Hazards to space workers from ionizing radiation
NASA Technical Reports Server (NTRS)
Lyman, J. T.
1980-01-01
A compilation of background information and a preliminary assessment of the potential risks to workers from the ionizing radiation encountered in space is provided. The report: (1) summarizes the current knowledge of the space radiation environment to which space workers will be exposed; (2) reviews the biological effects of ionizing radiation considered of major importance to a SPS project; and (3) discusses the health implications of exposure of populations of space workers to the radiations likely to penetrate through the shielding provided by the SPS work stations and habitat shelters of the SPS Reference System.
Radiation Effects on Emerging Technologies: Implications of Space Weather Risk Management
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Barth, Janet L.
2000-01-01
As NASA and its space partners endeavor to develop a network of satellites capable of supporting humankind's needs for advanced space weather prediction and understanding, one of the key challenges is to design a space system to operate in the natural space radiation environment In this paper, we present a description of the natural space radiation environment, the effects of interest to electronic or photonic systems, and a sample of emerging technologies and their specific issues. We conclude with a discussion of operations in the space radiation hazard and considerations for risk management.
Radiation: Behavioral Implications in Space
1988-01-01
central nervous system (CNS). Thus, because of the uncertainties bout proton and HZE radiation, the CNS and behavioral effects of these radiations should...central nervous system or with an indirect measure of emesis (conditioned taste aversion) may occur as low as 0.1 -0.25 Gy. 305 (3) Radiation effects ...paper: (1) space radiations are more effective at disrupting behavior; (2) task demands can aggravate the radiation-disruption; (3) efforts to mitigate
Cancer Risk from Exposure to Galactic Cosmic Rays - Implications for Human Space Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Durant, marco
2006-01-01
Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. However, space radiation is a major barrier to human exploration of the solar system because the biological effects of high-energy and charge (HZE) ions, which are the main contributors to radiation risks in deep space, are poorly understood. Predictions of the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Great efforts have been dedicated worldwide in recent years toward a better understanding of the oncogenic potential of galactic cosmic rays. A review of the new results in this field will be presented here.
Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.
Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John
2018-01-01
Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.
The Future of the South Atlantic Anomaly and Implications for Radiation Damage in Space
NASA Technical Reports Server (NTRS)
Heirtzler, J. R.; Smith, David E. (Technical Monitor)
2000-01-01
South Atlantic Anomaly of the geomagnetic field plays a dominant role in where radiation damage occurs in near Earth orbits. The historic and recent variations of the geomagnetic field in the South Atlantic are used to estimate the extent of the South Atlantic Anomaly until the year 2000. This projection indicates that radiation damage to spacecraft and humans in space will greatly increase and cover a much larger geographic area than present.
NASA Technical Reports Server (NTRS)
Schaefer, H. J.
1972-01-01
Dosimetric implications for manned space flight are evaluated by analyzing the radiation field behind the heavy shielding of a manned space vehicle on a near-earth orbital mission and how it compares with actual exposure levels recorded on Apollo missions. Emphasis shifts from flux densities and energy spectra to incident radiation and absorbed doses and dose equivalents as they are recorded within the ship at locations close to crew members.
Recent measurements for hadrontherapy and space radiation: nuclear physics
NASA Technical Reports Server (NTRS)
Miller, J.
2001-01-01
The particles and energies commonly used for hadron therapy overlap the low end of the charge and energy range of greatest interest for space radiation applications, Z=1-26 and approximately 100-1000 MeV/nucleon. It has been known for some time that the nuclear interactions of the incident ions must be taken into account both in treatment planning and in understanding and addressing the effects of galactic cosmic ray ions on humans in space. Until relatively recently, most of the studies of nuclear fragmentation and transport in matter were driven by the interests of the nuclear physics and later, the hadron therapy communities. However, the experimental and theoretical methods and the accelerator facilities developed for use in heavy ion nuclear physics are directly applicable to radiotherapy and space radiation studies. I will briefly review relevant data taken recently at various accelerators, and discuss the implications of the measurements for radiotherapy, radiobiology and space radiation research.
A Strategy to Safely Live and Work in the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam
2006-01-01
The goal of the National Aeronautics and Space Agency and the Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. The term safely means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences (for example, excess lifetime fatal cancer risk) can be defined. The Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the understanding of health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus the fourth element develops computer codes to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining methods to mitigate the risks are keys to a successful radiation protection strategy.
NASA Strategy to Safely Live and Work in the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wu, Honglu; Corbin, Barbara J.; Sulzman, Frank M.; Krenek, Sam
2007-01-01
In space, astronauts are constantly bombarded with energetic particles. The goal of the National Aeronautics and Space Agency and the NASA Space Radiation Project is to ensure that astronauts can safely live and work in the space radiation environment. The space radiation environment poses both acute and chronic risks to crew health and safety, but unlike some other aspects of space travel, space radiation exposure has clinically relevant implications for the lifetime of the crew. Among the identified radiation risks are cancer, acute and late CNS damage, chronic and degenerative tissue decease, and acute radiation syndrome. The term "safely" means that risks are sufficiently understood such that acceptable limits on mission, post-mission and multi-mission consequences can be defined. The NASA Space Radiation Project strategy has several elements. The first element is to use a peer-reviewed research program to increase our mechanistic knowledge and genetic capabilities to develop tools for individual risk projection, thereby reducing our dependency on epidemiological data and population-based risk assessment. The second element is to use the NASA Space Radiation Laboratory to provide a ground-based facility to study the health effects/mechanisms of damage from space radiation exposure and the development and validation of biological models of risk, as well as methods for extrapolation to human risk. The third element is a risk modeling effort that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting the identified radiation risks. To understand the biological basis for risk, we must also understand the physical aspects of the crew environment. Thus, the fourth element develops computer algorithms to predict radiation transport properties, evaluate integrated shielding technologies and provide design optimization recommendations for the design of human space systems. Understanding the risks and determining methods to mitigate the risks are keys to a successful radiation protection strategy.
NASA Technical Reports Server (NTRS)
Desai, N.; Wu, H.; George, K.; Gonda, S. R.; Cucinotta, F. A.; Cucniotta, F. A. (Principal Investigator)
2004-01-01
Space flight results in the exposure of astronauts to a mixed field of radiation composed of energetic particles of varying energies, and biological indicators of space radiation exposure provides a better understanding of the associated long-term health risks. Current methods of biodosimetry have employed the use of cytogenetic analysis for biodosimetry, and more recently the advent of technological progression has led to advanced research in the use of genomic and proteomic expression profiling to simultaneously assess biomarkers of radiation exposure. We describe here the technical advantages of the Luminex(TM) 100 system relative to traditional methods and its potential as a tool to simultaneously profile multiple proteins induced by ionizing radiation. The development of such a bioassay would provide more relevant post-translational dynamics of stress response and will impart important implications in the advancement of space and other radiation contact monitoring. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
RBE of radiations in space and the implications for space travel.
Edwards, A A
2001-01-01
Space travellers are irradiated with cosmic rays to a dose rate considerably higher than that received on earth. In order to make sensible judgements about space exploration, the risks to health of such radiation need to be assessed. Part of the assessment of risk is to allow for the enhanced biological effectiveness of high LET radiations with respect to others. In space the high LET radiations of concern are high energy neutrons and charged particles. At the doses and dose rates encountered in space, the important risk is the induction of cancer in the astronauts. For this biological end-point there is no direct human evidence for the relative effectiveness of these radiations. There are some data for neutrons for cancer and life-shortening in laboratory animals but these are for fission spectra neutrons, which are of lower energy than those encountered in space. There is a small amount of data for protons and high energy heavier charged particles. The remaining evidence comes from cellular experiments observing chromosome aberrations and gene mutations. From this sparse information, pragmatic choices need to be made for application to protection in space. The data are reviewed and the bases for the pragmatic choices discussed.
NASA Astrophysics Data System (ADS)
Shi, Jinming; Lu, Weihong; Sun, Yeqing
2014-04-01
Rice seeds, after space flight and low dose heavy ion radiation treatment were cultured on ground. Leaves of the mature plants were obtained for examination of genomic/epigenomic mutations by using amplified fragment length polymorphism (AFLP) and methylation sensitive amplification polymorphism (MSAP) method, respectively. The mutation sites were identified by fragment recovery and sequencing. The heritability of the mutations was detected in the next generation. Results showed that both space flight and low dose heavy ion radiation can induce significant alterations on rice genome and epigenome (P < 0.05). For both genetic and epigenetic assays, while there was no significant difference in mutation rates and their ability to be inherited to the next generation, the site of mutations differed between the space flight and radiation treated groups. More than 50% of the mutation sites were shared by two radiation treated groups, radiated with different LET value and dose, while only about 20% of the mutation sites were shared by space flight group and radiation treated group. Moreover, in space flight group, we found that DNA methylation changes were more prone to occur on CNG sequence than CG sequence. Sequencing results proved that both space flight and heavy ion radiation induced mutations were widely spread on rice genome including coding region and repeated region. Our study described and compared the characters of space flight and low dose heavy ion radiation induced genomic/epigenomic mutations. Our data revealed the mechanisms of application of space environment for mutagenesis and crop breeding. Furthermore, this work implicated that the nature of mutations induced under space flight conditions may involve factors beyond ion radiation.
The Effect of Topography on the Exposure of Airless Bodies to Space Radiation: Phobos Case Study
NASA Astrophysics Data System (ADS)
Stubbs, T. J.; Wang, Y.; Guo, J.; Schwadron, N.; Cooper, J. F.; Wimmer-Schweingruber, R. F.; Spence, H. E.; Jordan, A.; Sturner, S. J.; Glenar, D. A.; Wilson, J. K.
2017-12-01
The surfaces of airless bodies, such as the Moon and Phobos (innermost Martian moon), are directly exposed to the surrounding space environment, including energetic particle radiation from both the ever-present flux of galactic cosmic rays (GCRs) and episodic bursts of solar energetic particles (SEPs). Characterizing this radiation exposure is critical to our understanding of the evolution of these bodies from space weathering processes, such as radiation damage of regolith, radiolysis of organics and volatiles, and dielectric breakdown. Similarly, this also has important implications for the long-term radiation exposure of future astronauts and equipment on the surface. In this study, the focus is the influence of Phobian topography on the direct exposure of Phobos to space radiation. For a given point on its surface, this exposure depends on: (i) the solid angle subtended by the sky, (ii) the solid angle of the sky blocked by Mars, and (iii) the energy and angular distributions of ambient energetic particle populations. The sky solid angle, determined using the elevation of the local horizon calculated from a digital elevation model (DEM), can be significantly reduced around topographic lows, such as crater floors, or increased near highs like crater rims. The DEM used in this study was produced using images from the Mars Express High Resolution Stereo Camera (HRSC), and has the highest available spatial resolution ( 100m). The proximity of Phobos to Mars means the Martian disk appears large in the Phobian sky, but this only effects the moon's near side due its tidally locked orbit. Only isotropic distributions of energetic particles are initially considered, which is typically a reasonable assumption for GCRs and sometimes for SEPs. Observations of the radiation environments on Mars by Curiosity's Radiation Assessment Detector (RAD), and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon, will be used to estimate the average, annual radiation dose at the orbit of Phobos. These three elements will be combined to produce a map of radiation exposure on the surface of Phobos, which will be used to assess the implications for space weathering and future human exploration.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; O'Neill, P. M.
2001-01-01
There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed. c2001 Elsevier Science B.V. All rights reserved.
Badhwar, G D; O'Neill, P M
2001-07-11
There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed. c2001 Elsevier Science B.V. All rights reserved.
The medical implications of space tourism.
Tarzwell, R
2000-06-01
Commercial space travel may soon be a reality. If so, microgravity, high acceleration, and radiation exposure, all known hazards, will be accessible to the general public. Therefore, space tourism has medical implications. Even though the first flights will feature space exposure times of only a few minutes, the potential may someday exist for exposure times long enough to warrant careful consideration of the potential hazards to the space-faring public. The effects of acceleration and microgravity exposure are well known on the corps of astronauts and cosmonauts. The effects of space radiation are partially known on astronauts, but much remains to be discovered. However, there are problems using astronaut data to make inferences about the general public. Astronauts are not necessarily representative of the general public, since they are highly fit, highly screened individuals. Astronaut data can tell us very little about the potential hazards of microgravity in pediatric, obstetric and geriatric populations, all of whom are potential space tourists. Key issues in standard setting will be determining acceptable limits of pre-existing disease and inferring medical standards from mission profiles. It will not be a trivial task drafting minimal medical standards for commercial space travel. It will require the collaboration of space medicine physicians, making the best guesses possible, based on limited amounts of data, with limited applicability. A helpful departure point may be the USAF Class 3 medical standard, applicable to NASA payload specialists. It is time to begin preliminary discussions toward defining those standards. acceleration, aerospace medicine, medical standards, microgravity, radiation, space, space tourism, environmental hazards, environmental medicine.
NASA Technical Reports Server (NTRS)
Goradia, C.; Weinberg, I.
1985-01-01
Particulate radiation in space is a principal source of silicon solar cell degradation, and an investigation of cell radiation damage at higher base resistivities appears to have implication toward increasing solar cell and, therefore, useful satellite lifetimes in the space environment. However, contrary to expectations, it has been found that for cells with resistivities of 84 and 1250 ohm cm, the radiation resistance decreases as cell base resistivity increases. An analytical solar-cell computer model was developed with the objective to determine the reasons for this unexpected behavior. The present paper has the aim to describe the analytical model and its use in interpreting the behavior, under irradiation, of high-resistivity solar cells. Attention is given to boundary conditions at the space-charge region edges, cell currents, cell voltages, the generation of the theoretical I-V characteristic, experimental results, and computer calculations.
NASA Astrophysics Data System (ADS)
De Vos, Winnok H.; Meesen, Geert; Szpirer, Cedric; Scohy, Sophie; Cherukuri, Chaitanya; Evrard, Olivier; Hutsebaut, Xavier; Beghuin, Didier
2012-12-01
A major concern for long-term deep space missions is the detrimental impact of cosmic radiation on human health. Especially the presence of high-energy particles of high atomic mass (HZE) represents a serious threat. To contribute to a fundamental understanding of space radiation effects and to help improving risk assessment for humans on the Moon, the ESA Lunar Lander mission model payload includes a package dedicated to cell-based radiobiology experiments in the form of an Autonomous Microscope for Examination of Radiation Effects (AMERE). The purpose of this setup is to enable real-time visualization of DNA damage repair in living cells after traversal of HZE particles on the Moon. To assess the feasibility of this challenging experiment, we have analysed the biological and technological demands. In this article, we discuss the experimental concept, the biological considerations and describe the implications for system design.
Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome.
Casero, David; Gill, Kirandeep; Sridharan, Vijayalakshmi; Koturbash, Igor; Nelson, Gregory; Hauer-Jensen, Martin; Boerma, Marjan; Braun, Jonathan; Cheema, Amrita K
2017-08-18
Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects.
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul
2015-01-01
NASA's exploration goals are focused on deep space travel and Mars surface operations. To accomplish these goals, large structures will be necessary to transport crew and logistics in the initial stages, and NASA will need to keep the crew and the vehicle safe during transport and any surface activities. One of the major challenges of deep space travel is the space radiation environment and its impacts on the crew, the electronics, and the vehicle materials. The primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle. These interactions lead to some of the primary radiation being absorbed, being modified, or producing secondary radiation (primarily neutrons). With all vehicles, the high energy primary radiation is of most concern. However, with larger vehicles that have large shielding masses, there is more opportunity for secondary radiation production, and this secondary radiation can be significant enough to cause concern. When considering surface operations, there is also a secondary radiation source from the surface of the planet, known as albedo, with neutrons being one of the most significant species. Given new vehicle designs for deep space and Mars missions, the secondary radiation environment and the implications of that environment is currently not well understood. Thus, several studies are necessary to fill the knowledge gaps of this secondary radiation environment. In this paper, we put forth the initial steps to increasing our understanding of neutron production from large vehicles by comparing the neutron production resulting from our radiation transport codes and providing a preliminary validation of our results against flight data. This paper will review the details of these results and discuss the finer points of the analysis.
Radiation Environments on Mars and Their Implications for Terrestrial Planetary Habitability
NASA Astrophysics Data System (ADS)
Schneider, I.; Kasting, J. F.
2009-12-01
The understanding of the surface and subsurface radiation environments of a terrestrial planet such as Mars is crucial to its potential past and/or present habitability. Despite this, the subject of high energy radiation is rarely contemplated within the field of Astrobiology as an essential factor determining the realistic parameter space for the development and preservation of life. Furthermore, not much is known of the radiation environment on the surface of Mars due to the fact that no real data exist on this contribution. There are no direct measurements available as no surface landers/probes have ever carried nuclear radiation detection equipment to characterize the interactions arising from cosmic ray bombardment, solar particle events and the atmosphere striking the planetary surface. The first mission set to accomplish this task, the Mars Science Laboratory, is not scheduled to launch until 2011. Presented here are some of such simulations performed with the HZETRN NASA code offering radiation depth profiles as well as a characterization of the diverse radiation environments. A discussion of the implications that these projected doses would have on terrestrial planetary habitability on Mars is presented as well as its implications for the habitability of terrestrial planets elsewhere. This work does not provide an estimate of the UV radiation fields on the Martian surface instead it focuses on the high energy radiation fields as composed by galactic cosmic rays (GCRs)
The Next Generation Space Telescope (NGST): Science and technology
NASA Technical Reports Server (NTRS)
Mather, John C.; Seery, Bernard D.; Stockman, Hervey S.; Bely, Pierre, Y.
1997-01-01
The scientific requirements and implications for the instruments and telescope design for the Next Generation Space Telescope (NGST) are described. A candidate concept is a deployable, 8 m diameter telescope, optimized for the near infrared region, but featuring instruments capable of observing up to 30 micrometers. The observatory is radiatively cooled to approximately 30 K.
Implications of a quadratic stream definition in radiative transfer theory.
NASA Technical Reports Server (NTRS)
Whitney, C.
1972-01-01
An explicit definition of the radiation-stream concept is stated and applied to approximate the integro-differential equation of radiative transfer with a set of twelve coupled differential equations. Computational efficiency is enhanced by distributing the corresponding streams in three-dimensional space in a totally symmetric way. Polarization is then incorporated in this model. A computer program based on the model is briefly compared with a Monte Carlo program for simulation of horizon scans of the earth's atmosphere. It is found to be considerably faster.
Asymptotic symmetries and electromagnetic memory
NASA Astrophysics Data System (ADS)
Pasterski, Sabrina
2017-09-01
Recent investigations into asymptotic symmetries of gauge theory and gravity have illuminated connections between gauge field zero-mode sectors, the corresponding soft factors, and their classically observable counterparts — so called "memories". Namely, low frequency emissions in momentum space correspond to long time integrations of the corre-sponding radiation in position space. Memory effect observables constructed in this manner are non-vanishing in typical scattering processes, which has implications for the asymptotic symmetry group. Here we complete this triad for the case of large U(1) gauge symmetries at null infinity. In particular, we show that the previously studied electromagnetic memory effect, whereby the passage of electromagnetic radiation produces a net velocity kick for test charges in a distant detector, is the position space observable corresponding to th Weinberg soft photon pole in momentum space scattering amplitudes.
Radiation Environments for Future Human Exploration Throughout the Solar System.
NASA Astrophysics Data System (ADS)
Schwadron, N.; Gorby, M.; Linker, J.; Riley, P.; Torok, T.; Downs, C.; Spence, H. E.; Desai, M. I.; Mikic, Z.; Joyce, C. J.; Kozarev, K. A.; Townsend, L. W.; Wimmer-Schweingruber, R. F.
2016-12-01
Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration. The ability to predict when and where large events will occur is necessary in order to mitigate their hazards. The largest events are usually associated with complex sunspot groups (also known as active regions) that harbor strong, stressed magnetic fields. Highly energetic protons accelerated very low in the corona by the passage of coronal mass ejection (CME)-driven compressions or shocks and from flares travel near the speed of light, arriving at Earth minutes after the eruptive event. Whether these particles actually reach Earth, the Moon, Mars (or any other point) depends on their transport in the interplanetary magnetic field and their magnetic connection to the shock. Recent contemporaneous observations during the largest events in almost a decade show the unique longitudinal distributions of this ionizing radiation broadly distributed from sources near the Sun and yet highly isolated during the passage of CME shocks. Over the last decade, we have observed space weather events as the solar wind exhibits extremely low densities and magnetic field strengths, representing states that have never been observed during the space age. The highly abnormal solar activity during cycles 23 and 24 has caused the longest solar minimum in over 80 years and continues into the unusually small solar maximum of cycle 24. As a result of the remarkably weak solar activity, we have also observed the highest fluxes of galactic cosmic rays in the space age and relatively small particle radiation events. We have used observations from LRO/CRaTER to examine the implications of these highly unusual solar conditions for human space exploration throughout the inner solar system. While these conditions are not a show-stopper for long-duration missions (e.g., to the Moon, an asteroid, or Mars), galactic cosmic ray radiation remains a significant and worsening factor that limits mission durations. If the heliospheric magnetic field continues to weaken over time, as is likely, then allowable mission durations will decrease correspondingly. Thus, we examine the rapidly changing radiation environment and its implications for human exploration destinations throughout the inner solar system.
NASA Technical Reports Server (NTRS)
Day, John H. (Technical Monitor); LaBel, Kenneth A.; Howard, James W.; Carts, Martin A.; Seidleck, Christine
2003-01-01
With the dearth of dedicated radiation hardened foundries, new and novel techniques are being developed for hardening designs using non-dedicated foundry services. In this paper, we will discuss the implications of validating these methods for the natural space radiation environment issues: total ionizing dose (TID) and single event effects (SEE). Topics of discussion include: Types of tests that are required, Design coverage (i.e., design libraries: do they need validating for each application?) A new task within NASA to compare existing design. This latter task is a new effort in FY03 utilizing a 8051 microcontroller core from multiple design hardening developers as a test vehicle to evaluate each mitigative technique.
The geomagnetically trapped radiation environment: A radiological point of view
NASA Technical Reports Server (NTRS)
Holly, F. E.
1972-01-01
The regions of naturally occurring, geomagnetically trapped radiation are briefly reviewed in terms of physical parameters such as; particle types, fluxes, spectrums, and spatial distributions. The major emphasis is placed upon a description of this environment in terms of the radiobiologically relevant parameters of absorbed dose and dose-rate and a discussion of the radiological implications in terms of the possible impact on space vehicle design and mission planning.
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Badhwar, G. D.
1996-01-01
We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (> 100 keV/micrometer) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (> 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.
Importance of dose-rate and cell proliferation in the evaluation of biological experimental results
NASA Technical Reports Server (NTRS)
Curtis, S. B.
1994-01-01
The nuclei of cells within the bodies of astronauts traveling on extended missions outside the geomagnetosphere will experience single traversals of particles with high Linear Energy Transfer (LET) (e.g., one iron ion per one hundred years, on average) superimposed on a background of tracks with low LET (approximately one proton every two to three days, and one helium ion per month). In addition, some cell populations within the body will be proliferating, thus possibly providing increasing numbers of cells with 'initiated' targets for subsequent radiation hits. These temporal characteristics are not generally reproduced in laboratory experimental protocols. Implications of the differences in the temporal patterns of radiation delivery between conventionally designed radiation biology experiments and the pattern to be experienced in space are examined and the importance of dose-rate and cell proliferation are pointed out in the context of radiation risk assessment on long mission in space.
Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Curtis, S. B.
1989-01-01
The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.
NASA Technical Reports Server (NTRS)
Rodgers, E. B.; Seale, D. B.; Boraas, M. E.; Sommer, C. V.
1989-01-01
The probable sources and implications of microbial contamination on the proposed Space Station are discussed. Because of the limited availability of material, facilities and time on the Space Station, we are exploring the feasibility of replacing traditional incubation methods for assessing microbial contamination with rapid, automated methods. Some possibilities include: ATP measurement, microscopy and telecommunications, and molecular techniques such as DNA probes or monoclonal antibodies. Some of the important ecological factors that could alter microbes in space include microgravity, exposure to radiation, and antibiotic resistance.
NASA Technical Reports Server (NTRS)
Gregory, Ruth
1988-01-01
The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.
Radiation shielding for future space exploration missions
NASA Astrophysics Data System (ADS)
DeWitt, Joel Michael
Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical weighted figure of merit (WFoM) approach that quantifies the effectiveness of a candidate material to shield space crews from the whole of the space radiation environment. The results of the WFoM approach should prove useful to designers and engineers in seeking alternative materials suitable for the construction of spacecraft or planetary surface habitats needed for long-term space exploration missions. The dosimetric measurements in this study have confirmed the principle of good space radiation shielding design by showing that low-Z¯ materials are most effective at reducing absorbed dose and dose equivalent while high-Z¯ materials are to be avoided. The relatively high WFoMs of carbon composite and lunar- and Martian-regolith composite could have important implications for the design and construction of future spacecraft or planetary surface habitats. The ground-based measurements conducted in this study have validated the heavy ion extension of FLUKA by producing normalized differential LET fluence spectra that are in good agreement with experiment.
Laiakis, Evagelia C; Trani, Daniela; Moon, Bo-Hyun; Strawn, Steven J; Fornace, Albert J
2015-04-01
As space travel is expanding to include private tourism and travel beyond low-Earth orbit, so is the risk of exposure to space radiation. Galactic cosmic rays and solar particle events have the potential to expose space travelers to significant doses of radiation that can lead to increased cancer risk and other adverse health consequences. Metabolomics has the potential to assess an individual's risk by exploring the metabolic perturbations in a biofluid or tissue. In this study, C57BL/6 mice were exposed to 0.5 and 2 Gy of 1 GeV/nucleon of protons and the levels of metabolites were evaluated in urine at 4 h after radiation exposure through liquid chromatography coupled to time-of-flight mass spectrometry. Significant differences were identified in metabolites that map to the tricarboxylic acid (TCA) cycle and fatty acid metabolism, suggesting that energy metabolism is severely impacted after exposure to protons. Additionally, various pathways of amino acid metabolism (tryptophan, tyrosine, arginine and proline and phenylalanine) were affected with potential implications for DNA damage repair and cognitive impairment. Finally, presence of products of purine and pyrimidine metabolism points to direct DNA damage or increased apoptosis. Comparison of these metabolomic data to previously published data from our laboratory with gamma radiation strongly suggests a more pronounced effect on metabolism with protons. This is the first metabolomics study with space radiation in an easily accessible biofluid such as urine that further investigates and exemplifies the biological differences at early time points after exposure to different radiation qualities.
Laiakis, Evagelia C.; Trani, Daniela; Moon, Bo-Hyun; Strawn, Steven J.; Fornace, Albert J.
2015-01-01
As space travel is expanding to include private tourism and travel beyond low-Earth orbit, so is the risk of exposure to space radiation. Galactic cosmic rays and solar particle events have the potential to expose space travelers to significant doses of radiation that can lead to increased cancer risk and other adverse health consequences. Metabolomics has the potential to assess an individual’s risk by exploring the metabolic perturbations in a biofluid or tissue. In this study, C57BL/6 mice were exposed to 0.5 and 2 Gy of 1 GeV/nucleon of protons and the levels of metabolites were evaluated in urine at 4 h after radiation exposure through liquid chromatography coupled to time-of-flight mass spectrometry. Significant differences were identified in metabolites that map to the tricarboxylic acid (TCA) cycle and fatty acid metabolism, suggesting that energy metabolism is severely impacted after exposure to protons. Additionally, various pathways of amino acid metabolism (tryptophan, tyrosine, arginine and proline and phenylalanine) were affected with potential implications for DNA damage repair and cognitive impairment. Finally, presence of products of purine and pyrimidine metabolism points to direct DNA damage or increased apoptosis. Comparison of these metabolomic data to previously published data from our laboratory with gamma radiation strongly suggests a more pronounced effect on metabolism with protons. This is the first metabolomics study with space radiation in an easily accessible biofluid such as urine that further investigates and exemplifies the biological differences at early time points after exposure to different radiation qualities. PMID:25768838
NASA Technical Reports Server (NTRS)
Frederickson, A. R.
1985-01-01
A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.
Investigation of the effects of long duration space exposure on active optical system components
NASA Technical Reports Server (NTRS)
Blue, M. D.
1994-01-01
This experiment was exposed to the space environment for 6 years on the Long Duration Exposure Facility (LDEF). It investigated quantitatively the effects of the long-duration space exposure on the relevant performance parameters of a representative set of electron-optic system components, including lasers, radiation detectors, filters, modulators, windows, and other related components. It evaluated the results and implications of the measurements indicating real or suspected degradation mechanisms. This information will be used to establish guidelines for the selection and use of components for space-based, electro-optic systems.
Model Calculations with Excited Nuclear Fragmentations and Implications of Current GCR Spectra
NASA Astrophysics Data System (ADS)
Saganti, Premkumar
As a result of the fragmentation process in nuclei, energy from the excited states may also contribute to the radiation damage on the cell structure. Radiation induced damage to the human body from the excited states of oxygen and several other nuclei and its fragments are of a concern in the context of the measured abundance of the current galactic cosmic rays (GCR) environment. Nuclear Shell model based calculations of the Selective-Core (Saganti-Cucinotta) approach are being expanded for O-16 nuclei fragments into N-15 with a proton knockout and O-15 with a neutron knockout are very promising. In our on going expansions of these nuclear fragmentation model calculations and assessments, we present some of the prominent nuclei interactions from a total of 190 isotopes that were identified for the current model expansion based on the Quantum Multiple Scattering Fragmentation Model (QMSFRG) of Cucinotta. Radiation transport model calculations with the implementation of these energy level spectral characteristics are expected to enhance the understanding of radiation damage at the cellular level. Implications of these excited energy spectral calculations in the assessment of radiation damage to the human body may provide enhanced understanding of the space radiation risk assessment.
The protons of space and brain tumors II. Cellular and molecular considerations
NASA Astrophysics Data System (ADS)
Nagle, W. A.; Moss, A. J.; Dalrymple, G. V.; Cox, A. B.; Wigle, J. F.; Mitchell, J. C.
1989-05-01
An increased incidence of highly malignant gliomas, termed glioblastoma multiforme has been observed in Rhesus monkeys irradiated with 55 MeV protons, and in humans treated with therapeutic irradiation to the head. The results suggest a radiation etiology for these tumors. In this paper, we review briefly some characteristics of glioma tumors, and summarize the genetic changes associated with malignant gliomas in experimental animals and in humans. The genetic abnormalities include cytogenetic alterations, and changes in the structure and expression of specific oncogenes. We discuss the potential for these genetic changes to contribute to several putative mechanism leading to aberrant growth stimulation and, ultimately, to tumorigenesis. In addition, we review briefly some recent data concerning the molecular nature of radiation-induced somatic cell mutation and oncogene activation, and discuss the significance of these results for the radiation etiology of malignant gliomas. Finally, some implications of these results are discussed in relation to human radiation exposure in space.
Human response to high-background radiation environments on Earth and in space
NASA Astrophysics Data System (ADS)
Durante, M.; Manti, L.
2008-09-01
The main long-term objective of the space exploration program is the colonization of the planets of the Solar System. The high cosmic radiation equivalent dose rate represents an inescapable problem for the safe establishment of permanent human settlements on these planets. The unshielded equivalent dose rate on Mars ranges between 100 and 200 mSv/year, depending on the Solar cycle and altitude, and can reach values as high as 360 mSv/year on the Moon. The average annual effective dose on Earth is about 3 mSv, nearly 85% of which comes from natural background radiation, reduced to less than 1 mSv if man-made sources and the internal exposure to Rn daughters are excluded. However, some areas on Earth display anomalously high levels of background radiation, as is the case with thorium-rich monazite bearing sand deposits where values 200 400 times higher than the world average can be found. About 2% of the world’s population live above 3 km and receive a disproportionate 10% of the annual effective collective dose due to cosmic radiation, with a net contribution to effective dose by the neutron component which is 3 4 fold that at sea level. Thus far, epidemiological studies have failed to show any adverse health effects in the populations living in these terrestrial high-background radiation areas (HBRA), which provide an unique opportunity to study the health implications of an environment that, as closely as possibly achievable on Earth, resembles the chronic exposure of future space colonists to higher-than-normal levels of ionizing radiation. Chromosomal aberrations in the peripheral blood lymphocytes from the HBRA residents have been measured in several studies because chromosomal damage represents an early biomarker of cancer risk. Similar cytogenetic studies have been recently performed in a cohort of astronauts involved in single or repeated space flights over many years. The cytogenetic findings in populations exposed to high dose-rate background radiation on Earth or in space will be discussed.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
1998-01-01
This report discusses the design implications for spacecraft radiators made possible by the successful fabrication and Proof-of-concept testing of a graphite-fiber-carbon-matrix composite (i.e., carbon-carbon (C-C)) heat pipe. The proto-type heat pipe, or space radiator element, consists of a C-C composite shell with integrally woven fins. It has a thin-walled furnace-brazed metallic (Nb-1%Zr) liner with end caps for containment of the potassium working fluid. A short extension of this liner, at increased wall thickness beyond the C-C shell, forms the heat pipe evaporator section which is in thermal contact with the radiator fluid that needs to be cooled. From geometric and thermal transport properties of the C-C composite heat pipe tested, a specific radiator mass of 1.45 kg/m2 can be derived. This is less than one-fourth the specific mass of present day satellite radiators. The report also discusses the advantage of segmented space radiator designs utilizing heat pipe elements, or segments, in their survivability to micro-meteoroid damage. This survivability is further raised by the use of condenser sections with attached fins, which also improve the radiation heat transfer rate. Since the problem of heat radiation from a fin does not lend itself to a closed analytical solution, a derivation of the governing differential equation and boundary conditions is given in appendix A, along with solutions for rectangular and parabolic fin profile geometries obtained by use of a finite difference computer code written by the author.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2002-01-01
This report discusses the design implications for spacecraft radiators made possible by the successful fabrication and proof-of-concept testing of a graphite-fiber-carbon-matrix composite (i.e., carbon-carbon (C-C)) heat pipe. The prototype heat pipe, or space radiator element, consists of a C-C composite shell with integrally woven fins. It has a thin-walled furnace-brazed metallic (Nb-1%Zr) liner with end caps for containment of the potassium working fluid. A short extension of this liner, at increased wall thickness beyond the C-C shell, forms the heat pipe evaporator section which is in thermal contact with the radiator fluid that needs to be cooled. From geometric and thermal transport properties of the C-C composite heat pipe tested, a specific radiator mass of 1.45 kg/sq m can be derived. This is less than one-fourth the specific mass of present day satellite radiators. The report also discusses the advantage of segmented space radiator designs utilizing heat pipe elements, or segments, in their survivability to micrometeoroid damage. This survivability is further raised by the use of condenser sections with attached fins, which also improve the radiation heat transfer rate. Since the problem of heat radiation from a fin does not lend itself to a closed analytical solution, a derivation of the governing differential equation and boundary conditions is given in appendix A, along with solutions for rectangular and parabolic fin profile geometries obtained by use of a finite difference computer code written by the author.
Biological challenges of true space settlement
NASA Astrophysics Data System (ADS)
Mankins, John C.; Mankins, Willa M.; Walter, Helen
2018-05-01
"Space Settlements" - i.e., permanent human communities beyond Earth's biosphere - have been discussed within the space advocacy community since the 1970s. Now, with the end of the International Space Station (ISS) program fast approaching (planned for 2024-2025) and the advent of low cost Earth-to-orbit (ETO) transportation in the near future, the concept is coming once more into mainstream. Considerable attention has been focused on various issues associated with the engineering and human health considerations of space settlement such as artificial gravity and radiation shielding. However, relatively little attention has been given to the biological implications of a self-sufficient space settlement. Three fundamental questions are explored in this paper: (1) what are the biological "foundations" of truly self-sufficient space settlements in the foreseeable future, (2) what is the minimum scale for such self-sustaining human settlements, and (3) what are the integrated biologically-driven system requirements for such settlements? The paper examines briefly the implications of the answers to these questions in relevant potential settings (including free space, the Moon and Mars). Finally, this paper suggests relevant directions for future research and development in order for such space settlements to become viable in the future.
Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J; Datta, Kamal
2016-08-25
Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as (56)Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of (56)Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of (56)Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract.
NASA Astrophysics Data System (ADS)
Liou, J.-C.; Anz-Meador, P.; Opiela, J.; Christiansen, E.; Cowardin, H.; Davidson, W.; Ed-Wards, D.; Hedman, T.; Herrin, J.; Hyde, J.; Juarez, Q.; Lear, D.; McNamara, K.; Moser, D.; Ross, D.; Stansbery, E.
The STS-125 Atlantis astronauts retrieved the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) during a very successful servicing mission to the HST in May 2009. The radiator attached to WFPC2 has dimensions of 2.2 m by 0.8 m. Its outermost layer is a 4-mm thick aluminum plate covered with a white thermal control coating. This radiator had been exposed to space since the deployment of WFPC2 in 1993. Due to its large surface area and long exposure time, the radiator serves as a unique witness plate for the micrometeoroid and orbital debris (MMOD) environment between 560 and 620 km altitude. The NASA Orbital Debris Program Office is leading an effort, with full support from the HST Program at GSFC, NASA Curation Office at JSC, NASA Hypervelocity Impact Technology Facility at JSC, and NASA Meteoroid Environment Office at MSFC, to inspect the exposed radiator surface. The objective is to measure and analyze the MMOD impact damage on the radiator, and then apply the data to validate or improve the near-Earth MMOD environment definition. The initial inspection was completed in September 2009. A total of 685 MMOD impact features (larger than about 0.3 mm) were identified and documented. This paper will provide an overview of the inspection, the analysis of the data, and the initial effort to use the data to model the MMOD environment.
Oxidative Stress and Autophagy Responses of Osteocytes Exposed to Spaceflight-like Radiation.
NASA Technical Reports Server (NTRS)
Tahimic, Candice; Rael, Victoria E.; Globus, Ruth K.
2015-01-01
Weightlessness and radiation, two of the unique elements of the space environment, causes a profound decrement in bone mass that mimics aging. This bone loss is thought to result from increased activity of bone-resorbing osteoclasts and functional changes in bone-forming osteoblasts, cells that give rise to mature osteocytes. Our current understanding of the signaling factors and mechanisms underlying bone loss is incomplete. However, it is known that oxidative stress, characterized by the excess production of free radicals, is elevated during radiation exposure. The goals of this study is to examine the response of osteocytes to spaceflight-like radiation and to identify signaling processes that may be targeted to mitigate bone loss in scenarios of space exploration, earth-based radiotherapy and accidental radiation exposure. We hypothesize that (1) oxidative stress, as induced by radiation, decreases osteocyte survival and increases pro-osteoclastogenic signals and that (2) autophagy is one of the key cellular defenses against oxidative stress. Autophagy is the process by which cellular components including organelles and proteins are broken down and recycled. To test our hypothesis, we exposed the osteocyte-like cell line, MLO-Y4, to 0.5, 1, and 2 Gy of simulated space radiation (Iron-56 radiation at 600 MeV/n) and assessed cell numbers, cell growth-associated molecules as well as markers of autophagy and oxidative stress at various time points post-irradiation. We observed a reduction in cell numbers in the groups exposed to 1 and 2 Gy of Iron-56 radiation. Collectively, flow cytometry and gene expression analysis revealed that radiation caused a shift in cell cycle distribution consistent with growth arrest. Compared to sham-treatment, 2 Gy of Iron-56 increased FoxO3, SOD1, and RANKL gene expression yet unexpectedly decreased LC3B-II protein levels at 4 and 24 hours post-IR. Taken together, these findings suggest that simulated space radiation invoke antioxidant, pro-osteoclastogenic, and growth arrest responses in osteocytes. The implications of reduced autophagy flux at the time points examined remain to be elucidated.
NASA Astrophysics Data System (ADS)
Marinella, M.
In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.
Thomas, Brian C; Neale, Patrick J; Snyder, Brock R
2015-03-01
Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.
Particle Radiation signals the Expression of Genes in stress-associated Pathways
NASA Astrophysics Data System (ADS)
Blakely, E.; Chang, P.; Bjornstad, K.; Dosanjh, M.; Cherbonnel, C.; Rosen, C.
The explosive development of microarray screening methods has propelled genome research in a variety of biological systems allowing investigators to examine large-scale alterations in gene expression for research in toxicology pathology and therapy The radiation environment in space is complex and encompasses a variety of highly energetic and charged particles Estimation of biological responses after exposure to these types of radiation is important for NASA in their plans for long-term manned space missions Instead of using the 10 000 gene arrays that are in the marketplace we have chosen to examine particle radiation-induced changes in gene expression using a focused DNA microarray system to study the expression of about 100 genes specifically associated with both the upstream and downstream aspects of the TP53 stress-responsive pathway Genes that are regulated by TP53 include functional clusters that are implicated in cell cycle arrest apoptosis and DNA repair A cultured human lens epithelial cell model Blakely et al IOVS 41 3808 2000 was used for these studies Additional human normal and radiosensitive fibroblast cell lines have also been examined Lens cells were grown on matrix-coated substrate and exposed to 55 MeV u protons at the 88 cyclotron in LBNL or 1 GeV u Iron ions at the NASA Space Radiation Laboratory The other cells lines were grown on conventional tissue culture plasticware RNA and proteins were harvested at different times after irradiation RNA was isolated from sham-treated or select irradiated populations
NASA Technical Reports Server (NTRS)
Verstraete, Michel M.
1987-01-01
Understanding the details of the interaction between the radiation field and plant structures is important climatically because of the influence of vegetation on the surface water and energy balance, but also biologically, since solar radiation provides the energy necessary for photosynthesis. The problem is complex because of the extreme variety of vegetation forms in space and time, as well as within and across plant species. This one-dimensional vertical multilayer model describes the transfer of direct solar radiation through a leaf canopy, accounting explicitly for the vertical inhomogeneities of a plant stand and leaf orientation, as well as heliotropic plant behavior. This model reproduces observational results on homogeneous canopies, but it is also well adapted to describe vertically inhomogeneous canopies. Some of the implications of leaf orientation and plant structure as far as light collection is concerned are briefly reviewed.
NASA Technical Reports Server (NTRS)
Fornes, R. E.; Gilbert, R. D.; Memory, J. D.
1984-01-01
The effects of high energy radiation on the mechanical properties and on the molecular and structural properties of graphite fiber reinforced composites were assessed so that the durability of such composites in space applications could be predicted. Investigative techniques including ESR and infrared spectroscopy, ESCA, contact angle measurements, and dynamic and static mechanical testing (3-point bending and interlaminar shear) were employed. The results using these different techniques are individually described, and the implications of the data are discussed. The proposed plan of work for the next fiscal year is outlined.
NASA Technical Reports Server (NTRS)
Tarter, Jill C.; Rothschild, Lynn J.
2012-01-01
The planetary environment around a star will be assaulted with various amounts of radiation. including solar and ionizing radiation. The amount and type varies with the type of star, the distance from the star, time of day, and other variables. While some radiation is critical to life on Earth, especially from 400-750 nm (so-called visible and photosynthetically active radiation), the effects of ultraviolet and ionizing radiation can be hazardous and even deadly. This is because life is based on organic carbon, which is susceptible to radiation damage. Radiation regimes in our own solar system address specifically radiation in our solar system with a main sequence star. The possibility remains of planets around red dwarfs. Such stars are much smaller in mass than the Sun (between 0.5 and .08 M(sub Sun), and so their temperature and stellar luminosity are low and peaked in the red. Since red dwarfs comprise about 75% of all stars in the galaxy, the possibility of life on planets around red dwarfs has been examined.
A Hypothesis on Biological Protection from Space Radiation Through the Use of New Therapeutic Gases
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.; Ansari,Rafat R.; Nakao, Atsunori; Wink, David
2011-01-01
Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is the biological damage it induces. As damage is associated with increased oxidative stress, it is important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as both chemical radioprotectors for radical scavenging and biological signaling molecules for management of the body s response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it is concluded that this approach may have great therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including, cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, parkinson s and alzheimer s disease, cataracts, and aging
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.; Ansari, Rafat R.; Nakao, Atsunori; Wink, David
2012-01-01
Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is the biological damage it induces. As damage is associated with increased oxidative stress, it is important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as both chemical radioprotectors for radical scavenging and biological signaling molecules for management of the body s response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it is concluded that this approach may have great therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, Parkinson s and Alzheimer s disease, cataracts, and aging.
A Hypothesis on Biological Protection from Space Radiation Through the Use of New Therapeutic Gases
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.; Ansari, Rafat R.; Nakao, Atsunori; Wink, David
2011-01-01
Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is the biological damage it induces. As damage is associated with increased oxidative stress, it is important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as both chemical radioprotectors for radical scavenging and biological signaling molecules for management of the body s response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it is concluded that this approach may have great therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, Parkinson s and Alzheimer s disease, cataracts, and aging.
Dong, Chen; He, Mingyuan; Ren, Ruiping; Xie, Yuexia; Yuan, Dexiao; Dang, Bingrong; Li, Wenjian; Shao, Chunlin
2015-04-15
The radiation-induced bystander effect (RIBE) has potential implications in cancer risks from space particle radiation; however, the mechanisms underlying RIBE are unclear. The role of the MAPK pathway in the RIBEs of different linear energy transfer (LET) was investigated. Human macrophage U937 cells were irradiated with γ-rays or carbon ions and then co-cultured with nonirradiated HMy2.CIR (HMy) lymphocytes for different periods. The activation of MAPK proteins and the generation of intracellular nitric oxide (NO) and reactive oxygen species (ROS) in the irradiated U937 cells were measured. Micronuclei (MN) formation in the HMy cells was applied to evaluate the bystander damage. Some U937 cells were pretreated with different MAPK inhibitors before irradiation. Additional MN formation was induced in the HMy cells after co-culturing with irradiated U937 cells, and the yield of this bystander MN formation was dependent on the co-culture period with γ-ray irradiation but remained high after 1h of co-culture with carbon irradiation. Further investigations disclosed that the time response of the RIBEs had a relationship with LET, where ERK played a different role from JNK and p38 in regulating RIBEs by regulating the generation of the bystander signaling factors NO and ROS. The finding that the RIBE of high-LET radiation could persist for a much longer period than that of γ-rays implies that particle radiation during space flight could have a high risk of long-term harmful effects. An appropriate intervention targeting the MAPK pathway may have significant implications in reducing this risk. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Abbott, Larry; Cox, Gary; Nguyen, Hai
2000-01-01
This article addresses the issues associated with adapting the commercial PC104Plus standard and its associated architecture to the requirements of space applications. In general, space applications exhibit extreme constraints on power, weight, and volume. EMI and EMC are also issues of significant concern. Additionally, space applications have to survive high radiation environment. Finally, NASA is always concerned about achieving cost effective solutions that are compatible with safety and launch constraints. Weight and volume constraints are directly related to high launch cost. Power on the other hand is not only related to the high launch costs, but are related to the problem of dissipating the resulting heat once in space. The article addresses why PC104Plus is an appropriate solution for the weight and volume issues. The article also addresses what NASA did electrically to reduce power consumption and mechanically dissipate the associated heat in a microgravity and vacuum environment, and how these solutions allow NASA to integrate various sizes of ruggedized custom PC104 boards with COTS, PC104 complaint boards for space applications. In addition to the mechanical changes to deal with thermal dissipation NASA also made changes to minimize EMI. Finally, radiation issues are addressed as well as the architectural and testing solutions and the implications for use of COTS PC104Plus boards.
NASA Technical Reports Server (NTRS)
Craig, Roger A.; Davy, William C.; Whiting, Ellis E.
1994-01-01
This paper describes the techniques developed for measuring stagnation-point radiation in NASA's cancelled Aeroassist Flight Experiment (AFE). It specifies the need for such a measurement; the types and requirements for the needed instruments; the Radiative Heating Experiment (RHE) developed for the AFE; the requirements, design parameters, and performance of the window developed for the RHE; the procedures and summary of the technique; and results of the arc-jet wind tunnel experiment conducted to demonstrate the overall concept. Subjects emphasized are the commercial implications of the knowledge to be gained by this experiment in connection with the Aeroassisted Space Transfer Vehicle (ASTV), the nonequilibrium nature of the radiation, concerns over the contribution of vacuum-ultraviolet radiation to the overall radiation, and the limit on the flight environment of the vehicle imposed by the limitations on the window material. Results show that a technique exists with which the stagnation-point radiation can be measured in flight in an environment of interest to commercial ASTV applications.
Leuko, Stefan; Bohmeier, Maria; Hanke, Franziska; Böettger, Ute; Rabbow, Elke; Parpart, Andre; Rettberg, Petra; de Vera, Jean-Pierre P.
2017-01-01
Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX) project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets. PMID:28966605
Leuko, Stefan; Bohmeier, Maria; Hanke, Franziska; Böettger, Ute; Rabbow, Elke; Parpart, Andre; Rettberg, Petra; de Vera, Jean-Pierre P
2017-01-01
Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX) project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets.
HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.
Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E
2011-10-01
Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Statman, Joseph
2013-01-01
This work includes a simplified analysis of the radiated near to mid-field from JPL/NASA Deep Space Network (DSN) reflector antennas and uses an averaging technique over the main beam region and beyond for complying with FAA regulations in specific aviation environments. The work identifies areas that require special attention, including the implications of the very narrow beam of the DSN transmitters. The paper derives the maximum averaged power densities allowed and identifies zones where mitigation measures are required.
Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, Philippe
2015-12-01
Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].
Behavioral health in Antarctica: implications for long-duration space missions
NASA Technical Reports Server (NTRS)
Lugg, Desmond J.
2005-01-01
Ideally, evidence from long-duration spaceflight should be used to predict likely occurrences of behavioral health events and for planning management strategies for such events. With small numbers of space travelers, and limited long-duration missions of a year or more, Earth analogues and simulations must be used as the evidence base, despite such analogues lacking microgravity, radiation, rapidly altering photoperiodicity, and fidelity to space. Antarctic health data are reviewed and an assessment made of the likely frequency of behavioral health events. Based on the Antarctic evidence, the likelihood of behavioral health problems in space is low. However, such cases may be serious and of high consequence, placing considerable demands on the mission crew and ground support to achieve a successful outcome, given the availability of pharmaceuticals and resources.
Radiation Effects on Current Field Programmable Technologies
NASA Technical Reports Server (NTRS)
Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.
1997-01-01
Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.
Implications of the ISO LWS spectrum of the prototypical ultraluminous galaxy: ARP 220
NASA Technical Reports Server (NTRS)
Fischer, J.; Satyapal, S.; Luhman, M. L.; Melnick, G.; Cox, P.; Cernicharo, J.; Stacey, G. J.; Smith, H. A.; Lord, S. D.; Greenhouse, M. A.
1997-01-01
The low resolution far infrared spectrum of the galaxy Arp 220, obtained with the low wavelength spectrometer (LWS) onboard the Infrared Space Observatory (ISO), is presented. The spectrum is dominated by the OH, H2O, CH, NH3 and O I absorption lines. The upper limits on the far infrared fine structure lines indicate a softer radiation in Arp 220 than in starburst galaxies.
Life Beyond the Planet of Origin and Implications for the Search for Life on Mars
NASA Technical Reports Server (NTRS)
Mancinelli, Rocco L.
2015-01-01
Outer space is vast, cold, devoid of matter, radiation filled with essentially no gravity. These factors present an environmental challenge for any form of life. Earth's biosphere has evolved for more than 3 billion years shielded from the hostile environment of outer space by the protective blanket of the atmosphere and magnetosphere. Space is a nutritional wasteland with no liquid water and readily available organic carbon. Moving beyond a life's planet of origin requires a means for transport, the ability to withstand transport, and the ability to colonize, thrive and ultimately evolve in the new environment. Can life survive beyond its home planet? The key to answering this question is to identify organisms that first have the ability to withstand space radiation, space vacuum desiccation and time in transit, and second the ability to grow in an alien environment. Within the last 60 years space technology allowed us to transport life beyond Earth's protective shield so we may study, in situ, their responses to selected conditions of space. To date a variety of microbes ranging from viruses, to Bacteria, to Archaea, to Eukarya have been tested in the space environment. Most died instantly, but not all. These studies revealed that ultraviolet radiation is the near-term lethal agent, while hard radiation is the long-term lethal agent when the organism is shielded from ultraviolet radiation. In fact, bacterial spores, halophilic cyanobacteria and Archaea as well as some lichens survive very well if protected from ultraviolet radiation [1]. Some microbes, then, may be able to survive the trip in outer space to Mars on a spacecraft or in a meteorite. Once on Mars can a terrestrial microbe survive? Although the conditions on Mars are not as harsh as those in space, they are not hospitable for a terrestrial microbe. Studies, however, have shown that certain microbes that can survive in space for several years may also be able to survive on Mars if protected from ultraviolet radiation [1]. Laboratory simulation experiments using a mock-up of the Phoenix lander have shown that microbes transported to the surface of Mars on a spacecraft come off the spacecraft and mix into the Martian regolith [2]. Additionally, studies simulating Martian dust storms demonstrate that microbes can survive in the Martian wind blown dust and be scattered across the Martian surface away from the spacecraft. Would these microbes that may survive on Mars metabolize and propagate? Growth requires liquid water, a carbon source and an energy source. Survival on Mars also requires protection from ultraviolet radiation. In the cold, dry environment of Mars the probability of microbial metabolism and growth at or just beneath the surface is extremely low. Although the probability is low, Mars may be contaminated with potentially live terrestrial organisms. In light of that statistic we must be extremely diligent and cautious in our search for Martian life. If we are not cautious we may find life on Mars and it may be a contaminant from Earth.
Onofri, Silvano; Selbmann, Laura; Pacelli, Claudia; de Vera, Jean Pierre; Horneck, Gerda; Hallsworth, John E; Zucconi, Laura
2018-06-19
The black fungi Cryomyces antarcticus and Cryomyces minteri are highly melanized and are resilient to cold, ultra-violet, ionizing radiation and other extreme conditions. These microorganisms were isolated from cryptoendolithic microbial communities in the McMurdo Dry Valleys (Antarctica) and studied in Low Earth Orbit (LEO), using the EXPOSE-E facility on the International Space Station (ISS). Previously, it was demonstrated that C. antarcticus and C. minteri survive the hostile conditions of space (vacuum, temperature fluctuations, and the full spectrum of extraterrestrial solar electromagnetic radiation), as well as Mars conditions that were simulated in space for a 1.5-year period. Here, we qualitatively and quantitatively characterize damage to DNA and cellular ultrastructure in desiccated cells of these two species, within the frame of the same experiment. The DNA and cells of C. antarcticus exhibited a higher resistance than those of C. minteri . This is presumably attributable to the thicker (melanized) cell wall of the former. Generally, DNA was readily detected (by PCR) regardless of exposure conditions or fungal species, but the C. minteri DNA had been more-extensively mutated. We discuss the implications for using DNA, when properly shielded, as a biosignature of recently extinct or extant life.
Horneck, Gerda; Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L; Nicholson, Wayne L; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J
2012-05-01
Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.
Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L.; Nicholson, Wayne L.; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J.
2012-01-01
Abstract Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456. PMID:22680691
Reproduction in the space environment: Part II. Concerns for human reproduction
NASA Technical Reports Server (NTRS)
Jennings, R. T.; Santy, P. A.
1990-01-01
Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.
Supervised Classification Techniques for Hyperspectral Data
NASA Technical Reports Server (NTRS)
Jimenez, Luis O.
1997-01-01
The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many mm-e spectral intervals than previous possible. An example of this technology is the AVIRIS system, which collects image data in 220 bands. The increased dimensionality of such hyperspectral data provides a challenge to the current techniques for analyzing such data. Human experience in three dimensional space tends to mislead one's intuition of geometrical and statistical properties in high dimensional space, properties which must guide our choices in the data analysis process. In this paper high dimensional space properties are mentioned with their implication for high dimensional data analysis in order to illuminate the next steps that need to be taken for the next generation of hyperspectral data classifiers.
NASA Astrophysics Data System (ADS)
Thomas, Brian; Neale, Patrick
2016-01-01
Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth for decades. Although there is some direct biological damage on the surface from redistributed radiation several studies have indicated that the greatest long term threat is from ozone depletion and subsequent heightened solar ultraviolet (UV) radiation. It is known that organisms exposed to this irradiation experience harmful effects such as sunburn and even direct damage to DNA, proteins, or other cellular structures. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In the present work, we employed a radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light). Using biological weighting functions we have considered a wide range of effects, including: erythema and skin cancer in humans; inhibition of photosynthesis in the diatom Phaeodactylum sp. and dinoflagellate Prorocentrum micans inhibition of carbon fixation in Antarctic phytoplankton; inhibition of growth of oat (Avena sativa L. cv. Otana) seedlings; and cataracts. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.
Spacelab-1: An early space station for science and technology
NASA Technical Reports Server (NTRS)
Knott, K.; Feuerbacher, B.; Chappell, C. R.
1982-01-01
The scientific capabilities of the Spacelab manned pallet are reviewed, together with the implications of an expansion of the research effectiveness with a free-flying platform. The premier Spacelab flight will carry out earth observations with a metric camera and SAR, atmospheric studies will be performed with imaging spectrometers, and space plasma physics will be examined by injecting particle beams or VLF waves into the near-Shuttle environment. Radiance and spectrum data will be gathered of the sun and UV and X ray information will be recorded from the stars. Experimentation will also be carried out for on-board crystal growth, metallurgy, and glassy material production, as well as the response of biological systems to zero-g conditions and hard space radiation. The telemetry, time, crewmember participation, and on-board controls required for Spacelab operations are outlined. Missions for a space platform for studying the atmosphere/space interface are described.
Status of Cardiovascular Issues Related to Space Flight: implications for Future Research Directions
2009-01-01
identified in the 2007 NASA Human Integrated Research Program. An evidence-based approach to identify the research priorities needed to resolve those...radiation needs to be defined. In contrast, data from the literature support the notion that the highest probability of occurrence and operational impact...identify and prioritize the most important ques- tions or problems needed to be resolved in order to assure the successful completion of extended
Lepton flavor violating radiative decays in EW-scale ν R model: an update
Hung, P. Q.; Le, Trinh; Tran, Van Que; ...
2015-12-28
Here, we perform an updated analysis for the one-loop induced charged lepton flavor violating radiative decays l i → l j γ in an extended mirror model. Mixing effects of the neutrinos and charged leptons constructed with a horizontal A 4 symmetry are also taken into account. Current experimental limit and projected sensitivity on the branching ratio of μ → eγ are used to constrain the parameter space of the model. Calculations of two related observables, the electric and magnetic dipole moments of the leptons, are included. Implications concerning the possible detection of mirror leptons at the LHC and themore » ILC are also discussed.« less
Laser-plasma-based Space Radiation Reproduction in the Laboratory
Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.
2017-01-01
Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862
Review of advanced radiator technologies for spacecraft power systems and space thermal control
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Peterson, George P.
1994-01-01
A two-part overview of progress in space radiator technologies is presented. The first part reviews and compares the innovative heat-rejection system concepts proposed during the past decade, some of which have been developed to the breadboard demonstration stage. Included are space-constructable radiators with heat pipes, variable-surface-area radiators, rotating solid radiators, moving-belt radiators, rotating film radiators, liquid droplet radiators, Curie point radiators, and rotating bubble-membrane radiators. The second part summarizes a multielement project including focused hardware development under the Civil Space Technology Initiative (CSTI) High Capacity Power program carried out by the NASA Lewis Research Center and its contractors to develop lightweight space radiators in support of Space Exploration Initiative (SEI) power systems technology.
Space Radiation Research at NASA
NASA Technical Reports Server (NTRS)
Norbury, John
2016-01-01
The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.
Beam-plasma coupling physics in support of active experiments
NASA Astrophysics Data System (ADS)
Yakymenko, K.; Delzanno, G. L.; Roytershteyn, V.
2017-12-01
The recent development of compact relativistic accelerators might open up a new era of active experiments in space, driven by important scientific and national security applications. Examples include using electron beams to trace magnetic field lines and establish causality between physical processes occurring in the magnetosphere and those in the ionosphere. Another example is the use of electron beams to trigger waves in the near-Earth environment. Waves could induce pitch-angle scattering and precipitation of energetic electrons, acting as an effective radiation belt remediation scheme. In this work, we revisit the coupling between an electron beam and a magnetized plasma in the framework of linear cold-plasma theory. We show that coupling can occur through two different regimes. In the first, a non-relativistic beam radiates through whistler waves. This is well known, and was in fact the focus of many rockets and space-shuttle campaigns aimed at demonstrating whistler emissions in the eighties. In the second regime, the beam radiates through extraordinary (R-X) modes. Nonlinear simulations with a highly-accurate Vlasov code support the theoretical results qualitatively and demonstrate that the radiated power through R-X modes can be much larger than in the whistler regime. Test-particle simulations in the wave electromagnetic field will also be presented to assess the efficiency of these waves in inducing pitch-angle scattering via wave-particle interactions. Finally, the implications of these results for a rocket active experiment in the ionosphere and for a radiation belt remediation scheme will be discussed.
Energy spectrum of extragalactic gamma-ray sources
NASA Technical Reports Server (NTRS)
Protheroe, R. J.
1985-01-01
The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.
2001-09-30
Absorption of solar energy heats up our planet's surface and atmosphere making life for us possible. But the energy carnot stay bound up in the Earth's environment forever. If it did, the Earth would be as hot as the sun. Instead, as the surface and atmosphere warm, they emit thermal long wave radiation, some of which escapes into space and allows the Earth to cool. This false color image of the Earth was produced by the Clouds and the Earth's Radiant Energy System (CERES) instrument flying aboard NASA's Terra spacecraft. The image shows where more or less heat, in the form of long-wave radiation, is emanating from the top of the Earth's atmosphere. As one can see in the image, the thermal radiation leaving the oceans is fairly uniform. The blue swaths represent thick clouds, the tops of which are so high they are among the coldest places on Earth. In the American Southwest, which can be seen in the upper right hand corner of the globe, there is often little cloud cover to block outgoing radiation and relatively little water to absorb solar energy making the amount of outgoing radiation in this area exceeding that of the oceans. Recently, NASA researchers discovered that incoming solar radiation and outgoing thermal radiation increased in the tropics from the 1980s to the 1990s. They believe the unexpected change has to do with apparent change in circulation patterns around the globe, which effectively reduce the amount of water vapor and cloud cover in the upper reaches of the atmosphere. Without the clouds, more sunlight was allowed to enter the tropical zones and more thermal energy was allowed to leave. The findings may have big implications for climate change and future global warming. (Image courtesy NASA Goddard)
Space radiation and cardiovascular disease risk
Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin
2015-01-01
Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293
Space radiation and cardiovascular disease risk.
Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin
2015-12-26
Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.
NASA Radiation Track Image GUI for Assessing Space Radiation Biological Effects
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Cucinotta, Francis A.
2006-01-01
The high-charge high-energy (HZE) ion components of the galactic cosmic rays when compared to terrestrial forms of radiations present unique challenges to biological systems. In this paper we present a deoxyribonucleic acid (DNA) breakage model to visualize and analyze the impact of chromatin domains and DNA loops on clustering of DNA damage from X rays, protons, and HZE ions. Our model of DNA breakage is based on a stochastic process of DNA double-strand break (DSB) formulation that includes the amorphous model of the radiation track and a polymer model of DNA packed in the cell nucleus. Our model is a Monte-Carlo simulation based on a randomly located DSB cluster formulation that accomodates both high- and low-linear energy transfer radiations. We demonstrate that HZE ions have a strong impact on DSB clustering, both along the chromosome length and in the nucleus volume. The effects of chromosomal domains and DNA loops on the DSB fragment-size distribution and the spatial distribution of DSB in the nucleus were studied. We compare our model predictions with the spatial distribution of DSB obtained from experiments. The implications of our model predictions for radiation protection are discussed.
Multisource Estimation of Long-term Global Terrestrial Surface Radiation
NASA Astrophysics Data System (ADS)
Peng, L.; Sheffield, J.
2017-12-01
Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual components. The goal of this study is to provide a merged observational benchmark for large-scale diagnostic analyses, remote sensing and land surface modeling.
Radiation Measured for Chinese Satellite SJ-10 Space Mission
NASA Astrophysics Data System (ADS)
Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei
2018-02-01
Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.
The NASA Space Radiation Health Program
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Sulzman, F. M.
1994-01-01
The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.
Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
Johnson, A. Steve; Badhwar, Gautam D.; Golightly, Michael J.; Hardy, Alva C.; Konradi, Andrei; Yang, Tracy Chui-Hsu
1993-01-01
The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.
NASA Strategy to Safely Live and Work in the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam
2007-01-01
This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.
Rudobeck, Emil; Bellone, John A; Szücs, Attila; Bonnick, Kristine; Mehrotra-Carter, Shalini; Badaut, Jerome; Nelson, Gregory A; Hartman, Richard E; Vlkolinský, Roman
2017-01-01
Space radiation represents a significant health risk for astronauts. Ground-based animal studies indicate that space radiation affects neuronal functions such as excitability, synaptic transmission, and plasticity, and it may accelerate the onset of Alzheimer's disease (AD). Although protons represent the main constituent in the space radiation spectrum, their effects on AD-related pathology have not been tested. We irradiated 3 month-old APP/PSEN1 transgenic (TG) and wild type (WT) mice with protons (150 MeV; 0.1-1.0 Gy; whole body) and evaluated functional and biochemical hallmarks of AD. We performed behavioral tests in the water maze (WM) before irradiation and in the WM and Barnes maze at 3 and 6 months post-irradiation to evaluate spatial learning and memory. We also performed electrophysiological recordings in vitro in hippocampal slices prepared 6 and 9 months post-irradiation to evaluate excitatory synaptic transmission and plasticity. Next, we evaluated amyloid β (Aβ) deposition in the contralateral hippocampus and adjacent cortex using immunohistochemistry. In cortical homogenates, we analyzed the levels of the presynaptic marker synaptophysin by Western blotting and measured pro-inflammatory cytokine levels (TNFα, IL-1β, IL-6, CXCL10 and CCL2) by bead-based multiplex assay. TG mice performed significantly worse than WT mice in the WM. Irradiation of TG mice did not affect their behavioral performance, but reduced the amplitudes of population spikes and inhibited paired-pulse facilitation in CA1 neurons. These electrophysiological alterations in the TG mice were qualitatively different from those observed in WT mice, in which irradiation increased excitability and synaptic efficacy. Irradiation increased Aβ deposition in the cortex of TG mice without affecting cytokine levels and increased synaptophysin expression in WT mice (but not in the TG mice). Although irradiation with protons increased Aβ deposition, the complex functional and biochemical results indicate that irradiation effects are not synergistic to AD pathology.
NASA Astrophysics Data System (ADS)
Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal
2017-05-01
Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor frequency and size was similar irrespective of energetic heavy ion radiation dose rate suggesting that carcinogenic potential of energetic heavy ions is independent of dose rate.
Modeling Space Radiation with Radiomimetic Agent Bleomycin
NASA Technical Reports Server (NTRS)
Lu, Tao
2017-01-01
Space radiation consists of proton and helium from solar particle events (SPE) and high energy heavy ions from galactic cosmic ray (GCR). This mixture of radiation with particles at different energy levels has different effects on biological systems. Currently, majority studies of radiation effects on human were based on single-source radiation due to the limitation of available method to model effects of space radiation on living organisms. While NASA Space Radiation Laboratory is working on advanced switches to make it possible to have a mixed field radiation with particles of different energies, the radiation source will be limited. Development of an easily available experimental model for studying effects of mixed field radiation could greatly speed up our progress in our understanding the molecular mechanisms of damage and responses from exposure to space radiation, and facilitate the discovery of protection and countermeasures against space radiation, which is critical for the mission to Mars. Bleomycin, a radiomimetic agent, has been widely used to study radiation induced DNA damage and cellular responses. Previously, bleomycin was often compared to low low Linear Energy Transfer (LET) gamma radiation without defined characteristics. Our recent work demonstrated that bleomycin could induce complex clustered DNA damage in human fibroblasts that is similar to DNA damage induced by high LET radiation. These type of DNA damage is difficult to repair and can be visualized by gamma-H2Ax staining weeks after the initial insult. The survival ratio between early and late plating of human fibroblasts after bleomycin treatment is between low LET and high LET radiation. Our results suggest that bleomycin induces DNA damage and other cellular stresses resembling those resulted from mixed field radiation with both low and high LET particles. We hypothesize that bleomycin could be used to mimic space radiation in biological systems. Potential advantages and limitations of using bleomycin to treat biological specimen as an easily available model to study effects of space radiation on biological systems and to develop countermeasures for space radiation associated risks will be discussed.
Radiation Hazards and Countermeasures for Human Space Flight
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2004-01-01
Protection of the astronauts from space radiation is NASA's moral and legal responsibility. There can be no manned deep space missions without adequate protection from the ionizing radiation in space. There are tow parts to radiation protection, determining the effects of space radiation on humans so that adequate exposure limits can be set and providing radiation protection that insures those limits will not be exceeded. This talk will review the status of work on these two parts and identify areas that are currently being investigated and gaps in the research that have been identified.
Overview of NASA's space radiation research program.
Schimmerling, Walter
2003-06-01
NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.
Space activities and radiation protection of crew members
NASA Astrophysics Data System (ADS)
Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Reiter, Thomas; Kehl, Marcel; Damann, M. D. Volker; Tognini, Michel
Personnel working as crew in space-based activities e.g. professional astronauts and cosmo-nauts but also -to a certain extend-space flight participants ("space tourists"), demand health and safety considerations that have to include radiation protection measures. The radiation environment that a crew is exposed to during a space flight, differs significantly to that found on earth including commercial aviation, mainly due to the presence of heavy charged particles with great potential for biological damage. The exposure exceeds those routinely received by terrestrial radiation workers. A sequence of activities has to be conducted targeting to mitigate adverse effects of space radiation. Considerable information is available and applied through the joint efforts of the Space Agencies that are involved in the operations of the International Space Station, ISS. This presentation will give an introduction to the current measures for ra-diation monitoring and protection of astronauts of the European Space Agency (ESA). It will include information: on the radiation protection guidelines that shall ensure the proper imple-mentation and execution of radiation protection measures, the operational hardware used for radiation monitoring and personal dosimetry on ISS, as well as information about operational procedures that are applied.
NASA Technical Reports Server (NTRS)
Lin, Zi-Wei; Adams, J. H., Jr.
2005-01-01
Space radiation risk to astronauts is a major obstacle for long term human space explorations. Space radiation transport codes have thus been developed to evaluate radiation effects at the International Space Station (ISS) and in missions to the Moon or Mars. We study how nuclear fragmentation processes in such radiation transport affect predictions on the radiation risk from galactic cosmic rays. Taking into account effects of the geomagnetic field on the cosmic ray spectra, we investigate the effects of fragmentation cross sections at different energies on the radiation risk (represented by dose-equivalent) from galactic cosmic rays behind typical spacecraft materials. These results tell us how the radiation risk at the ISS is related to nuclear cross sections at different energies, and consequently how to most efficiently reduce the physical uncertainty in our predictions on the radiation risk at the ISS.
Pacelli, Claudia; Selbmann, Laura; Zucconi, Laura; Raguse, Marina; Moeller, Ralf; Shuryak, Igor; Onofri, Silvano
2017-02-01
Life dispersal between planets, planetary protection, and the search for biosignatures are main topics in astrobiology. Under the umbrella of the STARLIFE project, three Antarctic endolithic microorganisms, the melanized fungus Cryomyces antarcticus CCFEE 515, a hyaline strain of Umbilicaria sp. (CCFEE 6113, lichenized fungus), and a Stichococcus sp. strain (C45A, green alga), were exposed to high doses of space-relevant gamma radiation ( 60 Co), up to 117.07 kGy. After irradiation survival, DNA integrity and ultrastructural damage were tested. The first was assessed by clonogenic test; viability and dose responses were reasonably described by the linear-quadratic formalism. DNA integrity was evaluated by PCR, and ultrastructural damage was observed by transmission electron microscopy. The most resistant among the tested organisms was C. antarcticus both in terms of colony formation and DNA preservation. Besides, results clearly demonstrate that DNA was well detectable in all the tested organisms even when microorganisms were dead. This high resistance provides support for the use of DNA as a possible biosignature during the next exploration campaigns. Implication in planetary protection and contamination during long-term space travel are put forward. Key Words: Biosignatures-Ionizing radiation-DNA integrity-Eukaryotic microorganisms-Fingerprinting-Mars exploration. Astrobiology 17, 126-135.
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.; Ansari, Rafat R.; Nakao, Atsunori; Wink, David
2011-01-01
Exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. As biological damage from exposure is associated with increased oxidative stress, it would be enabling to mitigate and/or prevent stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as both chemical radioprotectors for radical scavenging and biological promoters for management of the body s response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it is concluded that this approach may have great therapeutic potential for exposure. Furthermore, it also appears to have potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, Parkinson s and Alzheimer s disease, cataracts, and aging.
Some Thoughts on Interdisciplinary Science *
Stannard, J. Newell
1966-01-01
The development of the “new biology” is largely a story of developments in interdisciplinary science. This paper considers a few of these of special interest to the author and active at the University of Rochester; namely, dental research, biophysics, radiation biology, health physics, biomedical engineering, and space biology. Rochester pioneered advanced academic training in radiation biology, a field which, despite some earlier tendencies to become associated with techniques rather than scientific problems, is now clearly a substantive discipline. Using biophysics as an example, the paper points to the futility of trying to define in detail the exact nature of each new “interdisciplinary discipline,” yet it also decries the coining of new names without due cause. Health physics and its related field, radiological health, are described as centered on problems of radiation protection and as professional in their overtones. The interrelationships between engineering and bioscience are seen most clearly in biomedical engineering and the growing programs in space biology which require complete cooperation and mutual understanding between engineers and bioscientists for their ultimate success. After presenting some implications for medical libraries, the paper closes with a plea that the developers of new interdisciplinary fields and their powerful tools maintain historical perspective, simplicity of approach, and respect for nature's infinite resourcefulness. PMID:5910383
Space Flight Ionizing Radiation Environments
NASA Technical Reports Server (NTRS)
Koontz, Steve
2017-01-01
The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.
Parihar, Vipan K; Maroso, Mattia; Syage, Amber; Allen, Barrett D; Angulo, Maria C; Soltesz, Ivan; Limoli, Charles L
2018-07-01
Of the many perils associated with deep space travel to Mars, neurocognitive complications associated with cosmic radiation exposure are of particular concern. Despite these realizations, whether and how realistic doses of cosmic radiation cause cognitive deficits and neuronal circuitry alterations several months after exposure remains unclear. In addition, even less is known about the temporal progression of cosmic radiation-induced changes transpiring over the duration of a time period commensurate with a flight to Mars. Here we show that rodents exposed to the second most prevalent radiation type in space (i.e. helium ions) at low, realistic doses, exhibit significant hippocampal and cortical based cognitive decrements lasting 1 year after exposure. Cosmic-radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in cognitive flexibility and reduced rates of fear extinction, elevated anxiety and depression like behavior. At the circuit level, irradiation caused significant changes in the intrinsic properties (resting membrane potential, input resistance) of principal cells in the perirhinal cortex, a region of the brain implicated by our cognitive studies. Irradiation also resulted in persistent decreases in the frequency and amplitude of the spontaneous excitatory postsynaptic currents in principal cells of the perirhinal cortex, as well as a reduction in the functional connectivity between the CA1 of the hippocampus and the perirhinal cortex. Finally, increased numbers of activated microglia revealed significant elevations in neuroinflammation in the perirhinal cortex, in agreement with the persistent nature of the perturbations in key neuronal networks after cosmic radiation exposure. These data provide new insights into cosmic radiation exposure, and reveal that even sparsely ionizing particles can disrupt the neural circuitry of the brain to compromise cognitive function over surprisingly protracted post-irradiation intervals. Copyright © 2018 Elsevier Inc. All rights reserved.
Radiation Assurance for the Space Environment
NASA Technical Reports Server (NTRS)
Barth, Janet L.; LaBel, Kenneth A.; Poivey, Christian
2004-01-01
The space radiation environment can lead to extremely harsh operating conditions for spacecraft electronic systems. A hardness assurance methodology must be followed to assure that the space radiation environment does not compromise the functionality and performance of space-based systems during the mission lifetime. The methodology includes a definition of the radiation environment, assessment of the radiation sensitivity of parts, worst-case analysis of the impact of radiation effects, and part acceptance decisions which are likely to include mitigation measures.
The biological effects of space radiation during long stays in space.
Ohnishi, Ken; Ohnishi, Takeo
2004-12-01
Many space experiments are scheduled for the International Space Station (ISS). Completion of the ISS will soon become a reality. Astronauts will be exposed to low-level background components from space radiation including heavy ions and other high-linear energy transfer (LET) radiation. For long-term stay in space, we have to protect human health from space radiation. At the same time, we should recognize the maximum permissible doses of space radiation. In recent years, physical monitoring of space radiation has detected about 1 mSv per day. This value is almost 150 times higher than that on the surface of the Earth. However, the direct effects of space radiation on human health are currently unknown. Therefore, it is important to measure biological dosimetry to calculate relative biological effectiveness (RBE) for human health during long-term flight. The RBE is possibly modified by microgravity. In order to understand the exact RBE and any interaction with microgravity, the ISS centrifugation system will be a critical tool, and it is hoped that this system will be in operation as soon as possible.
Passive radiation shielding considerations for the proposed space elevator
NASA Astrophysics Data System (ADS)
Jorgensen, A. M.; Patamia, S. E.; Gassend, B.
2007-02-01
The Earth's natural van Allen radiation belts present a serious hazard to space travel in general, and to travel on the space elevator in particular. The average radiation level is sufficiently high that it can cause radiation sickness, and perhaps death, for humans spending more than a brief period of time in the belts without shielding. The exact dose and the level of the related hazard depends on the type or radiation, the intensity of the radiation, the length of exposure, and on any shielding introduced. For the space elevator the radiation concern is particularly critical since it passes through the most intense regions of the radiation belts. The only humans who have ever traveled through the radiation belts have been the Apollo astronauts. They received radiation doses up to approximately 1 rem over a time interval less than an hour. A vehicle climbing the space elevator travels approximately 200 times slower than the moon rockets did, which would result in an extremely high dose up to approximately 200 rem under similar conditions, in a timespan of a few days. Technological systems on the space elevator, which spend prolonged periods of time in the radiation belts, may also be affected by the high radiation levels. In this paper we will give an overview of the radiation belts in terms relevant to space elevator studies. We will then compute the expected radiation doses, and evaluate the required level of shielding. We concentrate on passive shielding using aluminum, but also look briefly at active shielding using magnetic fields. We also look at the effect of moving the space elevator anchor point and increasing the speed of the climber. Each of these mitigation mechanisms will result in a performance decrease, cost increase, and technical complications for the space elevator.
Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad
2015-01-01
This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.
NASA Technical Reports Server (NTRS)
Fung, Shing F.; Vinas, Adolfo F.
1994-01-01
The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2010-01-01
The Large Area Telescope on-board the Fermi Gamma-Ray Space Telescope has collected more than 10 million cosmic ray electrons with energy above 7 GeV since its science operation on orbit. High energy electrons rapidly lose their energy by synchrotron radiation on Galactic magnetic fields and by inverse Compton scattering on the interstellar radiation field. The typical distance over which a 1 TeV electron loses half its total energy is estimated to be 300-400 pc.This makes them a unique tool for probing nearby Galactic space. Observed spectrum has a harder spectral index than was previously reported and suggests the presence of nearby sources of high energy electrons. One of viable candidates are nearby pulsars, possibly some of recently discovered by Fermi. At the same time the dark matter origin of such sources cannot be ruled out. I will also report our current upper limits on cosmic ray electrons anisotropy which helps to set constraints on their local sources.
NASA Technical Reports Server (NTRS)
Lin, Zi-wei
2004-01-01
Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most effect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.
NASA Technical Reports Server (NTRS)
Lin, Zi-Wei
2004-01-01
Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space exploration.
NASA Technical Reports Server (NTRS)
Lin, Zi-Wei
2004-01-01
Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Petzold, Uwe
2017-09-01
Optical systems in space environment have to withstand harsh radiation. Radiation in space usually comes from three main sources: the Van Allen radiation belts (mainly electrons and protons); solar proton events and solar energetic particles (heavier ions); and galactic cosmic rays (gamma- or x-rays). Other heavy environmental effects include short wavelength radiation (UV) and extreme temperatures (cold and hot). Radiation can damage optical glasses and effect their optical properties. The most common effect is solarization, the decrease in transmittance by radiation. This effect can be observed for UV radiation and for gamma or electron radiation. Optical glasses can be stabilized against many radiation effects. SCHOTT offers radiation resistant glasses that do not show solarization effects for gamma or electron radiation. A review of SCHOTT optical glasses in space missions shows, that not only radiation resistant glasses are used in the optical designs, but also standard optical glasses. This publication finishes with a selection of space missions using SCHOTT optical glass over the last decades.
NASA Human Research Program Space Radiation Program Element
NASA Technical Reports Server (NTRS)
Chappell, Lori; Huff, Janice; Patel, Janapriya; Wang, Minli; Hu, Shaowwen; Kidane, Yared; Myung-Hee, Kim; Li, Yongfeng; Nounu, Hatem; Plante, Ianik;
2013-01-01
The goal of the NASA Human Research Program's Space Radiation Program Element is to ensure that crews can safely live and work in the space radiation environment. Current work is focused on developing the knowledge base and tools required for accurate assessment of health risks resulting from space radiation exposure including cancer and circulatory and central nervous system diseases, as well as acute risks from solar particle events. Division of Space Life Sciences (DSLS) Space Radiation Team scientists work at multiple levels to advance this goal, with major projects in biological risk research; epidemiology; and physical, biophysical, and biological modeling.
Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya
2016-06-01
Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya
2016-06-01
Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.
NASA Technical Reports Server (NTRS)
1987-01-01
Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.
NASA Space Radiation Program Integrative Risk Model Toolkit
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris
2015-01-01
NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.
Advanced Space Radiation Detector Technology Development
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.
2013-01-01
The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.
Advanced Space Radiation Detector Technology Development
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.
2013-01-01
The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.
Advanced Space Radiation Detector Technology Development
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.
2013-01-01
The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.
Cosmic Radiation | RadTown USA | US EPA
2017-08-07
Radiation from space is constantly hitting the Earth. Radiation from space is called cosmic radiation. Cosmic radiation makes up about five percent of annual radiation exposure of an average person in the United States.
Operational Aspects of Space Radiation
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session FA4, the discussion focuses on the following topics: Solar Particle Events and the International Space Station; Radiation Environment on Mir and ISS Orbits During the Solar Cycle; New approach to Radiation Risk Assessment; An Industrial Method to Predict Major Solar Flares for a Better Protection of Human Beings in Space; Description of the Space Radiation Control System for the Russian Segment of ISS; Orbit Selection and Its Impact on Radiation Warning Architecture for a Human Mission to Mars; and Space Nuclear Power - Technology, Policy and Risk Considerations in Human Missions to Mars.
High LET, passive space radiation dosimetry and spectrometry
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.; Benton, E. R.; Keegan, R. P.; Frigo, L. A.; Sanner, D.; Rowe, V.
1995-01-01
The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation.
Low Reynolds Number Droplet Combustion In CO2 Enriched Atmospheres In Microgravity
NASA Technical Reports Server (NTRS)
Hicks, M. C.
2003-01-01
The effect of radiative feedback from the gas phase in micro-gravity combustion processes has been of increasing concern because of the implications in the selection and evaluation of appropriate fire suppressants. The use of CO2, an optically thick gas in the infrared region of the electromagnetic spectrum, has garnered widespread acceptance as an effective fire suppressant for most ground based applications. Since buoyant forces often dominate the flow field in 1-g environments the temperature field between the flame front and the fuel surface is not significantly affected by gas phase radiative absorption and re-emission as these hot gases are quickly swept downstream. However, in reduced gravity environments where buoyant-driven convective flows are negligible and where low-speed forced convective flows may be present at levels where gas phase radiation becomes important, then changes in environment that enhance gas phase radiative effects need to be better understood. This is particularly true in assessments of flammability limits and selection of appropriate fire suppressants for future space applications. In recognition of this, a ground-based investigation has been established that uses a droplet combustion configuration to systematically study the effects of enhanced gas phase radiation on droplet burn rates, flame structure, and radiative output from the flame zone.
Radiation dosimetry and biophysical models of space radiation effects
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wu, Honglu; Shavers, Mark R.; George, Kerry
2003-01-01
Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems.
Krause, Andrew R; Speacht, Toni L; Zhang, Yue; Lang, Charles H; Donahue, Henry J
2017-01-01
Deep space travel exposes astronauts to extended periods of space radiation and mechanical unloading, both of which may induce significant muscle and bone loss. Astronauts are exposed to space radiation from solar particle events (SPE) and background radiation referred to as galactic cosmic radiation (GCR). To explore interactions between skeletal muscle and bone under these conditions, we hypothesized that decreased mechanical load, as in the microgravity of space, would lead to increased susceptibility to space radiation-induced bone and muscle loss. We evaluated changes in bone and muscle of mice exposed to hind limb suspension (HLS) unloading alone or in addition to proton and high (H) atomic number (Z) and energy (E) (HZE) (16O) radiation. Adult male C57Bl/6J mice were randomly assigned to six groups: No radiation ± HLS, 50 cGy proton radiation ± HLS, and 50 cGy proton radiation + 10 cGy 16O radiation ± HLS. Radiation alone did not induce bone or muscle loss, whereas HLS alone resulted in both bone and muscle loss. Absolute trabecular and cortical bone volume fraction (BV/TV) was decreased 24% and 6% in HLS-no radiation vs the normally loaded no-radiation group. Trabecular thickness and mineral density also decreased with HLS. For some outcomes, such as BV/TV, trabecular number and tissue mineral density, additional bone loss was observed in the HLS+proton+HZE radiation group compared to HLS alone. In contrast, whereas HLS alone decreased muscle mass (19% gastrocnemius, 35% quadriceps), protein synthesis, and increased proteasome activity, radiation did not exacerbate these catabolic outcomes. Our results suggest that combining simulated space radiation with HLS results in additional bone loss that may not be experienced by muscle.
Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica
2017-05-10
Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).
The NASA Space Radiation Research Program
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2006-01-01
We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.
Space Radiation and Manned Mission: Interface Between Physics and Biology
NASA Astrophysics Data System (ADS)
Hei, Tom
2012-07-01
The natural radiation environment in space consists of a mixed field of high energy protons, heavy ions, electrons and alpha particles. Interplanetary travel to the International Space Station and any planned establishment of satellite colonies on other solar system implies radiation exposure to the crew and is a major concern to space agencies. With shielding, the radiation exposure level in manned space missions is likely to be chronic, low dose irradiation. Traditionally, our knowledge of biological effects of cosmic radiation in deep space is almost exclusively derived from ground-based accelerator experiments with heavy ions in animal or in vitro models. Radiobiological effects of low doses of ionizing radiation are subjected to modulations by various parameters including bystander effects, adaptive response, genomic instability and genetic susceptibility of the exposed individuals. Radiation dosimetry and modeling will provide conformational input in areas where data are difficult to acquire experimentally. However, modeling is only as good as the quality of input data. This lecture will discuss the interdependent nature of physics and biology in assessing the radiobiological response to space radiation.
RADECS Short Course Session I: The Space Radiation Environment
NASA Technical Reports Server (NTRS)
Xapsos, Michael; Bourdarie, Sebastien
2007-01-01
The presented slides and accompanying paper focus on radiation in the space environment. Since space exploration has begun it has become evident that the space environment is a highly aggressive medium. Beyond the natural protection provided by the Earth's atmosphere, various types of radiation can be encountered. Their characteristics (energy and nature), origins and distributions in space are extremely variable. This environment degrades electronic systems and on-board equipment in particular and creates radiobiological hazards during manned space flights. Based on several years of space exploration, a detailed analysis of the problems on satellites shows that the part due to the space environment is not negligible. It appears that the malfunctions are due to problems linked to the space environment, electronic problems, design problems, quality problems, other issues, and unexplained reasons. The space environment is largely responsible for about 20% of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles. This naturally leads to a detailed study of the space environment and of the effects that it induces on space vehicles and astronauts. Sources of radiation in the space environment are discussed here and include the solar activity cycle, galactic cosmic rays, solar particle events, and Earth radiation belts. Future challenges for space radiation environment models are briefly addressed.
Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit.
Chancellor, Jeffery C; Scott, Graham B I; Sutton, Jeffrey P
2014-09-11
Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other "omics" areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.
Dosimetry of a Deep-Space (Mars) Mission using Measurements from RAD on the Mars Science Laboratory
NASA Astrophysics Data System (ADS)
Hassler, D.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Guo, J.; Matthiae, D.; Reitz, G.
2017-12-01
The space radiation environment is one of the outstanding challenges of a manned deep-space mission to Mars. To improve our understanding and take us one step closer to enabling a human Mars to mission, the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been characterizing the radiation environment, both during cruise and on the surface of Mars for the past 5 years. Perhaps the most significant difference between space radiation and radiation exposures from terrestrial exposures is that space radiation includes a significant component of heavy ions from Galactic Cosmic Rays (GCRs). Acute exposures from Solar Energetic Particles (SEPs) are possible during and around solar maximum, but the energies from SEPs are generally lower and more easily shielded. Thus the greater concern for long duration deep-space missions is the GCR exposure. In this presentation, I will review the the past 5 years of MSL RAD observations and discuss current approaches to radiation risk estimation used by NASA and other space agencies.
Cellular changes in microgravity and the design of space radiation experiments
NASA Technical Reports Server (NTRS)
Morrison, D. R.
1994-01-01
Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects an macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.
NASA Technical Reports Server (NTRS)
Reddell, Brandon
2015-01-01
Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.
Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.
Miller, J; Zeitlin, C
2016-06-01
Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
A SPACE TRAJECTORY RADIATION EXPOSURE PROCEDURE FOR CISLUNAR MISSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranford, W.; Falkenbury, R.F.; Miller, R.A.
1962-07-31
The Space Trajectory Radiation Exposure Procedure (STREP) is designed for use in computing the timeintegrated spectra for any specified trajectory in cislunar space for any combination of the several components of space radiations. These components include Van Allen protons and electrons; solar-flare protons, electrons, heavy particles, and gamma radiation; cosmic protons and heavy particles; albedo neutrons, and aurora borealis gamma radiation. The program can also be used to calculate the accumulated dose behind a thin vehicle skin at any time after the start of the mission. The technique of interpolation for intermediate points along the prescribed space trajectory is describedmore » in detail. The method of representation of the space radiation data as input for the calculation of the dose and time-integrated spectra is discussed. (auth)« less
The Popular Commercialisation of Space - Human Factor Issues
NASA Astrophysics Data System (ADS)
Harrison, M. H.
Radiation, vacuum, extremes of temperature, and absence of gravity have not prevented humans from living and working in space. Neither have confinement and isolation in a fragile habitat, a vulnerable life support system, the remoteness of medical aid, or the difficulties of rescue, proved to be serious obstacles. But those humans who have succeeded in overcoming the physical and psychological challenges presented by the uniquely hostile environment of space have, mostly, been highly trained, physically fit, committed professional astronauts, all of whom have accepted that theirs is the ultimate high-risk profession. Yet already the popular commercialisation of space is regarded by many as being inevitable, with speculation that “space hotels” may be in orbit around the Earth within the next twenty years. Today few give thought to the risks involved in air travel - most are much more concerned about the discomfort! For the forseeable future space travel is, by compari- son, going to remain high risk and very uncomfortable. This paper considers the human factor issues involved in the popular commercialisation of space, focusing on implications for non-astronaut space travellers. These include hazards of ascent and descent, the physiological and psychological consequences of spending just a few days in space, and the more mundane issues surrounding simply living in space.
Rimawi, Bassam H; Green, Victoria; Lindsay, Michael
2016-06-01
The purpose of this article is to review the fetal and long-term implications of diagnostic radiation exposure during pregnancy. Evidence-based recommendations for radiologic imaging modalities utilizing exposure of diagnostic radiation during pregnancy, including conventional screen-film mammography, digital mammography, tomosynthesis, and contrast-enhanced mammography are described.
BEIR-III report and its implications for radiation protection and public health policy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrikant, J.I.
1980-03-01
A general background is given of the implications the BEIR-III Report may have on societal decision-making in the regulation of activities concerned with the health effects of low-level radiation. The scientific basis for establishing appropriate radiation protection guides are discussed. (ACR)
Space Radiation, Understanding the Atom Series.
ERIC Educational Resources Information Center
Corliss, William R.
Described is the protection from space radiation afforded the earth by the atmosphere, ionosphere, and magnetic field. The importance of adequate instruments is emphasized by noting how refinements of radiation detection instruments was necessary for increased understanding of space radiation. The role of controversy and accident in the research…
The Schrödinger Equation, the Zero-Point Electromagnetic Radiation, and the Photoelectric Effect
NASA Astrophysics Data System (ADS)
França, H. M.; Kamimura, A.; Barreto, G. A.
2016-04-01
A Schrödinger type equation for a mathematical probability amplitude Ψ( x, t) is derived from the generalized phase space Liouville equation valid for the motion of a microscopic particle, with mass M and charge e, moving in a potential V( x). The particle phase space probability density is denoted Q( x, p, t), and the entire system is immersed in the "vacuum" zero-point electromagnetic radiation. We show, in the first part of the paper, that the generalized Liouville equation is reduced to a simpler Liouville equation in the equilibrium limit where the small radiative corrections cancel each other approximately. This leads us to a simpler Liouville equation that will facilitate the calculations in the second part of the paper. Within this second part, we address ourselves to the following task: Since the Schrödinger equation depends on hbar , and the zero-point electromagnetic spectral distribution, given by ρ 0{(ω )} = hbar ω 3/2 π 2 c3, also depends on hbar , it is interesting to verify the possible dynamical connection between ρ 0( ω) and the Schrödinger equation. We shall prove that the Planck's constant, present in the momentum operator of the Schrödinger equation, is deeply related with the ubiquitous zero-point electromagnetic radiation with spectral distribution ρ 0( ω). For simplicity, we do not use the hypothesis of the existence of the L. de Broglie matter-waves. The implications of our study for the standard interpretation of the photoelectric effect are discussed by considering the main characteristics of the phenomenon. We also mention, briefly, the effects of the zero-point radiation in the tunneling phenomenon and the Compton's effect.
Radiation-pressure-driven dust waves inside bursting interstellar bubbles
NASA Astrophysics Data System (ADS)
Ochsendorf, B. B.; Verdolini, S.; Cox, N. L. J.; Berné, O.; Kaper, L.; Tielens, A. G. G. M.
2014-06-01
Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even though direct evidence supporting this scenario is lacking. Here we explore the possibility that interstellar bubbles seen by the Spitzer- and Herschel space telescopes, blown by stars with log (L/L⊙) ≲ 5.2, form and expand because of the thermal pressure that accompanies the ionization of the surrounding gas. We show that density gradients in the natal cloud or a puncture in the swept-up shell lead to an ionized gas flow through the bubble into the general interstellar medium, which is traced by a dust wave near the star, which demonstrates the importance of radiation pressure during this phase. Dust waves provide a natural explanation for the presence of dust inside H II bubbles, offer a novel method to study dust in H II regions and provide direct evidence that bubbles are relieving their pressure into the interstellar medium through a champagne flow, acting as a probe of the radiative interaction of a massive star with its surroundings. We explore a parameter space connecting the ambient density, the ionizing source luminosity, and the position of the dust wave, while using the well studied H II bubbles RCW 120 and RCW 82 as benchmarks of our model. Finally, we briefly examine the implications of our study for the environments of super star clusters formed in ultraluminous infrared galaxies, merging galaxies, and the early Universe, which occur in very luminous and dense environments and where radiation pressure is expected to dominate the dynamical evolution.
Radiation -- A Cosmic Hazard to Human Habitation in Space
NASA Technical Reports Server (NTRS)
Lewis, Ruthan; Pellish, Jonathan
2017-01-01
Radiation exposure is one of the greatest environmental threats to the performance and success of human and robotic space missions. Radiation permeates all space and aeronautical systems, challenges optimal and reliable performance, and tests survival and survivability. We will discuss the broad scope of research, technological, and operational considerations to forecast and mitigate the effects of the radiation environment for deep space and planetary exploration.
NASA Technical Reports Server (NTRS)
Coakley, Peter G. (Editor)
1988-01-01
The effects of nuclear and space radiation on the performance of electronic devices are discussed in reviews and reports of recent investigations. Topics addressed include the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, sensors in and for radiation environments, EMP/SGEMP/IEMP phenomena, radiation effects on isolation technologies, and spacecraft charging and space radiation effects. Consideration is given to device radiation effects and hardening, hardness assurance and testing techniques, IC radiation effects and hardening, and single-event phenomena.
NASA Technical Reports Server (NTRS)
Conrath, B. J.; Gierasch, P. J.
1984-01-01
A detailed analysis of the Voyager infrared spectrometer measurements on Jupiter's atmosphere is presented, and possible implications of para hydrogen disequilibrium for the energetics and dynamics of that atmosphere are examined. The method of data analysis is described, and results for the large scale latitude variation of the para hydrogen fraction are presented. The Jovian results show pronounced latitude variation, and are compared with other parameters including wind fields, thermal structure, and various indicators of atmospheric clouds. The problem of equilibration rate is reexamined, and it is concluded that on Jupiter the equilibration time is longer than the radiative time constant at the level of emission to space, but that this inequality reverses at greater depths. A model for the interaction of fluid motions with the ortho-para conversion process is presented, and a consistent mixing length theory for the reacting ortho-para mixture is developed. Several implications of the Jovian data for atmospheric energetics and stability on the outer planets are presented.
Low-Power Multi-Aspect Space Radiation Detector System
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.
2012-01-01
The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.
Second Symposium on Protection Against Radiations in Space
NASA Technical Reports Server (NTRS)
Reetz, Arthur, Jr. (Editor)
1965-01-01
All space vehicles will be exposed to natural charged particle radiation fields. The effects and possible problems imposed by such radiations are of great concern to those actively engaged in the exploration of space. Materials and components, which may be damaged by the radiation, frequently can be replaced by more radiation resistant items; however, replacement systems are not always possible or practical and, hence, protective measures in the form of shielding must be employed. (One of the more radiation-sensitive systems to be flown in space is man himself.) Many groups are engaged in research on the attenuation and penetration of high-energy space radiation and on the development of methods for the design of shielding which affords protection against the radiation. The purpose of the Second Symposium on Protection Against Radiations in Space, like that of the First, was to bring these groups together to exchange information and share ideas. The First Symposium on the Protection Against Radiation Hazards in Space was held in Gatlinburg, Tenn., on November 5-7, 1962, and was sponsored by the NASA Manned Spacecraft Center, the Oak Ridge National Laboratory, and the American Nuclear Society. The proceedings of that symposium were published by the U.S. Atomic Energy Commission in a two volume report numbered TID-7652. Early in 1964, it became apparent that sufficient new information worthy of presentation in another symposium had been gathered. Because of its interest and role in space and related research, the U.S. Air Force joined NASA and AEC in the sponsorship of the Second Symposium at Gatlinburg in October 1964. The host, as before, was the Oak Ridge National Laboratory. These proceedings are the written record of the Second Symposium. Invited papers covering the space radiation environment, radiobiological effects, and radiation effects on materials and components comprised the first three sessions. By defining the radiation problems in space and providing for the proper assessment of the radiation effects and shielding requirements, these papers helped to establish the necessary background for the shielding papers which followed in the fourth session.
NASA Technical Reports Server (NTRS)
Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis;
2017-01-01
Space radiation consists of energetic charged particles of varying charges and energies. Exposure of astronauts to space radiation on future long duration missions to Mars, or missions back to the Moon, is expected to result in deleterious consequences such as cancer and comprised central nervous system (CNS) functions. Space radiation can also cause mutation in microorganisms, and potentially influence the evolution of life in space. Measurement of the space radiation environment has been conducted since the very beginning of the space program. Compared to the quantification of the space radiation environment using physical detectors, reports on the direct measurement of biological consequences of space radiation exposure have been limited, due primarily to the low dose and low dose rate nature of the environment. Most of the biological assays fail to detect the radiation effects at acute doses that are lower than 5 centiSieverts. In a recent study, we flew cultured confluent human fibroblasts in mostly G1 phase of the cell cycle to the International Space Station (ISS). The cells were fixed in space after arriving on the ISS for 3 and 14 days, respectively. The fixed cells were later returned to the ground and subsequently stained with the gamma-H2AX (Histone family, member X) antibody that are commonly used as a marker for DNA damage, particularly DNA double strand breaks, induced by both low-and high-linear energy transfer radiation. In our present study, the gamma-H2AX (Histone family, member X) foci were captured with a laser confocal microscope. To confirm that some large track-like foci were from space radiation exposure, we also exposed, on the ground, the same type of cells to both low-and high-linear energy transfer protons, and high-linear energy transfer Fe ions. In addition, we exposed the cells to low dose rate gamma rays, in order to rule out the possibility that the large track-like foci can be induced by chronic low-linear energy transfer radiation.
NASA Technical Reports Server (NTRS)
Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney
2015-01-01
Many of the large space missions must be very rigorous in their designs to reduce risk from radiation damage as much as possible. Some ways of reducing this risk have been to build in multiple redundancies, purchase/develop radiation hardened electronics parts, and plan for worst case radiation environment scenarios. These methods work well for these ambitious missions that can afford the costs associated with these meticulous efforts. However, there have been more small spacecraft and CubeSats with smaller duration missions entering the space arena, which can take some additional risks, but cannot afford to implement all of these risk-reducing methods. Therefore, one way to quantify the radiation exposure risk for these smaller spacecraft would be to investigate the radiation environment pertinent to the mission to better understand these radiation exposures, rather than always designing to the infrequent, worst-case environment. In this study, we have investigated 34 historical solar particle events (1974-2010) that occurred during a time period when the sun spot number (SSN) was less than 30. These events contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs(sup 1-3). GLEs are extremely energetic solar particle events (SPEs) having proton energies often extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but without producing detectable levels of secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. The spectra for these events were fitted using a double power law fit in particle rigidity, called the Band fit method. The differential spectra were then input into the NASA Langley Research Center HZETRN 2005, which is a high-energy particle transport/dose code, to determine the dose in various thicknesses of aluminum, representing the spacecraft. This paper will detail the absorbed dose results of each of these environments, as well as analyze the data to better understand the doses over small thicknesses that are more relevant to small spacecraft and satellites, such as CubeSats. In addition, we will discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft/CubeSat-type missions.
NASA Astrophysics Data System (ADS)
Levine, Lanfang; Bisbee, Patricia; Pare, Paul
The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.
In-Space Radiator Shape Optimization using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael
2006-01-01
Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space radiators for unique situations. Preliminary results indicate an optimized shape following that of the temperature distribution regions in the "cooler" portions of the radiator. The results closely follow the expected radiator shape.
Manned Mars mission radiation environment and radiobiology
NASA Technical Reports Server (NTRS)
Nachtwey, D. S.
1986-01-01
Potential radiation hazards to crew members on manned Mars missions are discussed. It deals briefly with radiation sources and environments likely to be encountered during various phases of such missions, providing quantitative estimates of these environments. Also provided are quantitative data and discussions on the implications of such radiation on the human body. Various sorts of protective measures are suggested. Recent re-evaluation of allowable dose limits by the National Council of Radiation Protection is discussed, and potential implications from such activity are assessed.
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Ronney, Paul
2003-01-01
The Radiative Enhancement Effects on Flame Spread (REEFS) project, slated for flight aboard the International Space Station, reached a major milestone by holding its Science Concept Review this year. REEFS is led by principal investigator Paul Ronney from the University of Southern California in conjunction with a project team from the NASA Glenn Research Center. The study is focusing on flame spread over flat solid fuel beds to improve our understanding of more complex fires, such as those found in manned spacecraft and terrestrial buildings. The investigation has direct implications for fire safety, both for space and Earth applications, and extends previous work with emphasis on the atmospheres and flow environments likely to be present in fires that might occur in microgravity. These atmospheres will contain radiatively active gases such as carbon dioxide (CO2) from combustion products, and likely gaseous fuels such as carbon monoxide (CO) from incomplete combustion of solid fuel, as well as flows induced by ventilation currents. During tests in the 2.2-Second Drop Tower and KC-135 aircraft at Glenn, the principal investigator introduced the use of foam fuels for flame spread experiments over thermally thick fuels to obtain large spread rates in comparison to those of dense fuels such as PMMA. This enables meaningful results to be obtained even in the 2.2 s available in drop tower experiments.
NASA Technical Reports Server (NTRS)
Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis;
2017-01-01
Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 degrees Centigrade in space for 14 days before being fixed for analysis of DNA damages with the gamma-H2AX assay. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate gamma rays at 37 degrees Centigrade. Cells exposed to chronic gamma rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET (Linear Energy Transfer) protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.
Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu
2017-02-01
Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu
2017-02-01
Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 °C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37 °C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.
NASA Technical Reports Server (NTRS)
Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.
2016-01-01
Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).
Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit
Chancellor, Jeffery C.; Scott, Graham B. I.; Sutton, Jeffrey P.
2014-01-01
Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts. PMID:25370382
NASA Technical Reports Server (NTRS)
Elgart, Shona Robin; Shavers, Mark; Huff, Janice; Patel, Zarana; Semones, Edward
2016-01-01
Successfully communicating the complex risks associated with radiation exposure is a difficult undertaking; communicating those risks within the high-risk context of space travel is uniquely challenging. Since the potential risks of space radiation exposure are not expected to be realized until much later in life, it is hard to draw comparisons between other spaceflight risks such as hypoxia and microgravity-induced bone loss. Additionally, unlike other spaceflight risks, there is currently no established mechanism to mitigate the risks of incurred radiation exposure such as carcinogenesis. Despite these challenges, it is the duty of the Space Radiation Analysis Group (SRAG) at NASA's Johnson Space Center to provide astronauts with the appropriate information to effectively convey the risks associated with exposure to the space radiation environment. To this end, astronauts and their flight surgeons are provided with an annual radiation risk report documenting the astronaut's individual radiation exposures from space travel, medical, and internal radiological procedures throughout the astronaut's career. In an effort to improve this communication and education tool, this paper critically reviews the current report style and explores alternative report styles to define best methods to appropriately communicate risk to astronauts, flight surgeons, and management.
NASA Astrophysics Data System (ADS)
Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing
In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level, ground simulation method could be utilized to simu-late the space radiation biological effects and such a comparative proteomic work might explain both energy and dose effects of space radiation environment.
Space radiation protection: Human support thrust exploration technology program
NASA Technical Reports Server (NTRS)
Conway, Edmund J.
1991-01-01
Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.
Space Radiation Program Element
NASA Technical Reports Server (NTRS)
Krenek, Sam
2008-01-01
This poster presentation shows the various elements of the Space Radiation Program. It reviews the program requirements: develop and validate standards, quantify space radiation human health risks, mitigate risks through countermeasures and technologies, and treat and monitor unmitigated risks.
Evaluation of the effects of solar radiation on glass. [space environment simulation
NASA Technical Reports Server (NTRS)
Firestone, R. F.; Harada, Y.
1979-01-01
The degradation of glass used on space structures due to electromagnetic and particulate radiation in a space environment was evaluated. The space environment was defined and a simulated space exposure apparatus was constructed. Four optical materials were exposed to simulated solar and particulate radiation in a space environment. Sapphire and fused silica experienced little change in transmittance, while optical crown glass and ultra low expansion glass darkened appreciably. Specimen selection and preparation, exposure conditions, and the effect of simulated exposure are discussed. A selective bibliography of the effect of radiation on glass is included.
Space Radiation Effects on Inflatable Habitat Materials Project
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Nichols, Charles
2015-01-01
The Space Radiation Effects on Inflatable Habitat Materials project provides much needed risk reduction data to assess space radiation damage of existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage will be quantified for materials used in inflatable structures (1st priority), as well as for habitable composite structures and space suits materials (2nd priority). The data acquired will have relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes. This project also will help to determine the service lifetimes for habitable inflatable, composite, and space suit materials.
Space radiation health program plan
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.
Human Space Exploration and Radiation Exposure from EVA: 1981-2011
NASA Astrophysics Data System (ADS)
Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.
2011-12-01
There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.
Modeling of GCR Environment Variations and Interpretation for Human Explorations
NASA Astrophysics Data System (ADS)
Saganti, Premkumar
We currently have wealth of data with several short duration Space Shuttle (STS) flights to the low earth orbit (LEO) and long duration International Space Station (ISS) expeditions as well as Shuttle-Mir missions over the past few solar cycles. Assessment of such radiation risk is very important particularly for the anticipated long-term and deep-space human explorations. Recently, we have developed a database of first 500 + human explorers and their space travel logs from space exploration missions during the past four decades. Many have traveled into space for only few days while others have been in space for several months. We present the time-line distribution of the space travelers log along with the time correlated radiation en-vironment changes in to aid in the radiation risk assessment for human explorations. These model calculated results and assessment of radiation exposure helps in our understanding of radiation risk and biological consequences.
Combined injury syndrome in space-related radiation environments
NASA Astrophysics Data System (ADS)
Dons, R. F.; Fohlmeister, U.
The risk of combined injury (CI) to space travelers is a function of exposure to anomalously large surges of a broad spectrum of particulate and photon radiations, conventional trauma (T), and effects of weightlessness including decreased intravascular fluid volume, and myocardial deconditioning. CI may occur even at relatively low doses of radiation which can synergistically enhance morbidity and mortality from T. Without effective countermeasures, prolonged residence in space is expected to predispose most individuals to bone fractures as a result of calcium loss in the microgravity environment. Immune dysfunction may occur from residence in space independent of radiation exposure. Thus, wound healing would be compromised if infection were to occur. Survival of the space traveler with CI would be significantly compromised if there were delays in wound closure or in the application of simple supportive medical or surgical therapies. Particulate radiation has the potential for causing greater gastrointestinal injury than photon radiation, but bone healing should not be compromised at the expected doses of either type of radiation in space.
The PARTRAC code: Status and recent developments
NASA Astrophysics Data System (ADS)
Friedland, Werner; Kundrat, Pavel
Biophysical modeling is of particular value for predictions of radiation effects due to manned space missions. PARTRAC is an established tool for Monte Carlo-based simulations of radiation track structures, damage induction in cellular DNA and its repair [1]. Dedicated modules describe interactions of ionizing particles with the traversed medium, the production and reactions of reactive species, and score DNA damage determined by overlapping track structures with multi-scale chromatin models. The DNA repair module describes the repair of DNA double-strand breaks (DSB) via the non-homologous end-joining pathway; the code explicitly simulates the spatial mobility of individual DNA ends in parallel with their processing by major repair enzymes [2]. To simulate the yields and kinetics of radiation-induced chromosome aberrations, the repair module has been extended by tracking the information on the chromosome origin of ligated fragments as well as the presence of centromeres [3]. PARTRAC calculations have been benchmarked against experimental data on various biological endpoints induced by photon and ion irradiation. The calculated DNA fragment distributions after photon and ion irradiation reproduce corresponding experimental data and their dose- and LET-dependence. However, in particular for high-LET radiation many short DNA fragments are predicted below the detection limits of the measurements, so that the experiments significantly underestimate DSB yields by high-LET radiation [4]. The DNA repair module correctly describes the LET-dependent repair kinetics after (60) Co gamma-rays and different N-ion radiation qualities [2]. First calculations on the induction of chromosome aberrations have overestimated the absolute yields of dicentrics, but correctly reproduced their relative dose-dependence and the difference between gamma- and alpha particle irradiation [3]. Recent developments of the PARTRAC code include a model of hetero- vs euchromatin structures to enable accounting for variations in DNA damage yields, complexity and repair between these regions. Second, the applicability of the code to low-energy ions has been extended to full stopping by using a modified Barkas scaling of proton cross sections for ions heavier than helium. Third, ongoing studies aim at hitherto unprecedented benchmarking of the code against experiments with sub-muµm focused bunches of low-LET ions mimicking single high-LET ion tracks [5] which separate effects of damage clustering on a sub-mum scale from DNA damage complexity on a nanometer scale. Fourth, motivated by implications for the involvement of mitochondria in intercellular signaling and radiation-induced bystander effects, ongoing work extends the range of PARTRAC DNA models to radiation effects on mitochondrial DNA. The contribution will discuss the PARTRAC modules, benchmarks to experimental data, recent and ongoing developments of the code, with special attention to its implications and potential applications in radiation protection and space research. Acknowledgement. This work was partially funded by the EU (Contract FP7-249689 ‘DoReMi’). References 1. Friedland et al., Mutat. Res. 711, 28 (2011) 2. Friedland et al., Int. J. Radiat. Biol. 88, 129 (2012) 3. Friedland et al., Mutat. Res. 756, 213 (2013) 4. Alloni et al., Radiat. Res. 179, 690 (2013) 5. Schmid et al., Phys. Med. Biol. 57, 5889 (2012)
Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment
NASA Technical Reports Server (NTRS)
Fuchs, Jordan Robert
2010-01-01
The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.
NASA Astrophysics Data System (ADS)
Schwadron, N. A.; Rahmanifard, F.; Wilson, J.; Jordan, A. P.; Spence, H. E.; Joyce, C. J.; Blake, J. B.; Case, A. W.; de Wet, W.; Farrell, W. M.; Kasper, J. C.; Looper, M. D.; Lugaz, N.; Mays, L.; Mazur, J. E.; Niehof, J.; Petro, N.; Smith, C. W.; Townsend, L. W.; Winslow, R.; Zeitlin, C.
2018-03-01
Over the last decade, the solar wind has exhibited low densities and magnetic field strengths, representing anomalous states that have never been observed during the space age. As discussed by Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084), the cycle 23-24 solar activity led to the longest solar minimum in more than 80 years and continued into the "mini" solar maximum of cycle 24. During this weak activity, we observed galactic cosmic ray fluxes that exceeded theERobserved small solar energetic particle events. Here we provide an update to the Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) observations from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter. The Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) study examined the evolution of the interplanetary magnetic field and utilized a previously published study by Goelzer et al. (2013, https://doi.org/10.1002/2013JA019404) projecting out the interplanetary magnetic field strength based on the evolution of sunspots as a proxy for the rate that the Sun releases coronal mass ejections. This led to a projection of dose rates from galactic cosmic rays on the lunar surface, which suggested a ˜20% increase of dose rates from one solar minimum to the next and indicated that the radiation environment in space may be a worsening factor important for consideration in future planning of human space exploration. We compare the predictions of Schwadron, Blake, et al. (2014, https://doi.org/10.1002/2014SW001084) with the actual dose rates observed by CRaTER in the last 4 years. The observed dose rates exceed the predictions by ˜10%, showing that the radiation environment is worsening more rapidly than previously estimated. Much of this increase is attributable to relatively low-energy ions, which can be effectively shielded. Despite the continued paucity of solar activity, one of the hardest solar events in almost a decade occurred in September 2017 after more than a year of all-clear periods. These particle radiation conditions present important issues that must be carefully studied and accounted for in the planning and design of future missions (to the Moon, Mars, asteroids, and beyond).
NASA Technical Reports Server (NTRS)
Tobias, C. A.; Grigoryev, Y. G.
1975-01-01
The biological effects of ionizing radiation encountered in space are considered. Biological experiments conducted in space and some experiences of astronauts during space flight are described. The effects of various levels of radiation exposure and the determination of permissible dosages are discussed.
Provisional standards of radiation safety during flights
NASA Technical Reports Server (NTRS)
1977-01-01
Radiation effects during space flights are discussed in the context of the sources and dangers of such radiation and the radiobiological prerequisites for establishing safe levels of radiation dosage. Standard safe levels of radiation during space flight are established.
Web-based description of the space radiation environment using the Bethe-Bloch model
NASA Astrophysics Data System (ADS)
Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni
2016-01-01
Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important concepts in the application of radiation protection to space weather problems.
NASA Technical Reports Server (NTRS)
Ruttley, Tara M.; Robinson, Julie A.
2010-01-01
Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.
Implementation of Ferroelectric Memories for Space Applications
NASA Technical Reports Server (NTRS)
Philpy, Stephen C.; Derbenwick, Gary F.; Kamp, David A.; Isaacson, Alan F.
2000-01-01
Ferroelectric random access semiconductor memories (FeRAMs) are an ideal nonvolatile solution for space applications. These memories have low power performance, high endurance and fast write times. By combining commercial ferroelectric memory technology with radiation hardened CMOS technology, nonvolatile semiconductor memories for space applications can be attained. Of the few radiation hardened semiconductor manufacturers, none have embraced the development of radiation hardened FeRAMs, due a limited commercial space market and funding limitations. Government funding may be necessary to assure the development of radiation hardened ferroelectric memories for space applications.
NASA Technical Reports Server (NTRS)
Buchner, S.; LaBel, K.; Barth, J.; Campbell, A.
2005-01-01
Space experiments are occasionally launched to study the effects of radiation on electronic and photonic devices. This begs the following questions: Are space experiments necessary? Do the costs justify the benefits? How does one judge success of space experiment? What have we learned from past space experiments? How does one design a space experiment? This viewgraph presentation provides information on the usefulness of space and ground tests for simulating radiation damage to spacecraft components.
Sentinel Lymph Node Biopsy: Quantification of Lymphedema Risk Reduction
2006-10-01
dimensional internal mammary lymphoscintigraphy: implications for radiation therapy treatment planning for breast carcinoma. Int J Radiat Oncol Biol Phys...techniques based on conventional photon beams, intensity modulated photon beams and proton beams for therapy of intact breast. Radiother Oncol. Feb...Harris JR. Three-dimensional internal mammary lymphoscintigraphy: implications for radiation therapy treatment planning for breast carcinoma. Int J
Parts Selection for Space Systems - An Overview and Radiation Perspective
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2008-01-01
This viewgraph presentation describes the selection of electronic parts for aerospace systems from a space radiation perspective. The topics include: 1) The Trade Space Involved with Part Selection; 2) Understanding Risk; 3) Technical/Design Aspects; 4) Programmatic Overview; 5) Radiation Perspective; 6) Reliability Considerations; 7) An Example Ad hoc Battle; and 8) Sources of Radiation Data.
Overview of the Martian radiation environment experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitlin, C.; Cleghorn, T.F.; Cucinotta, F.A.
Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001more » Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars.« less
Sources of Ionizing Radiation in Interplanetary Space
2013-05-30
This illustration depicts the two main types of radiation that NASA Radiation Assessment Detector RAD onboard Curiosity monitors, and how the magnetic field around Earth affects the radiation in space near Earth.
Denkins, P; Badhwar, G; Obot, V; Wilson, B; Jejelewo, O
2001-01-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.
2001-01-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo
2001-08-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods — shielding and anti-carcinogens.
Why NASA and the Space Electronics Community Cares About Cyclotrons
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2017-01-01
NASA and the space community are faced with the harsh reality of operating electronic systems in the space radiation environment. Systems need to work reliably (as expected for as long as expected) and be available during critical operations such as docking or firing a thruster. This talk will provide a snapshot of the import of ground-based research on the radiation performance of electronics. Discussion topics include: 1) The space radiation environment hazard, 2) Radiation effects on electronics, 3) Simulation of effects with cyclotrons (and other sources), 4) Risk prediction for space missions, and, 5) Real-life examples of both ground-based testing and space-based anomalies and electronics performance. The talk will conclude with a discussion of the current state of radiation facilities in North America for ground-based electronics testing.
Spacecraft Environments Interactive: Space Radiation and Its Effects on Electronic System
NASA Technical Reports Server (NTRS)
Howard, J. W., Jr.; Hardage, D. M.
1999-01-01
The natural space environment is characterized by complex and subtle phenomena hostile to spacecraft. Effects of these phenomena impact spacecraft design, development, and operation. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of space radiation and its effects on electronic systems essential to accomplish overall mission objectives, especially in the current climate of smaller/better/cheaper faster. This primer outlines the radiation environments encountered in space, discusses regions and types of radiation, applies the information to effects that these environments have on electronic systems, addresses design guidelines and system reliability, and stresses the importance of early involvement of radiation specialists in mission planning, system design, and design review (part-by-part verification).
NASA Astrophysics Data System (ADS)
Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu
2016-07-01
Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.
Overview of the NASA space radiation laboratory.
La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; Lowenstein, Derek; Rusek, Adam
2016-11-01
The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. This work contains a general overview of NSRL structure, capabilities and operation. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.
Operational Models Supporting Manned Space Flight
NASA Astrophysics Data System (ADS)
Johnson, A. S.; Weyland, M. D.; Lin, T. C.; Zapp, E. N.
2006-12-01
The Space Radiation Analysis Group (SRAG) at Johnson Space Center (JSC) has the primary responsibility to provide real-time radiation health operational support for manned space flight. Forecasts from NOAA SEC, real-time space environment data and radiation models are used to infer changes in the radiation environment due to space weather. Unlike current operations in low earth orbit which are afforded substantial protection from the geomagnetic field, exploration missions will have little protection and require improved operational tools for mission support. The current state of operational models and their limitations will be presented as well as an examination of needed tools to support exploration missions.
Aiming Optimum Space Radiation Protection using Regolith.
NASA Astrophysics Data System (ADS)
Masuda, Daisuke; Nagamatsu, Aiko; Indo, Hiroko; Iwashita, Yoichiro; Suzuki, Hiromi; Shimazu, Toru; Yano, Sachiko; Tanigaki, Fumiaki; Ishioka, Noriaki; Mukai, Chiaki; Majima, Hideyuki J.
Radiation protection of space radiation is very important factor in manned space activity on the moon. At the construction of lunar base, low cost radiation shielding would be achieved using regolith that exists on the surface of the moon. We studied radiation shielding ability of regolith as answer the question, how much of depth would be necessary to achieve minimum radiation protection. We estimated the shielding ability of regolith against each atomic number of space radiation particles. Using stopping power data of ICRU REPORT49 and 73, we simulated the approximate expression (function of the energy of the atomic nucleus as x and the atomic number as Z) of the stopping power for the space proton particle (nucleus of H) against silicon dioxide (SiO2), aluminum oxide (Al2O3), and iron (Fe), which are the main components of regolith. Based on the expression, we applied the manipulation to the other particles of space radiation to up to argon particle (Ar). These simulated expressions complied well the data of ICRU REPORT49 and 73 except alpha particle (nucleus of He). The simulation values of stop-ping power of ten elements from potassium to nickel those we had no data in ICRU REPORT were further simulated. Using the obtained expressions, the relationship between the radiation absorbed dose and depth of a silicon dioxide was obtained. The space radiation relative dose with every depth in the moon could be estimated by this study.
1992-07-15
cosmic - ray transport. NASA TM X-2440, 1972:117-122. DoD Space Radiation Concerns 8 2. Atkins SG, Small JT, McFarland TH. Military Man-in Space (MMIS...136. 29. Silberberg R, Tsao CH, Adams JH Jr., Letaw JR. Radiation doses and LET distributions of cosmic rays . Rad. Res., 1984, 98:209-226. 30. Stauber...levels on mission success and completion. Natural Radiation Trapped Radiation Belts Galactic Cosmic Rays (GCR) Solar Particle Events (SPEs) Man-Made
NASA Technical Reports Server (NTRS)
Plaza-Rosado, Heriberto
1991-01-01
Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.
NASA Astrophysics Data System (ADS)
Plaza-Rosado, Heriberto
1991-09-01
Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.
Space weather effects measured in atmospheric radiation on aircraft
NASA Astrophysics Data System (ADS)
Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.
2016-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather effects on the atmospheric radiation environment, including the levels of GCR background radiation, small SEP events, and possible EMIC wave driven energetic electrons from the outer radiation belt creating "radiation" clouds in the troposphere.
Radiological health risks to astronauts from space activities and medical procedures
NASA Technical Reports Server (NTRS)
Peterson, Leif E.; Nachtwey, D. Stuart
1990-01-01
Radiation protection standards for space activities differ substantially from those applied to terrestrial working situations. The levels of radiation and subsequent hazards to which space workers are exposed are quite unlike anything found on Earth. The new more highly refined system of risk management involves assessing the risk to each space worker from all sources of radiation (occupational and non-occupational) at the organ level. The risk coefficients were applied to previous space and medical exposures (diagnostic x ray and nuclear medicine procedures) in order to estimate the radiation-induced lifetime cancer incidence and mortality risk. At present, the risk from medical procedures when compared to space activities is 14 times higher for cancer incidence and 13 times higher for cancer mortality; however, this will change as the per capita dose during Space Station Freedom and interplanetary missions increases and more is known about the risks from exposure to high-LET radiation.
NASA Astrophysics Data System (ADS)
Pacelli, Claudia; Selbmann, Laura; Zucconi, Laura; Raguse, Marina; Moeller, Ralf; Shuryak, Igor; Onofri, Silvano
2017-02-01
Life dispersal between planets, planetary protection, and the search for biosignatures are main topics in astrobiology. Under the umbrella of the STARLIFE project, three Antarctic endolithic microorganisms, the melanized fungus Cryomyces antarcticus CCFEE 515, a hyaline strain of Umbilicaria sp. (CCFEE 6113, lichenized fungus), and a Stichococcus sp. strain (C45A, green alga), were exposed to high doses of space-relevant gamma radiation (60Co), up to 117.07 kGy. After irradiation survival, DNA integrity and ultrastructural damage were tested. The first was assessed by clonogenic test; viability and dose responses were reasonably described by the linear-quadratic formalism. DNA integrity was evaluated by PCR, and ultrastructural damage was observed by transmission electron microscopy. The most resistant among the tested organisms was C. antarcticus both in terms of colony formation and DNA preservation. Besides, results clearly demonstrate that DNA was well detectable in all the tested organisms even when microorganisms were dead. This high resistance provides support for the use of DNA as a possible biosignature during the next exploration campaigns. Implication in planetary protection and contamination during long-term space travel are put forward.
NASA Technical Reports Server (NTRS)
Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.
2010-01-01
Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.
Space radiation effects on plant and mammalian cells
NASA Astrophysics Data System (ADS)
Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.
2014-11-01
The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.
NASA Technical Reports Server (NTRS)
Tripathi, Ram K.; Nealy, John E.
2007-01-01
NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA is committed to the safety of the missions and the crew, and there is an overwhelming emphasis on the reliability issues for space missions and the habitat. The cost-effective design of the spacecraft demands a very stringent requirement on the optimization process. Exposure from the hazards of severe space radiation in deep space and/or long duration missions is a critical design constraint and a potential 'show stopper'. Thus, protection from the hazards of severe space radiation is of paramount importance to the agency's vision. It is envisioned to have long duration human presence on the Moon for deep space exploration. The exposures from ionizing radiation - galactic cosmic radiation and solar particle events - and optimized shield design for a swing-by and a long duration Mars mission have been investigated. It is found that the technology of today is inadequate for safe human missions to Mars, and revolutionary technologies need to be developed for long duration and/or deep space missions. The study will provide a guideline for radiation exposure and protection for long duration missions and career astronauts and their safety.
Review of NASA approach to space radiation risk assessments for Mars exploration.
Cucinotta, Francis A
2015-02-01
Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.
Pázmándi, Tamás; Deme, Sándor; Láng, Edit
2006-01-01
One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher sun activity. Monitoring of the cosmic radiation on board space vehicles is carried out on the basis of wide international co-operation. Since space radiation consists mainly of charged heavy particles (protons, alpha and heavier particles), the equivalent dose differs significantly from the absorbed dose. A radiation weighting factor (w(R)) is used to convert absorbed dose (Gy) to equivalent dose (Sv). w(R) is a function of the linear energy transfer of the radiation. Recently used equipment is suitable for measuring certain radiation field parameters changing in space and over time, so a combination of different measurements and calculations is required to characterise the radiation field in terms of dose equivalent. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope, called Tritel, and to develop software for data evaluation of the measured energy deposition spectra. The device will be able to determine absorbed dose and dose equivalent of the space radiation.
The 3D Radiation Dose Analysis For Satellite
NASA Astrophysics Data System (ADS)
Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia
2002-01-01
the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and hence, it is too simple to guide satellite radiation protection and ground experiments only based on the 1D radiation analysis results. To comprehend the radiation dose status of satellite adequately, it's essential to perform 3D radiation analysis for satellites. using computer software. From this 3D layout, the satellite model can be simplified appropriately. First select the point to be analyzed in the simplified satellite model, and extend many lines to the outside space, which divides the 4 space into many corresponding small areas with a certain solid angle. Then the shielding masses through the satellite equipment and structures along each direction are calculated, resulting in the shielding mass distribution in all space directions based on the satellite layout. Finally, using the relationship between radiation dose and shielding thickness from the 1D analysis, calculate the radiation dose in each area represented by each line. After we obtain the radiation dose and its space distribution for the point of interest, the 3D satellite radiation analysis is completed. radiation analysis based on satellite 3D CAD layout has larger benefit for engineering applications than the 1D analysis based on the solid sphere shielding model. With the 3D model, the analysis of space environment and its effect is combined closely with actual satellite engineering. The 3D radiation analysis not only provides valuable engineering data for satellite radiation design and protection, but also provides possibility to apply new radiation protection approaches, which expands technology horizon and broadens ways for technology development.
Radiation Hazards and Countermeasures for Human Space Flight
NASA Technical Reports Server (NTRS)
Adams, James
2004-01-01
The protection of astronauts from the hazards of ionizing radiation in space is a moral and legal obligation of NASA. If there are to be manned deep-space missions, means must be found to provide this protection. There are two parts to providing this protection: understanding the effects of space radiation on humans so that radiation exposure limits can be established; and developing countermeasures so that exposures can be kept below these limits. This talk will cover both parts of this problem.
Overview of the NASA space radiation laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung
The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.
Overview of the NASA space radiation laboratory
La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; ...
2016-11-11
The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.
Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul
2016-01-01
Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.
Limitations in predicting the space radiation health risk for exploration astronauts.
Chancellor, Jeffery C; Blue, Rebecca S; Cengel, Keith A; Auñón-Chancellor, Serena M; Rubins, Kathleen H; Katzgraber, Helmut G; Kennedy, Ann R
2018-01-01
Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.
Directional radiation pattern in structural-acoustic coupled system
NASA Astrophysics Data System (ADS)
Seo, Hee-Seon; Kim, Yang-Hann
2005-07-01
In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm.
NASA Technical Reports Server (NTRS)
Lushbaugh, C. C.
1972-01-01
Results of clinical studies of radiation effects on man are used to evaluate space radiation hazards encountered during manned space travel. Considered are effects of photons as well as of mixed fission neutrons and gamma irradiations in establishing body radiosensitivity and tolerance levels. Upper and lower dose-response-time relations for acute radiation syndromes in patients indicate that man is more than sufficiently radioresistant to make the risks of an early radiation effect during one short space mission intangibly small in relation to the other nonradiation risks involved.
Wouters, L.F.
1958-10-28
The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.
Inheritance of induction radiation sensitivity of space flight environments and γ-radiation on rice
NASA Astrophysics Data System (ADS)
Xu, J.; Wang, J.; Wei, L.; Li, Z.; Sun, Y.
There are many factors affecting living things during space flight, such as microgravity, cosmic radiation, etc. A large number of plant mutants have been obtained after space flight on satellite in China in the last decade and some commercial crop varieties were released. However, little consideration has so far been given to the genetic mechanisms underlying sensitivity of plant seeds to space flight environments. To reveal the genetic mechanisms associated with induction radiation sensitivity (IRS), a set of 226 recombination inbred lines (RILs) derived from Lemont (japonica)/ Teqing (indica) F13, were analyzed using 164 well-distributed DNA markers and assayed for the traits related to IRS including rate of survival seedling (RSS), seedling height (SH), seed setting rate (SSR) and total physiological damage (TPD) in replicated trials after space flight on Chinese Shenzhou IV Spacecraft andγ -radiation treatment (35000 rad) on the ground in 2002. Seedling growth of Lemont was accelerated after space flight with the SH of 116.2% of ground control while growth suppression was happened for Teqing with the SH of 85.7% of ground control. γ -radiation treatment resulted in significant decrease in all tested traits for the two parents, indicating space flight and γ -radiation treatment had different biological effects on the two parents. Significant differences were detected among the RILs for their responses to space flight environments and γ -radiation, reflected as the difference in the four tested traits. Space flight resulted in stimulation on growth for 57.1% lines whileγ -radiation had suppression on growth for most lines. Seventeen putative main-effect QTLs was identified for the four traits related to IRS under space flight and γ -radiation, which totally explained significant portions of the total trait variation (4.4% for RSS, 27.2% for SH, 4% for SSR and 15.8% for TPD for space flight; 10.4% for RSS, 15.1% for SH, 8.2% for SSR and 6.1% for TPD forγ -radiation). Same QTLs affecting some of the four tested traits after space flight andγ -radiation treatment were identified, suggesting that space flight environments andγ -radiation partially shared the same genetic mechanisms for mutation. Forty-nine epistatic pairs affecting the four traits was detected and totally explained significant portions of the phenotypic variation (49.7% for RSS, 49.8% for SH, 14.3% for SSR and 40.2% for TPD for space flight; 30.5% for RSS, 18.1% for SH, 34.3% for SSR, 31.9% for TPD forγ -radiation). It indicated that IRS is a very complicated trait and epistasis may play an important role in underlying its genetic mechanism. Based on these results, the genetic basis of IRS and its application in plant mutation breeding was discussed.
The Challenge of Maintaining a Healthy Microbiome During Long-Duration Space Missions.
NASA Astrophysics Data System (ADS)
Voorhies, Alexander; Lorenzi, Hernan
2016-07-01
Astronauts will face a host of challenges on long-duration space missions like a human expedition to Mars, including the difficulty of maintaining a balanced and healthy microbiome. The human microbiome is the collection of all microorganisms residing in and on a human host, and it plays an essential role in keeping humans healthy. However, imbalances in the microbiome have also been linked to many human diseases. Space travel has been shown to alter the microbiome of astronauts in ways that are not yet completely understood. Here we review past and current microbiology and microbiome research with the aim of determining the extent of change to the human microbiome caused by space travel and implications for astronaut health. We also address several challenges that will need to be overcome in order to facilitate long-duration human exploration missions. These challenges include maintaining environmental conditions that favor healthy microbiomes, controlling the microbial organisms astronauts are exposed to, the impact of galactic cosmic radiation on the microbiome, and medical interventions that can potentially damage the microbiome.
Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites
NASA Astrophysics Data System (ADS)
Collins, W.; Feldman, D.; Turner, D. D.
2014-12-01
Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.
LHC signals of radiatively-induced neutrino masses and implications for the Zee-Babu model
NASA Astrophysics Data System (ADS)
Alcaide, Julien; Chala, Mikael; Santamaria, Arcadi
2018-04-01
Contrary to the see-saw models, extended Higgs sectors leading to radiatively-induced neutrino masses do require the extra particles to be at the TeV scale. However, these new states have often exotic decays, to which experimental LHC searches performed so far, focused on scalars decaying into pairs of same-sign leptons, are not sensitive. In this paper we show that their experimental signatures can start to be tested with current LHC data if dedicated multi-region analyses correlating different observables are used. We also provide high-accuracy estimations of the complicated Standard Model backgrounds involved. For the case of the Zee-Babu model, we show that regions not yet constrained by neutrino data and low-energy experiments can be already probed, while most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, J.W.; Denn, F.M.
1977-05-01
The radiation exposure in the region of geostationary orbits is examined in search for means of optimizing human performance. It is found that the use of slightly inclined circular orbits is one means by which exposure and spacesuit thickness requirements can be reduced. Another effective technique is to limit the extravehicular activity to those days when the short term fluctuations result in low exposure. Space-suit shielding approaching 1/2 sq cm or less may be possible by utilizing work stoppages and inclined orbits. If aluminum and other low-atomic-number materials are used to construct the habitat, then excessive wall thicknesses are required.more » If special bremsstrahlung shielding is used, then the habitat shield may be reduced to as low as 2 g/sq cm. Numerous tables and graphs are presented for future analysis of dose in the geostationary region.« less
Quantifying Low Energy Proton Damage in Multijunction Solar Cells
NASA Technical Reports Server (NTRS)
Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Warner, Jeffrey H.; Summers, Geoffrey P.; Lorentzen, Justin R.; Morton, Thomas L.; Taylor, Steven J.
2007-01-01
An analysis of the effects of low energy proton irradiation on the electrical performance of triple junction (3J) InGaP2/GaAs/Ge solar cells is presented. The Monte Carlo ion transport code (SRIM) is used to simulate the damage profile induced in a 3J solar cell under the conditions of typical ground testing and that of the space environment. The results are used to present a quantitative analysis of the defect, and hence damage, distribution induced in the cell active region by the different radiation conditions. The modelling results show that, in the space environment, the solar cell will experience a uniform damage distribution through the active region of the cell. Through an application of the displacement damage dose analysis methodology, the implications of this result on mission performance predictions are investigated.
An update on the development of a line-focus refractive concentrator array
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Oneill, Mark J.; Fraas, Lewis M.
1994-01-01
Concentrator arrays offer a number of generic benefits for space (i.e. high array efficiency, protection from space radiation effects, minimized plasma interactions, etc.). The line-focus refractive concept, however, also offers two very important advantages: (1) relaxation of precise array tracking requirements to only a single axis and (2) low-cost mass production of the lens material. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal errors for satellites having only single-axis tracking capability. New panel designs emphasize light weight, high stiffness, storability, and ease of manufacturing and assembly. This paper addresses the current status of the concentrator program with special emphasis on the design implications, and flexibility, of using a linear refractive concentrator lens as well as details recent fabrication of prototype hardware.
An Update on the Development of a Line-Focus Refractive Concentrator Array
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; ONeill, Mark J.; Fraas, Lewis M.
1994-01-01
Concentrator arrays offer a number of generic benefits for space (i.e. high array efficiency, protection from space radiation effects, minimized plasma interactions, etc.). The line-focus refractive concentrator concept, however, also offers two very important advantages: (1) relaxation of precise array tracking requirements to only a single axis and (2) low-cost mass production of the lens material. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal errors for satellites having only single-axis tracking capability. New panel designs emphasize light weight, high stiffness, stowability and ease of manufacturing and assembly. This paper will address the current status of the concentrator program with special emphasis on the design implications, and flexibility, of using a linear refractive concentrator lens as well as detail the recent fabrication of prototype hardware.
Biosentinel: Developing a Space Radiation Biosensor
NASA Technical Reports Server (NTRS)
Santa Maria, Sergio R.; Marina, Diana B.; Parra, Macarena P.; Boone, Travis D.; Tan, Ming; Ricco, Antonio J.; Straume, Tore N.; Lusby, Terry C.; Harkness, T.; Reiss-Bubenheim, Debra;
2014-01-01
Ionizing radiation presents a major challenge to human exploration and long-term residence in space. The deep-space radiation spectrum includes highly energetic particles that generate double strand breaks (DSBs), deleterious DNA lesions that are usually repaired without errors via homologous recombination (HR), a conserved pathway in all eukaryotes. While progress identifying and characterizing biological radiation effects using Earth-based facilities has been significant, no terrestrial source duplicates the unique space radiation environment.We are developing a biosensor-based nanosatellite to fly aboard NASAs Space Launch System Exploration Mission 1, expected to launch in 2017 and reach a 1AU (astronomic unit) heliocentric orbit. Our biosensor (called BioSentinel) uses the yeast S. cerevisiae to measure DSBs in response to ambient space radiation. The BioSentinel strain contains engineered genetic defects that prevent growth until and unless a radiation-induced DSB near a reporter gene activates the yeasts HR repair mechanisms. Thus, culture growth and metabolic activity directly indicate a successful DSB-and-repair event. In parallel, HR-defective and wild type strains will provide survival data. Desiccated cells will be carried within independent culture microwells, built into 96-well microfluidic cards. Each microwell set will be activated by media addition at different time points over 18 months, and cell growth will be tracked continuously via optical density. One reserve set will be activated only in the occurrence of a solar particle event. Biological measurements will be compared to data provided by onboard physical dosimeters and to Earth-based experiments.BioSentinel will conduct the first study of biological response to space radiation outside Low Earth Orbit in over 40 years. BioSentinel will thus address strategic knowledge gaps related to the biological effects of space radiation and will provide an adaptable platform to perform human-relevant measurements in multiple space environments. We hope that it can therefore be used on the ISS, on and around other planetary bodies as well as other exploration platforms as a self-contained system that will allow us to compare and calibrate different radiation environments.BioSentinels results will be critical for improving interpretation of the effects of space radiation exposure, and for reducing the risk associated with long-term human exploration.
NASA Astrophysics Data System (ADS)
Bertrand, Marylène; Chabin, Annie; Colas, Cyril; Cadène, Martine; Chaput, Didier; Brack, Andre; Cottin, Herve
2015-01-01
In order to confirm the results of previous experiments concerning the chemical behaviour of organic molecules in the space environment, organic molecules (amino acids and a dipeptide) in pure form and embedded in meteorite powder were exposed in the AMINO experiment in the EXPOSE-R facility onboard the International Space Station. After exposure to space conditions for 24 months (2843 h of irradiation), the samples were returned to the Earth and analysed in the laboratory for reactions caused by solar ultraviolet (UV) and other electromagnetic radiation. Laboratory UV exposure was carried out in parallel in the Cologne DLR Center (Deutsches Zentrum für Luft und Raumfahrt). The molecules were extracted from the sample holder and then (1) derivatized by silylation and analysed by gas chromatography coupled to a mass spectrometer (GC-MS) in order to quantify the rate of degradation of the compounds and (2) analysed by high-resolution mass spectrometry (HRMS) in order to understand the chemical reactions that occurred. The GC-MS results confirm that resistance to irradiation is a function of the chemical nature of the exposed molecules and of the wavelengths of the UV light. They also confirm the protective effect of a coating of meteorite powder. The most altered compounds were the dipeptides and aspartic acid while the most robust were compounds with a hydrocarbon chain. The MS analyses document the products of reactions, such as decarboxylation and decarbonylation of aspartic acid, taking place after UV exposure. Given the universality of chemistry in space, our results have a broader implication for the fate of organic molecules that seeded the planets as soon as they became habitable as well as for the effects of UV radiation on exposed molecules at the surface of Mars, for example.
NASA Technical Reports Server (NTRS)
Wu, Honglu; Lu, Tao; Wong, Michael; Beno, Jonathan; Countryman, Stefanie; Stodieck, Louis; Karouia, Fathi; Zhang, Ye
2015-01-01
Although charged particles in space have been detected with radiation detectors on board spacecraft since the early discovery of the Van Allen Belt, reports on effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation has been difficult due to the low dose and low dose rate nature of the radiation environment, and the difficulty in separating the radiation effects from microgravity and other space environmental factors. In astronauts, only a small number of changes, such as increased chromosome aberrations in lymphocytes and early onset of cataracts, attributed primarily to the exposure to space radiation. In a recent experiment, human fibroblast cells were flown on the International Space Station (ISS). Cells fixed on Days 3 and 14 after reaching orbit were analyzed for phosphorylation of a histone protein H2AX by immunofluorescent staining of cells, which is a widely used marker for DNA double strand breaks. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed a small fraction of foci that were larger and displayed a track pattern in the flight samples in comparison to the ground control. Human fibroblast cells were also exposed to low dose rate gamma rays, as well as to protons and Fe ions. Comparison of the pattern and distribution of the foci after gamma ray and charged particle exposure to our flight results confirmed that the foci found in the flown cells were indeed induced by space radiation.
Consequences of transmission of solar energy from outer space
NASA Astrophysics Data System (ADS)
Cocca, A. A.
The possible physical effects of MW, laser, or mirror-type SPS transmissions and their legal implications are considered. The bioeffects of the transmitted radiation and the atmospheric effects of transmission and of launcher-effluent injection (heating and ionospheric depletion) are examined, and the political aspects of receiver siting (near the equator for GEO solar systems) are indicated. The occupation of large portions of the MW band for SPS transmission and more generalized detrimental effects of SPS on space and terrestrial communications systems are explored, and the provisions of the Space Treaty, the Liability Convention, and (proposed) WARC Radio Regulations are discussed. Since no specific regulations on the use of solar energy have been adopted, a set of twelve basic tenets is proposed. The definition of solar energy and the GEO as nonappropriable parts of the 'common heritage of mankind' and the establishment of international organs (including a compulsory tribunal) to enforce the liability of SPS operators for ensuing damages and the fair sharing of soar resources are urged.
NASA Astrophysics Data System (ADS)
Wu, Honglu; Feiveson, Alan; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao; Wong, Michael
2016-07-01
Although charged particles in space have been detected with radiation detectors on board the spacecraft since the early discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation has been difficult due to the low dose and low dose rate nature of the radiation environment, and the difficulty in separating the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in lymphocytes and early onset of cataracts, attributed primarily to the exposure to space radiation. In a recent experiment, human fibroblast cells were flown on the International Space Station (ISS). Cells were kept at 370C in space and fixed on Days 3 and 14 after reaching orbit. After returning to the ground, the fixed cells were analyzed for phosphorylation of a histone protein H2AX by immunofluorescent staining of cells, which is a widely used biomarker for DNA double strand breaks. The 3-dimensional γg-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed a small fraction of foci that were larger and displayed a track pattern in the flight samples in comparison to the ground controls. To confirm that the foci data from the flight study was actually induced from space radiation exposure, human fibroblast cells were exposed to low- and high-LET protons and high-LET Fe ions on the ground. High-LET protons and Fe ions were found to induce foci of the pattern that were observed in the flown cells.
Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)
2003-01-01
This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.
Space Exploration: Where We Have Been, Where We Are and Where We Are Going: A Human Perspective
NASA Technical Reports Server (NTRS)
Tripathi, R. K.
2005-01-01
NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. The better understanding of radiation environment (GCR & SPE) and their interaction is a key to the success of the program due to the vital role and importance of cosmic rays for space missions.
Getting ready for the manned mission to Mars: the astronauts' risk from space radiation
NASA Astrophysics Data System (ADS)
Hellweg, Christine E.; Baumstark-Khan, Christa
2007-07-01
Space programmes are shifting towards planetary exploration and, in particular, towards missions by human beings to the Moon and to Mars. Radiation is considered to be one of the major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. The two cosmic sources of radiation that could impact a mission outside the Earth’s magnetic field are solar particle events (SPE) and galactic cosmic rays (GCR). Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. Predictions of cancer risk and acceptable radiation exposure in space are extrapolated from minimal data and are subject to many uncertainties. The paper describes present-day estimates of equivalent doses from GCR and solar cosmic radiation behind various shields and radiation risks for astronauts on a mission to Mars.
Getting ready for the manned mission to Mars: the astronauts' risk from space radiation.
Hellweg, Christine E; Baumstark-Khan, Christa
2007-07-01
Space programmes are shifting towards planetary exploration and, in particular, towards missions by human beings to the Moon and to Mars. Radiation is considered to be one of the major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. The two cosmic sources of radiation that could impact a mission outside the Earth's magnetic field are solar particle events (SPE) and galactic cosmic rays (GCR). Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. Predictions of cancer risk and acceptable radiation exposure in space are extrapolated from minimal data and are subject to many uncertainties. The paper describes present-day estimates of equivalent doses from GCR and solar cosmic radiation behind various shields and radiation risks for astronauts on a mission to Mars.
Deep Space Test Bed for Radiation Studies
NASA Technical Reports Server (NTRS)
Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan
2006-01-01
The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other Exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation and flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status.
ISO WD 1856. Guideline for radiation exposure of nonmetallic materials. Present status
NASA Astrophysics Data System (ADS)
Briskman, B. A.
In the framework of the International Organization for Standardization (ISO) activity we started development of international standard series for space environment simulation at on-ground tests of materials. The proposal was submitted to ISO Technical Committee 20 (Aircraft and Space Vehicles), Subcommittee 14 (Space Systems and Operations) and was approved as Working Draft 15856 at the Los-Angeles meeting (1997). A draft of the first international standard "Space Environment Simulation for Radiation Tests of Materials" (1st version) was presented at the 7th International Symposium on Materials in Space Environment (Briskman et al, 1997). The 2nd version of the standard was limited to nonmetallic materials and presented at the 20th Space Simulation Conference (Briskman and Borson, 1998). It covers the testing of nonmetallic materials embracing also polymer composite materials including metal components (metal matrix composites) to simulated space radiation. The standard does not cover semiconductor materials. The types of simulated radiation include charged particles (electrons and protons), solar ultraviolet radiation, and soft X-radiation of solar flares. Synergistic interactions of the radiation environment are covered only for these natural and some induced environmental effects. This standard outlines the recommended methodology and practices for the simulation of space radiation on materials. Simulation methods are used to reproduce the effects of the space radiation environment on materials that are located on surfaces of space vehicles and behind shielding. It was discovered that the problem of radiation environment simulation is very complex and the approaches of different specialists and countries to the problem are sometimes quite opposite. To the present moment we developed seven versions of the standard. The last version is a compromise between these approaches. It was approved at the last ISO TC20/SC14/WG4 meeting in Houston, October 2002. At a splinter meeting of Int. Conference on Materials in a Space Environment, Noordwijk, Netherlands, ESA, June 2003, the experts from ESA, USA, France, Russia and Japan discussed the last version of the draft and approved it with a number of notes. A revised version of the standard will be presented this May at ISO TC20/SC14 meeting in Russia.
Space Radiation Risk Assessment
NASA Astrophysics Data System (ADS)
Blakely, E.
Evaluation of potential health effects from radiation exposure during and after deep space travel is important for the future of manned missions To date manned missions have been limited to near-Earth orbits with the moon our farthest distance from earth Historical space radiation career exposures for astronauts from all NASA Missions show that early missions involved total exposures of less than about 20 mSv With the advent of Skylab and Mir total career exposure levels increased to a maximum of nearly 200 mSv Missions in deep space with the requisite longer duration of the missions planned may pose greater risks due to the increased potential for exposure to complex radiation fields comprised of a broad range of radiation types and energies from cosmic and unpredictable solar sources The first steps in the evaluation of risks are underway with bio- and physical-dosimetric measurements on both commercial flight personnel and international space crews who have experience on near-earth orbits and the necessary theoretical modeling of particle-track traversal per cell including the contributing effects of delta-rays in particle exposures An assumption for biologic effects due to exposure of radiation in deep space is that they differ quantitatively and qualitatively from that on earth The dose deposition and density pattern of heavy charged particles are very different from those of sparsely ionizing radiation The potential risks resulting from exposure to radiation in deep space are cancer non-cancer and genetic effects Radiation from
The effects of space radiation on flight film
NASA Technical Reports Server (NTRS)
Holly, Mark H.
1995-01-01
The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.
Space radiation and cataracts in astronauts.
Cucinotta, F A; Manuel, F K; Jones, J; Iszard, G; Murrey, J; Djojonegro, B; Wear, M
2001-11-01
For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.
Space radiation and cataracts in astronauts
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Manuel, F. K.; Jones, J.; Iszard, G.; Murrey, J.; Djojonegro, B.; Wear, M.
2001-01-01
For over 30 years, astronauts in Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons and heavy ions and secondary particles produced in collisions with spacecraft and tissue. Large uncertainties exist in the projection of risks of late effects from space radiation such as cancer and cataracts due to the paucity [corrected] of epidemiological data. Here we present epidemiological [corrected] data linking an increased risk of cataracts for astronauts with higher lens doses (>8 mSv) of space radiation relative to other astronauts with lower lens doses (<8 mSv). Our study uses historical data for cataract incidence in the 295 astronauts participating in NASA's Longitudinal Study of Astronaut Health (LSAH) and individual occupational radiation exposure data. These results, while preliminary because of the use of subjective scoring methods, suggest that relatively low doses of space radiation may predispose crew to [corrected] an increased incidence and early appearance of cataracts.
NASA Technical Reports Server (NTRS)
Van Vonno, Nick W. (Editor)
1992-01-01
The papers presented in this volume provide an overview of recent theoretical and experimental research related to nuclear and space radiation effects. Topics dicussed include single event phenomena, radiation effects in particle detectors and associated electronics for accelerators, spacecraft charging, and space environments and effects. The discussion also covers hardness assurance and testing techniques, electromagnetic effects, radiation effects in devices and integrated circuits, dosimetry and radiation facilities, isolation techniques, and basic mechanisms.
Radiation Shielding for Space Flight
NASA Technical Reports Server (NTRS)
Blattnig, Steve R.; Norbury, John W.; Norman, Ryan B.
2003-01-01
A safe and efficient exploration of space requires an understanding of space radiations so that human life and sensitive equipment can be protected. On the way to these sensitive sites, the radiation is modified in both quality and quantity. Many of these modifications are thought to be due to the production of pions and muons in the interactions between the radiation and intervening matter. A method to predict the effects of the presence of these particles on the transport of radiation through materials is presented.
Single track effects, Biostack and risk assessment
NASA Technical Reports Server (NTRS)
Curtis, S. B.; Chatterjee, A. (Principal Investigator)
1994-01-01
The scientific career of Prof. Bucker has spanned a very exciting period in the fledgling science of Space Radiation Biology. The capability for placing biological objects in space was developed, and the methods for properly packaging, retrieving and analyzing them were worked out. Meaningful results on the effects of radiation were obtained for the first time. In fact, many of the successful techniques and methodologies for handling biological samples were developed in Prof. Bucker's laboratories, as attested by the extensive Biostack program. He was the first to suggest and successfully carry out experiments in space directly aimed at measuring effects of single tracks of high-energy heavy galactic cosmic rays by specifically identifying whether or not the object had been hit by a heavy particle track. Because the "hit" frequencies of heavy galactic cosmic rays to cell nuclei in the bodies of space travelers will be low, it is expected that any effects to humans on the cellular level will be dominated by single-track cell traversals. This includes the most important generally recognized late effect of space radiation exposure: radiation-induced cancer. This paper addresses the single-track nature of the space radiation environment, and points out the importance of single "hits" in the evaluation of radiation risk for long-term missions occurring outside the earth's magnetic field. A short review is made of biological objects found to show increased effects when "hit" by a single heavy charged-particle in space. A brief discussion is given of the most provocative results from the bacterial spore Bacillus subtilis: experimental evidence that tracks can affect biological systems at much larger distances from the trajectory than previously suspected, and that the resultant inactivation cross section in space calculated for this system is very large. When taken at face value, the implication of these results, when compared to those from experiments performed at ground-based accelerators with beams at low energies in the same LET range, is that high-energy particles can exert their influence a surprising distance from their trajectory and the inactivation cross sections are some 20 times larger than expected. Clearly, beams from high-energy heavy-ion accelerators should be used to confirm these results. For those end points that can also be caused by low-LET beams such as high-energy protons, it is important to measure their action cross sections as well. The ratio of the cross sections for a high-LET beam to that of a low-LET beam is an interesting experimental ratio and, we suggest, of more intrinsic interest than the RBE (Relative Biological Effectiveness). It is a measure of the "biological" importance of one particle type relative to another particle type. This ratio will be introduced and given the name RPPE (Relative Per Particle Effectiveness). Values of RPPE have appeared in the literature and will be discussed. A rather well-known value of this quantity (13,520) has been suggested for the RPPE of high-energy iron ions to high-energy protons. This value was suggested by Letaw et al. Nature 330, 709-710 (1987)] we will call it the Letaw limit. It will be discussed in terms of the importance of the heavy-ion component vs light-ion component of the galactic cosmic rays. It is also pointed out, however, that there may be unique effects from single tracks of heavy ions that do not occur from light-ion tracks. For such effects, the concepts of both RBE and RPPE lose their meaning.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Rahman, Z.; Keller, L. P.; Dukes, C.; Baragiola, R.
2012-01-01
Energetic ions present in the diverse plasma conditions in space play a significant role in the formation and modification of solid phases found in environments ranging from the interstellar medium (ISM) to the surfaces of airless bodies such as asteroids and the Moon. These effects are often referred to as space radiation processing, a term that encompasses changes induced in natural space-exposed materials that may be only structural, such as in radiation-induced amorphization, or may involve ion-induced nanoscale to microscale chemical changes, as occurs in preferential sputtering and ion-beam mixing. Ion sputtering in general may also be responsible for partial or complete erosion of space exposed materials, in some instances possibly bringing about the complete destruction of free-floating solid grains in the ISM or in circumstellar nebular dust clouds. We report here on two examples of the application of high-resolution and analytical transmission electron microscopy (TEM) to problems in space radiation processing. The first problem concerns the role of space radiation processing in controlling the overall fate of Fe sulfides as hosts for sulfur in the ISM. The second problem concerns the known, but as yet poorly quantified, role of space radiation processing in lunar space weathering.
NASA Astrophysics Data System (ADS)
Zea, L.; Niederwieser, T.; Anthony, J.; Stodieck, L.
2018-02-01
The radiation environment experienced in the Deep Space Gateway enables the interrogation of DNA damage and repair mechanisms, which may serve to determine the likelihood and consequence of the high radiation risk to prolonged human presence beyond LEO.
Radiation Hardened DDR2 SDRAM Solution
NASA Astrophysics Data System (ADS)
Wang, Pierre-Xiao; Sellier, Charles
2016-08-01
The Radiation Hardened (RH) DDR2 SDRAM Solution is a User's Friendly, Plug-and-Play and Radiation Hardened DDR2 solution, which includes the radiation tolerant stacking DDR2 modules and a radiation intelligent memory controller (RIMC) IP core. It provides a high speed radiation hardened by design DRAM solution suitable for all space applications such as commercial or scientific geo-stationary missions, earth observation, navigation, manned space vehicles and deep space scientific exploration. The DDR2 module has been guaranteed with SEL immune and TID > 100Krad(Si), on the other hand the RIMC IP core provides a full protection against the DDR2 radiation effects such as SEFI and SEU.
Radiation environment study of near space in China area
NASA Astrophysics Data System (ADS)
Fan, Dongdong; Chen, Xingfeng; Li, Zhengqiang; Mei, Xiaodong
2015-10-01
Aerospace activity becomes research hotspot for worldwide aviation big countries. Solar radiation study is the prerequisite for aerospace activity to carry out, but lack of observation in near space layer becomes the barrier. Based on reanalysis data, input key parameters are determined and simulation experiments are tried separately to simulate downward solar radiation and ultraviolet radiation transfer process of near space in China area. Results show that atmospheric influence on the solar radiation and ultraviolet radiation transfer process has regional characteristic. As key factors such as ozone are affected by atmospheric action both on its density, horizontal and vertical distribution, meteorological data of stratosphere needs to been considered and near space in China area is divided by its activity feature. Simulated results show that solar and ultraviolet radiation is time, latitude and ozone density-variant and has complicated variation characteristics.
NASA Astrophysics Data System (ADS)
Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.
2016-12-01
Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.
Overview of the Martian radiation environment experiment
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Cleghorn, T.; Cucinotta, F.; Saganti, P.; Andersen, V.; Lee, K.; Pinsky, L.; Atwell, W.; Turner, R.; Badhwar, G.
2004-01-01
Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001 Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
The future impacts of non-targeted effects.
Bright, Scott; Kadhim, Munira
2018-04-11
Ionizing radiation was traditionally thought to exert its detrimental effects through interaction with sensitive cellular targets, nuclear DNA being of most importance. This theory has since merged with a more recently described radiation response called non-targeted effects (NTE). This review will briefly look at the various types of NTE and the potential implications they may have for radiobiology research and its applications. The most well-known NTE are genomic instability (GI) and bystander effects (BE). Other NTE include abscopal effects, which are similar to bystander effects but are generally based in a clinical environment with immune involvement as the defining feature. Currently, our understanding of NTE is limited to certain signaling pathways/molecules, and as yet there is no theory that describes or can accurately predict the occurrence or outcome of these NTE. There are numerous groups investigating these processes in vitro and in vivo, and thus steady progress is being made. Developing a deeper understanding of NTE has potential impacts for therapy and diagnosis, safer occupational exposures, space flight and our general understanding of radiation biology.
NASA Technical Reports Server (NTRS)
Wilkins, Richard
2010-01-01
The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the international space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Medical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materials. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scientific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technology, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
NASA Astrophysics Data System (ADS)
Wilkins, Richard
The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the inter-national space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Med-ical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materi-als. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scien-tific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technol-ogy, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
NASA Technical Reports Server (NTRS)
Klein, H. P. (Editor); Horneck, G. (Editor)
1984-01-01
Space research in biology is presented with emphasis on flight experiment results and radiation risks. Topics discussed include microorganisms and biomolecules in the space-environment experiment ES 029 on Spacelab-1, the preliminary characterization of persisting circadian rhythms during space flight; plant growth, development, and embryogenesis during the Salyut-7 flight, and the influence of space-flight factors on viability and mutability of plants. Consideration is also given to radiation-risk estimation and its application to human beings in space, the radiation situation in space and its modification by the geomagnetic field and shielding, the quantitative interpretation of cellular heavy-ion action, and the effects of heavy-ion radiation on the brain vascular system and embryonic development.
NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.
Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V
2018-06-01
Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.
NASA Astrophysics Data System (ADS)
Baumstark-Khan, C.; Hellweg, C. E.; Arenz, A.
The combined action of ionizing radiation and microgravity will continue to influence future space missions with special risks for astronauts on the Moon surface or for long duration missions to Mars Previous space flight experiments have reported additive neither sensitization nor protection as well as synergistic increased radiation effect under microgravity interactions of radiation and microgravity in different cell systems Although a direct effect of microgravity on enzymatic mechanisms can be excluded on thermo dynamical reasons modifications of cellular repair can not be excluded as such processes are under the control of cellular signal transduction systems which are controlled by environmental parameters presumably also by gravity DNA repair studies in space on bacteria yeast cells and human fibroblasts which were irradiated before flight gave contradictory results from inhibition of repair by microgravity to enhancement whereas others did not detect any influence of microgravity on repair At the Radiation Biology Department of the German Aerospace Center DLR recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions The space experiment CERASP Cellular Responses to Radiation in Space to be performed at the International Space Station ISS will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity One of the biological endpoints will be survival
The extension of the INCL model for simulation of shielding in space
NASA Astrophysics Data System (ADS)
Pedoux, Sophie; Cugnon, Joseph; Mancusi, Davide; Boudard, Alain; David, Jean-Christophe; Leray, Sylvie
The energy spectrum of protons in cosmic rays has its maximum flux around 1 GeV but remains important for energies up to 20 GeV. Space radiation is also composed of helium nuclei (around 10(¡1damage in material and tissue. It has been shown that the Li`ge Intranuclear Cascade model (INCL), which will be briefly in-e troduced, reproduces fairly well a great deal of experimental data for nucleon-induced reactions in the 200 MeV to 2 GeV range [1], when coupled with the ABLA evaporation-fission code developed by K.-H. Schmidt [2]. It should be stressed that this agreement is achieved without adjustment of parameters in the INCL part. We will present three extensions of INCL4 that have been investigated in order to make the model useful for the study of space radiation transport. First, we will introduce its extension to nucleon-nucleus reactions at energies up to 15 GeV, which has been realized by including additional pion-production channels in collisions during the cascade. Second, we will describe the newly implemented coalescence mechanism for the emission of light charged particle and, finally, we will discuss how light ions can be accommodated as projectiles in INCL4. We will show some results and compare them with relevant experimental data. Implication for space radio-protection issues will be discussed. [1] A. Boudard, J. Cugnon, S. Leray and C. Volant, Phys. Rev. C66 (2002)044615 [2] J.-J. Gaimard and K.-H. Schmidt, Nucl. Phys. A531(1991)
2014 Space Radiation Standing Review Panel
NASA Technical Reports Server (NTRS)
Steinberg, Susan
2015-01-01
The 2014 Space Radiation Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Radiation Program Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 21, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated Research Plan for the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure (Degen Risk). The SRP also received a status update on the Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), the Risk of Acute Radiation Syndromes Due to Solar Particle Events (ARS Risk), and the Risk of Radiation Carcinogenesis (Cancer Risk). The SRP thought the teleconference was very informative and that the Space Radiation Program Element did a great job of outlining where the Element is with respect to our state of knowledge on the risks of carcinogenesis, central nervous system effects, and the risk of cardiovascular disease and other degenerative tissue effects from exposure to space radiation. The SRP was impressed with the quality of research that is being conducted and the progress the Space Radiation Program Element has made in the past year. While much work has been done, the SRP had a few remaining questions regarding the broad applicability of these findings to a manned deep space mission (in terms of cognitive function, the paradigms were still hippocampal based and also using Alzheimer disease models). The SRP believes that NASA should consider developing an approach to follow astronauts long-term (beyond retirement) for potential side-effects/risks of space exposure that may be unknown. Radiation toxicities often occur decades after exposure, and potential consequences would be missed if intensified exams stop after retirement of the astronauts. In addition, while cancer is one consequence of radiation exposure that is monitored, potential other side effects (CNS, Alzheimer Disease, loss of cognitive function, etc.) are not included in long-term studies and would be missed. Inclusion of long-term data would be of benefit to the astronauts themselves who have given their service to the corps but also to future astronauts and the future of space exploration.
GCR and SPE Radiation Effects in Materials
NASA Technical Reports Server (NTRS)
Waller, Jess; Rojdev, Kristina; Nichols, Charles
2016-01-01
This Year 3 project provides risk reduction data to assess galactic cosmic ray (GCR) and solar particle event (SPE) space radiation damage in materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. Long duration (up to 50 years) space radiation damage is being quantified for materials used in inflatable structures (1st priority), and space suit and habitable composite materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent space radiation fluxes.
Summary and Recommendations for Future Work. Chapter 12
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Shavers, Mark R.; Saganti, Premkumar B.; Miller, Jack
2003-01-01
The safety of astronauts is the primary concern of all space missions. Space radiation has been identified as a major concern for ISS, and minimizing radiation risks during EVA is a principle component of NASA s radiation protection program. The space suit plays a critical role in shielding astronauts from EVA radiation exposures. In cooperation with the JSC Extravehicular Activity Project Office, and the Space Radiation Health Project Office, the NASA EMU and RSA Orlan space suits were taken to the LLUPTF for a series of measurements with proton and electron beams to simulate exposures during EVA operations. Additional tests with material layouts of the EMU suit sleeve were made in collaboration with NASA LaRC at the LBNL 88-inch cyclotron and at the Brookhaven National Laboratory Alternating Gradient Synchrotron.
NASA Astrophysics Data System (ADS)
Lund, Matthew Lawrence
The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.
Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Strawn, Steve J; Thakor, Hemang; Fan, Ziling; Shay, Jerry W; Fornace, Albert J; Datta, Kamal
2016-05-01
There are uncertainties associated with the prediction of colorectal cancer (CRC) risk from highly energetic heavy ion (HZE) radiation. We undertook a comprehensive assessment of intestinal and colonic tumorigenesis induced after exposure to high linear energy transfer (high-LET) HZE radiation spanning a range of doses and LET in a CRC mouse model and compared the results with the effects of low-LET γ radiation. Male and female APC(1638N/+) mice (n=20 mice per group) were whole-body exposed to sham-radiation, γ rays, (12)C, (28)Si, or (56)Fe radiation. For the >1 Gy HZE dose, we used γ-ray equitoxic doses calculated using relative biological effectiveness (RBE) determined previously. The mice were euthanized 150 days after irradiation, and intestinal and colon tumor frequency was scored. The highest number of tumors was observed after (28)Si, followed by (56)Fe and (12)C radiation, and tumorigenesis showed a male preponderance, especially after (28)Si. Analysis showed greater tumorigenesis per unit of radiation (per cGy) at lower doses, suggesting either radiation-induced elimination of target cells or tumorigenesis reaching a saturation point at higher doses. Calculation of RBE for intestinal and colon tumorigenesis showed the highest value with (28)Si, and lower doses showed greater RBE relative to higher doses. We have demonstrated that the RBE of heavy ion radiation-induced intestinal and colon tumorigenesis is related to ion energy, LET, gender, and peak RBE is observed at an LET of 69 keV/μm. Our study has implications for understanding risk to astronauts undertaking long duration space missions. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1962-01-01
The realization in recent years that outer space is traversed by high-energy radiations has caused man to reevaluate the feasibility of manned or even instrumented exploration outside our atmosphere. Fortunately, it is possible to determine the nature and intensities of these radiations and to produce similar radiations on earth by means of accelerators. Thus we can learn how to attenuate them and to design capsules which afford protection against them. Of course this protection carries a weight penalty so that there is a premium on optimizing the shield design. Many groups in the United states are engaged in research to this end,and it was the purpose of this symposium to bring these groups together so that they could exchange information. To make the meeting more comprehensive, sessions on the nature of the radiations and their effects on people and things were included. However, the major part of the meeting was devoted to discussions on shielding research, comprising theoretical calculations and experiments carried out mainly with high-energy accelerators. The symposium committee feels that the aims of the symposium were met and that progress in space research program was greatly accelerated thereby.
Radiological Protection in Space: Indication from the ICRP Task Group
NASA Astrophysics Data System (ADS)
Dietze, Günther
In 2007 the International Commission on Radiological Protection (ICRP) has established a Task Group (Radiation Protection in Space) dealing with the problems of radiation protection of astronauts in space missions. Its first task is a report on "Assessment of Radiation Exposure of Astronauts in Space". When the ICRP published its general recommendations for radiological protection in 2007 (ICRP Publication 103 following ICRP Publication 60 (1991)) it was obvious that these recommendations do not really consider the special situation of astronauts in space. The radiation field with its high content of charged particles of very high energies strongly differs from usual radiation fields on ground. For example, this has consequences for the assessment of doses in the body of astronauts. The ICRP Task Group has discussed this situation and the presentation will deal with some consequences for the concept of radiation dosimetry and radiological protection in space. This includes e. g. the assessment of organ doses and the application of the effective dose concept with its definition of radiation weighting factors. Radiation quality of high energy heavy ions may be defined different than usually performed on ground. An approach of using the quality factor concept in the definition of an "effective dose" is favored for application in space missions similar to the method proposed in NCRP Report 142. New data calculated on the basis of the reference anthropomorphic voxel phantoms recommended by ICRP support this procedure. Individual dosimetry is a further subject of discussion in the Task Group. While the operational dose equivalent quantities generally in use in radiation protection on ground are not helpful for applications in space, different procedures of the assessment of organ and effective doses are applied. The Task Group is dealing with this situation.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
Space radiation effects mitigation has been identified as one of the highest priority technology development areas for human space flight in the NASA Strategic Space Technology Investment Plan (Dec. 2012). In this paper we review the special features of space radiation that lead to severe constraints on long-term (more than 180 days) human flight operations outside Earth's magnetosphere. We then quantify the impacts of human space radiation dose limits on spacecraft engineering design and development, flight program architecture, as well as flight program schedule and cost. A new Deep Space Habitat (DSH) concept, the hybrid inflatable habitat, is presented and shown to enable a flexible, affordable approach to long term manned interplanetary flight today.
Space Radiation and Risks to Human Health
NASA Technical Reports Server (NTRS)
Huff, Janice L.
2014-01-01
The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.
NASA Technical Reports Server (NTRS)
Ellis, Thomas D. (Editor)
1986-01-01
The present conference on the effects of nuclear and space radiation on electronic hardware gives attention to topics in the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, electronic device radiation hardness assurance, SOI/SOS radiation effects, spacecraft charging and space radiation, IC radiation effects and hardening, single-event upset (SEU) phenomena and hardening, and EMP/SGEMP/IEMP phenomena. Specific treatments encompass the generation of interface states by ionizing radiation in very thin MOS oxides, the microdosimetry of meson energy deposited on 1-micron sites in Si, total dose radiation and engineering studies, plasma interactions with biased concentrator solar cells, the transient imprint memory effect in MOS memories, mechanisms leading to SEU, and the vaporization and breakdown of thin columns of water.
Lin, Z W; Adams, J H
2007-03-01
The radiation hazard for astronauts from galactic cosmic rays (GCR) is a major obstacle to long-duration human space exploration. Space radiation transport codes have been developed to calculate the radiation environment on missions to the Moon, Mars, and beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport calculations. We find that, in deep space, cross sections at energies between 0.3 and 0.85 GeV/nucleon have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.
NASA Astrophysics Data System (ADS)
Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias
2017-03-01
The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286 μGy/day with dose equivalent values of 647 μSv/day.
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Nichols, Charles
2016-01-01
The radiation resistance of polymeric and composite materials to space radiation is currently based on irradiating materials with Co-60 gamma-radiation to the equivalent total ionizing dose (TID) expected during mission. This is an approximation since gamma-radiation is not truly representative of the particle species; namely, Solar Particle Event (SPE) protons and Galactic Cosmic Ray (GCR) nucleons, encountered in space. In general, the SPE and GCR particle energies are much higher than Co-60 gamma-ray photons, and since the particles have mass, there is a displacement effect due to nuclear collisions between the particle species and the target material. This effort specifically bridges the gap between estimated service lifetimes based on decades old Co-60 gamma-radiation data, and newer assessments of what the service lifetimes actually are based on irradiation with particle species that are more representative of the space radiation environment.
Simulations of the MATROSHKA experiment at the international space station using PHITS.
Sihver, L; Sato, T; Puchalska, M; Reitz, G
2010-08-01
Concerns about the biological effects of space radiation are increasing rapidly due to the perspective of long-duration manned missions, both in relation to the International Space Station (ISS) and to manned interplanetary missions to Moon and Mars in the future. As a preparation for these long-duration space missions, it is important to ensure an excellent capability to evaluate the impact of space radiation on human health, in order to secure the safety of the astronauts/cosmonauts and minimize their risks. It is therefore necessary to measure the radiation load on the personnel both inside and outside the space vehicles and certify that organ- and tissue-equivalent doses can be simulated as accurate as possible. In this paper, simulations are presented using the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS) (Iwase et al. in J Nucl Sci Tech 39(11):1142-1151, 2002) of long-term dose measurements performed with the European Space Agency-supported MATROSHKA (MTR) experiment (Reitz and Berger in Radiat Prot Dosim 120:442-445, 2006). MATROSHKA is an anthropomorphic phantom containing over 6,000 radiation detectors, mimicking a human head and torso. The MTR experiment, led by the German Aerospace Center (DLR), was launched in January 2004 and has measured the absorbed doses from space radiation both inside and outside the ISS. Comparisons of simulations with measurements outside the ISS are presented. The results indicate that PHITS is a suitable tool for estimation of doses received from cosmic radiation and for study of the shielding of spacecraft against cosmic radiation.
Jain, Mohit R; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M; Pandey, Badri N; Li, Hong; Rabin, Bernard M; Azzam, Edouard I
2011-06-01
The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that 'network analyses' is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation.
Performance of optical fibers in space radiation environment
NASA Astrophysics Data System (ADS)
Alam, M.; Abramczyk, J.; Manyam, U.; Farroni, J.; Guertin, D.
2017-11-01
The use of optical fibers in low earth orbiting (LEO) satellites is a source of concern due to the radiation environment in which these satellites operate and the reliability of devices based on these fibers. Although radiation induced damage in optical fibers cannot be avoided, it can certainly be minimized by intelligent engineering. Qualifying fibers for use in space is both time consuming and expensive, and manufacturers of satellites and their payloads have started to ask for radiation performance data from optical fiber vendors. Over time, Nufern has developed fiber designs, compositions and processes to make radiation hard fibers. Radiation performance data of a variety of fibers that find application in space radiation environment are presented.
Radiation: Time, Space and Spirit--Keys to Scientific Literacy Series.
ERIC Educational Resources Information Center
Stonebarger, Bill
This discussion of radiation considers the spectrum of electromagnetic energy including light, x-rays, radioactivity, and other waves. Radiation is considered from three aspects; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts…
Space, Atmospheric, and Terrestrial Radiation Environments
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Dyer, C. S.; Stassinopoulos, E. G.
2003-01-01
The progress on developing models of the radiation environment since the 1960s is reviewed with emphasis on models that can be applied to predicting the performance of microelectronics used in spacecraft and instruments. Space, atmospheric, and ground environments are included. It is shown that models must be adapted continually to account for increased understanding of the dynamics of the radiation environment and the changes in microelectronics technology. The IEEE Nuclear and Space Radiation Effects Conference is a vital forum to report model progress to the radiation effects research community.
Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Frazier, Donald O.; Patrick , Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs.
Prototype space erectable radiator system ground test article development
NASA Technical Reports Server (NTRS)
Alario, Joseph P.
1988-01-01
A prototype heat rejecting system is being developed by NASA-JSC for possible space station applications. This modular system, the Space-Erectable Radiator System Ground Test Article (SERS-GTA) with high-capacity radiator panels, can be installed and replaced on-orbit. The design, fabrication and testing of a representative ground test article are discussed. Acceptance test data for the heat pipe radiator panel and the whiffletree clamping mechanism have been presented.
Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes
NASA Technical Reports Server (NTRS)
Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.
2010-01-01
The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,
14 CFR 23.1023 - Oil radiators.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil radiators. 23.1023 Section 23.1023 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... radiators. Each oil radiator and its supporting structures must be able to withstand the vibration, inertia...
NASA Technical Reports Server (NTRS)
Suleman, Naushadalli K.
1991-01-01
A potential limitation to human activity on the lunar surface or in deep space is the exposure of the crew to unacceptably high levels of penetrating space radiations. The radiations of most concerns for such missions are high-energy protons emitted during solar flares, and galactic cosmic rays which are high-energy ions ranging from protons to iron. The development of materials for effective shielding from energetic space radiations will clearly require a greater understanding of the underlying mechanisms of radiation-induced damage in bulk materials. This can be accomplished in part by the detailed spectroscopic characterization of bulk materials that were exposed to simulated space radiations. An experimental data base thus created can then be used in conjunction with existing radiation transport codes in the design and fabrication of effective radiation shielding materials. Electron Paramagnetic Resonance Spectroscopy was proven very useful in elucidating radiation effects in polymers (high performance polymers are often an important components of structural composites).
Bevelacqua, Joseph John; Mortazavi, S M J
2018-06-27
Deep space missions, including Mars voyages, are an important area of research. Protection of astronauts' health during these long-term missions is of paramount importance. The paper authored by Szarka et al. entitled "The effect of simulated space radiation on the N-glycosylation of human immunoglobulin G1" is indeed a step forward in this effort. Despite numerous strengths, there are some shortcomings in this paper including an incomplete description of the space radiation environment as well as discussion of the resulting biological effects. Due to complexity of the space radiation environment, a careful analysis is needed to fully evaluate the spectrum of particles associated with solar particle events (SPEs) and galactic cosmic radiation (GCR). The radiation source used in this experiment does not reproduce the range of primary GCR and SPE particles and their associated energies. Furthermore, the effect of radiation interactions within the spacecraft shell and the potential effects of microgravity are not considered. Moreover, the importance of radioadaptation in deep space missions that is confirmed in a NASA report is neither considered. Other shortcomings are also discussed in this commentary. Considering these shortcoming, it can be argued that Szarka et al. draws conclusions based on an incomplete description of the space radiation environment that could affect the applicability of this study. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Venkateswaran, K.; Wang, C.; Smith, D.; Mason, C.; Landry, K.; Rettberg, P.
2018-02-01
Extremophilic microbial survival, adaptation, biological functions, and molecular mechanisms associated with outer space radiation can be tested by exposing them onto Deep Space Gateway hardware (inside/outside) using microbiology and molecular biology techniques.
NASA Astrophysics Data System (ADS)
Sajid, Muhammad
This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.
NASA Technical Reports Server (NTRS)
Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.
1999-01-01
Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. The payload was flown in a 2.5 cubic foot Get Away Special (GAS) container through NASA's GAS program. It was subjected to the environment of the space shuttle cargo bay for the duration of the STS-91 mission (9 days). Results of the genotoxicology and radiation dosimetry experiment (GRaDEx-1) as well as the design of an improved follow on payload are presented.
NASA Technical Reports Server (NTRS)
Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.;
1999-01-01
Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects, etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in-vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose-response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological systems (e.g. astronauts and greenhouses) in space. The payload was flown in a 2.5 cubic foot Get Away Special (GAS) container through NASA's GAS program. It was subjected to the environment of the space shuttle cargo bay for the duration of the STS-91 mission (9 days). Results of the genotoxicology and radiation dosimetry experiment (GRaDEx-I) as well as the design of an improved follow on payload are presented.
Radiation factors in space and a system for their monitoring.
Kovtunenko, V M; Kremnev, R S; Pichkhadze, K M; Bogomolov, V B; Kontor, N N; Filippichev, S A; Petrov, V M; Pissarenko, N F
1994-10-01
The radiation environment is of special concern when the spaceship flies in deep space. The annual fluence of the galactic cosmic rays is approximately 10(8) cm-2 and the absorbed dose of the solar cosmic rays can reach 10 Gy per event behind the shielding thickness of 3-5 g cm-2 Al. For the radiation environment monitoring it is planned to place a measuring complex on the space probes "Mars" and "Spectr" flying outside the magnetosphere. This complex is to measure: cosmic rays composition, particle flux, dose equivalent, energy and LET spectra, solar X-rays spectrum. On line data transmission by the space probes permits to obtain the radiation environment data in space.
Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda
2017-02-01
In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms. Key Words: Space radiation environment-Sparsely ionizing radiation-Densely ionizing radiation-Heavy ions-Gamma radiation-Astrobiological model systems. Astrobiology 17, 101-109.
NASA Astrophysics Data System (ADS)
Hellweg, Christine E.; Baumstark-Khan, Christa; Spitta, Luis; Thelen, Melanie; Arenz, Andrea; Franz, Markus; Schulze-Varnholt, Dirk; Berger, Thomas; Reitz, Günther
The combined action of ionizing radiation and microgravity will continue to influence future space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. It has been estimated that on a 3-year mission to Mars about 3% of the bodies' cell nuclei would have been hit by one iron ion with the consequence that nuclear DNA will be heavily damaged. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. DNA repair studies in space on bacteria, yeast cells and human fibroblasts, which were irradiated before, flight, gave contradictory results: from inhibition of repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. The space experiment CERASP (CEllular Responses to RAdiation in SPace) to be performed at the International Space Station (ISS) is aimed to supply basic information on the cellular response in microgravity to radiation applied during flight. It makes use of a recombinant human cell line as reporter for cellular signal transduction modulation by genotoxic environmental conditions. The main biological endpoints under investigation will be gene activation based on enhanced green fluorescent protein (EGFP, originally isolated from the bioluminescent jellyfish Aequorea victoria) expression controlled by a DNA damage-dependent promoter element which reflects the activity of the nuclear factor kappa B (NF- κB) pathway. The NF- κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, anti-apoptosis and tumorgenesis. For radiation exposure during space flight a radiation source has been constructed as damage accumulation by cosmic radiation will certainly be insufficient for analysis. The space experiment specific hardware consists of a specially designed radiation source made up of the β-emitter promethium-147, combined with a miniaturized culture vessel and a seeding apparatus. With this prototype hardware, the requirements of CERASP can be fulfilled with cells growing on the polytetrafluoroethylene foil. The radiation source can be enveloped with additional titanium foils for safety issues. The results from the preparatory experimental phase clearly show that the Pm-147 radiation source meets the requirements for the space experiment CERASP.
NASA Technical Reports Server (NTRS)
Shavers, M. R.; Saganti, P. B.; Miller, J.; Cucinotta, F. A.
2003-01-01
The International Space Station (ISS) provides significant challenges for radiation protection of the crew due to a combination of circumstances including: the extended duration of missions for many crewmembers, the exceptionally dynamic nature of the radiation environment in ISS orbit, and the necessity for numerous planned extravehicular activities (EVA) for station construction and maintenance. Radiation protection requires accurate radiation dose measurements and precise risk modeling of the transmission of high fluxes of energetic electrons and protons through the relatively thin shielding provided by the space suits worn during EVA. Experiments and analyses have been performed due to the necessity to assure complete radiation safety for the EVA crew and thereby ensure mission success. The detailed characterization described of the material and topological properties of the ISS space suits can be used as a basis for design of space suits used in future exploration missions. In radiation protection practices, risk from exposure to ionizing radiation is determined analytically by the level of exposure, the detrimental quality of the radiation field, the inherent radiosensitivity of the tissues or organs irradiated, and the age and gender of the person at the time of exposure. During low Earth orbit (LEO) EVA, the relatively high fluxes of low-energy electrons and protons lead to large variations in exposure of the skin, lens of the eye, and tissues in other shallow anatomical locations. The technical papers in this publication describe a number of ground-based experiments that precisely measure the thickness of the NASA extravehicular mobility unit (EMU) and Russian Zvezda Orlan-M suits using medical computerized tomography (CT) X-ray analysis, and particle accelerator experiments that measure the minimum kinetic energy required by electrons and photons to penetrate major components of the suits. These studies provide information necessary for improving the understanding of the current ISS space suits and provide insights into improved approaches for the design of future suits. This chapter begins with a summary of the dynamic ionizing radiation environment in LEO space and introduces the concepts and quantities used to quantify exposure to space radiation in LEO. The space suits used for EVA and the experimental partial human phantom are described. Subsequent chapters report results from measured charged particle fields before and after incident protons and secondary particles are transported through the space suits and into organs and tissues.
Space radiation shielding studies for astronaut and electronic component risk assessment
NASA Astrophysics Data System (ADS)
Fuchs, Jordan; Gersey, Brad; Wilkins, Richard
The space radiation environment is comprised of a complex and variable mix of high energy charged particles, gamma rays and other exotic species. Elements of this radiation field may also interact with intervening matter (such as a spaceship wall) and create secondary radiation particles such as neutrons. Some of the components of the space radiation environment are highly penetrating and can cause adverse effects in humans and electronic components aboard spacecraft. Developing and testing materials capable of providing effective shielding against the space radiation environment presents special challenges to researchers. Researchers at the Cen-ter for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View AM University (PVAMU) perform accelerator based experiments testing the effectiveness of various materials for use as space radiation shields. These experiments take place at the NASA Space Radiation Laboratory at Brookhaven National Laboratory, the proton synchrotron at Loma Linda University Medical Center, and the Los Alamos Neutron Science Center at Los Alamos National Laboratory where charged particles and neutrons are produced at energies similar to those found in the space radiation environment. The work presented in this paper constitutes the beginning phase of an undergraduate research project created to contribute to this ongoing space radiation shielding project. Specifically, this student project entails devel-oping and maintaining a database of information concerning the historical data from shielding experiments along with a systematic categorization and storage system for the actual shielding materials. The shielding materials referred to here range in composition from standard materi-als such as high density polyethylene and aluminum to exotic multifunctional materials such as spectra-fiber infused composites. The categorization process for each material includes deter-mination of the density thickness of individual samples and a clear labeling and filing method that allows immediate cross referencing with other material samples during the experimental design process. Density thickness measurements will be performed using a precision scale that will allow for the fabrication of sets of standard density thicknesses of selected materials for ready use in shielding experiments. The historical data from previous shielding experiments consists primarily of measurements of absorbed dose, dose equivalent and dose distributions from a Tissue Equivalent Proportional Counter (TEPC) as measured downstream of various thicknesses of the materials while being irradiated in one of the aforementioned particle beams. This data has been digitally stored and linked to the composition of each material and may be easily accessed for shielding effectiveness inter-comparisons. This work was designed to facili-tate and increase the efficiency of ongoing space radiation shielding research performed at the CRESSE as well as serve as a way to educate new generations of space radiation researchers.
NASA Astrophysics Data System (ADS)
Newberg, A. B.; Alavi, A.
The purpose of this paper is to review the potential functional and morphological effects of long duration space flight on the human central nervous system (CNS) and how current neuroimaging techniques may be utilized to study these effects. It must be determined if there will be any detrimental changes to the CNS from long term exposure to the space environment if human beings are to plan interplanetary missions or establish permanent space habitats. Research to date has focused primarily on the short term changes in the CNS as the result of space flight. The space environment has many factors such as weightlessness, electromagnetic fields, and radiation, that may impact upon the function and structure of the CNS. CNS changes known to occur during and after long term space flight include neurovestibular disturbances, cephalic fluid shifts, alterations in sensory perception, changes in proprioception, psychological disturbances, and cognitive changes. Animal studies have shown altered plasticity of the neural cytoarchitecture, decreased neuronal metabolism in the hypothalamus, and changes in neurotransmitter concentrations. Recent progress in the ability to study brain morphology, cerebral metabolism, and neurochemistry in vivo in the human brain would provide ample opportunity to investigate many of the changes that occur in the CNS as a result of space flight. These methods include positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI).
NASA Technical Reports Server (NTRS)
Elgart, S. R.; Little, M. P.; Campbell, L. J.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Patel, Z. S.
2018-01-01
Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to establish whether there is evidence for excess cardiovascular disease or cancer mortality in an early NASA astronaut cohort and determine if a correlation exists between space radiation exposure and mortality.
Estimate of Space Radiation-Induced Cancer Risks for International Space Station Orbits
NASA Technical Reports Server (NTRS)
Wu, Honglu; Atwell, William; Cucinotta, Francis A.; Yang, Chui-hsu
1996-01-01
Excess cancer risks from exposures to space radiation are estimated for various orbits of the International Space Station (ISS). Organ exposures are computed with the transport codes, BRYNTRN and HZETRN, and the computerized anatomical male and computerized anatomical female models. Cancer risk coefficients in the National Council on Radiation Protection and Measurements report No. 98 are used to generate lifetime excess cancer incidence and cancer mortality after a one-month mission to ISS. The generated data are tabulated to serve as a quick reference for assessment of radiation risk to astronauts on ISS missions.
Evident Biological Effects of Space Radiation in Astronauts
NASA Technical Reports Server (NTRS)
Wu, Honglu
2004-01-01
Though cancer risks are the primary concern for astronauts exposed to space radiation and a number of astronauts have developed cancer, identifying a direct association or cause of disease has been somewhat problematic due to a lack of statistics and a lack of an appropriate control group. However, several bio,logical effects observed in astronauts are believed to be primarily due to exposure to space radiation. Among those are, light flashes experienced by astronauts from early missions, cataract development in the crewmembers and excess chromosome aberrations detected in astronauts' lymphocytes postmission. The space radiation environment and evident biological effects will be discussed.
Space Radiation Effects in Inflatable and Composite Habitat Materials
NASA Technical Reports Server (NTRS)
Waller, Jess; Rojdev, Kristina
2015-01-01
This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.
Space Radiation and its Associated Health Consequences
NASA Technical Reports Server (NTRS)
Wu, Honglu
2007-01-01
During space travel, astronauts are exposed to energetic particles of a complex composition and energy distribution. For the same amount of absorbed dose, these particles can be much more effective than X- or gamma rays in the induction of biological effects, including cell inactivation, genetic mutations, cataracts, and cancer induction. Several of the biological consequences of space radiation exposure have already been observed in astronauts. This presentation will introduce the space radiation environment and discuss its associated health risks. Accurate assessment of the radiation risks and development of respective countermeasures are essential for the success of future exploration missions to the Moon and Mars.
Physical basis of radiation protection in space travel
NASA Astrophysics Data System (ADS)
Durante, Marco; Cucinotta, Francis A.
2011-10-01
The health risks of space radiation are arguably the most serious challenge to space exploration, possibly preventing these missions due to safety concerns or increasing their costs to amounts beyond what would be acceptable. Radiation in space is substantially different from Earth: high-energy (E) and charge (Z) particles (HZE) provide the main contribution to the equivalent dose in deep space, whereas γ rays and low-energy α particles are major contributors on Earth. This difference causes a high uncertainty on the estimated radiation health risk (including cancer and noncancer effects), and makes protection extremely difficult. In fact, shielding is very difficult in space: the very high energy of the cosmic rays and the severe mass constraints in spaceflight represent a serious hindrance to effective shielding. Here the physical basis of space radiation protection is described, including the most recent achievements in space radiation transport codes and shielding approaches. Although deterministic and Monte Carlo transport codes can now describe well the interaction of cosmic rays with matter, more accurate double-differential nuclear cross sections are needed to improve the codes. Energy deposition in biological molecules and related effects should also be developed to achieve accurate risk models for long-term exploratory missions. Passive shielding can be effective for solar particle events; however, it is limited for galactic cosmic rays (GCR). Active shielding would have to overcome challenging technical hurdles to protect against GCR. Thus, improved risk assessment and genetic and biomedical approaches are a more likely solution to GCR radiation protection issues.
NASA Technical Reports Server (NTRS)
Long, D. M.
1982-01-01
The results of research concerning the effects of nuclear and space radiation are presented. Topics discussed include the basic mechanisms of nuclear and space radiation effects, radiation effects in devices, and radiation effects in microcircuits, including studies of radiation-induced paramagnetic defects in MOS structures, silicon solar cell damage from electrical overstress, radiation-induced charge dynamics in dielectrics, and the enhanced radiation effects on submicron narrow-channel NMOS. Also examined are topics in SGEMP/IEMP phenomena, hardness assurance and testing, energy deposition, desometry, and radiation transport, and single event phenomena. Among others, studies are presented concerning the limits to hardening electronic boxes to IEMP coupling, transient radiation screening of silicon devices using backside laser irradiation, the damage equivalence of electrons, protons, and gamma rays in MOS devices, and the single event upset sensitivity of low power Schottky devices.
Potential health effects of space radiation
NASA Technical Reports Server (NTRS)
Yang, Chui-Hsu; Craise, Laurie M.
1993-01-01
Crewmembers on missions to the Moon or Mars will be exposed to radiation belts, galactic cosmic rays, and possibly solar particle events. The potential health hazards due to these space radiations must be considered carefully to ensure the success of space exploration. Because there is no human radioepidemiological data for acute and late effects of high-LET (Linear-Energy-Transfer) radiation, the biological risks of energetic charged particles have to be estimated from experimental results on animals and cultured cells. Experimental data obtained to date indicate that charged particle radiation can be much more effective than photons in causing chromosome aberrations, cell killing, mutation, and tumor induction. The relative biological effectiveness (RBE) varies with biological endpoints and depends on the LET of heavy ions. Most lesions induced by low-LET radiation can be repaired in mammalian cells. Energetic heavy ions, however, can produce large complex DNA damages, which may lead to large deletions and are irreparable. For high-LET radiation, therefore, there are less or no dose rate effects. Physical shielding may not be effective in minimizing the biological effects on energetic heavy ions, since fragments of the primary particles can be effective in causing biological effects. At present the uncertainty of biological effects of heavy particles is still very large. With further understanding of the biological effects of space radiation, the career doses can be kept at acceptable levels so that the space radiation environment need not be a barrier to the exploitation of the promise of space.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Plante, I.; George, Kerry; Cornforth, M. N.; Loucas, B. D.; Wu, Honglu
2014-01-01
This presentation summarizes several years of research done by the co-authors developing the NASARTI (NASA Radiation Track Image) program and supporting it with scientific data. The goal of the program is to support NASA mission to achieve a safe space travel for humans despite the perils of space radiation. The program focuses on selected topics in radiation biology that were deemed important throughout this period of time, both for the NASA human space flight program and to academic radiation research. Besides scientific support to develop strategies protecting humans against an exposure to deep space radiation during space missions, and understanding health effects from space radiation on astronauts, other important ramifications of the ionizing radiation were studied with the applicability to greater human needs: understanding the origins of cancer, the impact on human genome, and the application of computer technology to biological research addressing the health of general population. The models under NASARTI project include: the general properties of ionizing radiation, such as particular track structure, the effects of radiation on human DNA, visualization and the statistical properties of DSBs (DNA double-strand breaks), DNA damage and repair pathways models and cell phenotypes, chromosomal aberrations, microscopy data analysis and the application to human tissue damage and cancer models. The development of the GUI and the interactive website, as deliverables to NASA operations teams and tools for a broader research community, is discussed. Most recent findings in the area of chromosomal aberrations and the application of the stochastic track structure are also presented.
Space shuttle L-tube radiator testing
NASA Technical Reports Server (NTRS)
Phillips, M. A.
1976-01-01
A series of tests were conducted to support the development of the Orbiter Heat Rejection System. The details of the baseline radiator were defined by designing, fabricating, and testing representative hardware. The tests were performed in the Space Environmental Simulation Laboratory Chamber A. An IR source was used to simulate total solar and infrared environmental loads on the flowing shuttle radiators panel. The thermal and mechanical performance of L tube space radiators and their thermal coating were established.
Comparison of space radiation calculations for deterministic and Monte Carlo transport codes
NASA Astrophysics Data System (ADS)
Lin, Zi-Wei; Adams, James; Barghouty, Abdulnasser; Randeniya, Sharmalee; Tripathi, Ram; Watts, John; Yepes, Pablo
For space radiation protection of astronauts or electronic equipments, it is necessary to develop and use accurate radiation transport codes. Radiation transport codes include deterministic codes, such as HZETRN from NASA and UPROP from the Naval Research Laboratory, and Monte Carlo codes such as FLUKA, the Geant4 toolkit and HETC-HEDS. The deterministic codes and Monte Carlo codes complement each other in that deterministic codes are very fast while Monte Carlo codes are more elaborate. Therefore it is important to investigate how well the results of deterministic codes compare with those of Monte Carlo transport codes and where they differ. In this study we evaluate these different codes in their space radiation applications by comparing their output results in the same given space radiation environments, shielding geometry and material. Typical space radiation environments such as the 1977 solar minimum galactic cosmic ray environment are used as the well-defined input, and simple geometries made of aluminum, water and/or polyethylene are used to represent the shielding material. We then compare various outputs of these codes, such as the dose-depth curves and the flux spectra of different fragments and other secondary particles. These comparisons enable us to learn more about the main differences between these space radiation transport codes. At the same time, they help us to learn the qualitative and quantitative features that these transport codes have in common.
Space Radiation Transport Codes: A Comparative Study for Galactic Cosmic Rays Environment
NASA Astrophysics Data System (ADS)
Tripathi, Ram; Wilson, John W.; Townsend, Lawrence W.; Gabriel, Tony; Pinsky, Lawrence S.; Slaba, Tony
For long duration and/or deep space human missions, protection from severe space radiation exposure is a challenging design constraint and may be a potential limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues, microelectronic devices, and materials. In deep space missions, where the Earth's magnetic field does not provide protection from space radiation, the GCR environment is significantly enhanced due to the absence of geomagnetic cut-off and is a major component of radiation exposure. Accurate risk assessments critically depend on the accuracy of the input information as well as radiation transport codes used, and so systematic verification of codes is necessary. In this study, comparisons are made between the deterministic code HZETRN2006 and the Monte Carlo codes HETC-HEDS and FLUKA for an aluminum shield followed by a water target exposed to the 1977 solar minimum GCR spectrum. Interaction and transport of high charge ions present in GCR radiation environment provide a more stringent constraint in the comparison of the codes. Dose, dose equivalent and flux spectra are compared; details of the comparisons will be discussed, and conclusions will be drawn for future directions.
Modeling the Infrared Spectra of Earth-Analog Exoplanets
NASA Astrophysics Data System (ADS)
Nixon, C.
2014-04-01
As a preparation for future observations with the James Webb Space Telescope (JWST) and other facilities, we have undertaken to model the infrared spectra of Earth-like exoplanets. Two atmospheric models were used: the modern (low CO2) and archean (high CO2) predictive models of the Kasting group at Penn state. Several model parameters such as distance to star, and stellar type (visible-UV spectrum spectrum) were adjusted, and the models reconverged. Subsequently, the final model atmospheres were input to a radiative transfer code (NEMESIS) and the results intercompared to search for the most significant spectral changes. Implications for exoplanet spectrum detectivity will be discussed.
NASA Technical Reports Server (NTRS)
2014-01-01
The Space Radiation Standing Review Panel (from here on referred to as the SRP) was impressed with the strong research program presented by the scientists and staff associated with NASA's Space Radiation Program Element and National Space Biomedical Research Institute (NSBRI). The presentations given on-site and the reports of ongoing research that were provided in advance indicated the potential Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS) and were extensively discussed by the SRP. This new data leads the SRP to recommend that a higher priority should be placed on research designed to identify and understand these risks at the mechanistic level. To support this effort the SRP feels that a shift of emphasis from Acute Radiation Syndromes (ARS) and carcinogenesis to CNS-related endpoints is justified at this point. However, these research efforts need to focus on mechanisms, should follow pace with advances in the field of CNS in general and should consider the specific comments and suggestions made by the SRP as outlined below. The SRP further recommends that the Space Radiation Program Element continue with its efforts to fill the vacant positions (Element Scientist, CNS Risk Discipline Lead) as soon as possible. The SRP also strongly recommends that NASA should continue the NASA Space Radiation Summer School. In addition to these broad recommendations, there are specific comments/recommendations noted for each risk, described in detail below.
Photo-recovery of electron-irradiated GaAs solar cells
NASA Technical Reports Server (NTRS)
Meulenberg, Andrew
1995-01-01
The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has produced some unexpected and important results. Two results, independent of the coverslide coatings, are of particular importance in terms of the predictability of GaAs solar-array lifetime in space: ( 1) The GaAs/Ge solar cells used for this series of tests displayed a much higher radiation degradation than that predicted based on JPL Solar Cell Radiation Handbook data. Covered cells degraded more in Isc than did bare cells. Short-term illumination at 60 C did not produce significant recovery (-1%) of the radiation damage. (2) However, electron radiation damage to these GaAs solar celIs anneals at 40 C when exposed to approximately 1 sun AM0 UV light sources for extended periods. The effect appears to be roughly linear with time (-1% of lsc per 1000 UVSH), is large (greater than or equal to 3%), and has not yet saturated (at 3000 hours). This photo-recovery of radiation damage to GaAs solar cells is a new effect and potentially important to the spacecraft community. The figure compares the effects of extended UV on irradiated and unirradiated GaAs solar cells with INTELSAT-6 Si cells. The effect and its generality, the extent of and conditions for photo-recovery, and the implications of such recovery for missions in radiation environments have not yet been determined.
NASA Technical Reports Server (NTRS)
Ochoa, Agustin, Jr. (Editor)
1989-01-01
Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.
The Space Radiation Environment
NASA Technical Reports Server (NTRS)
Bourdarie, Sebastien; Xapsos, Michael A.
2008-01-01
The effects of the space radiation environment on spacecraft systems and instruments are significant design considerations for space missions. Astronaut exposure is a serious concern for manned missions. In order to meet these challenges and have reliable, cost-effective designs, the radiation environment must be understood and accurately modeled. The nature of the environment varies greatly between low earth orbits, higher earth orbits and interplanetary space. There are both short-term and long-term variations with the phase of the solar cycle. In this paper we concentrate mainly on charged particle radiations. Descriptions of the radiation belts and particles of solar and cosmic origin are reviewed. An overview of the traditional models is presented accompanied by their application areas and limitations. This is followed by discussion of some recent model developments.
Nuclear Fragmentation Processes Relevant for Human Space Radiation Protection
NASA Technical Reports Server (NTRS)
Lin, Zi-Wei
2007-01-01
Space radiation from cosmic ray particles is one of the main challenges for human space explorations such-as a moon base or a trip to Mars. Models have been developed in order to predict the radiation exposure to astronauts and to evaluate the effectiveness of different shielding materials, and a key ingredient in these models is the physics of nuclear fragmentations. We have developed a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the radiation dose behind shielding materials due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.
Radiation Hardness Assurance for Space Systems
NASA Technical Reports Server (NTRS)
Poivey, Christian; Day, John H. (Technical Monitor)
2002-01-01
The space radiation environment can lead to extremely harsh operating conditions for on-board electronic box and systems. The characteristics of the radiation environment are highly dependent on the type of mission (date, duration and orbit). Radiation accelerates the aging of the electronic parts and material and can lead to a degradation of electrical performance; it can also create transient phenomena on parts. Such damage at the part level can induce damage or functional failure at electronic box, subsystem, and system levels. A rigorous methodology is needed to ensure that the radiation environment does not compromise the functionality and performance of the electronics during the system life. This methodology is called hardness assurance. It consists of those activities undertaken to ensure that the electronic piece parts placed in the space system perform to their design specifications after exposure to the space environment. It deals with system requirements, environmental definitions, part selection, part testing, shielding and radiation tolerant design. All these elements should play together in order to produce a system tolerant to.the radiation environment. An overview of the different steps of a space system hardness assurance program is given in section 2. In order to define the mission radiation specifications and compare these requirements to radiation test data, a detailed knowledge of the space environment and the corresponding electronic device failure mechanisms is required. The presentation by J. Mazur deals with the Earth space radiation environment as well as the internal environment of a spacecraft. The presentation by J. Schwank deals with ionization effects, and the presentation by T. Weatherford deals with Single particle Event Phenomena (SEP) in semiconductor devices and microcircuits. These three presentations provide more detailed background to complement the sections 3 and 4. Part selection and categorization are discussed in section 5. Section 6 presents the organization of the hardness assurance within a project. Section 7 discusses emerging radiation hardness assurance issues.
Measuring space radiation shielding effectiveness
NASA Astrophysics Data System (ADS)
Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven
2017-09-01
Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.
Shuryak, Igor; Loucas, Bradford D; Cornforth, Michael N
2017-01-01
The concept of curvature in dose-response relationships figures prominently in radiation biology, encompassing a wide range of interests including radiation protection, radiotherapy and fundamental models of radiation action. In this context, the ability to detect even small amounts of curvature becomes important. Standard (ST) statistical approaches used for this purpose typically involve least-squares regression, followed by a test on sums of squares. Because we have found that these methods are not particularly robust, we investigated an alternative information theoretic (IT) approach, which involves Poisson regression followed by information-theoretic model selection. Our first objective was to compare the performances of the ST and IT methods by using them to analyze mFISH data on gamma-ray-induced simple interchanges in human lymphocytes, and on Monte Carlo simulated data. Real and simulated data sets that contained small-to-moderate curvature were deliberately selected for this exercise. The IT method tended to detect curvature with higher confidence than the ST method. The finding of curvature in the dose response for true simple interchanges is discussed in the context of fundamental models of radiation action. Our second objective was to optimize the design of experiments aimed specifically at detecting curvature. We used Monte Carlo simulation to investigate the following parameters. Constrained by available resources (i.e., the total number of cells to be scored) these include: the optimal number of dose points to use; the best way to apportion the total number of cells among these dose points; and the spacing of dose intervals. Counterintuitively, our simulation results suggest that 4-5 radiation doses were typically optimal, whereas adding more dose points may actually prove detrimental. Superior results were also obtained by implementing unequal dose spacing and unequal distributions in the number of cells scored at each dose.
Planck's constant and the three waves (TWs) of Einstein's covariant ether
NASA Astrophysics Data System (ADS)
Kostro, L.
1985-11-01
The implications of a three-wave model for elementary particles, satisfying the principles of both quantum mechanics and General Relativity (GR), are discussed. In GR, the ether is the fundamental source of all activity, where particles (waves) arise at singularities. Inertia and gravity are field properties of the ether. In flat regions of the space-time geodesic, wave excitations correspond to the presence of particles. A momentum-carrying excitation which occurs in the ether is a superluminal radiation (phase- or B-waves) which transports neither energy nor mass. Superposition of the B-waves produces soliton-like excitations on the ether to form C-waves, i.e., particles. The particle-waves travel through space-time on D-waves, and experience reflection, refraction and interference only where B-waves have interacted with the ether. The original particles, photons-maximons, existed at the Big Bang and had physical properties which are describable in terms of Planck's quantities.
Electromagnetic toroidal excitations in matter and free space.
Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I
2016-03-01
The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.
Radiation-Hardened Electronics for the Space Environment
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.
2007-01-01
RHESE covers a broad range of technology areas and products. - Radiation Hardened Electronics - High Performance Processing - Reconfigurable Computing - Radiation Environmental Effects Modeling - Low Temperature Radiation Hardened Electronics. RHESE has aligned with currently defined customer needs. RHESE is leveraging/advancing SOA space electronics, not duplicating. - Awareness of radiation-related activities through out government and industry allow advancement rather than duplication of capabilities.
NASA Technical Reports Server (NTRS)
Bombardt, J.
1979-01-01
Papers are presented on the following topics: radiation effects in bipolar microcircuits; basic radiation mechanisms in materials and devices; energy deposition and dosimetry; and system responses from SGEMP, IEMP, and EMP. Also considered are basic processes in SGEMP and IEMP, radiation effects in MOS microcircuits, and space radiation effects and spacecraft charging.
NASA Technical Reports Server (NTRS)
Mcgarrity, J. M.
1980-01-01
The conference covered the radiation effects on devices, circuits, and systems, physics and basic radiation effects in materials, dosimetry and radiation transport, spacecraft charging, and space radiation effects. Other subjects included single particle upset phenomena, systems-generated electromagnetic pulse phenomena, fabrication of hardened components, testing techniques, and hardness assurance.
NASA Technical Reports Server (NTRS)
Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey; Casey, Rachael C.
2007-01-01
Protecting crew from ionizing radiation is a key life sciences problem for long-duration space missions. The three major sources/types of radiation are found in space: galactic cosmic rays, trapped Van Allen belt radiation, and solar particle events. All present varying degrees of hazard to crews; however, exposure to high doses of any of these types of radiation ultimately induce both acute and long-term biological effects. High doses of space radiation can lead to the development of toxicity associated with the acute radiation syndrome (ARS) which could have significant mission impact, and even render the crew incapable of performing flight duties. The creation of efficient radiation protection technologies is considered an important target in space radiobiology, immunology, biochemistry and pharmacology. Two major mechanisms of cellular, organelle, and molecular destruction as a result of radiation exposure have been identified: 1) damage induced directly by incident radiation on the macromolecules they encounter and 2) radiolysis of water and generation of secondary free radicals and reactive oxygen species (ROS), which induce chemical bond breakage, molecular substitutions, and damage to biological molecules and membranes. Free-radical scavengers and antioxidants, which neutralize the damaging activities of ROS, are effective in reducing the impact of small to moderate doses of radiation. In the case of high doses of radiation, antioxidants alone may be inadequate as a radioprotective therapy. However, it remains a valuable component of a more holistic strategy of prophylaxis and therapy. High doses of radiation directly damage biological molecules and modify chemical bond, resulting in the main pathological processes that drive the development of acute radiation syndromes (ARS). Which of two types of radiation-induced cellular lethality that ultimately develops, apoptosis or necrosis, depends on the spectrum of incident radiation, dose, dose rate, and functional conditions of impacted cells/organisms. The administration of an experimental anti-radiation vaccine may provide an immunologically based, adjunct method of prevention or prophylaxis against clinical ARS. The administration of experimental anti-radiation serum (ARS) and the use of the blood dialysis methods, such as immune plasma-sorption, may assist in the clearance of radiation-specific toxins and may enhance established strategies for the mitigation of the biological effects leading to ARS, and should be evaluated for use on exploration-class space missions.
Late effects from particulate radiations in primate and rabbit tissues
NASA Astrophysics Data System (ADS)
Lett, J. T.; Cox, A. B.; Bergtold, D. S.; Lee, A. C.; Pickering, J. E.
Optic tissues in groups of New Zealand white rabbits were irradiated locally at different stages throughout the median life span of the species with a single dose (9 Gy) of 425 MeV/amu Ne ions (LET∞~30 keV/μm) and then inspected routinely for the progression of radiation cataracts. The level of early cataracts was found to be highest in the youngest group of animals irradiated (8 weeks old) but both the onset of late cataracts and loss of vision occurred earlier when animals were irradiated during the second half of the median life span. This age response can have serious implications in terms of space radiation hazards to man. Rhesus monkeys that had been subjected to whole-body skin irradiation (2.8 and 5.6 Gy) by 32 MeV protons (range in tissue ~ 1 cm) some twenty years previously were analysed for radiation damage by the propagation of skin fibroblasts in primary cultures. Such propagation from skin biopsies in MEM-α medium (serial cultivation) or in supplemented Ham's F-10 medium (cultivation without dilution) revealed late damage in the stem (precursor) cells of the skins of the animals. The proton fluxes employed in this experiment are representative of those occurring in major solar flares.
The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters
NASA Astrophysics Data System (ADS)
Lei, Mingda; Xie, Lun; Li, Jinxing; Pu, Zuyin; Fu, Suiyan; Ni, Binbin; Hua, Man; Chen, Lunjin; Li, Wen
2017-12-01
Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles, and MS waves with off 90° wave normal angles scatter electrons more efficiently. By simulating the diffusion coefficients and the electron phase space density evolution at different L shells under different plasma environment circumstances, we find that MS waves can readily produce electron butterfly distributions in the inner part of the plasmasphere where the ratio of electron plasma-to-gyrofrequency (fpe/fce) is large, while they may essentially form a two-peak distribution outside the plasmapause and in the inner radiation belt where fpe/fce is small.
Space Radiation Program Element Tissue Sharing Initiative
NASA Technical Reports Server (NTRS)
Wu, H.; Huff, J. L.; Simonsen, L. C.
2014-01-01
Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, SRPE is taking the initiative to promote tissue sharing among the scientists in the space radiation research community. This initiative is enthusiastically supported by the community members as voiced in the responses to a recent survey. For retrospective tissue samples, an online platform will be established for the PIs to post a list of the available samples, and to exchange information with the potential recipients. For future animal experiments, a tissue sharing policy is being developed by SRPE.
Radiation risk and human space exploration.
Schimmerling, W; Cucinotta, F A; Wilson, J W
2003-01-01
Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. Published by Elsevier Science Ltd on behalf of COSPAR.
Radiation risk and human space exploration
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Cucinotta, F. A.; Wilson, J. W.
2003-01-01
Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. Published by Elsevier Science Ltd on behalf of COSPAR.
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan
2016-07-01
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.
Radiation Environment Modeling for Spacecraft Design: New Model Developments
NASA Technical Reports Server (NTRS)
Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray
2006-01-01
A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.
Space Radiation Organ Doses for Astronauts on Past and Future Missions
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2007-01-01
We review methods and data used for determining astronaut organ dose equivalents on past space missions including Apollo, Skylab, Space Shuttle, NASA-Mir, and International Space Station (ISS). Expectations for future lunar missions are also described. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra, or a related quantity, the lineal energy (y) spectra that is measured by a tissue equivalent proportional counter (TEPC). These data are used in conjunction with space radiation transport models to project organ specific doses used in cancer and other risk projection models. Biodosimetry data from Mir, STS, and ISS missions provide an alternative estimate of organ dose equivalents based on chromosome aberrations. The physical environments inside spacecraft are currently well understood with errors in organ dose projections estimated as less than plus or minus 15%, however understanding the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons for which there are no human data to estimate risks. The accuracy of projections of organ dose equivalents described here must be supplemented with research on the health risks of space exposure to properly assess crew safety for exploration missions.
Heart in space: effect of the extraterrestrial environment on the cardiovascular system.
Hughson, Richard L; Helm, Alexander; Durante, Marco
2018-03-01
National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.
Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2007-01-01
This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.
NASA Astrophysics Data System (ADS)
Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Burmeister, Soenke; Labrenz, Johannes; Hager, Luke; Palfalvi, Jozsef K.; Hajek, Michael; Puchalska, Monika; Sihver, Lembit
The exploration of space as seen in specific projects from the European Space Agency (ESA) acts as groundwork for human long duration space missions. One of the main constraints for long duration human missions is radiation. The radiation load on astronauts and cosmonauts in space (as for the ISS) is a factor of 100 higher than the natural radiation on Earth and will further increase should humans travel to Mars. In preparation for long duration space missions it is important to evaluate the impact of space radiation in order to secure the safety of the astronauts and minimize their radiation risks. To determine the radiation risk on humans one has to measure the radiation doses to radiosensitive organs within the human body. One way to approach this is the ESA facility MATROSHKA (MTR), under the scientific and project lead of DLR. It is dedicated to determining the radiation load on astronauts within and outside the International Space Station (ISS), and was launched in January 2004. MTR is currently preparing for its fourth experimental phase inside the Japanese Experimental Module (JEM) in summer 2010. MTR, which mimics a human head and torso, is an anthropomorphic phantom containing over 6000 radiation detectors to determine the depth dose and organ dose distribution in the body. It is the largest international research initiative ever performed in the field of space dosimetry and combines the expertise of leading research institutions around the world, thereby generating a huge pool of data of potentially immense value for research. Aiming at optimal scientific exploitation, the FP7 project HAMLET aims to process and compile the data acquired individually by the participating laboratories of the MATROSHKA experiment. Based on experimental input from the MATROSHKA experiment phases as well as on radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body will be built up. The scientific achievements contribute essentially to radiation risk estimations for future interplanetary space exploration by humans, putting them on a solid experimental and theoretical basis. The talk will give an overview of the current status of the MATROSHKA data evaluation and results and comparisons of the first three MTR experimental phases (MTR-1, 2A and 2B). The HAMLET project is funded by the European Commission under the EUs Seventh Frame-work Programme (FP7) under Project Nr: 218817 and coordinated by the German Aerospace Center (DLR) http://www-fp7-hamlet.eu
NASA Technical Reports Server (NTRS)
Leitgab, Martin; Semones, Edward; Lee, Kerry
2016-01-01
The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.
Risk estimation and decision-making: implications of the 1980 BEIR-III report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrikant, J.I.
1981-04-01
The report gives a general background of the implications the current Report of the Committee on the Biological Effects of Ionizing Radiation (The BEIR-III Report) may have on societal decision-making in the regulation of activities concerned with the health effects of low-level radiation. (ACR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, K. X.
2011-05-31
This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.
Exploring the Feasibility of Electrostatic Shielding for Spacecrafts
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Youngquist, R. C.
2005-01-01
NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation explores the feasibility of using electrostatic shielding in concert with innovative materials shielding and protection technologies. The asymmetries of the radiation shielding problem would be exploited in the electrostatics shielding process. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn about the advantages the electrostatic shielding, should it be successful, would bring to the radiation protection design process.
NASA Astrophysics Data System (ADS)
Dartnell, Lewis R.; Hunter, Stephanie J.; Lovell, Keith V.; Coates, Andrew J.; Ward, John M.
2010-09-01
The high flux of cosmic rays onto the unshielded surface of Mars poses a significant hazard to the survival of martian microbial life. Here, we determined the survival responses of several bacterial strains to ionizing radiation exposure while frozen at a low temperature characteristic of the martian near-subsurface. Novel psychrotolerant bacterial strains were isolated from the Antarctic Dry Valleys, an environmental analogue of the martian surface, and identified by 16S rRNA gene phylogeny as representatives of Brevundimonas, Rhodococcus, and Pseudomonas genera. These isolates, in addition to the known radioresistant extremophile Deinococcus radiodurans, were exposed to gamma rays while frozen on dry ice (-79°C). We found D. radiodurans to exhibit far greater radiation resistance when irradiated at -79°C than was observed in similar studies performed at higher temperatures. This greater radiation resistance has important implications for the estimation of potential survival times of microorganisms near the martian surface. Furthermore, the most radiation resistant of these Dry Valley isolates, Brevundimonas sp. MV.7, was found to show 99% 16S rRNA gene similarity to contaminant bacteria discovered in clean rooms at both Kennedy and Johnson Space Centers and so is of prime concern to efforts in the planetary protection of Mars from our lander probes. Results from this experimental irradiation, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30 cm deep in martian dust could survive the cosmic radiation for up to 100,000 years before suffering 106 population reduction.
Apollo experience report: Protection against radiation
NASA Technical Reports Server (NTRS)
English, R. A.; Benson, R. E.; Bailey, J. V.; Barnes, C. M.
1973-01-01
Radiation protection problems on earth and in space are discussed. Flight through the Van Allen belts and into space beyond the geomagnetic shielding was recognized as hazardous before the advent of manned space flight. Specialized dosimetry systems were developed for use on the Apollo spacecraft, and systems for solar-particle-event warning and dose projection were devised. Radiation sources of manmade origin on board the Apollo spacecraft present additional problems. Methods applied to evaluate and control or avoid the various Apollo radiation hazards are discussed.
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Darty, Ronald C.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.
2008-01-01
Primary Objective: 1) A computational tool to accurately predict electronics performance in the presence of space radiation in support of spacecraft design: a) Total dose; b) Single Event Effects; and c) Mean Time Between Failure. (Developed as successor to CR ME96.) Secondary Objectives: 2) To provide a detailed description of the natural radiation environment in support of radiation health and instrument design: a) In deep space; b) Inside the magnetosphere; and c) Behind shielding.
Uncertainty Analysis in Space Radiation Protection
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.
Space shuttle rendezous, radiation and reentry analysis code
NASA Technical Reports Server (NTRS)
Mcglathery, D. M.
1973-01-01
A preliminary space shuttle mission design and analysis tool is reported emphasizing versatility, flexibility, and user interaction through the use of a relatively small computer (IBM-7044). The Space Shuttle Rendezvous, Radiation and Reentry Analysis Code is used to perform mission and space radiation environmental analyses for four typical space shuttle missions. Included also is a version of the proposed Apollo/Soyuz rendezvous and docking test mission. Tangential steering circle to circle low-thrust tug orbit raising and the effects of the trapped radiation environment on trajectory shaping due to solar electric power losses are also features of this mission analysis code. The computational results include a parametric study on single impulse versus double impulse deorbiting for relatively low space shuttle orbits as well as some definitive data on the magnetically trapped protons and electrons encountered on a particular mission.
The astrobiological mission EXPOSE-R on board of the International Space Station
NASA Astrophysics Data System (ADS)
Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, Andre; Panitz, Corinna; Horneck, Gerda; Burfeindt, Jürgen; Molter, Ferdinand; Jaramillo, Esther; Pereira, Carlos; Weiß, Peter; Willnecker, Rainer; Demets, René; Dettmann, Jan
2015-01-01
EXPOSE-R flew as the second of the European Space Agency (ESA) EXPOSE multi-user facilities on the International Space Station. During the mission on the external URM-D platform of the Zvezda service module, samples of eight international astrobiology experiments selected by ESA and one Russian guest experiment were exposed to low Earth orbit space parameters from March 10th, 2009 to January 21st, 2011. EXPOSE-R accommodated a total of 1220 samples for exposure to selected space conditions and combinations, including space vacuum, temperature cycles through 273 K, cosmic radiation, solar electromagnetic radiation at >110, >170 or >200 nm at various fluences up to GJ m-2. Samples ranged from chemical compounds via unicellular organisms and multicellular mosquito larvae and seeds to passive radiation dosimeters. Additionally, one active radiation measurement instrument was accommodated on EXPOSE-R and commanded from ground in accordance with the facility itself. Data on ultraviolet radiation, cosmic radiation and temperature were measured every 10 s and downlinked by telemetry and data carrier every few months. The EXPOSE-R trays and samples returned to Earth on March 9th, 2011 with Shuttle flight, Space Transportation System (STS)-133/ULF 5, Discovery, after successful total mission duration of 27 months in space. The samples were analysed in the individual investigators laboratories. A parallel Mission Ground Reference experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions following to the data transmitted from the flight mission.
Space shuttle main engine plume radiation model
NASA Technical Reports Server (NTRS)
Reardon, J. E.; Lee, Y. C.
1978-01-01
The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.
NASA Technical Reports Server (NTRS)
Winokur, P. S. (Editor)
1984-01-01
Radiation effects on electronic systems and devices (particularly spacecraft systems) are examined with attention given to such topics as radiation transport, energy deposition, and charge collection; single-event phenomena; basic mechanisms of radiation effects in structures and materials; and EMP phenomena. Also considered are radiation effects in integrated circuits, spacecraft charging and space radiation effects, hardness assurance for devices and systems, and SGEMP/IEMP phenomena.
The Implications of Lowering the Cost to Access Space on Airpower
2017-06-01
1 The Implications of Lowering the Cost to Access Space on Airpower Major Gabe Arrington School of Advanced Air and Space Studies...2017 DISTRIBUTION A: Approved for public release: distribution unlimited 2 Disclaimer Opinions, conclusions, and recommendations...implications that lowering the cost to access space will have on Airpower. The research conducted used predominantly qualitative research techniques to
The Near-Earth Space Radiation for Electronics Environment
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.; LaBel, K. A.
2004-01-01
The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.
Space radiation research in the new millenium--from where we come and where we go.
Kiefer, J
2001-01-01
Space radiation research had a significant impact in the past. The physical interaction of heavy charged particles with living matter and the development of models, including microdosimetry, were stimulated by problems encountered in space. New phenomena were discovered. Advanced dosimetric techniques had to be developed and computational methods to describe the radiation field in space. The understanding of the radiobiology of heavy ions, necessary for a well-founded risk assessment and prompted by space radiation research, constitutes also the basis for heavy ion radiotherapy. So far unknown areas like the interaction of microgravity and radiation were opened. The space station will give even more opportunities. For the first time it will be possible to investigate animals for a longer time under the influence of both microgravity and radiation. Living systems can be exposed under well defined conditions with parallel physical measurements. Solar particle events are still an unsolved problem. Significant improvement in their predictability and quantitative description can be expected. All this will not only give exciting opportunities for research but will also translate into immediate benefit for human beings. This paper will attempt to give an overview of the past achievements and glance into the future.
Interplay of space radiation and microgravity in DNA damage and DNA damage response.
Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu
2017-01-01
In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.
Solar cosmic rays as a specific source of radiation risk during piloted space flight.
Petrov, V M
2004-01-01
Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Evaluations of Risks from the Lunar and Mars Radiation Environments
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, Alan H.; Cucinotta, Francis A.
2008-01-01
Protecting astronauts from the space radiation environments requires accurate projections of radiation in future space missions. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. The galactic cosmic radiation (GCR) flux for the next solar cycle was estimated as a function of interplanetary deceleration potential, which has been derived from GCR flux and Climax neutron monitor rate measurements over the last 4 decades. For the chaotic nature of solar particle event (SPE) occurrence, the mean frequency of SPE at any given proton fluence threshold during a defined mission duration was obtained from a Poisson process model using proton fluence measurements of SPEs during the past 5 solar cycles (19-23). Analytic energy spectra of 34 historically large SPEs were constructed over broad energy ranges extending to GeV. Using an integrated space radiation model (which includes the transport codes HZETRN [1] and BRYNTRN [2], and the quantum nuclear interaction model QMSFRG[3]), the propagation and interaction properties of the energetic nucleons through various media were predicted. Risk assessment from GCR and SPE was evaluated at the specific organs inside a typical spacecraft using CAM [4] model. The representative risk level at each event size and their standard deviation were obtained from the analysis of 34 SPEs. Risks from different event sizes and their frequency of occurrences in a specified mission period were evaluated for the concern of acute health effects especially during extra-vehicular activities (EVA). The results will be useful for the development of an integrated strategy of optimizing radiation protection on the lunar and Mars missions. Keywords: Space Radiation Environments; Galactic Cosmic Radiation; Solar Particle Event; Radiation Risk; Risk Analysis; Radiation Protection.
Cosmic Rays in the Heliosphere: Requirements for Future Observations
NASA Astrophysics Data System (ADS)
Mewaldt, R. A.
2013-06-01
Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.
Biological countermeasures in space radiation health.
Kennedy, Ann R; Todd, Paul
2003-06-01
Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. The major types of radiation considered to be of importance during space travel are protons and particles of high atomic number and high energy (HZE particles). It is now clear that biological countermeasures can be used to prevent or reduce the levels of biological consequences resulting from exposure to protons or HZE particles, including the induction of cancer, immunosuppression and neurological defects caused by these types of ionizing radiation. Research related to the dietary additions of agents to minimize the risks of developing health-related problems which can result from exposure to space radiations is reviewed.
Biological countermeasures in space radiation health
NASA Technical Reports Server (NTRS)
Kennedy, Ann R.; Todd, Paul
2003-01-01
Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. The major types of radiation considered to be of importance during space travel are protons and particles of high atomic number and high energy (HZE particles). It is now clear that biological countermeasures can be used to prevent or reduce the levels of biological consequences resulting from exposure to protons or HZE particles, including the induction of cancer, immunosuppression and neurological defects caused by these types of ionizing radiation. Research related to the dietary additions of agents to minimize the risks of developing health-related problems which can result from exposure to space radiations is reviewed.
A semiconductor radiation imaging pixel detector for space radiation dosimetry.
Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence
2015-07-01
Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.
Mitrikas, V G
2015-01-01
Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.
Applications of Accelerators and Radiation Sources in the Field of Space Research and Industry.
Campajola, Luigi; Di Capua, Francesco
2016-12-01
Beyond their important economic role in commercial communications, satellites in general are critical infrastructure because of the services they provide. In addition to satellites providing information which facilitates a better understanding of the space environment and improved performance of physics experiments, satellite observations are also used to actively monitor weather, geological processes, agricultural development and the evolution of natural and man-made hazards. Defence agencies depend on satellite services for communication in remote locations, as well as for reconnaissance and intelligence. Both commercial and government users rely on communication satellites to provide communication in the event of a disaster that damages ground-based communication systems, provide news, education and entertainment to remote areas and connect global businesses. The space radiation environment is an hazard to most satellite missions and can lead to extremely difficult operating conditions for all of the equipment travelling in space. Here, we first provide an overview of the main components of space radiation environment, followed by a description of the basic mechanism of the interaction of radiation with matter. This is followed by an introduction to the space radiation hardness assurance problem and the main effects of natural radiation to the microelectronics (total ionizing dose, displacement damage and the single-event effect and a description of how different effects occurring in the space can be tested in on-ground experiments by using particle accelerators and radiation sources. We also discuss standards and the recommended procedures to obtain reliable results.
Chylack, Leo T; Peterson, Leif E; Feiveson, Alan H; Wear, Mary L; Manuel, F Keith; Tung, William H; Hardy, Dale S; Marak, Lisa J; Cucinotta, Francis A
2009-07-01
The NASA Study of Cataract in Astronauts (NASCA) is a 5-year longitudinal study of the effect of space radiation exposure on the severity/progression of nuclear, cortical and posterior subcapsular (PSC) lens opacities. Here we report on baseline data that will be used over the course of the longitudinal study. Participants include 171 consenting astronauts who flew at least one mission in space and a comparison group made up of three components: (a) 53 astronauts who had not flown in space, (b) 95 military aircrew personnel, and (c) 99 non-aircrew ground-based comparison subjects. Continuous measures of nuclear, cortical and PSC lens opacities were derived from Nidek EAS 1000 digitized images. Age, demographics, general health, nutritional intake and solar ocular exposure were measured at baseline. Astronauts who flew at least one mission were matched to comparison subjects using propensity scores based on demographic characteristics and medical history stratified by gender and smoking (ever/never). The cross-sectional data for matched subjects were analyzed by fitting customized non-normal regression models to examine the effect of space radiation on each measure of opacity. The variability and median of cortical cataracts were significantly higher for exposed astronauts than for nonexposed astronauts and comparison subjects with similar ages (P=0.015). Galactic cosmic space radiation (GCR) may be linked to increased PSC area (P=0.056) and the number of PSC centers (P=0.095). Within the astronaut group, PSC size was greater in subjects with higher space radiation doses (P=0.016). No association was found between space radiation and nuclear cataracts. Cross-sectional data analysis revealed a small deleterious effect of space radiation for cortical cataracts and possibly for PSC cataracts. These results suggest increased cataract risks at smaller radiation doses than have been reported previously.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2012-01-01
Certain free-flying spacecraft in low Earth orbit (LEO) or payloads on the International Space Station (ISS) are required to slew to point the telescopes at targets. Instrument detectors and electronics require cooling. Traditionally a planar thermal radiator is used. The temperature of such a radiator varies significantly when the spacecraft slews because its view factors to space vary significantly. Also for payloads on the ISS, solar impingement on the radiator is possible. These thermal adversities could lead to inadequate cooling for the instrument. This paper presents a novel thermal design concept that utilizes three canted radiator panels to mitigate this problem. It increases the overall radiator view factor to cold space and reduces the overall solar or albedo flux absorbed per unit area of the radiator.
NASA Technical Reports Server (NTRS)
Johnson, M.; Label, K.; McCabe, J.; Powell, W.; Bolotin, G.; Kolawa, E.; Ng, T.; Hyde, D.
2007-01-01
Implementation of challenging Exploration Systems Missions Directorate objectives and strategies can be constrained by onboard computing capabilities and power efficiencies. The Radiation Hardened Electronics for Space Environments (RHESE) High Performance Processors for Space Environments project will address this challenge by significantly advancing the sustained throughput and processing efficiency of high-per$ormance radiation-hardened processors, targeting delivery of products by the end of FY12.
[Anthropogenic sources of radiation hazard in the near-Earth space].
Fedoseev, G A
2004-01-01
All plausible artificial radioactive sources entering the near-Earth space (NES) were systematized and consequences of various large radiation accidents and catastrophes to Earth and NES were analyzed. Aggressive "population" of near-Earth orbits by space stations with rotating crews, unmanned research platforms and observatories extends "borderlines" of the noosphere raising at the same time concerns about the noosphere radiation safety and global radioecology. Specifically, consideration is given to the facts of negative effects of space power reactor facilities on results of orbital astrophysical investigations.
Review of space radiation interaction with ZERODUR
NASA Astrophysics Data System (ADS)
Carré, Antoine; Westerhoff, Thomas; Hull, Tony; Doyle, D.
2017-09-01
ZERODUR has been and is still being successfully used as mirror substrates for a large number of space missions. Improvements in CNC machining at SCHOTT allow to achieve extremely light weighted substrates incorporating very thin ribs and face sheets. This paper is reviewing data published on the interaction of space radiation with ZERODUR. Additionally, this paper reports on considerations and experiments which are needed to confidently apply an updated model on ZERODUR behavior under space radiation for extremely light weighted ZERODUR substrates.
The Near-Earth Space Radiation Environment
NASA Technical Reports Server (NTRS)
Xapsos, Michael
2008-01-01
This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.
National Radiation Hardness Assurance (RHA) Planning For NASA Missions: Updated Guidance
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Pellish, Jonathan Allen
2014-01-01
Radiation Hardness Assurance (RHA) is the process of ensuring space system performance in the presence of a space radiation environment. Herein, we present an updated NASA methodology for RHA focusing on content, deliverables and timeframes.
Notional Radiation Hardness Assurance (RHA) Planning For NASA Missions: Updated Guidance
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Pellish, Jonathan A.
2014-01-01
Radiation Hardness Assurance (RHA) is the process of ensuring space system performance in the presence of a space radiation environment. Herein, we present an updated NASA methodology for RHA focusing on content, deliverables and timeframes.
NASA Astrophysics Data System (ADS)
Qi, Bin; Guo, Linli; Zhang, Zhixian
2016-07-01
Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.
NASA Astrophysics Data System (ADS)
Hellweg, C. E.; Thelen, M.; Arenz, A.; Baumstark-Khan, C.
The combined action of ionizing radiation and microgravity will continue to influence future manned space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. Previous space flight experiments gave contradictory results: from inhibition of DNA repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. At the Radiation Biology Department of the German Aerospace Center (DLR), recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions. The space experiment “Cellular Responses to Radiation in Space” (CERASP) to be performed at the International Space Station (ISS) will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity. One of the biological endpoints will be survival reflected by radiation-dependent reduction of constitutive expression of the enhanced variant of green fluorescent protein (EGFP). A second end-point will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using the destabilized d2EGFP variant. The promoter element to be investigated reflects the activity of the nuclear factor kappa B (NF-κB) pathway. The NF-κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, apoptosis and tumor genesis. Results obtained with X-rays and accelerated heavy ions produced at the French heavy ion accelerator GANIL imply that densely ionizing radiation has a stronger potential to activate NF-κB dependent gene expression than sparsely ionizing radiation. The correlation of NF-κB activation to negative regulation of apoptosis could favor survival of cells with damaged DNA. A third endpoint to be examined will be DNA damage induced by combined exposure to radiation and microgravity and its repair. In the current work, preparatory experiments for the space experiment CERASP were performed. For radiation exposure on the ISS, an artificial radiation source is necessary since long-term exposure to cosmic radiation of frozen cells for damage accumulation will not be feasible. The biological activity of the designated space radiation source, the β-emitter promethium-147, was evaluated. Different shielding scenarios according to the experiment and safety requirements were evaluated. As growth surface for the human embryonic kidney cells, polytetrafluoroethylene and polyolefin foils were tested. For protection issues, the shielding effect of titanium foils was evaluated. With the prototype Pm-147 radiation source, the requirements of CERASP can be fulfilled with cells growing on the polytetrafluoroethylene foil and titanium foils for safety issues. In this setting, β-rays activated NF-κB-dependent reporter gene expression in human embryonic kidney cells. Regarding cell survival and NF-κB activation, the Pm-147 radiation source meets the requirements of the space experiment CERASP.
Effects of radiation on DNA's double helix
NASA Technical Reports Server (NTRS)
2003-01-01
The blueprint of life, DNA's double helix is found in the cells of everything from bacteria to astronauts. Exposure to radiation(depicted at right) such as X-rays (upper) or heavy ion particles (lower), can damage DNA and cause dire consequences both to the organism itself and to future generations. One of NASA's main goals is to develop better radiation shielding materials to protect astronauts from destructive radiation in space. This is particularly important for long space missions. NASA has selected researchers to study materials that provide better shielding. This research is managed by NASA's Office of Biological and Physical Research and is supported by the Microgravity Science and Applications Department at NASA's Marshall Center. During International Space Station Expedition Six, the Extravehicular Activity Radiation Monitoring (EVARM) will continue to measure radiation dosage encountered by the eyes, internal organs and skin during specific spacewalks, and relate it to the type of activity, location and other factors. An analysis of this information may be useful in mitigating potential exposure to space walkers in the future. (Illustration by Dr. Frank Cucinotta, NASA/Johnson Space Center, and Prem Saganti, Lockheed Martin)
Challenges and Issues of Radiation Damage Tools for Space Missions
NASA Astrophysics Data System (ADS)
Tripathi, Ram; Wilson, John
2006-04-01
NASA has a new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is `the show stopper.' Thus, protection from the hazards of severe space radiation is of paramount importance for the new vision. Accurate risk assessments critically depend on the accuracy of the input information about the interaction of ions with materials, electronics and tissues. A huge amount of essential experimental information for all the ions in space, across the periodic table, for a wide range of energies of several (up to a Trillion) orders of magnitude are needed for the radiation protection engineering for space missions that is simply not available (due to the high costs) and probably never will be. In addition, the accuracy of the input information and database is very critical and of paramount importance for space exposure assessments particularly in view the agency's vision for deep space exploration. The vital role and importance of nuclear physics, related challenges and issues, for space missions will be discussed, and a few examples will be presented for space missions.
Future space experiments on cosmic rays and radiation on Russian segments of ISS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panasyuk, Mikhail; Galper, Arkady; Stozhov, Yurii
1999-01-22
The report presents a survey of the Russian space program in the field of radiation and cosmic ray studies. The experimental projects were developed by scientists of different Russian Institutes and are intended for implementation on the future ISS. All the projects mentioned in this report have undergone various expertise stages in the Space Council of the Russian Science Academy ('Cosmic Ray Physics' section); the International Science-Technology Center of the Rocket-Space Corporation 'Energia' ('Astrophysics and radiation Measurements' section); Committee on Science-Technical Co-operation of the Russian Space Agency.
NASA Technical Reports Server (NTRS)
Hammond, E. C., Jr.; Peters, K. A.; Atkinson, P. F.
1986-01-01
Three canisters of IIaO film were prepared along with packets of color film from the National Geographic Society, which were then placed on the Space Shuttle #3. The ultimate goal was to obtain reasonably accurate data concerning the background fogging effects on IIaO film as it relates to the film's total environmental experience. This includes: the ground based packing, and loading of the film from Goddard Space Flight Center to Cape Kennedy; the effects of the solar wind, humidity, and cosmic rays; the Van Allen Belt radiation exposure; various thermal effect; reentry and off-loading of the film during take off, and 8 day, 3 hour 15 minutes orbits. The total densitometric change caused by all of the above factors were examined. The results of these studies have implications for the utilization of IIaO spectroscopic film on the future shuttle and space lab missions. These responses to standard photonic energy sources will have immediate application for the uneven responses of the film photographing a star field in a terrestrial or extraterrestrial environment with associated digital imaging equipment.
Simple Benchmark Specifications for Space Radiation Protection
NASA Technical Reports Server (NTRS)
Singleterry, Robert C. Jr.; Aghara, Sukesh K.
2013-01-01
This report defines space radiation benchmark specifications. This specification starts with simple, monoenergetic, mono-directional particles on slabs and progresses to human models in spacecraft. This report specifies the models and sources needed to what the team performing the benchmark needs to produce in a report. Also included are brief descriptions of how OLTARIS, the NASA Langley website for space radiation analysis, performs its analysis.
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Xapsos, Michael A.; LaBel, Kenneth A.; Polvey, Christian
2005-01-01
This viewgraph presentation offers an overview of the space radiation environment, primarily in near-Earth environments such as Low Earth Orbit (LEO). The presentation describes the Halloween solar event of 2003 as an example of how solar activity can affect spacecraft electronic systems. The lunar radiation environment is also briefly summarized.
High-Performance, Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.
The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset
NASA Technical Reports Server (NTRS)
Zank, G. P.; Spann, James F.
2014-01-01
The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.
A Hypothesis on Biological Protection from Space Radiation Through the Use of Therapeutic Gases
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael
2011-01-01
This slide presentation proposes a hypothesis to use therapeutic gases in space to enhance the biological protection for astronauts from space radiation. The fundamental role in how radiation causes biological damage appears to be radiolysis, the dissociation of water by radiation. A chain of events appears to cause molecular and biological transformations that ultimately manifest into medical diseases. The hypothesis of this work is that applying medical gases may increase resistance to radiation, by possessing the chemical properties that effectively improve the radical scavenging and enhance bond repair and to induce biological processes which enhance and support natural resistance and repair mechanisms.
Design considerations for space radiators based on the liquid sheet (LSR) concept
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Chubb, Donald L.
1991-01-01
Concept development work on space heat rejection subsystems tailored to the requirements of various space power conversion systems is proceeding over a broad front of technologies at NASA LeRC. Included are orbital and planetary surface based radiator concepts utilizing pumped loops, a variety of heat pipe radiator concepts, and the innovative liquid sheet radiator (LSR). The basic feasibility of the LSR concept was investigated in prior work which generated preliminary information indicating the suitability of the LSR concept for space power systems requiring cycle reject heat to be radiated to the space sink at low-to-mid temperatures (300 to 400 K), with silicon oils used for the radiator working fluid. This study is directed at performing a comparative examination of LSR characteristics as they affect the basic design of low earth orbit solar dynamic power conversion systems. The power systems considered were based on the closed Brayton (CBC) and the Free Piston Stirling (FPS) cycles, each with a power output of 2 kWe and using previously tested silicone oil (Dow-Corning Me2) as the radiator working fluid. Conclusions indicate that, due to its ability for direct cold end cooling, an LSR based heat rejection subsystem is far more compatible with a Stirling space power system than with a CBC, which requires LSR coupling by means of an intermediate gas/liquid heat exchanger and adjustment of cycle operating conditions.
Ionizing radiation in earth's atmosphere and in space near earth.
DOT National Transportation Integrated Search
2011-05-01
The Civil Aerospace Medical Institute of the FAA is charged with identifying health hazards in air travel and in : commercial human space travel. This report addresses one of these hazards ionizing radiation. : Ionizing radiation is a subatomic p...
An Overview of NASA's Risk of Cardiovascular Disease from Radiation Exposure
NASA Technical Reports Server (NTRS)
Patel, Zarana S.; Huff, Janice L.; Simonsen, Lisa C.
2015-01-01
The association between high doses of radiation exposure and cardiovascular damage is well established. Patients that have undergone radiotherapy for primary cancers of the head and neck and mediastinal regions have shown increased risk of heart and vascular damage and long-term development of radiation-induced heart disease [1]. In addition, recent meta-analyses of epidemiological data from atomic bomb survivors and nuclear industry workers has also shown that acute and chronic radiation exposures is strongly correlated with an increased risk of circulatory disease at doses above 0.5 Sv [2]. However, these analyses are confounded for lower doses by lifestyle factors, such as drinking, smoking, and obesity. The types of radiation found in the space environment are significantly more damaging than those found on Earth and include galactic cosmic radiation (GCR), solar particle events (SPEs), and trapped protons and electrons. In addition to the low-LET data, only a few studies have examined the effects of heavy ion radiation on atherosclerosis, and at lower, space-relevant doses, the association between exposure and cardiovascular pathology is more varied and unclear. Understanding the qualitative differences in biological responses produced by GCR compared to Earth-based radiation is a major focus of space radiation research and is imperative for accurate risk assessment for long duration space missions. Other knowledge gaps for the risk of radiation-induced cardiovascular disease include the existence of a dose threshold, low dose rate effects, and potential synergies with other spaceflight stressors. The Space Radiation Program Element within NASA's Human Research Program (HRP) is managing the research and risk mitigation strategies for these knowledge gaps. In this presentation, we will review the evidence and present an overview of the HRP Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure.
Space radiation hazards to Project Skylab photographic film, phase 2
NASA Technical Reports Server (NTRS)
Hill, C. W.; Neville, C. F.
1971-01-01
The results of a study of space radiation hazards to Project Skylab photographic film are presented. Radiation components include trapped protons, trapped electrons, bremsstrahlung, and galactic cosmic radiation. The shielding afforded by the Skylab cluster is taken into account with a 5000 volume element mathematical model. A preliminary survey of expected proton spectrometer data is reported.
Radiation noise in a high sensitivity star sensor
NASA Technical Reports Server (NTRS)
Parkinson, J. B.; Gordon, E.
1972-01-01
An extremely accurate attitude determination was developed for space applications. This system uses a high sensitivity star sensor in which the photomultiplier tube is subject to noise generated by space radiations. The space radiation induced noise arises from trapped electrons, solar protons and other ionizing radiations, as well as from dim star background. The solar activity and hence the electron and proton environments are predicted through the end of the twentieth century. The available data for the response of the phototube to proton, electron, gamma ray, and bremsstrahlung radiations are reviewed and new experimental data is presented. A simulation was developed which represents the characteristics of the effect of radiations on the star sensor, including the non-stationarity of the backgrounds.
Radiation hazard during a manned mission to Mars.
Jäkel, Oliver
2004-01-01
The radiation hazard of interplanetary flights is currently one of the major obstacles to manned missions to Mars. Highly energetic, heavy-charged particles from galactic cosmic radiation can not be sufficiently shielded in space vehicles. The long-term radiation effects to humans of these particles are largely unknown. In addition, unpredictable storms of solar particles may expose the crew to doses that lead to acute radiation effects. A manned flight to Mars currently seems to be a high-risk adventure. This article provides an overview on the radiation sources and risks for a crew on a manned flight to Mars, as currently estimated by scientists of the US National Administration for Space and Aeronautics (NASA) and the Space Studies Board (SSB) of the US National Research Council.
Radiation-Tolerant DC-DC Converters
NASA Technical Reports Server (NTRS)
Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn
2012-01-01
A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).
Experimental test of liquid droplet radiator performance
NASA Astrophysics Data System (ADS)
Mattick, A. T.; Simon, M. A.
The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree.
Experimental test of liquid droplet radiator performance
NASA Technical Reports Server (NTRS)
Mattick, A. T.; Simon, M. A.
1987-01-01
The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree.
A LiF and BeO TLD based microdosimeter for space radiation risk assessment of astronauts
NASA Astrophysics Data System (ADS)
Mukherjee, B.
2018-06-01
The ratio of thermoluminescence glow curve area of BeO and LiF dosimeters was found to be proportional to average LET and quality factor (Q) of impinging mixed radiations. Using this phenomenon and widely available Thermoluminescence Dosimeter TLD-700 (7LiF: Mg,Ti) and BeO (Thermolux 995) chips a TLD-Microdosimeter (LiBe-14) emulating a much larger gas-filled Tissue Equivalent Proportional Counter (TEPC) was developed. The TEPC is an essential device of space radiation dosimetry widely used by international space agencies. The LiBe-14 is capable of assessing the LETTissue (5–300 keV/μm), quality factor Q (1–30) and associated dose equivalent H (0.1–1000 mSv) of any mixed radiation fields of interest, including space radiations predominant in Low Earth Orbit (LEO) environment. The TLD microdosimeter was calibrated using the secondary radiation fields produced by bombarding a 25 cm × 25 cm × 35 cm polystyrene phantom with 81, 119, 150, 177, 201 and 231 MeV protons from a Proton Therapy Medical Cyclotron. The TLD pair (BeO/LiF) was attached to the TEPC and placed lateral to the proton beam. The characteristics of space radiation inside the spacecraft are complex. Hence, personal dosimetry of astronauts in the space habitat is performed using "multi-element" dosimeters made of different types of TLD and CR-39 plastic nuclear track detector (PNTD). The TLD and PNTD are used to assess the sparsely (low LET) and densely (high LET) ionising radiation component respectively. This report elucidates the feasibility of LiBe-14 microdosimeter for the estimation of overall dose equivalent and "risk of exposure induced death" (REID) of astronauts working in LEO space stations.
NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies
NASA Technical Reports Server (NTRS)
Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.
2018-01-01
Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.
Modeling the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.
2006-01-01
There has been a renaissance of interest in space radiation environment modeling. This has been fueled by the growing need to replace long time standard AP-9 and AE-8 trapped particle models, the interplanetary exploration initiative, the modern satellite instrumentation that has led to unprecedented measurement accuracy, and the pervasive use of Commercial off the Shelf (COTS) microelectronics that require more accurate predictive capabilities. The objective of this viewgraph presentation was to provide basic understanding of the components of the space radiation environment and their variations, review traditional radiation effects application models, and present recent developments.
Acceptability of risk from radiation: Application to human space flight
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This one of NASA`s sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
NASA Technical Reports Server (NTRS)
Wu, Honglu
2006-01-01
Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.
Review of Nuclear Physics Experiments for Space Radiation
NASA Technical Reports Server (NTRS)
Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.
2011-01-01
Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.
Magnetic Materials Suitable for Fission Power Conversion in Space Missions
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.
2012-01-01
Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.
Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.
1999-01-01
The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.
Space station thermal control surfaces. [space radiators
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.
1979-01-01
Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.
NASA Technical Reports Server (NTRS)
Carter, J. R., Jr.; Tada, H. Y.
1973-01-01
A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.
Life science experiments performed in space in the ISS/Kibo facility and future research plans.
Ohnishi, Takeo
2016-08-01
Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Radiation Hardness Assurance (RHA) for Space Systems
NASA Technical Reports Server (NTRS)
Poivey, Christian; Buchner, Stephen
2007-01-01
This presentation discusses radiation hardness assurance (RHA) for space systems, providing both the programmatic aspects of RHA and the RHA procedure. RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the space radiation environment. RHA also pertains to environment definition, part selection, part testing, spacecraft layout, radiation tolerant design, and mission/system/subsystems requirements. RHA procedure consists of establishing mission requirements, defining and evaluating the radiation hazard, selecting and categorizing the appropriate parts, and evaluating circuit response to hazard. The RHA approach is based on risk management and is confined only to parts, it includes spacecraft layout, system/subsystem/circuit design, and system requirements and system operations. RHA should be taken into account in the early phases of a program including the proposal and feasibility analysis phases.
NASA Technical Reports Server (NTRS)
Lin, Z. W.; Adams, J. H., Jr.
2006-01-01
The radiation hazard for astronauts from galactic cosmic rays is a major obstacle in long duration human space explorations. Space radiation transport codes have been developed to calculate radiation environment on missions to the Moon, Mars or beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport. We find that, in deep space, cross sections between 0.3 and 0.85 GeV/u usually have the largest effect on dose-equivalent behind shielding in solar minimum GCR environments, and cross sections between 0.85 and 1.2 GeV/u have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.
Overview of Atmospheric Ionizing Radiation (AIR)
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Tai, H.; Shinn, J. L.
2003-01-01
The SuperSonic Transport (SST) development program within the US was based at the Langley Research Center as was the Apollo radiation testing facility (Space Radiation Effects Laboratory) with associated radiation research groups. It was natural for the issues of the SST to be first recognized by this unique combination of research programs. With a re-examination of the technologies for commercial supersonic flight and the possible development of a High Speed Civil Transport (HSCT), the remaining issues of the SST required resolution. It was the progress of SST radiation exposure research program founded by T. Foelsche at the Langley Research Center and the identified remaining issues after that project over twenty-five years ago which became the launch point of the current atmospheric ionizing radiation (AIR) research project. Added emphasis to the need for reassessment of atmospheric radiation resulted from the major lowering of the recommended occupational exposure limits, the inclusion of aircrew as radiation workers, and the recognition of civil aircrew as a major source of occupational exposures. Furthermore, the work of Ferenc Hajnal of the Environmental Measurements Laboratory brought greater focus to the uncertainties in the neutron flux at high altitudes. A re-examination of the issues involved was committed at the Langley Research Center and by the National Council on Radiation Protection (NCRP). As a result of the NCRP review, a new flight package was assembled and flown during solar minimum at which time the galactic cosmic radiation is at a maximum (June 1997). The present workshop is the initial analysis of the new data from that flight. The present paper is an overview of the status of knowledge of atmospheric ionizing radiations. We will re-examine the exposures of the world population and examine the context of aircrew exposures with implications for the results of the present research. A condensed version of this report was given at the 1998 Annual Meeting of the NCRP with proceedings published in the journal of Health Physics.
Ionizing Radiation Environments and Exposure Risks
NASA Astrophysics Data System (ADS)
Kim, M. H. Y.
2015-12-01
Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.
EXPOSE-E: an ESA astrobiology mission 1.5 years in space.
Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, André; Panitz, Corinna; Horneck, Gerda; von Heise-Rotenburg, Ralf; Hoppenbrouwers, Tom; Willnecker, Rainer; Baglioni, Pietro; Demets, René; Dettmann, Jan; Reitz, Guenther
2012-05-01
The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110 nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10 s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.
Instructions for Plastic Encapsulated Microcircuit(PEM) Selection, Screening and Qualification.
NASA Technical Reports Server (NTRS)
King, Terry; Teverovsky, Alexander; Leidecker, Henning
2002-01-01
The use of Plastic Encapsulated Microcircuits (PEMs) is permitted on NASA Goddard Space Flight Center (GSFC) spaceflight applications, provided each use is thoroughly evaluated for thermal, mechanical, and radiation implications of the specific application and found to meet mission requirements. PEMs shall be selected for their functional advantage and availability, not for cost saving; the steps necessary to ensure reliability usually negate any initial apparent cost advantage. A PEM shall not be substituted for a form, fit and functional equivalent, high reliability, hermetic device in spaceflight applications. Due to the rapid change in wafer-level designs typical of commercial parts and the unknown traceability between packaging lots and wafer lots, lot specific testing is required for PEMs, unless specifically excepted by the Mission Assurance Requirements (MAR) for the project. Lot specific qualification, screening, radiation hardness assurance analysis and/or testing, shall be consistent with the required reliability level as defined in the MAR. Developers proposing to use PEMs shall address the following items in their Performance Assurance Implementation Plan: source selection (manufacturers and distributors), storage conditions for all stages of use, packing, shipping and handling, electrostatic discharge (ESD), screening and qualification testing, derating, radiation hardness assurance, test house selection and control, data collection and retention.
NASA Technical Reports Server (NTRS)
Billman, K. W.
1978-01-01
Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.
Effects of Free Molecular Heating on the Space Shuttle Active Thermal Control System
NASA Technical Reports Server (NTRS)
McCloud, Peter L.; Wobick, Craig A.
2007-01-01
During Space Transportation System (STS) flight 121, higher than predicted radiator outlet temperatures were experienced from post insertion and up until nominal correction (NC) burn two. Effects from the higher than predicted heat loads on the radiator panels led to an additional 50 lbm of supply water consumed by the Flash Evaporator System (FES). Post-flight analysis and research revealed that the additional heat loads were due to Free Molecular Heating (FMH) on the radiator panels, which previously had not been considered as a significant environmental factor for the Space Shuttle radiators. The current Orbiter radiator heat flux models were adapted to incorporate the effects of FMH in addition to solar, earth infrared and albedo sources. Previous STS flights were also examined to find additional flight data on the FMH environment. Results of the model were compared to flight data and verified against results generated by the National Aeronautics and Space Administration (NASA), Johnson Space Center (JSC) Aero-sciences group to verify the accuracy of the model.
Galactic cosmic ray simulation at the NASA Space Radiation Laboratory
Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.
2017-01-01
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012
Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.
Norbury, John W; Schimmerling, Walter; Slaba, Tony C; Azzam, Edouard I; Badavi, Francis F; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A; Blattnig, Steve R; Boothman, David A; Borak, Thomas B; Britten, Richard A; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S; Eisch, Amelia J; Robin Elgart, S; Goodhead, Dudley T; Guida, Peter M; Heilbronn, Lawrence H; Hellweg, Christine E; Huff, Janice L; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A; Norman, Ryan B; Ottolenghi, Andrea; Patel, Zarana S; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A; Semones, Edward; Shay, Jerry W; Shurshakov, Vyacheslav A; Sihver, Lembit; Simonsen, Lisa C; Story, Michael D; Turker, Mitchell S; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J
2016-02-01
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at themore » altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.« less
Space Radiation Program Element Tissue Sharing Forum
NASA Technical Reports Server (NTRS)
Wu, H.; Mayeaux, B M.; Huff, J. L.; Simonsen, L. C.
2016-01-01
Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, the SRPE has recently released the Space Radiation Tissue Sharing Forum. The Forum provides access to an inventory of investigator-stored tissue samples and enables both NASA SRPE members and NASA-funded investigators to exchange information regarding stored and future radiobiological tissues available for sharing. Registered users may review online data of available tissues, inquire about tissues posted, or request tissues for an upcoming study using an online form. Investigators who have upcoming sacrifices are also encouraged to post the availability of samples using the discussion forum. A brief demo of the forum will be given during the presentation
Space industrialization. Volume 3: World and domestic implications
NASA Technical Reports Server (NTRS)
1978-01-01
The status of worldwide space industralization activities is assessed as well as the benefits to be anticipated from enhanced activities. Methods for stimulating space industralization growth are discussed with emphasis on foreign and international activities, national and world impact assessments, industry/government interfaces, legal implications, institutional implications, economics and capitalization, and implementation issues and recommendations.
NASA Technical Reports Server (NTRS)
Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.
2011-01-01
Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.
Heavy-ion anisotropy measured by ALTEA in the International Space Station.
Di Fino, L; Casolino, M; De Santis, C; Larosa, M; La Tessa, C; Narici, L; Picozza, P; Zaconte, V
2011-09-01
The uneven shielding of the International Space Station from the vessel hull, racks and experiments produces a modulation of the internal radiation environment. A detailed knowledge of this environment, and therefore of the Station's shielding effectiveness, is mandatory for an accurate assessment of radiation risk. We present here the first 3D measurements of the Station's radiation environment, discriminating particle trajectories and LET, made possible using the detection capability of the ALTEA-space detector. We provide evidence for a strong (factor ≈ 3) anisotropy in the inner integral LET for high-LET particles (LET > 50 keV/µm) showing a minimum along the longitudinal station axis (most shielded) and a maximum normal to it. Integrating over all measured LETs, the anisotropy is strongly reduced, showing that unstopped light ions plus the fragments produced by heavier ions approximately maintain flux/LET isotropy. This suggests that, while changing the quality of radiation, the extra shielding along the station main axis is not producing a benefit in terms of total LET. These features should be taken into account (1) when measuring radiation with detectors that cannot distinguish the direction of the impinging radiation or that are unidirectional, (2) when planning radiation biology experiments on the ISS, and (3) when simulating the space radiation environment for experiments on the ground. A novel analysis technique that fully exploits the ability to retrieve the angular distribution of the radiation is also presented as well as the angular particle flux and LET characteristic of three geomagnetic zones measured during 2009 by the ALTEA-space detector. This technique is applied to the ALTEA-space detector, but a wider applicability to other detectors is suggested.
Radiation resistance of biological reagents for in situ life detection.
Carr, Christopher E; Rowedder, Holli; Vafadari, Cyrus; Lui, Clarissa S; Cascio, Ethan; Zuber, Maria T; Ruvkun, Gary
2013-01-01
Life on Mars, if it exists, may share a common ancestry with life on Earth derived from meteoritic transfer of microbes between the planets. One means to test this hypothesis is to isolate, detect, and sequence nucleic acids in situ on Mars, then search for similarities to known common features of life on Earth. Such an instrument would require biological and chemical components, such as polymerase and fluorescent dye molecules. We show that reagents necessary for detection and sequencing of DNA survive several analogues of the radiation expected during a 2-year mission to Mars, including proton (H-1), heavy ion (Fe-56, O-18), and neutron bombardment. Some reagents have reduced performance or fail at higher doses. Overall, our findings suggest it is feasible to utilize space instruments with biological components, particularly for mission durations of up to several years in environments without large accumulations of charged particles, such as the surface of Mars, and have implications for the meteoritic transfer of microbes between planets.
Monte Carlo simulations for the space radiation superconducting shield project (SR2S).
Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R
2016-02-01
Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cucinotta, Francis
Uncertainties in estimating health risks from exposures to galactic cosmic rays (GCR) — comprised of protons and high-energy and charge (HZE) nuclei are an important limitation to long duration space travel. HZE nuclei produce both qualitative and quantitative differences in biological effects compared to terrestrial radiation leading to large uncertainties in predicting risks to humans. Our NASA Space Cancer Risk Model-2012 (NSCR-2012) for estimating lifetime cancer risks from space radiation included several new features compared to earlier models from the National Council on Radiation Protection and Measurements (NCRP) used at NASA. New features of NSCR-2012 included the introduction of NASA defined radiation quality factors based on track structure concepts, a Bayesian analysis of the dose and dose-rate reduction effectiveness factor (DDREF) and its uncertainty, and the use of a never-smoker population to represent astronauts. However, NSCR-2012 did not include estimates of the role of qualitative differences between HZE particles and low LET radiation. In this report we discuss evidence for non-targeted effects increasing cancer risks at space relevant HZE particle absorbed doses in tissue (<0.2 Gy), and for increased tumor lethality due to the propensity for higher rates of metastatic tumors from high LET radiation suggested by animal experiments. The NSCR-2014 model considers how these qualitative differences modify the overall probability distribution functions (PDF) for cancer mortality risk estimates from space radiation. Predictions of NSCR-2014 for International Space Station missions and Mars exploration will be described, and compared to those of our earlier NSCR-2012 model.
Predictors of immune function in space flight
NASA Astrophysics Data System (ADS)
Shearer, William T.; Zhang, Shaojie; Reuben, James M.; Lee, Bang-Ning; Butel, Janet S.
2007-02-01
Of all of the environmental conditions of space flight that might have an adverse effect upon human immunity and the incidence of infection, space radiation stands out as the single-most important threat. As important as this would be on humans engaged in long and deep space flight, it obviously is not possible to plan Earth-bound radiation and infection studies in humans. Therefore, we propose to develop a murine model that could predict the adverse effects of space flight radiation and reactivation of latent virus infection for humans. Recent observations on the effects of gamma and latent virus infection demonstrate latent virus reactivation and loss of T cell mediated immune responses in a murine model. We conclude that using this small animal method of quantitating the amounts of radiation and latent virus infection and resulting alterations in immune responses, it may be possible to predict the degree of immunosuppression in interplanetary space travel for humans. Moreover, this model could be extended to include other space flight conditions, such as microgravity, sleep deprivation, and isolation, to obtain a more complete assessment of space flight risks for humans.
Space radiation risks to the central nervous system
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli
2014-07-01
Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.
NASA Technical Reports Server (NTRS)
Turner, R. E.
1974-01-01
The problem of multiple radiation scattering in an atmosphere characterized by various amounts of aerosol absorption and different particle size distributions was investigated. The visible part of the spectrum was emphasized, including the effect of ozone absorption. An atmosphere bounded by a nonhomogenous, Lambertian surface was also studied, along with the effect of background radiation on target in terms of various atmopheric and geometric conditions. Results of the investigation indicate that comtaminated atmospheres can change the radiation field by a considerable amount, and that the effect of non-uniform surface significantly alters the intrinsic radiation from a target element. The implications of these results for the recognition processing of multispectral remote sensing data is discussed.
Radiation Effects: Overview for Space Environment Specialists
NASA Technical Reports Server (NTRS)
Ladbury, Ray
2017-01-01
Radiation Hardness Assurance (RHA) methodologies need to evolve to capitalize on the increased flexibility introduced by new models of space radiation environments. This presentation examines the characteristics of various radiation threats, the sources of error that RHA methodologies seek to control and the contributions of environment models to those errors. The influence of trends in microelectronic device technology is also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazquez, Marcelo
Since astronauts hope to spend more time n space, they will receive more exposure to ionizing radiation, a stream of particles that, when pass through a body, has enough energy to damage the components of living cells and tissues. Ionizing radiation may cause changes in cells' ability to carry out repair, reproduction, and cross-talk with other cells. This may lead to mutations, which, in turn, may result in tumors, cancer, genetic defects in offspring, neurodegeneration. A 34 million dollar facility at BNL's NASA Space Radiation Laboratory (NSRL), built in a cooperative effort by NASA and DOE is one of themore » few places in the world that can simulate the harsh space radiation environment. At this facility, scientists from some several institutions in the U.S. and abroad will learn about the possible risks to human beings exposed to space radiation. Although the spacecraft itself somewhat reduces radiation exposure, it does not completely shield astronauts from galactic cosmic rays, which are highly energetic heavy ions, or from solar particles, which are primarily energetic protons. Within the NSRL target room, Lab researchers and other NASA-sponsored scientists irradiate a variety of biological specimens, tissues, and cells to study the effects that ion beams have on cells and animals.« less
Space Environment (Natural and Induced)
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; George, Kerry A.; Cucinotta, Francis A.
2007-01-01
Considerable effort and improvement have been made in the study of ionizing radiation exposure occurring in various regions of space. Satellites and spacecrafts equipped with innovative instruments are continually refining particle data and providing more accurate information on the ionizing radiation environment. The major problem in accurate spectral definition of ionizing radiation appears to be the detailed energy spectra, especially at high energies, which is important parameter for accurate radiation risk assessment. Magnitude of risks posed by exposure to radiation in future space missions is subject to the accuracies of predictive forecast of event size of SPE, GCR environment, geomagnetic fields, and atmospheric radiation environment. Although heavy ion fragmentations and interactions are adequately resolved through laboratory study and model development, improvements in fragmentation cross sections for the light nuclei produced from HZE nuclei and their laboratory validation are still required to achieve the principal goal of planetary GCR simulation at a critical exposure site. More accurate prediction procedure for ionizing radiation environment can be made with a better understanding of the solar and space physics, fulfillment of required measurements for nuclear/atomic processes, and their validation and verification with spaceflights and heavy ion accelerators experiments. It is certainly true that the continued advancements in solar and space physics combining with physical measurements will strengthen the confidence of future manned exploration of solar system. Advancements in radiobiology will surely give the meaningful radiation hazard assessments for short and long term effects, by which appropriate and effective mitigation measures can be placed to ensure that humans safely live and work in the space, anywhere, anytime.
NASA Astrophysics Data System (ADS)
Fry, R. J. M.
The radiation protection guidelines of the National Aeronautics and Space Administration (NASA) are under review by Scientific Committe 75 of the National Council on Radiation Protection and Measurements. The re-evaluation of the current guidelines is necessary, first, because of the increase in information about radiation risks since 1970 when the original recommendations were made and second, the population at risk has changed. For example, women have joined the ranks of the astronauts. Two types of radiation, protons and heavy ions, are of particular concern in space. Unfortunately, there is less information about the effects on tissues and the induction of cancer by these radiations than by other radiations. The choice of Quality Factors (Q) for obtaining dose equivalents for these radiations, is an important aspect of the risk estimate for space travel. There are not sufficient data for the induction of late effects by either protons or by heavy ions. The current information suggests a RBE for the relative protons of about 1, whereas, -a RBE of 20 for tumor induction by heavy ions, such as iron-56, appears appropriate. The recommendations for the dose equivalent career limits for skin and the lens of the eye have been reduced but the 30-day and annual limits have been raised.
U.S. Air Force Radiation in Space experiment for Gemini 6 flight
1965-12-10
S65-58941 (27 Aug. 1965) --- U.S. Air Force Weapons Laboratory D-8 (Radiation in Space) experiment for Gemini-6 spaceflight. Kennedy Space Center alternative photo number is 104-KSC-65C-5533. Photo credit: NASA
Using Autonomous Bio Nanosatellites for Deep Space Exploration
NASA Astrophysics Data System (ADS)
Santa Maria, S. R.; Liddell, L. C.; Tieze, S. M.; Ricco, A. J.; Hanel, R.; Bhattacharya, S.
2018-02-01
NASA's BioSentinel mission will conduct the first study of biological response to deep-space radiation in 45 years. It is an automated nanosatellite that will measure the DNA damage response to ambient space radiation in a model biological organism.
Qualification of quantum cascade lasers for space environments
NASA Astrophysics Data System (ADS)
Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.; Crowther, Blake G.; Hansen, Stewart
2014-06-01
Laser-based instruments are enabling a new generation of scientific instruments for space environments such as those used in the exploration of Mars. The lasers must be robust and able to withstand the harsh environment of space, including radiation exposure. Quantum cascade lasers (QCLs), which are semiconductor lasers that emit in the infrared spectral region, offer the potential for the development of novel laser-based instruments for space applications. The performance of QCLs after radiation exposure, however, has not been reported. We report on work to quantify the performance of QCLs after exposure to two different radiation sources, 64 MeV protons and Cobalt-60 gamma rays, at radiation levels likely to be encountered during a typical space flight mission. No significant degradation in threshold current or slope efficiency is observed for any of the seven Fabry-Perot QCLs that are tested.
Cucinotta, Francis A; Hamada, Nobuyuki; Little, Mark P
2016-08-01
Previous analysis has shown that astronauts have a significantly lower standardized mortality ratio for circulatory disease mortality compared to the U.S. population, which is consistent with the rigorous selection process and healthy lifestyles of astronauts, and modest space radiation exposures from past space missions. However, a recent report by Delp et al. estimated the proportional mortality ratio for ages of 55-64 y of Apollo lunar mission astronauts to claim a high risk of cardiovascular disease due to space radiation compared to the U.S. population or to non-flight astronauts. In this Commentary we discuss important deficiencies in the methods and assumptions on radiation exposures used by Delp et al. that we judge cast serious doubt on their conclusions. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.
Summary: achievements, critical issues, and thoughts on the future.
Held, Kathryn D
2012-11-01
The number of individuals exposed to particle radiations in cancer treatment worldwide is increasing rapidly, and space agencies are developing plans for long duration, deep space missions in which humans could be exposed to significant levels of radiation from charged particles. Hence, the NCRP 47 th Annual Meeting on "Scientific and Policy Challenges of Particle Radiations in Medical Therapy and Space Missions" was a timely opportunity to showcase the current scientific knowledge regarding charged particles, enhance cross-fertilization between the oncology and space scientific communities, and identify common needs and challenges to both communities as well as ways to address those challenges. This issue of Health Physics contains papers from talks presented at that meeting and highlights provocative questions and the ample opportunities for synergism between space and particle-therapy research to further understanding of the biological impacts of particle radiations.
Space radiation studies at the White Sands Missile Range Fast Burst Reactor
NASA Technical Reports Server (NTRS)
Delapaz, A.
1972-01-01
The operation of the White Sands Missile Range Fast Burst Reactor is discussed. Space radiation studies in radiobiology, dosimetry, and transient radiation effects on electronic systems and components are described. Proposed modifications to increase the capability of the facility are discussed.
High-Absorptance Radiative Heat Sink
NASA Technical Reports Server (NTRS)
Cafferty, T.
1983-01-01
Absorptance of black-painted open-cell aluminum honeycomb improved by cutting honeycomb at angle or bias rather than straight across. This ensures honeycomb cavities escapes. At each reflection radiation attenuated by absorption. Applications include space-background simulators, space radiators, solar absorbers, and passive coolers for terrestrial use.
NASA Astrophysics Data System (ADS)
Fernández-Rodríguez, M.; Alvarado, C. G.; Núñez, A.; Álvarez-Herrero, A.
2017-11-01
Optical instrumentation on-board satellites suffer degradation due to the hostile conditions of space environment. Space conditions produce instrumentation performances changes causing a decrease or a cancellation of their features. Particularly, space environment conditions have a significant influence on the optical properties of glasses which are part of space optical systems. Space environment characteristics which effects on the optical system have to be taken into account are: outgassing, volatile components, gas or water vapor which form part of the spacecraft materials, vacuum, microgravity, micrometeorites, space debris, thermal, mechanical and radiation environment and effects of the high atmosphere [1]. This work is focused on analyzing temperature variations and ultraviolet (UV) and gamma radiation effects on the optical properties of several glasses used on space applications. Thermal environment is composed of radiation from the Sun, the albedo and the Earth radiation and the radiation from the spacecraft to deep space. Flux and influence of temperature on satellite materials depend on factors as the period of year or the position of them on the space system. Taking into account that the transfer mechanisms of heat are limited by the conduction and the radiation, high gradients of temperature are obtained in system elements which can cause changes of their optical properties, birefringence… Also, these thermal cycles can introduce mechanical loads into material structure due to the expansion and the contraction of the material leading to mechanical performances degradation [2]. However, it is the radiation environment the main cause of damage on optical properties of materials used on space instrumentation. This environment consists of a wide range of energetic particles between keV and MeV which are trapped by the geomagnetic field or are flux of particles that cross the Earth environment from the external of the Solar System [3]. The damage produced by the radiation environment on the optical materials can be classified in two types: ionizing or non-ionizing. This damage may produce continual or accumulative (dose) alterations on the optical material performances, or may produce alterations which not remain along the time (transitory effects). The effects of the radiation on optical materials can be summarized on changes of optical transmission and refractive index, variation of density and superficial degradation [4-6]. Two non-invasive and non-destructive techniques such as Optical Spectrum Analyzer and Spectroscopic Ellipsometry [7] have been used to characterize optically the three kinds of studied glasses, CaF2, Fused Silica and Clearceram. The study of the temperature and radiation effects on the glasses optical properties showed that the gamma radiation is the principal responsible of glasses optical degradation. The optical properties of the Clearceram glass have been affected by the gamma irradiation due to the absorption bands induced by the radiation in the visible spectral range (color centers). Therefore, an analysis about the behavior of these color centers with the gamma radiation total dose and with the time after the irradiation has been carried out in the same way that it is performed in [8].
The Impact of Changing Cloud Cover on the High Arctic's Primary Cooling-to-space Windows
NASA Astrophysics Data System (ADS)
Mariani, Zen; Rowe, Penny; Strong, Kimberly; Walden, Von; Drummond, James
2014-05-01
In the Arctic, most of the infrared energy emitted by the surface escapes to space in two atmospheric windows at 10 and 20 μm. As the Arctic warms, the 20 μm cooling-to-space window becomes increasingly opaque (or "closed"), trapping more surface infrared radiation in the atmosphere, with implications for the Arctic's radiative energy balance. Since 2006, the Canadian Network for the Detection of Atmospheric Change (CANDAC) has measured downwelling infrared radiance with an Atmospheric Emitted Radiance Interferometer (AERI) at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, providing the first long-term measurements of the 10 and 20 μm windows in the high Arctic. In this work, measurements of the distribution of downwelling 10 and 20 µm brightness temperatures at Eureka are separated based on cloud cover, providing a comparison to an existing climatology from the Southern Great Plains (SGP). Measurements of the downwelling radiance at both 10 and 20 μm exhibit strong seasonal variability as a result of changes in temperature and water vapour, in addition to variability with cloud cover. When separated by season, brightness temperatures in the 20 µm window are found to be independent of cloud thickness in the summertime, indicating that this window is closed in the summer. Radiance trends in three-month averages are positive and are significantly larger (factor > 5) than the trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. This statistically significant increase (> 5% / yr) in radiance at 10 μm occurs only when the 20 μm window is mostly transparent, or "open" (i.e., in all seasons except summer), and may have long-term consequences, particularly as warmer temperatures and increased water vapour "close" the dirty window for a prolonged period. These surface-based measurements of radiative forcing can be used to quantify changes in the high-Arctic energy budget and evaluate general circulation model simulations.
A semiconductor radiation imaging pixel detector for space radiation dosimetry
NASA Astrophysics Data System (ADS)
Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence
2015-07-01
Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.
NASA Astrophysics Data System (ADS)
Tisha, Dixit; Indranil, Ghosh
2017-02-01
Passive cryogenic radiators work on the principle of dissipating heat to the outer space purely by radiation. High porosity open-cell metal foams are a relatively new class of extended surfaces. These possess the advantages of high surface area density and low weight, characteristics which the space industry looks for. In case of radiative heat transfer, the porous nature of metal foams permits a deeper penetration of the incident radiation. Consequently, the heat transfer area participating in radiative heat exchange increases thereby enhancing the heat transfer rate. However, effective heat conduction in between the foam struts reduces as a result of the void spaces. These two conflicting phenomenon for radiation heat transfer in metal foams have been studied in this work. Similar to the foam conduction-convection heat transfer analysis, a conduction-radiation heat transfer model has been developed for metal foams in analogy with the conventional solid fin theory. Metal foams have been theoretically represented as simple cubic structures. A comparison of the radiative heat transfer through metal foams and solid fins attached to a surface having constant temperature has been presented. Effect of changes in foam characteristic properties such as porosity and pore density have also been studied.
NASA Technical Reports Server (NTRS)
Swenberg, Charles E. (Editor); Horneck, Gerda (Editor); Stassinopoulos, E. G. (Editor)
1993-01-01
Since there is an increasing interest in establishing lunar bases and exploring Mars by manned missions, it is important to develop appropriate risk estimates and radiation protection guidelines. The biological effects and physics of solar and galactic cosmic radiation are examined with respect to the following: the radiation environment of interplanetary space, the biological responses to radiation in space, and the risk estimates for deep space missions. There is a need for a long-term program where ground-based studies can be augmented by flight experiments and an international standardization with respect to data collection, protocol comparison, and formulation of guidelines for future missions.
Implications of the Observed Mesoscale Variations of Clouds for Earth's Radiation Budget
NASA Technical Reports Server (NTRS)
Rossow, William B.; Delo, Carl; Cairns, Brian; Hansen, James E. (Technical Monitor)
2001-01-01
The effect of small-spatial-scale cloud variations on radiative transfer in cloudy atmospheres currently receives a lot of research attention, but the available studies are not very clear about which spatial scales are important and report a very large range of estimates of the magnitude of the effects. Also, there have been no systematic investigations of how to measure and represent these cloud variations. We exploit the cloud climatology produced by the International Satellite Cloud Climatology Project (ISCCP) to: (1) define and test different methods of representing cloud variation statistics, (2) investigate the range of spatial scales that should be included, (3) characterize cloud variations over a range of space and time scales covering mesoscale (30 - 300 km, 3-12 hr) into part of the lower part of the synoptic scale (300 - 3000 km, 1-30 days), (4) obtain a climatology of the optical thickness, emissivity and cloud top temperature variability of clouds that can be used in weather and climate GCMS, together with the parameterization proposed by Cairns et al. (1999), to account for the effects of small-scale cloud variations on radiative fluxes, and (5) evaluate the effect of observed cloud variations on Earth's radiation budget. These results lead to the formulation of a revised conceptual model of clouds for use in radiative transfer calculations in GCMS. The complete variability climatology can be obtained from the ISCCP Web site at http://isccp.giss.nasa.gov.
Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt
NASA Astrophysics Data System (ADS)
Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.
2017-12-01
During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular, the repeatability in electron dynamics coupled with observations of processes leading to electron loss (EMIC waves) and acceleration (VLF or ULF waves) can be used to diagnose the relative importance of physical processes in radiation belt dynamics during storms.
Interior volume of (1 + D)-dimensional Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Bhaumik, Nilanjandev; Majhi, Bibhas Ranjan
2018-01-01
We calculate the maximum interior volume, enclosed by the event horizon, of a (1 + D)-dimensional Schwarzschild black hole. Taking into account the mass change due to Hawking radiation, we show that the volume increases towards the end of the evaporation. This fact is not new as it has been observed earlier for four-dimensional case. The interesting point we observe is that this increase rate decreases towards the higher value of space dimensions D; i.e. it is a decelerated expansion of volume with the increase of spatial dimensions. This implies that for a sufficiently large D, the maximum interior volume does not change. The possible implications of these results are also discussed.
Stability of silk and collagen protein materials in space.
Hu, Xiao; Raja, Waseem K; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L
2013-12-05
Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered.
Stability of Silk and Collagen Protein Materials in Space
Hu, Xiao; Raja, Waseem K.; An, Bo; Tokareva, Olena; Cebe, Peggy; Kaplan, David L.
2013-01-01
Collagen and silk materials, in neat forms and as silica composites, were flown for 18 months on the International Space Station [Materials International Space Station Experiment (MISSE)-6] to assess the impact of space radiation on structure and function. As natural biomaterials, the impact of the space environment on films of these proteins was investigated to understand fundamental changes in structure and function related to the future utility in materials and medicine in space environments. About 15% of the film surfaces were etched by heavy ionizing particles such as atomic oxygen, the major component of the low-Earth orbit space environment. Unexpectedly, more than 80% of the silk and collagen materials were chemically crosslinked by space radiation. These findings are critical for designing next-generation biocompatible materials for contact with living systems in space environments, where the effects of heavy ionizing particles and other cosmic radiation need to be considered. PMID:24305951
Diverse policy implications for future ozone and surface UV in a changing climate
NASA Astrophysics Data System (ADS)
Butler, A. H.; Daniel, J. S.; Portmann, R. W.; Ravishankara, A. R.; Young, P. J.; Fahey, D. W.; Rosenlof, K. H.
2016-06-01
Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.
Monitoring and Modeling Astronaut Occupational Radiation Exposures in Space: Recent Advances
NASA Technical Reports Server (NTRS)
Weyland, Mark; Golightly, Michael
1999-01-01
In 1982 astronauts were declared to be radiation workers by OSHA, and as such were subject to the rules and regulations applied to that group. NASA was already aware that space radiation was a hazard to crewmembers and had been studying and monitoring astronaut doses since 1962 at the Johnson Space Center. It was quickly realized NASA would not be able to accomplish all of its goals if the astronauts were subject to the ground based radiation worker limits, and thus received a waiver from OSHA to establish independent limits. As part of the stipulation attached to setting new limits, OSHA included a requirement to perform preflight dose projections for each crew and inform them of the associated risks. Additional requirements included measuring doses from various sources during the flight, making every effort to prevent a crewmember from exceeding the new limits, and keeping all exposures As Low As Reasonably Achievable (a.k.a. ALARA - a common health physics principle). The assembly of the International Space Station (ISS) and its initial manned operations will coincide with the 4-5 year period of high space weather activity at the next maximum in the solar cycle. For the first time in NASA's manned program, US astronauts will be in orbit continuously throughout a solar maximum period. During this period, crews are at risk of significantly increased radiation exposures due to solar particle events and trapped electron belt enhancements following geomagnetic storms. The problem of protecting crews is compounded by the difficulty of providing continuous real-time monitoring over a period of a decade in an era of tightly constrained budgets. In order to prepare for ISS radiological support needs, the NASA Space Radiation Analysis Group and the NOAA Space Environment Center have undertaken a multiyear effort to improve and automate ground-based space weather monitoring systems and real-time radiation analysis tools. These improvements include a coupled, automated space weather monitoring and alarm system--SPE exposure analysis system, an advanced space weather data distribution and display system, and a high-fidelity space weather simulation system. In addition, significant new real-time space weather data sets, which will enhance the forecasting and now-casting of near-Earth space environment conditions, are being made available through unique NASA-NOAA-USAF collaborations. These new data sets include coronal mass ejection monitoring by the Solar and Heliospheric Observatory (SOHO) and in-situ plasma and particle monitoring at the L1 libration point by the Solar Wind Monitor (SWIM) and Advanced Composition Explorer (ACE) spacecraft. Advanced real-time radiation monitoring data from charged particle telescopes and tissue equivalent proportional counters will also be available to assist crew and flight controllers in monitoring the external and intravehicular radiation environment.
Particle radiation transport and effects models from research to space weather operations
NASA Astrophysics Data System (ADS)
Santin, Giovanni; Nieminen, Petteri; Rivera, Angela; Ibarmia, Sergio; Truscott, Pete; Lei, Fan; Desorgher, Laurent; Ivanchenko, Vladimir; Kruglanski, Michel; Messios, Neophytos
Assessment of risk from potential radiation-induced effects to space systems requires knowledge of both the conditions of the radiation environment and of the impact of radiation on sensi-tive spacecraft elements. During sensitivity analyses, test data are complemented by models to predict how external radiation fields are transported and modified in spacecraft materials. Radiation transport is still itself a subject of research and models are continuously improved to describe the physical interactions that take place when particles pass through shielding materi-als or hit electronic systems or astronauts, sometimes down to nanometre-scale interactions of single particles with deep sub-micron technologies or DNA structures. In recent years, though, such radiation transport models are transitioning from being a research subject by itself, to being widely used in the space engineering domain and finally being directly applied in the context of operation of space weather services. A significant "research to operations" (R2O) case is offered by Geant4, an open source toolkit initially developed and used in the context of fundamental research in high energy physics. Geant4 is also being used in the space domain, e.g. for modelling detector responses in science payloads, but also for studying the radiation environment itself, with subjects ranging from cosmic rays, to solar energetic particles in the heliosphere, to geomagnetic shielding. Geant4-based tools are now becoming more and more integrated in spacecraft design procedures, also through user friendly interfaces such as SPEN-VIS. Some examples are given by MULASSIS, offering multi-layered shielding analysis capa-bilities in realistic spacecraft materials, or GEMAT, focused on micro-dosimetry in electronics, or PLANETOCOSMICS, describing the interaction of the space environment with planetary magneto-and atmospheres, or GRAS, providing a modular and easy to use interface to various analysis types in simple or complex and realistic 3D geometry models. GRAS will also be part of the space weather SEISOP system for supplying near-real-time detailed information on the interaction of the space radiation environment with selected spacecraft elements.
Genesis of the NASA Space Radiation Laboratory.
Schimmerling, Walter
2016-06-01
A personal recollection of events leading up to the construction and commissioning of NSRL, including reference to precursor facilities and the development of the NASA Space Radiation Program. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Radiation Transport Tools for Space Applications: A Review
NASA Technical Reports Server (NTRS)
Jun, Insoo; Evans, Robin; Cherng, Michael; Kang, Shawn
2008-01-01
This slide presentation contains a brief discussion of nuclear transport codes widely used in the space radiation community for shielding and scientific analyses. Seven radiation transport codes that are addressed. The two general methods (i.e., Monte Carlo Method, and the Deterministic Method) are briefly reviewed.
Lobascio, C; Briccarello, M; Destefanis, R; Faraud, M; Gialanella, G; Grossi, G; Guarnieri, V; Manti, L; Pugliese, M; Rusek, A; Scampoli, P; Durante, M
2008-03-01
Shielding is the only practical countermeasure for the exposure to cosmic radiation during space travel. It is well known that light, hydrogenated materials, such as water and polyethylene, provide the best shielding against space radiation. Kevlar and Nextel are two materials of great interest for spacecraft shielding because of their known ability to protect human space infrastructures from meteoroids and debris. We measured the response to simulated heavy-ion cosmic radiation of these shielding materials and compared it to polyethylene, Lucite (PMMA), and aluminum. As proxy to galactic nuclei we used 1 GeV n iron or titanium ions. Both physics and biology tests were performed. The results show that Kevlar, which is rich in carbon atoms (about 50% in number), is an excellent space radiation shielding material. Physics tests show that its effectiveness is close (80-90%) to that of polyethylene, and biology data suggest that it can reduce the chromosomal damage more efficiently than PMMA. Nextel is less efficient as a radiation shield, and the expected reduction on dose is roughly half that provided by the same mass of polyethylene. Both Kevlar and Nextel are more effective than aluminum in the attenuation of heavy-ion dose.
Concepts and challenges in cancer risk prediction for the space radiation environment.
Barcellos-Hoff, Mary Helen; Blakely, Eleanor A; Burma, Sandeep; Fornace, Albert J; Gerson, Stanton; Hlatky, Lynn; Kirsch, David G; Luderer, Ulrike; Shay, Jerry; Wang, Ya; Weil, Michael M
2015-07-01
Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Space radiation protection: Destination Mars.
Durante, Marco
2014-04-01
National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Nuclear model calculations and their role in space radiation research
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Cucinotta, F. A.; Heilbronn, L. H.
2002-01-01
Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. c2002 COSPAR. Published by Elsevier Science Ltd. All right reserved.
Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.
2004-01-01
For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of clinically significant cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that sub-clinical cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.
Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.
2004-01-01
For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures*. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of "clinically significant" cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that "sub-clinical" cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.
Neuritogenesis: A model for space radiation effects on the central nervous system
NASA Technical Reports Server (NTRS)
Vazquez, M. E.; Broglio, T. M.; Worgul, B. V.; Benton, E. V.
1994-01-01
Pivotal to the astronauts' functional integrity and survival during long space flights are the strategies to deal with space radiations. The majority of the cellular studies in this area emphasize simple endpoints such as growth related events which, although useful to understand the nature of primary cell injury, have poor predictive value for extrapolation to more complex tissues such as the central nervous system (CNS). In order to assess the radiation damage on neural cell populations, we developed an in vitro model in which neuronal differentiation, neurite extension, and synaptogenesis occur under controlled conditions. The model exploits chick embryo neural explants to study the effects of radiations on neuritogenesis. In addition, neurobiological problems associated with long-term space flights are discussed.
Space Radiation and Exploration - Information for the Augustine Committee Review
NASA Technical Reports Server (NTRS)
Cucinotta, Francis; Semones, Edward; Kim, Myung-Hee; Jackson, Lori
2009-01-01
Space radiation presents significant health risks including mortality for Exploration missions: a) Galactic cosmic ray (GCR) heavy ions are distinct from radiation that occurs on Earth leading to different biological impacts. b) Large uncertainties in GCR risk projections impact ability to design and assess mitigation approaches and select crew. c) Solar Proton Events (SPEs) require new operational and shielding approaches and new biological data on risks. Risk estimates are changing as new scientific knowledge is gained: a) Research on biological effects of space radiation show qualitative and quantitative differences with X- or gamma-rays. b) Expert recommendations and regulatory policy are changing. c) New knowledge leads to changes in estimates for the number of days in space to stay below Permissible Exposure Limits (PELS).
2012-05-30
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility near NASA's Kennedy Space Center in Florida, a technician performs a black light inspection on one of the Radiation Belt Storm Probes. Black light inspection uses UVA fluorescence to detect possible microcontamination, small cracks or fluid leaks. The Radiation Belt Storm Probes, or RBSP, mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett
Minimizing Astronauts' Risk from Space Radiation during Future Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hayat, Mathew; Nounu, Hatem N.; Feiveson, Alan H.; Cucinotta, Francis A.
2007-01-01
This viewgraph presentation reviews the risk factors from space radiation for astronauts on future lunar missions. Two types of radiation are discussed, Galactic Cosmic Radiation (GCR) and Solar Particle events (SPE). Distributions of Dose from 1972 SPE at 4 DLOCs inside Spacecraft are shown. A chart with the organ dose quantities is also given. Designs of the exploration class spacecraft and the planned lunar rover are shown to exhibit radiation protections features of those vehicles.
Gamma and neutrino radiation dose from gamma ray bursts and nearby supernovae.
Karam, P Andrew
2002-04-01
Supernovae and gamma ray bursts are exceptionally powerful cosmic events that occur randomly in space and time in our galaxy. Their potential to produce very high radiation levels has been discussed, along with speculation that they may have caused mass extinctions noted from the fossil record. It is far more likely that they have produced radiation levels that, while not lethal, are genetically significant, and these events may have influenced the course of evolution and the manner in which organisms respond to radiation insult. Finally, intense gamma radiation exposure from these events may influence the ability of living organisms to travel through space. Calculations presented in this paper suggest that supernovae and gamma ray bursts are likely to produce sea-level radiation exposures of about I Gy with a mean interval of about five million years and sea-level radiation exposures of about 0.2 Gy every million years. Comets and meteors traveling through space would receive doses in excess of 10 Gy at a depth of 0.02 m at mean intervals of 4 and 156 million years, respectively. This may place some constraints on the ability of life to travel through space either between planets or between planetary systems. Calculations of radiation dose from neutrino radiation are presented and indicate that this is not a significant source of radiation exposure for even extremely close events for the expected neutrino spectrum from these events.
Semi-Autonomous Rodent Habitat for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.
2018-01-01
NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups of mice exposed to simulated Galactic Cosmic Radiation (at the NASA Space Radiation Lab). Results can then be compared to identical experiments conducted on the ISS. Together results from Gateway, ground-based, and ISS rodent experiments will provide novel insight into the effects of space radiation.
Radiation health research, 1986 - 1990
NASA Technical Reports Server (NTRS)
1991-01-01
A collection of 225 abstracts of radiation research sponsored by NASA during the period 1986 through 1990 is reported. Each abstract was categorized within one of four discipline areas: physics, biology, risk assessment, and microgravity. Topic areas within each discipline were assigned as follows: Physics - atomic physics, nuclear science, space radiation, radiation transport and shielding, and instrumentation; Biology - molecular biology, cellular radiation biology, tissue, organs and organisms, radioprotectants, and plants; Risk assessment - radiation health and epidemiology, space flight radiation health physics, inter- and intraspecies extrapolation, and radiation limits and standards; and Microgravity. When applicable subareas were assigned for selected topic areas. Keywords and author indices are provided.
NASA Technical Reports Server (NTRS)
Salama, Farid; Tan, Xiaofeng; Cami, Jan; Biennier, Ludovic; Remy, Jerome
2006-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. A long-standing and major challenge for laboratory astrophysics has been to measure the spectra of large carbon molecules in laboratory environments that mimic (in a realistic way) the physical conditions that are associated with the interstellar emission and absorption regions [1]. This objective has been identified as one of the critical Laboratory Astrophysics objectives to optimize the data return from space missions [2]. An extensive laboratory program has been developed to assess the properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space. We present and discuss the gas-phase electronic absorption spectra of neutral and ionized PAHs measured in the UV-Visible-NIR range in astrophysically relevant environments and discuss the implications for astrophysics [1]. The harsh physical conditions of the interstellar medium characterized by a low temperature, an absence of collisions and strong VUV radiation fields - have been simulated in the laboratory by associating a pulsed cavity ringdown spectrometer (CRDS) with a supersonic slit jet seeded with PAHs and an ionizing, penning-type, electronic discharge. We have measured for the {\\it first time} the spectra of a series of neutral [3,4] and ionized [5,6] interstellar PAHs analogs in the laboratory. An effort has also been attempted to quantify the mechanisms of ion and carbon nanoparticles production in the free jet expansion and to model our simulation of the diffuse interstellar medium in the laboratory [7]. These experiments provide {\\it unique} information on the spectra of free, large carbon-containing molecules and ions in the gas phase. We are now, for the first time, in the position to directly compare laboratory spectral data on free, cold, PAH ions and carbon nano-sized carbon particles with astronomical observations in the UV-NIR range (interstellar UV extinction, DIBs in the NUV-NIR range). This new phase offers tremendous opportunities for the data analysis of current and upcoming space missions geared toward the detection of large aromatic systems Le., the "new frontier space missions" (Spitzer, HST, COS, JWST, SOFIA,...).
Space Weather Action Plan Ionizing Radiation Benchmarks: Phase 1 update and plans for Phase 2
NASA Astrophysics Data System (ADS)
Talaat, E. R.; Kozyra, J.; Onsager, T. G.; Posner, A.; Allen, J. E., Jr.; Black, C.; Christian, E. R.; Copeland, K.; Fry, D. J.; Johnston, W. R.; Kanekal, S. G.; Mertens, C. J.; Minow, J. I.; Pierson, J.; Rutledge, R.; Semones, E.; Sibeck, D. G.; St Cyr, O. C.; Xapsos, M.
2017-12-01
Changes in the near-Earth radiation environment can affect satellite operations, astronauts in space, commercial space activities, and the radiation environment on aircraft at relevant latitudes or altitudes. Understanding the diverse effects of increased radiation is challenging, but producing ionizing radiation benchmarks will help address these effects. The following areas have been considered in addressing the near-Earth radiation environment: the Earth's trapped radiation belts, the galactic cosmic ray background, and solar energetic-particle events. The radiation benchmarks attempt to account for any change in the near-Earth radiation environment, which, under extreme cases, could present a significant risk to critical infrastructure operations or human health. The goal of these ionizing radiation benchmarks and associated confidence levels will define at least the radiation intensity as a function of time, particle type, and energy for an occurrence frequency of 1 in 100 years and an intensity level at the theoretical maximum for the event. In this paper, we present the benchmarks that address radiation levels at all applicable altitudes and latitudes in the near-Earth environment, the assumptions made and the associated uncertainties, and the next steps planned for updating the benchmarks.
Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts
NASA Technical Reports Server (NTRS)
George, K.; Cucinotta, F. A.
2008-01-01
Cytogenetic analysis of astronauts blood lymphocytes provides a direct in vivo measurement of space radiation damage, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times beginning directly after return from space to several years after flight. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and the Relative Biological Effect (RBE) was estimated by comparison with individually measured physically absorbed doses. Values for average RBE were compared to the average quality factor (Q), from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. Results prove that cytogenetic biodosimetry analyses on blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk after protracted exposure to space radiation of a few months or more. However, data collected several months or years after flight suggests that the yield of chromosome translocations may decline with time after the mission, indicating that retrospective doses may be more difficult to estimate. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember, who has participated in two separate long-duration space missions and has been followed up for over 10 years, provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.
The Radiation Assessment Detector (RAD) Investigation
NASA Astrophysics Data System (ADS)
Hassler, D. M.; Zeitlin, C.; Wimmer-Schweingruber, R. F.; Böttcher, S.; Martin, C.; Andrews, J.; Böhm, E.; Brinza, D. E.; Bullock, M. A.; Burmeister, S.; Ehresmann, B.; Epperly, M.; Grinspoon, D.; Köhler, J.; Kortmann, O.; Neal, K.; Peterson, J.; Posner, A.; Rafkin, S.; Seimetz, L.; Smith, K. D.; Tyler, Y.; Weigle, G.; Reitz, G.; Cucinotta, F. A.
2012-09-01
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or "sleep"-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun
Purpose: There are uncertainties associated with the prediction of colorectal cancer (CRC) risk from highly energetic heavy ion (HZE) radiation. We undertook a comprehensive assessment of intestinal and colonic tumorigenesis induced after exposure to high linear energy transfer (high-LET) HZE radiation spanning a range of doses and LET in a CRC mouse model and compared the results with the effects of low-LET γ radiation. Methods and Materials: Male and female APC{sup 1638N/+} mice (n=20 mice per group) were whole-body exposed to sham-radiation, γ rays, {sup 12}C, {sup 28}Si, or {sup 56}Fe radiation. For the >1 Gy HZE dose, we used γ-ray equitoxicmore » doses calculated using relative biological effectiveness (RBE) determined previously. The mice were euthanized 150 days after irradiation, and intestinal and colon tumor frequency was scored. Results: The highest number of tumors was observed after {sup 28}Si, followed by {sup 56}Fe and {sup 12}C radiation, and tumorigenesis showed a male preponderance, especially after {sup 28}Si. Analysis showed greater tumorigenesis per unit of radiation (per cGy) at lower doses, suggesting either radiation-induced elimination of target cells or tumorigenesis reaching a saturation point at higher doses. Calculation of RBE for intestinal and colon tumorigenesis showed the highest value with {sup 28}Si, and lower doses showed greater RBE relative to higher doses. Conclusions: We have demonstrated that the RBE of heavy ion radiation-induced intestinal and colon tumorigenesis is related to ion energy, LET, gender, and peak RBE is observed at an LET of 69 keV/μm. Our study has implications for understanding risk to astronauts undertaking long duration space missions.« less
Vitamin D: Findings from Antarctic, Bed Rest, Houston, and ISS
NASA Technical Reports Server (NTRS)
Zwart, Sara R.; Locke, J.; Pierson, D.; Mehta, S.; Bourbeau, Y.; Parsons, H.; Smith, S. M.
2009-01-01
Obtaining vitamin D is critical for space travelers because they lack ultraviolet light exposure and have an insufficient dietary supply of vitamin D. Despite the provision of 400 IU vitamin D supplements to International Space Station (ISS) early crewmembers, vitamin D status was consistently lower after flight than before flight, and in several crewmembers has decreased to levels considered clinically significant. Vitamin D has long been known to play a role in calcium metabolism, and more recently its non-calcitropic functions have been recognized. According to the results of several recent studies, functionally relevant measures indicate that the lower limit of serum 25-hydroxyvitamin D (a marker of vitamin D status) should be raised from the current 23 nmol/L to 80 nmol/L. The mean preflight serum 25-hydroxyvitamin D (25-OH vit D) for U.S. ISS crewmembers to date is 63 +/- 16 nmol/L, and after a 4- to 6-mo space flight it typically decreases 25-30% despite supplementation (400 IU/d). The sub-optimal pre- and postflight vitamin D status is an issue that needs to be addressed, to allow NASA to better define the appropriate amount of supplemental vitamin D to serve as a countermeasure against vitamin D deficiency in astronaut crews. A series of ground-based and flight studies in multiple models have been conducted, including Antarctica in winter months when UV-B radiation levels are essentially zero, bed rest where subjects are not exposed to UV-B radiation for 60-90 days, in free-living individuals in Houston, and in International Space Station crewmembers. In these studies, we looked at dose regimen and efficacy, compliance issues, as well as toxicity. Preliminary results from these studies will be presented. Together, the data from these studies will enable us to provide space crews with evidence-based recommendations for vitamin D supplementation. The findings also have implications for other persons with limited UV light exposure, including polar workers and the elderly.
2016 Summer Series - Jin-Woo Han: Vacuum Electronics in a Nanometer Era
2016-06-07
Modern space vehicles rely on transistors. Radiation tolerance of space electronics is critical for space exploration beyond low Earth orbit. NASA Ames Research Center is investigating ways to overcome this issue using vacuums. Dr. Jin-Woo Han's lecture will present advancements in the use of vacuums to improve radiation immunity in space circuitry.
Dachev, T P; Semkova, J V; Tomov, B T; Matviichuk, Yu N; Dimitrov, P G; Koleva, R T; Malchev, St; Bankov, N G; Shurshakov, V A; Benghin, V V; Yarmanova, E N; Ivanova, O A; Häder, D-P; Lebert, M; Schuster, M T; Reitz, G; Horneck, G; Uchihori, Y; Kitamura, H; Ploc, O; Cubancak, J; Nikolaev, I
2015-01-01
Ionizing radiation is recognized to be one of the main health concerns for humans in the space radiation environment. Estimation of space radiation effects on health requires the accurate knowledge of the accumulated absorbed dose, which depends on the global space radiation distribution, solar cycle and local shielding generated by the 3D mass distribution of the space vehicle. This paper presents an overview of the spectrometer-dosimeters of the Liulin type, which were developed in the late 1980s and have been in use since then. Two major measurement systems have been developed by our team. The first one is based on one silicon detector and is known as a Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2002, 2003), while the second one is a dosimetric telescope (DT) with two or three silicon detectors. The Liulin-type instruments were calibrated using a number of radioactive sources and particle accelerators. The main results of the calibrations are presented in the paper. In the last section of the paper some of the most significant scientific results obtained in space and on aircraft, balloon and rocket flights since 1989 are presented. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Fabrication process scale-up and optimization for a boron-aluminum composite radiator
NASA Technical Reports Server (NTRS)
Okelly, K. P.
1973-01-01
Design approaches to a practical utilization of a boron-aluminum radiator for the space shuttle orbiter are presented. The program includes studies of laboratory composite material processes to determine the feasibility of a structural and functional composite radiator panel, and to estimate the cost of its fabrication. The objective is the incorporation of boron-aluminum modulator radiator on the space shuttle.
NASA Astrophysics Data System (ADS)
Elsässer, Thilo
Exposure to radiation of high-energy and highly charged ions (HZE) causes a major risk to human beings, since in long term space explorations about 10 protons per month and about one HZE particle per month hit each cell nucleus (1). Despite the larger number of light ions, the high ionisation power of HZE particles and its corresponding more complex damage represents a major hazard for astronauts. Therefore, in order to get a reasonable risk estimate, it is necessary to take into account the entire mixed radiation field. Frequently, neoplastic cell transformation serves as an indicator for the oncogenic potential of radiation exposure. It can be measured for a small number of ion and energy combinations. However, due to the complexity of the radiation field it is necessary to know the contribution to the radiation damage of each ion species for the entire range of energies. Therefore, a model is required which transfers the few experimental data to other particles with different LETs. We use the Local Effect Model (LEM) (2) with its cluster extension (3) to calculate the relative biological effectiveness (RBE) of neoplastic transformation. It was originally developed in the framework of hadrontherapy and is applicable for a large range of ions and energies. The input parameters for the model include the linear-quadratic parameters for the induction of lethal events as well as for the induction of transformation events per surviving cell. Both processes of cell inactivation and neoplastic transformation per viable cell are combined to eventually yield the RBE for cell transformation. We show that the Local Effect Model is capable of predicting the RBE of neoplastic cell transformation for a broad range of ions and energies. The comparison of experimental data (4) with model calculations shows a reasonable agreement. We find that the cluster extension results in a better representation of the measured RBE values. With this model it should be possible to better predict the risk of the complex mixed radiation field occurring in deep space. 1. F. A. Cucinotta and M. Durante, Lancet Oncol. 7, 431-435 (2006). 2. M. Scholz and G. Kraft, Radiat. Prot. Dosim. 52, 29-33 (1994). 3. Th. Els¨sser and M. Scholz, Radiat. Res. 167, 319-329 (2007). a 4. R. C. Miller, S. A. Marino, D. J. Brenner, S. G. Martin, M. Richards, G. Randers-Pehrson, and E. J. Hall, Radiat. Res. 142, 54-60 (1995).
Radiation risk estimation and its application to human beings in space.
Sinclair, W K
1984-01-01
The number of human beings likely to spend time in space will increase as time goes on. While exposures vary according to missions, orbits, shielding, etc., an average space radiation fluence (ignoring solar flares, radiation belts and anomalous regions in space) in locations close to earth is about 10 rad/year with a quality factor of about 5.5. The potential effects of exposure to these fluences include both non-stochastic effects and stochastic effects (cancer and genetic damage). Non-stochastic effects, damage to the lens of the eye, bone marrow or gonads, can be avoided by keeping radiation limits below threshold values. Stochastic effects imply risk at all levels. The magnitude of these risks has been discussed in a number of reports by the UNSCEAR Committee and the BEIR Committee in the USA during 1970-1980. The uncertainties associated with these risks and information which has become available since the last BEIR report is discussed. In considering reasonable limits for exposure in space, acceptable levels for stochastic risks must be based on appropriate comparisons. In view of the limited term of duty of most space workers, a lifetime limit may be appropriate. This lifetime limit might be comparable in terms of risks with limits for radiation workers on the ground but received at a higher annual rate for a shorter time. These and other approaches are expected to be considered by an NCRP Committee currently examining the problem of space radiation hazards.
OLTARIS: An Efficient Web-Based Tool for Analyzing Materials Exposed to Space Radiation
NASA Technical Reports Server (NTRS)
Slaba, Tony; McMullen, Amelia M.; Thibeault, Sheila A.; Sandridge, Chris A.; Clowdsley, Martha S.; Blatting, Steve R.
2011-01-01
The near-Earth space radiation environment includes energetic galactic cosmic rays (GCR), high intensity proton and electron belts, and the potential for solar particle events (SPE). These sources may penetrate shielding materials and deposit significant energy in sensitive electronic devices on board spacecraft and satellites. Material and design optimization methods may be used to reduce the exposure and extend the operational lifetime of individual components and systems. Since laboratory experiments are expensive and may not cover the range of particles and energies relevant for space applications, such optimization may be done computationally with efficient algorithms that include the various constraints placed on the component, system, or mission. In the present work, the web-based tool OLTARIS (On-Line Tool for the Assessment of Radiation in Space) is presented, and the applicability of the tool for rapidly analyzing exposure levels within either complicated shielding geometries or user-defined material slabs exposed to space radiation is demonstrated. An example approach for material optimization is also presented. Slabs of various advanced multifunctional materials are defined and exposed to several space radiation environments. The materials and thicknesses defining each layer in the slab are then systematically adjusted to arrive at an optimal slab configuration.
Operational radiological support for the US manned space program
NASA Technical Reports Server (NTRS)
Golightly, Michael J.; Hardy, Alva C.; Atwell, William; Weyland, Mark D.; Kern, John; Cash, Bernard L.
1993-01-01
Radiological support for the manned space program is provided by the Space Radiation Analysis Group at NASA/JSC. This support ensures crew safety through mission design analysis, real-time space environment monitoring, and crew exposure measurements. Preflight crew exposure calculations using mission design information are used to ensure that crew exposures will remain within established limits. During missions, space environment conditions are continuously monitored from within the Mission Control Center. In the event of a radiation environment enhancement, the impact to crew exposure is assessed and recommendations are provided to flight management. Radiation dosimeters are placed throughout the spacecraft and provided to each crewmember. During a radiation contingency, the crew could be requested to provide dosimeter readings. This information would be used for projecting crew dose enhancements. New instrumentation and computer technology are being developed to improve the support. Improved instruments include tissue equivalent proportional counter (TEPC)-based dosimeters and charged particle telescopes. Data from these instruments will be telemetered and will provide flight controllers with unprecedented information regarding the radiation environment in and around the spacecraft. New software is being acquired and developed to provide 'smart' space environmental data displays for use by flight controllers.
Download WinZip Radiation Effects Testing and Calibration This facility is available for the study of space radiation effects, in particular, Single Event Upset ( SEU ) Testing and Spacecraft Instrument Calibration information about our facility. Visit our Space and Radiation Effects Links page to find out what is going on
CMOS Ultra Low Power Radiation Tolerant (CULPRiT) Microelectronics
NASA Technical Reports Server (NTRS)
Yeh, Penshu; Maki, Gary
2007-01-01
Space Electronics needs Radiation Tolerance or hardness to withstand the harsh space environment: high-energy particles can change the state of the electronics or puncture transistors making them disfunctional. This viewgraph document reviews the use of CMOS Ultra Low Power Radiation Tolerant circuits for NASA's electronic requirements.
[Bio-objects and biological methods of space radiation effects evaluation].
Kaminskaia, E V; Nevzgodina, L V; Platova, N G
2009-01-01
The unique conditions of space experiments place austere requirements to bio-objects and biological methods of radiation effects evaluation. The paper discusses suitability of a number of bio-objects varying in stage of evolution and metabolism for space researches aimed to state common patterns of the radiation damage caused by heavy ions (HI), and character of HI-cell interaction. Physical detectors in space experiments of the BIOBLOCK series make it possible to identify bio-objects hit by space HI and to set correlation between HI track topography and biological effect. The paper provides an all-round description of the bio-objects chosen for two BIOBLOCK experiments (population of hydrophyte Wolffia arrhiza (fam. duckweed) and Lactuca sativa seeds) and the method of evaluating effects from single space radiation HI. Direct effects of heavy ions on cells can be determined by the criteria of chromosomal aberrations and delayed morphologic abnormalities. The evaluation results are compared with the data about human blood lymphocytes. Consideration is being given to the procedures of test-objects' treatment and investigation.
Long-term survival of bacterial spores in space
NASA Technical Reports Server (NTRS)
Horneck, G.; Bucker, H.; Reitz, G.
1994-01-01
On board of the NASA Long Duration Exposure Facility (LDEF), spores of Bacillus subtilis in monolayers (10(exp 6)/sample) or multilayers (10(exp 8)/sample) were exposed to the space environment for nearly six years and their survival was analyzed after retrieval. The response to space parameters, such as vacuum (10(exp -6) Pa), solar electromagnetic radiation up to the highly energetic vacuum-ultraviolet range 10(exp 9) J/sq m) and/or cosmic radiation (4.8 Gy), was studied and compared to the results of a simultaneously running ground control experiment. If shielded against solar ultraviolet (UV)-radiation, up to 80% of spores in multilayers survive in space. Solar UV-radiation, being the most deleterious parameter of space, reduces survival by 4 orders of magnitude or more. However, up to 10(exp 4) viable spores were still recovered, even in completely unprotected samples. Substances, such as glucose or buffer salts serve as chemical protectants. With this 6 year study in space, experimental data are provided to the discussion on the likelihood of 'Panspermia'.
Qualification of quantum cascade lasers for space environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.
2014-06-11
Laser-based instruments are enabling a new generation of scientific instruments for space environments such as those used in the exploration of Mars. The lasers must be robust and able to withstand the harsh environment of space, including radiation exposure. Quantum cascade lasers (QCLs), which are semiconductor lasers that emit in the infrared spectral region, offer the potential for the development of novel laser-based instruments for space applications. The performance of QCLs after radiation exposure, however, has not been reported. We report on work to quantify the performance of QCLs after exposure to two different radiation sources, 64 MeV protons andmore » Cobalt-60 gamma rays, at radiation levels likely to be encountered during a typical space flight mission. No significant degradation in threshold current or slope efficiency is observed for any of the seven Fabry-Perot QCLs that are tested.« less
Implementation of ionizing radiation environment requirements for Space Station
NASA Technical Reports Server (NTRS)
Boeder, Paul A.; Watts, John W.
1993-01-01
Proper functioning of Space Station hardware requires that the effects of high-energy ionizing particles from the natural environment and (possibly) from man-made sources be considered during design. At the Space Station orbit of 28.5-deg inclination and 330-440 km altitude, geomagnetically trapped protons and electrons contribute almost all of the dose, while galactic cosmic rays and anomalous cosmic rays may produce Single Event Upsets (SEUs), latchups, and burnouts of microelectronic devices. Implementing ionizing radiation environment requirements for Space Station has been a two part process, including the development of a description of the environment for imposing requirements on the design and the development of a control process for assessing how well the design addresses the effects of the ionizing radiation environment. We will review both the design requirements and the control process for addressing ionizing radiation effects on Space Station.
Towards a Radiation Hardened Fluxgate Magnetometer for Space Physics Applications
NASA Astrophysics Data System (ADS)
Miles, David M.
Space-based measurements of the Earth's magnetic field are required to understand the plasma processes of the solar-terrestrial connection which energize the Van Allen radiation belts and cause space weather. This thesis describes a fluxgate magnetometer payload developed for the proposed Canadian Space Agencys Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission. The instrument can resolve 8 pT on a 65,000 nT field at 900 samples per second with a magnetic noise of less than 10 pT per square-root Hertz at 1 Hertz. The design can be manufactured from radiation tolerant (100 krad) space grade parts. A novel combination of analog temperature compensation and digital feedback simplifies and miniaturises the instrument while improving the measurement bandwidth and resolution. The prototype instrument was successfully validated at the Natural Resources Canada Geomagnetics Laboratory, and is being considered for future ground, satellite and sounding rocket applications.
Space radiation health research, 1991-1992
NASA Technical Reports Server (NTRS)
Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)
1993-01-01
The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.
Survey of current situation in radiation belt modeling
NASA Technical Reports Server (NTRS)
Fung, Shing F.
2004-01-01
The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.
Opportunities for nutritional amelioration of radiation-induced cellular damage
NASA Technical Reports Server (NTRS)
Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.
2002-01-01
The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.
Intelligent Memory Module Overcomes Harsh Environments
NASA Technical Reports Server (NTRS)
2008-01-01
Solar cells, integrated circuits, and sensors are essential to manned and unmanned space flight and exploration, but such systems are highly susceptible to damage from radiation. Especially problematic, the Van Allen radiation belts encircle Earth in concentric radioactive tori at distances from about 6,300 to 38,000 km, though the inner radiation belt can dip as low as 700 km, posing a severe hazard to craft and humans leaving Earth s atmosphere. To avoid this radiation, the International Space Station and space shuttles orbit at altitudes between 275 and 460 km, below the belts range, and Apollo astronauts skirted the edge of the belts to minimize exposure, passing swiftly through thinner sections of the belts and thereby avoiding significant side effects. This radiation can, however, prove detrimental to improperly protected electronics on satellites that spend the majority of their service life in the harsh environment of the belts. Compact, high-performance electronics that can withstand extreme environmental and radiation stress are thus critical to future space missions. Increasing miniaturization of electronics addresses the need for lighter weight in launch payloads, as launch costs put weight at a premium. Likewise, improved memory technologies have reduced size, cost, mass, power demand, and system complexity, and improved high-bandwidth communication to meet the data volume needs of the next-generation high-resolution sensors. This very miniaturization, however, has exacerbated system susceptibility to radiation, as the charge of ions may meet or exceed that of circuitry, overwhelming the circuit and disrupting operation of a satellite. The Hubble Space Telescope, for example, must turn off its sensors when passing through intense radiation to maintain reliable operation. To address the need for improved data quality, additional capacity for raw and processed data, ever-increasing resolution, and radiation tolerance, NASA spurred the development of the Radiation Tolerant Intelligent Memory Stack (RTIMS).
Atmospheric radiation flight dose rates
NASA Astrophysics Data System (ADS)
Tobiska, W. K.
2015-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.
NASA Technical Reports Server (NTRS)
Denkins, Pamela; Badhwar, Gautam; Obot, Victor
2000-01-01
NASA's long-range plans include possible human exploratory missions to the moon and Mars within the next quarter century. Such missions beyond low Earth orbit will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and the missions long, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. The focus of this study is radiation exposure to the blood-forming organs of the NASA astronauts. NASA/JSC developed the Phantom Torso Experiment for Organ Dose Measurements which housed active and passive dosimeters that would monitor and record absorbed radiation levels at vital organ locations. This experiment was conducted during the STS-9 I mission in May '98 and provided the necessary space radiation data for correlation to results obtained from the current analytical models used to predict exposure to the blood-forming organs. Numerous models (i.e., BRYNTRN and HZETRN) have been developed and used to predict radiation exposure. However, new models are continually being developed and evaluated. The Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronomy, is to be used and evaluated as a part of the research activity. It is the intent of this research effort to compare the modeled data to the findings from the STS-9 I mission; assess the accuracy and efficiency of this model; and to determine its usefulness for predicting radiation exposure and developing better guidelines for shielding requirements for long duration manned missions.
Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations
NASA Astrophysics Data System (ADS)
Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun
Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism and is reported to be involved in DNA repair process. Its expression sensitivity and specificity were confirmed by RT-PCR and western blot analysis, indicating its potential to be used as space radiation biomarker. Space radiations might induce epigenetic effects on rice plants, especially changes of DNA methylation. Early results suggested that there were correlations between DNA methylation polymorphic and genomic mutation rates. In addition, the 5-methylcytosine located in coding gene’s promoter and exon regions could regulate gene expressions thus influence protein expressions. So whether there is correlation between genome DNA methylation changes and protein expression profile alterations caused by space radiation is worth for further investigation. Therefore we used the same rice samples treated by carbon ion radiation with different doses (0, 10, 20,100, 200, 1000, 2000, 5000, 20000mGy) and applied methylation sensitive amplification polymorphism (MSAP) for scanning genome DNA methylation changes. Interestingly, DNA methylation polymorphism rates also presented a dose-dependent effect and showed the same changing trend as rates of differentially expressed proteins. Whether there are correlations between epigenetic and proteomic effects of space radiation is worth for further investigation.
Radiation reaction in fusion plasmas.
Hazeltine, R D; Mahajan, S M
2004-10-01
The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.
Solid State Radiation Dosimeters for Space and Medical Applications
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Editor)
1996-01-01
This report describes the development of two radiation monitors (RADMON's) for use in detecting total radiation dose and high-energy particles. These radiation detectors are chip-size devices fabricated in 1.2 micrometer CMOS and have flown in space on both experimental and commercial spacecraft. They have been used to characterize protons and electrons in the Earth's radiation belts, particles from the Sun, and protons used for medical therapy. Having proven useful in a variety of applications, the detector is now being readied for commercialization.
NASA Technical Reports Server (NTRS)
Shea, M. A. (Editor); Heinrich, W. (Editor); Badhwar, G. D. (Editor)
1996-01-01
Both man and technological equipment must survive the near-earth space radiation environment, which can, under specific conditions, be extremely severe. This conference produced 17 papers on the dynamic space radiation environment covering: galactic, solar and trapped particles; nuclear fragmentation; nuclear interactions and transport theory; solar proton events; radiation shielding; and heavy ion fluences. Several papers present results from the recent SAMPEX mission.
NASA Astrophysics Data System (ADS)
Hei, Tom K.
2016-06-01
Ground based radiation research facilities are indispensable for a better understanding of the biological principles governing the responses of living organisms to space radiation and for advancing our knowledge in space radiation dosimetry and protection. 2015 marked the 20th anniversary of the first acquisition of space radiation biology and physics data at the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL) in Upton, New York. Use of the BNL AGS was the product of a collaborative agreement between NASA and BNL to promote the goals of NASA to "expand human presence in the solar system and to the surface of Mars and to advance exploration, science, innovation and benefits to humanity and international collaboration". This collaborative agreement signed on April 8th, 1994 built on previous work at the Lawrence Berkeley National Laboratory Bevalac and paved the way for the approval and construction of a dedicated space radiation laboratory at BNL, the NASA Space Radiation Laboratory (NSRL). In this volume we present three review articles: on the history of the creation of the NSRL, by Walter Schimmerling; on the physics-related research at the AGS and NSRL, by Jack Miller and Cary Zeitlin; and on the identification and evaluation of biomarkers for modeling cancer risk after exposure to space radiation, by Janice Pluth and her colleagues. It is the hope of the editors that our readers, and especially those relatively new to the field, will find these articles to be informative and interesting and that they will foster an appreciation of the importance of ground based radiation research in protecting the health of crew members as they venture out into the solar system in the coming decades.
Computing Interactions Of Free-Space Radiation With Matter
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Shinn, J. L.; Townsend, L. W.; Badavi, F. F.; Tripathi, R. K.; Silberberg, R.; Tsao, C. H.; Badwar, G. D.
1995-01-01
High Charge and Energy Transport (HZETRN) computer program computationally efficient, user-friendly package of software adressing problem of transport of, and shielding against, radiation in free space. Designed as "black box" for design engineers not concerned with physics of underlying atomic and nuclear radiation processes in free-space environment, but rather primarily interested in obtaining fast and accurate dosimetric information for design and construction of modules and devices for use in free space. Computational efficiency achieved by unique algorithm based on deterministic approach to solution of Boltzmann equation rather than computationally intensive statistical Monte Carlo method. Written in FORTRAN.
Standardization Process for Space Radiation Models Used for Space System Design
NASA Technical Reports Server (NTRS)
Barth, Janet; Daly, Eamonn; Brautigam, Donald
2005-01-01
The space system design community has three concerns related to models of the radiation belts and plasma: 1) AP-8 and AE-8 models are not adequate for modern applications; 2) Data that have become available since the creation of AP-8 and AE-8 are not being fully exploited for modeling purposes; 3) When new models are produced, there is no authorizing organization identified to evaluate the models or their datasets for accuracy and robustness. This viewgraph presentation provided an overview of the roadmap adopted by the Working Group Meeting on New Standard Radiation Belt and Space Plasma Models.
Radiation resistance of thin-film solar cells for space photovoltaic power
NASA Technical Reports Server (NTRS)
Woodyard, James R.; Landis, Geoffrey A.
1991-01-01
Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard rolls to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard rolls to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
2012-08-22
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard rolls to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Nagaoka, Shunji
1993-01-01
NASDA is now participating in a series of flight experiments on Spacelab missions. The first experiment was carried out on the first International Microgravity Laboratory Mission (IML-1) January 1992, and the second experiment will be conducted on the Spacelab-J Mission, First Materials Processing Test (FMPT). The equipment or Radiation Monitoring Container Devices (RMCD) includes passive dosimeter systems and biological specimens. The experiments using this hardware are designed by NASDA to measure and investigate the radiation levels inside spacecraft like space shuttle and to look at the basic effects of the space environment from the aspect of radiation biology. The data gathered will be analyzed to understand the details of biological effects as well as the physical nature of space radiation registered in the sensitive Solid-State Track Detectors (SSTD).
Reliability analysis and utilization of PEMs in space application
NASA Astrophysics Data System (ADS)
Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi
2009-11-01
More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.
Electrodynamic Dust Shield Technology for Thermal Radiators Used in Lunar Exploration
NASA Technical Reports Server (NTRS)
Calle, Carlos I.; Hogue, Michael D.; Snyder, Sarah J.; Clements, Sidney J.; Johansen, Michael R.; Chen, Albert
2011-01-01
Two general types of thermal radiators are being considered for lunar missions: coated metallic surfaces and Second Surface Mirrors. Metallic surfaces are coated with a specially formulated white paint that withstands the space environment and adheres well to aluminium, the most common metal used in space hardware. AZ-93 White Thermal Control Paint, developed for the space program, is an electrically conductive inorganic coating that offers thermal control for spacecraft. It is currently in use on satellite surfaces (Fig 1). This paint withstands exposure to atomic oxygen, charged particle radiation, and vacuum ultraviolet radiation form 118 nm to 170 nm while reflecting 84 to 85% of the incident solar radiation and emitting 89-93% of the internal heat generated inside the spacecraft.
NASA Astrophysics Data System (ADS)
Kobayashi, Daisuke; Hirose, Kazuyuki; Saito, Hirobumi
2013-05-01
Development of semiconductor devices not only for harsh radiation environments such as space but also for ground-based applications now faces a major hurdle of radiation problems. Necessary is protecting chips from malfunctions due to sub-nanosecond transient noises induced by radiation. As a protection technique using the silicon-on-insulator structure is often suggested, but the use in fact requires devices and circuits carefully optimized for maximizing its benefits. Mainly describing theoretical and experimental characterization of the transient effects, this paper presents a comprehensive study on radiation responses of commercial silicon-on- insulator technologies, which study results in a space-use low-power system-on-chip with a 100-MIPS RISC-based core.
Space and radiation protection: scientific requirements for space research
NASA Technical Reports Server (NTRS)
Schimmerling, W.
1995-01-01
Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed.
MESTRN: A Deterministic Meson-Muon Transport Code for Space Radiation
NASA Technical Reports Server (NTRS)
Blattnig, Steve R.; Norbury, John W.; Norman, Ryan B.; Wilson, John W.; Singleterry, Robert C., Jr.; Tripathi, Ram K.
2004-01-01
A safe and efficient exploration of space requires an understanding of space radiations, so that human life and sensitive equipment can be protected. On the way to these sensitive sites, the radiation fields are modified in both quality and quantity. Many of these modifications are thought to be due to the production of pions and muons in the interactions between the radiation and intervening matter. A method used to predict the effects of the presence of these particles on the transport of radiation through materials is developed. This method was then used to develop software, which was used to calculate the fluxes of pions and muons after the transport of a cosmic ray spectrum through aluminum and water. Software descriptions are given in the appendices.
Tutorial: Radiation Effects in Electronic Systems
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2017-01-01
This tutorial presentation will give an overview of radiation effects in electrical, electronic, and electromechanical (EEE) components as it applies to civilian space systems of varying size and complexity. The natural space environment presents many unique threats to electronic systems regardless of where the systems operate from low-Earth orbit to interplanetary space. The presentation will cover several topics, including: an overview and introduction to the applicable space radiation environments common to a broad range of mission designs; definitions and impacts of effects due to impinging particles in the space environment e.g., total ionizing dose (TID), total non-ionizing dose (TNID), and single-event effects (SEE); and, testing for and evaluation of TID, TNID, and SEE in EEE components.
Estimated Environmental Exposures for MISSE-3 and MISSE-4
NASA Technical Reports Server (NTRS)
Finckenor, Miria M.; Pippin, Gary; Kinard, William H.
2008-01-01
Describes the estimated environmental exposure for MISSE-2 and MISSE-4. These test beds, attached to the outside of the International Space Station, were planned for 3 years of exposure. This was changed to 1 year after MISSE-1 and -2 were in space for 4 years. MISSE-3 and -4 operate in a low Earth orbit space environment, which exposes them to a variety of assaults including atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, and meteoroid/space debris impact, as well as contamination associated with proximity to an active space station. Measurements and determinations of atomic oxygen fluences, solar UV exposure levels, molecular contamination levels, and particulate radiation are included.
NASA Astrophysics Data System (ADS)
Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda
2017-02-01
In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms.
2003-01-22
The blueprint of life, DNA's double helix is found in the cells of everything from bacteria to astronauts. Exposure to radiation(depicted at right) such as X-rays (upper) or heavy ion particles (lower), can damage DNA and cause dire consequences both to the organism itself and to future generations. One of NASA's main goals is to develop better radiation shielding materials to protect astronauts from destructive radiation in space. This is particularly important for long space missions. NASA has selected researchers to study materials that provide better shielding. This research is managed by NASA's Office of Biological and Physical Research and is supported by the Microgravity Science and Applications Department at NASA's Marshall Center. During International Space Station Expedition Six, the Extravehicular Activity Radiation Monitoring (EVARM) will continue to measure radiation dosage encountered by the eyes, internal organs and skin during specific spacewalks, and relate it to the type of activity, location and other factors. An analysis of this information may be useful in mitigating potential exposure to space walkers in the future. (Illustration by Dr. Frank Cucinotta, NASA/Johnson Space Center, and Prem Saganti, Lockheed Martin)
Matroshka AstroRad Radiation Experiment (MARE) on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Gaza, R.; Hussein, H.; Murrow, D.; Hopkins, J.; Waterman, G.; Milstein, O.; Berger, T.; Przybyla, B.; Aeckerlein, J.; Marsalek, K.; Matthiae, D.; Rutczynska, A.
2018-02-01
The Matroshka AstroRad Radiation Experiment is a science payload on Orion EM-1 flight. A research platform derived from MARE is proposed for the Deep Space Gateway. Feedback is invited on desired Deep Space Gateway design features to maximize its science potential.