additional information is contained in the original extended abstract.

  12. Space radiation health research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)

    1993-01-01

    The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.

  13. Advanced Imaging for Space Science

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    Future NASA interferometric missions will realize high-resolution with less mass and volume compared to filled-apertures thus saving in cost over comparable filled-aperture systems. However, interferometeric aperture systems give reduced sensitivity requiring longer integration times to achieve a desired signal-to-noise ratio but is likely the only cost effective path forward for high-resolution space imaging.

  14. High-energy radiation background in space

    NASA Astrophysics Data System (ADS)

    Rester, A. C., Jr.; Trombka, J. I.

    The radiation environment of near-earth space and its effects on biological and hardware systems are examined in reviews and reports. Sections are devoted to particle interactions and propagation, data bases, instrument background and dosimetry, detectors and experimental progress, biological effects, and future needs and strategies. Particular attention is given to angular distributions and spectra of geomagnetically trapped protons in LEO, bremsstrahlung production by electrons, nucleon-interaction data bases for background estimates, instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer, the GRAD high-altitude balloon flight over Antarctica, space protons and brain tumors, a new radioprotective antioxidative agent, LEO radiation measurements on the Space Station, and particle-background effects on the Hubble Space Telescope and the Lyman FUV Spectroscopic Explorer.

  15. Radiation survey in the International Space Station

    NASA Astrophysics Data System (ADS)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Zaconte, Veronica

    2015-12-01

    The project ALTEA-shield/survey is part of an European Space Agency (ESA) - ILSRA (International Life Science Research Announcement) program and provides a detailed study of the International Space Station (ISS) (USLab and partly Columbus) radiation environment. The experiment spans over 2 years, from September 20, 2010 to September 30, 2012, for a total of about 1.5 years of effective measurements. The ALTEA detector system measures all heavy ions above helium and, to a limited extent, hydrogen and helium (respectively, in 25 Mev-45 MeV and 25 MeV/n-250 MeV/n energy windows) while tracking every individual particle. It measures independently the radiation along the three ISS coordinate axes. The data presented consist of flux, dose, and dose equivalent over the time of investigation, at the different surveyed locations. Data are selected from the different geographic regions (low and high latitudes and South Atlantic Anomaly, SAA). Even with a limited acceptance window for the proton contribution, the flux/dose/dose equivalent results as well as the radiation spectra provide information on how the radiation risks change in the different surveyed sites. The large changes in radiation environment found among the measured sites, due to the different shield/mass distribution, require a detailed Computer-Aided Design (CAD) model to be used together with these measurements for the validation of radiation models in space habitats. Altitude also affects measured radiation, especially in the SAA. In the period of measurements, the altitude (averaged over each minute) ranged from 339 km to 447 km. Measurements show the significant shielding effect of the ISS truss, responsible for a consistent amount of reduction in dose equivalent (and so in radiation quality). Measured Galactic Cosmic Ray (GCR) dose rates at high latitude range from 0.354 ± 0.002 nGy/s to 0.770 ± 0.006 nGy/s while dose equivalent from 1.21 ± 0.04 nSv/s to 6.05 ± 0.09 nSv/s. The radiation variation

  16. Space Radiation Program Element Tissue Sharing Forum

    NASA Technical Reports Server (NTRS)

    Wu, H.; Mayeaux, B M.; Huff, J. L.; Simonsen, L. C.

    2016-01-01

    Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, the SRPE has recently released the Space Radiation Tissue Sharing Forum. The Forum provides access to an inventory of investigator-stored tissue samples and enables both NASA SRPE members and NASA-funded investigators to exchange information regarding stored and future radiobiological tissues available for sharing. Registered users may review online data of available tissues, inquire about tissues posted, or request tissues for an upcoming study using an online form. Investigators who have upcoming sacrifices are also encouraged to post the availability of samples using the discussion forum. A brief demo of the forum will be given during the presentation

  17. Distribution effectiveness for space radiation dosimetry

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1975-01-01

    A simplified risk basis and a theory of hematological response are presented and applied to the problem of dosimetry in the manned space program. Unlike previous studies, the current work incorporates radiation exposure distribution effects into its definition of dose equivalent. The fractional cell lethality model for prediction of hematological response is integral in the analysis.

  18. Space Radiation and Human Exposures, A Primer.

    PubMed

    Nelson, Gregory A

    2016-04-01

    The space radiation environment is a complex field comprised primarily of charged particles spanning energies over many orders of magnitude. The principal sources of these particles are galactic cosmic rays, the Sun and the trapped radiation belts around the earth. Superimposed on a steady influx of cosmic rays and a steady outward flux of low-energy solar wind are short-term ejections of higher energy particles from the Sun and an 11-year variation of solar luminosity that modulates cosmic ray intensity. Human health risks are estimated from models of the radiation environment for various mission scenarios, the shielding of associated vehicles and the human body itself. Transport models are used to propagate the ambient radiation fields through realistic shielding levels and materials to yield radiation field models inside spacecraft. Then, informed by radiobiological experiments and epidemiology studies, estimates are made for various outcome measures associated with impairments of biological processes, losses of function or mortality. Cancer-associated risks have been formulated in a probabilistic model while management of non-cancer risks are based on permissible exposure limits. This article focuses on the various components of the space radiation environment and the human exposures that it creates.

  19. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J.; Nachtwey, D. S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem).

  20. Transport methods and interactions for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Schimmerling, Walter S.; Khandelwal, Govind S.; Khan, Ferdous S.; Nealy, John E.; Cucinotta, Francis A.; Simonsen, Lisa C.; Shinn, Judy L.; Norbury, John W.

    1991-01-01

    A review of the program in space radiation protection at the Langley Research Center is given. The relevant Boltzmann equations are given with a discussion of approximation procedures for space applications. The interaction coefficients are related to solution of the many-body Schroedinger equation with nuclear and electromagnetic forces. Various solution techniques are discussed to obtain relevant interaction cross sections with extensive comparison with experiments. Solution techniques for the Boltzmann equations are discussed in detail. Transport computer code validation is discussed through analytical benchmarking, comparison with other codes, comparison with laboratory experiments and measurements in space. Applications to lunar and Mars missions are discussed.

  1. Phase contrast portal imaging using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Kondoh, T.

    2014-07-01

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  2. Phase contrast portal imaging using synchrotron radiation

    SciTech Connect

    Umetani, K.; Kondoh, T.

    2014-07-15

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  3. Radiation Risk Projections for Space Travel

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis

    2003-01-01

    Space travelers are exposed to solar and galactic cosmic rays comprised of protons and heavy ions moving with velocities close to the speed of light. Cosmic ray heavy ions are known to produce more severe types of biomolecular damage in comparison to terrestrial forms of radiation, however the relationship between such damage and disease has not been fully elucidated. On Earth, we are protected from cosmic rays by atmospheric and magnetic shielding, and only the remnants of cosmic rays in the form of ground level muons and other secondary radiations are present. Because human epidemiology data is lacking for cosmic rays, risk projection must rely on theoretical understanding and data from experimental models exposed to space radiation using charged particle accelerators to simulate space radiation. Although the risks of cancer and other late effects from cosmic rays are currently believed to present a severe challenge to space travel, this challenge is centered on our lack of confidence in risk projections methodologies. We review biophysics and radiobiology data on the effects of the cosmic ray heavy ions, and the current methods used to project radiation risks . Cancer risk projections are described as a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Risk projections for space travel are described using Monte-Carlo sampling from subjective error di stributions that represent the lack of knowledge in each factor that contributes to the projection model in order to quantify the overall uncertainty in risk projections. This analysis is applied to space mi ssion scenarios including lunar colony, deep space outpost, and a Mars mission. Results suggest that the number of days in space where cancer mortality risks can be assured at a 95% confidence level to be below the maximum acceptable risk for radi ation workers on Earth or the International Space Station is only on the order

  4. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this sturning image provided by the Hubble Space Telescope (HST), the Omega Nebula (M17) resembles the fury of a raging sea, showing a bubbly ocean of glowing hydrogen gas and small amounts of other elements such as oxygen and sulfur. The nebula, also known as the Swan Nebula, is a hotbed of newly born stars residing 5,500 light-years away in the constellation Sagittarius. The wavelike patterns of gas have been sculpted and illuminated by a torrent of ultraviolet radiation from the young massive stars, which lie outside the picture to the upper left. The ultraviolet radiation is carving and heating the surfaces of cold hydrogen gas clouds. The warmed surfaces glow orange and red in this photograph. The green represents an even hotter gas that masks background structures. Various gases represented with color are: sulfur, represented in red; hydrogen, green; and oxygen blue.

  5. 2015 Space Radiation Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2015 Space Radiation Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 8 - 9, 2015. The SRP met with representatives from the Space Radiation Element and members of the Human Research Program (HRP) to review the updated research plan for the Risk of Radiation Carcinogenesis Cancer Risk. The SRP also reviewed the newly revised Evidence Reports for the Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs) (Acute Risk), the Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), and the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation (Degen Risk), as well as a status update on these Risks. The SRP would like to commend Dr. Simonsen, Dr. Huff, Dr. Nelson, and Dr. Patel for their detailed presentations. The Space Radiation Element did a great job presenting a very large volume of material. The SRP considers it to be a strong program that is well-organized, well-coordinated and generates valuable data. The SRP commended the tissue sharing protocols, working groups, systems biology analysis, and standardization of models. In several of the discussed areas the SRP suggested improvements of the research plans in the future. These include the following: It is important that the team has expanded efforts examining immunology and inflammation as important components of the space radiation biological response. This is an overarching and important focus that is likely to apply to all aspects of the program including acute, CVD, CNS, cancer and others. Given that the area of immunology/inflammation is highly complex (and especially so as it relates to radiation), it warrants the expansion of investigators expertise in immunology and inflammation to work with the individual research projects and also the NASA Specialized Center of Research (NSCORs). Historical data on radiation injury to be entered into the Watson

  6. Magnetic resonance imaging of radiation optic neuropathy

    SciTech Connect

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S. )

    1990-10-15

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence.

  7. Space radiation resistant transparent polymeric materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.

    1977-01-01

    A literature search in the field of ultraviolet and charged particle irradiation of polymers was utilized in an experimental program aimed at the development of radiation stable materials for space applications. The rationale utilized for material selection and the synthesis, characterization and testing performed on several selected materials is described. Among the materials tested for ultraviolet stability in vacuum were: polyethyleneoxide, polyvinylnaphthalene, and the amino resin synthesized by the condensation of o-hydroxybenzoguanamine with formaldehyde. Particularly interesting was the radiation behavior of poly(ethyleneoxide), irradiation did not cause degradation of optical properties but rather an improvement in transparency as indicated by a decrease in solar absorptance with increasing exposure time.

  8. Laser-plasma-based Space Radiation Reproduction in the Laboratory.

    PubMed

    Hidding, B; Karger, O; Königstein, T; Pretzler, G; Manahan, G G; McKenna, P; Gray, R; Wilson, R; Wiggins, S M; Welsh, G H; Beaton, A; Delinikolas, P; Jaroszynski, D A; Rosenzweig, J B; Karmakar, A; Ferlet-Cavrois, V; Costantino, A; Muschitiello, M; Daly, E

    2017-02-08

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  9. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    PubMed Central

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  10. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    NASA Astrophysics Data System (ADS)

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-02-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.

  11. Radiation protection guidelines for space missions

    NASA Technical Reports Server (NTRS)

    Fry, R. J. M.; Nachtwey, D. S.

    1986-01-01

    NASA's current radiation protection guidelines date from 1970, when the career limit was set at 400 rem. Today, using the same approach, but with the current risk estimates, a considerably lower career limit would obtain. Also, there is considerably more information about the radiation environments to be experienced in different missions than previously. Since 1970 women have joined the ranks. For these and other reasons it was necessary to reexamine the radiation protection guidelines. This task was undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75 (NCRP SC 75). Below the magnetosphere the radiation environment varies with altitude and orbit inclination. In outer space missions galactic cosmic rays, with the small but important heavy ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 100 rem (4.0Sv) for a 24 year old female to 400 rem for a 55 year old male compared to the previous single limit of 400 rem (4.0 Sv). The career limit for the lens of the eye was reduced from 600 to 400 rem (6.0 to 4.0 Sv.)

  12. Radiation induced conductivity in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Molinie, P.; Payan, D.; Balcon, N.

    2014-01-21

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon{sup ®} FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon{sup ®} FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  13. Validation of comprehensive space radiation transport code

    SciTech Connect

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-12-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation.

  14. Space Radar Image of Chernobyl

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  15. Issues in deep space radiation protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Singleterry, R. C.; Clowdsley, M. S.; Thibeault, S. A.; Cheatwood, F. M.; Schimmerling, W.; Cucinotta, F. A.; Badhwar, G. D.; Noor, A. K.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    2001-01-01

    The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. c 2001. Elsevier Science Ltd. All rights reserved.

  16. Biological Bases of Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP4, the discussion focuses on the following topics: Hematopoiesis Dynamics in Irradiated Mammals, Mathematical Modeling; Estimating Health Risks in Space from Galactic Cosmic Rays; Failure of Heavy Ions to Affect Physiological Integrity of the Corneal Endothelial Monolayer; Application of an Unbiased Two-Gel CDNA Library Screening Method to Expression Monitoring of Genes in Irradiated Versus Control Cells; Detection of Radiation-Induced DNA Strand Breaks in Mammalian Cells By Enzymatic Post-Labeling; Evaluation of Bleomycin-Induced Chromosome Aberrations Under Microgravity Conditions in Human Lymphocytes, Using "Fish" Techniques; Technical Description of the Space Exposure Biology Assembly Seba on ISS; and Cytogenetic Research in Biological Dosimetry.

  17. Protecting Lunar Colonies From Space Radiation

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2009-08-01

    When Apollo 7 astronaut Walter Cunningham blasted off from Earth on 11 October 1968, the last thing he was thinking about was radiation risks or any risks at all. “Fear doesn’t even enter your mind because you have confidence in yourself, your own ability, your training, and your knowledge,” Cunningham told Space Weather. As a crew member of the first manned mission in the Apollo program and the first three-man American space mission, Cunningham spent 11 days in Earth orbit, testing life-support, propulsion, and control systems on a redesigned command module. In retrospect, compared with immediate risks such as those associated with launch and reentry, “exposure to radiation, which could have long-term effects—we just never gave that a thought,” Cunningham said.

  18. Space Radar Image of Central Plain, Oman

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Bright, arc-shaped limestone hills and complex, branching drainage patterns dominate this three-frequency space radar image of a desert area in the north central plain of Oman. The hill along the left side of the image, called Jabal Fuhud, lies just south of the town of Fuhud, which appears as small bright rectangular features. The thin red lines that can be seen radiating out from this town are roads. The 'u'-shaped hill in the right center of the image is called Jabal Natih. Layers in the limestone appear as stripes which parallel the crest of the hill. This region is an active area of petroleum production because these geological structures form natural traps for oil and gas. The branching patterns on the image are ancient drainage channels that formed when the climate in this area was much wetter. Two large dry river channels, called wadis, appear on the image. Wadi Umayri is the yellow stripe at the lower right corner of the image. A second orange-colored wadi runs from right to left below the two sets of hills. The bright yellow patterns between the wadis are areas of bedrock covered with a thin layer of sand. These rocks would not be visible in conventional satellite images or photographs. This image is centered at 22.25 degrees north latitude, 56.58 degrees east longitude. The area shown is approximately 42 kilometers by 78 kilometers (26 miles by 48 miles). North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and vertically received; and blue is X-band, vertically transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 10, 1994, on board the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  19. Sizing-tube-fin space radiators

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1978-01-01

    Temperature and size considerations of the tube fin space radiator were characterized by charts and equations. An approach of accurately assessing rejection capability commensurate with a phase A/B level output is reviewed. A computer program, based on Mackey's equations, is also presented which sizes the rejection area for a given thermal load. The program also handles the flow and thermal considerations of the film coefficient.

  20. String Fragmentation Model in Space Radiation Problems

    NASA Technical Reports Server (NTRS)

    Tang, Alfred; Johnson, Eloise (Editor); Norbury, John W.; Tripathi, R. K.

    2002-01-01

    String fragmentation models such as the Lund Model fit experimental particle production cross sections very well in the high-energy limit. This paper gives an introduction of the massless relativistic string in the Lund Model and shows how it can be modified with a simple assumption to produce formulas for meson production cross sections for space radiation research. The results of the string model are compared with inclusive pion production data from proton-proton collision experiments.

  1. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  2. Space Radiation Monitoring Center at SINP MSU

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Barinova, Wera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Myagkova, Irina; Nguen, Minh; Panasyuk, Mikhail; Shiroky, Vladimir; Shugay, Julia

    2015-04-01

    Data on energetic particle fluxes from Russian satellites have been collected in Space monitoring data center at Moscow State University in the near real-time mode. Web-portal http://smdc.sinp.msu.ru/ provides operational information on radiation state of the near-Earth space. Operational data are coming from space missions ELECTRO-L1, Meteor-M2. High-resolution data on energetic electron fluxes from MSU's satellite VERNOV with RELEC instrumentation on board are also available. Specific tools allow the visual representation of the satellite orbit in 3D space simultaneously with particle fluxes variations. Concurrent operational data coming from other spacecraft (ACE, GOES, SDO) and from the Earth's surface (geomagnetic indices) are used to represent geomagnetic and radiation state of near-Earth environment. Internet portal http://swx.sinp.msu.ru provides access to the actual data characterizing the level of solar activity, geomagnetic and radiation conditions in heliosphere and the Earth's magnetosphere in the real-time mode. Operational forecasting services automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons, using data from LEO and GEO orbits. The models of space environment working in autonomous mode are used to generalize the information obtained from different missions for the whole magnetosphere. On-line applications created on the base of these models provide short-term forecasting for SEP particles and relativistic electron fluxes at GEO and LEO, Dst and Kp indices online forecasting up to 1.5 hours ahead. Velocities of high-speed streams in solar wind on the Earth orbit are estimated with advance time of 3-4 days. Visualization system provides representation of experimental and modeling data in 2D and 3D.

  3. Martian regolith as space radiation shielding.

    PubMed

    Simonsen, L C; Nealy, J E; Townsend, L W; Wilson, J W

    1991-01-01

    In current Mars scenario descriptions, an entire mission is estimated to take 500-1000 days round trip with a 100-600 day stay time on the surface. To maintain radiation dose levels below permissible limits, dose estimates must be determined for the entire mission length. With extended crew durations anticipated on Mars, the characterization of the radiation environment on the surface becomes a critical aspect of mission planning. The most harmful free-space radiation is due to high energy galactic cosmic rays (GCR) and solar flare protons. The carbon dioxide atmosphere of Mars has been estimated to provide a sufficient amount of shielding from these radiative fluxes to help maintain incurred doses below permissible limits. However, Mars exploration crews are likely to incur a substantial dose while in transit to Mars that will reduce the allowable dose that can be received while on the surface. Therefore, additional shielding may be necessary to maintain short-term dose levels below limits or to help maintain career dose levels as low as possible. By utilizing local resources, such as Martian regolith, shielding materials can be provided without excessive launch weight requirements from Earth. The scope of this synopsis and of Ref. 3 focuses on presenting our estimates of surface radiation doses received due to the transport and attenuation of galactic cosmic rays and February 1956 solar flare protons through the Martian atmosphere and through additional shielding provided by Martian regolith.

  4. Approaches to radiation guidelines for space travel

    SciTech Connect

    Fry, R.J.M.

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. Furthermore, no estimates of risk or recommendations were made for women in 1970 and must now be considered. The current career limit is 400 rem. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation and this will be taken into account. Work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 21 references, 1 figure, 7 tables.

  5. Space Weather Status for Exploration Radiation Protection

    NASA Technical Reports Server (NTRS)

    Fry, Dan J.; Lee, Kerry; Zapp, Neal; Barzilla, Janet; Dunegan, Audrey; Johnson, Steve; Stoffle, Nicholas

    2011-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and in free space, for example, may differ by orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for the ability to conduct exploration operations. We present a current status of developing operational concepts for manned exploration and expectations for asset viability and available predictive and characterization toolsets.

  6. Space radiation enhancement linked to geomagnetic disturbances.

    PubMed

    Tomita, F; Den, M; Doke, T; Hayashi, T; Nagaoka, T; Kato, M

    1998-01-01

    Space radiation dosimetry measurements have been made on board the Space Shuttle. A newly developed active detector called "Real-time Radiation Monitoring Device (RRMD)" was used (Doke et al., 1995; Hayashi et al., 1995). The RRMD results indicate that low Linear Energy Transfer (LET) particles steadily penetrate around the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent and some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions (Doke et al., 1996). We also have been analyzing the space weather during the experiment, and found that the anomalous high-energy particle enhancement was linked to geomagnetic disturbance due to the high speed solar wind from a coronal hole. Additional analysis and other experiments are necessary for clarification of these phenomena. If a penetration of high-energy particles into the low altitude occurs by common geomagnetic disturbances, the prediction of geomagnetic activity becomes more important in the next Space Station's era.

  7. Pion Production Data Needed for Space Radiation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2010-01-01

    A recent discovery concerning the importance of hadron production in space radiation is that pions can contribute up to twenty percent of the dose from galactic cosmic ray interactions (S. Aghara, S. Blattnig, J. Norbury, R. Singleterry, Nuclear Instruments and Methods, Vol. 267, 2009, p. 1115). Although the contribution for dose equivalent will be smaller, the dose contribution could be important for fluence based radiation models. Pion production cross sections will be an essential ingredient to such models, and it is of interest to investigate the adequacy of the pion production experimental data base for energies relevant to space radiation. The pion production threshold in nucleon - nucleon reactions is at 280 MeV and, in an interesting accident of nature, this lies near the peak of the galactic cosmic ray proton spectrum. Therefore, pion production data are needed from threshold up to energies around 50 GeV/nucleon, where the galactic cosmic ray fluence is of decreasing importance. Total and differential cross section data for pion production in this energy range will be reviewed. The availability and accuracy of theoretical models will also be discussed. It will be shown that there are a significant lack of data in this important energy range and that theoretical models still need improvement.

  8. The ionizing radiation environment in space and its effects

    SciTech Connect

    Adams, Jim; Falconer, David; Fry, Dan

    2012-11-20

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  9. Advances in space radiation shielding codes

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Qualls, Garry D.; Cucinotta, Francis A.; Prael, Richard E.; Norbury, John W.; Heinbockel, John H.; Tweed, John; De Angelis, Giovanni

    2002-01-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  10. Radiation dosimetry onboard the International Space Station ISS.

    PubMed

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  11. DNA Damage Signals and Space Radiation Risk

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  12. Space Radar Image of Bahia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a color composite image of southern Bahia, Brazil, centered at 15.22 degree south latitude and 39.07 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 38th orbit of Earth on October 2, 1994. The image covers an area centered over the Una Biological Reserve, one the largest protected areas in northeastern Brazil. The 7,000-hectare reserve is administered by the Brazilian Institute for the Environment and is part of the larger Atlantic coastal forest, a narrow band of rain forest extending along the eastern coast of Brazil. The Atlantic coastal forest of southern Bahia is one of the world's most threatened and diverse ecosystems. Due to widespread settlement, only 2 to 5 percent of the original forest cover remains. Yet the region still contains an astounding variety of plants and animals, including a large number of endemic species. More than half of the region's tree species and 80 percent of its animal species are indigenous and found nowhere else on Earth. The Una Reserve is also the only federally protected habitat for the golden-headed lion tamarin, the yellow-breasted capuchin monkey and many other endangered species. In the past few years, scientists from Brazilian and international conservation organizations have coordinated efforts to study the biological diversity of this region and to develop practical and economically viable options for preserving the remaining primary forests in southern Bahia. The shuttle imaging radar is used in this study to identify various land uses and vegetation types, including remaining patches of primary forest, cabruca forest (cacao planted in the understory of the native forest), secondary forest, pasture and coastal mangrove. Standard remote-sensing technology that relies on light reflected from the forest canopy cannot accurately distinguish between cabruca and undisturbed forest. Optical remote sensing is also

  13. PAMELA Space Mission: The Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  14. Nuclear Cross Sections for Space Radiation Applications

    NASA Technical Reports Server (NTRS)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  15. Space Images for NASA/JPL

    NASA Technical Reports Server (NTRS)

    Boggs, Karen; Gutheinz, Sandy C.; Watanabe, Susan M.; Oks, Boris; Arca, Jeremy M.; Stanboli, Alice; Peez, Martin; Whatmore, Rebecca; Kang, Minliang; Espinoza, Luis A.

    2010-01-01

    Space Images for NASA/JPL is an Apple iPhone application that allows the general public to access featured images from the Jet Propulsion Laboratory (JPL). A back-end infrastructure stores, tracks, and retrieves space images from the JPL Photojournal Web server, and catalogs the information into a streamlined rating infrastructure.

  16. Radiation Hazards and Countermeasures for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2004-01-01

    Protection of the astronauts from space radiation is NASA's moral and legal responsibility. There can be no manned deep space missions without adequate protection from the ionizing radiation in space. There are tow parts to radiation protection, determining the effects of space radiation on humans so that adequate exposure limits can be set and providing radiation protection that insures those limits will not be exceeded. This talk will review the status of work on these two parts and identify areas that are currently being investigated and gaps in the research that have been identified.

  17. Radiation-Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael; Cressler, John D.

    2008-01-01

    This conference poster explores NASA's Radiation-Hardened Electronics for Space Environments project. This project aims to advance the state of the art in high performance, radiation-hardened electronics that enable the long-term, reliable operation of a spacecraft in extreme radiation and temperature of space and the lunar surface.

  18. Parts Selection for Space Systems - An Overview and Radiation Perspective

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2008-01-01

    This viewgraph presentation describes the selection of electronic parts for aerospace systems from a space radiation perspective. The topics include: 1) The Trade Space Involved with Part Selection; 2) Understanding Risk; 3) Technical/Design Aspects; 4) Programmatic Overview; 5) Radiation Perspective; 6) Reliability Considerations; 7) An Example Ad hoc Battle; and 8) Sources of Radiation Data.

  19. Imaging practices and radiation doses from imaging in radiotherapy.

    PubMed

    Siiskonen, Teemu; Kaijaluoto, Sampsa; Florea, Tudor

    2017-03-25

    Modern radiotherapy treatments require frequent imaging for accurate patient positioning relative to the therapeutic radiation beam. Imaging practices in five Finnish radiotherapy clinics were assessed and discussed from the patient dose optimization point of view. The results show that imaging strategies are not jointly established and variations exist. The organ absorbed doses depend on imaging technique and imaging frequency. In particular, organ doses from the cone beam computed tomography can have very large variations (a factor of 10-50 in breast imaging and factor of 5 in prostate imaging). The cumulative imaging organ dose from the treatment can vary by a factor of ten or more for the same treatment, depending on the chosen technique and imaging frequency. Awareness and optimization of the imaging dose in image-guided radiotherapy should be strengthened.

  20. NASA Human Research Program Space Radiation Program Element

    NASA Technical Reports Server (NTRS)

    Chappell, Lori; Huff, Janice; Patel, Janapriya; Wang, Minli; Hu, Shaowwen; Kidane, Yared; Myung-Hee, Kim; Li, Yongfeng; Nounu, Hatem; Plante, Ianik; Ponomarev, Artem; Hada, Megumi

    2013-01-01

    The goal of the NASA Human Research Program's Space Radiation Program Element is to ensure that crews can safely live and work in the space radiation environment. Current work is focused on developing the knowledge base and tools required for accurate assessment of health risks resulting from space radiation exposure including cancer and circulatory and central nervous system diseases, as well as acute risks from solar particle events. Division of Space Life Sciences (DSLS) Space Radiation Team scientists work at multiple levels to advance this goal, with major projects in biological risk research; epidemiology; and physical, biophysical, and biological modeling.

  1. Space Radar Image of Bahia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a color composite image of southern Bahia, Brazil, centered at 15.22 degree south latitude and 39.07 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 38th orbit of Earth on October 2, 1994. The image covers an area centered over the Una Biological Reserve, one the largest protected areas in northeastern Brazil. The 7,000-hectare reserve is administered by the Brazilian Institute for the Environment and is part of the larger Atlantic coastal forest, a narrow band of rain forest extending along the eastern coast of Brazil. The Atlantic coastal forest of southern Bahia is one of the world's most threatened and diverse ecosystems. Due to widespread settlement, only 2 to 5 percent of the original forest cover remains. Yet the region still contains an astounding variety of plants and animals, including a large number of endemic species. More than half of the region's tree species and 80 percent of its animal species are indigenous and found nowhere else on Earth. The Una Reserve is also the only federally protected habitat for the golden-headed lion tamarin, the yellow-breasted capuchin monkey and many other endangered species. In the past few years, scientists from Brazilian and international conservation organizations have coordinated efforts to study the biological diversity of this region and to develop practical and economically viable options for preserving the remaining primary forests in southern Bahia. The shuttle imaging radar is used in this study to identify various land uses and vegetation types, including remaining patches of primary forest, cabruca forest (cacao planted in the understory of the native forest), secondary forest, pasture and coastal mangrove. Standard remote-sensing technology that relies on light reflected from the forest canopy cannot accurately distinguish between cabruca and undisturbed forest. Optical remote sensing is also

  2. Mid-space-independent deformable image registration.

    PubMed

    Aganj, Iman; Iglesias, Juan Eugenio; Reuter, Martin; Sabuncu, Mert Rory; Fischl, Bruce

    2017-02-24

    Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric - that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images.

  3. Radiation-Hardened Electronics for the Space Environment

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.

  4. The transition radiation detector of the PAMELA space mission

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-04-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta.

  5. Advanced Imaging Algorithms for Radiation Imaging Systems

    SciTech Connect

    Marleau, Peter

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  6. Geant4 models for space radiation environment.

    NASA Astrophysics Data System (ADS)

    Ivantchenko, Anton; Nieminen, Petteri; Incerti, Sebastien; Santin, Giovanni; Ivantchenko, Vladimir; Grichine, Vladimir; Allison, John

    The space radiation environment includes wide varieties of particles from electrons to heavy ions. In order to correctly predict the dose received by astronauts and devices the simulation models must have good applicability and produce accurate results from 10 MeV/u up to 10 GeV/u, where the most radioactive hazardous particles are present in the spectra. Appropriate models should also provide a good description of electromagnetic interactions down to very low energies (10 eV/u - 10 MeV/u) for understanding the damage mechanisms due to long-term low doses. Predictions of biological dose during long interplanetary journeys also need models for hadronic interactions of energetic heavy ions extending higher energies (10 GeV/u - 100 GeV/u, but possibly up to 1 TeV/u). Geant4 is a powerful toolkit, which in some areas well surpasses the needs from space radiation studies, while in other areas is being developed and/or validated to properly cover the modelling requirements outlined above. Our activities in ESA projects deal with the research and development of both Geant4 hadronic and electromagnetic physics. Recently the scope of verification tests and benchmarks has been extended. Hadronic tests and benchmarks run proton, pion, and ion interactions with matter at various energies. In the Geant4 hadronic sub-libraries, the most accurate cross sections have been identified and selected as a default for all particle types relevant to space applications. Significant developments were carried out for ion/ion interaction models. These now allow one to perform Geant4 simulations for all particle types and energies relevant to space applications. For the validation of ion models the hadronic testing suite for ion interactions was significantly extended. In this work the results of benchmarking versus data in a wide energy range for projectile protons and ions will be shown and discussed. Here we show results of the tests runs and their precision. Recommendations for Geant4

  7. NASA Space Radiation Transport Code Development Consortium.

    PubMed

    Townsend, Lawrence W

    2005-01-01

    Recently, NASA established a consortium involving the University of Tennessee (lead institution), the University of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking.

  8. An Automated Imaging System for Radiation Biodosimetry

    PubMed Central

    Garty, Guy; Bigelow, Alan W.; Repin, Mikhail; Turner, Helen C.; Bian, Dakai; Balajee, Adayabalam S.; Lyulko, Oleksandra V.; Taveras, Maria; Yao, Y. Lawrence; Brenner, David J.

    2015-01-01

    We describe here an automated imaging system developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry. The imaging system is built around a fast, sensitive sCMOS camera and rapid switchable LED light source. It features complete automation of all the steps of the imaging process and contains built-in feedback loops to ensure proper operation. The imaging system is intended as a back end to the RABiT – a robotic platform for radiation biodosimetry. It is intended to automate image acquisition and analysis for four biodosimetry assays for which we have developed automated protocols: The Cytokinesis Blocked Micronucleus assay, the γ-H2AX assay, the Dicentric assay (using PNA or FISH probes) and the RABiT-BAND assay. PMID:25939519

  9. Radiation Hazards and Countermeasures for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Adams, James

    2004-01-01

    The protection of astronauts from the hazards of ionizing radiation in space is a moral and legal obligation of NASA. If there are to be manned deep-space missions, means must be found to provide this protection. There are two parts to providing this protection: understanding the effects of space radiation on humans so that radiation exposure limits can be established; and developing countermeasures so that exposures can be kept below these limits. This talk will cover both parts of this problem.

  10. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  11. Radiation effects on scientific CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Yuanfu, Zhao; Liyan, Liu; Xiaohui, Liu; Xiaofeng, Jin; Xiang, Li

    2015-11-01

    A systemic solution for radiation hardened design is presented. Besides, a series of experiments have been carried out on the samples, and then the photoelectric response characteristic and spectral characteristic before and after the experiments have been comprehensively analyzed. The performance of the CMOS image sensor with the radiation hardened design technique realized total-dose resilience up to 300 krad(Si) and resilience to single-event latch up for LET up to 110 MeV·cm2/mg.

  12. Space Radar Image of Karisoke & Virunga Volcanoes

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a false-color composite of Central Africa, showing the Virunga volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. The image was acquired on October 3, 1994, on orbit 58 of the space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). In this image red is the L-band (horizontally transmitted, vertically received) polarization; green is the C-band (horizontally transmitted and received) polarization; and blue is the C-band (horizontally transmitted and received) polarization. The area is centered at about 2.4 degrees south latitude and 30.8 degrees east longitude. The image covers an area 56 kilometers by 70 kilometers (35 miles by 43 miles). The dark area at the top of the image is Lake Kivu, which forms the border between Zaire (to the right) and Rwanda (to the left). In the center of the image is the steep cone of Nyiragongo volcano, rising 3,465 meters (11,369 feet) high, with its central crater now occupied by a lava lake. To the left are three volcanoes, Mount Karisimbi, rising 4,500 meters (14,800 feet) high; Mount Sabinyo, rising 3,600 meters (12,000 feet) high; and Mount Muhavura, rising 4,100 meters (13,500 feet) high. To their right is Nyamuragira volcano, which is 3,053 meters (10,017 feet) tall, with radiating lava flows dating from the 1950s to the late 1980s. These active volcanoes constitute a hazard to the towns of Goma, Zaire and the nearby Rwandan refugee camps, located on the shore of Lake Kivu at the top left. This radar image highlights subtle differences in the vegetation of the region. The green patch to the center left of the image in the foothills of Karisimbi is a bamboo forest where the mountain gorillas live. The vegetation types in this area are an important factor in the habitat of mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce

  13. A simple method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter

    SciTech Connect

    Du Weiliang; Yang, James; Luo Dershan; Martel, Mary

    2010-05-15

    Purpose: The aim of this study was to develop a computerized method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter. Three types of graticules were included in this study: Megavoltage (MV) mechanical graticule, MV electronic portal imaging device digital graticule, and kilovoltage (kV) on-board imaging digital graticule. Methods: A metal ball bearing (BB) was imaged with MV and kV x-ray beams in a procedure similar to a Winston-Lutz test. The radiation fields, graticules, and BB were localized in eight portal images using Hough transform-based computer algorithms. The center of the BB served as a static reference point in the 3D space so that the distances between the graticule centers and the radiation field centers were calculated. The radiation isocenter was determined from the radiation field centers at different gantry angles. Results: Misalignments of MV and kV portal imaging graticules varied with the gantry or x-ray source angle as a result of mechanical imperfections of the linear accelerator and its imaging system. While the three graticules in this study were aligned to the radiation field centers and the radiation isocenter within 2.0 mm, misalignments of 1.5-2.0 mm were found at certain gantry angles. These misalignments were highly reproducible with the gantry rotation. Conclusions: A simple method was developed to quantify the alignments of portal image graticules directly against the radiation field centers or the radiation isocenter. The advantage of this method is that it does not require the BB to be placed exactly at the radiation isocenter through a precalibrated surrogating device such as room lasers or light field crosshairs. The present method is useful for radiation therapy modalities that require high-precision portal imaging such as image-guided stereotactic radiotherapy.

  14. Imaging of coronary arteries using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Zeman, H.; Thomlinson, W.; Rubenstein, E.; Kernoff, R. S.; Hofstadter, R.; Giacomini, J. C.; Gordon, H. J.; Brown, G. S.

    1989-04-01

    Currently the imaging of coronary arteries is dangerous since it requires that a catheter be inserted into a peripheral artery and threaded up to the heart so that contrast agent can be injected directly into the artery being imaged. Using synchrotron radiation it may be possible to use a much safer venous injection of a contrast agent and still have sufficient image contrast to visualize the coronary arteries. A pair of monochromatized X-ray beams are used which have energies that bracket the iodine K absorption edge where the iodine absorption cross section jumps by a factor of six. Therefore, the logarithmic difference image has excellent sensitivity to contrast agent and minimal sensitivity to tissue and bone. Images have been taken of both dogs and humans. Improvements are being made to the imaging system which will substantially improve the image quality.

  15. Measurement and assessment of radiation dose of astronauts in space

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Sun, Yue-qiang; Yang, Chuibai; Zhang, Shenyi; Liang, Jinbao

    Astronauts in flight are exposed by the space radiation, which is mainly composed of proton, electron, heavy ion, and neutron. To assess the radiation risk, measurement and assessment of radiation dose of astronauts is indispensable. Especially, measurement for heavy ion radiation is most important as it contributes the major dose. Until now, most of the measurements and assessments of radiation dose of astronauts are based on the LET (Linear Energy Transfer) spectrum of space radiation. However, according to the ICRP Publication 123, energy and charge number of heavy ions should be measured in order to assess space radiation exposure to astronauts. In addition, from the publication, quality factors for each organs or tissues of astronauts are different and they should be calculated or measured independently. Here, a method to measure the energy and charge number of heavy ion and a voxel phantom based on the anatomy of Chinese adult male are presented for radiation dose assessment of astronauts.

  16. Multidimensional X-Space Magnetic Particle Imaging

    PubMed Central

    Conolly, Steven M.

    2012-01-01

    Magnetic particle imaging (MPI) is a promising new medical imaging tracer modality with potential applications in human angiography, cancer imaging, in vivo cell tracking, and inflammation imaging. Here we demonstrate both theoretically and experimentally that multidimensional MPI is a linear shift-in-variant imaging system with an analytic point spread function. We also introduce a fast image reconstruction method that obtains the intrinsic MPI image with high signal-to-noise ratio via a simple gridding operation in x-space. We also demonstrate a method to reconstruct large field-of-view (FOV) images using partial FOV scanning, despite the loss of first harmonic image information due to direct feedthrough contamination. We conclude with the first experimental test of multidimensional x-space MPI. PMID:21402508

  17. Multidimensional x-space magnetic particle imaging.

    PubMed

    Goodwill, Patrick W; Conolly, Steven M

    2011-09-01

    Magnetic particle imaging (MPI) is a promising new medical imaging tracer modality with potential applications in human angiography, cancer imaging, in vivo cell tracking, and inflammation imaging. Here we demonstrate both theoretically and experimentally that multidimensional MPI is a linear shift-invariant imaging system with an analytic point spread function. We also introduce a fast image reconstruction method that obtains the intrinsic MPI image with high signal-to-noise ratio via a simple gridding operation in x-space. We also demonstrate a method to reconstruct large field-of-view (FOV) images using partial FOV scanning, despite the loss of first harmonic image information due to direct feedthrough contamination. We conclude with the first experimental test of multidimensional x-space MPI.

  18. RADECS Short Course Session I: The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael; Bourdarie, Sebastien

    2007-01-01

    The presented slides and accompanying paper focus on radiation in the space environment. Since space exploration has begun it has become evident that the space environment is a highly aggressive medium. Beyond the natural protection provided by the Earth's atmosphere, various types of radiation can be encountered. Their characteristics (energy and nature), origins and distributions in space are extremely variable. This environment degrades electronic systems and on-board equipment in particular and creates radiobiological hazards during manned space flights. Based on several years of space exploration, a detailed analysis of the problems on satellites shows that the part due to the space environment is not negligible. It appears that the malfunctions are due to problems linked to the space environment, electronic problems, design problems, quality problems, other issues, and unexplained reasons. The space environment is largely responsible for about 20% of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles. This naturally leads to a detailed study of the space environment and of the effects that it induces on space vehicles and astronauts. Sources of radiation in the space environment are discussed here and include the solar activity cycle, galactic cosmic rays, solar particle events, and Earth radiation belts. Future challenges for space radiation environment models are briefly addressed.

  19. Space Radar Image of Moscow, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a vertically polarized L-band image of the southern half of Moscow, an area which has been inhabited for 2,000 years. The image covers a diameter of approximately 50 kilometers (31 miles) and was taken on September 30, 1994 by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour. The city of Moscow was founded about 750 years ago and today is home to about 8 million residents. The southern half of the circular highway (a road that looks like a ring) can easily be identified as well as the roads and railways radiating out from the center of the city. The city was named after the Moskwa River and replaced Russia's former capital, St. Petersburg, after the Russian Revolution in 1917. The river winding through Moscow shows up in various gray shades. The circular structure of many city roads can easily be identified, although subway connections covering several hundred kilometers are not visible in this image. The white areas within the ring road and outside of it are buildings of the city itself and it suburban towns. Two of many airports are located in the west and southeast of Moscow, near the corners of the image. The Kremlin is located north just outside of the imaged city center. It was actually built in the 16th century, when Ivan III was czar, and is famous for its various churches. In the surrounding area, light gray indicates forests, while the dark patches are agricultural areas. The various shades from middle gray to dark gray indicate different stages of harvesting, ploughing and grassland. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific

  20. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space exploration.

  1. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most effect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  2. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  3. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  4. Space radiation hazards to Project Skylab photographic film, phase 2

    NASA Technical Reports Server (NTRS)

    Hill, C. W.; Neville, C. F.

    1971-01-01

    The results of a study of space radiation hazards to Project Skylab photographic film are presented. Radiation components include trapped protons, trapped electrons, bremsstrahlung, and galactic cosmic radiation. The shielding afforded by the Skylab cluster is taken into account with a 5000 volume element mathematical model. A preliminary survey of expected proton spectrometer data is reported.

  5. Effects of Nuclear Interactions in Space Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Barghouty, A. F.

    2004-01-01

    Space radiation transport codes have been developed to calculate radiation effects behind materials in human missions to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect predictions from such radiation transport codes. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials.

  6. Effects of Nuclear Interactions in Space Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Barghouty, A. F.

    2005-01-01

    Space radiation transport codes have been developed to calculate radiation effects behind materials in human mission to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect predictions from such radiation transport codes. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials.

  7. High LET, passive space radiation dosimetry and spectrometry

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Keegan, R. P.; Frigo, L. A.; Sanner, D.; Rowe, V.

    1995-01-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation.

  8. High LET, passive space radiation dosimetry and spectrometry

    SciTech Connect

    Benton, E.V.; Frank, A.L.; Benton, E.R.; Keegan, R.P.; Frigo, L.A.; Sanner, D.; Rowe, V.

    1995-03-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation. Separate abstracts were prepared for articles from this report.

  9. Characterisation of bubble detectors for aircrew and space radiation exposure.

    PubMed

    Green, A R; Bennett, L G I; Lewis, B J; Tume, P; Andrews, H R; Noulty, R A; Ing, H

    2006-01-01

    The Earth's atmosphere acts as a natural radiation shield which protects terrestrial dwellers from the radiation environment encountered in space. In general, the intensity of this radiation field increases with distance from the ground owing to a decrease in the amount of atmospheric shielding. Neutrons form an important component of the radiation field to which the aircrew and spacecrew are exposed. In light of this, the neutron-sensitive bubble detector may be ideal as a portable personal dosemeter at jet altitudes and in space. This paper describes the ground-based characterisation of the bubble detector and the application of the bubble detector for the measurement of aircrew and spacecrew radiation exposure.

  10. Liquid droplet radiators for heat rejection in space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1980-01-01

    A radiator for heat rejection in space is described which utilizes a stream of liquid droplets to radiate waste heat. The large surface area per mass makes the liquid droplet radiator at least an order of magnitude lighter than tube and fin radiators. Generation and collection of the droplets, as well as heat transfer to the liquid, can be achieved with modest extensions of conventional technology. Low vapor pressure liquids are available which cover a radiating temperature range 250-1000 K with negligible evaporation losses. The droplet radiator may be employed for a wide range of heat rejection applications in space. Three applications - heat rejection for a high temperature Rankine cycle, cooling of photovoltaic cells, and low temperature heat rejection for refrigeration in space illustrate the versatility of the radiator.

  11. A space radiation transport method development.

    PubMed

    Wilson, J W; Tripathi, R K; Qualls, G D; Cucinotta, F A; Prael, R E; Norbury, J W; Heinbockel, J H; Tweed, J

    2004-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design.

  12. A space radiation transport method development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2004-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. Published by Elsevier Ltd on behalf of COSPAR.

  13. Radiation measurement on the International Space Station.

    PubMed

    Akopova, A B; Manaseryan, M M; Melkonyan, A A; Tatikyan, S Sh; Potapov, Yu

    2005-02-01

    The results of an investigation of radiation environment on board the ISS with apogee/perigee of 420/380 km and inclination 51.6 degrees are presented. For measurement of important characteristics of cosmic rays (particles fluxes, LET spectrum, equivalent doses and heavy ions with Z > or = 2) a nuclear photographic emulsion as a controllable threshold detector was used. The use of this detector permits a registration of the LET spectrum of charged particles within wide range of dE/dx and during the last years it has already been successfully used on board the MIR station, Space Shuttles and "Kosmos" spacecrafts. An integral LET spectrum was measured in the range 0.5-2.2 x 10(3) keV/micrometers and the value of equivalent dose 360 microSv/day was estimated. The flux of biologically dangerous heavy particles with Z > or = 2 was measured (3.85 x 10(3) particles/cm2).

  14. Radiation-induced uterine changes: MR imaging

    SciTech Connect

    Arrive, L.; Chang, Y.C.; Hricak, H.; Brescia, R.J.; Auffermann, W.; Quivey, J.M.

    1989-01-01

    To assess the capability of magnetic resonance (MR) imaging to demonstrate postirradiation changes in the uterus, MR studies of 23 patients who had undergone radiation therapy were retrospectively examined and compared with those of 30 patients who had not undergone radiation therapy. MR findings were correlated with posthysterectomy histologic findings. In premenopausal women, radiation therapy induced (a) a decrease in uterine size demonstrable as early as 3 months after therapy ended; (b) a decrease in signal intensity of the myometrium on T2-predominant MR images, reflecting a significant decrease in T2 relaxation time, demonstrable as early as 1 month after therapy; (c) a decrease in thickness and signal intensity of the endometrium demonstrable on T2-predominant images 6 months after therapy; and (d) loss of uterine zonal anatomy as early as 3 months after therapy. In postmenopausal women, irradiation did not significantly alter the MR imaging appearance of the uterus. These postirradiation MR changes in both the premenopausal and postmenopausal uteri appeared similar to the changes ordinarily seen on MR images of the nonirradiated postmenopausal uterus.

  15. Prototype space erectable radiator system ground test article development

    NASA Technical Reports Server (NTRS)

    Alario, Joseph P.

    1988-01-01

    A prototype heat rejecting system is being developed by NASA-JSC for possible space station applications. This modular system, the Space-Erectable Radiator System Ground Test Article (SERS-GTA) with high-capacity radiator panels, can be installed and replaced on-orbit. The design, fabrication and testing of a representative ground test article are discussed. Acceptance test data for the heat pipe radiator panel and the whiffletree clamping mechanism have been presented.

  16. Space Radiation Transport Code Development: 3DHZETRN

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    The space radiation transport code, HZETRN, has been used extensively for research, vehicle design optimization, risk analysis, and related applications. One of the simplifying features of the HZETRN transport formalism is the straight-ahead approximation, wherein all particles are assumed to travel along a common axis. This reduces the governing equation to one spatial dimension allowing enormous simplification and highly efficient computational procedures to be implemented. Despite the physical simplifications, the HZETRN code is widely used for space applications and has been found to agree well with fully 3D Monte Carlo simulations in many circumstances. Recent work has focused on the development of 3D transport corrections for neutrons and light ions (Z < 2) for which the straight-ahead approximation is known to be less accurate. Within the development of 3D corrections, well-defined convergence criteria have been considered, allowing approximation errors at each stage in model development to be quantified. The present level of development assumes the neutron cross sections have an isotropic component treated within N explicit angular directions and a forward component represented by the straight-ahead approximation. The N = 1 solution refers to the straight-ahead treatment, while N = 2 represents the bi-directional model in current use for engineering design. The figure below shows neutrons, protons, and alphas for various values of N at locations in an aluminum sphere exposed to a solar particle event (SPE) spectrum. The neutron fluence converges quickly in simple geometry with N > 14 directions. The improved code, 3DHZETRN, transports neutrons, light ions, and heavy ions under space-like boundary conditions through general geometry while maintaining a high degree of computational efficiency. A brief overview of the 3D transport formalism for neutrons and light ions is given, and extensive benchmarking results with the Monte Carlo codes Geant4, FLUKA, and

  17. Performance test and image correction of CMOS image sensor in radiation environment

    NASA Astrophysics Data System (ADS)

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2016-09-01

    CMOS image sensors rival CCDs in domains that include strong radiation resistance as well as simple drive signals, so it is widely applied in the high-energy radiation environment, such as space optical imaging application and video monitoring of nuclear power equipment. However, the silicon material of CMOS image sensors has the ionizing dose effect in the high-energy rays, and then the indicators of image sensors, such as signal noise ratio (SNR), non-uniformity (NU) and bad point (BP) are degraded because of the radiation. The radiation environment of test experiments was generated by the 60Co γ-rays source. The camera module based on image sensor CMV2000 from CMOSIS Inc. was chosen as the research object. The ray dose used for the experiments was with a dose rate of 20krad/h. In the test experiences, the output signals of the pixels of image sensor were measured on the different total dose. The results of data analysis showed that with the accumulation of irradiation dose, SNR of image sensors decreased, NU of sensors was enhanced, and the number of BP increased. The indicators correction of image sensors was necessary, as it was the main factors to image quality. The image processing arithmetic was adopt to the data from the experiences in the work, which combined local threshold method with NU correction based on non-local means (NLM) method. The results from image processing showed that image correction can effectively inhibit the BP, improve the SNR, and reduce the NU.

  18. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  19. Magnetic resonance acoustic radiation force imaging.

    PubMed

    McDannold, Nathan; Maier, Stephan E

    2008-08-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are "stiffness weighted" and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery.

  20. Radiation dose optimization in thoracic imaging.

    PubMed

    Tack, D

    2010-01-01

    Guidelines for reduction of CT radiation dose were introduced in 1997 and are now more than 12 years old. The process initiated by the European Regulatory authorities to reduce the excess of radiation from CT has however not produced the expected results. Reference diagnostic levels (DRL) from surveys are still twice as high as needed in most European countries and were not significantly reduced as compared to the initial European ones. Many factors may at least explain partially the lack of dose reduction. One of them is the complexity of the dose optimization process while maintaining image quality at a diagnostically acceptable level. Chest is an anatomical region where radiation dose could be substantially reduced because of high natural contrasts between structures, such as air in the lungs and fat in the mediastinum. In this article, the concept of CT radiation dose optimization and the factors that contribute to maintain global excess in radiation dose are reviewed and a brief summary of results from research in the field of chest CT radiation dose is given.

  1. Radiation environment study of near space in China area

    NASA Astrophysics Data System (ADS)

    Fan, Dongdong; Chen, Xingfeng; Li, Zhengqiang; Mei, Xiaodong

    2015-10-01

    Aerospace activity becomes research hotspot for worldwide aviation big countries. Solar radiation study is the prerequisite for aerospace activity to carry out, but lack of observation in near space layer becomes the barrier. Based on reanalysis data, input key parameters are determined and simulation experiments are tried separately to simulate downward solar radiation and ultraviolet radiation transfer process of near space in China area. Results show that atmospheric influence on the solar radiation and ultraviolet radiation transfer process has regional characteristic. As key factors such as ozone are affected by atmospheric action both on its density, horizontal and vertical distribution, meteorological data of stratosphere needs to been considered and near space in China area is divided by its activity feature. Simulated results show that solar and ultraviolet radiation is time, latitude and ozone density-variant and has complicated variation characteristics.

  2. Effects of Nuclear Interactions on Accuracy of Space Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei; Barghouty, A. F.

    2005-01-01

    Space radiation risk to astronauts and electronic equipments is one major obstacle in long term human space explorations. Space radiation transport codes have been developed to calculate radiation effects behind materials in human missions to the Moon, Mars or beyond. We study how nuclear fragmentation processes affect the accuracy of predictions from such radiation transport. In particular, we investigate the effects of fragmentation cross sections at different energies on fluxes, dose and dose-equivalent from galactic cosmic rays behind typical shielding materials. These results tell us at what energies nuclear cross sections are the most important for radiation risk evaluations, and how uncertainties in our knowledge about nuclear fragmentations relate to uncertainties in space transport predictions.

  3. Space radar image of Wadi Kufra, Libya

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The ability of a sophisticated radar instrument to image large regions of the world from space, using different frequencies that can penetrate dry sand cover, produced the discovery in this image: a previously unknown branch of an ancient river, buried under thousands of years of windblown sand in a region of the Sahara Desert in North Africa. This area is near the Kufra Oasis in southeast Libya, centered at 23.3 degrees north latitude, 22.9 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on its 60th orbit on October 4, 1994. This SIR-C image reveals a system of old, now inactive stream valleys, called 'paleodrainage systems,

  4. Space Radiation Effects on Inflatable Habitat Materials Project

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Nichols, Charles

    2015-01-01

    The Space Radiation Effects on Inflatable Habitat Materials project provides much needed risk reduction data to assess space radiation damage of existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage will be quantified for materials used in inflatable structures (1st priority), as well as for habitable composite structures and space suits materials (2nd priority). The data acquired will have relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes. This project also will help to determine the service lifetimes for habitable inflatable, composite, and space suit materials.

  5. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  6. Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.

  7. Evident Biological Effects of Space Radiation in Astronauts

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2004-01-01

    Though cancer risks are the primary concern for astronauts exposed to space radiation and a number of astronauts have developed cancer, identifying a direct association or cause of disease has been somewhat problematic due to a lack of statistics and a lack of an appropriate control group. However, several bio,logical effects observed in astronauts are believed to be primarily due to exposure to space radiation. Among those are, light flashes experienced by astronauts from early missions, cataract development in the crewmembers and excess chromosome aberrations detected in astronauts' lymphocytes postmission. The space radiation environment and evident biological effects will be discussed.

  8. Space Radiation Effects in Inflatable and Composite Habitat Materials

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Rojdev, Kristina

    2015-01-01

    This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.

  9. Modeling of Radiation Risks for Human Space Missions

    NASA Technical Reports Server (NTRS)

    Fletcher, Graham

    2004-01-01

    Prior to any human space flight, calculations of radiation risks are used to determine the acceptable scope of astronaut activity. Using the supercomputing facilities at NASA Ames Research Center, Ames researchers have determined the damage probabilities of DNA functional groups by space radiation. The data supercede those used in the current Monte Carlo model for risk assessment. One example is the reaction of DNA with hydroxyl radical produced by the interaction of highly energetic particles from space radiation with water molecules in the human body. This reaction is considered an important cause of DNA mutations, although its mechanism is not well understood.

  10. Space Radar Image of Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    cover and alpine glaciers are critical to the radiation and water balances. SIR-C/X-SAR is a powerful tool because it is sensitive to most snowpack conditions and is less influenced by weather conditions than other remote sensing instruments, such as Landsat. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput SAR processing in preparation for upcoming data-intensive SAR missions. The images released here were produced as part of this experimental effort. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  11. TURTLE IN SPACE DESCRIBES NEW HUBBLE IMAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has shown us that the shrouds of gas surrounding dying, sunlike stars (called planetary nebulae) come in a variety of strange shapes, from an 'hourglass' to a 'butterfly' to a 'stingray.' With this image of NGC 6210, the Hubble telescope has added another bizarre form to the rogues' gallery of planetary nebulae: a turtle swallowing a seashell. Giving this dying star such a weird name is less of a challenge than trying to figure out how dying stars create these unusual shapes. The larger image shows the entire nebula; the inset picture captures the complicated structure surrounding the dying star. The remarkable features of this nebula are the numerous holes in the inner shells with jets of material streaming from them. These jets produce column-shaped features that are mirrored in the opposite direction. The multiple shells of material ejected by the dying star give this planetary nebula its odd form. In the 'full nebula' image, the brighter central region looks like a 'nautilus shell'; the fainter outer structure (colored red) a 'tortoise.' The dying star is the white dot in the center. Both pictures are composite images based on observations taken Aug. 6, 1997 with the telescope's Wide Field and Planetary Camera 2. Material flung off by this central star is streaming out of holes it punched in the nautilus shell. At least four jets of material can be seen in the 'full nebula' image: a pair near 6 and 12 o'clock and another near 2 and 8 o'clock. In each pair, the jets are directly opposite each other, exemplifying their 'bipolar' nature. The jets are thought to be driven by a 'fast wind' - material propelled by radiation from the hot central star. In the inner 'nautilus' shell, bright rims outline the escape holes created by this 'wind,' such as the one at 2 o'clock. This same 'wind' appears to give rise to the prominent outer jet in the same direction. The hole in the inner shell acts like a hose nozzle, directing the flow of

  12. TURTLE IN SPACE DESCRIBES NEW HUBBLE IMAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has shown us that the shrouds of gas surrounding dying, sunlike stars (called planetary nebulae) come in a variety of strange shapes, from an 'hourglass' to a 'butterfly' to a 'stingray.' With this image of NGC 6210, the Hubble telescope has added another bizarre form to the rogues' gallery of planetary nebulae: a turtle swallowing a seashell. Giving this dying star such a weird name is less of a challenge than trying to figure out how dying stars create these unusual shapes. The larger image shows the entire nebula; the inset picture captures the complicated structure surrounding the dying star. The remarkable features of this nebula are the numerous holes in the inner shells with jets of material streaming from them. These jets produce column-shaped features that are mirrored in the opposite direction. The multiple shells of material ejected by the dying star give this planetary nebula its odd form. In the 'full nebula' image, the brighter central region looks like a 'nautilus shell'; the fainter outer structure (colored red) a 'tortoise.' The dying star is the white dot in the center. Both pictures are composite images based on observations taken Aug. 6, 1997 with the telescope's Wide Field and Planetary Camera 2. Material flung off by this central star is streaming out of holes it punched in the nautilus shell. At least four jets of material can be seen in the 'full nebula' image: a pair near 6 and 12 o'clock and another near 2 and 8 o'clock. In each pair, the jets are directly opposite each other, exemplifying their 'bipolar' nature. The jets are thought to be driven by a 'fast wind' - material propelled by radiation from the hot central star. In the inner 'nautilus' shell, bright rims outline the escape holes created by this 'wind,' such as the one at 2 o'clock. This same 'wind' appears to give rise to the prominent outer jet in the same direction. The hole in the inner shell acts like a hose nozzle, directing the flow of

  13. Shielding materials for highly penetrating space radiations

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1995-01-01

    Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers

  14. Shielding materials for highly penetrating space radiations

    NASA Astrophysics Data System (ADS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1995-11-01

    Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers

  15. Space radiation effects on plant and mammalian cells

    NASA Astrophysics Data System (ADS)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  16. Space Radiation and Manned Mission: Interface Between Physics and Biology

    NASA Astrophysics Data System (ADS)

    Hei, Tom

    2012-07-01

    The natural radiation environment in space consists of a mixed field of high energy protons, heavy ions, electrons and alpha particles. Interplanetary travel to the International Space Station and any planned establishment of satellite colonies on other solar system implies radiation exposure to the crew and is a major concern to space agencies. With shielding, the radiation exposure level in manned space missions is likely to be chronic, low dose irradiation. Traditionally, our knowledge of biological effects of cosmic radiation in deep space is almost exclusively derived from ground-based accelerator experiments with heavy ions in animal or in vitro models. Radiobiological effects of low doses of ionizing radiation are subjected to modulations by various parameters including bystander effects, adaptive response, genomic instability and genetic susceptibility of the exposed individuals. Radiation dosimetry and modeling will provide conformational input in areas where data are difficult to acquire experimentally. However, modeling is only as good as the quality of input data. This lecture will discuss the interdependent nature of physics and biology in assessing the radiobiological response to space radiation.

  17. In-Space Radiator Shape Optimization using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael

    2006-01-01

    Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space

  18. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2004-06-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  19. CFRP radiator concept for space applications

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Peter; Hartmann, Dennis; Weiß, Felix

    2016-06-01

    The paper presents the work conducted by HPS GmbH on manufacturing, analysis and testing of an innovative CFRP radiator for spacecraft applications, having the same thermal performances and a mass reduction of more than 30 % compared to standard aluminum radiators (in addition see Schlitt et al. in 40th international conference on environmental systems, 2010). The developed configuration can be used as condenser or radiation heat sink on the East/West panels of the spacecraft for either two-phase or single-phase heat transportation systems.

  20. Time-dependent radiation hazard estimations during space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander

    minimizing most harmful particle types flows. 1.Nymmik et. al., “Galactic cosmic ray flux simulation and prediction”, Adv. Space Res. 17:19-30, (1996); 2. Xu et. al., “VIP-Man: an image-based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations” Health Phys. 78:476-86, (2000).

  1. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.

    PubMed

    Norbury, John W; Schimmerling, Walter; Slaba, Tony C; Azzam, Edouard I; Badavi, Francis F; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A; Blattnig, Steve R; Boothman, David A; Borak, Thomas B; Britten, Richard A; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S; Eisch, Amelia J; Robin Elgart, S; Goodhead, Dudley T; Guida, Peter M; Heilbronn, Lawrence H; Hellweg, Christine E; Huff, Janice L; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A; Norman, Ryan B; Ottolenghi, Andrea; Patel, Zarana S; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A; Semones, Edward; Shay, Jerry W; Shurshakov, Vyacheslav A; Sihver, Lembit; Simonsen, Lisa C; Story, Michael D; Turker, Mitchell S; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J

    2016-02-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.

  2. Spectral Analysis in High Radiation Space Backgrounds with Robust Fitting

    NASA Technical Reports Server (NTRS)

    Lasche, G. P.; Coldwell, R. L.; Nobel, L. A.; Rester, A. C.; Trombka, J. I.

    1997-01-01

    Spectral analysis software is tested for its ability to fit spectra from space. The approach, which emphasizes the background shape function, is uniquely suited to the identification of weak-strength nuclides in high-radiation background environments.

  3. Space Radar Image of Baikal Lake, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band black-and-white image of the forests east of the Baikal Forest in the Jablonowy Mountains of Russia. The image is centered at 52.5 degrees north latitude and 116 degrees east longitude near the mining town of Bukatschatscha. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on October 4, 1994, during the second flight of the spaceborne radar. This area is part of an international research project known as the Taiga Aerospace Investigation using Geographic Information System Applications.

  4. Detection of DNA damage induced by space radiation in Mir and space shuttle.

    PubMed

    Ohnishi, Takeo; Ohnishi, Ken; Takahashi, Akihisa; Taniguchi, Yoshitaka; Sato, Masaru; Nakano, Tamotsu; Nagaoka, Shunji

    2002-12-01

    Although physical monitoring of space radiation has been accomplished, we aim to measure exact DNA damage as caused by space radiation. If DNA damage is caused by space radiation, we can detect DNA damage dependent on the length of the space flight periods by using post-labeling methods. To detect DNA damage caused by space radiation, we placed fixed human cervical carcinoma (HeLa) cells in the Russian Mir space station for 40 days and in an American space shuttle for 9 days. After landing, we labeled space-radiation-induced DNA strand breaks by enzymatic incorporation of [3H]-dATP with terminal deoxyribo-nucleotidyl transferase (TdT). We detected DNA damage as many grains on fixed silver emulsion resulting from beta-rays emitted from 3H-atoms in the nuclei of the cells placed in the Mir-station (J/Mir mission, STS-89), but detected hardly any in the ground control sample. In the space shuttle samples (S/MM-8), the number of cells having many grains was lower than that in the J/Mir mission samples. These results suggest that DNA damage is caused by space radiation and that it is dependent on the length of the space flight.

  5. Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.

  6. Radiation effects on microelectronics and future space missions

    NASA Technical Reports Server (NTRS)

    Patterson, Jeffrey D.

    2003-01-01

    This paper briefly reviews the three basic radiation effect mechanisms, and how they interrupt the functionality of currently available non-volatile memory technologies. This paper also presents a very general overview of the radiation environments expected in future space exploration missions. Unfortunately, these environments will be very harsh, from a radiation standpoint, and thus a significant effort is required to develop non-volatile technologies that will meet future mission requirements.

  7. Space Radar Image of Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an X-band Synthetic Aperture Radar image spanning an area of about 20 kilometers by 40 kilometers (12 miles by 25 miles) of the Kennedy Space Center, Florida. At the top right are cloud-like structures which indicate rain. X-SAR is able to image heavy rainfall. The Atlantic Ocean is at the upper right. The shuttle landing strip is seen at the top left of the image. The Vertical Assembly Building, the Orbiter Processing Facility and other associated buildings are seen as a white area to the right and just above the end of the shuttle strip. The shuttle launch pads are the two white areas near the top center of the image. The Banana River shows up as a large black area running north to south to the right of the image. The Indian River is on the left side of the image. Just above the image center is a cluster of white spots which are the major buildings of the Kennedy Space Center industrial area. This was the location of the reflector array that was constructed to form the letters 'KSC' by the KSC payload team. The data for these KSC images were taken on orbit 81 of the space shuttle Endeavour on the fourth day of the SIR-C/X-SAR mission. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio

  8. Space solar cells: High efficiency and radiation damage

    NASA Technical Reports Server (NTRS)

    Brandhorst, H., Jr.; Bernatowicz, D. T.

    1980-01-01

    The progress and status of efforts to increase the end-of-life efficiency of solar cells for space use is assessed. High efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance and radiation damage and 30 percent devices are discussed.

  9. Radiation Transport Tools for Space Applications: A Review

    NASA Technical Reports Server (NTRS)

    Jun, Insoo; Evans, Robin; Cherng, Michael; Kang, Shawn

    2008-01-01

    This slide presentation contains a brief discussion of nuclear transport codes widely used in the space radiation community for shielding and scientific analyses. Seven radiation transport codes that are addressed. The two general methods (i.e., Monte Carlo Method, and the Deterministic Method) are briefly reviewed.

  10. Space Radar Image of Los Angeles, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the massive urbanization of Los Angeles, California. The image extends from the Santa Monica Bay at the left to the San Gabriel Mountains at the right. Downtown Los Angeles is in the center of the image. The runways of the Los Angeles International Airport appear as black strips at the left center of the image. The waterways of Marina del Rey are seen just above the airport. The San Gabriel Mountains and the city of Pasadena are at the right center of the image. Black areas on the mountains on the right are fire scars from the 1993 Altadena fire. The Rose Bowl is shown as a small circle near the right center. The complex freeway system is visible as dark lines throughout the image. Some city areas, such as Santa Monica in the upper left, appear red due to the alignment of streets and buildings to the incoming radar beam. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. This image is centered at 34.04 degrees North latitude and 118.2 degrees West longitude with North pointing toward the upper right. The area shown measures 40 kilometers by 50 kilometers (25 miles by 31 miles).

  11. Space Radar Image of Randonia Rain Cell

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This multi-frequency space radar image of a tropical rainforest in western Brazil shows rapidly changing land use patterns and it also demonstrates the capability of the different radar frequencies to detect and penetrate heavy rainstorms. This color image was created by combining the three separate radar frequencies into a composite image. The three black and white images below represent the individual frequencies. The lower left image, X-band vertically transmitted and received, is blue in the color image; the lower center image, C-band horizontally transmitted and vertically received is green; and the lower right image, L-band horizontally transmitted and vertically received is red. A heavy downpour in the lower center of the image appears as a black 'cloud' in the X-band image, the same area is shows up faintly in the C-band image, and is invisible in the L-band image. When combined in the color image, the rain cell appears red and yellow. Although radar can usually 'see' through clouds, short radar wavelengths (high frequency), such as X and C-band, can be changed by unusually heavy rain cells. L-band, at a 24 cm (9 inches) wavelength, is unaffected by such rain cells. By analyzing the way the radar changes, scientist can estimate rainfall rates. The area shown is in the state of Rondonia, in western Brazil. The pink areas are pristine tropical rainforest, and the blue and green patches are areas where the forest has been cleared for agriculture. Cleared areas are typically able to support intense farming for a only few years, before soil erosion renders the fields unusable. Radar imaging can be used to monitor not only the rainforest destruction, but also the rates of recovery of abandoned fields. This image is 35.2 kilometers by 21.3 kilometers (21.8 miles by 13.2 miles) and is centered at 11.2 degrees south latitude, 61.7 degrees west longitude. North is toward the upper left. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic

  12. Space-based optical image encryption.

    PubMed

    Chen, Wen; Chen, Xudong

    2010-12-20

    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  13. Image denoising using local tangent space alignment

    NASA Astrophysics Data System (ADS)

    Feng, JianZhou; Song, Li; Huo, Xiaoming; Yang, XiaoKang; Zhang, Wenjun

    2010-07-01

    We propose a novel image denoising approach, which is based on exploring an underlying (nonlinear) lowdimensional manifold. Using local tangent space alignment (LTSA), we 'learn' such a manifold, which approximates the image content effectively. The denoising is performed by minimizing a newly defined objective function, which is a sum of two terms: (a) the difference between the noisy image and the denoised image, (b) the distance from the image patch to the manifold. We extend the LTSA method from manifold learning to denoising. We introduce the local dimension concept that leads to adaptivity to different kind of image patches, e.g. flat patches having lower dimension. We also plug in a basic denoising stage to estimate the local coordinate more accurately. It is found that the proposed method is competitive: its performance surpasses the K-SVD denoising method.

  14. Imaging Tumor Hypoxia to Advance Radiation Oncology

    PubMed Central

    Lee, Chen-Ting; Boss, Mary-Keara

    2014-01-01

    Abstract Significance: Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. Recent Advances: Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. Critical Issues: In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. Future Directions: A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices. Antioxid. Redox Signal. 21, 313–337. PMID:24329000

  15. Imaging Using Energy Discriminating Radiation Detector Array

    SciTech Connect

    Willson, Paul D.; Clajus, Martin; Tuemer, Tuemay O.; Visser, Gerard; Cajipe, Victoria

    2003-08-26

    Industrial X-ray radiography is often done using a broad band energy source and always a broad band energy detector. There exist several major advantages in the use of narrow band sources and or detectors, one of which is the separation of scattered radiation from primary radiation. ARDEC has developed a large detector array system in which every detector element acts like a multi-channel analyzer. A radiographic image is created from the number of photons detected in each detector element, rather than from the total energy absorbed in the elements. For high energies, 25 KeV to 4 MeV, used in radiography, energy discriminating detectors have been limited to less than 20,000 photons per second per detector element. This rate is much too slow for practical radiography. Our detector system processes over two million events per second per detector pixel, making radiographic imaging practical. This paper expounds on the advantages of the ARDEC radiographic imaging process.

  16. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  17. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect

    Merrigan, M.A.; Elder, M.G.; Keddy, E.S.; Sena, J.T.

    1984-08-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance (kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of light weight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  18. Acceptability of risk from radiation: Application to human space flight

    SciTech Connect

    1997-04-30

    This one of NASA`s sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. The Human Exploration Initative: Space Radiation Measurement Needs

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Barghouty, Nasser; Bhattacharya, Manojeet; Lin, Zi-Wei

    2004-01-01

    NASA's Space Exploration Initiative envisions human exploration missions to the Moon and Mars. To accomplish these missions safely, they must be designed and planned to limit the acute and long term health risks posed by ionizing radiation. This requires knowledge of the relevant components of the ionizing radiation environment in deep space, on the Moon and on Mars. In this talk we will identify what must be known about the ionizing radiation environment, discuss what knowledge already exists and suggest what new measurements may be needed before manned missions can be conducted safely.

  20. Diffraction imaging (topography) with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri

    1988-01-01

    Structural information of special interest to crystal growers and device physicists is now available from high resolution monochromatic synchrotron diffraction imaging (topography). In the review, the importance of superior resolution in momentum transfer and in space is described, and illustrations are taken from a variety of crystals: gallium arsenide, cadmium telluride, mercuric iodide, bismuth silicon oxide, and lithium niobate. The identification and understanding of local variations in crystal growth processes are shown. Finally, new experimental opportunities now available for exploitation are indicated.

  1. Space Images for NASA JPL Android Version

    NASA Technical Reports Server (NTRS)

    Nelson, Jon D.; Gutheinz, Sandy C.; Strom, Joshua R.; Arca, Jeremy M.; Perez, Martin; Boggs, Karen; Stanboli, Alice

    2013-01-01

    This software addresses the demand for easily accessible NASA JPL images and videos by providing a user friendly and simple graphical user interface that can be run via the Android platform from any location where Internet connection is available. This app is complementary to the iPhone version of the application. A backend infrastructure stores, tracks, and retrieves space images from the JPL Photojournal and Institutional Communications Web server, and catalogs the information into a streamlined rating infrastructure. This system consists of four distinguishing components: image repository, database, server-side logic, and Android mobile application. The image repository contains images from various JPL flight projects. The database stores the image information as well as the user rating. The server-side logic retrieves the image information from the database and categorizes each image for display. The Android mobile application is an interfacing delivery system that retrieves the image information from the server for each Android mobile device user. Also created is a reporting and tracking system for charting and monitoring usage. Unlike other Android mobile image applications, this system uses the latest emerging technologies to produce image listings based directly on user input. This allows for countless combinations of images returned. The backend infrastructure uses industry-standard coding and database methods, enabling future software improvement and technology updates. The flexibility of the system design framework permits multiple levels of display possibilities and provides integration capabilities. Unique features of the software include image/video retrieval from a selected set of categories, image Web links that can be shared among e-mail users, sharing to Facebook/Twitter, marking as user's favorites, and image metadata searchable for instant results.

  2. A voyage to Mars: space radiation, aging, and nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On exploratory class missions, such as a voyage to Mars, astronauts will be exposed to doses and types of radiation that are not experienced in low earth orbit where the space shuttle and International Space Station operate. Astronauts who participate in exploratory class missions outside the magne...

  3. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  4. Projection x-space magnetic particle imaging.

    PubMed

    Goodwill, Patrick W; Konkle, Justin J; Zheng, Bo; Saritas, Emine U; Conolly, Steven M

    2012-05-01

    Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.

  5. Space Radar Image of Athens, Greece

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This space radar image of Athens, Greece, shows the sprawling, modern development of this ancient capital city. Densely populated urban areas appear in shades of pink and light green. The Acropolis the dark green triangular patch in the center of the image. Archaeological discoveries indicate Athens has been continuously occupied for at least the last 5,000 years. Numerous ships, shown as bright dots, are seen in the harbor areas in the upper left part of the image. The port city of Piraeus is at the left center. This image is 45 kilometers by 45 kilometers (28 miles by 28 miles) and is centered at 37.9 degrees north latitude, 23.7 degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations are as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 2, 1994 onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  6. Space radiation studies. [Spacelab 2 Payload

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The overall data flow diagram for the nuclear radiation monitor to fly on Spacelab 2 was revised. The use of structured techniques for the software design appears to be working well. An example of the PASCAL pseudocode written to develop and document the software design is included.

  7. Nuclear Fragmentation Processes Relevant for Human Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2007-01-01

    Space radiation from cosmic ray particles is one of the main challenges for human space explorations such-as a moon base or a trip to Mars. Models have been developed in order to predict the radiation exposure to astronauts and to evaluate the effectiveness of different shielding materials, and a key ingredient in these models is the physics of nuclear fragmentations. We have developed a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the radiation dose behind shielding materials due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.

  8. Heavy ion radiobiology for hadrontherapy and space radiation protection.

    PubMed

    Durante, Marco

    2004-12-01

    Research in the field of biological effects of heavy charged particles is needed for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions. Although the exposure conditions (e.g. high- vs. low-dose rate) and relevant endpoints (e.g. cell killing vs. neoplastic transformation) are different in the two fields, it is clear that a substantial overlap exists in several research topics. Three such topics are discussed in this short review: individual radiosensitivity, mixed radiation fields, and late stochastic effects of heavy ions. In addition, researchers involved either in experimental studies on space radiation protection or heavy-ion therapy will basically use the same accelerator facilities. It seems to be important that novel accelerator facilities planned (or under construction) for heavy-ion therapy reserve a substantial amount of beamtime to basic studies of heavy-ion radiobiology and its applications in space radiation research.

  9. The radiation protection problems of high altitude and space flight

    SciTech Connect

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  10. The radiation protection problems of high altitude and space flight

    SciTech Connect

    Fry, R.J.M.

    1993-04-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  11. Solid State Radiation Dosimeters for Space and Medical Applications

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Editor)

    1996-01-01

    This report describes the development of two radiation monitors (RADMON's) for use in detecting total radiation dose and high-energy particles. These radiation detectors are chip-size devices fabricated in 1.2 micrometer CMOS and have flown in space on both experimental and commercial spacecraft. They have been used to characterize protons and electrons in the Earth's radiation belts, particles from the Sun, and protons used for medical therapy. Having proven useful in a variety of applications, the detector is now being readied for commercialization.

  12. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  13. The liquid droplet radiator in space: A parametric approach

    NASA Astrophysics Data System (ADS)

    Buckner, Gerald L.; Tuttle, Ronald F.

    The Liquid Droplet Radiator (LDR) consists of a column or sheet of liquid droplets moving through space from a droplet generator to a collector. The droplets carry the waste heat generated by a space power system and radiate this waste heat directly to space during their flight. The liquid droplets are collected at a lower temperature, reheated and pumped to the generator and reused to remove waste heat from the thermodynamic power cycle. A parametric analysis is given of a cylindrical LDR to estimate its performance and operating characteristics using a new pump specific mass term.

  14. [Radiation Environment Study of Near Space in China Area].

    PubMed

    Mei, Xiao-dong; Sun, Ji-lin; Li, Zheng-qiang; Chen, Xing-feng; Xing, Jin; Xu, Hua; Qie, Li-li; Lü, Yang; Li, Yang; Liu, Li

    2016-03-01

    Aerospace activity in near space (20-50 km) has become a research hotspot for aviation big countries worldwide. Solar radiation study, as the prerequisite to carry out aerospace activity, is facing the barrier of lacking of observation in near space layer. Ozone is the most important factor that affects radiation value in this layer. Based on ECMWF reanalysis data, this input key parameter and its horizontal, vertical and temporal characteristics are analyzedwith results showing obvious regional features in temporal-spatial distribution and varieties. With meteorological data and surface parameters, near space over China is divided into 5 parts. Key factors' value is confirmed over each division. With SBDART radiation transfer model, solar radiation and ultraviolet radiation simulation in near space are conducted separately. Results show that it is influenced by latitude, total ozone and its vertical distribution, radiation varies under complex rules. The average year and monthly solar radiation strengthens changes with latitude reduction, while annual range changes reversely. Air absorbing is related to latitude and land-sea contrast and shows different values and seasonal variations. The ultraviolet radiation over South China Sea reaches its maximum value and minimum annual range, as well as minimum monthly range with value strengthening in summer and weakening in winter. In other areas radiation increases in summer while weakens in winter, monthly range shows double peaks with higher value in spring and autumn, lower in summer and winter. Air absorption in ultraviolet radiation is influenced by multiple factors, vertical varieties over areas besides South China Sea enhance in summer time. The vertical changes of monthly ranges affected by air absorption show consistence in higher and lower layer in June and July, while in other months ranges are bigger in higher layer.

  15. Space radiation risks to the central nervous system

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli

    2014-07-01

    Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.

  16. Towards a Radiation Hardened Fluxgate Magnetometer for Space Physics Applications

    NASA Astrophysics Data System (ADS)

    Miles, David M.

    Space-based measurements of the Earth's magnetic field are required to understand the plasma processes of the solar-terrestrial connection which energize the Van Allen radiation belts and cause space weather. This thesis describes a fluxgate magnetometer payload developed for the proposed Canadian Space Agencys Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission. The instrument can resolve 8 pT on a 65,000 nT field at 900 samples per second with a magnetic noise of less than 10 pT per square-root Hertz at 1 Hertz. The design can be manufactured from radiation tolerant (100 krad) space grade parts. A novel combination of analog temperature compensation and digital feedback simplifies and miniaturises the instrument while improving the measurement bandwidth and resolution. The prototype instrument was successfully validated at the Natural Resources Canada Geomagnetics Laboratory, and is being considered for future ground, satellite and sounding rocket applications.

  17. Recent measurements for hadrontherapy and space radiation: nuclear physics.

    PubMed

    Miller, J

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  18. Recent measurements for hadrontherapy and space radiation: nuclear physics

    NASA Technical Reports Server (NTRS)

    Miller, J.

    2001-01-01

    The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.

  19. Radiation factors in space and a system for their monitoring.

    PubMed

    Kovtunenko, V M; Kremnev, R S; Pichkhadze, K M; Bogomolov, V B; Kontor, N N; Filippichev, S A; Petrov, V M; Pissarenko, N F

    1994-10-01

    The radiation environment is of special concern when the spaceship flies in deep space. The annual fluence of the galactic cosmic rays is approximately 10(8) cm-2 and the absorbed dose of the solar cosmic rays can reach 10 Gy per event behind the shielding thickness of 3-5 g cm-2 Al. For the radiation environment monitoring it is planned to place a measuring complex on the space probes "Mars" and "Spectr" flying outside the magnetosphere. This complex is to measure: cosmic rays composition, particle flux, dose equivalent, energy and LET spectra, solar X-rays spectrum. On line data transmission by the space probes permits to obtain the radiation environment data in space.

  20. Space radiation incident on SATS missions

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1973-01-01

    A special orbital radiation study was conducted in order to evaluate mission encountered energetic particle fluxes. This information is to be supplied to the project subsystem engineers for their guidance in designing flight hardware to withstand the expected radiation levels. Flux calculations were performed for a set of 20 nominal trajectories placed at several altitudes and inclinations. Temporal variations in the ambient electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model, extrapolated to the tentative SATS launch epoch with linear time terms. Orbital flux integrations ware performed with the latest proton and electron environment models, using new computational methods. The results are presented in graphical and tabular form. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 Mev, calculated for a year of maximum solar activity during the next solar cycle.

  1. A phase-space beam position monitor for synchrotron radiation.

    PubMed

    Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean

    2015-07-01

    The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam's position and angle, and thus infer the electron beam's position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement.

  2. Radiation events in astronomical CCD images

    SciTech Connect

    Smith, A.R.; McDonald, R.J.; Hurley, D.L.; Holland, S.E.; Groom, D.E.; Brown, W.E.; Gilmore, D.K.; Stover, R.J.; Wei, M.

    2001-12-18

    The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. ''Cosmic rays'' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons (''worms''). Beta emitters inside the dewar, for example high-potassium glasses such as BK7, also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by-products of the U and Th decay chains; these elements always appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to be significantly cleaner than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude flights does not appear to be a problem. Our conclusions are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).

  3. Radiation events in astronomical CCD images

    NASA Astrophysics Data System (ADS)

    Smith, Alan R.; McDonald, Richard J.; Hurley, D. C.; Holland, Steven E.; Groom, Donald E.; Brown, William E.; Gilmore, David K.; Stover, Richard J.; Wei, Mingzhi

    2002-04-01

    The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. 'Cosmic rays' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons ('worms'). Beta emitters inside the dewar, for example high-potassium glasses such as BK7 , also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by- products of 40K decay and the U and Th decay chains; these elements commonly appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to have significantly lower rates than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude fights does not appear to be a problem. Our conclusion are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).

  4. Space Radar Image of Samara, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-frequency space radar image shows the city of Samara, Russia in pink and light green right of center. Samara is at the junction of the Volga and Samara Rivers approximately 800 kilometers (500 miles) southeast of Moscow. The wide river in the center of the image is the Volga. Samara, formerly Kuybyshev, is a busy industrial city known for its chemical, mechanical and petroleum industries. Northwest of the Volga (upper left corner of the image) are deciduous forests of the Samarskaya Luka National Park. Complex patterns in the floodplain of the Volga are caused by 'cut-off' lakes and channels from former courses of the meandering river. The three radar frequencies allow scientists to distinguish different types of agricultural fields in the lower right side of the image. For example, fields which appear light blue are short grass or cleared fields. Purple and green fields contain taller plants or rough plowed soil. Scientists hope to use radar data such as these to understand the environmental consequences of industrial, agricultural and natural preserve areas coexisting in close proximity. This image is 50 kilometers by 26 kilometers (31 by 16 miles) and is centered at 53.2 degrees north latitude, 50.1 degrees east longitude. North is toward the top of the image. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and vertically received; and blue is X-band, vertically transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 1, 1994 onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  5. Space Radar Image of Namibia Sand Dunes

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows part of the vast Namib Sand Sea on the west coast of southern Africa, just northeast of the city of Luderitz, Namibia. The magenta areas in the image are fields of sand dunes, and the orange area along the bottom of the image is the surface of the South Atlantic Ocean. The region receives only a few centimeters (inches) of rain per year. In most radar images, sandy areas appear dark due to their smooth texture, but in this area the sand is organized into steep dunes, causing bright radar reflections off the dune 'faces.' This effect is especially pronounced in the lower center of the image, where many glints of bright radar reflections are seen. Radar images of this hyper-arid region have been used to image sub-surface features, such as abandoned stream courses. The bright green features in the upper right are rocky hills poking through the sand sea. The peninsula in the lower center, near Hottentott Bay, is Diaz Point; Elizabeth Point is south of Diaz Point. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 11, 1994. The image is 54.2 kilometers by 82.2 kilometers (33.6 miles by 51.0 miles) and is centered at 26.2 degrees South latitude, 15.1 degrees East longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, horizontally received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  6. Space Radar Image of Florence, Italy

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows land use patterns in and around the city of Florence, Italy, shown here in the center of the image. Florence is situated on a plain in the Chianti Hill region of Central Italy. The Arno River flows through town and is visible as the dark line running from the upper right to the bottom center of the image. The city is home to some of the world's most famous art museums. The bridges seen crossing the Arno, shown as faint red lines in the upper right portion of the image, were all sacked during World War II with the exception of the Ponte Vecchio, which remains as Florence's only covered bridge. The large, black V-shaped feature near the center of the image is the Florence Railroad Station. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on April 14, 1994. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth. This image is centered at 43.7 degrees north latitude and 11.15 degrees east longitude with North toward the upper left of the image. The area shown measures 20 kilometers by 17 kilometers (12.4 miles by 10.6 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received.

  7. Optimized shielding for space radiation protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.

    2001-01-01

    Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  8. Optimized Shielding for Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Kim, M.-H. Y.; Schimmerling, W.

    2000-01-01

    Abstract. Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.

  9. Physical and biomedical countermeasures for space radiation risk.

    PubMed

    Durante, Marco

    2008-01-01

    Radiation exposure represents a serious hindrance for long-term interplanetary missions because of the high uncertainty on risk coefficients, and to the lack of simple countermeasures. Even if uncertainties in risk assessment will be reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Strategies that may prove to be effective in reducing exposure, or the effects of the irradiation, include shielding, administration of drugs or dietary supplements to reduce the radiation effects, crew selection based on a screening of individual radiation sensitivity. It is foreseeable that research in passive and active radiation shielding, radioprotective chemicals, and individual susceptibility will boost in the next years to provide efficient countermeasures to the space radiation threat.

  10. Radiation hazards on space missions outside the magnetosphere.

    PubMed

    Letaw, J R; Silberberg, R; Tsao, C H

    1989-01-01

    Future space missions outside the magnetosphere will subject astronauts to a hostile and unfamiliar radiation environment. An annual dose equivalent to the blood-forming organs (BFOs) of approximately 0.5 Sv is expected, mostly from heavy ions in the galactic cosmic radiation. On long-duration missions, an anomalously-large solar energetic particle event may occur. Such an event can expose astronauts to up to approximately 25 Gy (skin dose) and up to approximately 2 Sv (BFO dose) with no shielding. The anticipated radiation exposure may necessitate spacecraft design concessions and some restriction of mission activities. In this paper we discuss our model calculations of radiation doses in several exo-magnetospheric environments. Specific radiation shielding strategies are discussed. A new calculation of aluminum equivalents of potential spacecraft shielding materials demonstrates the importance of low-atomic-mass species for protection from galactic cosmic radiation.

  11. Overview of HZETRN and BRNTRN Space Radiation Shielding Codes

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, F. A.; Shinn, J. L.; Simonsen, L. C.; Badavi, F. F.

    1997-01-01

    The NASA Radiation Health Program has supported basic research over the last decade in radiation physics to develop ionizing radiation transport codes and corresponding data bases for the protection of astronauts from galactic and solar cosmic rays on future deep space missions. The codes describe the interactions of the incident radiations with shield materials where their content is modified by the atomic and nuclear reactions through which high energy heavy ions are fragmented into less massive reaction products and reaction products are produced as radiations as direct knockout of shield constituents or produced as de-excitation products in the reactions. This defines the radiation fields to which specific devices are subjected onboard a spacecraft. Similar reactions occur in the device itself which is the initiating event for the device response. An overview of the computational procedures and data base with some applications to photonic and data processing devices will be given.

  12. The biological effects of space radiation during long stays in space.

    PubMed

    Ohnishi, Ken; Ohnishi, Takeo

    2004-12-01

    Many space experiments are scheduled for the International Space Station (ISS). Completion of the ISS will soon become a reality. Astronauts will be exposed to low-level background components from space radiation including heavy ions and other high-linear energy transfer (LET) radiation. For long-term stay in space, we have to protect human health from space radiation. At the same time, we should recognize the maximum permissible doses of space radiation. In recent years, physical monitoring of space radiation has detected about 1 mSv per day. This value is almost 150 times higher than that on the surface of the Earth. However, the direct effects of space radiation on human health are currently unknown. Therefore, it is important to measure biological dosimetry to calculate relative biological effectiveness (RBE) for human health during long-term flight. The RBE is possibly modified by microgravity. In order to understand the exact RBE and any interaction with microgravity, the ISS centrifugation system will be a critical tool, and it is hoped that this system will be in operation as soon as possible.

  13. Non Radiation Hardened Microprocessors in Spaced Based Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Decoursey, Robert J.; Estes, Robert F.; Melton, Ryan

    2006-01-01

    The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission is a comprehensive suite of active and passive sensors including a 20Hz 230mj Nd:YAG lidar, a visible wavelength Earth-looking camera and an imaging infrared radiometer. CALIPSO flies in formation with the Earth Observing System Post-Meridian (EOS PM) train, provides continuous, near-simultaneous measurements and is a planned 3 year mission. CALIPSO was launched into a 98 degree sun synchronous Earth orbit in April of 2006 to study clouds and aerosols and acquires over 5 gigabytes of data every 24 hours. The ground track of one CALIPSO orbit as well as high and low intensity South Atlantic Anomaly outlines is shown. CALIPSO passes through the SAA several times each day. Spaced based remote sensing systems that include multiple instruments and/or instruments such as lidar generate large volumes of data and require robust real-time hardware and software mechanisms and high throughput processors. Due to onboard storage restrictions and telemetry downlink limitations these systems must pre-process and reduce the data before sending it to the ground. This onboard processing and realtime requirement load may mean that newer more powerful processors are needed even though acceptable radiation-hardened versions have not yet been released. CALIPSO's single board computer payload controller processor is actually a set of four (4) voting non-radiation hardened COTS Power PC 603r's built on a single width VME card by General Dynamics Advanced Information Systems (GDAIS). Significant radiation concerns for CALIPSO and other Low Earth Orbit (LEO) satellites include the South Atlantic Anomaly (SAA), the north and south poles and strong solar events. Over much of South America and extending into the South Atlantic Ocean the Van Allen radiation belts dip to just 200-800km and spacecraft entering this area are subjected to high energy protons and experience higher than normal Single Event Upset

  14. Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.

    2009-01-01

    Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.

  15. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  16. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  17. Mars Radiation Risk Assessment and Shielding Design for Long-term Exposure to Ionizing Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Nealy, John E.

    2007-01-01

    NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA is committed to the safety of the missions and the crew, and there is an overwhelming emphasis on the reliability issues for space missions and the habitat. The cost-effective design of the spacecraft demands a very stringent requirement on the optimization process. Exposure from the hazards of severe space radiation in deep space and/or long duration missions is a critical design constraint and a potential 'show stopper'. Thus, protection from the hazards of severe space radiation is of paramount importance to the agency's vision. It is envisioned to have long duration human presence on the Moon for deep space exploration. The exposures from ionizing radiation - galactic cosmic radiation and solar particle events - and optimized shield design for a swing-by and a long duration Mars mission have been investigated. It is found that the technology of today is inadequate for safe human missions to Mars, and revolutionary technologies need to be developed for long duration and/or deep space missions. The study will provide a guideline for radiation exposure and protection for long duration missions and career astronauts and their safety.

  18. Imaging of near-Earth space plasma.

    PubMed

    Mitchell, Cathryn N

    2002-12-15

    This paper describes the technique of imaging the ionosphere using tomographic principles. It reports on current developments and speculates on the future of this research area. Recent developments in computing and ionospheric measurement, together with the sharing of data via the internet, now allow us to envisage a time when high-resolution, real-time images and 'movies' of the ionosphere will be possible for radio communications planning. There is great potential to use such images for improving our understanding of the physical processes controlling the behaviour of the ionosphere. While real-time images and movies of the electron concentration are now almost possible, forecasting of ionospheric morphology is still in its early stages. It has become clear that the ionosphere cannot be considered as a system in isolation, and consequently new research projects to link together models of the solar-terrestrial system, including the Sun, solar wind, magnetosphere, ionosphere and thermosphere, are now being proposed. The prospect is now on the horizon of assimilating data from the entire solar-terrestrial system to produce a real-time computer model and 'space weather' forecast. The role of tomography in imaging beyond the ionosphere to include the whole near-Earth space-plasma realm is yet to be realized, and provides a challenging prospect for the future. Finally, exciting possibilities exist in applying such methods to image the atmospheres and ionospheres of other planets.

  19. Space Radar Image of Phnom Phen, Cambodia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This spaceborne radar image shows the city of Phnom Penh, the capital of Cambodia. Phnom Penh lies at the confluence of the Mekong River and the Basak Sab. The city was originally established in 1434 to succeed Angkor Thom as capital of the Khmer Nation. Phnom Penh is the bright blue and orange area west of the rivers, near the center of the image. The red, light blue and purple colors indicate differences in vegetation height and structure. Radar images like this one are being used by archaeologists to investigate ruins in the Angkor area in northern Cambodia. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 15, 1994. The image is 27 kilometers by 27 kilometers (17 miles by 17 miles) and is centered at 11.5 degrees north latitude, 105.0 degrees East longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  20. Space Radar Image of Central Sumatra, Indonesia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of the central part of the island of Sumatra in Indonesia that shows how the tropical rainforest typical of this country is being impacted by human activity. Native forest appears in green in this image, while prominent pink areas represent places where the native forest has been cleared. The large rectangular areas have been cleared for palm oil plantations. The bright pink zones are areas that have been cleared since 1989, while the dark pink zones are areas that were cleared before 1989. These radar data were processed as part of an effort to assist oil and gas companies working in the area to assess the environmental impact of both their drilling operations and the activities of the local population. Radar images are useful in these areas because heavy cloud cover and the persistent smoke and haze associated with deforestation have prevented usable visible-light imagery from being acquired since 1989. The dark shapes in the upper right (northeast) corner of the image are a chain of lakes in flat coastal marshes. This image was acquired in October 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. Environmental changes can be easily documented by comparing this image with visible-light data that were acquired in previous years by the Landsat satellite. The image is centered at 0.9 degrees north latitude and 101.3 degrees east longitude. The area shown is 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is L-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  1. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  2. Space Radar Image of Hampton Roads, Virginia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the Hampton Roads, Virginia region, where the James River (upper left center) flows into the Chesapeake Bay. The city of Norfolk is the bright area on the peninsula in the lower center. Norfolk is home to a large naval base, part of which can be seen as the bright white port facilities near the center of the image. The cities of Hampton and Newport News occupy the peninsula in the upper right of the image. The dark blue areas on this peninsula are the runways of Langley Air Force Base, which also houses NASA's Langley Research Center. Forested areas, including suburbs, appear as green on the image. Cities appear as green, white and orange. The purple areas along the shorelines are wetlands; blue areas are cleared for agricultural use. Faint ship wakes can be seen in the water behind ships entering and leaving Hampton Roads. Scientists are using radar images like this one to study delicate coastal environments and the effects of urbanization and other human activities on the ecosystem and landscape. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 5, 1994. The image is centered at 36.9 degrees north latitude, 76.4 degrees west longitude. North is towards the upper right. The area shown is 37 kilometers by 29 kilometers (23 miles by 18 miles). Colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's ongoing Mission to Planet Earth program.

  3. Heat pipe radiators for space. [vacuum tests

    NASA Technical Reports Server (NTRS)

    Sellers, J. P.

    1977-01-01

    An optimized flight-weight prototype fluid-header panel (heatpipe radiator system) was tested in a vacuum environment over a wide range of coolant inlet temperatures, coolant flow rates, and environmental absorbed heat fluxes. The maximum performance of the system was determined. Results are compared with earlier data obtained on a smaller fluid-header feasibility panel, and computer predictions. Freeze-thaw tests are described and the change in thaw recovery time due to the addition of a low-freezing point feeder heat pipe is evaluated. Experimental panel fin-temperature distributions are compared with calculated results.

  4. Relating space radiation environments to risk estimates

    SciTech Connect

    Curtis, S.B.

    1991-10-01

    This lecture will provide a bridge from the physical energy or LET spectra as might be calculated in an organ to the risk of carcinogenesis, a particular concern for extended missions to the moon or beyond to Mars. Topics covered will include (1) LET spectra expected from galactic cosmic rays, (2) probabilities that individual cell nuclei in the body will be hit by heavy galactic cosmic ray particles, (3) the conventional methods of calculating risks from a mixed environment of high and low LET radiation, (4) an alternate method which provides certain advantages using fluence-related risk coefficients (risk cross sections), and (5) directions for future research and development of these ideas.

  5. Space Radar Image of North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on April 11, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth.

  6. Lightweight moving radiators for heat rejection in space

    NASA Technical Reports Server (NTRS)

    Knapp, K.

    1981-01-01

    Low temperature droplet stream radiators, using nonmetallic fluids, can be used to radiate large amounts of waste heat from large space facilities. Moving belt radiators are suitable for use on a smaller scale, radiating as few as 10 kW from shuttle related operations. If appropriate seal technology can be developed, moving belt radiators may prove to be important for high temperature systems as well. Droplet stream radiators suitable for operation at peak temperatures near 300 K and 1000 K were studied using both freezing and nonfreezing droplets. Moving belt radiators were also investigated for operation in both temperature ranges. The potential mass and performance characteristics of both concepts were estimated on the basis of parametric variations of analytical point designs. These analyses included all consideration of the equipment required to operate the moving radiator system and take into account the mass of fluid lost by evaporation during mission lifetimes. Preliminary results indicate that low temperature droplet stream radiator appears to offer the greatest potential for improvement over conventional flat plate radiators.

  7. Space Radar Image of Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Data acquired on April 13, 1994 and on October 4, 1994 from the X-band Synthetic Aperture Radar on board the space shuttle Endeavour were used to generate interferometric fringes, which were overlaid on the X-SAR image of Kilauea. The volcano is centered in this image at 19.58 degrees north latitude and 155.55 degrees west longitude. The image covers about 9 kilometers by 13 kilometers (5.6 miles by 8 miles). The X-band fringes correspond clearly to the expected topographic image. The yellow line indicates the area below which was used for the three-dimensional image using altitude lines. The yellow rectangular frame fences the area for the final topographic image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.

  8. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  9. Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  10. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  11. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station.

    PubMed

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  12. Detection of DNA Damage by Space Radiation in Human Fibroblasts Flown on the International Space Station

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-01-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 degrees Centigrade in space for 14 days before being fixed for analysis of DNA damages with the gamma-H2AX assay. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate gamma rays at 37 degrees Centigrade. Cells exposed to chronic gamma rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET (Linear Energy Transfer) protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  13. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 °C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37 °C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  14. Space Radar Image of Safsaf Oasis, Egypt

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-frequency space radar image of south-central Egypt demonstrates the unique capability of imaging radar to penetrate thin sand cover in arid regions to reveal hidden details below the surface. Nearly all of the structures seen in this image are invisible to the naked eye and to conventional optical satellite sensors. Features appear in various colors because the three separate radar wavelengths are able to penetrate the sand to different depths. Areas that appear red or orange are places that can be seen only by the longest wavelength, L-band, and they are the deepest of the buried structures. Field studies in this area indicate L-band can penetrate as much as 2 meters (6.5 feet) of very dry sand to image buried rock structures. Ancient drainage channels at the bottom of the image are filled with sand more than 2 meters (6.5 feet) thick and therefore appear dark because the radar waves cannot penetrate them. The fractured orange areas at the top of the image and the blue circular structures in the center of the image are granitic areas that may contain mineral ore deposits. Scientists are using the penetrating capabilities of radar imaging in desert areas in studies of structural geology, mineral exploration, ancient climates, water resources and archaeology. This image is 51.9 kilometers by 30.2 kilometers (32.2 miles by 18.7 miles) and is centered at 22.7 degrees north latitude, 29.3degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is X-band, vertically transmitted and received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 16, 1994, on board the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission

  15. Radiation Belt Environment Model: Application to Space Weather and Beyond

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching H.

    2011-01-01

    Understanding the dynamics and variability of the radiation belts are of great scientific and space weather significance. A physics-based Radiation Belt Environment (RBE) model has been developed to simulate and predict the radiation particle intensities. The RBE model considers the influences from the solar wind, ring current and plasmasphere. It takes into account the particle drift in realistic, time-varying magnetic and electric field, and includes diffusive effects of wave-particle interactions with various wave modes in the magnetosphere. The RBE model has been used to perform event studies and real-time prediction of energetic electron fluxes. In this talk, we will describe the RBE model equation, inputs and capabilities. Recent advancement in space weather application and artificial radiation belt study will be discussed as well.

  16. Observation of the Earth's radiation budget from space

    NASA Astrophysics Data System (ADS)

    Kandel, Robert; Viollier, Michel

    2010-04-01

    The planet's radiation budget includes practically all energy exchange between the Sun, the Earth, and space, and so is a fundamental factor of climate. The terms of this budget, observable only from space, are determined from sampled direct measurements of the solar and terrestrial radiation fields. On the contrary, however, it should be remembered that energy exchange between the Earth's surface and its atmosphere involves not only radiative but also non-radiative energy fluxes. Nevertheless, only observations from space can provide satisfactory global coverage of the different energy fluxes that determine climate at the Earth's surface, by way of indirect retrievals of radiative fluxes at the surface and at different heights in the atmosphere. We describe the methods, applied to measurements made with a variety of instruments on board different artificial satellites, that have led to our present knowledge of the Earth's radiation budget (ERB) at the "top of the atmosphere": global annual mean values of the ERB terms, its annual cycle, its geographical structure, and its variations. We know that solar irradiance, averaged over the globe and the year, varies by only 0.1% with the solar activity cycle; we also know that planetary (Bond) albedo is close to 0.3, that the global annual mean emission of thermal infrared radiation to space is close to 240 Wm -2, and that these terms exhibit a weak but well determined annual cycle. We also know that cloud cover plays a major role in the radiation budget, both in the "shortwave" domain (global SW "cloud radiative forcing" -50 Wm -2) and in the "longwave" domain (+20 Wm -2), thus a net forcing of -30 Wm -2. Successive satellite missions give consistent results for the shape, the phase, and the amplitude of the annual cycle of the planetary radiation balance. However, the different estimates of its annual mean absolute value remain uncertain, not differing significantly from zero, although generally excessively positive. We

  17. Efficient Mosaicking of Spitzer Space Telescope Images

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  18. Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.

    2007-01-01

    There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked

  19. Space Radar Image of Los Angeles, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of Los Angeles, California, taken on October 2, 1994. Visible in the image are Long Beach Harbor at the bottom right (south corner of the image), Los Angeles International Airport at the bottom center, with Santa Monica just to the left of it and the Hollywood Hills to the left of Santa Monica. Also visible in the image are the freeway systems of Los Angeles, which appear as dark lines. The San Gabriel Mountains (center top) and the communities of San Fernando Valley, Simi Valley and Palmdale can be seen on the left-hand side. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 24th orbit. The image is centered at 34 degrees north latitude, 118 degrees west longitude. The area shown is approximately 100 kilometers by 52 kilometers (62 miles by 32 miles). This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do freeways and other flat surfaces such as the airport runways. Mountains in the image are dark grey, with brighter patches on the mountain slopes, which face in the direction of the radar illumination (from the top of the image). Suburban areas, with the low-density housing and tree-lined streets that are typical of Los Angeles, appear as lighter grey. Areas with high-rise buildings, such as downtown Los Angeles, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. Scientists hope to use radar image data from SIR-C/X-SAR to map fire scars in areas prone to brush fires, such as Los Angeles. In this image, the Altadena fire area is visible in the top center of the image as a patch of mountainous terrain which is slightly darker than the nearby mountains. Using all the radar frequency and polarization images provided by SIR

  20. Space Radiation and the Challenges Towards Effective Shielding Solutions

    NASA Technical Reports Server (NTRS)

    Barghouty, Abdulnasser

    2014-01-01

    The hazards of space radiation and their effective mitigation strategies continue to pose special science and technology challenges to NASA. It is widely accepted now that shielding space vehicles and structures will have to rely on new and innovative materials since aluminum, like all high Z materials, are poor shields against the particulate and highly ionizing nature of space radiation. Shielding solutions, motivated and constrained by power and mass limitations, couple this realization with "multifunctionality," both in design concept as well as in material function and composition. Materials endowed with effective shielding properties as well as with some degree of multi-functionality may be the kernel of the so-called "radiation-smart" structures and designs. This talk will present some of the challenges and potential mitigation ideas towards the realization of such structures and designs.

  1. Space Radiation and Exploration - Information for the Augustine Committee Review

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Semones, Edward; Kim, Myung-Hee; Jackson, Lori

    2009-01-01

    Space radiation presents significant health risks including mortality for Exploration missions: a) Galactic cosmic ray (GCR) heavy ions are distinct from radiation that occurs on Earth leading to different biological impacts. b) Large uncertainties in GCR risk projections impact ability to design and assess mitigation approaches and select crew. c) Solar Proton Events (SPEs) require new operational and shielding approaches and new biological data on risks. Risk estimates are changing as new scientific knowledge is gained: a) Research on biological effects of space radiation show qualitative and quantitative differences with X- or gamma-rays. b) Expert recommendations and regulatory policy are changing. c) New knowledge leads to changes in estimates for the number of days in space to stay below Permissible Exposure Limits (PELS).

  2. Review of Nuclear Physics Experiments for Space Radiation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  3. Space Radar Image of St. Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a spaceborne radar image of the area surrounding St. Louis, Missouri, where the Mississippi and Missouri Rivers come together. The city of St. Louis is the bright gold area within a bend in the Mississippi River at the lower center of the image. The rivers show up as dark blue sinuous lines. Urbanized areas appear bright gold and forested areas are shown as a brownish color. Several bridges can be seen spanning the river near downtown St. Louis. The Missouri River flows east, from left to right, across the center of the image, and meets the Mississippi River, which flows from top to bottom of the image. A small stretch of the Illinois River is shown at the top of the image where it merges with the Mississippi. The Mississippi forms the state boundary between Illinois (to the right) and Missouri (to the left). Flat farmland areas within the river floodplains appear blue on the image. The major roadways that pass through the area can be seen radiating out from, and encircling, the city of St. Louis. These highways, the rivers and the bridges help maintain St. Louis' reputation as the 'Gateway to the West.

  4. Development of an inflatable radiator system. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1976-01-01

    Conceptual designs of an inflatable radiator system developed for supplying short duration supplementary cooling of space vehicles are described along with parametric trade studies, materials evaluation/selection studies, thermal and structural analyses, and numerous element tests. Fabrication techniques developed in constructing the engineering models and performance data from the model thermal vacuum tests are included. Application of these data to refining the designs of the flight articles and to constructing a full scale prototype radiator is discussed.

  5. Risks of radiation cataracts from interplanetary space missions.

    PubMed

    Lett, J T; Lee, A C; Cox, A B

    1994-11-01

    Recognition of the human risks from radiation exposure during manned missions in deep space has been fostered by international co-operation; interagency collaboration is facilitating their evaluation. Further co-operation can lead, perhaps by the end of this decade, to an evaluation of one of the three major risks, namely radiation cataractogenesis, sufficient for use in the planning of the manned mission to Mars.

  6. Space Radar Image of Harvard Forest

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of the area surrounding the Harvard Forest in north-central Massachusetts that has been operated as a ecological research facility by Harvard University since 1907. At the center of the image is the Quabbin Reservoir, and the Connecticut River is at the lower left of the image. The Harvard Forest itself is just above the reservoir. Researchers are comparing the naturally occurring physical disturbances in the forest and the recent and projected chemical disturbances and their effects on the forest ecosystem. Agricultural land appears dark blue/purple, along with low shrub vegetation and some wetlands. Urban development is bright pink; the yellow to green tints are conifer-dominated vegetation with the pitch pine sand plain at the middle left edge of the image appearing very distinctive. The green tint may indicate pure pine plantation stands, and deciduous broadleaf trees appear gray/pink with perhaps wetter sites being pinker. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 42.50 degrees North latitude and 72.33 degrees West longitude and covers an area of 53 kilometers 63 by kilometers (33 miles by 39 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; and blue is C-band horizontally transmitted and horizontally received.

  7. Space Radar Image of Mineral Resources, China

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image of a mineral-rich region in southern China is being used by geologists to identify potential new areas for mineral exploration. The area shown is the vicinity of the city of Zhao Qing, the light blue area along the banks of the River Xi Jiang in the lower left. This is in the southern Chinese province of Guangdong, about 75 kilometers (46 miles) west of Guangzhou (Canton). The largest gold mine in southern China is located in the far upper left of the image along a brightly reflective mountain ridge. Using the radar image as a guide, geologists are tracing the extension of the ridge structure to the east (right) to identify possible mining areas. Radar imaging is especially useful for this purpose because of its sensitivity to subtle topographic structure, even in areas such as these, which have a dense vegetation cover. The Xi Jiang area is one of the most productive mining regions in China, with deposits of tungsten, lead, zinc and gold. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttleEndeavour on April 17, 1994. The image is centered at 37.2 degreesnorth latitude and 112.5 degrees east longitude. North is toward the upper right. The image shows an area 60 kilometers by 38 kilometers (37.2 miles by 23.6 miles) The colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted, horizontally received; green is L-band, horizontally transmitted, vertically received; blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earthprogram.

  8. Space Radar Image of Teide Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the Teide volcano on the island of Tenerife in the Canary Islands. The Canary Islands, part of Spain, are located in the eastern Atlantic Ocean off the coast of Morocco. Teide has erupted only once in the 20th Century, in 1909, but is considered a potentially threatening volcano due to its proximity to the city of Santa Cruz de Tenerife, shown in this image as the purple and white area on the lower right edge of the island. The summit crater of Teide, clearly visible in the left center of the image, contains lava flows of various ages and roughnesses that appear in shades of green and brown. Different vegetation zones, both natural and agricultural, are detected by the radar as areas of purple, green and yellow on the volcano's flanks. Scientists are using images such as this to understand the evolution of the structure of Teide, especially the formation of the summit caldera and the potential for collapse of the flanks. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 11, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 28.3 degrees North latitude and 16.6 degrees West longitude. North is toward the upper right. The area shown measures 90 kilometers by 54.5 kilometers (55.8 miles by 33.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received.

  9. Space Radar Image of Honolulu, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows the city of Honolulu, Hawaii and adjacent areas on the island of Oahu. Honolulu lies on the south shore of the island, along the bottom of this image. Diamond Head, an extinct volcanic crater, is seen in the lower right. The bright white strip left of Diamond Head is the Waikiki Beach area. Further west are the downtown area and harbor. Runways of the airport can be seen in the lower left. The Koolau mountain range runs through the center of the image. The steep cliffs on the north side of the range are thought to be remnants of massive landslides that ripped apart the volcanic mountains that built the island thousands of years ago. On the north shore of the island are the Mokapu peninsula and Kaneohe Bay. Densely vegetated areas appear green in this radar image, while urban areas generally appear orange, red or white. Images such as this can be used by land use planners to monitor urban development and its effect on the tropical environment. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttleEndeavour on October 6, 1994.The image is 20.6 kilometers by 31.0kilometers (12.8 miles by 19.2 miles) and is centered at 21.4degrees North latitude, 157.8 degrees West longitude. North is toward the upper left. The colors are assigned to different radarfrequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR,a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  10. Space Radar Image of Star City, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the Star City cosmonaut training center, east of Moscow, Russia. Four American astronauts are training here for future long-duration flights aboard the Russian Mir space station. These joint flights are giving NASA and the Russian Space Agency experience necessary for the construction of the international Alpha space station, beginning in late 1997. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR), on its 62nd orbit on October 3, 1994. This Star City image is centered at 55.55 degrees north latitude and 38.0 degrees east longitude. The area shown is approximately 32 kilometers by 49 kilometers (20 miles by 30 miles). North is to the top in this image. The radar illumination is from the top of the image. The image was produced using three channels of SIR-C radar data: red indicates L-band (23 cm wavelength, horizontally transmitted and received); green indicates L-band (horizontally transmitted and vertically received); blue indicates C-band (6 cm wavelength, horizontally transmitted and vertically received). In general, dark pink areas are agricultural; pink and light blue areas are urban communities; black areas represent lakes and rivers; dark blue areas are cleared forest; and light green areas are forested. The prominent black runways just right of center are Shchelkovo Airfield, about 4 km long. The textured pale blue-green area east and southeast of Shchelkovo Airfield is forest. Just east of the runways is a thin railroad line running southeast; the Star City compound lies just east of the small bend in the rail line. Star City contains the living quarters and training facilities for Russian cosmonauts and their families. Moscow's inner loop road is visible at the lower left edge of the image. The Kremlin is just off the left edge, on the banks of the meandering Moskva River. The Klyazma River snakes to the southeast from the reservoir in the upper left (shown in bright red

  11. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of San Francisco, California, taken on October 3,1994. The image is about 40 kilometers by 55 kilometers (25 miles by 34 miles) with north toward the upper right. Downtown San Francisco is visible in the center of the image with the city of Oakland east (to the right) across San Francisco Bay. Also visible in the image is the Golden Gate Bridge (left center) and the Bay Bridge connecting San Francisco and Oakland. North of the Bay Bridge is Treasure Island. Alcatraz Island appears as a small dot northwest of Treasure Island. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 56. The image is centered at 37 degrees north latitude, 122degrees west longitude. This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do other smooth surfaces such as airport runways. Suburban areas, with the low-density housing and tree-lined streets that are typical of San Francisco, appear as lighter gray. Areas with high-rise buildings, such as those seen in the downtown areas, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes

  12. Space life sciences: radiation risk assessment and radiation measurements in low Earth orbit.

    PubMed

    2004-01-01

    The volume contains papers presented at COSPAR symposia in October 2002 about radiation risk assessment and radiation measurements in low Earth orbit. The risk assessment symposium brought together multidisciplinary expertise including physicists, biologists, and theoretical modelers. Topics included current knowledge about known and predicted radiation environments, radiation shielding, physics cross section models, improved ion beam transport codes, biological demonstrations of specific shielding materials and applications to a manned mission to Mars, advancements in biological measurement of radiation-induced protein expression profiles, and integration of physical and biological parameters to assess key elements of radiation risk. Papers from the radiation measurements in low Earth orbit symposium included data about dose, linear energy transfer spectra, and charge spectra from recent measurements on the International Space Station (ISS), comparison between calculations and measurements of dose distribution inside a human phantom and the neutron component inside the ISS; and reviews of trapped antiprotons and positrons inside the Earth's magnetosphere.

  13. Space Radar Image of Mt. Etna, Italy

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The summit of the Mount Etna volcano on the island of Sicily, Italy, one of the most active volcanoes in the world, is shown near the center of this radar image. Lava flows of different ages and surface roughness appear in shades of purple, green, yellow and pink surrounding the four small craters at the summit. Etna is one of the best-studied volcanoes in the world and scientists are using this radar image to identify and distinguish a variety of volcanic features. Etna has erupted hundreds of times in recorded history, with the most recent significant eruption in 1991-1993. Scientists are studying Etna as part of the international 'Decade Volcanoes' project, because of its high level of activity and potential threat to local populations. This image was acquired on October 11, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 37.8 degrees North latitude and 15.1 degrees East longitude and covers an area of 51.2 kilometers by 22.6 kilometers (31.7 miles by 14.0 miles).

  14. Space Radar Image of Munich, Germany

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image of Munich, Germany illustrates the capability of a multi-frequency radar system to highlight different land use patterns in the area surrounding Bavaria's largest city. Central Munich is the white area at the middle of the image, on the banks of the Isar River. Pink areas are forested, while green areas indicate clear-cut and agricultural terrain. The Munich region served as a primary 'supersite' for studies in ecology, hydrology and radar calibration during the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) missions. Scientists were able to use these data to map patterns of forest damage from storms and areas affected by bark beetle infestation. The image was acquired by SIR-C/X-SAR onboard the space shuttle Endeavour on April 18, 1994. The image is 37 kilometers by 32 kilometers (23 miles by 20 miles) and is centered at 48.2 degrees North latitude, 11.5 degrees East longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, vertically transmitted and horizontally received; green is C-band, vertically transmitted and horizontally received; and blue is C-band vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  15. Space Radar Image of La Paz, Bolivia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the Bolivian capital city of La Paz that was created using three radar frequencies. La Paz sits at the edge of the Altiplano, the high inland plateau between the Cordillera Occidental and Cordillera Oriental belts of the Andes Mountains in South America. Part of the Cordillera Oriental mountains are seen on the right side (northeast) of this image. The bright areas at the top of the mountains are most likely the result of year-round snow cover. Glacier-carved valleys drain the mountain areas. The dark lines left of center are Kennedy Airport near the northwestern part of the city. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 18, 1994. The image is centered at 16.25 degrees south latitude, 68.1 degrees west longitude. The area shown is approximately 35 kilometers by 16 kilometers (22 miles by 10 miles). North is toward the upper right. Colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, vertically received; and blue is X-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's program called Mission to Planet Earth.

  16. Space Radar Image of Houston, Texas

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of Houston, Texas, shows the amount of detail that is possible to obtain using spaceborne radar imaging. Images such as this -- obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavor last fall -- can become an effective tool for urban planners who map and monitor land use patterns in urban, agricultural and wetland areas. Central Houston appears pink and white in the upper portion of the image, outlined and crisscrossed by freeways. The image was obtained on October 10, 1994, during the space shuttle's 167th orbit. The area shown is 100 kilometers by 60 kilometers (62 miles by 38 miles) and is centered at 29.38 degrees north latitude, 95.1 degrees west longitude. North is toward the upper left. The pink areas designate urban development while the green-and blue-patterned areas are agricultural fields. Black areas are bodies of water, including Galveston Bay along the right edge and the Gulf of Mexico at the bottom of the image. Interstate 45 runs from top to bottom through the image. The narrow island at the bottom of the image is Galveston Island, with the city of Galveston at its northeast (right) end. The dark cross in the upper center of the image is Hobby Airport. Ellington Air Force Base is visible below Hobby on the other side of Interstate 45. Clear Lake is the dark body of water in the middle right of the image. The green square just north of Clear Lake is Johnson Space Center, home of Mission Control and the astronaut training facilities. The black rectangle with a white center that appears to the left of the city center is the Houston Astrodome. The colors in this image were obtained using the follow radar channels: red represents the L-band (horizontally transmitted, vertically received); green represents the C-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted and received). Spaceborne Imaging Radar

  17. Nuclear model calculations and their role in space radiation research

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Cucinotta, F. A.; Heilbronn, L. H.

    2002-01-01

    Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. c2002 COSPAR. Published by Elsevier Science Ltd. All right reserved.

  18. Imaging Jupiter Radiation Belts At Low Frequencies

    NASA Astrophysics Data System (ADS)

    Girard, J. N.; de Pater, I.; Zarka, P.; Santos-Costa, D.; Sault, R.; Hess, S.; Cecconi, B.; Fender, R.; Pewg, Lofar

    2014-04-01

    The ultra-relativistic electrons, trapped in the inner radiation belts of Jupiter, generates a strong synchrotron radio emission (historically known as the jovian decimeter radiation (DIM)) which is beamed, polarized (~20% linear, ~1% circular) and broadband. It has been extensively observed by radio telescopes/ probes and imaged by radio interferometers over a wide frequency spectrum (from >300 MHz up to 22 GHz). This extended emission presents two main emission peaks constantly located on both sides of the planet close to the magnetic plane. High latitude emissions were also regularly observed at particular frequencies, times and in particular observational configurations. This region of the magnetosphere is "frozen" due to the strong magnetic field (~4.2 G as the equator) and therefore is forced to rotate at the planetary period (T≈9h55m). Due to the tilt (~ 10o) between the spin axis of the planet and the magnetic axis (which can be seen as dipolar in first approximation), the belts and the associated radio emission wobble around the planet center. The analysis of the flux at different frequencies highlighted spatial, temporal and spectral variabilities which origins are now partly understood. The emission varies at different time scales (short-time variations of hours to long-term variation over decades) due to the combination of visibility effect (wobbling, beaming, position of the observer in the magnetic rotating reference frame) [1], [2] and intrinsic local variations (interaction between relativistic electrons and satellites/dust, delayed effect of the solar wind ram pressure, impacts events) [3], [4], [5]. A complete framework is necessary to fully understand the source, loss and transport processes of the electrons originating from outside the belt, migrating by inward diffusion and populating the inner region of the magnetosphere. Only a few and unresolved measurements were made below 300 MHz and the nonsystematic observation of this radio emission

  19. Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The results of these workshops will be discussed in this paper.

  20. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  1. BioSentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  2. Space radiation susceptibility of ultra stable crystal oscillators

    NASA Astrophysics Data System (ADS)

    Brunet, M.; Dutrey, J. F.; Laporte, J. B.; Bourriau, J.; Calvel, P.

    1992-06-01

    The radiation susceptibility of several quartz oscillators for space use (USO) with classical and BVA (electrodeless quartz resonator) type resonators, AT and SC (Stress Compensation) cut, is reported. Susceptibility of each USO was measured at low dose rate, 1 and 0.1 rad per hour, using a cobalt 60 source. In parallel, a space radiation exposure analysis was made taking into account the radation environment during the in flight data recording. A deposited dose calculation analysis was conducted using an up to data three dimensional Monte Carlo transport code. Results of aging rate per day are then compared to several in flight data.

  3. Space Radar Image of Ventura County, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of Ventura County, California, shows the Santa Clara River valley and the surrounding mountains. The river valley is the linear feature that extends from the lower right to the upper left (east to west), where it empties into the Pacific Ocean (dark patches in upper and lower left). The cities of Ventura and Oxnard are seen along the left side of the image. Simi Valley is located in the lower center of the image, between the Santa Monica Mountains (purple area in lower left) and the Santa Susanna Mountains to the north. This area of California is known for its fruit; strawberry fields are shown in red and purple rectangular areas on the coastal plain, and citrus groves are the yellow green areas adjacent to the river. This image is centered at 34.33 degrees north latitude, 119 degrees west longitude. The area shown is approximately 53 kilometers by 35 kilometers (33 miles by 22 miles). Colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted, horizontally received; green is L-band, horizontally transmitted, vertically received; blue is C-band, horizontally transmitted, vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 6, 1994.

  4. Space Radiation and Cataracts (LBNL Summer Lecture Series)

    SciTech Connect

    Blakely, Eleanor

    2003-07-16

    Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab

  5. Description of Transport Codes for Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.

    2011-01-01

    This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.

  6. Space and terrestrial radiation effects in flash memories

    NASA Astrophysics Data System (ADS)

    Bagatin, Marta; Gerardin, Simone; Paccagnella, Alessandro

    2017-03-01

    We present a comprehensive review of the effects of ionizing radiation on advanced flash memories. The effects of ionizing radiation as well as the mechanisms underlying the observed phenomena are thoroughly discussed on both floating gate cells and the complex control circuitry. The covered effects are relevant for all floating-gate based flash memories that require very high levels of reliability, from critical applications at the terrestrial level to radiation-harsh environments, such as space, nuclear power plants, and high-energy physics experiments.

  7. Space Radiation and Cataracts (LBNL Summer Lecture Series)

    ScienceCinema

    Blakely, Eleanor

    2016-07-12

    Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab

  8. Validation of elastic cross section models for space radiation applications

    NASA Astrophysics Data System (ADS)

    Werneth, C. M.; Xu, X.; Norman, R. B.; Ford, W. P.; Maung, K. M.

    2017-02-01

    The space radiation field is composed of energetic particles that pose both acute and long-term risks for astronauts in low earth orbit and beyond. In order to estimate radiation risk to crew members, the fluence of particles and biological response to the radiation must be known at tissue sites. Given that the spectral fluence at the boundary of the shielding material is characterized, radiation transport algorithms may be used to find the fluence of particles inside the shield and body, and the radio-biological response is estimated from experiments and models. The fidelity of the radiation spectrum inside the shield and body depends on radiation transport algorithms and the accuracy of the nuclear cross sections. In a recent study, self-consistent nuclear models based on multiple scattering theory that include the option to study relativistic kinematics were developed for the prediction of nuclear cross sections for space radiation applications. The aim of the current work is to use uncertainty quantification to ascertain the validity of the models as compared to a nuclear reaction database and to identify components of the models that can be improved in future efforts.

  9. ISS and Space Shuttle Radiation Measurements at Solar Minimum

    NASA Technical Reports Server (NTRS)

    Gaza, Ramona; Welton, Andrew; Dunegan, Audrey; Lee, Kerry

    2011-01-01

    A summary of 2008-2011 ISS and Space Shuttle radiation dosimetry results for inside vehicle radiation monitoring in low-Earth orbit will be presented. Results include new data from ISS Expedition 22-25/20A radiation area monitors (RAM) and Shuttle Missions STS127-STS133 passive radiation dosimeters (PRD). ISS 20A radiation measurement locations included three Node 2 crew quarters locations at NOD2S5_CQ, NOD2P5_CQ and CQ-3 (Deck), as well as ESA Columbus, and JAXA Kibo locations. ISS 20A and STS127-STS133 missions were flown at 51.6 inclination with an altitude range of 330-350 km. The passive radiation results will be presented in terms of measured daily dose obtained using luminescence detectors (i.e., Al2O3:C, LiF:Mg,Ti and CaF2:Tm). In addition, preliminary results from the DOSIS 2 Project, in collaboration with the German Space Agency (DLR) will be presented. SRAG s participation to the DOSIS 2 exposure on ISS (11/16/2009-05/26/2010) involved passive radiation measurements at 10 different shielding locations inside the ESA Columbus Module.

  10. Some comments on space flight and radiation limits

    SciTech Connect

    Thornton, W.E.

    1997-04-30

    Setting limits on human exposure to space-related radiation involves two very different processes - the appropriate hard science, and certain emotional aspects and expectations of the groups involved. These groups include the general public and their elected politicians, the astronauts and flight crews, and NASA managers, each group with different expectations and concerns. Public and political views of human space flight and human radiation exposures are often poorly informed and are often based on emotional reactions to current events which may be distorted by {open_quotes}experts{close_quotes} and the media. Career astronauts` and cosmonauts` views are much more realistic about the risks involved and there is a willingness on their part to accept increased necessary risks. However, there is a concern on their part about career-threatening dose limits, the potential for overexposures, and the health effects from all sources of radiation. There is special concern over radiation from medical studies. This last concern continues to raise the question of {open_quotes}voluntary{close_quotes} participation in studies involving radiation exposure. There is greatly diversity in spaceflight crews and their expectations; and {open_quotes}official{close_quotes} Astronaut Office positions will reflect strong management direction. NASA management has its own priorities and concerns and this fact will be reflected in their crucial influence on radiation limits. NASA, and especially spaceflight crews, might be best served by exposure limits which address all sources of spaceflight radiation and all potential effects from such exposure.

  11. Functional imaging in treatment planning in radiation therapy: a review.

    PubMed

    Perez, Carlos A; Bradley, Jeffrey; Chao, Clifford K S; Grigsby, Perry W; Mutic, Sasa; Malyapa, Robert

    2002-01-01

    The remarkable technical developments obtained in radiation oncology have resulted in an increasing use of image-based treatment planning in radiation therapy for three-dimensional and intensity modulated radiation therapy, stereotactic irradiation and image-guided brachytherapy. There has been increased use of computer-based record and verify systems as well as electronic portal imaging to enhance treatment delivery. From the data presented it is evident that PET scanning and other functional imaging techniques play a major role in the definition of tumor extent and staging of patients with cancer. The recent introduction of a combined CT and PET scanner will substantially simplify image acquisition and treatment planning.

  12. Visual Risk Assessment of Space Radiation Exposure for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hussein, Hesham F.; Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Protecting astronauts from space radiation exposure during an interplanetary mission is an important challenge for mission design and operations. If sufficient protection is not provided near solar maximum, the risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). Polyethylene shielded "storm shelters" inside spacecraft have been shown to limit total exposure from a large SPE to a permissible level, preventing acute risks and providing a potential approach to fulfill the ALARA (as low as reasonably achievable) requirement. For accurate predictions of radiation dose to astronauts involved in future space exploration missions, detailed variations of radiation shielding properties are required. Radiation fluences and doses vary considerably across both the spacecraft geometry and the body-shielding distribution. A model using a modern CAD tool ProE(TradeMark), which is the leading engineering design platform at NASA, has been developed to account for these local variations in the radiation distribution. Visual assessment of radiation distribution at different points inside a spacecraft module and in the human body for a given radiation environment are described. Results will ultimately guide in developing requirements for maximal protection for astronauts from space radiation.

  13. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those

  14. Space Radar Image of Owens Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Owens Valley, near the town of Bishop, California that was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southeast along the eastern edge of Owens Valley. The White Mountains are in the center of the image, and the Inyo Mountains loom in the background. The high peaks of the White Mountains rise more than 3,000 meters (10,000 feet) above the valley floor. The runways of the Bishop airport are visible at the right edge of the image. The meandering course of the Owens River and its tributaries appear light blue on the valley floor. Blue areas in the image are smooth, yellow areas are rock outcrops, and brown areas near the mountains are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar data were taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is

  15. Space Radar Image of Wenatchee, Washington

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows a segment of the Columbia River as it passes through the area of Wenatchee, Washington, about 220 kilometers (136 miles) east of Seattle. The Wenatchee Mountains, part of the Cascade Range, are shown in green at the lower left of the image. The Cascades create a 'rain shadow' for the region, limiting rainfall east of the range to less than 26 centimeters (10 inches) per year. The radar's ability to see different types of vegetation is highlighted in the contrast between the pine forests, that appear in green and the dry valley plain that shows up as dark purple. The cities of Wenatchee and East Wenatchee are the grid-like areas straddling the Columbia River in the left center of the image. With a population of about 60,000, the region produces about half of Washington state's lucrative apple crop. Several orchard areas appear as green rectangular patches to the right of the river in the lower right center. Radar images such as these can be used to monitor land use patterns in areas such as Wenatchee, that have diverse and rapidly changing urban, agricultural and wild land pressures. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 10, 1994. The image is 38 kilometers by 45 kilometers (24 miles by 30 miles) and is centered at 47.3 degrees North latitude, 120.1 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  16. Space Radar Image of Vesuvius, Italy

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mt. Vesuvius, one of the best known volcanoes in the world primarily for the eruption that buried the Roman city of Pompeii, is shown in the center of this radar image. The central cone of Vesuvius is the dark purple feature in the center of the volcano. This cone is surrounded on the northern and eastern sides by the old crater rim, called Mt. Somma. Recent lava flows are the pale yellow areas on the southern and western sides of the cone. Vesuvius is part of a large volcanic zone which includes the Phalagrean Fields, the cluster of craters seen along the left side of the image. The Bay of Naples, on the left side of the image, is separated from the Gulf of Salerno, in the lower left, by the Sorrento Peninsula. Dense urban settlement can be seen around the volcano. The city of Naples is above and to the left of Vesuvius; the seaport of the city can be seen in the top of the bay. Pompeii is located just below the volcano on this image. The rapid eruption in 79 A.D. buried the victims and buildings of Pompeii under several meters of debris and killed more than 2,000 people. Due to the violent eruptive style and proximity to populated areas, Vesuvius has been named by the international scientific community as one of fifteen Decade Volcanoes which are being intensively studied during the 1990s. The image is centered at 40.83 degrees North latitude, 14.53 degrees East longitude. It shows an area 100 kilometers by 55 kilometers (62 miles by 34 miles.) This image was acquired on April 15, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  17. Space Radar Image of Tuva, Central Asia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows part of the remote central Asian region of Tuva, an autonomous republic of the Russian Federation. Tuva is a mostly mountainous region that lies between western Mongolia and southern Siberia. This image shows the area just south of the republic's capital of Kyzyl. Most of the red, pink and blue areas in the image are agricultural fields of a large collective farming complex that was developed during the era of the Soviet Union. Traditional agricultural activity in the region, still active in remote areas, revolves around practices of nomadic livestock herding. White areas on the image are north-facing hillsides, which develop denser forests than south-facing slopes. The river in the upper right is one of the two major branches of the Yenesey River. Tuva has received some notoriety in recent years due to the intense interest of the celebrated Caltech physicist Dr. Richard Feynman, chronicled in the book 'Tuva or Bust' by Ralph Leighton. The image was acquired by Spaceborne Imaging Radar-C/X-Band SyntheticAperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour onOctober 1, 1994. The image is 56 kilometers by 74 kilometers (35 miles by 46 miles) and is centered at 51.5 degrees north latitude, 95.1 degrees east longitude. North is toward the upper right. The colors are assigned to different radar fequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted andreceived; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and verticallyreceived. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to PlanetEarth program.

  18. Space Radar Image of Pishan, China

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image is centered near the small town of Pishan in northwest China, about 280 km (174 miles) southeast of the city of Kashgar along the ancient Silk Route in the Taklamakan desert of the Xinjiang Province. Geologists are using this radar image as a map to study past climate changes and tectonics of the area. The irregular lavender branching patterns in the center of the image are the remains of ancient alluvial fans, gravel deposits that have accumulated at the base of the mountains during times of wetter climate. The subtle striped pattern cutting across the ancient fans are caused by thrusting of the Kun Lun Mountains north. This motion is caused by the continuing plate-tectonic collision of India with Asia. Modern fans show up as large lavender triangles above the ancient fan deposits. Yellow areas on the modern fans are vegetated oases. The gridded pattern results from the alignment of poplar trees that have been planted as wind breaks. The reservoir at the top of the image is part of a sophisticated irrigation system that supplies water to the oases. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour in April 1994. This image is centered at 37.4 degrees north latitude, 78.3 degrees east longitude and shows an area approximately 50 km by 100 km (31 miles by 62 miles). The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; and blue is C-band horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.

  19. Space radar image of New York City

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This radar image of the New York city metropolitan area. The island of Manhattan appears in the center of the image. The green-colored rectangle on Manhattan is Central Park. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on October 10, 1994. North is toward the upper right. The area shown is 75.0 kilometers by 48.8 kilometers (46.5 miles by 30.2 miles). The image is centered at 40.7 degrees north latitude and 73.8 degrees west longitude. In general, light blue areas correspond to dense urban development, green areas to moderately vegetated zones and black areas to bodies of water. The Hudson River is the black strip that runs from the left edge to the upper right corner of the image. It separates New Jersey, in the upper left of the image, from New York. The Atlantic Ocean is at the bottom of the image where two barrier islands along the southern shore of Long Island are also visible. John F. Kennedy International Airport is visible above these islands. Long Island Sound, separating Long Island from Connecticut, is the dark area right of the center of the image. Many bridges are visible in the image, including the Verrazano Narrows, George Washington and Brooklyn bridges. The radar illumination is from the left of the image; this causes some urban zones to appear red because the streets are at a perpendicular angle to the radar pulse. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). Radar images like this one could be used as a tool for city planners and resource managers to map and monitor land use patterns. The radar imaging systems can clearly detect the variety of landscapes in the area, as well as the density of urban

  20. Diagnostic imaging and radiation exposure in inflammatory bowel disease.

    PubMed

    Zakeri, Nekisa; Pollok, Richard C G

    2016-02-21

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn's disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT.

  1. Diagnostic imaging and radiation exposure in inflammatory bowel disease

    PubMed Central

    Zakeri, Nekisa; Pollok, Richard CG

    2016-01-01

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn’s disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT. PMID:26900282

  2. Detection of DNA Damage by Space Radiation in Human Fibroblasts Flown on the International Space Station

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-01-01

    Space radiation consists of energetic charged particles of varying charges and energies. Exposure of astronauts to space radiation on future long duration missions to Mars, or missions back to the Moon, is expected to result in deleterious consequences such as cancer and comprised central nervous system (CNS) functions. Space radiation can also cause mutation in microorganisms, and potentially influence the evolution of life in space. Measurement of the space radiation environment has been conducted since the very beginning of the space program. Compared to the quantification of the space radiation environment using physical detectors, reports on the direct measurement of biological consequences of space radiation exposure have been limited, due primarily to the low dose and low dose rate nature of the environment. Most of the biological assays fail to detect the radiation effects at acute doses that are lower than 5 centiSieverts. In a recent study, we flew cultured confluent human fibroblasts in mostly G1 phase of the cell cycle to the International Space Station (ISS). The cells were fixed in space after arriving on the ISS for 3 and 14 days, respectively. The fixed cells were later returned to the ground and subsequently stained with the gamma-H2AX (Histone family, member X) antibody that are commonly used as a marker for DNA damage, particularly DNA double strand breaks, induced by both low-and high-linear energy transfer radiation. In our present study, the gamma-H2AX (Histone family, member X) foci were captured with a laser confocal microscope. To confirm that some large track-like foci were from space radiation exposure, we also exposed, on the ground, the same type of cells to both low-and high-linear energy transfer protons, and high-linear energy transfer Fe ions. In addition, we exposed the cells to low dose rate gamma rays, in order to rule out the possibility that the large track-like foci can be induced by chronic low-linear energy transfer

  3. Radiation effects control: Eyes, skin. [space environment simulation

    NASA Technical Reports Server (NTRS)

    Hightower, D.; Smathers, J. B.

    1974-01-01

    Adverse effects on the lens of the eye and the skin due to exposure to proton radiation during manned space flight were evaluated. Actual proton irradiation which might be encountered in space was simulated. Irradiation regimes included single acute exposures, daily fractionated exposures, and weekly fractionated exposures. Animals were exposed and then maintained and examined periodically until data sufficient to meet the objective were obtained. No significant skin effects were noted and no serious sight impairment was exhibited.

  4. A perceptual space of local image statistics.

    PubMed

    Victor, Jonathan D; Thengone, Daniel J; Rizvi, Syed M; Conte, Mary M

    2015-12-01

    Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice - a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4min. In sum, local image statistics form a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules.

  5. A perceptual space of local image statistics

    PubMed Central

    Victor, Jonathan D.; Thengone, Daniel J.; Rizvi, Syed M.; Conte, Mary M.

    2015-01-01

    Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice – a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14 min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4 min. In sum, local image statistics forms a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. PMID:26130606

  6. Estimate of Space Radiation-Induced Cancer Risks for International Space Station Orbits

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Atwell, William; Cucinotta, Francis A.; Yang, Chui-hsu

    1996-01-01

    Excess cancer risks from exposures to space radiation are estimated for various orbits of the International Space Station (ISS). Organ exposures are computed with the transport codes, BRYNTRN and HZETRN, and the computerized anatomical male and computerized anatomical female models. Cancer risk coefficients in the National Council on Radiation Protection and Measurements report No. 98 are used to generate lifetime excess cancer incidence and cancer mortality after a one-month mission to ISS. The generated data are tabulated to serve as a quick reference for assessment of radiation risk to astronauts on ISS missions.

  7. Estimate of Space Radiation-Induced Cancer Risks for International Space Station Orbits

    SciTech Connect

    Wu, H.; Atwell, W.; Cucinotta, F.A.; Yang, C.

    1996-03-01

    Excess cancer risks from exposures to space radiation are estimated for various orbits of the International Space Station (ISS). Organ exposures are computed with the transport codes, BRYNTRN and HZETRN, and the computerized anatomical male and computerized anatomical female models. Cancer risk coefficients in the National Council on Radiation Protection and Measurements report No. 98 are used to generate lifetime excess cancer incidence and cancer mortality after a one-month mission to ISS. The generated data are tabulated to serve as a quick reference for assessment of radiation risk to astronauts on ISS missions.

  8. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars.

  9. Space radiation dosimetry in low-Earth orbit and beyond

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

  10. Time-dependent radiation dose estimations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  11. Space radiation dosimetry in low-Earth orbit and beyond

    NASA Astrophysics Data System (ADS)

    Benton, E. R.; Benton, E. V.

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars.

  12. Space radar image of Mount Everest

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These are two comparison images of Mount Everest and its surroundings, along the border of Nepal and Tibet. The peak of Mount Everest, the highest elevation on Earth at 8,848 meters (29,028 feet), can be seen near the center of each image. The image at the top was acquired through thick cloud cover by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 16, 1994. The image on the bottom is an optical photograph taken by the Endeavour crew under clear conditions during the second flight of SIR-C/X-SAR on October 10, 1994. Both images show an area approximately 70 kilometers by 38 kilometers (43 miles by 24 miles) that is centered at 28.0 degrees north latitude and 86.9 degrees east longitude. North is toward the upper left. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Radar illumination is from the top of the frame. The optical photograph has been geometrically adjusted to better match the area shown in the radar image. Many features of the Himalayan terrain are visible in both images. Snow covered areas appear white in the optical photograph while the same areas appear bright blue in the radar image. The radar image was taken in early spring and shows deep snow cover, while the optical photograph was taken in late summer and shows minimum snow cover. The curving and branching features seen in both images are glaciers. The two wavelengths and multiple polarizations of the SIR-C radar are sensitive to characteristics of the glacier surfaces that are not detected by conventional photography, such as the ice roughness, water content and stratification. For this reason, the glaciers show a variety of colors in the radar image (blue, purple, red

  13. Space Radar Image of Saline Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Saline Valley, about 30 km (19 miles) east of the town of Independence, California created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southwest across Saline Valley. The high peaks in the background are the Inyo Mountains, which rise more than 3,000 meters (10,000 feet) above the valley floor. The dark blue patch near the center of the image is an area of sand dunes. The brighter patches to the left of the dunes are the dry, salty lake beds of Saline Valley. The brown and orange areas are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar image was taken by the Spaceborne Imaging Radar-C/X-bandSynthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttleEndeavour in October 1994. The digital elevation map was producedusing radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vetically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is centered near 36.8 degrees north latitude and 117.7 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint

  14. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two false-color images of the Manaus region of Brazil in South America were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at left was acquired on April 12, 1994, and the image at right was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (at top) and the Rio Solimoes (at bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The false colors were created by displaying three L-band polarization channels: red areas correspond to high backscatter, horizontally transmitted and received, while green areas correspond to high backscatter, horizontally transmitted and vertically received. Blue areas show low returns at vertical transmit/receive polarization; hence the bright blue colors of the smooth river surfaces can be seen. Using this color scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest or floating meadows. The extent of the flooding is much greater in the April image than in the October image and appears to follow the 10-meter (33-foot) annual rise and fall of the Amazon River. The flooded forest is a vital habitat for fish, and floating meadows are an important source of atmospheric methane. These images demonstrate the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies block monitoring of flooding. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas

  15. Space radiation parameters for EUI and the Sun Sensor of Solar Orbiter, ESIO, and JUDE instruments

    NASA Astrophysics Data System (ADS)

    Rossi, Laurence; Jacques, Lionel; Halain, Jean-Philippe; Renotte, Etienne; Thibert, Tanguy; Grodent, Denis

    2014-08-01

    This paper presents predictions of space radiation parameters for four space instruments performed by the Centre Spatial de Liège (ULg - Belgium); EUI, the Extreme Ultra-violet Instrument, on-board the Solar Orbiter platform; ESIO, Extreme-UV solar Imager for Operations, and JUDE, the Jupiter system Ultraviolet Dynamics Experiment, which was proposed for the JUICE platform. For Solar Orbiter platform, the radiation environment is defined by ESA environmental specification and the determination of the parameters is done through ray-trace analyses inside the EUI instrument. For ESIO instrument, the radiation environment of the geostationary orbit is defined through simulations of the trapped particles flux, the energetic solar protons flux and the galactic cosmic rays flux, taking the ECSS standard for space environment as a guideline. Then ray-trace analyses inside the instrument are performed to predict the particles fluxes at the level of the most radiation-sensitive elements of the instrument. For JUICE, the spacecraft trajectory is built from ephemeris files provided by ESA and the radiation environment is modeled through simulations by JOSE (Jovian Specification Environment model) then ray-trace analyses inside the instrument are performed to predict the particles fluxes at the level of the most radiation-sensitive elements of the instrument.

  16. Space Radar Image of County Kerry, Ireland

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Iveragh Peninsula, one of the four peninsulas in southwestern Ireland, is shown in this spaceborne radar image. The lakes of Killarney National Park are the green patches on the left side of the image. The mountains to the right of the lakes include the highest peaks (1,036 meters or 3,400 feet) in Ireland. The patchwork patterns between the mountains are areas of farming and grazing. The delicate patterns in the water are caused by refraction of ocean waves around the peninsula edges and islands, including Skellig Rocks at the right edge of the image. The Skelligs are home to a 15th century monastery and flocks of puffins. The region is part of County Kerry and includes a road called the 'Ring of Kerry' that is one of the most famous tourist routes in Ireland. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on April 12, 1994. The image is 82 kilometers by 42 kilometers (51 miles by 26 miles) and is centered at 52.0 degrees north latitude, 9.9 degrees west longitude. North is toward the lower left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, vertically transmitted and received; and blue is C-band, vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  17. Space Radar Image of Central Java, Indonesia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The summits of two large volcanoes in Central Java, Indonesia are shown in the center of this radar image. Lava flows of different ages and surface roughness appear in shades of green and yellow surrounding the summit of Mt. Merbabu (mid-center) and Mt. Merapi (lower center). Mt. Merapi erupted on November 28, 1994 about six weeks after this image was taken. The eruption killed more than 60 people and forced the evacuation of more than 6,000 others. Thousands of other residents were put on alert due to the possibility of volcanic debris mudflows, called lahars, that threatened nearby towns. Mt. Merapi is located approximately 40 kilometers (25 miles) north of Yogyakarta, the capital of Central Java. The older volcano at the top of the image is unnamed. Lake Rawapening is the dark blue feature in the upper right. The light blue area southeast of the lake is the city of Salatiga. Directly south of Salatiga and southeast of Mt. Merapi is the city of Boyolali. Scientists are studying Mt. Merapi as part of the international 'Decade Volcanoes' project, because of its recent activity and potential threat to local populations. The radar data are being used to identify and distinguish a variety of volcanic features. This image was acquired on October 10, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 7.5 degrees South latitude and 110.5 degrees East longitude and covers an area of 33 kilometers by 65 kilometers (20 miles by 40 miles).

  18. Space Radar Image of Boston, Massachusetts

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of the area surrounding Boston, Mass., shows how a spaceborne radar system distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. The bright white area at the right center of the image is downtown Boston. The wide river below and to the left of the city is the Charles River in Boston's Back Bay neighborhood. The dark green patch to the right of the Back Bay is Boston Common. A bridge across the north end of Back Bay connects the cities of Boston and Cambridge. The light green areas that dominate most of the image are the suburban communities surrounding Boston. The many ponds that dot the region appear as dark irregular spots. Many densely populated urban areas show up as red in the image due to the alignment of streets and buildings to the incoming radar beam. North is toward the upper left. The image was acquired on October 9, 1994, by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) as it flew aboard the space shuttle Endeavour. This area is centered at 42.4 degrees north latitude, 71.2 degrees west longitude. The area shown is approximately 37 km by 18 km (23 miles by 11 miles). Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. SIR-C/X-SAR, a cooperative mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  19. Space Radar Image of Sydney, Australia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image is dominated by the metropolitan area of Australia's largest city, Sydney. Sydney Harbour, with numerous coves and inlets, is seen in the upper center of the image, and the roughly circular Botany Bay is shown in the lower right. The downtown business district of Sydney appears as a bright white area just above the center of the image. The Sydney Harbour Bridge is a white line adjacent to the downtown district. The well-known Sydney Opera House is the small, white dot to the right of the bridge. Urban areas appear yellow, blue and brown. The purple areas are undeveloped areas and park lands. Manly, the famous surfing beach, is shown in yellow at the top center of the image. Runways from the Sydney Airport are the dark features that extend into Botany Bay in the lower right. Botany Bay is the site where Captain James Cook first landed his ship, Endeavour, in 1770. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 20, 1994, onboard the space shuttle Endeavour. The area shown is 33 kilometers by 38kilometers (20 miles by 23 miles) and is centered at 33.9 degrees south latitude, 151.2 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequenciesand polarizations as follows: red is L-band, vertically transmittedand horizontally received; green is C-band, vertically transmitted and horizontally received; and blue is C-band, vertically transmittedand received. SIR-C/X-SAR, a joint mission of the German, Italianand United States space agencies, is part of NASA's Mission to Planet Earth. #####

  20. Space Radar Image of Reunion Island

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the volcanic island of Reunion, about 700 km (434 miles) east of Madagascar in the southwest Indian Ocean. The southern half of the island is dominated by the active volcano, Piton de la Fournaise. This is one of the world's most active volcanoes, with more than 100 eruptions in the last 300 years. The most recent activity occurred in the vicinity of Dolomieu Crater, shown in the lower center of the image within a horseshoe-shaped collapse zone. Recent lava flows appear in shades of red, purple and orange. Light green areas are heavily vegetated forest, while much of the purple area near the coast is farmland. The radar illumination is from the left side of the image and dramatically emphasizes the precipitous cliffs at the edges of the central canyons of the island. These canyons are remnants from the collapse of formerly active parts of the volcanoes that built the island. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 5, 1994. The image is centered at 21.2 degrees south latitude, 55.6 degrees east longitude. The area shown is approximately 50 km by 80 km (31 miles by 50 miles). North is toward the upper right. Colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, vertically received; green is L-band horizontally transmitted, vertically received; and blue is C-band horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth.

  1. Effects of space radiation on electronic microcircuits

    NASA Technical Reports Server (NTRS)

    Kolasinski, W. A.

    1989-01-01

    The single event effects or phenomena (SEP), which so far have been observed as events falling on one or another of the SE classes: Single Event Upset (SEU), Single Event Latchup (SEL) and Single Event Burnout (SEB), are examined. Single event upset is defined as a lasting, reversible change in the state of a multistable (usually bistable) electronic circuit such as a flip-flop or latch. In a computer memory, SEUs manifest themselves as unexplained bit flips. Since latchup is in general caused by a single event of short duration, the single event part of the SEL term is superfluous. Nevertheless, it is used customarily to differentiate latchup due to a single heavy charged particle striking a sensitive cell from more ordinary kinds of latchup. Single event burnout (SEB) refers usually to total instantaneous failure of a power FET when struck by a single particle, with the device shorting out the power supply. An unforeseen failure of these kinds can be catastrophic to a space mission, and the possibilities are discussed.

  2. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  3. Viewing Radiation Signatures of Solar Energetic Particles in Interplanetary Space

    DTIC Science & Technology

    2009-01-01

    events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged...events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with...vol. CP858. AIP. New York, pp. 241-250, 2006. Morgan. II., Fineschi, S.. Habbal. S.R., Li. B. In situ spectroscopy of the solar corona . Astron

  4. Image-Guidance for Stereotactic Body Radiation Therapy

    SciTech Connect

    Fuss, Martin . E-mail: fussm@ohsu.edu; Boda-Heggemann, Judit; Papanikolau, Nikos; Salter, Bill J.

    2007-07-01

    The term stereotactic body radiation therapy (SBRT) describes a recently introduced external beam radiation paradigm by which small lesions outside the brain are treated under stereotactic conditions, in a single or few fractions of high-dose radiation delivery. Similar to the treatment planning and delivery process for cranial radiosurgery, the emphasis is on sparing of adjacent normal tissues through the creation of steep dose gradients. Thus, advanced methods for assuring an accurate relationship between the target volume position and radiation beam geometry, immediately prior to radiation delivery, must be implemented. Such methods can employ imaging techniques such as planar (e.g., x-ray) or volumetric (e.g., computed tomography [CT]) approaches and are commonly summarized under the general term image-guided radiation therapy (IGRT). This review summarizes clinical experience with volumetric and ultrasound based image-guidance for SBRT. Additionally, challenges and potential limitations of pre-treatment image-guidance are presented and discussed.

  5. The Effects of Space Radiation on Linear Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Johnston, A.

    2000-01-01

    Permanent and transient effects are discussed that are induced in linear integrated circuits by space radiation. Recent developments include enhanced damage at low dose rate, increased damage from protons due to displacement effects, and transients in digital comparators that can cause circuit malfunctions.

  6. Performance deficit produced by partial body exposures to space radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On exploratory class missions to other planets, astronauts will be exposed to types of radiation (particles of high energy and charge [HZE particles]) that are not experienced in low earth orbit, where the space shuttle operates. Previous research has shown that exposure to HZE particles can affect...

  7. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  8. Space radar image of New Orleans, Louisiana

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image of the area surrounding the city of New Orleans, Louisiana in the southeastern United States demonstrates the ability of multi-frequency imaging radar to distinguish different types of land cover. The dark area in the center is Lake Pontchartrain. The thin line running across the lake is a causeway connecting New Orleans to the city of Mandeville. Lake Borgne is the dark area in the lower right of the image. The Mississippi River appears as a dark, wavy line in the lower left. The white dots on the Mississippi are ships. The French Quarter is the brownish square near the left center of the image. Lakefront Airport, a field used mostly for general aviation, is the bright spot near the center, jutting out into Lake Pontchartrain. The image was acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) during orbit 39 of space shuttle Endeavour on October 2, 1994. The area is located at 30.10 degrees north latitude and 89.1 degrees west longitude. The area shown is approximately 100 kilometers (60 miles) by 50 kilometers (30 miles). The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the C-band (horizontally transmitted and received); blue represents the L-band (vertically transmitted and received). The green areas are primarily vegetation consisting of swamp land and swamp forest (bayou) growing on sandy soil, while the pink areas are associated with reflections from buildings in urban and suburban areas. Different tones and colors in the vegetation areas will be studied by scientists to see how effective imaging radar data is in discriminating between different types of wetlands. Accurate maps of coastal wetland areas are important to ecologists studying wild fowl and the coastal environment.

  9. Space Radar Image of Kiluchevskoi, Volcano, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the

  10. NASA Space Radiation Risk Project: Overview and Recent Results

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; Peterson, Leif E.; Plante, Ianik; Pluth, Janice M.; Ponomarev, Artem L.; Scott Carnell, Lisa A.; Slaba, Tony C.; Sridharan, Deepa; Xu, Xiaojing

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  11. Long titanium heat pipes for high-temperature space radiators

    SciTech Connect

    Girrens, S.P.; Ernst, D.M.

    1982-01-01

    Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D-shaped cross-section container configuration. A prototype titanium heat pipe, 5.5-m long, has been fabricated and tested in space-simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

  12. Long titanium heat pipes for high-temperature space radiators

    NASA Technical Reports Server (NTRS)

    Girrens, S. P.; Ernst, D. M.

    1982-01-01

    Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D shaped cross section container configuration. A prototype titanium heat pipe, 5.5 m long, was fabricated and tested in space simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

  13. Space Radar Image of Oil Slicks

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of an offshore drilling field about 150 km (93 miles) west of Bombay, India, in the Arabian Sea. The dark streaks are extensive oil slicks surrounding many of the drilling platforms, which appear as bright white spots. Radar images are useful for detecting and measuring the extent of oil seepages on the ocean surface, from both natural and industrial sources. The long, thin streaks extending from many of the platforms are spreading across the sea surface, pushed by local winds. The larger dark patches are dispersed slicks that were likely discharged earlier than the longer streaks, when the winds were probably from a different direction. The dispersed oil will eventually spread out over the more dense water and become a layer which is a single molecule thick. Many forms of oil, both from biological and from petroleum sources, smooth out the ocean surface, causing the area to appear dark in radar images. There are also two forms of ocean waves shown in this image. The dominant group of large waves (upper center) are called internal waves. These waves are formed below the ocean surface at the boundary between layers of warm and cold water and they appear in the radar image because of the way they change the ocean surface. Ocean swells, which are waves generated by winds, are shown throughout the image but are most distinct in the blue area adjacent to the internal waves. Identification of waves provide oceanographers with information about the smaller scale dynamic processes of the ocean. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 9, 1994. The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C

  14. Solar Cycle Variation and Application to the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Kim, Myung-Hee Y.; Shinn, Judy L.; Tai, Hsiang; Cucinotta, Francis A.; Badhwar, Gautam D.; Badavi, Francis F.; Atwell, William

    1999-01-01

    The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.

  15. space Radar Image of Long Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An area near Long Valley, California, was mapped by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavor on April 13, 1994, during the first flight of the radar instrument, and on October 4, 1994, during the second flight of the radar instrument. The orbital configurations of the two data sets were ideal for interferometric combination -- that is overlaying the data from one image onto a second image of the same area to create an elevation map and obtain estimates of topography. Once the topography is known, any radar-induced distortions can be removed and the radar data can be geometrically projected directly onto a standard map grid for use in a geographical information system. The 50 kilometer by 50 kilometer (31 miles by 31 miles) map shown here is entirely derived from SIR-C L-band radar (horizontally transmitted and received) results. The color shown in this image is produced from the interferometrically determined elevations, while the brightness is determined by the radar backscatter. The map is in Universal Transverse Mercator (UTM) coordinates. Elevation contour lines are shown every 50 meters (164 feet). Crowley Lake is the dark feature near the south edge of the map. The Adobe Valley in the north and the Long Valley in the south are separated by the Glass Mountain Ridge, which runs through the center of the image. The height accuracy of the interferometrically derived digital elevation model is estimated to be 20 meters (66 feet) in this image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global

  16. Optical MEMS for space spectro-imagers

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Zamkotsian, Frédéric; Noell, Wilfried; Viard, Thierry; Freire, Marco; Guldimann, Benedikt J.; Kraft, Stefan

    2012-09-01

    In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the Digital Mirror Device (DMD) from Texas Instruments (TI), the micro-deformable mirrors, the Programmable Micro Diffraction Grating and the tiltable micro-mirrors. Among 20-30 MEMS-based payloads concepts, two concepts are selected. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectro-imager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a TI’s DMD component. The first diffractive element spreads the spectrum. A micro-mirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  17. Reflectance of Asteroid 4179 Toutatis Based on Space Optical Image

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Liu, P.; Zhao, W.; Huang, C. N.; Zhang, H. W.; Tang, X. L.

    2016-01-01

    On 2012 December 13, Chang'e-2 probe made a success flyby for Asteroid 4179 Toutatis in deep space of about 7 million kilometers away from the earth, and acquired a series of optical images with high resolution better than 3 m. In this paper, we process the radiation calibration data of imaging camera by least square fitting method, to obtain the absolute calibration coefficient and relative calibration correction matrix, and to recover original intensity of asteroid and its real surface radiance. According to the Nicodemus' reflectance definition proposed by Hapke, the directional-hemispherical reflectance of Toutatis is obtained. The average surface albedo in R, G, and B spectrum bands are 0.2083, 0.1269, and 0.1346, respectively, and the asteroid's surface albedo is 0.1566. Data indicate that, Toutatis is, somewhat, a red body in visible spectrum.

  18. Space Radar Image of Oberpfaffenhofen, Germany

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a false-color, three-frequency image of the Oberpfaffenhofen supersite, southwest of Munich in southern Germany, which shows the differences in what the three radar bands can see on the ground. The image covers a 27- by 36-kilometer (17- by 22-mile) area. The center of the site is 48.09 degrees north and 11.29 degrees east. The image was acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour on April 13, 1994, just after a heavy storm which covered the all area with 20 centimeters (8 inches) of snow. The dark area in the center of the image is Lake Ammersee. The two smaller lakes above the Ammersee are the Worthsee and the Pilsensee. On the right of the image is the tip of the Starnbergersee. The outskirt of the city of Munich can be seen at the top of the image. The Oberpfaffenhofen supersite is the major test site for X-SAR calibration and scientific experiments such as ecology, hydrology and geology. This color composite image is a three-frequency overlay. L-band total power was assigned red, the C-band total power is shown in green and the X-band VV polarization appears blue. The colors on the image stress the differences between the L-band, C-band and X-band images. If the three frequencies were seeing the same thing, the image will appear in black and white. For example, the blue areas corresponds to area for which the X-band backscatter is relatively higher than the backscatter at L-and C-band; this behavior is characteristic of clear cuts or shorter vegetation. Similarly, the forested areas have a reddish tint. Finally, the green areas seen at the southern tip of both the Ammersee and the Pilsensee lakes indicate a marshy area. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR

  19. Quality factors for space radiation: A new approach.

    PubMed

    Borak, Thomas B; Heilbronn, Lawrence H; Townsend, Lawrence W; McBeth, Rafe A; de Wet, Wouter

    2014-04-01

    NASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences. This resulted in recommendations for revised specifications of quality factors, QNASA(Z,β) in terms of track structure concepts that extend beyond LET alone. The new paradigm for quality factors placed demands on radiation monitoring procedures that are not satisfied by existing dosimetry systems or particle spectrometers that are practical for space exploration where mass, volume, band width and power consumption are highly constrained. We have proposed a new definition of quality factors that relaxes the requirements for identifying charge, Z, and velocity, β, of the incident radiation while still preserving the functional form of the inherent risk functions. The departure from the exact description of QNASA(Z,β) is that the revised values are new functions of LET for solid cancers and leukemia. We present the motivation and process for developing the revised quality factors. We describe results of extensive simulations using GCR distributions in free space as well as the resulting spectra of primary and secondary particles behind aluminum shields and penetration through water. In all cases the revised dose averaged quality factors agreed with those based on the values obtained using QNASA(Z,β). This provides confidence that emerging technologies for space radiation dosimetry can provide real time measurements of dose and dose equivalent while satisfying constraints on size, mass, power and bandwidth. The revised

  20. Quality factors for space radiation: A new approach

    NASA Astrophysics Data System (ADS)

    Borak, Thomas B.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; McBeth, Rafe A.; de Wet, Wouter

    2014-04-01

    NASA has derived new models for radiological risk assessment based on epidemiological data and radiation biology including differences in Relative Biological Effectiveness for leukemia and solid tumors. Comprehensive approaches were used to develop new risk cross sections and the extension of these into recommendations for risk assessment during space missions. The methodology relies on published data generated and the extensive research initiative managed by the NASA Human Research Program (HRP) and reviewed by the National Academy of Sciences. This resulted in recommendations for revised specifications of quality factors, QNASA (Z , β) in terms of track structure concepts that extend beyond LET alone. The new paradigm for quality factors placed demands on radiation monitoring procedures that are not satisfied by existing dosimetry systems or particle spectrometers that are practical for space exploration where mass, volume, band width and power consumption are highly constrained. We have proposed a new definition of quality factors that relaxes the requirements for identifying charge, Z, and velocity, β, of the incident radiation while still preserving the functional form of the inherent risk functions. The departure from the exact description of QNASA (Z , β) is that the revised values are new functions of LET for solid cancers and leukemia. We present the motivation and process for developing the revised quality factors. We describe results of extensive simulations using GCR distributions in free space as well as the resulting spectra of primary and secondary particles behind aluminum shields and penetration through water. In all cases the revised dose averaged quality factors agreed with those based on the values obtained using QNASA (Z , β). This provides confidence that emerging technologies for space radiation dosimetry can provide real time measurements of dose and dose equivalent while satisfying constraints on size, mass, power and bandwidth. The

  1. Cloud and Radiation Mission with Active and Passive Sensing from the Space Station

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1998-01-01

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  2. Configuration studies for active electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Joshi, Ravindra P.; Qiu, Hao; Tripathi, Ram K.

    2013-07-01

    Developing successful and optimal solutions to mitigating the hazards of severe space radiation in deep space long duration missions is critical for the success of deep-space explorations. Space crews traveling aboard interplanetary spacecraft will be exposed to a constant flux of galactic cosmic rays (GCR), as well as intense fluxes of charged particles during solar particle events (SPEs). A recent report (Tripathi et al., Adv. Space Res. 42 (2008) 1043-1049), had explored the feasibility of using electrostatic shielding in concert with the state-of-the-art materials shielding technologies. Here we continue to extend the electrostatic shielding strategy and quantitatively examine a different configuration based on multiple toroidal rings. Our results show that SPE radiation can almost be eliminated by these electrostatic configurations. Also, penetration probabilities for novel structures such as toroidal rings are shown to be substantially reduced as compared to the simpler all-sphere geometries. More interestingly, the dimensions and aspect ratio of the toroidal rings could be altered and optimized to achieve an even higher degree of radiation protection.

  3. New measurements for hadrontherapy and space radiation: biology

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.

    2001-01-01

    The dual goals of optimizing clinical efficacy of hadrontherapy and determining radiation risk estimates for space research have intersected to a common focus for investigation of the biological effects of charged particles. This paper briefly highlights recent international progress at accelerator facilities engaged in both biological and clinical studies of the effects of particle beams, primarily protons, carbon and iron ions. Basic mechanisms of molecular, cellular and tissue responses continue under investigation for radiations with a range of ionization densities. Late normal tissue effects, including the risk of cancer in particular, are of importance for both research fields. International cooperation has enhanced the rate of progress as evidenced by recent publications. Specific areas of biomedical research related to the biological radiotoxicity of critical organs (especially the central nervous system), individual radiosensitivities to radiation carcinogenesis, and the analysis of effects in mixed radiation fields still require more research. Recommendations for addressing these issues are made.

  4. Research of radiation resistant Er doped fiber for space detection

    NASA Astrophysics Data System (ADS)

    Huang, Jian-ping; Zhang, Ge; Wang, Pu-pu; Li, Run-dong; Jiang, Cong; Xiao, Chun

    2016-11-01

    In this paper, erbium doped fibers for space detection are researched for feature of radiation resistance. Fibers with different coated carbon are hydrogen loaded and radiated, and too thick of carbon layer around fiber would not bring best radiation-resistant performance, since thick carbon layer would make the entering of hydrogen difficult. We also research the duration of saturated hydrogen loading under the high and low temperature respectively, and it's found that the fibers' photo sensitivities tend to be flat after some days. Hydrogen is reloaded into the fibers which have been loaded once, this help us to deep understand the mechanism of hydrogen loading for the fiber gratings. Loss and wave width changes are also researched under different radiation dose.

  5. New measurements for hadrontherapy and space radiation: biology.

    PubMed

    Blakely, E A

    2001-01-01

    The dual goals of optimizing clinical efficacy of hadrontherapy and determining radiation risk estimates for space research have intersected to a common focus for investigation of the biological effects of charged particles. This paper briefly highlights recent international progress at accelerator facilities engaged in both biological and clinical studies of the effects of particle beams, primarily protons, carbon and iron ions. Basic mechanisms of molecular, cellular and tissue responses continue under investigation for radiations with a range of ionization densities. Late normal tissue effects, including the risk of cancer in particular, are of importance for both research fields. International cooperation has enhanced the rate of progress as evidenced by recent publications. Specific areas of biomedical research related to the biological radiotoxicity of critical organs (especially the central nervous system), individual radiosensitivities to radiation carcinogenesis, and the analysis of effects in mixed radiation fields still require more research. Recommendations for addressing these issues are made.

  6. Space radiation effects on dimensional stability of composites

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Bowles, David E.

    1989-01-01

    The long-term space environment at GEO, consisting of high doses (less than 10 to the 9th rads) of electron radiation and large cyclic (-157 C to +121 C) temperature changes, can significantly affect the dimensional stability of polymer matrix composites. Radiation alters the chemical structure of epoxies by both chain scission and cross-linking. In this paper, an attempt is made to summarize and examine the effects of electron radiation damage on dimensional stability of composites. Microcracking measurements were made for standard 177 C cure Gr/Ep, rubber toughened Gr/Ep, Gr/Polymide, and GR/Thermoplastic composites. Results show that radiation damage can significantly change matrix-dependent mechanical and physical properties of composites, with data explaining how these changes can affect their dimensional stability.

  7. Space Radar Image of Lisbon, Portugal

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of Lisbon, Portugal illustrates the different land use patterns that are present in coastal Portugal. Lisbon, the national capital, lies on the north bank of the Rio Tejo where the river enters the Atlantic Ocean. The city center appears as the bright area in the center of the image. The green area west of the city center is a large city park called the Parque Florestal de Monsanto. The Lisbon Airport is visible east of the city. The Rio Tejo forms a large bay just east of the city. Many agricultural fields are visible as a patchwork pattern east of the bay. Suburban housing can be seen on the southern bank of the river. Spanning the river is the Ponte 25 de Abril, a large suspension bridge similar in architecture to San Francisco's Golden Gate Bridge. The image was acquired on April 19, 1994 and is centered at 38.8 degrees north latitude, 9.2 degrees west longitude. North is towards the upper right. The image is 50 kilometers by 30 kilometers (31 miles by 19 miles). The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and the United States space agencies, is part of NASA's Mission to Planet Earth.

  8. Space Radar Image of Sacramento, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a spaceborne radar image of the city of Sacramento, the capital of California. Urban areas appear pink and the surrounding agricultural areas are green and blue. The Sacramento River is the curving dark line running from the left side of the image (northwest) to the bottom right. The American River is the dark curving line in the center. Sacramento is built at the junction of these two rivers and the state Capitol building is in the bright pink-white area southeast of the junction. The straighter dark line (lower center) is the Sacramento River Deep Water Ship Channel which allows ship access from San Francisco. The black areas in the center are the runways of the Sacramento Executive airport. The city of Davis, California is seen as a pink area in lower left. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 2, 1994. The image is 27.0 kilometers by 38.4 kilometers (17 miles by 24 miles) and is centered at 38.6 degrees North latitude, 125.1 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  9. The Impact on Space Radiation Requirements and Effects on ASIMS

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Johnston, A.; Swift, G.

    1995-01-01

    The evolution of highly miniaturized electronic and mechanical systems will be accompanied by new problems and issues regarding the radiation response of these systems in the space environment. In this paper we discuss some of the more prominent radiation problems brought about by miniaturization. For example, autonomous micro-spacecraft will require large amounts of high density memory, most likely in the form of stacked, multichip modules of DRAM's, that must tolerate the radiation environment. However, advanced DRAM's (16 to 256 Mbit) are quite susceptible to radiation, particularly single event effects, and even exhibit new radiation phenomena that were not a problem for older, less dense memory chips. Another important trend in micro-spacecraft electronics is toward the use of low-voltage microelectronic systems that consume less power. However, the reduction in operating voltage also caries with it an increased susceptibility to radiation. In the case of application specific integrated microcircuits (ASIM's), advanced devices of this type, such as high density field programmable gate arrays (FPGA's) exhibit new single event effects (SEE), such as single particle reprogramming of anti-fuse links. New advanced bipolar circuits have been shown recently to degrade more rapidly in the low dose rate space environment than in the typical laboratory total dose radiation test used to qualify such devices. Thus total dose testing of these parts is no longer an appropriately conservative measure to be used for hardness assurance. We also note that the functionality of micromechanical Si-based devices may be altered due to the radiation-induced deposition of charge in the oxide passivation layers.

  10. Radiation environment at aviation altitudes and in space.

    PubMed

    Sihver, L; Ploc, O; Puchalska, M; Ambrožová, I; Kubančák, J; Kyselová, D; Shurshakov, V

    2015-06-01

    On the Earth, protection from cosmic radiation is provided by the magnetosphere and the atmosphere, but the radiation exposure increases with increasing altitude. Aircrew and especially space crew members are therefore exposed to an increased level of ionising radiation. Dosimetry onboard aircraft and spacecraft is however complicated by the presence of neutrons and high linear energy transfer particles. Film and thermoluminescent dosimeters, routinely used for ground-based personnel, do not reliably cover the range of particle types and energies found in cosmic radiation. Further, the radiation field onboard aircraft and spacecraft is not constant; its intensity and composition change mainly with altitude, geomagnetic position and solar activity (marginally also with the aircraft/spacecraft type, number of people aboard, amount of fuel etc.). The European Union Council directive 96/29/Euroatom of 1996 specifies that aircrews that could receive dose of >1 mSv y(-1) must be evaluated. The dose evaluation is routinely performed by computer programs, e.g. CARI-6, EPCARD, SIEVERT, PCAire, JISCARD and AVIDOS. Such calculations should however be carefully verified and validated. Measurements of the radiation field in aircraft are thus of a great importance. A promising option is the long-term deployment of active detectors, e.g. silicon spectrometer Liulin, TEPC Hawk and pixel detector Timepix. Outside the Earth's protective atmosphere and magnetosphere, the environment is much harsher than at aviation altitudes. In addition to the exposure to high energetic ionising cosmic radiation, there are microgravity, lack of atmosphere, psychological and psychosocial components etc. The milieu is therefore very unfriendly for any living organism. In case of solar flares, exposures of spacecraft crews may even be lethal. In this paper, long-term measurements of the radiation environment onboard Czech aircraft performed with the Liulin since 2001, as well as measurements and

  11. Space radar image of Galeras Volcano, Colombia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This radar image of the area surrounding the Galeras volcano in southern Colombia shows the ability of a multi-frequency radar to map volcanic structures that can be dangerous to study on the ground. Galeras has erupted more than 20 times since the area was first visited by European explorers in the 1500s. Volcanic activity levels have been high in the last five years, including an eruption in January 1993 that killed nine people on a scientific expedition to the volcano summit. Galeras is the light green area near the center of the image. The active cone, with a small summit pit, is the red feature nestled against the lower right edge of the caldera (crater) wall. The city of Pasto, with a population of 300,000, is shown in orange near the bottom of the image, just 8 kilometers (5 miles) from the volcano. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 96th orbit on April 15, 1994. North is toward the upper right. The area shown is 49.1 by 36.0 kilometers (30.5 by 22.3 miles), centered at 1.2 degrees north latitude and 77.4 degrees west longitude. The radar illumination is from the top of the image. The false colors in this image were created using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). Galeras is one of 15 volcanoes worldwide that are being monitored by the scientific community as an 'International Decade Volcano' because of the hazard that it represents to the local population.

  12. Towards Space Exploration of Moon, Mars Neos: Radiation Biological Basis

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine; Baumstark-Khan, Christa; Berger, Thomas; Reitz, Guenther

    2016-07-01

    Radiation has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. Astronauts are constantly exposed to galactic cosmic radiation (GCR) of various energies with a low dose rate. Primarily late tissue sequels like genetic alterations, cancer and non-cancer effects, i.e. cataracts and degenerative diseases of e.g. the central nervous system or the cardiovascular system, are the potential risks. Cataracts were observed to occur earlier and more often in astronauts exposed to higher proportions of galactic ions (Cucinotta et al., 2001). Predictions of cancer risk and acceptable radiation exposure in space are subject to many uncertainties including the relative biological effectiveness (RBE) of space radiation especially heavy ions, dose-rate effects and possible interaction with microgravity and other spaceflight environmental factors. The initial cellular response to radiation exposure paves the way to late sequelae and starts with damage to the DNA which complexity depends on the linear energy transfer (LET) of the radiation. Repair of such complex DNA damage is more challenging and requires more time than the repair of simple DNA double strand breaks (DSB) which can be visualized by immunofluorescence staining of the phosphorylated histone 2AX (γH2AX) and might explain the observed prolonged cell cycle arrests induced by high-LET in comparison to low-LET irradiation. Unrepaired or mis-repaired DNA DSB are proposed to be responsible for cell death, mutations, chromosomal aberrations and oncogenic cell transformation. Cell killing and mutation induction are most efficient in an LET range of 90-200 keV/µm. Also the activation of transcription factors such as Nuclear Factor κB (NF-κB) and gene expression shaping the cellular radiation response depend on the LET with a peak RBE between 90 and 300 keV/µm. Such LET-RBE relationships were observed for cataract and cancer induction by heavy ions in laboratory animals

  13. Hyperspectral imaging from space: Warfighter-1

    NASA Astrophysics Data System (ADS)

    Cooley, Thomas; Seigel, Gary; Thorsos, Ivan

    1999-01-01

    The Air Force Research Laboratory Integrated Space Technology Demonstrations (ISTD) Program Office has partnered with Orbital Sciences Corporation (OSC) to complement the commercial satellite's high-resolution panchromatic imaging and Multispectral imaging (MSI) systems with a moderate resolution Hyperspectral imaging (HSI) spectrometer camera. The program is an advanced technology demonstration utilizing a commercially based space capability to provide unique functionality in remote sensing technology. This leveraging of commercial industry to enhance the value of the Warfighter-1 program utilizes the precepts of acquisition reform and is a significant departure from the old-school method of contracting for government managed large demonstration satellites with long development times and technology obsolescence concerns. The HSI system will be able to detect targets from the spectral signature measured by the hyperspectral camera. The Warfighter-1 program will also demonstrate the utility of the spectral information to theater military commanders and intelligence analysts by transmitting HSI data directly to a mobile ground station that receives and processes the data. After a brief history of the project origins, this paper will present the details of the Warfighter-1 system and expected results from exploitation of HSI data as well as the benefits realized by this collaboration between the Air Force and commercial industry.

  14. Design and performance oof space station photovoltaic radiators

    NASA Technical Reports Server (NTRS)

    White, K. Alan; Fleming, Mike L.; Lee, Avis Y.

    1993-01-01

    The design and performance of the Space Station Freedom Photovoltaic (PV) Power Module Thermal Control System radiators is presented. The PV Radiator is of a single phase pumped loop design using liquid ammonia as the coolant. Key design features are described, including the base structure, deployment mechanism, radiator panels, and two independent coolant loops. The basis for a specific mass of 7.8 kg/sqm is discussed, and methods of lowering this number for future systems are briefly described. Key performance paramters are also addressed. A summary of test results and analysis is presented to illustrate the survivability of the radiator in the micrometeoroid and orbital debris environment. A design criterion of 95% probability of no penetration of both fluid loops over a 10 year period is shown to be met. Methods of increasing the radiator survivability even further are presented. Thermal performance is also discussed, including a comparison of modeling predictions with existing test results. Degradation in thermal performance due to exposure to atomic oxygen and ultraviolet radiation in the low Earth orbit environment is presented. The structural criteria to which the radiator is designed are also briefly addressed. Finally, potential design improvements are discussed.

  15. Design and performance of space station photovoltaic radiators

    SciTech Connect

    White, K.A.; Fleming, M.L.; Lee, A.Y.

    1993-12-31

    The design and performance of the Space Station Freedom Photovoltaic (PV) Power Module Thermal Control System radiators is presented. The PV Radiator is of a single phase pumped loop design using liquid ammonia as the coolant. Key design features are described, including the base structure, deployment mechanism, radiator panels, and two independent coolant loops. The basis for a specific mass of 7.8 kg/sqm is discussed, and methods of lowering this number for future systems are briefly described. Key performance paramters are also addressed. A summary of test results and analysis is presented to illustrate the survivability of the radiator in the micrometeoroid and orbital debris environment. A design criterion of 95% probability of no penetration of both fluid loops over a 10 year period is shown to be met. Methods of increasing the radiator survivability even further are presented. Thermal performance is also discussed, including a comparison of modeling predictions with existing test results. Degradation in thermal performance due to exposure to atomic oxygen and ultraviolet radiation in the low Earth orbit environment is presented. The structural criteria to which the radiator is designed are also briefly addressed. Finally, potential design improvements are discussed.

  16. Space Radar Image of Prince Albert, Canada

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a false-color composite of Prince Albert, Canada, centered at 53.91 north latitude and 104.69 west longitude. This image was acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) aboard space shuttle Endeavour on its 20th orbit. The area is located 40 kilometers (25 miles) north and 30 kilometers (20 miles) east of the town of Prince Albert in the Saskatchewan province of Canada. The image covers the area east of the Candle lake, between gravel surface highways 120 and 106 and west of 106. The area in the middle of the image covers the entire Nipawin (Narrow Hills) provincial park. The look angle of the radar is 30 degrees and the size of the image is approximately 20 kilometers by 50 kilometers (12 by 30 miles). The image was produced by using only the L-band. The three polarization channels HH, HV and VV are illustrated by red, green and blue respectively. The changes in the intensity of each color are related to various surface conditions such as variations in forest stands, frozen or thawed condition of the surface, disturbances (fire and deforestation), and areas of regrowth. Most of the dark areas in the image are the ice-covered lakes in the region. The dark area on the top right corner of the image is the white Gull Lake north of the intersection of highway 120 and 913. The right middle part of the image shows Lake Ispuchaw and Lower Fishing Lake. The deforested areas are also shown by dark areas in the image. Since most of the logging practice at the Prince Albert area is around the major highways, the deforested areas can be easily detected as small geometrically shaped dark regions along the roads. At the time of the SIR-C/X-SAR overpass a major part of the forest is either frozen or undergoing the spring thaw. The L-band HH shows a high return in the jack pine forest. The reddish areas in the image are old jack pine forest, 12 to 17 meters (40to 55 feet) in height and 60 to 75 years old. The orange

  17. Space Radar Image of Kliuchevskoi Volcano, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the bright white peak surrounded by red slopes in the lower left portion of the image. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 25th orbit on October 1, 1994. The image shows an area approximately 30 kilometers by 60 kilometers (18.5 miles by 37 miles) that is centered at 56.18 degrees north latitude and 160.78 degrees east longitude. North is toward the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the current activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). The Kamchatka River runs from left to right across the image. An older, dormant volcanic region appears in green on the north side of the river. The current eruption included massive ejections of gas, vapor and ash, which reached altitudes of 20,000 meters (65,000 feet). New lava flows are visible on the flanks of Kliuchevskoi, appearing yellow/green in the image, superimposed on the red surfaces in the lower center. Melting snow triggered mudflows on the north flank of the volcano, which may threaten agricultural zones and other settlements in the valley to the north. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars

  18. Space Radar Image of Mississippi Delta

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of the Mississippi River Delta where the river enters into the Gulf of Mexico along the coast of Louisiana. This multi-frequency image demonstrates the capability of the radar to distinguish different types of wetlands surfaces in river deltas. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 2, 1995. The image is centered on latitude 29.3 degrees North latitude and 89.28 degrees West longitude. The area shown is approximately 63 kilometers by 43 kilometers (39 miles by 26 miles). North is towards the upper right of the image. As the river enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid-continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil and the numerous bright spots along the outside of the delta are drilling platforms. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad red stripe running northwest to southeast down the left side of the image. The bright spots within the channel are ships. The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; blue is X-band vertically transmitted, vertically received. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars

  19. SPace Radar Image of Fort Irwin, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of Fort Irwin in California's Mojave Desert compares interferometric radar signatures topography -- data that were obtained by multiple imaging of the same region to produce three-dimensional elevation maps -- as it was obtained on October 7-8, 1994 by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour. Data were acquired using the L-band (24 centimeter wavelength) and C-band (6 centimeter wavelength). The image covers an area about 25 kilometers by 70 kilometers (15.5 miles by 43 miles). North is to the lower right of the image. The color contours shown are proportional to the topographic elevation. With a wavelength one-fourth that of the L-band, the results from the C-band cycle through the color contours four times faster for a given elevation change. Detailed comparisons of these multiple frequency data over different terrain types will provide insights in the future into wavelength-dependent effects of penetration and scattering on the topography measurement accuracy. Fort Irwin is an ideal site for such detailed digital elevation model comparisons because a number of high precision digital models of the area already exist from conventional measurements as well as from airborne interferometric SAR data. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human

  20. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This false-color L-band image of the Manaus region of Brazil was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 46 of the mission. The area shown is approximately 8 kilometers by 40 kilometers (5 by 25 miles). At the top of the image are the Solimoes and Rio Negro rivers just before they combine at Manaus to form the Amazon River. The image is centered at about 3 degrees south latitude, and 61 degrees west longitude. The false colors are created by displaying three L-band polarization channels; red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low returns at VV polarization; hence the bright blue colors of the smooth river surfaces. Using this coloring scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest. Between Rio Solimoes and Rio Negro a road can be seen running from some cleared areas (visible as blue rectangles north of Rio Solimoes) north towards a tributary of Rio Negro. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio

  1. Space Radar Image of Raco Vegetation Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a vegetation map of the Raco, Michigan area produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. The radar image, taken on April 9, 1994, has been used by science team members at the University of Michigan to produce detailed map of land cover. This image is centered at 46.4 degrees north latitude and 84.9 degrees west longitude. The imaged area is approximately 24 by 32 kilometers (15 by 20 miles). The Raco airport, which is a decommissioned military base, is easily identified by its triangular runway structure. An edge of Lake Superior, approximately 44 kilometers (27 miles) west of Sault Sainte Marie, appears in the top right of the image. In this land cover map each 30- by 30-meter (98- by 98-foot) spot is identified as either a water surface, bare ground, short vegetation, deciduous forest, lowland conifers or upland conifers. Different types of ground cover have different effects on Earth's chemical, water and energy cycles. By cataloguing ground cover in an area, scientists expect to better understand the processes of these cycles in a specific area. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio

  2. Space radar image of Mauna Loa, Hawaii

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image of the Mauna Loa volcano on the Big Island of Hawaii shows the capability of imaging radar to map lava flows and other volcanic structures. Mauna Loa has erupted more than 35 times since the island was first visited by westerners in the early 1800s. The large summit crater, called Mokuaweoweo Caldera, is clearly visible near the center of the image. Leading away from the caldera (towards top right and lower center) are the two main rift zones shown here in orange. Rift zones are areas of weakness within the upper part of the volcano that are often ripped open as new magma (molten rock) approaches the surface at the start of an eruption. The most recent eruption of Mauna Loa was in March and April 1984, when segments of the northeast rift zones were active. If the height of the volcano was measured from its base on the ocean floor instead of from sea level, Mauna Loa would be the tallest mountain on Earth. Its peak (center of the image) rises more than 8 kilometers (5 miles) above the ocean floor. The South Kona District, known for cultivation of macadamia nuts and coffee, can be seen in the lower left as white and blue areas along the coast. North is toward the upper left. The area shown is 41.5 by 75 kilometers (25.7 by 46.5 miles), centered at 19.5 degrees north latitude and 155.6 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 36th orbit on October 2, 1994. The radar illumination is from the left of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). The resulting color combinations in this radar image are caused by differences in surface roughness of the lava flows. Smoother flows

  3. Space Radar Image of Weddell Sea

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Two radar images are shown in this composite to compare the size of a standard spaceborne radar image (small inset) to the image that is created when the radar instrument is used in the ScanSAR mode (large image). The predominant image shows two large ocean circulation features, called eddies, at the northernmost edge of the sea ice pack in the Weddell Sea, off Antarctica. The eddy processes in this region play an important role in the circulation of the global ocean and the transportation of heat toward the pole. The large image is the first wide-swath, multi-frequency, multi-polarization radar image ever processed. To date, no other spaceborne radar sensors have obtained swaths exceeding 100 kilometers (62 miles) in width. This developmental image was produced at NASA's Jet Propulsion Laboratory by the Alaska SAR Facility's ScanSAR processor system, using radar data obtained on October 5, 1994, during the second flight of the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. The image is oriented approximately east-west, with a center location of around 56.6 degrees south latitude and 6.5 degrees west longitude. Image dimensions are 240 km by 350 km (149 miles by 218 miles). The smaller image inset (upper right edge) was obtained by SIR-C/X-SAR on October 6, 1994, and covers a portion of the same ice features that are shown in the large image. The inset image dimensions are 18 km by 50 km (11 miles by 31 miles). The ocean eddies have a clockwise (or cyclonic) rotation and are roughly 40 km to 60 km (25 miles to 37 miles) in diameter. The dark areas are new ice and the lighter green areas are small sea-ice floes that are swept along by surface currents; both of these areas are shown within the eddies and to the south of the eddies. First year seasonal ice, typically 0.5 meter to 0.8 meter (1.5 feet to 2.5 feet) thick, is shown in the darker green area in the lower right corner. The open ocean to the north

  4. Application of Optical Imaging and Spectroscopy to Radiation Biology

    PubMed Central

    Palmer, Gregory M.; Vishwanath, Karthik; Dewhirst, Mark W.

    2013-01-01

    Optical imaging and spectroscopy is a diverse field that has been of critical importance in a wide range of areas in radiation research. It is capable of spanning a wide range of spatial and temporal scales, and has the sensitivity and specificity needed for molecular and functional imaging. This review will describe the basic principles of optical imaging and spectroscopy, highlighting a few relevant applications to radiation research. PMID:22360397

  5. Applications review for a Space Program Imaging Radar (SPIR)

    NASA Technical Reports Server (NTRS)

    Simonett, D. S.

    1976-01-01

    The needs, applications, user support, research, and theoretical studies of imaging radar are reviewed. The applications of radar in water resources, minerals and petroleum exploration, vegetation resources, ocean radar imaging, and cartography are discussed. The advantages of space imaging radar are presented, and it is recommended that imaging radar be placed on the space shuttle.

  6. Biological Effects of Space Radiation and Development of Effective Countermeasures.

    PubMed

    Kennedy, Ann R

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  7. Biological Effects of Space Radiation and Development of Effective Countermeasures

    PubMed Central

    Kennedy, Ann R.

    2014-01-01

    As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation. PMID:25258703

  8. Radiation environments and absorbed dose estimations on manned space missions.

    PubMed

    Curtis, S B; Atwell, W; Beever, R; Hardy, A

    1986-01-01

    In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5 degrees, 57 degrees and 90 degrees) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5 degrees orbital inclination.

  9. Biological effects of space radiation and development of effective countermeasures

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  10. Space radiation dose estimates on the surface of Mars.

    PubMed

    Simonsen, L C; Nealy, J E; Townsend, L W; Wilson, J W

    1990-01-01

    A future goal of the U.S. space program is a commitment to the manned exploration and habitation of Mars. An important consideration of such missions is the exposure of crew members to the damaging effects of ionizing radiation from high-energy galactic cosmic ray fluxes and solar proton flares. The crew will encounter the most harmful radiation environment in transit to Mars from which they must be adequately protected. However, once on the planet's surface, the Martian environment should provide a significant amount of protection from free-space radiative fluxes. In current Mars scenario descriptions, the crew flight time to Mars is estimated to be anywhere from 7 months to over a year each way, with stay times on the surface ranging from 20 days to 2 years. To maintain dose levels below established astronaut limits, dose estimates need to be determined for the entire mission length. With extended crew durations on the surface anticipated, the characterization of the Mars radiation environment is important in assessing all radiation protection requirements. This synopsis focuses on the probable doses incurred by surface inhabitants from the transport of galactic cosmic rays and solar protons through the Mars atmosphere.

  11. Performance of a Multifunctional Space Evaporator- Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Bue, Grant; Quinn, Gregory

    2013-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 sq ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable heat rejection from the LCAR.

  12. A Freezable Heat Exchanger for Space Suit Radiator Systems

    NASA Technical Reports Server (NTRS)

    Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.

    2008-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.

  13. Space Radar Image of North Sea, Germany

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band image of an oil slick experiment conducted in the North Sea, Germany. The image is centered at 54.58 degrees north latitude and 7.48 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 6, 1994, during the second flight of the spaceborne radar. The experiment was designed to differentiate between petroleum oil spills and natural slicks floating on the sea surface. Two types of petroleum oil and six types of oils resembling natural sea surface slicks were poured on the sea surface from ships and a helicopter just before the space shuttle flew over the region. At the bottom of the image is the Sylt peninsula, a famous holiday resort. Twenty-six gallons (100 liters) of diesel oil was dissipated due to wave action before the shuttle reached the site. The oil spill seen at the uppermost part of the image is about 105 gallons (400 liters) of heavy heating oil and the largest spill is about 58 gallons (220 liters) of oleyl alcohol, resembling a 'natural oil' like the remaining five spills used to imitate natural slicks that have occurred offshore from various states. The volume of these other oils spilled on the ocean surface during the five experimental spills varied from 16 gallons to 21 gallons (60 liters to 80 liters). The distance between neighboring spills was about half a mile (800 meters) at the most. The largest slick later thinned out to monomolecular sheets of about 10 microns, which is the dimension of a molecule. Oceanographers found that SIR-C/X-SAR was able to clearly distinguish the oil slicks from algae products dumped nearby. Preliminary indications are that various types of slicks may be distinguished, especially when other radar wavelengths are included in the analysis. Radar imaging of the world's oceans on a continuing basis may allow oceanographers in the future to detect and clean up oil spills much more

  14. Space Radar Image of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data -- that is data acquired on different passes of the space shuttle which are then overlayed to obtain elevation information -- acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 kilometers by 80 kilometers (25 miles by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in the direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrains on Earth. Several regions show motions over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's 'plumbing' system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data acquired by SIR-C/X-SAR and future imaging

  15. Small space object imaging : LDRD final report.

    SciTech Connect

    Ackermann, Mark R.; Valley, Michael T.; Kearney, Sean Patrick

    2009-10-01

    We report the results of an LDRD effort to investigate new technologies for the identification of small-sized (mm to cm) debris in low-earth orbit. This small-yet-energetic debris presents a threat to the integrity of space-assets worldwide and represents significant security challenge to the international community. We present a nonexhaustive review of recent US and Russian efforts to meet the challenges of debris identification and removal and then provide a detailed description of joint US-Russian plans for sensitive, laser-based imaging of small debris at distances of hundreds of kilometers and relative velocities of several kilometers per second. Plans for the upcoming experimental testing of these imaging schemes are presented and a preliminary path toward system integration is identified.

  16. Managing Space Radiation Risk in the New Era of Space Exploration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Space exploration is a risky enterprise. Rockets launch astronauts at enormous speeds into a harsh, unforgiving environment. Spacecraft must withstand the bitter cold of space and the blistering heat of reentry. Their skin must be strong enough to keep the inside comfortably pressurized and tough enough to resist damage from micrometeoroids. Spacecraft meant for lunar or planetary landings must survive the jar of landing, tolerate dust, and be able to take off again. For astronauts, however, there is one danger in space that does not end when they step out of their spacecraft. The radiation that permeates space -- unattenuated by Earth s atmosphere and magnetosphere -- may damage or kill cells within astronauts bodies, resulting in cancer or other health consequences years after a mission ends. The National Aeronautics and Space Administration (NASA) has recently embarked on Project Constellation to implement the Vision for Space Exploration -- a program announced by President George W. Bush in 2004 with the goal of returning humans to the Moon and eventually transporting them to Mars. To adequately prepare for the safety of these future space explorers, NASA s Exploration Systems Mission Directorate requested that the Aeronautics and Space Engineering Board of the National Research Council establish a committee to evaluate the radiation shielding requirements for lunar missions and to recommend a strategic plan for developing the radiation mitigation capabilities needed to enable the planned lunar mission architecture

  17. Space Radar Image of Victoria, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-frequency spaceborne radar image shows the southern end of Vancouver Island on the west coast of Canada. The white area in the lower right is the city of Victoria, the capital of the province of British Columbia. The three radar frequencies help to distinguish different land use patterns. The bright pink areas are suburban regions, the brownish areas are forested regions, and blue areas are agricultural fields or forest clear-cuts. Founded in 1843 as a fur trading post, Victoria has grown to become one of western Canada's largest commercial centers. In the upper right is San Juan Island, in the state of Washington. The Canada/U.S. border runs through Haro Strait, on the right side of the image, between San Juan Island and Vancouver Island. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on October 6, 1994, onboard the space shuttle Endeavour. The area shown is 37 kilometers by 42 kilometers (23 miles by 26 miles) and is centered at 48.5 degrees north latitude, 123.3 degrees west longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted and received; green is C-band, vertically transmitted and received; and blue is X-band, vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  18. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  19. Visualization of parameter space for image analysis.

    PubMed

    Pretorius, A Johannes; Bray, Mark-Anthony P; Carpenter, Anne E; Ruddle, Roy A

    2011-12-01

    Image analysis algorithms are often highly parameterized and much human input is needed to optimize parameter settings. This incurs a time cost of up to several days. We analyze and characterize the conventional parameter optimization process for image analysis and formulate user requirements. With this as input, we propose a change in paradigm by optimizing parameters based on parameter sampling and interactive visual exploration. To save time and reduce memory load, users are only involved in the first step--initialization of sampling--and the last step--visual analysis of output. This helps users to more thoroughly explore the parameter space and produce higher quality results. We describe a custom sampling plug-in we developed for CellProfiler--a popular biomedical image analysis framework. Our main focus is the development of an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. We implemented this in a prototype called Paramorama. It provides users with a visual overview of parameters and their sampled values. User-defined areas of interest are presented in a structured way that includes image-based output and a novel layout algorithm. To find optimal parameter settings, users can tag high- and low-quality results to refine their search. We include two case studies to illustrate the utility of this approach.

  20. Space Radar Image of Hong Kong, China

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-SAR image spanning an area of approximately 20 kilometers by 40 kilometers (12 miles by 25 miles) of the island of Hong Kong, the Kowloon Peninsula and the new territories in southern China, taken by the imaging radar on board the space shuttle Endeavour on October 4, 1994. North is toward the top left corner of the image. The Kaitak Airport runway on Kowloon Peninsula (center right of image) was built on reclaimed land and extends almost 3 kilometers (nearly 2 miles) into Victoria Harbor. To the south of the harbor lies the island of Hong Kong. The bright areas around the harbor are the major residential and business districts. Housing more than six million residents, Hong Kong is the most densely populated area in the world. The large number of objects visible in the harbor and surrounding waters are a variety of sea-going vessels, anchored in one of the busiest seaports in the Far East. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in

  1. Comparison of Martian Radiation Environment with International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This graphic shows the radiation dose equivalent as measured by Odyssey's Martian radiation environment experiment at Mars and by instruments aboard the International Space Station, for the 11-month period from April 2002 through February 2003. The accumulated total in Mars orbit is about two and a half times larger than that aboard the Space Station. Averaged over this time period, about 10 percent of the dose equivalent at Mars is due to solar particles, although a 30 percent contribution from solar particles was seen in July 2002, when the sun was particularly active.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The radiation experiment was provided by the Johnson Space Center, Houston, Tex. Lockheed Martin Astronautics, Denver, Colo., is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Space Radiation Cancer Risks and Uncertainties for Mars Missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Badhwar, G. D.; Saganti, P. B.; Dicello, J. F.

    2001-01-01

    Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400-600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earth's magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or delta-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks.

  3. Space Radiation Cancer Risk Projections and Uncertainties - 2010

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.

    2011-01-01

    Uncertainties in estimating health risks from galactic cosmic rays greatly limit space mission lengths and potential risk mitigation evaluations. NASA limits astronaut exposures to a 3% risk of exposure-induced death and protects against uncertainties using an assessment of 95% confidence intervals in the projection model. Revisions to this model for lifetime cancer risks from space radiation and new estimates of model uncertainties are described here. We review models of space environments and transport code predictions of organ exposures, and characterize uncertainties in these descriptions. We summarize recent analysis of low linear energy transfer radio-epidemiology data, including revision to Japanese A-bomb survivor dosimetry, longer follow-up of exposed cohorts, and reassessments of dose and dose-rate reduction effectiveness factors. We compare these projections and uncertainties with earlier estimates. Current understanding of radiation quality effects and recent data on factors of relative biological effectiveness and particle track structure are reviewed. Recent radiobiology experiment results provide new information on solid cancer and leukemia risks from heavy ions. We also consider deviations from the paradigm of linearity at low doses of heavy ions motivated by non-targeted effects models. New findings and knowledge are used to revise the NASA risk projection model for space radiation cancer risks.

  4. NASA Self-Assessment of Space Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2010-01-01

    Space exploration involves unavoidable exposures to high-energy galactic cosmic rays whose penetration power and associated secondary radiation makes radiation shielding ineffective and cost prohibitive. NASA recognizing the possible health dangers from cosmic rays notified the U.S. Congress as early as 1959 of the need for a dedicated heavy ion accelerator to study the largely unknown biological effects of galactic cosmic rays on astronauts. Information and scientific tools to study radiation health effects expanded over the new decades as NASA exploration programs to the moon and preparations for Mars exploration were carried out. In the 1970 s through the early 1990 s a more than 3-fold increase over earlier estimates of fatal cancer risks from gamma-rays, and new knowledge of the biological dangers of high LET radiation were obtained. Other research has increased concern for degenerative risks to the central nervous system and other tissues at lower doses compared to earlier estimates. In 1996 a review by the National Academy of Sciences Space Science Board re-iterated the need for a dedicated ground-based accelerator facility capable of providing up to 2000 research hours per year to reduce uncertainties in risks projections and develop effective mitigation measures. In 1998 NASA appropriated funds for construction of a dedicated research facility and the NASA Space Radiation Laboratory (NSRL) opened for research in October of 2003. This year marks the 8th year of NSRL research were about 1000 research hours per year have been utilized. In anticipation of the approaching ten year milestone, funded investigators and selected others are invited to participate in a critical self-assessment of NSRL research progress towards NASA s goals in space radiation research. A Blue and Red Team Assessment format has been integrated into meeting posters and special plenary sessions to allow for a critical debate on the progress of the research and major gaps areas. Blue

  5. Analysis of space radiation data of semiconductor memories

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Brucker, G. J.; Stauffer, C. A.

    1996-01-01

    This article presents an analysis of radiation effects for several select device types and technologies aboard the Combined Release and Radiation Effects Satellite (CRRES) satellite. These space-flight measurements covered a period of about 14 months of mission lifetime. Single Event Upset (SEU) data of the investigated devices from the Microelectronics Package (MEP) were processed and analyzed. Valid upset measurements were determined by correcting for invalid readings, hard failures, missing data tapes (thus voids in data), and periods over which devices were disabled from interrogation. The basic resolution time of the measurement system was confirmed to be 2 s. Lessons learned, important findings, and recommendations are presented.

  6. Issues in Space Radiation Protection: Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M.; Schimmerling, W.; Badavi, F. F.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kiefer, R.

    1995-01-01

    With shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current status of space shielding technology and its impact on radiation health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen gas is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.

  7. Space Radiation Dose Calculations for the Space Experiment Matroshka-R Modelling Conditions

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Kartashov, Dmitrij; Tolochek, Raisa

    Space radiation dose calculations for the space experiment Matroshka-R modelling conditions are presented in the report. The experiment has been carried out onboard the ISS from 2004 to 2014. Dose measurements were realized both outside the ISS on the outer surface of the Service Module with the MTR-facility and in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility. Newly applied approach to calculate the shielding probability functions for complex shape objects is used when the object surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Using the simplified Matroshka-R shielding geometry models of the space station compartments the space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms, and for an additional shielding installed in the compartment are calculated. There is good agreement between the data obtained in the experiment and calculated ones within an experiment accuracy of about 10%. Thus the calculation method used has been successfully verified with the Matroshka-R experiment data. The suggested method can be recommended for modelling of radiation loads on the crewmembers, and estimation of the additional shielding efficiency in space station compartments, and also for pre-flight estimations of radiation shielding in future space missions.

  8. Space Radar Image of Flevoland, Netherlands

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-frequency false color image of Flevoland, The Netherlands, centered at 52.4 degrees north latitude, 5.4 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard space shuttle Endeavour on April 14, 1994. It was produced by combining data from the X-band, C-band and L-band radars. The area shown is approximately 25 kilometers by 28 kilometers (15-1/2 by 17-1/2 miles). Flevoland, which fills the lower two-thirds of the image, is a very flat area that is made up of reclaimed land that is used for agriculture and forestry. At the top of the image, across the canal from Flevoland, is an older forest shown in red; the city of Harderwijk is shown in white on the shore of the canal. At this time of the year, the agricultural fields are bare soil, and they show up in this image in blue. The changes in the brightness of the blue areas are equal to the changes in roughness. The dark blue areas are water and the small dots in the canal are boats. This SIR-C/X-SAR supersite is being used for both calibration and agricultural studies. Several soil and crop ground-truth studies will be conducted during the shuttle flight. In addition, about 10calibration devices and 10 corner reflectors have been deployed to calibrate and monitor the radar signal. One of these transponders can be seen as a bright star in the lower right quadrant of the image. This false-color image was made using L-band total power in the red channel, C-band total power in the green channel, and X-band VV polarization in the blue channel. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be

  9. Space Radar Image of Kliuchevskoi, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band seasonal image of the Maly Semlyachik volcano, which is part of the Karymsky volcano group on Kamchatka peninsula, Russia. The image is centered at 54.2 degrees north latitude and 159.6 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 9, 1994, during the first flight of the radar system, and on September 30, 1994, during the second flight. The image channels have been assigned the following colors: red corresponds to data acquired on April 9; green corresponds to data acquired on September 30; and blue corresponds to the ratio between data from April 9 and September 30, 1994. Kamchatka is twice as large as England, Scotland and Wales combined and is home to approximately 470,000 residents. The region is characterized by a chain of volcanoes stretching 800 kilometers (500 miles) across the countryside. Many of the volcanoes, including the active Maly Semlyachik volcano in this image, have erupted during this century. But the most active period in creating the three characteristic craters of this volcano goes back 20,000, 12,000 and 2,000 years ago. The highest summit of the oldest crater reaches about 1,560 meters (1,650 feet). The radar images reveal the geological structures of craters and lava flows in order to improve scientists' knowledge of these sometimes vigorously active volcanoes. This seasonal composite also highlights the ecological differences that have occurred between April and October 1994. In April the whole area was snow-covered and, at the coast, an ice sheet extended approximately 5 kilometers (3 miles) into the sea. The area shown surrounding the volcano is covered by low vegetation much like scrub. Kamchatka also has extensive forests, which belong to the northern frontier of Taiga, the boreal forest ecosystem. This region plays an important role in the world's carbon cycle. Trees require 60 years to

  10. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  11. Space Radar Image of Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This false-color composite radar image of the Mammoth Mountain area in the Sierra Nevada Mountains, California, was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on October 3, 1994. The image is centered at 37.6 degrees north latitude and 119.0 degrees west longitude. The area is about 39 kilometers by 51 kilometers (24 miles by 31 miles). North is toward the bottom, about 45 degrees to the right. In this image, red was created using L-band (horizontally transmitted/vertically received) polarization data; green was created using C-band (horizontally transmitted/vertically received) polarization data; and blue was created using C-band (horizontally transmitted and received) polarization data. Crawley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The purple areas at the higher elevations in the upper part of the scene are discontinuous patches of snow cover from a September 28 storm. New, very thin snow was falling before and during the second space shuttle pass. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput Synthetic Aperture Radar processing in preparation for upcoming data-intensive SAR missions. The image released here was produced as part of this experimental effort. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR)are part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed

  12. Space Radar Image of Colombian Volcano

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  13. Space Radar Image of Cape Cod, Massachusetts

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows the famous 'hook' of Cape Cod, Massachusetts. The Cape, which juts out into the Atlantic Ocean about 100 kilometers (62 miles) southeast of Boston, actually consists of sandy debris left behind by the great continental ice sheets when they last retreated from southern New England about 20,000 years ago. Today's landscape consists of sandy forests, fields of scrub oak and other bushes and grasses, salt marshes, freshwater ponds, as well as the famous beaches and sand dunes. In this image, thickly forested areas appear green, marshes are dark blue, ponds and sandy areas are black, and developed areas are mostly pink. The dark L-shape in the lower center is the airport runways in Hyannis, the Cape's largest town. The dark X-shape left of the center is Otis Air Force Base. The Cape Cod Canal, above and left of center, connects Buzzards Bay on the left with Cape Cod Bay on the right. The northern tip of the island of Martha's Vineyard is seen in the lower left. The tip of the Cape, in the upper right, includes the community of Provincetown, which appears pink, and the protected National Seashore areas of sand dunes that parallel the Atlantic coast east of Provincetown. Scientists are using radar images like this one to study delicate coastal environments and the effects of human activities on the ecosystem and landscape. This image was acquired by Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 15, 1994. The image is 81.7 kilometers by 43.1 kilometers (50.7 miles by 26.7 miles) and is centered at 41.8 degrees north latitude, 70.3 degrees west longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted and received. SIR

  14. IR Thermography of International Space Station Radiator Panels

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Winfree, WIlliam; Morton, Richard; Howell, Patricia

    2010-01-01

    Several non-flight qualification test radiators were inspected using flash thermography. Flash thermography data analysis used raw and second derivative images to detect anomalies (Echotherm and Mosaic). Simple contrast evolutions were plotted for the detected anomalies to help in anomaly characterization. Many out-of-family indications were noted. Some out-of-family indications were classified as cold spot indications and are due to additional adhesive or adhesive layer behind the facesheet. Some out-of-family indications were classified as hot spot indications and are due to void, unbond or lack of adhesive behind the facesheet. The IR inspection helped in assessing expected manufacturing quality of the radiators.

  15. Radiation tolerance of a Geiger-mode avalanche photodiode imaging array

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly E.; Figer, Donald F.; Lee, Joong; Hanold, Brandon J.

    2016-07-01

    Radiation testing results for a Geiger-mode avalanche photodiode (GM-APD) array-based imager are reviewed. Radiation testing is a crucial step in technology development that assesses the readiness of a specific device or instrument for space-based missions or other missions in high-radiation environments. Pre- and postradiation values for breakdown voltage, dark count rate (DCR), after pulsing probability, photon detection efficiency (PDE), crosstalk probability, and intrapixel sensitivity are presented. Details of the radiation testing setup and experiment are provided. The devices were exposed to a total dose of 50 krad(Si) at the Massachusetts General Hospital's Francis H. Burr Proton Therapy Center, using monoenergetic 60 MeV protons as the radiation source. This radiation dose is equivalent to radiation absorbed over 10 solar cycles at an L2 orbit with 1-cm aluminum shielding. The DCR increased by 2.3 e-/s/pix/krad(Si) at 160 K, the afterpulsing probability increased at all temperatures and settings by a factor of ˜2, and the effective breakdown voltage shifted by +1.5 V. PDE, crosstalk probability, and intrapixel sensitivity were unchanged by radiation damage. The performance of the GM-APD imaging array is compared to the performance of the CCD on board the ASCA satellite with a similar radiation shield and radiation environment.

  16. Validation of a comprehensive space radiation transport code.

    PubMed

    Shinn, J L; Cucinotta, F A; Simonsen, L C; Wilson, J W; Badavi, F F; Badhwar, G D; Miller, J; Zeitlin, C; Heilbronn, L; Tripathi, R K; Clowdsley, M S; Heinbockel, J H; Xapsos, M A

    1998-12-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation.

  17. Space Radar Image of Safsaf, North Africa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a false-color image of the uninhabited Safsaf Oasis in southern Egypt near the Egypt/Sudan border. It was produced from data obtained from the L-band and C-band radars that are part of the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour on April 9, 1994. The image is centered at 22 degree north latitude, 29 degrees east longitude. It shows detailed structures of bedrock; the dark blue sinuous lines are braided channels that occupy part of an old broad river valley. On the ground and in optical photographs, this big valley and the channels in it are invisible because they are entirely covered by windblown sand. Some of these same channels were observed in SIR-A images in 1981. It is hypothesized that the large valley was carved by one of several ancient predecessor rivers that crossed this part of North Africa, flowing westward, tens of millions of years before the Nile River existed. The Nile flows north about 300 kilometers (200 miles) to the east. The small channels are younger, and probably formed during relatively wet climatic periods within the past few hundred thousand years. This image shows that the channels are in a river valley located in an area where U.S. Geological Survey geologists and archeologists discovered an unusual concentration of hand axes (stone tools) used by Early Man (Homo erectus) hundreds of thousands of years ago. The image clearly shows that in wetter times, the valley would have supported game animals and vegetation. Today, as a result of climate change, the area in uninhabited and lacks water except fora few scattered oases. This color composite image was produced from C-band and L-band horizontal polarization images. The C-band image was assigned red, the L-band (HH) polarization image is shown in green, and the ratio of these two images (LHH/CHH) appears in blue. The primary and composite colors on the image indicate the degree to which the C-band, H-band, their

  18. Space Radar Image of Taal Volcano, Philippines

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of Taal volcano, near Manila on the island of Luzon in the Philippines. The black area in the center is Taal Lake, which nearly fills the 30-kilometer-diameter (18-mile) caldera. The caldera rim consists of deeply eroded hills and cliffs. The large island in Taal Lake, which itself contains a crater lake, is known as Volcano Island. The bright yellow patch on the southwest side of the island marks the site of an explosion crater that formed during a deadly eruption of Taal in 1965. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 78th orbit on October 5, 1994. The image shows an area approximately 56 kilometers by 112 kilometers (34 miles by 68 miles) that is centered at 14.0 degrees north latitude and 121.0 degrees east longitude. North is toward the upper right of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Since 1572, Taal has erupted at least 34 times. Since early 1991, the volcano has been restless, with swarms of earthquakes, new steaming areas, ground fracturing, and increases in water temperature of the lake. Volcanologists and other local authorities are carefully monitoring Taal to understand if the current activity may foretell an eruption. Taal is one of 15 'Decade Volcanoes' that have been identified by the volcanology community as presenting large potential hazards to population centers. The bright area in the upper right of the image is the densely populated city of Manila, only 50 kilometers (30 miles) north of the central crater. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth

  19. Space Radar Image of Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This color composite C-band and L-band image of the Kilauea volcano on the Big Island of Hawaii was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) flying on space shuttle Endeavour. The city of Hilo can be seen at the top. The image shows the different types of lava flows around the crater Pu'u O'o. Ash deposits which erupted in 1790 from the summit of Kilauea volcano show up as dark in this image, and fine details associated with lava flows which erupted in 1919 and 1974 can be seen to the south of the summit in an area called the Ka'u Desert. In addition, the other historic lava flows created in 1881 and 1984 from Mauna Loa volcano (out of view to the left of this image) can be easily seen despite the fact that the surrounding area is covered by forest. Such information will be used to map the extent of such flows, which can pose a hazard to the subdivisions of Hilo. Highway 11 is the linear feature running from Hilo to the Kilauea volcano. The Kilauea volcano has been almost continuously active for more than the last 11 years. Field teams that were on the ground specifically to support these radar observations report that there was vigorous surface activity about 400 meters (one-quarter mile) inland from the coast. A moving lava flow about 200 meters (660 feet) in length was observed at the time of the shuttle overflight, raising the possibility that subsequent images taken during this mission will show changes in the landscape. This image is centered at 19.2 degrees north latitude and 155.2 degrees west longitude. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific

  20. Space radiation-associated lung injury in a murine model

    PubMed Central

    Pietrofesa, Ralph A.; Arguiri, Evguenia; Schweitzer, Kelly S.; Berdyshev, Evgeny V.; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S.; Yu, Yongjia; Globus, Ruth K.; Solomides, Charalambos C.; Ullrich, Robert L.; Petrache, Irina

    2014-01-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to 137Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u 56Fe ions, or 350 MeV/u 28Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy 56Fe or 28Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  1. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions.

  2. Second Epoch Hubble Space Telescope Imaging of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; Blair, William P.; Borkowski, Kazimierz J.; Long, Knox S.; Patnaude, Daniel; Raymond, John C.; Reynolds, Stephen P.; Williams, Brian J.

    2015-01-01

    We have obtained new HST/WFC3 images of Kepler's supernova remnant in H-alpha (F656N) and [N II] (F658N) emission line filters. The bright radiative shocks in dense clumps are detected in both filters, while non-radiative shocks are seen as faint filaments only in the H-alpha image. Most of these Balmer filaments lie around the periphery of the remnant where the blast wave encounters partially neutral interstellar gas. We compare the new images with HST/ACS images taken nearly 10 years previously, and find that these filaments tracing the forward shock have moved 0.6"-0.9" between the two epochs. Assuming a distance of 4 kpc to the remnant, these proper motions correspond to shock velocities of 1160-1740 km/s, which are consistent with the published values, 1550-2000 km/s (e.g. Blair et al. 1991, ApJ 366, 484). We also find a few Balmer filaments with highly non-radial proper motions. In one particularly interesting case in the projected interior of the remnant, SE of the center, the shock appears to have wrapped around a sharp density enhancement and moved about 0.3" in the period between the observations.The images allow us to study the evolution of the shock around an ejecta knot, which is punching through the remnant boundary in the northwest. The forward shock, visible as an arcuate Balmer filament, has moved about 1". At the trailing edges, the system of radiative knots formed by Rayleigh-Taylor instabilities have undergone significant changes - some knots have disappeared, new ones have appeared, and many have changed in brightness. Elsewhere in the remnant we find changes in the relative intensities of many small, bright knots over the 10 year baseline, indicating the short radiative lifetimes of these features.This work has been supported in part by grant HST-GO-12885 to the Universities Space Research Association.

  3. Analysis of a Radiation Model of the Shuttle Space Suit

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, John E.; Kim, Myung-Hee; Qualls, Garry D.; Wilson, John W.

    2003-01-01

    The extravehicular activity (EVA) required to assemble the International Space Station (ISS) will take approximately 1500 hours with 400 hours of EVA per year in operations and maintenance. With the Space Station at an inclination of 51.6 deg the radiation environment is highly variable with solar activity being of great concern. Thus, it is important to study the dose gradients about the body during an EVA to help determine the cancer risk associated with the different environments the ISS will encounter. In this paper we are concerned only with the trapped radiation (electrons and protons). Two different scenarios are looked at: the first is the quiet geomagnetic periods in low Earth orbit (LEO) and the second is during a large solar particle event in the deep space environment. This study includes a description of how the space suit's computer aided design (CAD) model was developed along with a description of the human model. Also included is a brief description of the transport codes used to determine the total integrated dose at several locations within the body. Finally, the results of the transport codes when applied to the space suit and human model and a brief description of the results are presented.

  4. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  5. Radiated Susceptibility Tests in Thermal Vacuum Chambers for Space Systems

    NASA Astrophysics Data System (ADS)

    Anon Cancela, Manuel; Hernandez-Gomez, Daniel; Vazquez-Pascual, Mercedes; Lopez-Sanz, Daniel

    2016-05-01

    INTA EMC Area has a wide experience in performing Radiated Susceptibility (RS) tests according to civilian, military and aeronautical standards in Mode Tuned Chambers (MTC) for national and international projects; besides, INTA has two Thermal Vacuum Chamber (TVC) facilities in service for Space Systems tests. In order to perform RS tests to Space Systems in a more realistic environment, INTA EMC Area has stablished an internal research program to develop a procedure to perform this kind of tests inside a TVC as a Mode Tuned Chamber (MTC). In this paper the results of the TVC-04 validation measurements as a MTC are presented.

  6. Weight optimization methods in space radiation shield design

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1975-01-01

    An empirical relation between proton range and material density is used to examine relations between shield weight, geometry, and material composition for shielding against a space proton environment. The optimum material resulting in minimum shield weight usually lies at the extremes of either the lightest or heaviest materials. Aluminum, which has special prominence in the space program, appears universally suboptimal as a radiation shielding material. Assuming square-box geometry (rectangular prisms with two square faces), the optimum shape for the shielded objects is found to be a cube, although moderate deviations from a cube result in only a small weight penalty.

  7. Towards a 3D Space Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.

  8. Revolutionary Concepts of Radiation Shielding for Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Hathaway, D. H.; Grugel, R. N.; Watts, J. W.; Parnell, T. A.; Gregory, J. C.; Winglee, R. M.

    2005-01-01

    This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value.

  9. DREAM: An integrated space radiation nowcast system for natural and nuclear radiation belts

    NASA Astrophysics Data System (ADS)

    Reeves, G.

    2011-09-01

    The natural space environment continues to surprise us. We recently witnessed the quietest solar minimum in the past 100 years, casting huge uncertainties on our expectations for approach to Solar Maximum. The overall space environment is made up of many related but independent parts. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the spacecraft charging environment. DREAM-RB (Radiation Belt) covers the internal charging (penetrating radiation) environment and DREAM-RC (Ring Current) covers the external, surface charging environment. A third component of DREAM is an electron source model (ESM) that calculates the trapped electron environment produced by high altitude nuclear explosions (HANE). All three major components of DREAM have undergone accelerated development over the past 18 months and now comprise an integrated code system for realtime “nowcasting”, for retrospective analysis of events, and for assessing threats from nuclear scenarios. DREAMESM has many similarities to the legacy SNRTACS code system but was developed to give us a modern code architecture with well-understood physics that could be integrated into the full DREAM system. The core of that system is the radiation belt model that uses data assimilation from geosynchronous, GPS, and other radiation measuring platforms to provide a highly accurate nowcast of the penetrating electron environment. DREAM includes codes that implement spacecraft tracking using the space catalog to calculate the specific internal charging and dose rate conditions at a specific satellite of interest. Targeted applications include alerts/warnings, anomaly resolution for more reliable operations, and attack/anomaly assessment for space situational awareness. The DREAM system is written to be fully compliant with Service Oriented Architecture standards and even has an iDREAM Space Weather app for the publicly-available space weather services.

  10. Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Nikjoo, Hooshang; Dicello, John F.; Pisacane, Vincent; Cucinotta, Francis A.

    2007-01-01

    For the proper interpretation of radiation data measured in space, the results of integrated radiation transport models were compared with the tissue equivalent proportional counter (TEPC) measurements. TEPC is a simple, time-dependent approach to radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Qave(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Qave(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. The deviation of y from LET is caused by energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. The response distribution functions of the wall-less and walled TEPCs were calculated from Monte-Carlo track simulations. Using an integrated space radiation model (which includes the transport codes HZETRN and BRYNTRN, and the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions from Monte-Carlo track simulations, we compared model calculations with the walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. Good agreement was found for Qave(y) between the model and measured spectra from past NASA missions. The Qave(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Qave(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Qave(y). The GCR values are decreasing with the shield thickness. Our analysis

  11. Standardization Process for Space Radiation Models Used for Space System Design

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Daly, Eamonn; Brautigam, Donald

    2005-01-01

    The space system design community has three concerns related to models of the radiation belts and plasma: 1) AP-8 and AE-8 models are not adequate for modern applications; 2) Data that have become available since the creation of AP-8 and AE-8 are not being fully exploited for modeling purposes; 3) When new models are produced, there is no authorizing organization identified to evaluate the models or their datasets for accuracy and robustness. This viewgraph presentation provided an overview of the roadmap adopted by the Working Group Meeting on New Standard Radiation Belt and Space Plasma Models.

  12. Radiation-conduction interaction in large space structures

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Mortazavi, H. R.; Smith, S. O.

    1984-01-01

    The effects of a penumbra due to the long wave radiation emitted by the earth or to solar energy reflected from the earth on temperature distributions, deflections and stresses in plates are studied to determine their importance in the design of space structures. An examination of the state of stress in a thin plate exposed to the sun suggests that deflections are only slightly modified by the penumbra, but that stresses in the vicinity of the shadow line are more affected. Even with the smoothing due to the penumbra, these stresses should be considered in the design of space structures. A simple relationship is given by which albedo viewfactors can be easily derived from the direct viewfactor, thus simplifying the radiation analysis.

  13. Risk of Skin Cancer from Space Radiation. Chapter 11

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; George, Kerry A.; Wu, Hong-Lu

    2003-01-01

    We review the methods for estimating the probability of increased incidence of skin cancers from space radiation exposure, and describe some of the individual factors that may contribute to risk projection models, including skin pigment, and synergistic effects of combined ionizing and UV exposure. The steep dose gradients from trapped electrons, protons, and heavy ions radiation during EVA and limitations in EVA dosimetry are important factors for projecting skin cancer risk of astronauts. We estimate that the probability of increased skin cancer risk varies more than 10-fold for individual astronauts and that the risk of skin cancer could exceed 1 % for future lunar base operations for astronauts with light skin color and hair. Limitations in physical dosimetry in estimating the distribution of dose at the skin suggest that new biodosimetry methods be developed for responding to accidental overexposure of the skin during future space missions.

  14. Models of CNS radiation damage during space flight

    NASA Astrophysics Data System (ADS)

    Hopewell, J. W.

    1994-10-01

    The primary structural and functional arrangement of the different cell types within the CNS are reviewed. This was undertaken with a view to providing a better understanding of the complex interrelationships that may contribute to the pathogenesis of lesions in this tissue after exposure to ionizing radiation. The spectrum of possible CNS radiation-induced syndromes are discussed although not all have an immediate relevance to exposure during space flight. The specific characteristics of the lesions observed would appear to be dose related. Very high doses may produce an acute CNS syndrome that can cause death. Of the delayed lesions, selective coagulation necrosis of white matter and a later appearing vascular microangiopathy, have been reported in patients after cancer therapy doses. Lower doses, perhaps very low doses, may produce a delayed generalised CNS atrophy; this effect and the probability of the induction of CNS tumors could potentially have the greatest significance for space flight.

  15. Analysis and Simulations of Space Radiation Induced Single Event Transients

    NASA Astrophysics Data System (ADS)

    Perez, Reinaldo

    2016-05-01

    Spacecraft electronics are affected by the space radiation environment. Among the different types of radiation effects that can affect spacecraft electronics is the single event transients. The space environment is responsible for many of the single event transients which can upset the performance of the spacecraft avionics hardware. In this paper we first explore the origins of single event transients, then explore the modeling of a single event transient in digital and analog circuit. The paper also addresses the concept of crosstalk that could develop among digital circuits in the present of a SET event. The paper ends with a brief discussion of SET hardening. The goal of the paper is to provide methodologies for assessing single event transients and their effects so that spacecraft avionics engineers can develop either hardware or software countermeasures in their designs.

  16. Graphene metamaterial modulator for free-space thermal radiation.

    PubMed

    Fan, Kebin; Suen, Jonathan; Wu, Xueyuan; Padilla, Willie J

    2016-10-31

    We proposed and demonstrated a new metamaterial architecture capable of high speed modulation of free-space space thermal infrared radiation using graphene. Our design completely eliminates channel resistance, thereby maximizing the electrostatic modulation speed, while at the same time effectively modulating infrared radiation. Experiment results verify that our device with area of 100 × 120 µm2 can achieve a modulation speed as high as 2.6 GHz. We further highlight the utility of our graphene metamaterial modulator by reconstructing a fast infrared signal using an equivalent time sampling technique. The graphene metamaterial modulator demonstrated here is not only limited to the thermal infrared, but may be scaled to longer infrared and terahertz wavelengths. Our work provides a path forward for realization of frequency selective and all-electronic high speed devices for infrared applications.

  17. Anatomical models for space radiation applications: An overview

    NASA Astrophysics Data System (ADS)

    Atwell, W.

    1994-10-01

    Extremely detailed computerized anatomical male (CAM) and female (CAF) models that have been developed for use in space radiation analyses are discussed and reviewed. Recognizing that the level of detail may currently be inadequate for certain radiological applications, one of the purposes of this paper is to elicit specific model improvements or requirements from the scientific user-community. Methods and rationale are presented which describe the approach used in the Space Shuttle program to extrapolate dosimetry measurements (skin doses) to realistic astronaut body organ doses. Several mission scenarios are presented which demonstrate the utility of the anatomical models for obtaining specific body organ exposure estimates and can be used for establishing cancer morbidity and mortality risk assessments. These exposure estimates are based on the trapped Van Allen belt and galactic cosmic radiation environment models and data from the major historical solar particle events.

  18. Experimental simulation of proton space radiation environments: A dosimetric perspective

    NASA Astrophysics Data System (ADS)

    Hardy, K. A.; Leavitt, D. D.

    1994-10-01

    Three-dimensional dose calculation techniques developed for radiotherapy treatment planning were used to calculate dose distributions from unidirectional, planar rotational and omnidirectional incident radiation (experimental proton beams and solar flares). The calculations predicted regions of high dose within primate heads exposed to 55-MeV protons, supporting the postulate of radiation-induced brain tumors within this population/1/. Comparisons among predicted doses to the human head from solar flares of three different energies demonstrated differences between unidirectional and omnidirectional irradiation in the space environment. The results can be used to estimate dose distributions based on a) limited phantom measurements, or b) nonuniformly incident radiation in orbit; both situations are difficult to replicate under laboratory exposure conditions.

  19. Radiation shielding requirements for manned deep space missions

    SciTech Connect

    Santoro, R.T.; Ingersoll, D.T.

    1991-04-01

    Galactic cosmic rays (GCR) and, particularly, solar flares (SF) constitute the major radiation hazards in deep space. The dose to astronauts from these radiation sources and the shielding required to mitigate its effect during a 480 day Mars mission is estimated here for a simplistic spacecraft geometry. The intent is to ball park'' the magnitude of the doses for the constant GCR background and for SF's that occur randomly during the mission. The spacecraft shielding and dose data are given only for primary GCR and SF radiation, recognizing that secondary particles produced by primary particle reactions in the spacecraft and High Z-High Energy particles will also contribute to the dose suffered by the astronauts. 22 refs., 7 figs., 2 tabs.

  20. Special Issue: 4th International Workshop on Space Radiation (IWSRR)

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2007-01-01

    This special issue of the journal "Radiation and Environmental Biophysics" contains 20 peer-reviewed papers contributed by leading space radiation researcher's world-wide attending the 4th IWSRR. Manuscripts cover a broad range of topics ranging from radiation environments and transport in shielding and planetary surfaces to new results in understanding the biological effects of protons and high-charge and energy (HZE) nuclei on the risk of cancer, and degenerative diseases such as central nervous system effects, heart disease, and cataracts. The issue provides a snapshot of the state-of-the-art of the research in this field, demonstrating both the important results gathered in the past few years with experiments at accelerators, and the need for more research to quantify the risk and develop countermeasures.

  1. Radiation Protection of the Child from Diagnostic Imaging.

    PubMed

    Leung, Rebecca S

    2015-01-01

    In recent years due to the technological advances in imaging techniques, which have undoubtedly improved diagnostic accuracy and resulted in improved patient care, the utilization of ionizing radiation in diagnostic imaging has significantly increased. Computed tomography is the major contributor to the radiation burden, but fluoroscopy continues to be a mainstay in paediatric radiology. The rise in the use of ionizing radiation is of particular concern with regard to the paediatric population, as they are up to 10 times more sensitive to the effects of radiation than adults, due to their increased tissue radiosensitivity, increased cumulative lifetime radiation dose and longer lifetime in which to manifest the effects. This article will review the estimated radiation risk to the child from diagnostic imaging and summarise the various methods through which both the paediatrician and radiologist can practice the ALARA (As Low As Reasonably Achievable) principle, which underpins the safe practice of radiology. Emphasis is on the justification for an examination, i.e. weighing of benefits versus radiation risk, on the appropriate utilization of other, non-ionizing imaging modalities such as ultrasound and magnetic resonance imaging, and on optimisation of a clinically indicated examination. It is essential that the paediatrician and radiologist work together in this decision making process for the mutual benefit of the patient. The appropriate practical application of ALARA in the workplace is crucial to the radiation safety of our paediatric patients.

  2. Radiation Dose from Medical Imaging: A Primer for Emergency Physicians

    PubMed Central

    Jones, Jesse G.A; Mills, Christopher N.; Mogensen, Monique A.; Lee, Christoph I.

    2012-01-01

    Introduction Medical imaging now accounts for most of the US population's exposure to ionizing radiation. A substantial proportion of this medical imaging is ordered in the emergency setting. We aim to provide a general overview of radiation dose from medical imaging with a focus on computed tomography, as well as a literature review of recent efforts to decrease unnecessary radiation exposure to patients in the emergency department setting. Methods We conducted a literature review through calendar year 2010 for all published articles pertaining to the emergency department and radiation exposure. Results The benefits of imaging usually outweigh the risks of eventual radiation-induced cancer in most clinical scenarios encountered by emergency physicians. However, our literature review identified 3 specific clinical situations in the general adult population in which the lifetime risks of cancer may outweigh the benefits to the patient: rule out pulmonary embolism, flank pain, and recurrent abdominal pain in inflammatory bowel disease. For these specific clinical scenarios, a physician-patient discussion about such risks and benefits may be warranted. Conclusion Emergency physicians, now at the front line of patients' exposure to ionizing radiation, should have a general understanding of the magnitude of radiation dose from advanced medical imaging procedures and their associated risks. Future areas of research should include the development of protocols and guidelines that limit unnecessary patient radiation exposure. PMID:22900113

  3. Cancer Risks Associated with External Radiation From Diagnostic Imaging Procedures

    PubMed Central

    Linet, Martha S.; Slovis, Thomas L.; Miller, Donald L.; Kleinerman, Ruth; Lee, Choonsik; Rajaraman, Preetha; de Gonzalez, Amy Berrington

    2012-01-01

    The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate widespread use of evidence-based appropriateness criteria for decisions about imaging procedures, oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives, development of electronic lifetime records of imaging procedures for patients and their physicians, and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures. PMID:22307864

  4. Cancer risks associated with external radiation from diagnostic imaging procedures.

    PubMed

    Linet, Martha S; Slovis, Thomas L; Miller, Donald L; Kleinerman, Ruth; Lee, Choonsik; Rajaraman, Preetha; Berrington de Gonzalez, Amy

    2012-01-01

    The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but increased potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate the widespread use of evidence-based appropriateness criteria for decisions about imaging procedures; oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives; development of electronic lifetime records of imaging procedures for patients and their physicians; and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures.