Sample records for space remote sensing

  1. 75 FR 32360 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and.... Abstract NOAA has established requirements for the licensing of private operators of remote-sensing space... Land Remote- Sensing Policy Act of 1992 and with the national security and international obligations of...

  2. 78 FR 44536 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and... for the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of...

  3. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  4. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  5. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  6. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  7. 15 CFR 960.12 - Data policy for remote sensing space systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...

  8. Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,

    DTIC Science & Technology

    1996-03-19

    Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first

  9. A Study on the Commercialization of Space-Based Remote Sensing in the Twenty-First Century and Its Implications to United States National Security

    DTIC Science & Technology

    2011-06-01

    Remote sensing from space provides critical data for many commercial space applications. Due to global market demand, it has undergone tremendous...commercial space imaging capability in the future, remote sensing policy makers, systems engineers, and industry analysts must be aware of the implications to United States National Security....available dissemination and accessibility. The analysis results, together with the findings from a review of commercial programs, initiatives, and remote

  10. Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space

    DTIC Science & Technology

    2000-02-20

    Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses

  11. Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science

    NASA Astrophysics Data System (ADS)

    Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.

    2017-09-01

    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  12. Earth Observation from Space: Competition or Cooperation?

    DTIC Science & Technology

    1992-04-01

    or remote sensing from space (2). Earth observations or remote sensing includes all forms of observation by sensors borne by a space object including...3). The capabilities of remote sensing are as varied as the sensors that are built and put in orbit, but =- • I •1 capabilities fall into two...adversary or ally. For example, the ability of one nation to observe and study another through space-borne sensors permits strategic assessment of a

  13. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  14. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  15. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  16. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  17. 15 CFR 960.13 - Prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...

  18. International Conference on Remote Sensing Applications for Archaeological Research and World Heritage Conservation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.

  19. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  20. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  1. Remote sensing by satellite - Technical and operational implications for international cooperation

    NASA Technical Reports Server (NTRS)

    Doyle, S. E.

    1976-01-01

    International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.

  2. Remote Sensing of Precipitation from Space

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2010-01-01

    This slide presentation reviews the use of remote sensing of precipitation from satellite observations. The purpose of the presentation is to introduce the three prime instrument types for measuring precipitation from space, give an overview of the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, provides examples of how measurements from space can be used, and provides simple, high level scenarios for how remote sensed precipitation data can be used by planners and managers.

  3. Implementation of space satellite remote sensing programs in developing countries (Ecuador)

    NASA Technical Reports Server (NTRS)

    Segovia, A.

    1982-01-01

    The current state of space satellite remote sensing programs in developing countries is discussed. Sensors being utilized and results obtained are described. Requirements are presented for the research of resources in developing countries. It is recommended that a work procedure be developed for the use of satellite remote sensing data tailored to the necessities of the different countries.

  4. Remote sensing of natural resources: Quarterly literature review

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.

  5. China national space remote sensing infrastructure and its application

    NASA Astrophysics Data System (ADS)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  6. Microwave remote sensing from space for earth resource surveys

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.

  7. Remote Sensing: A Film Review.

    ERIC Educational Resources Information Center

    Carter, David J.

    1986-01-01

    Reviews the content of 19 films on remote sensing published between 1973 and 1980. Concludes that they are overly simplistic, notably outdated, and generally too optimistic about the potential of remote sensing from space for resource exploration and environmental problem-solving. Provides names and addresses of more current remote sensing…

  8. Remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 3, 4, 1986

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T. (Editor)

    1986-01-01

    Advances in optical technology for remote sensing are discussed in reviews and reports of recent experimental investigations. Topics examined include industrial applications, laser diagnostics for combustion research, laser remote sensing for ranging and altimetry, and imaging systems for terrestrial remote sensing from space. Consideration is given to LIF in forensic diagnostics, time-resolved laser-induced-breakdown spectrometry for rapid analysis of alloys, CARS in practical combustion environments, airborne inertial surveying using laser tracking and profiling techniques, earth-resources instrumentation for the EOS polar platform of the Space Station, and the SAR for EOS.

  9. 15 CFR 960.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...

  10. 15 CFR 960.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...

  11. 15 CFR 960.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...

  12. 15 CFR 960.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...

  13. 15 CFR 960.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and...

  14. Restoration of color in a remote sensing image and its quality evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Zuxun; Li, Zhijiang; Zhang, Jianqing; Wang, Zhihe

    2003-09-01

    This paper is focused on the restoration of color remote sensing (including airborne photo). A complete approach is recommended. It propose that two main aspects should be concerned in restoring a remote sensing image, that are restoration of space information, restoration of photometric information. In this proposal, the restoration of space information can be performed by making the modulation transfer function (MTF) as degradation function, in which the MTF is obtained by measuring the edge curve of origin image. The restoration of photometric information can be performed by improved local maximum entropy algorithm. What's more, a valid approach in processing color remote sensing image is recommended. That is splits the color remote sensing image into three monochromatic images which corresponding three visible light bands and synthesizes the three images after being processed separately with psychological color vision restriction. Finally, three novel evaluation variables are obtained based on image restoration to evaluate the image restoration quality in space restoration quality and photometric restoration quality. An evaluation is provided at last.

  15. Study on identifying deciduous forest by the method of feature space transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Wu, Pengfei

    2009-10-01

    The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.

  16. Ionospheric Profiles from Ultraviolet Remote Sensing

    DTIC Science & Technology

    1997-09-30

    The long-term goal of this project is to obtain ionospheric profiles from ultraviolet remote sensing of the ionosphere from orbiting space platforms... Remote sensing of the nighttime ionosphere is a more straightforward process because of the absence of the complications brought about by daytime

  17. RFI and Remote Sensing of the Earth from Space

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.

    2016-01-01

    Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.

  18. 75 FR 52307 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...: National Oceanic and Atmospheric Administration (NOAA). Title: Licensing of Private Remote-Sensing Space... National Satellite Land Remote Sensing Data Archive; 3 hours for the submission of an operational quarterly... and Uses: NOAA has established requirements for the licensing of private operators of remote-sensing...

  19. Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991

    NASA Technical Reports Server (NTRS)

    Mcelroy, James L. (Editor); Mcneal, Robert J. (Editor)

    1991-01-01

    The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements.

  20. Earth observations from space: Outlook for the geological sciences

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Lowman, P. D., Jr.

    1973-01-01

    Remote sensing from space platforms is discussed as another tool available to geologists. The results of Nimbus observations, the ERTS program, and Skylab EREP are reviewed, and a multidisciplinary approach is recommended for meeting the challenges of remote sensing.

  1. 15 CFR 960.11 - Conditions for operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.11 Conditions for... all facilities which comprise the remote sensing space system for the purpose of conducting license... possession, the licensee shall offer such data to the National Satellite Land Remote Sensing Data Archive at...

  2. 15 CFR 960.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.3 Definitions. For purposes of the regulations in this part, the following terms have the following meanings: Act means the Land Remote Sensing... application for a NOAA license to operate a remote sensing space system. Assistant Administrator means the...

  3. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  4. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  5. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  6. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  7. 15 CFR 960.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...

  8. Criteria for successful government-industry-academic partnerships

    NASA Astrophysics Data System (ADS)

    Brannon, David P.

    1996-03-01

    The mission of the Commercial Remote Sensing Program (CRSP) Office at NASA's John C. Stennis Space Center is to maximize U.S. industry's commercial use of remote sensing and related space-based technologies and to develop advanced technical responses to spatial information requirements. The CRSP Office carries out this mission by offering several commercial partnership programs that help companies to apply remote sensing technologies in business applications and to buy down the risk of bringing new or improved products and services to market. Through its commercial partnerships, the CRSP seeks to increase the market demand for remote sensing products and related advanced technologies, thus increasing the use and reducing the cost of spatial information.

  9. Ionospheric Profiles from Ultraviolet Remote Sensing

    DTIC Science & Technology

    1998-01-01

    remote sensing of the ionosphere from orbiting space platforms. Remote sensing of the nighttime ionosphere is a relatively straightforward process due to the absence of the complications brought about by daytime solar radiation. Further, during the nighttime hours, the O(+)-H(+) transition level in both the mid- and low-latitude ionospheres lies around 750 km, which is within the range of accuracy of the path matrix inversion. The intensity of the O(+)-e(-) recombination radiation as observed from orbiting space platforms can now be used to

  10. Merlin: an integrated path differential absorption (IPDA) lidar for global methane remote sensing

    NASA Astrophysics Data System (ADS)

    Bode, M.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    The Methane Remote Sensing LIDAR Mission (MERLIN) is a joint French-German cooperation on the development, launch and operation of a climate monitoring satellite, executed by the French Space Agency CNES and the German Space Administration DLR.

  11. Merlin: an integrated path differential absorption (IPDA) lidar for global methane remote sensing

    NASA Astrophysics Data System (ADS)

    Bode, M.; Wührer, C.; Alpers, M.; Millet, B.; Ehret, G.; Bousquet, P.

    2017-09-01

    The Methane Remote Sensing LIDAR Mission (MERLIN) is a joint French-German cooperation on the development, launch and operation of a climate monitoring satellite, executed by the French Space Agency CNES and the German Space Administration DLR.

  12. Frontiers of Remote Sensing of the Oceans and Troposphere from Air and Space Platforms

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Several areas of remote sensing are addressed including: future satellite systems; air-sea interaction/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; sea ice; and impact of remote sensing on synoptic analysis/forecasting.

  13. Inquiry-Based Learning in Remote Sensing: A Space Balloon Educational Experiment

    ERIC Educational Resources Information Center

    Mountrakis, Giorgos; Triantakonstantis, Dimitrios

    2012-01-01

    Teaching remote sensing in higher education has been traditionally restricted in lecture and computer-aided laboratory activities. This paper presents and evaluates an engaging inquiry-based educational experiment. The experiment was incorporated in an introductory remote sensing undergraduate course to bridge the gap between theory and…

  14. Real Estate Assistance

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Commercial Remote Sensing Program at Stennis Space Center assists numerous companies across the United States, in learning to use remote sensing capabilities to enhance their competitiveness. Through the Visiting Investigator Program, SSC helped Coast Delta Realty in Diamondhead, Miss., incorporate remote sensing and Geogrpahic Information System technology for real estate marketing and management.

  15. Remote sensing of the Earth from Space: A program in crisis

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The present situation in earth remote sensing, determining why certain problems exist, and trying to find out what can be done to solve these problems are discussed. The conclusion is that operational remote sensing is in disarray. The difficulties involve policy and institutional issues. Recommendations are given.

  16. The International Space Station: A Unique Platform For Terrestrial Remote Sensing

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.

    2012-01-01

    The International Space Station (ISS) became operational in November of 2000, and until recently remote sensing activities and operations have focused on handheld astronaut photography of the Earth. This effort builds from earlier NASA and Russian space programs (e.g. Evans et al. 2000; Glazovskiy and Dessinov 2000). To date, astronauts have taken more than 600,000 images of the Earth s land surface, oceans, and atmospheric phenomena from orbit using film and digital cameras as part two payloads: NASA s Crew Earth Observations experiment (http://eol.jsc.nasa.gov/) and Russia s Uragan experiment (Stefanov et al. 2012). Many of these images have unique attributes - varying look angles, ground resolutions, and illumination - that are not available from other remote sensing platforms. Despite this large volume of imagery and clear capability for Earth remote sensing, the ISS historically has not been perceived as an Earth observations platform by many remote sensing scientists. With the recent installation of new facilities and sophisticated sensor systems, and additional systems manifested and in development, that perception is changing to take advantage of the unique capabilities and viewing opportunities offered by the ISS.

  17. Secure distribution for high resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Sun, Jing; Xu, Zheng Q.

    2010-09-01

    The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.

  18. A Rapidly Prototyped Vegetation Dryness Index Developed for Wildfire Risk Assessment at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ross, Kenton; Graham, William D.; Prados, Donald; Spruce, Joseph

    2006-01-01

    A remote sensing index was developed to allow improved monitoring of vegetation dryness conditions on a regional basis. This remote sensing index was rapidly prototyped at Stennis Space Center in response to drought conditions in the local area in spring 2006.

  19. Essential Biodiversity Variables: A framework for communication between the biodiversity community and space agencies

    NASA Astrophysics Data System (ADS)

    Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.

    2017-12-01

    The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.

  20. 76 FR 69760 - Agency Information Collection Activities: The William T. Pecora Award Application and Nomination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... toward understanding the earth by means of remote sensing. The award is sponsored jointly by the... program for civil remote sensing of the earth from space. The purpose of the award is to recognize individuals or groups working in the field of remote sensing of the earth. National and international...

  1. 76 FR 50753 - Agency Information Collections Activities; The Pecora Award; Application and Nomination Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... groups that make outstanding contributions toward understanding the earth by means of remote sensing. The... motivating force behind the establishment of a program for civil remote sensing of the earth from space. The purpose of the award is to recognize individuals or groups working in the field of remote sensing of the...

  2. Earth Observations from the International Space Station: Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2015-01-01

    The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.

  3. Space-Based Remote Sensing of the Earth: A Report to the Congress

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described.

  4. A study of the potential of remote sensors in urban transportation planning

    NASA Technical Reports Server (NTRS)

    Rietschier, D.; Modlin, D. G., Jr.

    1973-01-01

    The potential uses of remotely sensed data as applied to the transportation planning process are presented. By utilizing the remote sensing technology developed by the National Aeronautics and Space Administration in the various space programs, it is hoped that both the expense and errors inherent in the conventional data collection techniques can be avoided. Additional bonuses derived from the use of remotely sensed data are those of the permanent record nature of the data and the traffic engineering data simultaneously made available. The major mathematical modeling phases and the role remotely sensed data might play in replacing conventionally collected data are discussed. Typical surveys undertaken in the overall planning process determine the nature and extent of travel desires, land uses, transportation facilities and socio-economic characteristics. Except for the socio-economic data, data collected in the other surveys mentioned can be taken from photographs in sufficient detail to be useful in the modeling procedures.

  5. The integrated design and archive of space-borne signal processing and compression coding

    NASA Astrophysics Data System (ADS)

    He, Qiang-min; Su, Hao-hang; Wu, Wen-bo

    2017-10-01

    With the increasing demand of users for the extraction of remote sensing image information, it is very urgent to significantly enhance the whole system's imaging quality and imaging ability by using the integrated design to achieve its compact structure, light quality and higher attitude maneuver ability. At this present stage, the remote sensing camera's video signal processing unit and image compression and coding unit are distributed in different devices. The volume, weight and consumption of these two units is relatively large, which unable to meet the requirements of the high mobility remote sensing camera. This paper according to the high mobility remote sensing camera's technical requirements, designs a kind of space-borne integrated signal processing and compression circuit by researching a variety of technologies, such as the high speed and high density analog-digital mixed PCB design, the embedded DSP technology and the image compression technology based on the special-purpose chips. This circuit lays a solid foundation for the research of the high mobility remote sensing camera.

  6. Remote sensing and the Mississippi high accuracy reference network

    NASA Technical Reports Server (NTRS)

    Mick, Mark; Alexander, Timothy M.; Woolley, Stan

    1994-01-01

    Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.

  7. Private sector involvement in civil space remote sensing. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The U.S. Space Policy concerning the investment and direct participation in the establishment and operations of remote sensing systems is addressed. Private sector views and state and local government views are presented. Results of a market analysis are pregiven and the economic feasibility of such a program is considered.

  8. Monitoring forests from space: quantifying forest change by using satellite data.

    Treesearch

    Jonathan Thompson

    2006-01-01

    Change is the only constant in forest ecosystems. Quantifying regional-scale forest change is increasingly done with remote sensing, which relies on data sent from digital camera-like sensors mounted to Earth-orbiting satellites. Through remote sensing, changes in forests can be studied comprehensively and uniformly across time and space.

  9. How to Study the Earth From Space.

    ERIC Educational Resources Information Center

    Boyer, Robert E.

    This booklet is one in a series of instructional aids designed for use by elementary and secondary school science teachers. It reviews how the various forms of remote sensing can provide invaluable knowledge about the earth as the need for environmental information continues to increase. Remote sensing involves space photography, infrared imagery,…

  10. Survey of university programs in remote sensing funded under grants from the NASA University-Space Applications program

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    NASA's Office of Space and Terrestrial Applications (OSTA) is currently assessing approaches to transferring NASA technology to both the public and private sectors. As part of this assessment, NASA is evaluating the effectiveness of an ongoing program in remote sensing technology transfer conducted by 20 university contractors/grantees, each supported totally or partially by NASA funds. The University-Space Applications program has as its objective the demonstration of practical benefits from the use of remote sensing technology to a broad spectrum of new users, principally in state and local governments. To evaluate the University-Space Applications program, NASA has a near-term requirement for data on each university effort including total funding, funding sources, length of program, program description, and effectiveness measures.

  11. The ASPRS Remote Sensing Industry Forecast: Phase II & III - Digital Sensor Compilation

    NASA Technical Reports Server (NTRS)

    Mondello, Charles

    2007-01-01

    In August 1999, ASPRS and NASA's (then) Commercial Remote Sensing Program (CRSP) entered into a 5-year Space Act Agreement (SAA), combining resources and expertise to: (a) Baseline the Remote Sensing Industry (RSI) based on GEIA Model; (b) Develop a 10-Year RSI market forecast and attendant processes; and (c) Provide improved information for decision makers.

  12. Development of the Synthetic Aperture Radiometer ESTAR and the Next Generation

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Haken, Michael; Swift, Calvin T.

    2004-01-01

    ESTAR is a research instrument built to develop the technology of aperture synthesis for passive remote sensing of Earth from space. Aperture synthesis is an interferometric technology that addresses the problem of putting large antenna apertures in space to achieve the spatial resolution needed for remote sensing at long wavelengths ESTAR was a first step (synthesis only across track and only at horizontal polarization). The development has progressed to a new generation instrument that is dual polarized and does aperture synthesis in two dimensions. Among the plans for the future is technology to combine active and passive remote sensing.

  13. Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Smith, T.; Star, J. L.

    1986-01-01

    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.

  14. WinASEAN for remote sensing data analysis

    NASA Astrophysics Data System (ADS)

    Duong, Nguyen Dinh; Takeuchi, Shoji

    The image analysis system ASEAN (Advanced System for Environmental ANalysis with Remote Sensing Data) was designed and programmed by a software development group, ImaSOFr, Department of Remote Sensing Technology and GIS, Institute for Geography, National Centre for Natural Science and Technology of Vietnam under technical cooperation with the Remote Sensing Technology Centre of Japan and financial support from the National Space Development Agency of Japan. ASEAN has been in continuous development since 1989, with different versions ranging from the simplest one for MS-DOS with standard VGA 320×200×256 colours, through versions supporting SpeedStar 1.0 and SpeedStar PRO 2.0 true colour graphics cards, up to the latest version named WinASEAN, which is designed for the Windows 3.1 operating system. The most remarkable feature of WinASEAN is the use of algorithms that speed up the image analysis process, even on PC platforms. Today WinASEAN is continuously improved in cooperation with NASDA (National Space Development Agency of Japan), RESTEC (Remote Sensing Technology Center of Japan) and released as public domain software for training, research and education through the Regional Remote Sensing Seminar on Tropical Eco-system Management which is organised by NASDA and ESCAR In this paper, the authors describe the functionality of WinASEAN, some of the relevant analysis algorithms, and discuss its possibilities of computer-assisted teaching and training of remote sensing.

  15. Bridging the Scales from Field to Region with Practical Tools to Couple Time- and Space-Synchronized Data from Flux Towers and Networks with Proximal and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.

    2017-12-01

    Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.

  16. Free acquisition and dissemination of data through remote sensing. [Landsat program legal aspects

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1976-01-01

    Free acquisition and dissemination of data through remote sensing is discussed with reference to the Landsat program. The role of the Scientific and Technical Subcommittee of the U.N. General Assembly's Committee on the Peaceful Uses of Outer Space has made recommendations on the expansion of existing ground stations and on the establishment of an experimental center for training in remote sensing. The working group for the legal subcommittee of the same U.N. committee indicates that there are common elements in the three drafts on remote sensing submitted to it: a call for international cooperation and the belief that remote sensing should be conducted for the benefit of all mankind.

  17. 15 CFR 960.4 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...

  18. 15 CFR 960.5 - Confidentiality of information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...

  19. Naval EarthMap Observer (NEMO) Hyperspectral Remote Sensing Program

    DTIC Science & Technology

    2000-10-01

    The NEMO hyperspectral remote sensing program will provide unclassified, space-based hyperspectral passive imagery at moderate resolution that offers substantial potential for direct use by Naval forces and the Civil Sector.

  20. 15 CFR 960.4 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...

  1. 15 CFR 960.5 - Confidentiality of information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...

  2. 15 CFR 960.5 - Confidentiality of information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...

  3. 15 CFR 960.4 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...

  4. 15 CFR 960.5 - Confidentiality of information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...

  5. 15 CFR 960.4 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...

  6. 15 CFR 960.4 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.4 Application. No person subject to the jurisdiction and/or control of the United States may operate a private remote sensing space system without a...

  7. 15 CFR 960.5 - Confidentiality of information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.5 Confidentiality of... thirty (30) days of the issuance of a license to operate a remote sensing space system, the licensee...

  8. Basic principles, methodology, and applications of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Moreira, M. A. (Principal Investigator); Deassuncao, G. V.

    1984-01-01

    The basic principles of remote sensing applied to agriculture and the methods used in data analysis are described. Emphasis is placed on the importance of developing a methodology that may help crop forecast, basic concepts of spectral signatures of vegetation, the methodology of the LANDSAT data utilization in agriculture, and the remote sensing program application of INPE (Institute for Space Research) in agriculture.

  9. The United Nations contribution towards an international agreement on remote sensing

    NASA Technical Reports Server (NTRS)

    Menter, M.

    1976-01-01

    The recommendations of the Legal Subcommittee of the United Nations committee for the Peaceful Uses of Space concerning satellite remote sensing are considered. Detailed studies of the Scientific and Technical Subcommittee of this committee are discussed with emphasis on three draft proposals submitted to it on remote sensing by (1) France and the USSR, (2) Latin American countries, and (3) the United States.

  10. Archaeological Remote Sensing: Searching for Fort Clatsop from Space

    NASA Technical Reports Server (NTRS)

    Karsmizki, Kenneth W.; Spruce, Joe; Giardino, Marco

    2002-01-01

    The Columbia Gorge Discovery Center and NASA's Stennis Space Center have teamed up to use high-resolution aerial and satellite-based remote sensing in the search for Lewis and Clark expedition campsites. A Space Act Agreement between NASA and the Discovery Center has evolved into a study that employs remote sensing, plus modern and historical map data for relocating several Lewis and Clark encampments. Satellite data being studied include 30-meter Landsat Thematic Mapper and 1-meter Space Imaging IKONOS data. This paper includes an overview of the working relationship between NASA and the Discovery Center. It also reports on geospatial analyses of the Fort Clatsop site to demonstrate the ways geospatial technologies interface with the written and cartographic records of the expedition and how they are applied to the search for Lewis and Clark campsites.

  11. Commerical Remote Sensing Data Contract

    USGS Publications Warehouse

    ,

    2005-01-01

    The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.

  12. Sensors research and technology

    NASA Technical Reports Server (NTRS)

    Cutts, James A.

    1988-01-01

    Information on sensors research and technology is given in viewgraph form. Information is given on sensing techniques for space science, passive remote sensing techniques and applications, submillimeter coherent sensing, submillimeter mixers and local oscillator sources, non-coherent sensors, active remote sensing, solid state laser development, a low vibration cooler, separation of liquid helium and vapor phase in zero gravity, and future plans.

  13. Space education in developing countries in the information era, regional reality and new educational material tendencies: example, South America

    NASA Astrophysics Data System (ADS)

    Sausen, Tania Maria

    The initial activities on space education began right after World War II, in the early 1950s, when USA and USSR started the Space Race. At that time, Space education was only and exclusively available to researchers and technicians working directly in space programs. This new area was restricted only to post-graduate programs (basically master and doctoral degree) or to very specific training programs dedicated for beginners. In South America, at that time there was no kind of activity on space education, simply because there was no activity in space research. In the beginning of the 1970s, Brazil, through INPE, had created masteral and doctoral courses on several space areas such as remote sensing and meteorology. Only in the mid-1980s did Brazil, after a UN request, create its specialisation course on remote sensing dedicated to Latin American professionals. At the same period, the Agustin Codazzi Institute (Bogota, Colombia) began to offer specialisation courses in remote sensing. In South America, educational space programs are currently being created for elementary and high schools and universities, but the author personally estimates that 90% of these educational programs still make use of traditional educational materials — such as books, tutorials, maps and graphics. There is little educational material that uses multimedia resources, advanced computing or communication methods and, basically, these are the materials that are best suited to conduct instructions in remote sensing, GIS, meteorology and astronomy.

  14. Narragansett Bay From Space: A Perspective for the 21st Century

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Swanson, Craig; Deacutis, Chris

    2001-01-01

    In 1996, the NASA Administrator Dan Goldin and Rhode Island Congressman Patrick Kennedy challenged researchers in the Department of Geological Sciences at Brown University to developed a series of projects to apply remotely sensed data to problems of immediate concern to the State of Rhode Island. The result of that challenge was the project Narragansett Bay from Space: A Perspective for the 21st Century. The goals of the effort were to a) identify problems in coordination with state and local agencies, b) apply NASA technology to the problems and c) to involve small business that would benefit from incorporating remotely sensed data into their business operations. The overall effort was to serve two functions: help provide high quality science results based on remotely sensed data and increase the capacity of environmental managers and companies to use remotely sensed data. The effort has succeeded on both these fronts by providing new, quantitative information on the extent of environmental problems and developing a greater awareness and acceptance of remotely sensed data as a tool for monitoring and research.

  15. Satellites for What? Creating User Communities for Space-based Data in France: The Case from LERTS to CESBIO.

    PubMed

    Cirac-Claveras, Gemma

    2018-01-01

    This article uses a French case to explore the who, how, and why of satellite remote-sensing development and its transition towards routine utilization in the domain of ecosystems ecology. It discusses the evolution of a community of technology developers promoting remote-sensing capabilities (mostly sponsored by the French space agency). They attempted to legitimate quality scientific practices, establish the authority of satellite remote-sensing data within academic institutions, and build a community of technology users. This article, hence, is intended to contribute to historical interest in how a community of users is constructed for a technological system.

  16. End-to-end remote sensing at the Science and Technology Laboratory of John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick; Rickman, Douglas; Smith, Eric

    1991-01-01

    The Science and Technology Laboratory (STL) of Stennis Space Center (SSC) was developing an expertise in remote sensing for more than a decade. Capabilities at SSC/STL include all major areas of the field. STL includes the Sensor Development Laboratory (SDL), Image Processing Center, a Learjet 23 flight platform, and on-staff scientific investigators.

  17. Remote Sensing Information Sciences Research Group, year four

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    The needs of the remote sensing research and application community which will be served by the Earth Observing System (EOS) and space station, including associated polar and co-orbiting platforms are examined. Research conducted was used to extend and expand existing remote sensing research activities in the areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence, and vegetation analysis and modeling. Projects are discussed in detail.

  18. Long-range strategy for remote sensing: an integrated supersystem

    NASA Astrophysics Data System (ADS)

    Glackin, David L.; Dodd, Joseph K.

    1995-12-01

    Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.

  19. Use of Remote Sensing for Decision Support in Africa

    NASA Technical Reports Server (NTRS)

    Policelli, Frederick S.

    2007-01-01

    Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.

  20. The application of remote sensing techniques to inter and intra urban analysis

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1972-01-01

    This is an effort to assess the applicability of air and spaceborne photography toward providing data inputs to urban and regional planning, management, and research. Through evaluation of remote sensing inputs to urban change detection systems, analyzing an effort to replicate an existing urban land use data file using remotely sensed data, estimating population and dwelling units from imagery, and by identifying and evaluating a system of urban places ultilizing space photography, it was determined that remote sensing can provide data concerning land use, changes in commercial structure, data for transportation planning, housing quality, residential dynamics, and population density.

  1. An international organization for remote sensing

    NASA Technical Reports Server (NTRS)

    Helm, Neil R.; Edelson, Burton I.

    1991-01-01

    A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.

  2. Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    Lidar (light detection and ranging) remote sensing enjoys the advantages of excellent vertical and horizontal resolution; pointing capability; a signal source independent from natural light; and control and knowledge of transmitted wavelength, pulse shape, and polarization and received polarization. Lidar in space is an emerging technology now being developing to fit applications where passive sensors cannot meet current measurement requirements. Technical requirements for space lidar are more demanding than for ground-based or airborne systems. Perhaps the most distinguishing characteristics of space lidars are the environmental requirements. Space lidar systems must be specially designed to survive the mechanical vibration loads of launch and operate in the vacuum of space where exposure to ionizing radiation limits the electronic components available. Finally, space lidars must be designed to be highly reliable because they must operate without the need for repair or adjustment. Lifetime requirements tend to be important drivers of the overall system design. The maturity of the required technologies is a key to the development of any space lidar system. NASA entered a new era in the 1990 s with the approval of several space-based remote sensing missions employing laser radar (lidar) techniques. Following the steps of passive remote sensing and then active radar remote sensing, lidar sensors were a logical next step, providing independence from natural light sources, and better spatial resolution and smaller sensor size than radar sensors. The shorter electromagnetic wavelengths of laser light also allowed signal reflectance from air molecules and aerosol particles. The smaller receiver apertures allowed the concept of scanning the sensor field of view. However, technical problems with several space-based lidar missions during that decade led to concern at NASA about the risk of lidar missions. An external panel was convened to make recommendations to NASA. Their report in 2000 strongly advocated that NASA maintain in-house laser and lidar capability, and that NASA should work to lower the technology risk for all future lidar missions. A multi-Center NASA team formulated an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the Earth's atmosphere. In 2002 the NASA Earth Science Enterprise (ESE) and Office of Aerospace Technology (OAT) created the Laser Risk Reduction Program (LRRP) and directed NASA Langley Research Center (LaRC) and Goddard Space Flight Center to carry out synergistic and complementary research towards solid-state lasers/lidars developments for space-based remote sensing applications.

  3. First observations of tropospheric δD data observed by ground- and space-based remote sensing and surface in-situ measurement techniques at MUSICA's principle reference station (Izaña Observatory, Spain)

    NASA Astrophysics Data System (ADS)

    González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas

    2013-04-01

    The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.

  4. Remote sensing of atmosphere and oceans; Proceedings of Symposium 1 and of the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)

    1989-01-01

    Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.

  5. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.

    PubMed

    Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen

    2017-02-01

    Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.

  6. Prospects and limitations for use of frequency spectrum from 40 to 300 GHz

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.

    1979-01-01

    The existing and future use of the electromagnetic spectrum from 40 to 300 gigahertz is discussed. The activities envisioned for this segment of the electromagnetic spectrum fall generically into two basic categories: communications and remote sensing. The communications services considered for this region are focused on the existing and future frequency allocations that are required for terrestrial radio services, space to ground radio services, space to space radio services, and space to deep space radio services. The remote sensing services considered for this region are divided into two groups of activities: earth viewing and space viewing.

  7. The Future of Remote Sensing from Space: Civilian Satellite Systems and Applications.

    DTIC Science & Technology

    1993-07-01

    image shows abundant (dark green) vegetation across the Amazon of South America, while lack of vegetation (black areas) is seen across the Sahara Desert...primarily through the space shuttle and space station Freedom programs.25 Hence, if NASA’s overall budget remains flat or includes only modest growth... remain the primary collector of satellite remote sensing data for both meteorolog- ical and climate monitoring efforts through the decade of the 1990s

  8. Remote Sensing: The View from Above. Know Your Environment.

    ERIC Educational Resources Information Center

    Academy of Natural Sciences, Philadelphia, PA.

    This publication identifies some of the general concepts of remote sensing and explains the image collection process and computer-generated reconstruction of the data. Monitoring the ecological collapse in coral reefs, weather phenomena like El Nino/La Nina, and U.S. Space Shuttle-based sensing projects are some of the areas for which remote…

  9. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  10. High Efficiency, 100 mJ per pulse, Nd:YAG Oscillator Optimized for Space-Based Earth and Planetary Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.

    2014-01-01

    We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.

  11. Space-Derived Imagery and a Commercial Remote Sensing Industry: Impossible Dream or Inevitable Reality?

    NASA Astrophysics Data System (ADS)

    Murray, Felsher

    Landsat-1 was launched in 1972 as a research satellite. Many of us viewed this satellite as a precursor to remote sensing "commercialization." Indeed since that time, the birth, growth and maturation of a remote sensing "industry" has been an ongoing objective for much of the U.S. private sector engaged in space and ground-segment activities related to the acquisition, analysis, and dissemination of imagery. In September 1999 a U.S. commercial entity, Space Imaging, Inc. launched its 1-meter pan/4-meter multispectral IKONOS sensor. DigitalGlobe, Inc. (nee EarthWatch, Inc.) matched this feat in October 2001. Thus, a full 30 years later, we are finally on the brink of building a true remote sensing information industry based on the global availability of competitively-priced space- derived imagery of the Earth. The upcoming availability of similar imagery from non-U.S. sources as ImageSat and U.S. sources as ORBIMAGE will only strengthen that reality. However, a remote sensing industry can only grow by allowing these entities (in times of peace) unencumbered access to a world market. And that market continues to expand -- up 11% in 2001, with gross revenues of U.S. commercial remote sensing firms alone reaching 2.44 billion, according to a joint NASA/ASPRS industry survey. However, the 30-year gap between the research-labeled Landsat-1 and our current commercial successes was not technology-driven. That lacuna was purely political -- driven by valid concerns related to national security. Although the world's governments have cooperated thoroughly and completely in areas related to satellite telecommunications, cooperation in space-derived image information is still today done cautiously and on a case-by-case basis -- and then only for science- based undertakings. It is still a fact that, except for the United States, all other Earth-imaging satellites/sensors flying today are owned, operated, and their products disseminated, by national governments -- and not private sector entities. Will the template now fashioned by the U.S. -- that of licensing private industry to build, fly, and operate remote sensing satellites as well as to distribute their imagery worldwide -- be replicated by other nations? Eventually, yes. Availability of the World Wide Web is an international communications reality. Availability of world wide imaging will be just as real. And much of that imagery will be marketed, sold, and distributed via that same global Internet. I feel that as an expected outcome of our technological age, we can ensure not only our own national security but international security as well, by assuring worldwide accessibility to worldwide space- derived image information. This requires -- in fact demands -- the presence of a viable international remote sensing industry. It is not impossible; It is inevitable.

  12. Data Collection for Disaster Response from the International Space Station

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Evans, C. A.

    2015-04-01

    Remotely sensed data acquired by orbital sensor systems has emerged as a vital tool to identify the extent of damage resulting from a natural disaster, as well as providing near-real time mapping support to response efforts on the ground and humanitarian aid efforts. The International Space Station (ISS) is a unique terrestrial remote sensing platform for acquiring disaster response imagery. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 90 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous sensor systems in higher altitude polar orbits. NASA remote sensing assets on the station began collecting International Charter, Space and Major Disasters, also known informally as the International Disaster Charter (IDC) response data in May 2012. Since the start of IDC response in 2012, and as of late March 2015, there have been 123 IDC activations; NASA sensor systems have collected data for thirty-four of these events. Of the successful data collections, eight involved two or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and Roscosmos/Energia through the Urugan program.

  13. Future use of digital remote sensing data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Jones, N. L.

    1978-01-01

    Users of remote sensing data are increasingly turning to digital processing techniques for the extraction of land resource, environmental, and natural resource information. This paper presents the results of recent and ongoing research efforts sponsored, in part, by NASA/Marshall Space Flight Center on the current uses of and future needs for digital remote sensing data. An ongoing investigation involves a comprehensive survey of capabilities for digital Landsat data use in the Southeastern U.S. Another effort consists of an evaluation of future needs for digital remote sensing data by federal, state, and local governments and the private sector. These needs are projected into the 1980-1985 time frame. Furthermore, the accelerating use of digital remote sensing data is not limited to the U.S. or even to the developed countries of the world.

  14. Quarterly literature review of the remote sensing of natural resources

    NASA Technical Reports Server (NTRS)

    Fears, C. B. (Editor); Inglis, M. H. (Editor)

    1977-01-01

    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports.

  15. Integrating multiple satellite data for crop monitoring

    USDA-ARS?s Scientific Manuscript database

    Remote sensing provides a valuable data source for detecting crop types, monitoring crop condition and predicting crop yields from space. Routine and continuous remote sensing data are critical for agricultural research and operational applications. Since crop field dimensions tend to be relatively ...

  16. Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.

  17. Frontiers for geological remote sensing from space; Geosat Workshop, 4th, Flagstaff, AZ, June 12-17, 1983, Report

    NASA Technical Reports Server (NTRS)

    Henderson, F. B. (Editor); Rock, B. N. (Editor)

    1983-01-01

    Consideration is given to: the applications of near-infrared spectroscopy to geological reconnaissance and exploration from space; imaging systems for identifying the spectral properties of geological materials in the visible and near-infrared; and Thematic Mapper (TM) data analysis. Consideration is also given to descriptions of individual geological remote sensing systems, including: GEO-SPAS; SPOT; the Thermal Infrared Multispectral Scanner (TIMS); and the Shuttle Imaging Radars A and B (SIR-A and SIR-B). Additional topics include: the importance of geobotany in geological remote sensing; achromatic holographic stereograms from Landsat MSS data; and the availability and applications of NOAA's non-Landsat satellite data archive.

  18. Predicting and Mitigating Outbreaks of Vector-Borne Disease Utilizing Satellite Remote Sensing Technology and Models

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Kiang, Richard; Brown, Molly; Reisen, William

    2008-01-01

    Satellite earth observations present a unique vantage point of the earth's environment from space which offers a wealth of health applications for the imaginative investigator. The session will present research results of the remote sensing environmental observations of earth and health applications. This session will an overview of many of the NASA public health applications using Remote Sensing Data and will also discuss opportunities to become a research collaborator with NASA.

  19. An Update of NASA Public Health Applications Projects using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    Satellite earth observations present a unique vantage point of the earth s environment from space which offers a wealth of health applications for the imaginative investigator. The session will present research results of the remote sensing environmental observations of earth and health applications. This session will an overview of many of the NASA public health applications using Remote Sensing Data and will also discuss opportunities to become a research collaborator with NASA.

  20. Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.

  1. Recent developments in space shuttle remote sensing, using hand-held film cameras

    NASA Technical Reports Server (NTRS)

    Amsbury, David L.; Bremer, Jeffrey M.

    1992-01-01

    The authors report on the advantages and disadvantages of a number of camera systems which are currently employed for space shuttle remote sensing operations. Systems discussed include the modified Hasselbad, the Rolleiflex 6008, the Linkof 5-inch format system, and the Nikon F3/F4 systems. Film/filter combinations (color positive films, color infrared films, color negative films and polarization filters) are presented.

  2. To Preserve the Sense of Earth from Space. A Report of the Panel on the Information Policy Implications of Archiving Satellite Data, regarding the Archiving Requirements of the Proposed Transfer to the Private Section of the U. S. Civil Space Remote-Sensing Satellite Systems.

    ERIC Educational Resources Information Center

    National Commission on Libraries and Information Science, Washington, DC.

    This report presents the results of a 3-month effort to assess the archiving requirements that should be imposed in the event of a transfer of the United States land remote-sensing satellite systems to the private sector. The emphasis is not on judging the desirability of the proposed transfer, but on recommending the requirements that should be…

  3. [Analysis of the effect of detector's operating temperature on SNR in space-based remote sensor].

    PubMed

    Li, Zhan-feng; Wang, Shu-rong; Huang, Yu

    2012-03-01

    Limb viewing is a new viewing geometry for space-based atmospheric remote sensing, but the spectral radiance of atmosphere scattering reduces rapidly with limb height. So the signal-noise-ratio (SNR) is a key performance parameter of limb remote sensor. A SNR model varying with detector's temperature is proposed, based on analysis of spectral radiative transfer and noise' source in representative instruments. The SNR at limb height 70 km under space conditions was validated by simulation experiment on limb remote sensing spectrometer prototype. Theoretic analysis and experiment's results indicate congruously that when detector's temperature reduces to some extent, a maximum SNR will be reached. After considering the power consumption, thermal conductivity and other issues, optimal operating temperature of detector can be decided.

  4. Target detection method by airborne and spaceborne images fusion based on past images

    NASA Astrophysics Data System (ADS)

    Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng

    2017-11-01

    To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.

  5. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research

    USGS Publications Warehouse

    Maxwell, S.K.; Meliker, J.R.; Goovaerts, P.

    2010-01-01

    In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps.

  6. Joint Agency Commercial Imagery Evaluation (JACIE)

    USGS Publications Warehouse

    Jucht, Carrie

    2010-01-01

    Remote sensing data are vital to understanding the physical world and to answering many of its needs and problems. The United States Geological Survey's (USGS) Remote Sensing Technologies (RST) Project, working with its partners, is proud to sponsor the annual Joint Agency Commercial Imagery Evaluation (JACIE) Workshop to help understand the quality and usefulness of remote sensing data. The JACIE program was formed in 2001 to leverage U.S. Federal agency resources for the characterization of commercial remote sensing data. These agencies sponsor and co-chair JACIE: U.S. Geological Survey (USGS) National Aeronautics and Space Administration (NASA) National Geospatial-Intelligence Agency (NGA) U.S. Department of Agriculture (USDA) JACIE is an effort to coordinate data assessments between the participating agencies and partners and communicate the knowledge and results of the quality and utility of the remotely sensed data available for government and private use.

  7. Field Study for Remote Sensing: An instructor's manual

    NASA Technical Reports Server (NTRS)

    Wake, W. H. (Editor); Hull, G. A. (Editor)

    1981-01-01

    The need for and value of field work (surface truthing) in the verification of image identification from high atitude infrared and multispectral space sensor images are discussed in this handbook which presents guidelines for developing instructional and research procedures in remote sensing of the environment.

  8. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards

    PubMed Central

    Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.

    2018-01-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544

  9. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards.

    PubMed

    Wright, Daniel B; Mantilla, Ricardo; Peters-Lidard, Christa D

    2017-04-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions.

  10. Sensible Success

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Commercial remote sensing uses satellite imagery to provide valuable information about the planet's features. By capturing light reflected from the Earth's surface with cameras or sensor systems, usually mounted on an orbiting satellite, data is obtained for business enterprises with an interest in land feature distribution. Remote sensing is practical when applied to large-area coverage, such as agricultural monitoring, regional mapping, environmental assessment, and infrastructure planning. For example, cellular service providers use satellite imagery to select the most ideal location for a communication tower. Crowsey Incorporated has the ability to use remote sensing capabilities to conduct spatial geographic visualizations and other remote-sensing services. Presently, the company has found a demand for these services in the area of litigation support. By using spatial information and analyses, Crowsey helps litigators understand and visualize complex issues and then to communicate a clear argument, with complete indisputable evidence. Crowsey Incorporated is a proud partner in NASA's Mississippi Space Commerce Initiative, with research offices at the John C. Stennis Space Center.

  11. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards

    NASA Technical Reports Server (NTRS)

    Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.

    2017-01-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, Rainy Day can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, Rainy Day can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. Rainy Day can be useful for hazard modeling under nonstationary conditions.

  12. Summary and overview

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The merits, shortcomings, and future outlook of thermal IR remote sensing are appraised from a philosophical and speculative point of view in the light of the HCMM experiments. Two key questions stemming from HCMM addressed are: thermal remote sensing from space platforms now on a solid foundation in terms of demonstrated applications of real utility as well as theory, and where should NASA's research be focused in thermal remote sensing and are the potential applications sufficient to justify inclusion of thermal sensors in later generations of Earth resources satellites.

  13. The Swedish space programme

    NASA Astrophysics Data System (ADS)

    Helger, Arne

    The Swedish National Space Board (SNSB) under the Ministry of Industry is the central governmental agency responsible for the goverment-funded Swedish national and international space and remote sensing activities. The technical implementation is mainly contracted by the Board to the state-owned Swedish Space Corporation (SSC). International cooperation is a cornerstone in the Swedish space activities, absorbing more than 80% of the total national budget. Within ESA, Sweden participates in practically all infrastructure and applications programs. Basic research, mainly concentrated to the near earth space physics, microgravity and remote sensing are important elements in the Swedish space program. Sweden participates in the French Spot program. At Esrange, data reception, and satellite control, and tracking, telemetry command (TT&C) are performed for many international satellite projects. An SSC subsidiary, SATELLITBILD, is archiving, processing and distributing remote sensing data worldwide. The National Space Development Agency of Japan (NASDA) has established a portable TT&C station for JERS-1 at Esrange, Kiruna. A center for international research on the ozone problem has been established at Esrange and Kiruna. A new sounding rocket for 15 minutes of microgravity research, MAXUS, has been developed by SSC in cooperation with Germany. A national scientific satellite, FREJA, is planned to be launched late 1992.

  14. The National Aeronautics and Space Administration interdisciplinary studies in space technology at the University of Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1974-01-01

    A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.

  15. EROS: A space program for Earth resources

    USGS Publications Warehouse

    Metz, G.G.; Wiepking, P.J.

    1980-01-01

    Within the technology of the space age lies a key to increased knowledge about the resources and environment of the Earth. This key is remote sensing detecting the nature of an object without actually touching it. Although the photographic camera is the most familiar remote-sensing device, other instrument systems, such as scanning radiometers and radar, also can produce photographs and images. On the basis of the potential of this technology, and in response to the critical need for greater knowledge of the Earth and its resources, the Department of the Interior established the Earth Resources Observation Systems (EROS) Program to gather and use remotely sensed data collected by satellite and aircraft of natural and manmade features on the Earth's surface.

  16. The application of remote sensing techniques to selected inter and intra urban data acquisition problems

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1970-01-01

    The utility of remote sensing techniques to urban data acquisition problems in several distinct areas was identified. This endeavor included a comparison of remote sensing systems for urban data collection, the extraction of housing quality data from aerial photography, utilization of photographic sensors in urban transportation studies, urban change detection, space photography utilization, and an application of remote sensing techniques to the acquisition of data concerning intra-urban commercial centers. The systematic evaluation of variable extraction for urban modeling and planning at several different scales, and the model derivation for identifying and predicting economic growth and change within a regional system of cities are also studied.

  17. Space-Based Remote Sensing of Atmospheric Aerosols: The Multi-Angle Spectro-Polarimetric Frontier

    NASA Technical Reports Server (NTRS)

    Kokhanovsky, A. A.; Davis, A. B.; Cairns, B.; Dubovik, O.; Hasekamp, O. P.; Sano, I.; Mukai, S.; Rozanov, V. V.; Litvinov, P.; Lapyonok, T.; hide

    2015-01-01

    The review of optical instrumentation, forward modeling, and inverse problem solution for the polarimetric aerosol remote sensing from space is presented. The special emphasis is given to the description of current airborne and satellite imaging polarimeters and also to modern satellite aerosol retrieval algorithms based on the measurements of the Stokes vector of reflected solar light as detected on a satellite. Various underlying surface reflectance models are discussed and evaluated.

  18. Effects of Faraday Rotation on Microwave Remote Sensing From Space at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Kao, M.

    1997-01-01

    The effect of Faraday rotation on the remote sensing of soil moisture from space is investigated using the International Reference Ionosphere (IRI) to obtain electron density profiles and the International Geomagnetic Reference Field (IGRF) to model the magnetic field. With a judicious choice of satellite orbit (6 am, sunsynchronous) the errors caused by ignoring Faraday rotation are less than 1 K at incidence angles less than 40 degrees.

  19. Proceedings of the Seventh International Space University Alumni Conference

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila (Editor)

    1998-01-01

    The Seventh Alumni Conference of the International Space University, coordinated by the ISU U.S. Alumni Organization (IUSAO), was held at Cleveland State University in Cleveland, Ohio on Friday, July 24, 1998. These proceedings are a record of the presentations. The following topics are included: Remote sensing education in developing countries; Integrated global observing strategy; NASA's current earth science program; Europe's lunar initiative; Lunarsat: Searching for the South Polar cold traps; Asteroid hazards; ESA exobiological activities; Space testbed for photovoltaics; Teledesic Space infrastructure; Space instrument's concurrent design; NASA advanced fuel program; Mission preparation and training for the European Robotic Arm (ERA); and Global access to remote sensing systems.

  20. The MUSICA MetOp/IASI H2O and δD products: characterisation and long-term comparison to NDACC/FTIR data

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.

    2014-04-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in-situ datasets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing dataset is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, mid-latitudes, and arctic) and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier-Transform InfraRed) remote sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study is both, a theoretical and an empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.

  1. The MUSICA MetOp/IASI H2O and δD products: characterisation and long-term comparison to NDACC/FTIR data

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Schneider, M.; Hase, F.; Barthlott, S.; García, O. E.; Sepúlveda, E.; González, Y.; Blumenstock, T.; Raffalski, U.; Gisi, M.; Kohlhepp, R.

    2014-08-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) ground- and space-based remote sensing as well as in situ data sets of tropospheric water vapour isotopologues are provided. The space-based remote-sensing data set is produced from spectra measured by the IASI (Infrared Atmospheric Sounding Interferometer) sensor and is potentially available on a global scale. Here, we present the MUSICA IASI data for three different geophysical locations (subtropics, midlatitudes, and Arctic), and we provide a comprehensive characterisation of the complex nature of such space-based isotopologue remote-sensing products. The quality assessment study is complemented by a comparison to MUSICA's ground-based FTIR (Fourier Transform InfraRed) remote-sensing data retrieved from the spectra recorded at three different locations within the framework of NDACC (Network for the Detection of Atmospheric Composition Change). We confirm that IASI is able to measure tropospheric H2O profiles with a vertical resolution of about 4 km and a random error of about 10%. In addition IASI can observe middle tropospheric δD that adds complementary value to IASI's middle tropospheric H2O observations. Our study presents theoretical and empirical proof that IASI has the capability for a global observation of middle tropospheric water vapour isotopologues on a daily timescale and at a quality that is sufficiently high for water cycle research purposes.

  2. Commodity Cluster Computing for Remote Sensing Applications using Red Hat LINUX

    NASA Technical Reports Server (NTRS)

    Dorband, John

    2003-01-01

    Since 1994, we have been doing research at Goddard Space Flight Center on implementing a wide variety of applications on commodity based computing clusters. This talk is about these clusters and haw they are used on these applications including ones for remote sensing.

  3. GLCF: Landsat GeoCover

    Science.gov Websites

    Congress of the United States provided NASA with funding to operate a Science Data Purchase, through the auspices of the NASA Stennis Space Centers Commercial Remote Sensing Program, now part of their Earth Science Applications Directorate. NASA Stennis solicited commercial remote sensing companies for potential

  4. Remote Sensing Simulation Activities for Earthlings

    ERIC Educational Resources Information Center

    Krockover, Gerald H.; Odden, Thomas D.

    1977-01-01

    Suggested are activities using a Polaroid camera to illustrate the capabilities of remote sensing. Reading materials from the National Aeronautics and Space Administration (NASA) are suggested. Methods for (1) finding a camera's focal length, (2) calculating ground dimension photograph simulation, and (3) limiting size using film resolution are…

  5. National Aeronautics and Space Administration's research program in earth remote sensing instrumentation

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.; Sokoloski, Martin M.; Rubin, Bernard

    1991-01-01

    Terrestrial and atmospheric missions of NASA's program to develop remote sensing instrumentation are described along with several of the instruments and related mission. Systems such as lidar and radar, passive coherent sensors, passive noncoherent sensors, as well as cryogenic cooler technology are discussed.

  6. The use of the Space Shuttle for land remote sensing

    NASA Technical Reports Server (NTRS)

    Thome, P. G.

    1982-01-01

    The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.

  7. 1998 IEEE Aerospace Conference. Proceedings.

    NASA Astrophysics Data System (ADS)

    The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.

  8. Using GPS Reflections for Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Mickler, David

    2000-01-01

    GPS signals that have reflected off of the ocean's surface have shown potential for use in oceanographic and atmospheric studies. The research described here investigates the possible deployment of a GPS reflection receiver onboard a remote sensing satellite in low Earth orbit (LEO). The coverage and resolution characteristics of this receiver are calculated and estimated. This mission analysis examines using reflected GPS signals for several remote sensing missions. These include measurement of the total electron content in the ionosphere, sea surface height, and ocean wind speed and direction. Also discussed is the potential test deployment of such a GPS receiver on the space shuttle. Constellations of satellites are proposed to provide adequate spatial and temporal resolution for the aforementioned remote sensing missions. These results provide a starting point for research into the feasibility of augmenting or replacing existing remote sensing satellites with spaceborne GPS reflection-detecting receivers.

  9. On multidisciplinary research on the application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This research is directed toward development of a practical, operational remote sensing water quality monitoring system. To accomplish this, five fundamental aspects of the problem have been under investigation during the past three years. These are: (1) development of practical and economical methods of obtaining, handling and analyzing remote sensing data; (2) determination of the correlation between remote sensed imagery and actual water quality parameters; (3) determination of the optimum technique for monitoring specific water pollution parameters and for evaluating the reliability with which this can be accomplished; (4) determination of the extent of masking due to depth of penetration, bottom effects, film development effects, and angle falloff, and development of techniques to eliminate or minimize them; and (5) development of operational procedures which might be employed by a municipal, state or federal agency for the application of remote sensing to water quality monitoring, including space-generated data.

  10. Trophic Status, Ecological Condition and Cyanobacteria Risk of New England Lakes and Ponds Based on Aircraft Remote Sensing.

    EPA Science Inventory

    Aircraft remote sensing of freshwater ecosystems offers federal and state monitoring agencies an ability to meet their assessment requirements by rapidly acquiring information on ecosystem responses to environmental change for water bodies that are below the resolution of space...

  11. Improving crop condition monitoring at field scale by using optimal Landsat and MODIS images

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing data at coarse resolution (kilometers) have been widely used in monitoring crop condition for decades. However, crop condition monitoring at field scale requires high resolution data in both time and space. Although a large number of remote sensing instruments with different...

  12. Remote Sensing of Earth--A New Perspective

    ERIC Educational Resources Information Center

    Boyer, Robert E.

    1973-01-01

    Photographs of the earth taken from space are used to illustrate the advantages and application of remote sensing. This technique may be used in such areas as the immediate appraisal of disasters, surveillance of the oceans, monitoring of land, food and water resources, detection of natural resources, and identification of pollution. (JR)

  13. Research on optimal path planning algorithm of task-oriented optical remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng

    2015-08-01

    GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.

  14. Proceedings of the 1974 Lyndon B. Johnson Space Center Wheat-Yield Conference

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Barger, G. L.

    1975-01-01

    The proceedings of the 1974 Lyndon B. Johnson Space Center Wheat-Yield Conference are presented. The state of art of wheat-yield forecasting and the feasibility of incorporating remote sensing into this forecasting were discussed with emphasis on formulating common approach to wheat-yield forecasting, primarily using conventional meteorological measurements, which can later include the various applications of remote sensing. Papers are presented which deal with developments in the field of crop modelling.

  15. Mathematic modeling of the Earth's surface and the process of remote sensing

    NASA Technical Reports Server (NTRS)

    Balter, B. M.

    1979-01-01

    It is shown that real data from remote sensing of the Earth from outer space are not best suited to the search for optimal procedures with which to process such data. To work out the procedures, it was proposed that data synthesized with the help of mathematical modeling be used. A criterion for simularity to reality was formulated. The basic principles for constructing methods for modeling the data from remote sensing are recommended. A concrete method is formulated for modeling a complete cycle of radiation transformations in remote sensing. A computer program is described which realizes the proposed method. Some results from calculations are presented which show that the method satisfies the requirements imposed on it.

  16. Remote Sensing of Water Vapor and Thin Cirrus Clouds using MODIS Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yoram J.

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major facility instrument on board the Terra Spacecraft, was successfully launched into space in December of 1999. MODIS has several near-IR channels within and around the 0.94 micrometer water vapor bands for remote sensing of integrated atmospheric water vapor over land and above clouds. MODIS also has a special near-IR channel centered at 1.375-micron with a width of 30 nm for remote sensing of cirrus clouds. In this paper, we describe briefly the physical principles on remote sensing of water vapor and cirrus clouds using these channels. We also present sample water vapor images and cirrus cloud images obtained from MODIS data.

  17. Second Symposium on Space Industrialization. [space commercialization

    NASA Technical Reports Server (NTRS)

    Jernigan, C. M. (Editor)

    1984-01-01

    The policy, legal, and economic aspects of space industrialization are considered along with satellite communications, material processing, remote sensing, and the role of space carriers and a space station in space industrialization.

  18. Remote Sensing Information Sciences Research Group: Santa Barbara Information Sciences Research Group, year 4

    NASA Technical Reports Server (NTRS)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.

  19. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 7: Nonreplenishable natural resources: Minerals, fossil fuels and geothermal energy sources

    NASA Technical Reports Server (NTRS)

    Lietzke, K. R.

    1974-01-01

    The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.

  20. ESTAR: The Electronically Scanned Thinned Array Radiometer for remote sensing measurement of soil moisture and ocean salinity

    NASA Technical Reports Server (NTRS)

    Swift, C. T.

    1993-01-01

    The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system.

  1. Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)

    NASA Technical Reports Server (NTRS)

    Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke

    2004-01-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.

  2. Spatial and Temporal Scaling of Thermal Infrared Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Goel, Narendra S.

    1995-01-01

    Although remote sensing has a central role to play in the acquisition of synoptic data obtained at multiple spatial and temporal scales to facilitate our understanding of local and regional processes as they influence the global climate, the use of thermal infrared (TIR) remote sensing data in this capacity has received only minimal attention. This results from some fundamental challenges that are associated with employing TIR data collected at different space and time scales, either with the same or different sensing systems, and also from other problems that arise in applying a multiple scaled approach to the measurement of surface temperatures. In this paper, we describe some of the more important problems associated with using TIR remote sensing data obtained at different spatial and temporal scales, examine why these problems appear as impediments to using multiple scaled TIR data, and provide some suggestions for future research activities that may address these problems. We elucidate the fundamental concept of scale as it relates to remote sensing and explore how space and time relationships affect TIR data from a problem-dependency perspective. We also describe how linearity and non-linearity observation versus parameter relationships affect the quantitative analysis of TIR data. Some insight is given on how the atmosphere between target and sensor influences the accurate measurement of surface temperatures and how these effects will be compounded in analyzing multiple scaled TIR data. Last, we describe some of the challenges in modeling TIR data obtained at different space and time scales and discuss how multiple scaled TIR data can be used to provide new and important information for measuring and modeling land-atmosphere energy balance processes.

  3. Ten ways remote sensing can contribute to conservation

    USGS Publications Warehouse

    Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2014-01-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?

  4. Ten ways remote sensing can contribute to conservation.

    PubMed

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions? © 2014 Society for Conservation Biology.

  5. NASA Remote Sensing Research as Applied to Archaeology

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.; Thomas, Michael R.

    2002-01-01

    The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.

  6. The use of remote sensing in mosquito control

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The technology of remote sensing, developed by the space program for identification of surface features from the vantage point of an aircraft or satellite, has substantial application in precisely locating mosquito breeding grounds. Preliminary results of the NASA technology working cooperatively with a city government agency in solving this problem are discussed.

  7. An assessment of the differences between spatial resolution and grid size for the SMAP enhanced soil moisture product over homogeneous sites

    USDA-ARS?s Scientific Manuscript database

    Satellite-based passive microwave remote sensing typically involves a scanning antenna that makes measurements at irregularly spaced locations. These locations can change on a day to day basis. Soil moisture products derived from satellite-based passive microwave remote sensing are usually resampled...

  8. Stennis Space Center Verification & Validation Capabilities

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; ONeal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir

    2005-01-01

    Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.

  9. Best Practice Guidelines for Pre-Launch Characterization and Calibration of Instruments for Passive Optical Remote Sensing1

    PubMed Central

    Datla, R. U.; Rice, J. P.; Lykke, K. R.; Johnson, B. C.; Butler, J. J.; Xiong, X.

    2011-01-01

    The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented. PMID:26989588

  10. Best Practice Guidelines for Pre-Launch Characterization and Calibration of Instruments for Passive Optical Remote Sensing.

    PubMed

    Datla, R U; Rice, J P; Lykke, K R; Johnson, B C; Butler, J J; Xiong, X

    2011-01-01

    The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented.

  11. Acquisition of Earth Science Remote Sensing Observations from Commercial Sources: Lessons Learned from the Space Imaging IKONOS Example

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.; Townshend, John R.; Zanoni, Vicki; Policelli, Fritz; Stanley, Tom; Ryan, Robert; Holekamp, Kara; Underwood, Lauren; Pagnutti, Mary; Fletcher, Rose

    2003-01-01

    In an effort to more full explore the potential of commercial remotely sensed land data sources, the NASA Earth Science Enterprise (ESE) implemented an experimental Scientific Data Purchase (SDP) that solicited bids from the private sector to meet ESE-user data needs. The images from the Space Imaging IKONOS system provided a particularly good match to the current ESE missions such as Terra and Landsat 7 and therefore serve as a focal point in this analysis.

  12. Hyperspectral sensing of forests

    NASA Astrophysics Data System (ADS)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  13. NASA Remote Sensing Applications for Archaeology and Cultural Resources Management

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.

    2008-01-01

    NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through the use of remote sensing. In 2007, NASA awarded six competitively chosen projects in Space Archaeology through an open solicitation whose purpose, among several, was to addresses the potential benefits to modern society that can be derived through a better understanding of how past cultures succeeded or failed to adapt to local, regional, and global change. A further objective of NASA's space archaeology is the protection and preservation of cultural heritage sites while planning for the sustainable development of cultural resources. NASA s archaeological approach through remote sensing builds on traditional methods of aerial archaeology (i.e. crop marks) and utilizes advanced technologies for collecting and analyzing archaeological data from digital imagery. NASA s archaeological research and application projects using remote sensing have been conducted throughout the world. In North America, NASA has imaged prehistoric mound sites in Mississippi; prehistoric shell middens in Louisiana, Puebloan sites in New Mexico and more recently the sites associated with the Lewis and Clark Corps of Discovery Expedition (1804-1806). In Central America, NASA archaeologists have researched Mayan sites throughout the region, including the Yucatan and Costa Rica, as well as Olmec localities in Veracruz. Other data has been collected over Angkor, Cambodia, Giza in Egypt, the lost city of Ubar on the Arabian Peninsula.

  14. Two Optical Atmospheric Remote Sensing Techniques and AN Associated Analytic Solution to a Class of Integral Equations

    NASA Astrophysics Data System (ADS)

    Manning, Robert Michael

    This work concerns itself with the analysis of two optical remote sensing methods to be used to obtain parameters of the turbulent atmosphere pertinent to stochastic electromagnetic wave propagation studies, and the well -posed solution to a class of integral equations that are central to the development of these remote sensing methods. A remote sensing technique is theoretically developed whereby the temporal frequency spectrum of the scintillations of a stellar source or a point source within the atmosphere, observed through a variable radius aperture, is related to the space-time spectrum of atmospheric scintillation. The key to this spectral remote sensing method is the spatial filtering performed by a finite aperture. The entire method is developed without resorting to a priori information such as results from stochastic wave propagation theory. Once the space-time spectrum of the scintillations is obtained, an application of known results of atmospheric wave propagation theory and simple geometric considerations are shown to yield such important information such as the spectrum of atmospheric turbulence, the cross-wind velocity, and the path profile of the atmospheric refractive index structure parameter. A method is also developed to independently verify the Taylor frozen flow hypothesis. The success of the spectral remote sensing method relies on the solution to a Fredholm integral equation of the first kind. An entire class of such equations, that are peculiar to inverse diffraction problems, is studied and a well-posed solution (in the sense of Hadamard) is obtained and probed. Conditions of applicability are derived and shown not to limit the useful operating range of the spectral remote sensing method. The general integral equation solution obtained is then applied to another remote sensing problem having to do with the characterization of the particle size distribution to atmospheric aerosols and hydrometeors. By measuring the diffraction pattern in the focal plane of a lens created by the passage of a laser beam through a distribution of particles, it is shown that the particle-size distribution of the particles can be obtained. An intermediate result of the analysis also gives the total volume concentration of the particles.

  15. Earth Observation from Space - The Issue of Environmental Sustainability

    NASA Technical Reports Server (NTRS)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given that they're rare event, space launches may be benign, but study is merited on upper stratospheric and exospheric layers given the chemical activity associated with rocket combustion by-products. (3) Minimization of Type II error should be considered in situations where minimization of Type I error greatly hampers or precludes our ability to correct the environmental condition being studied. (4) In certain situations, airborne collects may be less expensive and more environmentally benign, and comparative studies should be done to determine which path is wisest. (5) International cooperation and data sharing will reduce instrument and launch costs and mission redundancy. Given fiscal concerns of most of the major space agencies e e.g. NASA, ESA, CNES e it seems prudent to combine resources.

  16. Remote sensing of Essential Biodiversity Variables: new measurements linking ecosystem structure, function and composition

    NASA Astrophysics Data System (ADS)

    Schimel, D.; Pavlick, R.; Stavros, E. N.; Townsend, P. A.; Ustin, S.; Thompson, D. R.

    2017-12-01

    Remote sensing can inform a wide variety of essential biodiversity variables, including measurements that define primary productivity, forest structure, biome distribution, plant communities, land use-land cover change and climate drivers of change. Emerging remote sensing technologies can add significantly to remote sensing of EBVs, providing new, large scale insights on plant and habitat diversity itself, as well as causes and consequences of biodiversity change. All current biodiversity assessments identify major data gaps, with insufficient coverage in critical regions, limited observations to monitor change over time, with very limited revisit of sample locations, as well as taxon-specific biased biases. Remote sensing cannot fill many of the gaps in global biodiversity observations, but spectroscopic measurements in terrestrial and marine environments can aid in assessing plant/phytoplankton functional diversity and efficiently reveal patterns in space, as well as changes over time, and, by making use of chlorophyll fluorescence, reveal associated patterns in photosynthesis. LIDAR and RADAR measurements quantify ecosystem structure, and can precisely define changes due to growth, disturbance and land use. Current satellite-based EBVs have taken advantage of the extraordinary time series from LANDSAT and MODIS, but new measurements more directly reveal ecosystem structure, function and composition. We will present results from pre-space airborne studies showing the synergistic ability of a suite of new remote observation techniques to quantify biodiversity and ecosystem function and show how it changes during major disturbance events.

  17. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Current Insights and Trends. Chapter 3

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    2014-01-01

    NASA or NOAA Earth-observing satellites are not the only space-based TIR platforms. The European Space Agency (ESA), the Chinese, and other countries have in orbit or plan to launch TIR remote sensing systems. Satellite remote sensing provides an excellent opportunity to study land-atmosphere energy exchanges at the regional scale. A predominant application of TIR data has been in inferring evaporation, evapotranspiration (ET), and soil moisture. In addition to using TIR data for ET and soil moisture analysis over vegetated surfaces, there is also a need for using these data for assessment of drought conditions. The concept of ecological thermodynamics provides a quantification of surface energy fluxes for landscape characterization in relation to the overall amount of energy input and output from specific land cover types.

  18. Air pollution linked to Remote Sensing tools - Science training using a Master's Level e-Learning Tool

    NASA Astrophysics Data System (ADS)

    Ladstaetter-Weissenmayer, A.; Kanakidou, M.; Richter, A.; Wagner, T.; Borrell, P.; Law, R. J.; Burrows, J. P.

    2009-09-01

    As we know it today air pollution is a release into the atmosphere of any substances, chemicals or particles, which are harmful both to the human and animal health as well as the health of the wider environment. The use of satellite based instruments is a young and developing research field and excellent for studying air pollution events over large areas at high spatial-temporal resolutions, especially when ground measurements, which are limited in spatial-temporal coverage, are not available. Students on postgraduate level should be trained in using, and analysing remote sensing data from both ground and satellite based or in interpreting the high variety in remote sensing e.g satellite images or maps. As follows an e-learning online module has been devised and constructed to facilitate the teaching of Remote Sensing of Troposphere from Space to research students at a Master's level. The module, which is essentially an interactive on-line text book, is stand alone, although it could be encompassed within a standard course management system. The scientific content is presented as study pages under three headings: remote sensing from space, the basics of radiation transfer, and retrieval procedures for tropospheric satellite data.The student is encouraged to test his or her comprehension of the material through exercises on the scientific topics.

  19. Air pollution linked to Remote Sensing tools - Science training using a Master's Level e-Learning Tool

    NASA Astrophysics Data System (ADS)

    Ladstätter-Weißenmayer, A.; Kanakidou, M.; Richter, A.; Wagner, T.; Borrell, P.; Law, R. J.; Burrows, J. P.

    2009-04-01

    As we know it today air pollution is a release into the atmosphere of any substances, chemicals or particles, which are harmful both to the human and animal health as well as the health of the wider environment. The use of satellite based instruments is a young and developing research field and excellent for studying air pollution events over large areas at high spatial-temporal resolutions, especially when ground measurements, which are limited in spatial-temporal coverage, are not available. Students on postgraduate level should be trained in using, and analysing remote sensing data from both ground and satellite based or in interpreting the high variety in remote sensing e.g satellite images or maps. As follows an e-learning online module has been devised and constructed to facilitate the teaching of Remote Sensing of Troposphere from Space to research students at a Master's level. The module, which is essentially an interactive on-line text book, is stand alone, although it could be encompassed within a standard course management system. The scientific content is presented as study pages under three headings: remote sensing from space, the basics of radiation transfer, and retrieval procedures for tropospheric satellite data.The student is encouraged to test his or her comprehension of the material through exercises on the scientific topics.

  20. NIST activities in support of space-based radiometric remote sensing

    NASA Astrophysics Data System (ADS)

    Rice, Joseph P.; Johnson, B. Carol

    2001-06-01

    We provide an historical overview of NIST research and development in radiometry for space-based remote sensing. The applications in this field can be generally divided into two areas: environmental and defense. In the environmental remote sensing area, NIST has had programs with agencies such as the National Aeronautical and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to verify and improve traceability of the radiometric calibration of sensors that fly on board Earth-observing satellites. These produce data used in climate models and weather prediction. Over the years, the scope of activities has expanded from existing routine calibration services for artifacts such as lamps, diffusers, and filters, to development and off-site deployment of portable radiometers for radiance- and irradiance-scale intercomparisons. In the defense remote sensing area, NIST has had programs with agencies such as the Department of Defense (DOD) for support of calibration of small, low-level infrared sources in a low infrared background. These are used by the aerospace industry to simulate ballistic missiles in a cold space background. Activities have evolved from calibration of point-source cryogenic blackbodies at NIST to measurement of irradiance in off-site calibration chambers by a portable vacuum/cryogenic radiometer. Both areas of application required measurements on the cutting edge of what was technically feasible, thus compelling NIST to develop a state-of-the-art radiometric measurement infrastructure to meet the needs. This infrastructure has led to improved dissemination of the NIST spectroradiometric quantities.

  1. A History of NASA Remote Sensing Contributions to Archaeology

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.

    2010-01-01

    During its long history of developing and deploying remote sensing instruments, NASA has provided a scientific data that have benefitted a variety of scientific applications among them archaeology. Multispectral and hyperspectral instrument mounted on orbiting and suborbital platforms have provided new and important information for the discovery, delineation and analysis of archaeological sites worldwide. Since the early 1970s, several of the ten NASA centers have collaborated with archaeologists to refine and validate the use of active and passive remote sensing for archeological use. The Stennis Space Center (SSC), located in Mississippi USA has been the NASA leader in archeological research. Together with colleagues from Goddard Space Flight Center (GSFC), Marshall Space Flight Center (MSFC), and the Jet Propulsion Laboratory (JPL), SSC scientists have provided the archaeological community with useful images and sophisticated processing that have pushed the technological frontiers of archaeological research and applications. Successful projects include identifying prehistoric roads in Chaco canyon, identifying sites from the Lewis and Clark Corps of Discovery exploration and assessing prehistoric settlement patterns in southeast Louisiana. The Scientific Data Purchase (SDP) stimulated commercial companies to collect archaeological data. At present, NASA formally solicits "space archaeology" proposals through its Earth Science Directorate and continues to assist archaeologists and cultural resource managers in doing their work more efficiently and effectively. This paper focuses on passive remote sensing and does not consider the significant contributions made by NASA active sensors. Hyperspectral data offers new opportunities for future archeological discoveries.

  2. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  3. Non-Topographic Space-Based Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Abshire, James B.; Riris, Haris; Purucker, Michael; Janches, Diego; Getty, Stephanie; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Li, Steve X.; hide

    2016-01-01

    In the past 20+ years, NASA Goddard Space Flight Center (GSFC) has successfully developed and flown lidars for mapping of Mars, the Earth, Mercury and the Moon. As laser and electro-optics technologies expand and mature, more sophisticated instruments that once were thought to be too complicated for space are being considered and developed. We will present progress on several new, space-based laser instruments that are being developed at GSFC. These include lidars for remote sensing of carbon dioxide and methane on Earth for carbon cycle and global climate change; sodium resonance fluorescence lidar to measure environmental parameters of the middle and upper atmosphere on Earth and Mars and a wind lidar for Mars orbit; in situ laser instruments include remote and in-situ measurements of the magnetic fields; and a time-of-flight mass spectrometer to study the diversity and structure of nonvolatile organics in solid samples on missions to outer planetary satellites and small bodies.

  4. "SpaceCam": Legal Issues in the Use of Remote-Sensing Satellites for News Gathering.

    ERIC Educational Resources Information Center

    Smith, William E.

    News media representatives foresee a growing use of remote-sensing satellites to gather data, including data that could be used to check government claims about military and other activities occurring anywhere on the planet. The satellite technology is developing rapidly, and several nations and private corporations are involved in separate…

  5. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures

    USDA-ARS?s Scientific Manuscript database

    Operational application of a remote sensing-based two source energy balance model (TSEB) to estimate evaportranspiration (ET) and the components evaporation (E), transpiration (T) at a range of space and time scales is very useful for managing water resources in arid and semiarid watersheds. The TSE...

  6. Small Spacecraft Technology Initiative Education Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  7. Remote sensing techniques to assess active fire characteristics and post-fire effects

    Treesearch

    Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson

    2006-01-01

    Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...

  8. IGARSS 1989: Canadian Symposium on Remote Sensing (12th) (Symposium Canadien sur la Teledetection): Quantitative Remote Sensing: An Economic Tool for the Nineties Held in Vancouver, Canada on 10-14 July 1989. Volume 4. Thursday, July 13

    DTIC Science & Technology

    1989-07-14

    Ahern, Canada Centre for Remote Sensing, Canada Kohel Arai, National Space Development Agency of Japan, Japan F. Bonn, Universitie de Sherbrooke...Catholilque de Louvain, Belgium D.C. Hogg, University of Colorado, USA R. Humphreys, MacDonald Dettwiler Associates, Canada E. Jull, University of...to quantitative 1990 assessment of landslide damage ,4 ( C V ’ ) C.H. Trotter, P.R. Stephens, N.R. Trustrum, M.J. Page, K.S. Carr, R.C. de Rose

  9. Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Ackleson, S. G.; Hardisky, M. A.

    1985-01-01

    On 31 March 1983, the University of Delaware's Center for Remote Sensing initiated a study to evaluate the spatial, radiometric and spectral performance of the LANDSAT Thematic Mapper for coastal and estuarine studies. The investigation was supported by Contract NAS5-27580 from the NASA Goddard Space Flight Center. The research was divided into three major subprojects: (1) a comparison of LANDSAT TM to MSS imagery for detecting submerged aquatic vegetation in Chesapeake Bay; (2) remote sensing of submerged aquatic vegetation - a radiative transfer approach; and (3) remote sensing of coastal wetland biomass using Thematic Mapper wavebands.

  10. Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing

    NASA Technical Reports Server (NTRS)

    Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.

    1992-01-01

    The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.

  11. Book Review: Book review

    NASA Astrophysics Data System (ADS)

    van der Linden, Sebastian

    2016-05-01

    Compiling a good book on urban remote sensing is probably as hard as the research in this disciplinary field itself. Urban areas comprise various environments and show high heterogeneity in many respects, they are highly dynamic in time and space and at the same time of greatest influence on connected and even tele-connected regions due to their great economic importance. Urban remote sensing is therefore of great importance, yet as manifold as its study area: mapping urban areas (or sub-categories thereof) plays an important (and challenging) role in land use and land cover (change) monitoring; the analysis of urban green and forests is by itself a specialization of ecological remote sensing; urban climatology asks for spatially and temporally highly resolved remote sensing products; the detection of artificial objects is not only a common and important remote sensing application but also a typical benchmark for image analysis techniques, etc. Urban analyses are performed with all available spaceborne sensor types and at the same time they are one of the most relevant fields for airborne remote sensing. Several books on urban remote sensing have been published during the past 10 years, each taking a different perspective. The book Global Urban Monitoring and Assessment through Earth Observation is motivated by the objectives of the Global Urban Observation and Information Task (SB-04) in the GEOSS (Global Earth Observation System of Systems) 2012-2015 workplan (compare Chapter 2) and wants to highlight the global aspects of state-of-the-art urban remote sensing.

  12. Multiscale and Multitemporal Urban Remote Sensing

    NASA Astrophysics Data System (ADS)

    Mesev, V.

    2012-07-01

    The remote sensing of urban areas has received much attention from scientists conducting studies on measuring sprawl, congestion, pollution, poverty, and environmental encroachment. Yet much of the research is case and data-specific where results are greatly influenced by prevailing local conditions. There seems to be a lack of epistemological links between remote sensing and conventional theoretical urban geography; in other words, an oversight for the appreciation of how urban theory fuels urban change and how urban change is measured by remotely sensed data. This paper explores basic urban theories such as centrality, mobility, materiality, nature, public space, consumption, segregation and exclusion, and how they can be measured by remote sensing sources. In particular, the link between structure (tangible objects) and function (intangible or immaterial behavior) is addressed as the theory that supports the wellknow contrast between land cover and land use classification from remotely sensed data. The paper then couches these urban theories and contributions from urban remote sensing within two analytical fields. The first is the search for an "appropriate" spatial scale of analysis, which is conveniently divided between micro and macro urban remote sensing for measuring urban structure, understanding urban processes, and perhaps contributions to urban theory at a variety of scales of analysis. The second is on the existence of a temporal lag between materiality of urban objects and the planning process that approved their construction, specifically how time-dependence in urban structural-functional models produce temporal lags that alter the causal links between societal and political functional demands and structural ramifications.

  13. The use of Space Technology for the Benefit of Society in Context of Planning and Sustainable Development

    NASA Astrophysics Data System (ADS)

    Kuldeep, Kuldeep; Banu, Vijaya

    2016-07-01

    The introduction of the novel technology mostly leads to a number of advantages to the society. The space technology has shown such benefits in many fields including the areas of health and education, communication sectors, land and water resources management, weather forecasting and disaster management. It has vast potential for addressing a variety of societal problems of the developing countries especially in India in a effective manner. Large population which is spread over vast and remote areas of the nation, reaching out to them is a difficult task. This manuscript aims to explain the benefits originated from the application of space technology. The satellite imagery and its derived products can better be utilized for local level planning and sustainable development of a region. A case-study using Bhuvan Panchayat Portal developed by National Remote Sensing Centre, ISRO under the project "Space Based Information Support for De-Centralised Planning" towards Digital Empowerment of Society for Panchayat level Planning and Governance has been carried out, which list out the benefits that have accrued from the use of space technology for planning and development at grass root level in India. It covers, in particular, the benefits expected to be derived from the Indian Remote Sensing Satellite (IRS) Images and derived products. Certain conclusions about the benefits from space based inputs have been drawn that may be generally applicable to all developing countries. This paper also investigates the various possibilities and potentials of Remote Sensing technologies for societal applications.

  14. Potential for remote sensing of agriculture from the international space station

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Khatib, Nader

    1999-01-01

    Today's spatial resolution of orbital sensing systems is too coarse to economically serve the yield-improvement/contamination-reduction needs of the small to mid-size farm enterprise. Remote sensing from aircraft is being pressed into service. However, satellite remote sensing constellations with greater resolution and more spectral bands, i.e., with resolutions of 1 m in the panchromatic, 4 m in the multi-spectral, and 8 m in the hyper-spectral are expected to be in orbit by the year 2000. Such systems coupled with Global Positioning System (GPS) capability will make ``precision agriculture,'' i.e., the identification of specific and timely fertilizer, irrigation, herbicide, and insecticide needs on an acre-by-acre basis and the ability to meet these needs with precision delivery systems at affordable costs, is what is needed and can be achieved. Current plans for remote sensing systems on the International Space Station (ISS) include externally attached payloads and a window observation platform. The planned orbit of the Space Station will result in overflight of a specific latitude and longitude at the same clock time every 3 months. However, a pass over a specific latitude and longitude during ``daylight hours'' could occur much more frequently. The ISS might thus be a space platform for experimental and developmental testing of future commercial space remote sensing precision agriculture systems. There is also a need for agricultural ``truth'' sites so that predictive crop yield and pollution models can be devised and corrective suggestions delivered to farmers at affordable costs. In Summer 1998, the University of Colorado at Boulder and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) at Howard University, under NASA Goddard Space Flight Center funding, established an agricultural ``truth'' site in eastern Colorado. The ``truth'' site was highly instrumented for measuring trace gas concentrations (NOx, SOx, CO2, O3, organics, and aerosols), ground water contamination via drain-tile catch from the fields, and Leaf Area Index (LAI). Also, a tethered balloon flight sampled the site's vertical air column and both aerial infrared photography and satellite imagery were acquired. This paper summarizes the 1998 activities in establishing and operating the ``truth'' site. The goal of such a ``truth'' site is to develop and validate precision agriculture predictive models to improve farming practices. ISS sensor testing can greatly accelerate development of such systems.

  15. The Science and Technology in Future Remote Sensing Space Missions of Alenia Aerospazio

    NASA Astrophysics Data System (ADS)

    Angino, G.; Borgarelli, L.

    1999-12-01

    The Space Division of Alenia Aerospazio, a Finmeccanica company, is the major Italian space industry. It has, in seven plants, design facilities and laboratories for advanced technological research that are amongst the most modern and well equipped in Europe. With the co-ordinated companies Alenia Aerospazio is one of Europe's largest space industries. In the field of Remote Sensing, i.e. the acquisition of information about objects without being in physical contact with them, the Space Division has proven their capability to manage all of the techniques from space (ranging from active instruments as Synthetic Aperture Radar, Radar Altimeter, Scatterometer, etc… to passive ones as radiometer) in different programs with the main international industries and agencies. Space techniques both for Monitoring/Observation (i.e. operational applications) and Exploration (i.e. research for science demonstration) according to the most recent indication from international committees constitute guidelines. The first is devoted to market for giving innovation, added-value to services and, globally, enhancement of quality of life. The second has the basic purpose of pursuing the scientific knowledge. Advanced technology allows to design for multi-functions instruments (easy in configuration, adaptable to impredictable environment), to synthesise, apparently, opposite concepts (see for instance different requirement from military and civil applications). Space Division of Alenia Aerospazio has knowledge and capability to face the challenge of new millennium in space missions sector. In this paper, it will be described main remote sensing missions in which Space Division is involved both in terms of science and technology definition. Two main segments can be defined: Earth and interplanetary missions. To the first belong: ENVISAT (Earth surface), LIGHTSAR (Earth imaging), CRYOSAT (Earth ice) and to the second: CASSINI (study of Titan and icy satellites), MARS EXPRESS (detection and localisation of water under planet surface) and EUROPA (water detection and localisation). Particular mention is for the leading program of the Space Division: COSMO/SkyMed mission. A complete constellation of remote sensing satellites (with microwave and optical payloads) is going to be designed for science, civil and military applications. Driving objective of the COSMO/ SkyMed mission is the observation, remote sensing and data exploitation for risks management, coastal zone monitoring and sea pollution control. However a broad spectrum of other important applications, in the field of the resource management, land use and law enforcement, etc., may be satisfied at the same time with the same mission design.

  16. The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications

    NASA Astrophysics Data System (ADS)

    Rose, Randy; Gleason, Scott; Ruf, Chris

    2014-10-01

    Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing problems while opening new applications of Earth remote sensing. Key information about the ocean and global climate is hidden from existing space borne observatories because of the frequency band in which they operate. Using GNSS-based bi-static scatterometry performed by a constellation of microsatellites offers remote sensing of ocean wave, wind, and ice data with unprecedented temporal resolution and spatial coverage across the full dynamic range of ocean wind speeds in all precipitating conditions. The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a space borne mission being developed to study tropical cyclone inner core processes. CYGNSS consists of 8 GPS bi-static radar receivers to be deployed on separate micro-satellites in October 2016. CYGNSS will provide data to address what are thought to be the principle deficiencies with current tropical cyclone intensity forecasts: inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the tropical cyclone life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. It is anticipated that numerous additional Earth science applications can also benefit from the cost effective high spatial and temporal sampling capabilities of GNSS remote sensing. These applications include monitoring of rough and dangerous sea states, global observations of sea ice cover and extent, meso-scale ocean circulation studies, and near surface soil moisture observations. This presentation provides a primer for GNSS based scatterometry, an overview of NASA's CYGNSS mission and its expected performance, as well as a summary of possible other GNSS based remote sensing applications.

  17. Validation plays the role of a "bridge" in connecting remote sensing research and applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Deng, Ying; Fan, Yida

    2018-07-01

    Remote sensing products contribute to improving earth observations over space and time. Uncertainties exist in products of different levels; thus, validation of these products before and during their applications is critical. This study discusses the meaning of validation in depth and proposes a new definition of reliability for use with such products. In this context, validation should include three aspects: a description of the relevant uncertainties, quantitative measurement results and a qualitative judgment that considers the needs of users. A literature overview is then presented evidencing improvements in the concepts associated with validation. It shows that the root mean squared error (RMSE) is widely used to express accuracy; increasing numbers of remote sensing products have been validated; research institutes contribute most validation efforts; and sufficient validation studies encourage the application of remote sensing products. Validation plays a connecting role in the distribution and application of remote sensing products. Validation connects simple remote sensing subjects with other disciplines, and it connects primary research with practical applications. Based on the above findings, it is suggested that validation efforts that include wider cooperation among research institutes and full consideration of the needs of users should be promoted.

  18. USGS Provision of Near Real Time Remotely Sensed Imagery for Emergency Response

    NASA Astrophysics Data System (ADS)

    Jones, B. K.

    2014-12-01

    The use of remotely sensed imagery in the aftermath of a disaster can have an important impact on the effectiveness of the response for many types of disasters such as floods, earthquakes, volcanic eruptions, landslides, and other natural or human-induced disasters. Ideally, responders in areas that are commonly affected by disasters would have access to archived remote sensing imagery plus the ability to easily obtain the new post event data products. The cost of obtaining and storing the data and the lack of trained professionals who can process the data into a mapping product oftentimes prevent this from happening. USGS Emergency Operations provides remote sensing and geospatial support to emergency managers by providing access to satellite images from numerous domestic and international space agencies including those affiliated with the International Charter Space and Major Disasters and their space-based assets and by hosting and distributing thousands of near real time event related images and map products through the Hazards Data Distribution System (HDDS). These data may include digital elevation models, hydrographic models, base satellite images, vector data layers such as roads, aerial photographs, and other pre and post disaster data. These layers are incorporated into a Web-based browser and data delivery service, the Hazards Data Distribution System (HDDS). The HDDS can be made accessible either to the general public or to specific response agencies. The HDDS concept anticipates customer requirements and provides rapid delivery of data and services. This presentation will provide an overview of remotely sensed imagery that is currently available to support emergency response operations and examples of products that have been created for past events that have provided near real time situational awareness for responding agencies.

  19. Instrumentation for optical remote sensing from space; Proceedings of the Meeting, Cannes, France, November 27-29, 1985

    NASA Technical Reports Server (NTRS)

    Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)

    1986-01-01

    Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.

  20. Stennis Space Center Verification & Validation Capabilities

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir

    2007-01-01

    Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.

  1. Advancing Technologies for Climate Observation

    NASA Technical Reports Server (NTRS)

    Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.

    2014-01-01

    Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques

  2. Project Copernicus: An Earth observing system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Hunsaker Aerospace Corporation is presenting this proposal for Project Copernicus to fulfill the need for space-based remote sensing of Earth. Concentration is on data acquisition. Copernicus is designed to be a flexible system of spacecraft in a low near-polar orbit. The goal is to acquire data so that the scientists may begin to understand many Earth processes and interactions. The mission objective of Copernicus is to provide a space-based, remote-sensing measurement data acquisition and transfer system for 15 years. A description of the design project is presented.

  3. Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.

    2014-12-01

    Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and crop progress reports from USDA NASS. We will present remote sensing approaches and focus on: 1) integrating multiple sources of remote sensing data; and 2) extracting crop phenology at field scales. An example in the U.S. Corn Belt area will be presented and analyzed. Future directions for mapping crop growth stages will be discussed.

  4. The U.S. Geological Survey Land Remote Sensing Program

    USGS Publications Warehouse

    ,

    2003-01-01

    In 2002, the U. S. Geological Survey (USGS) launched a program to enhance the acquisition, preservation, and use of remotely sensed data for USGS science programs, as well as for those of cooperators and customers. Remotely sensed data are fundamental tools for studying the Earth's land surface, including coastal and near-shore environments. For many decades, the USGS has been a leader in providing remotely sensed data to the national and international communities. Acting on its historical topographic mapping mission, the USGS has archived and distributed aerial photographs of the United States for more than half a century. Since 1972, the USGS has acquired, processed, archived, and distributed Landsat and other satellite and airborne remotely sensed data products to users worldwide. Today, the USGS operates and manages the Landsats 5 and 7 missions and cooperates with the National Aeronautics and Space Administration (NASA) to define and implement future satellite missions that will continue and expand the collection of moderate-resolution remotely sensed data. In addition to being a provider of remotely sensed data, the USGS is a user of these data and related remote sensing technology. These data are used in natural resource evaluations for energy and minerals, coastal environmental surveys, assessments of natural hazards (earthquakes, volcanoes, and landslides), biological surveys and investigations, water resources status and trends analyses and studies, and geographic and cartographic applications, such as wildfire detection and tracking and as a source of information for The National Map. The program furthers these distinct but related roles by leading the USGS activities in providing remotely sensed data while advancing applications of such data for USGS programs and a wider user community.

  5. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of landscape ecological processes.

  6. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  7. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-09-30

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  8. The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Remer, Lorraine

    1999-01-01

    Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.

  9. Where size does matter: foldable telescope design for microsat application

    NASA Astrophysics Data System (ADS)

    Segert, Tom; Danziger, Björn; Lieder, Matthias

    2017-11-01

    The DOBSON SPACE TELESCOPE Project (DST) at the Technical University of Berlin (TUB) believes that micro satellites can be a challenging competitor in the high resolution remote sensing market. Using a micro satellite as basis for a remote sensing platform will dramatically reduce the cost for the end users thereby initiating the predicted remote sensing boom. The Challenging task is that an optic required for a GSD smaller than 1m is much bigger than the given room for secondary payload. In order to break the volume limits of hitchhiker payloads the DST team develops an optical telescope with deployable structures. The core piece of DST is a 20 inch modified Cassegrain optic. Stored during ascend the instrument fits in a box measuring 60 x 60 x 30cm (including telescope and optical plane assembly). After the satellite was released into free space the telescope unfolds and collimates automatically.

  10. Practical application of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Phelps, R. A.

    1975-01-01

    Remote sensing program imagery from several types of platforms, from light aircraft to the LANDSAT (ERTS) satellites, have been utilized during the past few years, with preference for inexpensive imagery over expensive magnetic tapes. Emphasis has been on practical application of remote sensing data to increase crop yield by decreasing plant stress, disease, weeds and undesirable insects and by improving irrigation. Imagery obtained from low altitudes via aircraft provides the necessary resolution and complements but does not replace data from high altitude aircraft, Gemini and Apollo spacecraft, Skylab space station and LANDSAT satellites. Federal government centers are now able to supply imagery within about thirty days from data of order. Nevertheless, if the full potential of space imagery in practical agricultural operations is to be realized, the time span from date of imaging to user application needs to be shortened from the current several months to not more than two weeks.

  11. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  12. Space America's commercial space program

    NASA Technical Reports Server (NTRS)

    Macleod, N. H.

    1984-01-01

    Space America prepared a private sector land observing space system which includes a sensor system with eight spectral channels configured for stereoscopic data acquisition of four stereo pairs, a spacecraft bus with active three-axis stabilization, a ground station for data acquisition, preprocessing and retransmission. The land observing system is a component of Space America's end-to-end system for Earth resources management, monitoring and exploration. In the context of the Federal Government's program of commercialization of the US land remote sensing program, Space America's space system is characteristic of US industry's use of advanced technology and of commercial, entrepreneurial management. Well before the issuance of the Request for Proposals for Transfer of the United States Land Remote Sensing Program to the Private Sector by the US Department of Commerce, Space Services, Inc., the managing venturer of Space America, used private funds to develop and manage its sub-orbital launch of its Conestoga launch vehicle.

  13. ASTER VNIR 15 years growth to the standard imaging radiometer in remote sensing

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Masaru; Inada, Hitomi; Kikuchi, Masakuni; Sakuma, Fumihiro

    2015-10-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared Radiometer (VNIR) is the remote sensing equipment which has 3 spectral bands and one along-track stereoscopic band radiometer. ASTER VNIR's planned long life design (more than 5 years) is successfully achieved. ASTER VNIR has been imaging the World-wide Earth surface multiband images and the Global Digital Elevation Model (GDEM). VNIR data create detailed world-wide maps and change-detection of the earth surface as utilization transitions and topographical changes. ASTER VNIR's geometric resolution is 15 meters; it is the highest spatial resolution instrument on NASA's Terra spacecraft. Then, ASTER VNIR was planned for the geometrical basis map makers in Terra instruments. After 15-years VNIR growth to the standard map-maker for space remote-sensing. This paper presents VNIR's feature items during 15-year operation as change-detection images , DEM and calibration result. VNIR observed the World-wide Earth images for biological, climatological, geological, and hydrological study, those successful work shows a way on space remote sensing instruments. Still more, VNIR 15 years observation data trend and onboard calibration trend data show several guide or support to follow-on instruments.

  14. Time Series Remote Sensing in Monitoring the Spatio-Temporal Dynamics of Plant Invasions: A Study of Invasive Saltcedar (Tamarix Spp.)

    NASA Astrophysics Data System (ADS)

    Diao, Chunyuan

    In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.

  15. The Indian Space Program

    NASA Technical Reports Server (NTRS)

    Talapatra, Dipak C.

    1993-01-01

    The Indian Space program aimed at providing operation space services in communications and remote sensing and using state-of-the-art space technologies is reviewed. Emphasis is placed on the development and operation of satellites and launch vehicles for providing these space services.

  16. Earth remote sensing - 1970-1995

    NASA Technical Reports Server (NTRS)

    Thome, P. G.

    1984-01-01

    The past-achievements, current status, and future prospects of the Landsat terrestrial-remote-sensing satellite program are surveyed. Topics examined include the early history of space flight; the development of analysis techniques to interpret the multispectral images obtained by Landsats 1, 2, and 3; the characteristics of the advanced Landsat-4 Thematic Mapper; microwave scanning by Seasat and the Shuttle Imaging Radar; the usefulness of low-resolution AVHRR data from the NOAA satellites; improvements in Landsats 4 and 5 to permit tailoring of information to user needs; expansion and internationalization of the remote-sensing market in the late 1980s; and technological advances in both instrumentation and data-processing predicted by the 1990s.

  17. A review of progress in identifying and characterizing biocrusts using proximal and remote sensing

    NASA Astrophysics Data System (ADS)

    Rozenstein, Offer; Adamowski, Jan

    2017-05-01

    Biocrusts are critical components of desert ecosystems, significantly modifying the surfaces they occupy. The mixture of biological components and soil particles that form the crust, in conjunction with moisture, determines the biocrusts' spectral signatures. Proximal and remote sensing in complementary spectral regions, namely the reflective region, and the thermal region, have been used to study biocrusts in a non-destructive manner, in the laboratory, in the field, and from space. The objectives of this review paper are to present the spectral characteristics of biocrusts across the optical domain, and to discuss significant developments in the application of proximal and remote sensing for biocrust studies in the last few years. The motivation for using proximal and remote sensing in biocrust studies is discussed. Next, the application of reflectance spectroscopy to the study of biocrusts is presented followed by a review of the emergence of high spectral resolution thermal remote sensing, which facilitates the application of thermal spectroscopy for biocrust studies. Four specific topics at the forefront of proximal and remote sensing of biocrusts are discussed: (1) The use of remote sensing in determining the role of biocrusts in global biogeochemical cycles; (2) Monitoring the inceptive establishment of biocrusts; (3) Identifying and characterizing biocrusts using Longwave infrared spectroscopy; and (4) Diurnal emissivity dynamics of biocrusts in a sand dune environment. The paper concludes by identifying innovative technologies such as low altitude and high resolution imagery that are increasingly used in remote sensing science, and are expected to be used in future biocrusts studies.

  18. The Earth Resources Observation Systems data center's training technical assistance, and applications research activities

    USGS Publications Warehouse

    Sturdevant, J.A.

    1981-01-01

    The Earth Resources Observation Systems (EROS) Data Center (EDO, administered by the U.S. Geological Survey, U.S. Department of the Interior, provides remotely sensed data to the user community and offers a variety of professional services to further the understanding and use of remote sensing technology. EDC reproduces and sells photographic and electronic copies of satellite images of areas throughout the world. Other products include aerial photographs collected by 16 organizations, including the U.S. Geological Survey and the National Aeronautics and Space Administration. Primary users of the remotely sensed data are Federal, State, and municipal government agencies, universities, foreign nations, and private industries. The professional services available at EDC are primarily directed at integrating satellite and aircraft remote sensing technology into the programs of the Department of the Interior and its cooperators. This is accomplished through formal training workshops, user assistance, cooperative demonstration projects, and access to equipment and capabilities in an advanced data analysis laboratory. In addition, other Federal agencies, State and local governments, universities, and the general public can get assistance from the EDC Staff. Since 1973, EDC has contributed to the accelerating growth in development and operational use of remotely sensed data for land resource problems through its role as educator and by conducting basic and applied remote sensing applications research. As remote sensing technology continues to evolve, EDC will continue to respond to the increasing demand for timely information on remote sensing applications. Questions most often asked about EDC's research and training programs include: Who may attend an EDC remote sensing training course? Specifically, what is taught? Who may cooperate with EDC on remote sensing projects? Are interpretation services provided on a service basis? This report attempts to define the goals and objectives of and policies on the following EDC services: Training Program.User Assistance.Data Analysis Laboratory.Cooperative Demonstration Projects.Research Projects.

  19. USDA/federal user of LANDSAT remote sensing

    NASA Technical Reports Server (NTRS)

    Allen, R.

    1981-01-01

    Developed and potential uses of remote sensing in crop condition and acreage assessment, renewable resources inventories, conservation practices, and water and forest management applications are described. Operational approaches, the adaptation of procedures to needs, and the agency's concern about data continuity and cost are discussed as well as support for future technology development for enhanced sensing capability. The use of improved camera systems for soil mapping and conservation monitoring from space shuttle, and of aerospace radar to improve soil moisture monitoring are mentioned.

  20. International Space Station Remote Sensing Pointing Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Craig A.

    2007-01-01

    This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument (in prototype development) is SHORE (Station High-Performance Ocean Research Experiment), a multiband optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. This analysis supported the preliminary studies to determine feasibility of utilizing the International Space Station as an observing platform for a SHORE type of instrument. Rigorous analyses will be performed if a SHORE flight program is initiated. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies.

  1. Estimation of Soil Moisture Profile using a Simple Hydrology Model and Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Soman, Vishwas V.; Crosson, William L.; Laymon, Charles; Tsegaye, Teferi

    1998-01-01

    Soil moisture is an important component of analysis in many Earth science disciplines. Soil moisture information can be obtained either by using microwave remote sensing or by using a hydrologic model. In this study, we combined these two approaches to increase the accuracy of profile soil moisture estimation. A hydrologic model was used to analyze the errors in the estimation of soil moisture using the data collected during Huntsville '96 microwave remote sensing experiment in Huntsville, Alabama. Root mean square errors (RMSE) in soil moisture estimation increase by 22% with increase in the model input interval from 6 hr to 12 hr for the grass-covered plot. RMSEs were reduced for given model time step by 20-50% when model soil moisture estimates were updated using remotely-sensed data. This methodology has a potential to be employed in soil moisture estimation using rainfall data collected by a space-borne sensor, such as the Tropical Rainfall Measuring Mission (TRMM) satellite, if remotely-sensed data are available to update the model estimates.

  2. Remote Sensing Image Fusion Method Based on Nonsubsampled Shearlet Transform and Sparse Representation

    NASA Astrophysics Data System (ADS)

    Moonon, Altan-Ulzii; Hu, Jianwen; Li, Shutao

    2015-12-01

    The remote sensing image fusion is an important preprocessing technique in remote sensing image processing. In this paper, a remote sensing image fusion method based on the nonsubsampled shearlet transform (NSST) with sparse representation (SR) is proposed. Firstly, the low resolution multispectral (MS) image is upsampled and color space is transformed from Red-Green-Blue (RGB) to Intensity-Hue-Saturation (IHS). Then, the high resolution panchromatic (PAN) image and intensity component of MS image are decomposed by NSST to high and low frequency coefficients. The low frequency coefficients of PAN and the intensity component are fused by the SR with the learned dictionary. The high frequency coefficients of intensity component and PAN image are fused by local energy based fusion rule. Finally, the fused result is obtained by performing inverse NSST and inverse IHS transform. The experimental results on IKONOS and QuickBird satellites demonstrate that the proposed method provides better spectral quality and superior spatial information in the fused image than other remote sensing image fusion methods both in visual effect and object evaluation.

  3. Tracking diurnal changes of photosynthesis and evapotranspiration using fluorescence, gas exchange and hyperspectral remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, L.; Guanter, L.; Huang, C.

    2017-12-01

    Photosynthesis and evapotranspiration (ET) are the two most important activities of vegetation and make a great contribution to carbon, water and energy exchanges. Remote sensing provides opportunities for monitoring these processes across time and space. This study focuses on tracking diurnal changes of photosynthesis and evapotranspiration over soybean using multiple measurement techniques. Diurnal changes of both remote sensing-based indicators, including active and passive chlorophyll fluorescence and biophysical-related parameters, including photosynthesis rate (photo) and leaf stomatal conductance (cond), were observed. Results showed that both leaf-level steady-state fluorescence (Fs) and canopy-level solar-induced chlorophyll fluorescence were linearly correlated to photosynthetically active radiation (PAR) during the daytime. A double-peak diurnal change curve was observed for leaf-level photo and cond but not for Fs or SIF. Photo and cond showed a strong nonlinear (second-order) correlation, indicating that photosynthesis, which might be remotely sensed by SIF, has the opportunity to track short-term changes of ET. Results presented in this report will be helpful for better understanding the relationship between remote-sensing-based indices and vegetation's biophysical processes.

  4. Assessment of Remote Sensing Technologies for Location of Hydrogen and Helium Leaks

    NASA Technical Reports Server (NTRS)

    Sellar, R. Glenn; Wang, Danli

    2000-01-01

    The objective of this initial phase of this research effort is to: 1) Evaluate remote sensing technologies for location of leaks of gaseous molecular hydrogen (H2) and gaseous helium (He) in air, for space transportation applications; and 2) Develop a diffusion model that predicts concentration of H2 or He gas as a function of leak rate and distance from the leak.

  5. ISS Has an Attitude! Determining ISS Attitude at the ISS Window Observational Research Facility (WORF) Using Landmarks

    NASA Technical Reports Server (NTRS)

    Runco, Susan K.; Pickard,Henry; Kowtha, Vijayanand; Jackson, Dan

    2011-01-01

    Universities and secondary schools can help solve a real issue for remote sensing from the ISS WORF through hands-on engineering and activities. Remote sensing technology is providing scientists with higher resolution, higher sensitivity sensors. Where is it pointing? - To take full advantage of these improved sensors, space platforms must provide commensurate improvements in attitude determination

  6. Toward the optimization of PC-based training

    NASA Astrophysics Data System (ADS)

    Cho, Kohei; Murai, Shunji

    Since 1992, the National Space Development Agency of Japan (NASDA) and the Economic and Social Commission for Asia and the Pacific (ESCAP) have been co-organising the Regional Remote Sensing Seminar on Tropical Ecosystem Management (Program Chairman: Prof. Shunji Murai) every year in some country in Asia. In these seminars, the members of the ISPRS Working Group VI/2 'Computer Assisted Teaching' have been performing a PC-based hands-on-training on remote sensing and GIS for beginners. The main objective of the training was to transfer not only knowledge but also the technology of remote sensing and GIS to the beginners. The software and CD-ROM data set provided at the training were well designed not only for training but also for practical data analysis. This paper presents an outline of the training and discusses the optimisation of PC-based training for remote sensing and GIS.

  7. Multi-resource data-based research on remote sensing monitoring over the green tide in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Xu, Fuxiang; Song, Debin; Zheng, Xiangyu; Chen, Maosi

    2017-09-01

    This paper conducted dynamic monitoring over the green tide (large green alga—Ulva prolifera) occurred in the Yellow Sea in 2014 to 2016 by the use of multi-source remote sensing data, including GF-1 WFV, HJ-1A/1B CCD, CBERS-04 WFI, Landsat-7 ETM+ and Landsta-8 OLI, and by the combination of VB-FAH (index of Virtual-Baseline Floating macroAlgae Height) with manual assisted interpretation based on remote sensing and geographic information system technologies. The result shows that unmanned aerial vehicle (UAV) and shipborne platform could accurately monitor the distribution of Ulva prolifera in small spaces, and therefore provide validation data for the result of remote sensing monitoring over Ulva prolifera. The result of this research can provide effective information support for the prevention and control of Ulva prolifera.

  8. Education, outreach and the future of remote sensing in human health

    NASA Technical Reports Server (NTRS)

    Wood, B. L.; Beck, L. R.; Lobitz, B. M.; Bobo, M. R.

    2000-01-01

    The human health community has been slow to adopt remote sensing technology for research, surveillance, or control activities. This chapter presents a brief history of the National Aeronautics and Space Administration's experiences in the use of remotely sensed data for health applications, and explores some of the obstacles, both real and perceived, that have slowed the transfer of this technology to the health community. These obstacles include the lack of awareness, which must be overcome through outreach and proper training in remote sensing, and inadequate spatial, spectral and temporal data resolutions, which are being addressed as new sensor systems are launched and currently overlooked (and underutilized) sensors are newly discovered by the health community. A basic training outline is presented, along with general considerations for selecting training candidates. The chapter concludes with a brief discussion of some current and future sensors that show promise for health applications.

  9. Remote-sensing image encryption in hybrid domains

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Zhu, Guiliang; Ma, Shilong

    2012-04-01

    Remote-sensing technology plays an important role in military and industrial fields. Remote-sensing image is the main means of acquiring information from satellites, which always contain some confidential information. To securely transmit and store remote-sensing images, we propose a new image encryption algorithm in hybrid domains. This algorithm makes full use of the advantages of image encryption in both spatial domain and transform domain. First, the low-pass subband coefficients of image DWT (discrete wavelet transform) decomposition are sorted by a PWLCM system in transform domain. Second, the image after IDWT (inverse discrete wavelet transform) reconstruction is diffused with 2D (two-dimensional) Logistic map and XOR operation in spatial domain. The experiment results and algorithm analyses show that the new algorithm possesses a large key space and can resist brute-force, statistical and differential attacks. Meanwhile, the proposed algorithm has the desirable encryption efficiency to satisfy requirements in practice.

  10. Perspectives in remote sensing in Brazil. An approach of the remote sensing applications to Earth resources surveys

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novaes, R. A.

    1982-01-01

    Since the systematic use of earth surface data collection by orbital sensor systems started in 1972 with the launching of the North American LANDSAT satellite, a great effort has been made to assimilate, develop and transfer remote sensing technology (data acquisition and analysis) in its many applications in Brazil. The availability of sensor systems and existing data is considered approached, as well as those which will soon be available to the Brazilian researchers. The new systems of the LANDSAT-4, of the Columbia space shuttle and of the French satellites of the SPOT series are discussed. Some characteristics of the sensor system for the first Brazilian remote sensing satellite, to be launched by the end of the decade, are presented. Some LANDSAT-4 and SPOT simulation products are shown, emphasizing how the data obtained by these new satellites can be applied.

  11. Research in space commercialization, technology transfer, and communications, volume 2

    NASA Technical Reports Server (NTRS)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.

  12. Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems

    NASA Astrophysics Data System (ADS)

    Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang

    2016-09-01

    Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.

  13. NASA EPSCoR Preparation Grant

    NASA Technical Reports Server (NTRS)

    Sukanek, Peter C.

    2002-01-01

    The NASA EPSCoR project in Mississippi involved investigations into three areas of interest to NASA by researchers at the four comprehensive universities in the state. These areas involved: (1) Noninvasive Flow Measurement Techniques, (2) Spectroscopic Exhaust Plume Measurements of Hydrocarbon Fueled Rocket Engines and (3) Integration of Remote Sensing and GIS data for Flood Forecasting on the Mississippi Gulf Coast. Each study supported a need at the Stennis Space Center in Mississippi. The first two addressed needs in rocket testing, and the third, in commercial remote sensing. Students from three of the institutions worked with researchers at Stennis Space Center on the projects.

  14. Infrared Detector Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

    2008-01-01

    Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

  15. Aswan High Dam in 6-meter Resolution from the International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut photography of the Earth from the International Space Station has achieved resolutions close to those available from commercial remote sensing satellites-with many photographs having spatial resolutions of less than six meters. Astronauts take the photographs by hand and physically compensate for the motion of the spacecraft relative to the Earth while the images are being acquired. The achievement was highlighted in an article entitled 'Space Station Allows Remote Sensing of Earth to within Six Meters' published in this week's edition of Eos, Transactions of the American Geophysical Union. Lines painted on airport runways at the Aswan Airport served to independently validate the spatial resolution of the camera sensor. For press information, read: International Space Station Astronauts Set New Standard for Earth Photography For details, see Robinson, J. A. and Evans, C. A. 2002. Space Station Allows Remote Sensing of Earth to within Six Meters. Eos, Transactions, American Geophysical Union 83(17):185, 188. See some of the other detailed photographs posted to Earth Observatory: Pyramids at Giza Bermuda Downtown Houston The image above represents a detailed portion of a digitized NASA photograph STS102-303-17, and was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  16. Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States.

    PubMed

    Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael

    2012-12-01

    A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.

  17. Understanding Local Structure Globally in Earth Science Remote Sensing Data Sets

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Fetzer, Eric

    2007-01-01

    Empirical probability distributions derived from the data are the signatures of physical processes generating the data. Distributions defined on different space-time windows can be compared and differences or changes can be attributed to physical processes. This presentation discusses on ways to reduce remote sensing data in a way that preserves information, focusing on the rate-distortion theory and using the entropy-constrained vector quantization algorithm.

  18. Land use planning

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The organization, objectives, and accomplishments of the panel on Land Use Planning are reported. Technology developments, and projected developments are discussed along with anticipated information requirements. The issues for users, recommended remote sensing programs, and space systems are presented. It was found that remote sensing systems are useful in future land use planning. It is recommended that a change detection system for monitoring land use and critical environmental areas be developed by 1979.

  19. Adaptive Bayes classifiers for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Raulston, H. S.; Pace, M. O.; Gonzalez, R. C.

    1975-01-01

    An algorithm is developed for a learning, adaptive, statistical pattern classifier for remotely sensed data. The estimation procedure consists of two steps: (1) an optimal stochastic approximation of the parameters of interest, and (2) a projection of the parameters in time and space. The results reported are for Gaussian data in which the mean vector of each class may vary with time or position after the classifier is trained.

  20. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 9: Oceans

    NASA Technical Reports Server (NTRS)

    Lietzke, K. R.

    1974-01-01

    The impact of remote sensing upon marine activities and oceanography is presented. The present capabilities of the current Earth Resources Technology Satellite (ERTS-1), as demonstrated by the principal investigators are discussed. Cost savings benefits are quantified in the area of nautical and hygrographic mapping and charting. Benefits are found in aiding coastal zone management and in the fields of weather (marine) prediction, fishery harvesting and management, and potential uses for ocean vegetation. Difficulties in quantification are explained, the primary factor being that remotely sensed information will be of greater benefit as input to forecasting models which have not yet been constructed.

  1. Application of airborne hyperspectral remote sensing for the retrieval of forest inventory parameters

    NASA Astrophysics Data System (ADS)

    Dmitriev, Yegor V.; Kozoderov, Vladimir V.; Sokolov, Anton A.

    2016-04-01

    Collecting and updating forest inventory data play an important part in the forest management. The data can be obtained directly by using exact enough but low efficient ground based methods as well as from the remote sensing measurements. We present applications of airborne hyperspectral remote sensing for the retrieval of such important inventory parameters as the forest species and age composition. The hyperspectral images of the test region were obtained from the airplane equipped by the produced in Russia light-weight airborne video-spectrometer of visible and near infrared spectral range and high resolution photo-camera on the same gyro-stabilized platform. The quality of the thematic processing depends on many factors such as the atmospheric conditions, characteristics of measuring instruments, corrections and preprocessing methods, etc. An important role plays the construction of the classifier together with methods of the reduction of the feature space. The performance of different spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. For the reduction of the feature space we used the earlier proposed stable feature selection method. The results of the classification of hyperspectral airborne images by using the Multiclass Support Vector Machine method with Gaussian kernel and the parametric Bayesian classifier based on the Gaussian mixture model and their comparative analysis are demonstrated.

  2. 15 CFR Appendix 1 to Part 960 - Filing Instructions and Information To Be Included in the Licensing Application

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., telephone number and citizenship(s) of (as applicable): (i) Applicant as well as any affiliates or... sensing space system license. Data provided regarding the applicant's proposed remote sensing space system... applicant's total indebtedness; (ix) A person upon who service of all documents may be made. (2) A...

  3. 15 CFR Appendix 1 to Part 960 - Filing Instructions and Information To Be Included in the Licensing Application

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., telephone number and citizenship(s) of (as applicable): (i) Applicant as well as any affiliates or... sensing space system license. Data provided regarding the applicant's proposed remote sensing space system... applicant's total indebtedness; (ix) A person upon who service of all documents may be made. (2) A...

  4. 15 CFR Appendix 1 to Part 960 - Filing Instructions and Information To Be Included in the Licensing Application

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., telephone number and citizenship(s) of (as applicable): (i) Applicant as well as any affiliates or... sensing space system license. Data provided regarding the applicant's proposed remote sensing space system... applicant's total indebtedness; (ix) A person upon who service of all documents may be made. (2) A...

  5. Methodology for conceptual remote sensing spacecraft technology: insertion analysis balancing performance, cost, and risk

    NASA Astrophysics Data System (ADS)

    Bearden, David A.; Duclos, Donald P.; Barrera, Mark J.; Mosher, Todd J.; Lao, Norman Y.

    1997-12-01

    Emerging technologies and micro-instrumentation are changing the way remote sensing spacecraft missions are developed and implemented. Government agencies responsible for procuring space systems are increasingly requesting analyses to estimate cost, performance and design impacts of advanced technology insertion for both state-of-the-art systems as well as systems to be built 5 to 10 years in the future. Numerous spacecraft technology development programs are being sponsored by Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) agencies with the goal of enhancing spacecraft performance, reducing mass, and reducing cost. However, it is often the case that technology studies, in the interest of maximizing subsystem-level performance and/or mass reduction, do not anticipate synergistic system-level effects. Furthermore, even though technical risks are often identified as one of the largest cost drivers for space systems, many cost/design processes and models ignore effects of cost risk in the interest of quick estimates. To address these issues, the Aerospace Corporation developed a concept analysis methodology and associated software tools. These tools, collectively referred to as the concept analysis and design evaluation toolkit (CADET), facilitate system architecture studies and space system conceptual designs focusing on design heritage, technology selection, and associated effects on cost, risk and performance at the system and subsystem level. CADET allows: (1) quick response to technical design and cost questions; (2) assessment of the cost and performance impacts of existing and new designs/technologies; and (3) estimation of cost uncertainties and risks. These capabilities aid mission designers in determining the configuration of remote sensing missions that meet essential requirements in a cost- effective manner. This paper discuses the development of CADET modules and their application to several remote sensing satellite mission concepts.

  6. Resolution verification targets for airborne and spaceborne imaging systems at the Stennis Space Center

    NASA Astrophysics Data System (ADS)

    McKellip, Rodney; Yuan, Ding; Graham, William; Holland, Donald E.; Stone, David; Walser, William E.; Mao, Chengye

    1997-06-01

    The number of available spaceborne and airborne systems will dramatically increase over the next few years. A common systematic approach toward verification of these systems will become important for comparing the systems' operational performance. The Commercial Remote Sensing Program at the John C. Stennis Space Center (SSC) in Mississippi has developed design requirements for a remote sensing verification target range to provide a means to evaluate spatial, spectral, and radiometric performance of optical digital remote sensing systems. The verification target range consists of spatial, spectral, and radiometric targets painted on a 150- by 150-meter concrete pad located at SSC. The design criteria for this target range are based upon work over a smaller, prototypical target range at SSC during 1996. This paper outlines the purpose and design of the verification target range based upon an understanding of the systems to be evaluated as well as data analysis results from the prototypical target range.

  7. Remote sensing of surface currents with single shipborne high-frequency surface wave radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan

    2016-01-01

    High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.

  8. The progress of sub-pixel imaging methods

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Wen, Desheng

    2014-02-01

    This paper reviews the Sub-pixel imaging technology principles, characteristics, the current development status at home and abroad and the latest research developments. As Sub-pixel imaging technology has achieved the advantages of high resolution of optical remote sensor, flexible working ways and being miniaturized with no moving parts. The imaging system is suitable for the application of space remote sensor. Its application prospect is very extensive. It is quite possible to be the research development direction of future space optical remote sensing technology.

  9. International Symposium on Remote Sensing of Environment, 9th, University of Michigan, Ann Arbor, Mich., April 15-19, 1974, Proceedings. Volumes 1, 2 & 3

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The present work gathers together numerous papers describing the use of remote sensing technology for mapping, monitoring, and management of earth resources and man's environment. Studies using various types of sensing equipment are described, including multispectral scanners, radar imagery, spectrometers, lidar, and aerial photography, and both manual and computer-aided data processing techniques are described. Some of the topics covered include: estimation of population density in Tokyo districts from ERTS-1 data, a clustering algorithm for unsupervised crop classification, passive microwave sensing of moist soils, interactive computer processing for land use planning, the use of remote sensing to delineate floodplains, moisture detection from Skylab, scanning thermal plumes, electrically scanning microwave radiometers, oil slick detection by X-band synthetic aperture radar, and the use of space photos for search of oil and gas fields. Individual items are announced in this issue.

  10. Flood Management Enhancement Using Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Romanowski, Gregory J.

    1997-01-01

    SENTAR, Inc., entered into a cooperative agreement with NASA Goddard Space Flight Center (GSFC) in December 1994. The intent of the NASA Cooperative Agreement was to stimulate broad public use, via the Internet, of the very large remote sensing databases maintained by NASA and other agencies, thus stimulating U.S. economic growth, improving the quality of life, and contributing to the implementation of a National Information Infrastructure. SENTAR headed a team of collaborating organizations in meeting the goals of this project. SENTAR's teammates were the NASA Marshall Space Flight Center (MSFC) Global Hydrology and Climate Center (GHCC), the U.S. Army Space and Strategic Defense Command (USASSDC), and the Alabama Emergency Management Agency (EMA). For this cooperative agreement, SENTAR and its teammates accessed remotely sensed data in the Distributed Active Archive Centers, and other available sources, for use in enhancing the present capabilities for flood disaster management by the Alabama EMA. The project developed a prototype software system for addressing prediction, warning, and damage assessment for floods, though it currently focuses on assessment. The objectives of the prototype system were to demonstrate the added value of remote sensing data for emergency management operations during floods and the ability of the Internet to provide the primary communications medium for the system. To help achieve these objectives, SENTAR developed an integrated interface for the emergency operations staff to simplify acquiring and manipulating source data and data products for use in generating new data products. The prototype system establishes a systems infrastructure designed to expand to include future flood-related data and models or to include other disasters with their associated remote sensing data requirements and distributed data sources. This report covers the specific work performed during the seventh, and final, milestone period of the project, which began on 1 October 1996 and ended on 31 January 1997. In addition, it provides a summary of the entire project.

  11. Results from the National Aeronautics and Space Administration remote sensing experiments in the New York Bight, 7-17 April 1975

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr. (Compiler); Pearson, A. O. (Compiler)

    1977-01-01

    A cooperative operation was conducted in the New York Bight to evaluate the role of remote sensing technology to monitor ocean dumping. Six NASA remote sensing experiments were flown on the C-54, U-2, and C-130 NASA aircraft, while NOAA obtained concurrent sea truth information using helicopters and surface platforms. The experiments included: (1) a Radiometer/Scatterometer (RADSCAT), (2) an Ocean Color Scanner (OCS), (3) a Multichannel Ocean Color Sensor (MOCS), (4) four Hasselblad cameras, (5) an Ebert spectrometer; and (6) a Reconafax IV infrared scanner and a Precision Radiation Thermometer (PRT-5). The results of these experiments relative to the use of remote sensors to detect, quantify, and determine the dispersion of pollutants dumped into the New York Bight are presented.

  12. Single Event Effect Hardware Trojans with Remote Activation

    DTIC Science & Technology

    2017-03-01

    kinetically as in the SDI approach. These high-energy directed energy weapons have been studied and developed largely for the purpose remote sensing and...Single Event Effect Hardware Trojans with Remote Activation Paul A. Quintana; John McCollum; William A. Hill Microsemi Corporation, San Jose...space qualified semiconductors the use of SEE sensitive circuits may represents a latent and remotely -triggered hardware Trojan which would be

  13. Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine)

    NASA Technical Reports Server (NTRS)

    Trelogan, Jessica; Crawford, Melba; Carter, Joseph

    2002-01-01

    In 1998 the University of Texas Institute of Classical Archaeology, in collaboration with the University of Texas Center for Space Research and the National Preserve of Tauric Chersonesos (Ukraine), began a collaborative project, funded by NASA's Solid Earth and Natural Hazards program, to investigate the use of remotely sensed data for the study and protection of the ancient a cultural territory, or chora, of Chersonesos in Crimea, Ukraine.

  14. Development of a Miniature L-band Radiometer for Education Outreach in Remote Sensing

    NASA Technical Reports Server (NTRS)

    King, Lyon B.

    2004-01-01

    Work performed under this grant developed a 1.4-Mhz radiometer for use in soil moisture remote sensing from space. The resulting instrument was integrated onto HuskySat. HuskySat is a 30-kg nanosatellite built under sponsorship from the Air Force Research Laboratory and NASA. This report consists of the interface document for the radiometer (the Science Payload of HuskySat) as detailed in the vehicle design report.

  15. Earth-based remote sensing of planetary surfaces and atmospheres at radio wavelengths

    NASA Technical Reports Server (NTRS)

    Dickel, J. R.

    1982-01-01

    Two reasons for remote sensing from the Earth are given: (1) space exploration, particularly below the surfaces or underneath cloud layers, is limited to only a very few planets; and (2) a program of regular monitoring, currently impractical with a limited number of space probes, is required. Reflected solar and nonthermal radiation are discussed. Relativistic electrons, trapped in large magnetospheres on Saturn and Jupiter, are discussed. These electrons produce synchrotron radiation and also interact with the ionosphere to produce bursts of low frequency emission. Because most objects are black-bodies, continuum radiometry is emphasized. Spectroscopic techniques and the measurement of nonthermal emission are also discussed.

  16. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

    2015-01-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  17. Interactive information processing for NASA's mesoscale analysis and space sensor program

    NASA Technical Reports Server (NTRS)

    Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.

    1985-01-01

    The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.

  18. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  19. Needs and emerging trends of remote sensing

    NASA Astrophysics Data System (ADS)

    McNair, Michael

    2014-06-01

    From the earliest need to be able to see an enemy over a hill to sending semi-autonomous platforms with advanced sensor packages out into space, humans have wanted to know more about what is around them. Issues of distance are being minimized through advances in technology to the point where remote control of a sensor is useful but sensing by way of a non-collocated sensor is better. We are not content to just sense what is physically nearby. However, it is not always practical or possible to move sensors to an area of interest; we must be able to sense at a distance. This requires not only new technologies but new approaches; our need to sense at a distance is ever changing with newer challenges. As a result, remote sensing is not limited to relocating a sensor but is expanded into possibly deducing or inferring from available information. Sensing at a distance is the heart of remote sensing. Much of the sensing technology today is focused on analysis of electromagnetic radiation and sound. While these are important and the most mature areas of sensing, this paper seeks to identify future sensing possibilities by looking beyond light and sound. By drawing a parallel to the five human senses, we can then identify the existing and some of the future possibilities. A further narrowing of the field of sensing causes us to look specifically at robotic sensing. It is here that this paper will be directed.

  20. The United States space observation policy

    NASA Technical Reports Server (NTRS)

    Chevrel, M.

    1980-01-01

    The steps pursued since 1978 to establish an operational civil space remote sensing system are outlined. The role of the National Oceanographic and Atmospheric Agency is defined, and the problems still remaining are discussed.

  1. Airborne Remote Observations of L-Band Radio Frequency Interference and Implications for Satellite Missions

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh

    2011-01-01

    Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.

  2. Presence in Video-Mediated Interactions: Case Studies at CSIRO

    NASA Astrophysics Data System (ADS)

    Alem, Leila

    Although telepresence and a sense of connectedness with others are frequently mentioned in media space studies, as far as we know, none of these studies report attempts at assessing this critical aspect of user experience. While some attempts have been made to measure presence in virtual reality or augmented reality, (a comprehensive review of existing measures is available in Baren and Ijsselsteijn [2004]), very little work has been reported in measuring presence in video-mediated collaboration systems. Traditional studies of video-mediated collaboration have mostly focused their evaluation on measures of task performance and user satisfaction. Videoconferencing systems can be seen as a type of media space; they rely on technologies of audio, video, and computing put together to create an environment extending the embodied mind. This chapter reports on a set of video-mediated collaboration studies conducted at CSIRO in which different aspects of presence are being investigated. The first study reports the sense of physical presence a specialist doctor experiences when engaged in a remote consultation of a patient using the virtual critical care unit (Alem et al., 2006). The Viccu system is an “always-on” system connecting two hospitals (Li et al., 2006). The presence measure focuses on the extent to which users of videoconferencing systems feel physically present in the remote location. The second study reports the sense of social presence users experience when playing a game of charades with remote partners using a video conference link (Kougianous et al., 2006). In this study the presence measure focuses on the extent to which users feel connected with their remote partners. The third study reports the sense of copresence users experience when building collaboratively a piece of Lego toy (Melo and Alem, 2007). The sense of copresence is the extent to which users feel present with their remote partner. In this final study the sense of copresence is investigated by looking at the word used by users when referring to the physical objects they are manipulating during their interaction as well as when referring to locations in the collaborative workspace. We believe that such efforts provide a solid stepping stone for evaluating and analyzing future media spaces.

  3. [Contribution of remote sensing to malaria control].

    PubMed

    Machault, V; Pages, F; Rogier, C

    2009-04-01

    Despite national and international efforts, malaria remains a major public health problem and the fight to control the disease is confronted by numerous hurdles. Study of space and time dynamics of malaria is necessary as a basis for making appropriate decision and prioritizing intervention including in areas where field data are rare and sanitary information systems are inadequate. Evaluation of malarial risk should also help anticipate the risk of epidemics as a basis for early warning systems. Since 1960-70 civilian satellites launched for earth observation have been providing information for the measuring or evaluating geo-climatic and anthropogenic factors related to malaria transmission and burden. Remotely sensed data gathered for several civilian or military studies have allowed setup of entomological, parasitological, and epidemiological risk models and maps for rural and urban areas. Mapping of human populations at risk has also benefited from remotely sensing. The results of the published studies show that remote sensing is a suitable tool for optimizing planning, efficacy and efficiency of malaria control.

  4. Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.

    PubMed

    Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay

    2018-03-05

    We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.

  5. Atmospheric Radiative Transfer for Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2008-01-01

    I will discuss the science of satellite remote sensing which involves the interpretation and inversion of radiometric measurements made from space. The goal of remote sensing is to retrieve some physical aspects of the medium which are sensitive to the radiation at specific wavelengths. This requires the use of fundamentals of atmospheric radiative transfer. I will talk about atmospheric radiation or, more specifically, about the interactions of solar radiation with aerosols and cloud particles. The focus will be more on cloudy atmospheres. I will also show how a standard one-dimensional approach, that is traced back at least 100 years, can fail to interpret the complexity of real clouds. I n these cases, three-dimensional radiative transfer should be used. Examples of satellite retrievals will illustrate the cases.

  6. An airborne remote sensing platform of the Helsinki University of Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikulainen, M.; Hallikainen, M.; Kemppinen, M.

    1996-10-01

    In 1994 Helsinki University of Technology acquired a Short SC7 Skyvan turboprop aircraft to be modified to carry remote sensing instruments. As the aircraft is originally designed to carry heavy and space consuming cargo, a modification program was implemented to make the aircraft feasible for remote sensing operations. The twelve-month long modification program had three design objectives: flexibility, accessibility and cost efficiency. The aircraft interior and electrical system were modified. Furthermore, the aircraft is equipped with DGPS-navigation system, multi-channel radiometer system and side looking airborne radar. Future projects include installation of local area network, attitude GPS system, imaging spectrometer andmore » 1.4 GHz radiometer. 6 refs., 5 figs., 1 tab.« less

  7. Observations in the solar spectrum interest for remote sensing purposes

    NASA Technical Reports Server (NTRS)

    Herman, M.; Vanderbilt, V.

    1994-01-01

    The polarization of the sunlight scattered by atmospheric aerosols or cloud droplets and reflected from ground surfaces or plant canopies may convey much information when used for remote sensing purposes. The typical polarization features of aerosols, cloud droplets, and plant canopies, as observed by ground based and airborne sensors, are investigated, looking especially for those invariant properties amenable to description by simple models when possible. The question of polarization measurements from space is addressed. The interest of such measurements for remote sensing purposes is investigated, and their feasibility is tested by using results obtained during field campaigns of the airborne POLDER instrument, a radiometer designed to measure the directionality and polarization of the sunlight scattered by the ground atmosphere system.

  8. Using Remotely Sensed Data to Map Urban Vulnerability to Heat

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    This slide presentation defines remote sensing, and presents examples of remote sensing and astronaut photography, which has been a part of many space missions. The presentation then reviews the project aimed at analyzing urban vulnerability to climate change, which is to test the hypotheses that Exposure to excessively warm weather threatens human health in all types of climate regimes; Heat kills and sickens multitudes of people around the globe every year -- directly and indirectly, and Climate change, coupled with urban development, will impact human health. Using Multiple Endmember Spectral Mixing Analysis (MESMA), and the Phoenix urban area as the example, the Normalized Difference Vegetation Index (NDVI) is calculated, a change detection analysis is shown, and surface temperature is shown.

  9. Development of data processing, interpretation and analysis system for the remote sensing of trace atmospheric gas species

    NASA Technical Reports Server (NTRS)

    Casas, Joseph C.; Saylor, Mary S.; Kindle, Earl C.

    1987-01-01

    The major emphasis is on the advancement of remote sensing technology. In particular, the gas filter correlation radiometer (GFCR) technique was applied to the measurement of trace gas species, such as carbon monoxide (CO), from airborne and Earth orbiting platforms. Through a series of low altitude aircraft flights, high altitude aircraft flights, and orbiting space platform flights, data were collected and analyzed, culminating in the first global map of carbon monoxide concentration in the middle troposphere and stratosphere. The four major areas of this remote sensing program, known as the Measurement of Air Pollution from Satellites (MAPS) experiment, are: (1) data acquisition, (2) data processing, analysis, and interpretation algorithms, (3) data display techniques, and (4) information processing.

  10. Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  11. NASA's Future Active Remote Sensing Missing for Earth Science

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan B.

    2000-01-01

    Since the beginning of space remote sensing of the earth, there has been a natural progression widening the range of electromagnetic radiation used to sense the earth, and slowly, steadily increasing the spatial, spectral, and radiometric resolution of the measurements. There has also been a somewhat slower trend toward active measurements across the electromagnetic spectrum, motivated in part by increased resolution, but also by the ability to make new measurements. Active microwave instruments have been used to measure ocean topography, to study the land surface. and to study rainfall from space. Future NASA active microwave missions may add detail to the topographical studies, sense soil moisture, and better characterize the cryosphere. Only recently have active optical instruments been flown in space by NASA; however, there are currently several missions in development which will sense the earth with lasers and many more conceptual active optical missions which address the priorities of NASA's earth science program. Missions are under development to investigate the structure of the terrestrial vegetation canopy, to characterize the earth's ice caps, and to study clouds and aerosols. Future NASA missions may measure tropospheric vector winds and make vastly improved measurements of the chemical components of the earth's atmosphere.

  12. Operational Remote Sensing Services in North Eastern Region of India for Natural Resources Management, Early Warning for Disaster Risk Reduction and Dissemination of Information and Services

    NASA Astrophysics Data System (ADS)

    Raju, P. L. N.; Sarma, K. K.; Barman, D.; Handique, B. K.; Chutia, D.; Kundu, S. S.; Das, R. Kr.; Chakraborty, K.; Das, R.; Goswami, J.; Das, P.; Devi, H. S.; Nongkynrih, J. M.; Bhusan, K.; Singh, M. S.; Singh, P. S.; Saikhom, V.; Goswami, C.; Pebam, R.; Borgohain, A.; Gogoi, R. B.; Singh, N. R.; Bharali, A.; Sarma, D.; Lyngdoh, R. B.; Mandal, P. P.; Chabukdhara, M.

    2016-06-01

    North Eastern Region (NER) of India comprising of eight states considered to be most unique and one of the most challenging regions to govern due to its unique physiographic condition, rich biodiversity, disaster prone and diverse socio-economic characteristics. Operational Remote Sensing services increased manifolds in the region with the establishment of North Eastern Space Applications Centre (NESAC) in the year 2000. Since inception, NESAC has been providing remote sensing services in generating inventory, planning and developmental activities, and management of natural resources, disasters and dissemination of information and services through geo-web services for NER. The operational remote sensing services provided by NESAC can be broadly divided into three categories viz. natural resource planning and developmental services, disaster risk reduction and early warning services and information dissemination through geo-portal services. As a apart of natural resources planning and developmental services NESAC supports the state forest departments in preparing the forest working plans by providing geospatial inputs covering entire NER, identifying the suitable culturable wastelands for cultivation of silkworm food plants, mapping of natural resources such as land use/land cover, wastelands, land degradation etc. on temporal basis. In the area of disaster risk reduction, NESAC has initiated operational services for early warning and post disaster assessment inputs for flood early warning system (FLEWS) using satellite remote sensing, numerical weather prediction, hydrological modeling etc.; forest fire alert system with actionable attribute information; Japanese Encephalitis Early Warning System (JEWS) based on mosquito vector abundance, pig population and historical disease intensity and agriculture drought monitoring for the region. The large volumes of geo-spatial databases generated as part of operational services are made available to the administrators and local government bodies for better management, preparing prospective planning, and sustainable use of available resources. The knowledge dissemination is being done through online web portals wherever the internet access is available and as well as offline space based information kiosks, where the internet access is not available or having limited bandwidth availability. This paper presents a systematic and comprehensive study on the remote sensing services operational in NER of India for natural resources management, disaster risk reduction and dissemination of information and services, in addition to outlining future areas and direction of space applications for the region.

  13. Remote sensing in Virginia agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Newhouse, M. E.; Dunton, E. M., Jr.; Scott, J. H., Jr.

    1972-01-01

    An experimental investigation, designed to develop and evaluate multispectral sensing techniques used in sensing agricultural crops, is described. Initial studies were designed to detect plant species and associated diseases, soil variations, and cultural practices under natural environment conditions. In addition, crop varieties, age, spacing, plant height, percentage of ground cover, and plant vigor are determined.

  14. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences

    NASA Astrophysics Data System (ADS)

    Umar, M.; Rhoads, Bruce L.; Greenberg, Jonathan A.

    2018-01-01

    Although past work has noted that contrasts in turbidity often are detectable on remotely sensed images of rivers downstream from confluences, no systematic methodology has been developed for assessing mixing over distance of confluent flows with differing surficial suspended sediment concentrations (SSSC). In contrast to field measurements of mixing below confluences, satellite remote-sensing can provide detailed information on spatial distributions of SSSC over long distances. This paper presents a methodology that uses remote-sensing data to estimate spatial patterns of SSSC downstream of confluences along large rivers and to determine changes in the amount of mixing over distance from confluences. The method develops a calibrated Random Forest (RF) model by relating training SSSC data from river gaging stations to derived spectral indices for the pixels corresponding to gaging-station locations. The calibrated model is then used to predict SSSC values for every river pixel in a remotely sensed image, which provides the basis for mapping of spatial variability in SSSCs along the river. The pixel data are used to estimate average surficial values of SSSC at cross sections spaced uniformly along the river. Based on the cross-section data, a mixing metric is computed for each cross section. The spatial pattern of change in this metric over distance can be used to define rates and length scales of surficial mixing of suspended sediment downstream of a confluence. This type of information is useful for exploring the potential influence of various controlling factors on mixing downstream of confluences, for evaluating how mixing in a river system varies over time and space, and for determining how these variations influence water quality and ecological conditions along the river.

  15. Water Dynamics in Fogera and the Upper Blue Nile - Farmers perspectives and remote sensing

    NASA Astrophysics Data System (ADS)

    Chemin, Yann; Desalegn, Mengistu; Curnow, Jayne; Johnston, Robyn

    2015-04-01

    This research work is about finding the connection between farmers perspectives on changes of water conditions in their socio-agricultural environment and satellite remote sensing analysis. Key informant surveys were conducted to investigate localised views on water scarcity as a counterpoint to the physical measurement of water availability. Does a numerical or mapped image identifying water scarcity always equate to a dearth of water for agriculture? To push the limits of the relationship between human and physical data we sought to ground-truth GIS results with the practical experience and knowledge of people living in the area. We data-mined public domain satellite data with FOSS (GDAL, GRASS GIS) and produced water-related spatio-temporal domains for our study area and the larger Upper Nile Basin. Accumulated remote sensing information was then cross-referenced with informant's accounts of water availability for the same space and time. During the survey fieldwork the team also took photographs electronically stamped with GPS coordinates to compare and contrast the views of informants and the remote sensing information with high resolution images of the landscape. We found that farmers perspective on the Spring maize crop sensibility to variability of rainfall can be quantified in space and time by remote sensing cumulative transpiration. A crop transpiration gap of 1-2.5 mm/day for about 20 days is to be overcome, a full amount of 20 to 50 mm, depending on the type of year deficit. Such gap can be overcome, even by temporary supplemental irrigation practices, however, the economical and cultural set up is already developed in another way, as per sesonal renting of higher soil profile water retention capacity fields.

  16. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    NASA Astrophysics Data System (ADS)

    Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.

    2014-12-01

    In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.

  17. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    NASA Astrophysics Data System (ADS)

    Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.

    2015-12-01

    In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.

  18. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  19. A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1989-01-01

    A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.

  20. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  1. Integrated Geospatial Education and Technology Training (iGETT) for Workforce Development

    NASA Astrophysics Data System (ADS)

    Allen, J. E.; Johnson, A.; Headley, R. K.

    2009-12-01

    The increasing availability of no-cost remote sensing data and improvements in analysis software have presented an unprecedented opportunity for the integration of geospatial technologies into a wide variety of disciplines for learning and teaching at community colleges and Tribal colleges. These technologies magnify the effectiveness of problem solving in agriculture, disaster management, environmental sciences, urbanization monitoring, and multiple other domains for societal benefit. This session will demonstrate the approach and lessons learned by federal and private industry partners leading a professional development program, “Integrated Geospatial Education and Technology Training” (iGETT; http://igett.delmar.edu), 2007-2010. iGETT is funded by the National Science Foundation’s Advanced Technological Education Program, (NSF DUE 0703185). 40 participants were selected from a nationwide pool and received training in how to understand, identify, download, and integrate federal land remote sensing data into existing Geographic Information Systems programs to address specific issues of concern to the local workforce. Each participant has authored a “Learning Unit” that covers at least two weeks of class time. All training resources and Learning Units are publicly available on the iGETT Web site. A follow-on project is under consideration to develop core competencies for the remote sensing technician. Authors: Jeannie Allen, Sigma Space Corp. for NASA Landsat, at Goddard Space Flight Center; Ann Johnson, ESRI Higher Education; Rachel Headley, USGS EROS Land Remote Sensing Program

  2. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    NASA Astrophysics Data System (ADS)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  3. European Space Agency lidar development programs for remote sensing of the atmosphere

    NASA Astrophysics Data System (ADS)

    Armandillo, Errico

    1992-12-01

    Active laser remote sensing from space is considered an important step forward in the understanding of the processes which regulate weather and climate changes. The planned launching into polar orbit in the late 1990s of a series of dedicated Earth observation satellites offer new possibilities for flying lidar in space. Among the various lidar candidates, ESA has recognized in the backscattering lidar and Doppler wind lidar the instruments which can most contribute to the Earth observation program. To meet the schedule of the on-coming flight opportunities, ESA has been engaged over the past years in a preparatory program aimed to define the instruments and ensure timely availability of the critical components. This paper reviews the status of the ongoing developments and highlights the critical issues addressed.

  4. Evaluation of Crops Moisture Provision by Space Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Ilienko, Tetiana

    2016-08-01

    The article is focused on theoretical and experimental rationale for the use of space data to determine the moisture provision of agricultural landscapes and agricultural plants. The improvement of space remote sensing methods to evaluate plant moisture availability is the aim of this research.It was proved the possibility of replacement of satellite imagery of high spatial resolution on medium spatial resolution which are freely available to determine crop moisture content at the local level. The mathematical models to determine the moisture content of winter wheat plants by spectral indices were developed based on the results of experimental field research and satellite (Landsat, MODIS/Terra, RapidEye, SICH-2) data. The maps of the moisture content in winter wheat plants in test sites by obtained models were constructed using modern GIS technology.

  5. A micro-vibration generated method for testing the imaging quality on ground of space remote sensing

    NASA Astrophysics Data System (ADS)

    Gu, Yingying; Wang, Li; Wu, Qingwen

    2018-03-01

    In this paper, a novel method is proposed, which can simulate satellite platform micro-vibration and test the impact of satellite micro-vibration on imaging quality of space optical remote sensor on ground. The method can generate micro-vibration of satellite platform in orbit from vibrational degrees of freedom, spectrum, magnitude, and coupling path. Experiment results show that the relative error of acceleration control is within 7%, in frequencies from 7Hz to 40Hz. Utilizing this method, the system level test about the micro-vibration impact on imaging quality of space optical remote sensor can be realized. This method will have an important applications in testing micro-vibration tolerance margin of optical remote sensor, verifying vibration isolation and suppression performance of optical remote sensor, exploring the principle of micro-vibration impact on imaging quality of optical remote sensor.

  6. Review of power requirements for satellite remote sensing systems

    NASA Technical Reports Server (NTRS)

    Morain, Stanley A.

    1988-01-01

    The space environment offers a multitude of attributes and opportunities to be used to enhance human life styles and qualities of life for all future generations, worldwide. Among the prospects having immense social as well as economic benefits are earth-observing systems capable of providing near real-time data in such areas as food and fiber production, marine fisheries, ecosystem monitoring, disaster assessment, and global environmental exchanges. The era of Space Station, the Shuttle program, the planned unmanned satellites in both high and low Earth orbit will transfer to operational status what, until now, has been largely research and development proof of concept for remotely sensing Earth's natural and cultural resources. An important aspect of this operational status focuses on the orbital designs and power requirements needed to optimally sense any of these important areas.

  7. Overview of the NASA tropospheric environmental quality remote sensing program

    NASA Technical Reports Server (NTRS)

    Allario, F.; Ayers, W. G.; Hoell, J. M.

    1979-01-01

    This paper will summarize the current NASA Tropospheric Environmental Quality Remote Sensing Program for studying the global and regional troposphere from space, airborne and ground-based platforms. As part of the program to develop remote sensors for utilization from space, NASA has developed a series of passive and active remote sensors which have undergone field test measurements from airborne and ground platforms. Recent measurements with active lidar and passive gas filter correlation and infrared heterodyne techniques will be summarized for measurements of atmospheric aerosols, CO, SO2, O3, and NH3. These measurements provide the data base required to assess the sensitivity of remote sensors for applications to urban and regional field measurement programs. Studies of Earth Observation Satellite Systems are currently being performed by the scientific community to assess the capability of satellite imagery to detect regions of elevated pollution in the troposphere. The status of NASA sponsored research efforts in interpreting satellite imagery for determining aerosol loadings over land and inland bodies of water will be presented, and comments on the potential of these measurements to supplement in situ and airborne remote sensors in detecting regional haze will be made.

  8. Satellite Remote Sensing of Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev

    1999-01-01

    Aerosol and cloud impacts on the earth's climate become a recent hot topic in climate studies. Having near future earth observing satellites, EOS-AM1 (Earth Observing System-AM1), ENVISAT (Environmental Satellites) and ADEOS-2 (Advanced Earth Observation Satellite-2), it will be a good timing to discuss how to obtain and use the microphysical parameters of aerosols and clouds for studying their climate impacts. Center for Climate System Research (CCSR) of the University of Tokyo invites you to 'Symposium on synergy between satellite-remote sensing and climate modeling in aerosol and cloud issues.' Here, we like to discuss the current and future issues in the remote sensing of aerosol and cloud microphysical parameters and their climate modeling studies. This workshop is also one of workshop series on aerosol remote sensing held in 1996, Washington D. C., and Meribel, France in 1999. It should be reminded that NASDA/ADEOS-1 & -2 (National Space Development Agency of Japan/Advanced Earth Observation Satellite-1 & -2) Workshop will be held in the following week (Dec. 6-10, 1999), so that this opportunity will be a perfect period for you to attend two meetings for satellite remote sensing in Japan. A weekend in Kyoto, the old capital of Japan, will add a nice memory to your visiting Japan. *Issues in the symposium: 1) most recent topics in aerosol and cloud remot sensing, and 2) utility of satellite products on climate modeling of cloud-aerosol effects.

  9. Remote sensing strategies for global resource exploration and environmental management

    NASA Astrophysics Data System (ADS)

    Henderson, Frederick B.

    Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources. If, however, satellite producing countries follow the Russian and Indian lead and restrict civil satellite data as tools of their national security and economic policies, remote sensing technology may become internationally competitive in space, redundant, prohibitively expensive, and generally unavailable to the world community.

  10. Proceedings of the NASA Conference on Space Telerobotics, volume 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty.

  11. The elimination of colour blocks in remote sensing images in VR

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuying; Li, Guohui; Su, Zhenyu

    2018-02-01

    Aiming at the characteristics in HSI colour space of remote sensing images at different time in VR, a unified colour algorithm is proposed. First the method converted original image from RGB colour space to HSI colour space. Then, based on the invariance of the hue before and after the colour adjustment in the HSI colour space and the brightness translational features of the image after the colour adjustment, establish the linear model which satisfied these characteristics of the image. And then determine the range of the parameters in the model. Finally, according to the established colour adjustment model, the experimental verification is carried out. The experimental results show the proposed model can effectively recover the clear image, and the algorithm is faster. The experimental results show the proposed algorithm can effectively enhance the image clarity and can solve the pigment block problem well.

  12. NASA/ESTO investments in remote sensing technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Babu, Sachidananda R.

    2017-02-01

    For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.

  13. ESTO Investments in Innovative Sensor Technologies for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Babu, Sachidananda R.

    2017-01-01

    For more then 18 years NASA Earth Science Technology Office has been investing in remote sensing technologies. During this period ESTO has invested in more then 900 tasks. These tasks are managed under multiple programs like Instrument Incubator Program (IIP), Advanced Component Technology (ACT), Advanced Information Systems Technology (AIST), In-Space Validation of Earth Science Technologies (InVEST), Sustainable Land Imaging - Technology (SLI-T) and others. This covers the whole spectrum of technologies from component to full up satellite in space and software. Over the years many of these technologies have been infused into space missions like Aquarius, SMAP, CYGNSS, SWOT, TEMPO and others. Over the years ESTO is actively investing in Infrared sensor technologies for space applications. Recent investments have been for SLI-T and InVEST program. On these tasks technology development is from simple Bolometers to Advanced Photonic waveguide based spectrometers. Some of the details on these missions and technologies will be presented.

  14. Minutes of the Sixth CEOS Plenary Meeting

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Committee on Earth Observations Satellites (CEOS) minutes for the sixth plenary meeting held in London, December 9-11, 1992 are presented. Attending as prospective members were the Russian Space Agency (RSA), the Committee for Hydrometeorology and Environmental Monitoring of the Ministry for Ecology and Natural resources of the Russian Federation (ROSCOMGIDROMET), the Chinese Academy of Space Technology (CAST) and the National Remote Sensing Center of China (NRSCC). Actions taken at the meeting included membership issues, CEOS proposals, data policy, and working group reports. Data requirements of CEOS affiliates were also reported on. Additional summations and statements as well as lists of participants and future meetings are included. In general, topics covered related to remote sensing and global change.

  15. Bundle block adjustment of large-scale remote sensing data with Block-based Sparse Matrix Compression combined with Preconditioned Conjugate Gradient

    NASA Astrophysics Data System (ADS)

    Zheng, Maoteng; Zhang, Yongjun; Zhou, Shunping; Zhu, Junfeng; Xiong, Xiaodong

    2016-07-01

    In recent years, new platforms and sensors in photogrammetry, remote sensing and computer vision areas have become available, such as Unmanned Aircraft Vehicles (UAV), oblique camera systems, common digital cameras and even mobile phone cameras. Images collected by all these kinds of sensors could be used as remote sensing data sources. These sensors can obtain large-scale remote sensing data which consist of a great number of images. Bundle block adjustment of large-scale data with conventional algorithm is very time and space (memory) consuming due to the super large normal matrix arising from large-scale data. In this paper, an efficient Block-based Sparse Matrix Compression (BSMC) method combined with the Preconditioned Conjugate Gradient (PCG) algorithm is chosen to develop a stable and efficient bundle block adjustment system in order to deal with the large-scale remote sensing data. The main contribution of this work is the BSMC-based PCG algorithm which is more efficient in time and memory than the traditional algorithm without compromising the accuracy. Totally 8 datasets of real data are used to test our proposed method. Preliminary results have shown that the BSMC method can efficiently decrease the time and memory requirement of large-scale data.

  16. Remote Sensing Product Verification and Validation at the NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas M.

    2005-01-01

    Remote sensing data product verification and validation (V&V) is critical to successful science research and applications development. People who use remote sensing products to make policy, economic, or scientific decisions require confidence in and an understanding of the products' characteristics to make informed decisions about the products' use. NASA data products of coarse to moderate spatial resolution are validated by NASA science teams. NASA's Stennis Space Center (SSC) serves as the science validation team lead for validating commercial data products of moderate to high spatial resolution. At SSC, the Applications Research Toolbox simulates sensors and targets, and the Instrument Validation Laboratory validates critical sensors. The SSC V&V Site consists of radiometric tarps, a network of ground control points, a water surface temperature sensor, an atmospheric measurement system, painted concrete radial target and edge targets, and other instrumentation. NASA's Applied Sciences Directorate participates in the Joint Agency Commercial Imagery Evaluation (JACIE) team formed by NASA, the U.S. Geological Survey, and the National Geospatial-Intelligence Agency to characterize commercial systems and imagery.

  17. A telescopic cinema sound camera for observing high altitude aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2014-09-01

    Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.

  18. Cluster Method Analysis of K. S. C. Image

    NASA Technical Reports Server (NTRS)

    Rodriguez, Joe, Jr.; Desai, M.

    1997-01-01

    Information obtained from satellite-based systems has moved to the forefront as a method in the identification of many land cover types. Identification of different land features through remote sensing is an effective tool for regional and global assessment of geometric characteristics. Classification data acquired from remote sensing images have a wide variety of applications. In particular, analysis of remote sensing images have special applications in the classification of various types of vegetation. Results obtained from classification studies of a particular area or region serve towards a greater understanding of what parameters (ecological, temporal, etc.) affect the region being analyzed. In this paper, we make a distinction between both types of classification approaches although, focus is given to the unsupervised classification method using 1987 Thematic Mapped (TM) images of Kennedy Space Center.

  19. NASA programs in technology transfer and their relation to remote sensing education

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1980-01-01

    Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.

  20. Intercomparison of in-situ and remote sensing δD signals in tropospheric water vapour

    NASA Astrophysics Data System (ADS)

    Schneider, Matthias; González, Yenny; Dyroff, Christoph; Christner, Emanuel; García, Omaira; Wiegele, Andreas; Andrey, Javier; Barthlott, Sabine; Blumenstock, Thomas; Guirado, Carmen; Hase, Frank; Ramos, Ramon; Rodríguez, Sergio; Sepúveda, Eliezer

    2014-05-01

    The main mission of the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi-global tropospheric water vapour isototopologue dataset of a good and well-documented quality. We present a first empirical validation of MUSICA's remote sensing δD products (ground-based FTIR within NDACC, Network for the Detection of Atmospheric Composition Change, and space-based with IASI, Infrared Atmospheric Sounding Interferometer, flown on METOP). As reference we use in-situ measurements made on the island of Tenerife at two different altitudes (2370 and 3550 m a.s.l., using two Picarro L2120-i water isotopologue analyzers) and aboard an aircraft (between 200 and 6800 m a.s.l., using the homemade ISOWAT instrument).

  1. Application of Remote Sensing for the Analysis of Environmental Changes in Albania

    NASA Astrophysics Data System (ADS)

    Frasheri, N.; Beqiraj, G.; Bushati, S.; Frasheri, A.

    2016-08-01

    In the paper there is presented a review of remote sensing studies carried out for investigation of environmental changes in Albania. Using, often simple methodologies and general purpose image processing software, and exploiting free Internet archives of satellite imagery, significant results were obtained for hot areas of environmental changes. Such areas include sea coasts experiencing sea transgression, temporal variations of vegetation and aerosols, lakes, landslides and regional tectonics. Internet archives of European Space Agency ESA and USA Geological Service USGS are used.

  2. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  3. Joint Workshop on New Technologies for Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Elphic, Rick C. (Editor); Mckay, David S. (Editor)

    1992-01-01

    The workshop included talks on NASA's and DOE's role in Space Exploration Initiative, lunar geology, lunar resources, the strategy for the first lunar outpost, and an industry perspective on lunar resources. The sessions focused on four major aspects of lunar resource assessment: (1) Earth-based remote sensing of the Moon; (2) lunar orbital remote sensing; (3) lunar lander and roving investigations; and (4) geophysical and engineering consideration. The workshop ended with a spirited discussion of a number of issues related to resource assessment.

  4. Space Technologies for Enhancing the Resilience and Sustainability of Indigenous Reindeer Husbandry in the Russian Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.; Yurchak, Boris S.; Sleptsov, Yuri A.; Turi, Johan Mathis; Mathlesen, Svein D.

    2005-01-01

    To adapt successfully to the major changes - climate, environment, economic, social and industrial - which have taken place across the Arctic. in recent years, indigenous communities such as reindeer herders must become increasingly empowered with the best available technologies to add to their storehouse of traditional knowledge. Remotely-sensed data and observations are providing increased capabilities for monitoring, risk mapping, and surveillance of parameters critical to the characterization of pasture quality and migratory routes, such as vegetation distribution, snow cover, infrastructure development, and pasture damages due to fires. This paper describes a series of remote sensing capabilities, which are useful to reindeer husbandry, and gives the results of the first year of a project, "Reindeer Mapper", which is a remote sensing and GIs-based system to bring together space technologies with indigenous knowledge for sustainable reindeer husbandry in the Russian Arctic. In this project, reindeer herders and scientists are joining together to utilize technologies to create a system for collecting and sharing space-based and indigenous knowledge in the Russian Arctic. The "Reindeer Mapper" system will help make technologies more readily available to the herder community for observing, data collection and analysis, monitoring, sharing, communications, and dissemination of information - to be integrated with traditional, local knowledge. This paper describes some of the technologies which comprise the system including an intranet system to enable to the team members to work together and share information electronically, remote sensing data for monitoring environmental parameters important to reindeer husbandry (e.g., SAR, Landsat, AVHRR, MODIS), indigenous knowledge about important environmental parameters, acquisition of ground- based measurements, and the integration of all useful data sets for more informed decision-making.

  5. The Penn State ORSER system for processing and analyzing ERTS and other MSS data

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Borden, F. Y.; Weeden, H. A.

    1974-01-01

    The author has identified the following significant results. The office for Remote Sensing of Earth Resources (ORSER) of the Space Science and Engineering Laboratory at the Pennsylvania State University has developed an extensive operational system for processing and analyzing ERTS-1 and similar multispectral data. The ORSER system was developed for use by a wide variety of researchers working in remote sensing. Both photointerpretive techniques and automatic computer processing methods have been developed and used, separately and in a combined approach. A remote Job Entry system permits use of an IBM 370/168 computer from any compatible remote terminal, including equipment tied in by long distance telephone connections. An elementary cost analysis has been prepared for the processing of ERTS data.

  6. Support for global science: Remote sensing's challenge

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Star, J. L.

    1986-01-01

    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  7. Research and Application of Remote Sensing Monitoring Method for Desertification Land Under Time and Space Constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Nannnan; Wang, Rongbao; Zhang, Feng

    2018-04-01

    Serious land desertification and sandified threaten the urban ecological security and the sustainable economic and social development. In recent years, a large number of mobile sand dunes in Horqin sandy land flow into the northwest of Liaoning Province under the monsoon, make local agriculture suffer serious harm. According to the characteristics of desertification land in northwestern Liaoning, based on the First National Geographical Survey data, the Second National Land Survey data and the 1984-2014 Landsat satellite long time sequence data and other multi-source data, we constructed a remote sensing monitoring index system of desertification land in Northwest Liaoning. Through the analysis of space-time-spectral characteristics of desertification land, a method for multi-spectral remote sensing image recognition of desertification land under time-space constraints is proposed. This method was used to identify and extract the distribution and classification of desertification land of Chaoyang City (a typical citie of desertification in northwestern Liaoning) in 2008 and 2014, and monitored the changes and transfers of desertification land from 2008 to 2014. Sandification information was added to the analysis of traditional landscape changes, improved the analysis model of desertification land landscape index, and the characteristics and laws of landscape dynamics and landscape pattern change of desertification land from 2008 to 2014 were analyzed and revealed.

  8. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    NASA Technical Reports Server (NTRS)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data for the NASA Johnson Space Center into a NASA-Wide GIS Institutional Portal.

  9. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  10. Potentially efficient forest and range applications of remote sensing using earth orbital space craft, circa 1980

    NASA Technical Reports Server (NTRS)

    Wilson, R. C.

    1970-01-01

    Sixteen remote sensing applications or groups of related applications judged to be most important of any in the forestry and range disciplines were evaluated. In one application, major land classification, large amounts of useful data are anticipated to be contributed by space sensors in 1980. In four applications moderate amounts are anticipated to be so contributed. These are timber inventory, range inventory, fire weather forecasting, and monitoring snowfields. In the following seven applications small but significant amounts of data are anticipated to be contributed by space sensors: (1) detailed land classification; (2) inventory of wildlife habitat; (3) recreation resource inventory; (4) detecting stresses on the vegetation (5) monitoring air pollution caused by wildfires and prescribed burning; (6) monitoring water cycle, (7) pollution and erosion; and (8) evaluating damage to forests and ranges.

  11. Remote sensing of the biosphere

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The current state of understanding of the biosphere is reviewed, the major scientific issues to be addressed are discussed, and techniques, existing and in need of development, for the science are evaluated. It is primarily concerned with developing the scientific capabilities of remote sensing for advancing the subject. The global nature of the scientific objectives requires the use of space-based techniques. The capability to look at the Earth as a whole was developed only recently. The space program has provided the technology to study the entire Earth from artificial satellites, and thus is a primary force in approaches to planetary biology. Space technology has also permitted comparative studies of planetary atmospheres and surfaces. These studies coupled with the growing awareness of the effects that life has on the entire Earth, are opening new lines of inquiry in science.

  12. Remote Sensing Assessment of Lunar Resources: We Know Where to Go to Find What We Need

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Taylor, G. J.; Lucey, P. G.

    2004-01-01

    The utilization of space resources is necessary to not only foster the growth of human activities in space, but is essential to the President s vision of a "sustained and affordable human and robotic program to explore the solar system and beyond." The distribution of resources will shape planning permanent settlements by affecting decisions about where to locate a settlement. Mapping the location of such resources, however, is not the limiting factor in selecting a site for a lunar base. It is indecision about which resources to use that leaves the location uncertain. A wealth of remotely sensed data exists that can be used to identify targets for future detailed exploration. Thus, the future of space resource utilization pre-dominantly rests upon developing a strategy for resource exploration and efficient methods of extraction.

  13. Satellite land remote sensing advancements for the eighties; Proceedings of the Eighth Pecora Symposium, Sioux Falls, SD, October 4-7, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Among the topics discussed are NASA's land remote sensing plans for the 1980s, the evolution of Landsat 4 and the performance of its sensors, the Landsat 4 thematic mapper image processing system radiometric and geometric characteristics, data quality, image data radiometric analysis and spectral/stratigraphic analysis, and thematic mapper agricultural, forest resource and geological applications. Also covered are geologic applications of side-looking airborne radar, digital image processing, the large format camera, the RADARSAT program, the SPOT 1 system's program status, distribution plans, and simulation program, Space Shuttle multispectral linear array studies of the optical and biological properties of terrestrial land cover, orbital surveys of solar-stimulated luminescence, the Space Shuttle imaging radar research facility, and Space Shuttle-based polar ice sounding altimetry.

  14. Multi- and hyperspectral remote sensing of tropical marine benthic habitats

    NASA Astrophysics Data System (ADS)

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was consistently more accurate (84%) including finer definition of geomorphological features than the satellite sensors. IKONOS (81%) and QuickBird (81%) sensors showed similar accuracy to AISA, however, such similarity was only reached at the coarse classification levels of 5 and 6 habitats. These results confirm the potential of an effective combination of high spectral and spatial resolution sensor, for accurate benthic habitat mapping.

  15. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.

  16. 7th IGRSM International Remote Sensing & GIS Conference and Exhibition

    NASA Astrophysics Data System (ADS)

    Shariff, Abdul Rashid Mohamed

    2014-06-01

    IGRSM This proceedings consists of the peer-reviewed papers from the 7th IGRSM International Conference and Exhibition on Remote Sensing & GIS (IGRSM 2014), which was held on 21-22 April 2014 at Berjaya Times Square Hotel, Kuala Lumpur, Malaysia. The conference, with the theme Geospatial Innovation for Nation Building was aimed at disseminating knowledge, and sharing expertise and experiences in geospatial sciences in all aspects of applications. It also aimed to build linkages between local and international professionals in this field with industries. Highlights of the conference included: Officiation by Y B Datuk Dr Abu Bakar bin Mohamad Diah, Deputy Minister of Minister of Science, Technology & Innovation Keynote presentations by: Associate Professor Dr Francis Harvey, Chair of the Geographic Information Science Commission at the International Geographical Union (IGU) and Director of U-Spatial, University of Minnesota, US: The Next Age of Discovery and a Future in a Post-GIS World. Professor Dr Naoshi Kondo, Bio-Sensing Engineering, University of Kyoto, Japan: Mobile Fruit Grading Machine for Precision Agriculture. Datuk Ir Hj Ahmad Jamalluddin bin Shaaban, Director-General, National Hydraulic Research Institute of Malaysia (NAHRIM), Malaysia: Remote Sensing & GIS in Climate Change Analyses. Oral and poster presentations from 69 speakers, from both Malaysia (35) and abroad (34), covering areas of water resources management, urban sprawl & social mobility, agriculture, land use/cover mapping, infrastructure planning, disaster management, technology trends, environmental monitoring, atmospheric/temperature monitoring, and space applications for the environment. Post-conference workshops on: Space Applications for Environment (SAFE), which was be organised by the Japan Aerospace Exploration Agency (JAXA) Global Positioning System (GPS) Receiver Evaluation Using GPS Simulation, which was be organised by the Science & Technology Research Institute for Defence (STRIDE), and sponsored by RFI Technologies Sdn. Bhd. and Aeroflex Inc. Two awards were presented by Dr Noordin Ahmad, Director-General of the National Space Agency during the conference's closing ceremony: Best Paper Award: Dr Rizatus Shofiyati, Indonesian Center for Agricultural Land Resources Research and Development (ICALRD), Indonesia: Indonesian Drought Monitoring from Space. A Report of SAFE Activity: Assessment of Drought Impact on Rice Production in Indonesia by Satellite Remote Sensing and Dissemination with Web-GIS Best Student Paper Award: Rosnani Rahman, Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM), Malaysia: Monitoring the Variability of Precipitable Water Vapor Over the Klang Valley, Malaysia During Flash Flood The success of the IGRSM 2014 was due to commitments of many: authors, keynote speakers, session chairpersons, the organising and technical programme committees, student volunteers from Universiti Putra Malaysia (UPM), and many others of various roles. We acknowledge the sponsors of IGRSM 2014, namely Antaragrafik Systems Sdn. Bhd. and Geospatial Media and Communications Sdn. Bhd. We also thank all exhibitors and contributors: E J Motiwalla, Fajar Saintifik Sdn. Bhd., Bandwork GPS Solutions Sdn. Bhd., Tenaga Nasional Bhd., TSKAY Technology Sdn. Bhd., Geo Spatial Solutions Sdn. Bhd. and Accutac Sdn. Bhd. Associate Professor Sr Dr Abdul Rashid Mohamed Shariff Chairman 7th IGRSM International Remote Sensing & GIS Conference and Exhibition (IGRSM2014) President Institution of Geospatial and Remote Sensing Malaysia (IGRSM), 2012-2014

  17. Space exploration: The interstellar goal and Titan demonstration

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed.

  18. High resolution remote sensing missions of a tethered satellite

    NASA Technical Reports Server (NTRS)

    Vetrella, S.; Moccia, A.

    1986-01-01

    The application of the Tethered Satellite (TS) as an operational remote sensing platform is studied. It represents a new platform capable of covering the altitudes between airplanes and free flying satellites, offering an adequate lifetime, high geometric and radiometric resolution and improved cartographic accuracy. Two operational remote sensing missions are proposed: one using two linear array systems for along track stereoscopic observation and one using a synthetic aperture radar combined with an interferometric technique. These missions are able to improve significantly the accuracy of future real time cartographic systems from space, also allowing, in the case of active microwave systems, the Earth's observation both in adverse weather and at any time, day or night. Furthermore, a simulation program is described in which, in order to examine carefully the potentiality of the TS as a new remote sensing platform, the orbital and attitude dynamics description of the TSS is integrated with the sensor viewing geometry, the Earth's ellipsoid, the atmospheric effects, the Sun illumination and the digital elevation model. A preliminary experiment has been proposed which consist of a metric camera to be deployed downwards during the second Shuttle demonstration flight.

  19. Shaping NASA's Earth Science Enterprise Workforce Development Initiative to Address Industry Needs

    NASA Technical Reports Server (NTRS)

    Rosage, David; Meeson, Blanche W. (Technical Monitor)

    2001-01-01

    It has been well recognized that the commercial remote sensing industry will expand in new directions, resulting in new applications, thus requiring a larger, more skilled workforce to fill the new positions. In preparation for this change, NASA has initiated a Remote Sensing Professional Development Program to address the workforce needs of this emerging industry by partnering with the private sector, academia, relevant professional societies, and other R&D organizations. Workforce needs will in part include understanding current industry concerns, personnel competencies, current and future skills, growth rates, geographical distributions, certifications, and sources of pre-service and in-service personnel. Dave Rosage of the NASA Goddard Space Flight Center and a panel of MAPPS members will lead a discussion to help NASA specifically address private firms' near and long-term personnel needs to be included in NASA's Remote Sensing Professional Development Program. In addition, Dave Rosage will present perspectives on how remote sensing technologies are evolving, new NASA instruments being developed, and what future workforce skills are expected to support these new developments.

  20. Multitask SVM learning for remote sensing data classification

    NASA Astrophysics Data System (ADS)

    Leiva-Murillo, Jose M.; Gómez-Chova, Luis; Camps-Valls, Gustavo

    2010-10-01

    Many remote sensing data processing problems are inherently constituted by several tasks that can be solved either individually or jointly. For instance, each image in a multitemporal classification setting could be taken as an individual task but relation to previous acquisitions should be properly considered. In such problems, different modalities of the data (temporal, spatial, angular) gives rise to changes between the training and test distributions, which constitutes a difficult learning problem known as covariate shift. Multitask learning methods aim at jointly solving a set of prediction problems in an efficient way by sharing information across tasks. This paper presents a novel kernel method for multitask learning in remote sensing data classification. The proposed method alleviates the dataset shift problem by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine (SVM) as core learner and two regularization schemes are introduced: 1) the Euclidean distance of the predictors in the Hilbert space; and 2) the inclusion of relational operators between tasks. Experiments are conducted in the challenging remote sensing problems of cloud screening from multispectral MERIS images and for landmine detection.

  1. Empirical validation and proof of added value of MUSICA's tropospheric δD remote sensing products

    NASA Astrophysics Data System (ADS)

    Schneider, M.; González, Y.; Dyroff, C.; Christner, E.; Wiegele, A.; Barthlott, S.; García, O. E.; Sepúlveda, E.; Hase, F.; Andrey, J.; Blumenstock, T.; Guirado, C.; Ramos, R.; Rodríguez, S.

    2015-01-01

    The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) integrates tropospheric water vapour isotopologue remote sensing and in situ observations. This paper presents a first empirical validation of MUSICA's H2O and δD remote sensing products, generated from ground-based FTIR (Fourier transform infrared), spectrometer and space-based IASI (infrared atmospheric sounding interferometer) observation. The study is made in the area of the Canary Islands in the subtropical northern Atlantic. As reference we use well calibrated in situ measurements made aboard an aircraft (between 200 and 6800 m a.s.l.) by the dedicated ISOWAT instrument and on the island of Tenerife at two different altitudes (at Izaña, 2370 m a.s.l., and at Teide, 3550 m a.s.l.) by two commercial Picarro L2120-i water isotopologue analysers. The comparison to the ISOWAT profile measurements shows that the remote sensors can well capture the variations in the water vapour isotopologues, and the scatter with respect to the in situ references suggests a δD random uncertainty for the FTIR product of much better than 45‰ in the lower troposphere and of about 15‰ for the middle troposphere. For the middle tropospheric IASI δD product the study suggests a respective uncertainty of about 15‰. In both remote sensing data sets we find a positive δD bias of 30-70‰. Complementing H2O observations with δD data allows moisture transport studies that are not possible with H2O observations alone. We are able to qualitatively demonstrate the added value of the MUSICA δD remote sensing data. We document that the δD-H2O curves obtained from the different in situ and remote sensing data sets (ISOWAT, Picarro at Izaña and Teide, FTIR, and IASI) consistently identify two different moisture transport pathways to the subtropical north eastern Atlantic free troposphere.

  2. Vasu Kilaru

    EPA Pesticide Factsheets

    Vasu Kilaru's expertise is in Geographic Information Systems, Spatial Analysis, and satellite remote sensing particularly with respect to trying to detect ground-level fine particles using space borne instruments.

  3. Remote Sensing of In-Flight Icing Conditions: Operational, Meteorological, and Technological Considerations

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.

    2000-01-01

    Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.

  4. Hyperspectral forest monitoring and imaging implications

    NASA Astrophysics Data System (ADS)

    Goodenough, David G.; Bannon, David

    2014-05-01

    The forest biome is vital to the health of the earth. Canada and the United States have a combined forest area of 4.68 Mkm2. The monitoring of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of improved information products to land managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory (major forest species), forest health, foliar biochemistry, biomass, and aboveground carbon. Operationally there is a requirement for a mix of airborne and satellite approaches. This paper surveys some methods and results in hyperspectral sensing of forests and discusses the implications for space initiatives with hyperspectral sensing

  5. Distribution of chlorophyll and harmful algal blooms (HABs): A review on space based studies in the coastal environments of Chinese marginal seas

    NASA Astrophysics Data System (ADS)

    Wei, Guifeng; Tang, Danling; Wang, Sufen

    Monitoring of spatial and temporal distribution of chlorophyll (Chl-a) concentrations in the aquatic milieu is always challenging and often interesting. However, the recent advancements in satellite digital data play a significant role in providing outstanding results for the marine environmental investigations. The present paper is aimed to review ‘remote sensing research in Chinese seas’ within the period of 24 years from 1978 to 2002. Owing to generalized distributional pattern, the Chl-a concentrations are recognized high towards northern Chinese seas than the southern. Moreover, the coastal waters, estuaries, and upwelling zones always exhibit relatively high Chl-a concentrations compared with offshore waters. On the basis of marine Chl-a estimates obtained from satellite and other field measured environmental parameters, we have further discussed on the applications of satellite remote sensing in the fields of harmful algal blooms (HABs), primary production and physical oceanographic currents of the regional seas. Concerned with studies of HABs, satellite remote sensing proved more advantageous than any other conventional methods for large-scale applications. Probably, it may be the only source of authentic information responsible for the evaluation of new research methodologies to detect HABs. At present, studies using remote sensing methods are mostly confined to observe algal bloom occurrences, hence, it is essential to coordinate the mechanism of marine ecological and oceanographic dynamic processes of HABs using satellite remote sensing data with in situ measurements of marine environmental parameters. The satellite remote sensing on marine environment and HABs is believed to have a great improvement with popular application of technology.

  6. Challenges of Remote Sensing and Spatial Information Education and Technology Transfer in a Fast Developing Industry

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Chen, L.-C.

    2014-04-01

    During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.

  7. Inroads of remote sensing into hydrologic science during the WRR era

    NASA Astrophysics Data System (ADS)

    Lettenmaier, Dennis P.; Alsdorf, Doug; Dozier, Jeff; Huffman, George J.; Pan, Ming; Wood, Eric F.

    2015-09-01

    The first issue of WRR appeared eight years after the launch of Sputnik, but by WRR's 25th anniversary, only seven papers that used remote sensing had appeared. Over the journal's second 25 years, that changed remarkably, and remote sensing is now widely used in hydrology and other geophysical sciences. We attribute this evolution to production of data sets that scientists not well versed in remote sensing can use, and to educational initiatives like NASA's Earth System Science Fellowship program that has supported over a thousand scientists, many in hydrology. We review progress in remote sensing in hydrology from a water balance perspective. We argue that progress is primarily attributable to a creative use of existing and past satellite sensors to estimate such variables as evapotranspiration rates or water storage in lakes and reservoirs and to new and planned missions. Recent transforming technologies include the Gravity Recovery and Climate Experiment (GRACE), the European Soil Moisture and Ocean Salinity (SMOS) and U.S. Soil Moisture Active Passive (SMAP) missions, and the Global Precipitation Measurement (GPM) mission. Future missions include Surface Water and Ocean Topography (SWOT) to measure river discharge and lake, reservoir, and wetland storage. Measurement of some important hydrologic variables remains problematic: retrieval of snow water equivalent (SWE) from space remains elusive especially in mountain areas, even though snow cover extent is well observed, and was the topic of 4 of the first 5 remote sensing papers published in WRR. We argue that this area deserves more strategic thinking from the hydrology community.

  8. Remote sensing: The application of space technology to the survey of the earth and its environment

    NASA Technical Reports Server (NTRS)

    Schertler, R. J.

    1973-01-01

    Research in the earth sciences and management of both natural and man-made resources has been hindered by the difficulty of obtaining accurate and timely information on regional and global scale. Space surveys with remote sensing instruments are simply another means of attempting to attain the total knowledge of the resources needed for sound planning, development, and conservation. The use of earth orbiting satellites will greatly expand the ability to collect this information. The collection and use of these data and imagery, however, are now an end in itself, but only the means to an end, that of achieving total resource knowledge. Satellite systems will provide a valuable supplement to existing aerial and ground based observation techniques.

  9. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  10. The promise of remote sensing in the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Atlas, D.

    1981-01-01

    The applications and advances in remote sensing technology for weather prediction, mesoscale meteorology, severe storms, and climate studies are discussed. Doppler radar permits tracking of the three-dimensional field of motion within storms, thereby increasing the accuracy of convective storm modeling. Single Doppler units are also employed for detecting mesoscale storm vortices and tornado vortex signatures with lead times of 30 min. Clear air radar in pulsed and high resolution FM-CW forms reveals boundary layer convection, Kelvin-Helmoltz waves, shear layer turbulence, and wave motions. Lidar is successfully employed for stratospheric aerosol measurements, while Doppler lidar provides data on winds from the ground and can be based in space. Sodar is useful for determining the structure of the PBL. Details and techniques of satellite-based remote sensing are presented, and results from the GWE and FGGE experiments are discussed.

  11. Preliminary Findings of Inflight Icing Field Test to Support Icing Remote Sensing Technology Assessment

    NASA Technical Reports Server (NTRS)

    King, Michael; Reehorst, Andrew; Serke, Dave

    2015-01-01

    NASA and the National Center for Atmospheric Research have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize a vertical pointing cloud radar, a multifrequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport.

  12. The science benefits of and the antenna requirements for microwave remote sensing from geostationary orbit

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L. (Editor); Brown, Gary S. (Editor)

    1991-01-01

    The primary objective of the Large Space Antenna (LSA) Science Panel was to evaluate the science benefits that can be realized with a 25-meter class antenna in a microwave/millimeter wave remote sensing system in geostationary orbit. The panel concluded that a 25-meter or larger antenna in geostationary orbit can serve significant passive remote sensing needs in the 10 to 60 GHz frequency range, including measurements of precipitation, water vapor, atmospheric temperature profile, ocean surface wind speed, oceanic cloud liquid water content, and snow cover. In addition, cloud base height, atmospheric wind profile, and ocean currents can potentially be measured using active sensors with the 25-meter antenna. Other environmental parameters, particularly those that do not require high temporal resolution, are better served by low Earth orbit based sensors.

  13. Problems in merging Earth sensing satellite data sets

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.; Goldberg, Michael J.

    1987-01-01

    Satellite remote sensing systems provide a tremendous source of data flow to the Earth science community. These systems provide scientists with data of types and on a scale previously unattainable. Looking forward to the capabilities of Space Station and the Earth Observing System (EOS), the full realization of the potential of satellite remote sensing will be handicapped by inadequate information systems. There is a growing emphasis in Earth science research to ask questions which are multidisciplinary in nature and global in scale. Many of these research projects emphasize the interactions of the land surface, the atmosphere, and the oceans through various physical mechanisms. Conducting this research requires large and complex data sets and teams of multidisciplinary scientists, often working at remote locations. A review of the problems of merging these large volumes of data into spatially referenced and manageable data sets is presented.

  14. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  15. Space station needs, attributes and architectural options study commercialization working group briefing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The benefits for each of the following commercial areas was investigated: communications, remote sensing, materials processing in space, low Earth orbit (LEO) satellite assembly, testing, and servicing, and space tourism. In each case, where economic benefits are derived, the costs for accomplishing tasks with the Space Station are compared with the cost with the Space Transportation System only.

  16. Taiwan's second remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Chern, Jeng-Shing; Ling, Jer; Weng, Shui-Lin

    2008-12-01

    FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.

  17. Applications of space technology to water resources management

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1977-01-01

    Space technology transfer is discussed in terms of applying visible and infrared remote sensing measurement to water resources management. Mapping and monitoring of snowcovered areas, hydrologic land use, and surface water areas are discussed, using information acquired from LANDSAT and NOAA satellite systems.

  18. SPACE: Vision and Reality: Face to Face. Proceedings Report

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The proceedings of the 11th National Space Symposium entitled 'Vision and Reality: Face to Face' is presented. Technological areas discussed include the following sections: Vision for the future; Positioning for the future; Remote sensing, the emerging era; space opportunities, Competitive vision with acquisition reality; National security requirements in space; The world is into space; and The outlook for space. An appendice is also attached.

  19. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

    NASA Astrophysics Data System (ADS)

    Li, J.; Wen, G.; Li, D.

    2018-04-01

    Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.

  20. A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States.

    PubMed

    Beckerman, Bernardo S; Jerrett, Michael; Serre, Marc; Martin, Randall V; Lee, Seung-Jae; van Donkelaar, Aaron; Ross, Zev; Su, Jason; Burnett, Richard T

    2013-07-02

    Airborne fine particulate matter exhibits spatiotemporal variability at multiple scales, which presents challenges to estimating exposures for health effects assessment. Here we created a model to predict ambient particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) across the contiguous United States to be applied to health effects modeling. We developed a hybrid approach combining a land use regression model (LUR) selected with a machine learning method, and Bayesian Maximum Entropy (BME) interpolation of the LUR space-time residuals. The PM2.5 data set included 104,172 monthly observations at 1464 monitoring locations with approximately 10% of locations reserved for cross-validation. LUR models were based on remote sensing estimates of PM2.5, land use and traffic indicators. Normalized cross-validated R(2) values for LUR were 0.63 and 0.11 with and without remote sensing, respectively, suggesting remote sensing is a strong predictor of ground-level concentrations. In the models including the BME interpolation of the residuals, cross-validated R(2) were 0.79 for both configurations; the model without remotely sensed data described more fine-scale variation than the model including remote sensing. Our results suggest that our modeling framework can predict ground-level concentrations of PM2.5 at multiple scales over the contiguous U.S.

  1. The micron- to kilometer-scale Moon: linking samples to orbital observations, Apollo to LRO

    NASA Astrophysics Data System (ADS)

    Crites, S.; Lucey, P. G.; Taylor, J.; Martel, L.; Sun, L.; Honniball, C.; Lemelin, M.

    2017-12-01

    The Apollo missions have shaped the field of lunar science and our understanding of the Moon, from global-scale revelations like the magma ocean hypothesis, to providing ground truth for compositional remote sensing and absolute ages to anchor cratering chronologies. While lunar meteorite samples can provide a global- to regional-level view of the Moon, samples returned from known locations are needed to directly link orbital-scale observations with laboratory measurements-a link that can be brought to full fruition with today's extremely high spatial resolution observations from Lunar Reconnaissance Orbiter and other recent missions. Korotev et al. (2005) described a scenario of the Moon without Apollo to speculate about our understanding of the Moon if our data were confined to lunar meteorites and remote sensing. I will review some of the major points discussed by Korotev et al. (2005), and focus on some of the ways in which spectroscopic remote sensing in particular has benefited from the Apollo samples. For example, could the causes and effects of lunar-style space weathering have been unraveled without the Apollo samples? What would be the limitations on remote sensing compositional measurements that rely on Apollo samples for calibration and validation? And what new opportunities to bring together orbital and sample analyses now exist, in light of today's high spatial and spectral resolution remote sensing datasets?

  2. Supercooled Liquid Water Content Instrument Analysis and Winter 2014 Data with Comparisons to the NASA Icing Remote Sensing System and Pilot Reports

    NASA Technical Reports Server (NTRS)

    King, Michael C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has developed a system for remotely detecting the hazardous conditions leading to aircraft icing in flight, the NASA Icing Remote Sensing System (NIRSS). Newly developed, weather balloon-borne instruments have been used to obtain in-situ measurements of supercooled liquid water during March 2014 to validate the algorithms used in the NIRSS. A mathematical model and a processing method were developed to analyze the data obtained from the weather balloon soundings. The data from soundings obtained in March 2014 were analyzed and compared to the output from the NIRSS and pilot reports.

  3. A Team Approach to the Development of Gamma Ray and x Ray Remote Sensing and in Situ Spectroscopy for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.

    1993-01-01

    An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.

  4. Future remote-sensing programs

    NASA Technical Reports Server (NTRS)

    Schweickart, R. L.

    1975-01-01

    User requirements and methods developed to fulfill them are discussed. Quick-look data, data storage on computer-compatible tape, and an integrated capability for production of images from the whole class of earth-viewing satellites are among the new developments briefly described. The increased capability of LANDSAT-C and Nimbus G and the needs of specialized applications such as, urban land use planning, cartography, accurate measurement of small agricultural fields, thermal mapping and coastal zone management are examined. The affect of the space shuttle on remote sensing technology through increased capability is considered.

  5. New Earth Observation Capabilities For The Commercial Sector

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2017-01-01

    Earth observation data collected from orbital remote sensing systems are becoming increasingly critical to the short- and long-term operations of many commercial industries including agriculture, energy exploration, environmental management, transportation, and urban planning and operations. In this panel, I will present an overview of current and planned NASA remote sensing systems for Earth observation with relevance to commercial and industrial applications. Special emphasis will be given to the International Space Station (ISS) as a platform for both commercial technology demonstration/development and operational data collection through the ISS National Laboratory.

  6. Interfacing remote sensing and geographic information systems for global environmental change research

    NASA Technical Reports Server (NTRS)

    Lee, Jae K.; Randolph, J. C.; Lulla, Kamlesh P.; Helfert, Michael R.

    1993-01-01

    Because changes in the Earth's environment have become major global issues, continuous, longterm scientific information is required to assess global problems such as deforestation, desertification, greenhouse effects and climate variations. Global change studies require understanding of interactions of complex processes regulating the Earth system. Space-based Earth observation is an essential element in global change research for documenting changes in Earth environment. It provides synoptic data for conceptual predictive modeling of future environmental change. This paper provides a brief overview of remote sensing technology from the perspective of global change research.

  7. Aeronautics and Space Report of the President: 1977 Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The national programs in aeronautics and space made steady progress in 1977 toward their long-term objectives. In aeronautics the goals were improved performance, energy efficiency, and safety in aircraft. In space the goals were: (1) better remote sensing systems to generate more sophisticated information about the Earth's environment; (2)…

  8. Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models

    NASA Astrophysics Data System (ADS)

    Schumann, Guy; Bates, Paul D.; Horritt, Matthew S.; Matgen, Patrick; Pappenberger, Florian

    2009-12-01

    The ability to monitor floods with sensors mounted on aircraft and satellites has been known for decades. Early launches of satellites and the availability of aerial photography allowed investigation of the potential to support flood monitoring from as far as space. There have been notable studies on integrating data from these instruments with flood modeling since the late 1990s. There is now a consensus among space agencies to strengthen the support that satellites can offer. This trend has stimulated more research in this area, and significant progress has been achieved in recent years in fostering our understanding of the ways in which remote sensing can support or even advance flood modeling. This research goes considerably further than using a wet/dry flood map for model validation as in early studies of this type. Therefore, this paper aims to review recent and current efforts to aid advancing flood inundation modeling from space.

  9. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  10. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  11. International Space Station Data Collection for Disaster Response

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.

    2015-01-01

    Remotely sensed data acquired by orbital sensor systems has emerged as a vital tool to identify the extent of damage resulting from a natural disaster, as well as providing near-real time mapping support to response efforts on the ground and humanitarian aid efforts. The International Space Station (ISS) is a unique terrestrial remote sensing platform for acquiring disaster response imagery. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous sensor systems in higher altitude polar orbits. NASA remote sensing assets on the station began collecting International Disaster Charter (IDC) response data in May 2012. The initial NASA ISS sensor systems responding to IDC activations included the ISS Agricultural Camera (ISSAC), mounted in the Window Observational Research Facility (WORF); the Crew Earth Observations (CEO) Facility, where the crew collects imagery using off-the-shelf handheld digital cameras; and the Hyperspectral Imager for the Coastal Ocean (HICO), a visible to near-infrared system mounted externally on the Japan Experiment Module Exposed Facility. The ISSAC completed its primary mission in January 2013. It was replaced by the very high resolution ISS SERVIR Environmental Research and Visualization System (ISERV) Pathfinder, a visible-wavelength digital camera, telescope, and pointing system. Since the start of IDC response in 2012 there have been 108 IDC activations; NASA sensor systems have collected data for thirty-two of these events. Of the successful data collections, eight involved two or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and Roscosmos/Energia through the Urugan program.

  12. Aeronautics and space report of the President

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes the activities and accomplishments of all agencies of the United States in the fields of aeronautics and space science during FY 1994. Activity summaries are presented for the following areas: space launch activities, space science, space flight and space technology, space communications, aeronuatics, and studies of the planet Earth. Several appendices providing data on U.S. launch activities, the Federal budget for space and aeronautics, remote sensing capabilities, and space policy are included.

  13. Characterization of air pollution in Mexico City by remote sensing

    NASA Astrophysics Data System (ADS)

    Grutter, Michel; Arellano, Josue; Bezanilla, Alejandro; Friedrich, Martina; Plaza, Eddy; Rivera, Claudia; Stremme, Wolfgang

    2014-05-01

    Megacities, like the Mexico City Metropolitan Area, are home to a large fraction of the population of the world and a consequence is that they are one of the biggest sources of contaminants and greenhouse gases emitted to the atmosphere. The pollution is visible form space through remote sensing instruments, however, satellite observations like those with NADIR viewing geometries have decreased sensitivity near the Earth's surface and the analytical algorithms are in generally optimized to detect pollution plumes in the free troposphere or above. Ground-based observations are thus necessary in order to reduce uncertainties from satellite products. As we will show, Mexico City and its surroundings is well characterized by ground-based remote sensing measurements like from two stations with solar-absorption FTIR spectrometers and a newly formed network of MAX-DOAS and LIDAR instruments. Examples will be provided of how the evolution of the mixing-layer height is characterized and the vertical column densities and profiles of gases in and outside the urban area are continuously monitored. The combination of ground-based and space-borne measurements are used to improve the current knowledge in the spatial and temporal distribution of key pollutants from this megacity.

  14. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  15. REVIEW OF DEVELOPMENTS IN SPACE REMOTE SENSING FOR MONITORING RESOURCES.

    USGS Publications Warehouse

    Watkins, Allen H.; Lauer, D.T.; Bailey, G.B.; Moore, D.G.; Rohde, W.G.

    1984-01-01

    Space remote sensing systems are compared for suitability in assessing and monitoring the Earth's renewable resources. Systems reviewed include the Landsat Thematic Mapper (TM), the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), the French Systeme Probatoire d'Observation de la Terre (SPOT), the German Shuttle Pallet Satellite (SPAS) Modular Optoelectronic Multispectral Scanner (MOMS), the European Space Agency (ESA) Spacelab Metric Camera, the National Aeronautics and Space Administration (NASA) Large Format Camera (LFC) and Shuttle Imaging Radar (SIR-A and -B), the Russian Meteor satellite BIK-E and fragment experiments and MKF-6M and KATE-140 camera systems, the ESA Earth Resources Satellite (ERS-1), the Japanese Marine Observation Satellite (MOS-1) and Earth Resources Satellite (JERS-1), the Canadian Radarsat, the Indian Resources Satellite (IRS), and systems proposed or planned by China, Brazil, Indonesia, and others. Also reviewed are the concepts for a 6-channel Shuttle Imaging Spectroradiometer, a 128-channel Shuttle Imaging Spectrometer Experiment (SISEX), and the U. S. Mapsat.

  16. Toward Global Harmonization of Derived Cloud Products

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Baum, Bryan A.; Choi, Yong-Sang; Foster, Michael J.; Karlsson, Karl-Goeran; Heidinger, Andrew; Poulsen, Caroline; Pavolonis, Michael; Riedi, Jerome; Roebeling, Robert

    2017-01-01

    Formerly known as the Cloud Retrieval Evaluation Workshop (CREW; see the list of acronyms used in this paper below) group (Roebeling et al. 2013, 2015), the International Cloud Working Group (ICWG) was created and endorsed during the 42nd Meeting of CGMS. The CGMS-ICWG provides a forum for space agencies to seek coherent progress in science and applications and also to act as a bridge between space agencies and the cloud remote sensing and applications community. The ICWG plans to serve as a forum to exchange and enhance knowledge on state-of-the-art cloud parameter retrievals algorithms, to stimulate support for training in the use of cloud parameters, and to encourage space agencies and the cloud remote sensing community to share knowledge. The ICWG plans to prepare recommendations to guide the direction of future research-for example, on observing severe weather events or on process studies-and to influence relevant programs of the WMO, WCRP, GCOS, and the space agencies.

  17. Fiber-Based Laser Transmitter at 1.57 Micrometers for Remote Sensing of Atmospheric Carbon Dioxide from Satellites

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Abshire, James B.; Stephen, Mark A.; Chen, Jeffrey R.; Wu, Stewart; Gonzalez, Brayler; Han, Lawrence; Numata, Kenji; Allan, Graham R.; Hasselbrack, William; hide

    2015-01-01

    Over the past 20 years, NASA Goddard has successfully developed space-based lidar for remote sensing studies of the Earth and planets. The lidar in all missions to date have used diode pumped Nd:YAG laser transmitters. Recently we have been concentrating work on developing integrated path differential absorption (IPDA) lidar to measure greenhouse gases, with the goal of measurements from space. Due to the absorption spectrum of CO2 a fiber-based master oscillator power amplifier (MOPA) laser with a tunable seed source is an attractive laser choice. Fiber-based lasers offer a number of potential advantages for space, but since they are relatively new, challenges exist in developing them. In order to reduce risks for new missions using fiber-based lasers, we developed a 30- month plan to mature the technology of a candidate laser transmitter for space-based CO2 measurements to TRL-6. This work is also intended to reduce development time and costs and increase confidence in future mission success.

  18. Need for expanded environmental measurement capabilities in geosynchronous Earth orbit

    NASA Technical Reports Server (NTRS)

    Mercanti, Enrico P.

    1991-01-01

    The proliferation of environmental satellites in low altitude earth orbit (LEO) has demonstrated the usefulness of earth remote sensing from space. As use of the technology grows, the limitations of LEO missions become more apparent. Many inadequacies can be met by remote sensing from geosynchronous earth orbits (GEO) that can provide high temporal resolution, consistent viewing of specific earth targets, long sensing dwell times with varying sun angles, stereoscopic coverage, and correlative measurements with ground and LEO observations. An environmental platform in GEO is being studied by NASA. Small research satellite missions in GEO were studied (1990) at GSFC. Some recent independent assessments of NASA Earth Science Programs recommend accelerating the earlier deployment of smaller missions.

  19. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  20. Analysis of 2015 Winter In-Flight Icing Case Studies with Ground-Based Remote Sensing Systems Compared to In-Situ SLW Sondes

    NASA Technical Reports Server (NTRS)

    Serke, David J.; King, Michael Christopher; Hansen, Reid; Reehorst, Andrew L.

    2016-01-01

    National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage utilizes a vertical pointing cloud radar, a multi-frequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport. To date, statistical comparisons of the vertical profiling technology have been made to Pilot Reports and Icing Forecast Products. With the extension into relatively large area coverage and the output of microphysical properties in addition to icing severity, the use of these comparators is not appropriate and a more rigorous assessment is required. NASA conducted a field campaign during the early months of 2015 to develop a database to enable the assessment of the new terminal area icing remote sensing system and further refinement of terminal area icing weather information technologies in general. In addition to the ground-based remote sensors listed earlier, in-situ icing environment measurements by weather balloons were performed to produce a comprehensive comparison database. Balloon data gathered consisted of temperature, humidity, pressure, super-cooled liquid water content, and 3-D position with time. Comparison data plots of weather balloon and remote measurements, weather balloon flight paths, bulk comparisons of integrated liquid water content and icing cloud extent agreement, and terminal-area hazard displays are presented. Discussions of agreement quality and paths for future development are also included.

  1. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    PubMed Central

    Huemmrich, K. Fred; Ensminger, Ingo; Garrity, Steven; Noormets, Asko; Peñuelas, Josep

    2016-01-01

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA’s Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology. PMID:27803333

  2. Japan's efforts to promote global health using satellite remote sensing data from the Japan Aerospace Exploration Agency for prediction of infectious diseases and air quality.

    PubMed

    Igarashi, Tamotsu; Kuze, Akihiko; Sobue, Shinichi; Yamamoto, Aya; Yamamoto, Kazuhide; Oyoshi, Kei; Imaoka, Keiji; Fukuda, Toru

    2014-12-01

    In this paper we review the status of new applications research of the Japanese Aerospace Exploration Agency (JAXA) for global health promotion using information derived from Earth observation data by satellites in cooperation with inter-disciplinary collaborators. Current research effort at JAXA to promote global public health is focused primarily on the use of remote sensing to address two themes: (i) prediction models for malaria and cholera in Kenya, Africa; and (ii) air quality assessment of small, particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3). Respiratory and cardivascular diseases constitute cross-boundary public health risk issues on a global scale. The authors report here on results of current of a collaborative research to call attention to the need to take preventive measures against threats to public health using newly arising remote sensing information from space.

  3. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.

    PubMed

    Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep

    2016-11-15

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

  4. An Uncertainty Quantification Framework for Remote Sensing Retrievals

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Hobbs, J.

    2017-12-01

    Remote sensing data sets produced by NASA and other space agencies are the result of complex algorithms that infer geophysical state from observed radiances using retrieval algorithms. The processing must keep up with the downlinked data flow, and this necessitates computational compromises that affect the accuracies of retrieved estimates. The algorithms are also limited by imperfect knowledge of physics and of ancillary inputs that are required. All of this contributes to uncertainties that are generally not rigorously quantified by stepping outside the assumptions that underlie the retrieval methodology. In this talk we discuss a practical framework for uncertainty quantification that can be applied to a variety of remote sensing retrieval algorithms. Ours is a statistical approach that uses Monte Carlo simulation to approximate the sampling distribution of the retrieved estimates. We will discuss the strengths and weaknesses of this approach, and provide a case-study example from the Orbiting Carbon Observatory 2 mission.

  5. Viewing marine bacteria, their activity and response to environmental drivers from orbit: satellite remote sensing of bacteria.

    PubMed

    Grimes, D Jay; Ford, Tim E; Colwell, Rita R; Baker-Austin, Craig; Martinez-Urtaza, Jaime; Subramaniam, Ajit; Capone, Douglas G

    2014-04-01

    Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions.

  6. Dimension Reduction of Hyperspectral Data on Beowulf Clusters

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek

    2000-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operation. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold a great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, which is used widely in remote sensing, is the Principal Components Analysis (PCA). In light of the growing number of spectral channels of modern instruments, the paper reports on the development of a parallel PCA and its implementation on two Beowulf cluster configurations, on with fast Ethernet switch and the other is with a Myrinet interconnection.

  7. The acquisition, storage, and dissemination of LANDSAT and other LACIE support data

    NASA Technical Reports Server (NTRS)

    Abbotts, L. F.; Nelson, R. M. (Principal Investigator)

    1979-01-01

    Activities performed at the LACIE physical data library are described. These include the researching, acquisition, indexing, maintenance, distribution, tracking, and control of LACIE operational data and documents. Much of the data available can be incorporated into an Earth resources data base. Elements of the data collection that can support future remote sensing programs include: (1) the LANDSAT full-frame image files; (2) the microfilm file of aerial and space photographic and multispectral maps and charts that encompasses a large portion of the Earth's surface; (3) the map/chart collection that includes various scale maps and charts for a good portion of the U.S. and the LACIE area in foreign countries; (4) computer-compatible tapes of good quality LANDSAT scenes; (5) basic remote sensing data, project data, reference material, and associated publications; (6) visual aids to support presentation on remote sensing projects; and (7) research acquisition and handling procedures for managing data.

  8. CYCLOPE remote sensing: a multipurpose optronic payload and the associated subsystem

    NASA Astrophysics Data System (ADS)

    Hamon, Christian H.

    1996-10-01

    The SAGEM Group has been involved for more than 30 years in the field of remote sensing, especially via line-scanning sensors. Today, the SAGEM Group develops and manufactures optronic sensors with spectral bandwidths ranging from ultraviolet up to long-wave infrared (LWIR). Their name is CYCLOPE. Twenty five years ago, a four-channel infrared linescanner was delivered to the French Space Agency, CNES, for remote sensing evaluation and future specification of related spaceborne system. At the same time, a version was delivered to the French Administration for maritime oil pollution monitoring. This equipment is still in use and second-generation equipment was purchased in 1995 by the French Customs. The payload is described as well as the feasibility of such payload for spaceborne applications. Design-driving parameters and technologies are discussed. Emerging technologies make it possible now to propose such systems.

  9. Other remote sensing systems: Retrospect and outlook

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The history of remote sensing is reviewed and the scope and versatility of the several remote sensing systems already in orbit are discussed, especially those with sensors operating in other EM spectral modes. The multisensor approach is examined by interrelating LANDSAT observations with data from other satellite systems. The basic principles and practices underlying the use of thermal infrared and radar sensors are explored and the types of observations and interpretations emanating from the Nimbus, Heat Capacity Mapping Mission, and SEASAT programs are examined. Approved or proposed Earth resources oriented missions for the 1980's previewed include LANDSAT D, Stereosat, Gravsat, the French satellite SPOT-1, and multimission modular spacecraft launched from space shuttle. The pushbroom imager, the linear array pushbroom radiometer, the multispectral linear array, and the operational LANDSAT observing system, to be designed the LANDSAT-E series are also envisioned for this decade.

  10. Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach; Innovative Approaches to Analysis of Lidar Data for the National Map; Changes in Imperviousness near Military Installations; Geopositional Accuracy Evaluations of QuickBird and OrbView-3: Civil and Commercial Applications Project (CCAP); Geometric Accuracy Assessment: OrbView ORTHO Products; QuickBird Radiometric Calibration Update; OrbView-3 Radiometric Calibration; QuickBird Radiometric Characterization; NASA Radiometric Characterization; Establishing and Verifying the Traceability of Remote-Sensing Measurements to International Standards; QuickBird Applications; Airport Mapping and Perpetual Monitoring Using IKONOS; OrbView-3 Relative Accuracy Results and Impacts on Exploitation and Accuracy Improvement; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Applying High-Resolution Satellite Imagery and Remotely Sensed Data to Local Government Applications: Sioux Falls, South Dakota; Automatic Co-Registration of QuickBird Data for Change Detection Applications; Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources; Automated, Near-Real Time Cloud and Cloud Shadow Detection in High Resolution VNIR Imagery; Science Applications of High Resolution Imagery at the USGS EROS Data Center; Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research; Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems; Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach; Using IKONOS Imagery to Assess Impervious Surface Area, Riparian Buffers and Stream Health in the Mid-Atlantic Region; Commercial Remote Sensing Space Policy Civil Implementation Update; USGS Commercial Remote Sensing Data Contracts (CRSDC); and Commercial Remote Sensing Space Policy (CRSSP): Civil Near-Term Requirements Collection Update.

  11. An integrated use of topography with RSI in gully mapping, Shandong Peninsula, China.

    PubMed

    He, Fuhong; Wang, Tao; Gu, Lijuan; Li, Tao; Jiang, Weiguo; Shao, Hongbo

    2014-01-01

    Taking the Quickbird optical satellite imagery of the small watershed of Beiyanzigou valley of Qixia city, Shandong province, as the study data, we proposed a new method by using a fused image of topography with remote sensing imagery (RSI) to achieve a high precision interpretation of gully edge lines. The technique first transformed remote sensing imagery into HSV color space from RGB color space. Then the slope threshold values of gully edge line and gully thalweg were gained through field survey and the slope data were segmented using thresholding, respectively. Based on the fused image in combination with gully thalweg thresholding vectors, the gully thalweg thresholding vectors were amended. Lastly, the gully edge line might be interpreted based on the amended gully thalweg vectors, fused image, gully edge line thresholding vectors, and slope data. A testing region was selected in the study area to assess the accuracy. Then accuracy assessment of the gully information interpreted by both interpreting remote sensing imagery only and the fused image was performed using the deviation, kappa coefficient, and overall accuracy of error matrix. Compared with interpreting remote sensing imagery only, the overall accuracy and kappa coefficient are increased by 24.080% and 264.364%, respectively. The average deviations of gully head and gully edge line are reduced by 60.448% and 67.406%, respectively. The test results show the thematic and the positional accuracy of gully interpreted by new method are significantly higher. Finally, the error sources for interpretation accuracy by the two methods were analyzed.

  12. An Integrated Use of Topography with RSI in Gully Mapping, Shandong Peninsula, China

    PubMed Central

    He, Fuhong; Wang, Tao; Gu, Lijuan; Li, Tao; Jiang, Weiguo; Shao, Hongbo

    2014-01-01

    Taking the Quickbird optical satellite imagery of the small watershed of Beiyanzigou valley of Qixia city, Shandong province, as the study data, we proposed a new method by using a fused image of topography with remote sensing imagery (RSI) to achieve a high precision interpretation of gully edge lines. The technique first transformed remote sensing imagery into HSV color space from RGB color space. Then the slope threshold values of gully edge line and gully thalweg were gained through field survey and the slope data were segmented using thresholding, respectively. Based on the fused image in combination with gully thalweg thresholding vectors, the gully thalweg thresholding vectors were amended. Lastly, the gully edge line might be interpreted based on the amended gully thalweg vectors, fused image, gully edge line thresholding vectors, and slope data. A testing region was selected in the study area to assess the accuracy. Then accuracy assessment of the gully information interpreted by both interpreting remote sensing imagery only and the fused image was performed using the deviation, kappa coefficient, and overall accuracy of error matrix. Compared with interpreting remote sensing imagery only, the overall accuracy and kappa coefficient are increased by 24.080% and 264.364%, respectively. The average deviations of gully head and gully edge line are reduced by 60.448% and 67.406%, respectively. The test results show the thematic and the positional accuracy of gully interpreted by new method are significantly higher. Finally, the error sources for interpretation accuracy by the two methods were analyzed. PMID:25302333

  13. Unmanned Aerial Mass Spectrometer Systems for In-Situ Volcanic Plume Analysis

    NASA Astrophysics Data System (ADS)

    Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C. Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin

    2015-02-01

    Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.

  14. Developing spectral, structural, and phenological diversity proxies for monitoring biodiversity change across space and time using ESA's Sentinel satellites

    NASA Astrophysics Data System (ADS)

    Ma, X.; Mahecha, M. D.; Migliavacca, M.; Luo, Y.; Urban, M.; Bohn, F. J.; Huth, A.; Reichstein, M.

    2017-12-01

    A key challenge for monitoring biodiversity change is the lack of consistent measures of biodiversity across space and time. This challenge may be addressed by exploring the potentials provided by novel remote sensing observations. By continuously observing broad-scale patterns of vegetation and land surface parameters, remote sensing can complement the restricted coverage afforded by field measurements. Here we develop methods to infer spatial patterns of biodiversity at ecosystem level from ESA's next-generation Sentinel sensors (Sentinel-1: C-band radar & Sentinel-2: multispectral). Both satellites offer very high spatial (10 m) and temporal resolutions (5 days) measurements with global coverage. We propose and test several ecosystem biodiversity proxies, including landscape spectral diversity, phenological diversity, and canopy structural diversity. These diversity proxies are highly related to some key aspects of essential biodiversity variables (EBVs) as defined by GEO-BON, such as habitat structure, community composition, ecosystem function and structure. We verify spaceborne retrievals of these biodiversity proxies with in situ measurements from drone (spectral diversity), phenocam (phenological diversity), and airborne LiDAR (canopy structural diversity) over multiple flux tower sites within the Mediterranean region. We further compare our remote sensing retrievals of biodiversity proxies against several biodiversity indices as derived from field measurements (incl. ⍺-/β- diversity and Shannon-index) to explore the limitations and potentials of extending the RS proxies to a greater spatial extent. We expect the new concept as to maximize the potential of remote sensing information might help to monitor key aspects of EBVs on a global scale.

  15. Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.

    PubMed

    Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin

    2015-02-01

    Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.

  16. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  17. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space Station. 13. Space lidar II: Using coherent Doppler lidar to estimate river discharge. 14. Poster session: Lidar technology, optics for lidar. Laser for lidar. Middle atmosphere observations. Tropospheric observations (aerosols, clouds). Boundary layer, urban pollution. Differential absorption lidar. Doppler lidar. and Space lidar.

  18. Triple-Pulse Integrated Path Differential Absorption Lidar for Carbon Dioxide Measurement - Novel Lidar Technologies and Techniques with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  19. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  20. Review of FEWS NET Biophysical Monitoring Requirements

    NASA Technical Reports Server (NTRS)

    Ross, K. W.; Brown, Molly E.; Verdin, J.; Underwood, L. W.

    2009-01-01

    The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.

  1. Utilizing 1-meter Landcover Data to Assess Associations between Green Space and Stress

    EPA Science Inventory

    Purpose: When using remotely-sensed data to study health, researchers must identify an appropriate spatial resolution to capture potential exposures. Investigations into urban green space are often limited by the unavailability of fine-scale landcover data. We analyzed 1-meter gr...

  2. Strategies and Policies for Space - Indian Perspective

    NASA Astrophysics Data System (ADS)

    Kasturirangan, K.; Sridhara Murthy, K. R.; Sundararmiah, V.; Rao, Mukund

    2002-01-01

    Indian Space Program, which was established as government effort about three decades ago has become a major force in providing vital services for social and economic sectors in India in the fields of satellite telecommunications, television broadcasting, meteorological services and remote sensing of natural resources. Capabilities have been developed over the years, following a step-by-step process to develop and operate space infrastructure in India, including state-of-the-art satellites and satellite launch vehicles. In carrying out these developments, Indian Space Research Organisation, which is the national agency responsible for space activities under Government of India, develop policies and programs, which promoted industrial participation in variety of space activities including manufacture of space hardware, conduct of value added activities and provision of services involving space systems. Policy initiatives have also been taken recently to promote private sector participation in the establishment of Indian Satellite Systems for telecommunications. Strategic alliances have also been developed with international space industries for marketing of services such as remote sensing data. The paper traces evaluation of the policies towards development of industrial participation in space and future transition into commercial space enterprise. Policy issues concerning the national requirements vis-à-vis the international environment will also be discussed to analyze the strategies for international cooperation.

  3. Technology study of quantum remote sensing imaging

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang

    2016-02-01

    According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.

  4. Empirical validation and proof of added value of MUSICA's tropospheric δD remote sensing products

    NASA Astrophysics Data System (ADS)

    Schneider, M.; González, Y.; Dyroff, C.; Christner, E.; Wiegele, A.; Barthlott, S.; García, O. E.; Sepúlveda, E.; Hase, F.; Andrey, J.; Blumenstock, T.; Guirado, C.; Ramos, R.; Rodríguez, S.

    2014-07-01

    The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) integrates tropospheric water vapour isototopologue remote sensing and in-situ observations. This paper presents a first empirical validation of MUSICA's H2O and δD remote sensing products (generated from ground-based FTIR, Fourier Transform InfraRed, spectrometer and space-based IASI, Infrared Atmospheric Sounding Interferometer, observation). As reference we use well calibrated in-situ measurements made aboard an aircraft (between 200 and 6800 m a.s.l.) by the dedicated ISOWAT instrument and on the island of Tenerife at two different altitudes (at Izaña, 2370 m a.s.l., and at Teide, 3550 m a.s.l.) by two commercial Picarro L2120-i water isotopologue analysers. The comparison to the ISOWAT profile measurements shows that the remote sensors can well capture the variations in the water vapour isotopologues and the scatter with respect to the in-situ references suggests a δD random uncertainty for the FTIR product of much better than 45‰ in the lower troposphere and of about 15‰ for the middle troposphere. For the middle tropospheric IASI δD product the study suggests a respective uncertainty of about 15‰. In addition, we find indications for a positive δD bias in the remote sensing products. The δD data are scientifically interesting only if they add information to the H2O observations. We are able to qualitatively demonstrate the added value of the MUSICA δD remote sensing data by comparing δD-vs.-H2O curves. First, we show that the added value of δD as seen in the Picarro data is similarly seen in FTIR data measured in coincidence. Second, we document that the δD-vs.-H2O curves obtained from the different in-situ and remote sensing data sets (ISOWAT, Picarro at Izaña and Teide, FTIR, and IASI) consistently identify two different moisture transport pathways to the subtropical north eastern Atlantic free troposphere.

  5. Feasibility Study of Space-based CO2 Remote Sensing Using Pulsed 2-micron Integrated Path Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Refaat, T. F.; Ismail, S.; Davis, K. J.; Kawa, S. R.; Menzies, R. T.; Petros, M.; Yu, J.

    2016-12-01

    Carbon dioxide (CO2) is recognized as the most important anthropogenic greenhouse gas. While CO2 concentration is rapidly increasing, understanding of the global carbon cycle remains a primary scientific challenge. This is mainly due to the lack of full characterization of CO2 sources and sinks. Quantifying the current global distribution of CO2 sources and sinks with sufficient accuracy and spatial resolution is a critical requirement for improving models of carbon-climate interactions and for attributing them to specific biogeochemical processes. This requires sustained atmospheric CO2 observations with high precision, and low bias for high accuracy, and spatial and temporal dense representation that cannot be fully realized with current CO2 observing systems, including existing satellite CO2 passive remote sensors. Progress in 2-micron instrument technologies, airborne testing, and system performance simulations indicates that the necessary lower tropospheric weighted CO2 measurements can be achieved from space using new high pulse energy 2-micron direct detection active remote sensing. Advantages of the CO2 active remote sensing include low bias measurements that are independent of sun light or Earth's radiation and day/night coverage over all latitudes and seasons. In addition, the direct detection system provides precise ranging with simultaneous measurement of aerosol and cloud distributions. The 2-micron active remote sensing offers strong CO2 absorption lines with optimum low tropospheric and near surface weighting. A feasibility study, including system optimization and sensitivity analysis of a space-based 2-micron pulsed IPDA lidar for CO2 measurement, is presented. This is based on the successful demonstration of the CO2 double-pulse IPDA lidar and the technology maturation of the triple-pulse IPDA lidar, currently under development at NASA Langley Research Center. Preliminary simulations indicate CO2 random measurement errors of 0.71, 0.35 and 0.13 ppm for snow, ocean surface, and desert surface reflectivity, respectively. These simulations assume a 400 km altitude polar orbit, 100 mJ pulse energy, a 1.5 m telescope, a 6.2 MHz detection bandwidth, 0.05 aerosol optical depth and 7 second data average.

  6. Modeling, simulation, and analysis of optical remote sensing systems

    NASA Technical Reports Server (NTRS)

    Kerekes, John Paul; Landgrebe, David A.

    1989-01-01

    Remote Sensing of the Earth's resources from space-based sensors has evolved in the past 20 years from a scientific experiment to a commonly used technological tool. The scientific applications and engineering aspects of remote sensing systems have been studied extensively. However, most of these studies have been aimed at understanding individual aspects of the remote sensing process while relatively few have studied their interrelations. A motivation for studying these interrelationships has arisen with the advent of highly sophisticated configurable sensors as part of the Earth Observing System (EOS) proposed by NASA for the 1990's. Two approaches to investigating remote sensing systems are developed. In one approach, detailed models of the scene, the sensor, and the processing aspects of the system are implemented in a discrete simulation. This approach is useful in creating simulated images with desired characteristics for use in sensor or processing algorithm development. A less complete, but computationally simpler method based on a parametric model of the system is also developed. In this analytical model the various informational classes are parameterized by their spectral mean vector and covariance matrix. These class statistics are modified by models for the atmosphere, the sensor, and processing algorithms and an estimate made of the resulting classification accuracy among the informational classes. Application of these models is made to the study of the proposed High Resolution Imaging Spectrometer (HRIS). The interrelationships among observational conditions, sensor effects, and processing choices are investigated with several interesting results.

  7. A new hyperspectral image compression paradigm based on fusion

    NASA Astrophysics Data System (ADS)

    Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto

    2016-10-01

    The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.

  8. An Adaptive Web-Based Learning Environment for the Application of Remote Sensing in Schools

    NASA Astrophysics Data System (ADS)

    Wolf, N.; Fuchsgruber, V.; Riembauer, G.; Siegmund, A.

    2016-06-01

    Satellite images have great educational potential for teaching on environmental issues and can promote the motivation of young people to enter careers in natural science and technology. Due to the importance and ubiquity of remote sensing in science, industry and the public, the use of satellite imagery has been included into many school curricular in Germany. However, its implementation into school practice is still hesitant, mainly due to lack of teachers' know-how and education materials that align with the curricula. In the project "Space4Geography" a web-based learning platform is developed with the aim to facilitate the application of satellite imagery in secondary school teaching and to foster effective student learning experiences in geography and other related subjects in an interdisciplinary way. The platform features ten learning modules demonstrating the exemplary application of original high spatial resolution remote sensing data (RapidEye and TerraSAR-X) to examine current environmental issues such as droughts, deforestation and urban sprawl. In this way, students will be introduced into the versatile applications of spaceborne earth observation and geospatial technologies. The integrated web-based remote sensing software "BLIF" equips the students with a toolset to explore, process and analyze the satellite images, thereby fostering the competence of students to work on geographical and environmental questions without requiring prior knowledge of remote sensing. This contribution presents the educational concept of the learning environment and its realization by the example of the learning module "Deforestation of the rainforest in Brasil".

  9. Enhancing STEM Education at Minority and Underrepresented Institutions through the Center for Applied Atmospheric Research and Education (CAARE)

    NASA Astrophysics Data System (ADS)

    Estes, M. G., Jr.; Griffin, R.; Al-Hamdan, M. Z.; Estes, S. M.; Crosson, W. L.; Chiao, S.

    2016-12-01

    Funding from The NASA MUREP Institutional Research Opportunity (MIRO) Program established the Center for Applied Atmospheric Research and Education (CAARE) to promote STEM literacy and enhance the capability to support NASA's Earth Science Mission Directorate. Through CAARE opportunities for STEM students at minority and underserved institutions were provided to enhance their undergraduate education with summer internship experiences at NASA Centers. The University of Alabama in Huntsville and the Universities Space Research Association scientists developed internship opportunities for students in applied atmospheric research at the National Space Science and Technology Center near the NASA Marshall Space Flight Center. Project opportunities focused on the use of NASA remotely sensed data, geospatial technologies and statistical analyses to evaluate problems related to urban heat islands and air quality. Students received training in the fundamentals of remote sensing and geospatial analysis to establish a foundation from which to pursue research projects. An approach was designed for the students to work initially in groups and then focus on individual projects in the latter part of the ten week internship. Working in groups benefitted the transition of the students from their respective academic institutions to the NASA work environment and provided the students with useful professional experience in a collegial environment. As knowledge was gained through the group project and areas of interest identified the students were able to explore further research questions of interest, evaluate research applications and determine the benefits of using NASA remotely sensed data. Students found that urban heat islands (UHI) did exist in both San Jose, CA and Huntsville, AL and methods to evaluate the magnitude of the UHI seasonally, diurnally and spatially were explored. Regression models of PM 2.5 based on remotely-sensed aerosol optical depth and meteorological data were also developed for selected urban areas and public health implications evaluated.

  10. Space-Based CO2 Active Optical Remote Sensing using 2-μm Triple-Pulse IPDA Lidar

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta

    2017-04-01

    Sustained high-quality column CO2 measurements from space are required to improve estimates of regional and global scale sources and sinks to attribute them to specific biogeochemical processes for improving models of carbon-climate interactions and to reduce uncertainties in projecting future change. Several studies show that space-borne CO2 measurements offer many advantages particularly over high altitudes, tropics and southern oceans. Current satellite-based sensing provides rapid CO2 monitoring with global-scale coverage and high spatial resolution. However, these sensors are based on passive remote sensing, which involves limitations such as full seasonal and high latitude coverage, poor sensitivity to the lower atmosphere, retrieval complexities and radiation path length uncertainties. CO2 active optical remote sensing is an alternative technique that has the potential to overcome these limitations. The need for space-based CO2 active optical remote sensing using the Integrated Path Differential Absorption (IPDA) lidar has been advocated by the Advanced Space Carbon and Climate Observation of Planet Earth (A-Scope) and Active Sensing of CO2 Emission over Nights, Days, and Seasons (ASCENDS) studies in Europe and the USA. Space-based IPDA systems can provide sustained, high precision and low-bias column CO2 in presence of thin clouds and aerosols while covering critical regions such as high latitude ecosystems, tropical ecosystems, southern ocean, managed ecosystems, urban and industrial systems and coastal systems. At NASA Langley Research Center, technology developments are in progress to provide high pulse energy 2-μm IPDA that enables optimum, lower troposphere weighted column CO2 measurements from space. This system provides simultaneous ranging; information on aerosol and cloud distributions; measurements over region of broken clouds; and reduces influences of surface complexities. Through the continual support from NASA Earth Science Technology Office, current efforts are focused on developing an aircraft-based 2-μm triple-pulse IPDA lidar for independent and simultaneous monitoring of CO2 and water vapor (H2O). Triple-pulse IPDA design, development and integration is based on the knowledge gathered from the successful demonstration of the airborne CO2 2-μm double-pulse IPDA lidar. IPDA transmitter enhancements include generating high-energy (80 mJ) and high repetition rate (50Hz) three successive pulses using a single pump pulse. IPDA receiver enhancement include an advanced, low noise (1 fW/Hz1/2) MCT e-APD detection system for improved measurement sensitivity. In place of H2O sensing, the triple-pulse IPDA can be tuned to measure CO2 with two different weighting functions using two on-lines and a common off-line. Modeling of a space-based high-energy 2-µm triple-pulse IPDA lidar was conducted to demonstrate CO2 measurement capability and to evaluate random and systematic errors. Projected performance shows <0.12% random error and <0.07% residual systematic error. These translate to near-optimum 0.5 ppm precision and 0.3 ppm bias in low-tropospheric column CO2 mixing ratio measurements from space for 10 second signal averaging over Railroad Valley reference surface using US Standard atmospheric model. In addition, measurements can be optimized by tuning on-lines based upon ground target scenarios, environment and science objectives. With 10 MHz detection bandwidth, surface ranging with an uncertainty of <3 m can be achieved as demonstrated from earlier airborne flights.

  11. Performance of the GLAS Laser Transmitter in Space

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Afzal, Robert S.; Dallas, Joseph L.; Melak, Anthony; Mamakos, William

    2006-01-01

    The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results and in-flight performance for this space-based remote sensing instrument is summarized and presented.

  12. Remote sensing of natural resources

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Quarterly literature review compiles citations and abstracts from eight major abstracting and indexing services. Each issue contains author/keyword index. Includes data obtained or techniques used from space, aircraft, or ground-based stations.

  13. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  14. Joint document concerning geological studies from 1971 - 1975

    NASA Technical Reports Server (NTRS)

    1977-01-01

    In 1971, a joint Soviet-Americam Working Group on Remote Sensing of the Natural Environment was established. It was organized into a number of discipline panels, one of which was on geology. Membership on this panel came from the Geological Survey of the United States and from the Institute of Geology of the U.S.S.R. Academy of Sciences and Ministry Geology of the U.S.S.R.. During the period 1971-1975, this panel conducted coordinated research in the use of space remote sensing data in the field of geology. A summary of that coordinated research effort is presented.

  15. A View from Above Without Leaving the Ground

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In order to deliver accurate geospatial data and imagery to the remote sensing community, NASA is constantly developing new image-processing algorithms while refining existing ones for technical improvement. For 8 years, the NASA Regional Applications Center at Florida International University has served as a test bed for implementing and validating many of these algorithms, helping the Space Program to fulfill its strategic and educational goals in the area of remote sensing. The algorithms in return have helped the NASA Regional Applications Center develop comprehensive semantic database systems for data management, as well as new tools for disseminating geospatial information via the Internet.

  16. Opportunities in the commercial uses of remote sensing and GIS technologies - An overview of NASA's Visiting Investigator Program at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Carr, Hugh V., Jr.; Schmidt, Nicholas; Hickerson, Logan

    1993-01-01

    The Visiting Investigator Program (VIP) developed at NASA-Stennis' Science and Technology Laboratory (STL) allows U.S. industry to use the specialized resources of STL in the fields of remote sensing and GIS, with a view to the development of new commercial processes and improved services. Attention is given to the novel agreement mechanisms developed by NASA to implement VIP. These agreements encompass a memorandum of understanding, a technical exchange agreement, a sponsored-transfer agreement, a proprietary work agreement, and a joint endeavor agreement.

  17. Remote sensing in agriculture. [using Earth Resources Technology Satellite photography

    NASA Technical Reports Server (NTRS)

    Downs, S. W., Jr.

    1974-01-01

    Some examples are presented of the use of remote sensing in cultivated crops, forestry, and range management. Areas of concern include: the determination of crop areas and types, prediction of yield, and detection of disease; the determination of forest areas and types, timber volume estimation, detection of insect and disease attack, and forest fires; and the determination of range conditions and inventory, and livestock inventory. Articles in the literature are summarized and specific examples of work being performed at the Marshall Space Flight Center are given. Primarily, aerial photographs and photo-like ERTS images are considered.

  18. Dynamics and Control of Tethered Satellite Formations for the Purpose of Space-Based Remote Sensing

    DTIC Science & Technology

    2006-08-01

    remote sensing mission. Energy dissipation is found to have an adverse effect on foundational rigid body (Likins-Pringle) equilibria. It is shown that a continuously earth-facing equilibrium condition for a fixed-length tethered system does not exist since the spin rate required for the proper precession would not be high enough to maintain tether tension. The range of required spin rates for steady-spin motion is numerically defined here, but none of these conditions can meet the continuously earth-facing criteria. Of particular note is the discovery that applying certain

  19. A high throughput geocomputing system for remote sensing quantitative retrieval and a case study

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting

    2011-12-01

    The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.

  20. Effects of Cloud Particles on Remote Sensing from Space in the 10-Micrometer Infrared Region.

    DTIC Science & Technology

    1977-01-01

    ayers , that is , a plane-parallel atmosphere wi th infinite hori zontal extent . As a matter of fact, this is how the planeta ry atmosphere is being...Remote Probin g of the Atmosphe re, 1973. 43 . Hansen , J. E. and L. D. Travis , 1974 , “Light Scattering in Planeta ry • Atmospheres ,” Goddard

  1. Evaluating multiple causes of persistent low microwave backscatter from Amazon forests after the 2005 drought

    Treesearch

    Steve Frolking; Stephen Hagen; Bobby Braswell; Tom Milliman; Christina Herrick; Seth Peterson; Dar Roberts; Michael Keller; Michael Palace; Krishna Prasad Vadrevu

    2017-01-01

    Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazon’s vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave...

  2. Towards Combining Active and Passive Greenhouse Gas Remote Sensing from Space: Progress and Plans at the German Aerospace Center

    NASA Astrophysics Data System (ADS)

    Rapp, M.; Ehret, G.; Fix, A.; Wirth, M.; Amediek, A.; Kiemle, C.; Quatrevalet, M.; Butz, A.; Roiger, A.; Joeckel, P.

    2017-12-01

    For meeting the goals of the Paris agreement it is highly desirable to obtain objective global information on anthropogenic greenhouse gas emission rates. A promising approach for a space based observation system is the combination of active and passive remote sensing from satellites in Low Earth Orbit (LEO). While LIDAR techniques have the potential to yield low bias observations which are independent of solar illumination and hence also work during night and at polar winter latitudes, spectroscopic observations of scattered sunlight are suitable for imaging atmospheric concentrations at high spatial resolution. This presentation reviews progress and plans of work conducted at the German Aerospace Center (DLR). Regarding active remote sensing, DLR has developed the airborne Integrated Path Differential Absorption (IPDA)-Lidar CHARM-F (CO2 and CH4 Remote Monitoring—Flugzeug) for the quantification of carbon dioxide and methane column mixing ratios. CHARM-F has been deployed in an initial airborne field campaign in spring 2015 and results of strong anthropogenic sources detected during these flights will be presented. In addition, DLR is in the process of preparing an international airborne campaign (CoMet - Carbon Dioxide and Methane Mission for HALO) for April 2018 which will be supported by various in-situ, ground based, and modelling activities. These airborne field campaigns are important steps towards the German-French satellite mission MERLIN which also utilizes an IPDA-LIDAR. Also, DLR has started to further investigate concepts for a future space borne IPDA-Lidar for the quantification of strong anthropogenic CO2 point sources. Jointly with the latter, DLR is currently further studying the concept of a passive spectrometer for the observation of CO2 point emissions.

  3. Research and technology of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Descriptions of the research and technology activities at the Langley Research Center are given. Topics include laser development, aircraft design, aircraft engines, aerodynamics, remote sensing, space transportation systems, and composite materials.

  4. Observations of Heliospheric Faraday Rotation (FR) and Interplanetary Scintillation (IPS) with the LOw Frequency ARray (LOFAR): Steps Towards Improving Space-Weather Forecasting Capabilities

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Fallows, R. A.; Sobey, C.; Eftekhari, T.; Jensen, E. A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Odstrcil, D.; Tokumaru, M.

    2015-12-01

    The phenomenon of space weather - analogous to terrestrial weather which describes the changing pressure, temperature, wind, and humidity conditions on Earth - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such changes on the Earth's magnetosphere, radiation belts, ionosphere, and thermosphere. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects which includes its forecasting. Understanding and forecasting space weather in the near-Earth environment is vitally important to protecting our modern-day reliance (militarily and commercially) on satellites, global-communication and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. Two ground-based radio-observing remote-sensing techniques that can aid our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). The LOw Frequency ARray (LOFAR) is a next-generation 'software' radio telescope centered in The Netherlands with international stations spread across central and northwest Europe. For several years, scientific observations of IPS on LOFAR have been undertaken on a campaign basis and the experiment is now well developed. More recently, LOFAR has been used to attempt scientific heliospheric FR observations aimed at remotely sensing the magnetic field of the plasma traversing the inner heliosphere. We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modeling and reconstruction techniques using other, additional data as input (such as IPS data from the Solar Terrestrial Environment Laboratory - STELab) to support and better-interpret the LOFAR results.

  5. Laser applications in meteorology and earth and atmospheric remote sensing; Proceedings of the Meeting, Los Angeles, CA, Jan. 16-18, 1989

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M. (Editor)

    1989-01-01

    Various papers on laser applications in meteorology and earth and atmospheric remote sensing are presented. The individual topics addressed include: solid state lasers for the mid-IR region, tunable chromium lasers, GaInAsSb/AlGaAsSb injection lasers for remote sensing applications, development and design of an airborne autonomous wavemeter for laser tuning, fabrication of lightweight Si/SiC lidar mirrors, low-cost double heterostructure and quantum-well laser array development, nonlinear optical processes for the mid-IR region, simulated space-based Doppler lidar performance in regions of backscatter inhomogeneities, design of CO2 recombination catalysts for closed-cycle CO2 lasers, density measurements with combined Raman-Rayleigh lidar, geodynamics applications of spaceborne laser ranging, use of aircraft laser ranging data for forest mensuration, remote active spectrometer, multiwavelngth and triple CO2 lidars for trace gas detection, analysis of laser diagnostics in plumes, laser atmospheric wind sounder, compact Doppler lidar system using commercial off-the-shelf components, and preliminary design for a laser atmospheric wind sounder.

  6. Scalability Issues for Remote Sensing Infrastructure: A Case Study.

    PubMed

    Liu, Yang; Picard, Sean; Williamson, Carey

    2017-04-29

    For the past decade, a team of University of Calgary researchers has operated a large "sensor Web" to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging). Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system's memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure.

  7. Human-in-the-loop evaluation of RMS Active Damping Augmentation

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.

    1993-01-01

    Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).

  8. Applications of Remote Sensing to Emergency Management.

    DTIC Science & Technology

    1980-02-15

    Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.

  9. Application of Remote-Sensing Observations for Detecting Patterns of Localization of PGM Mineralization of Western Bushveld

    NASA Astrophysics Data System (ADS)

    Milovsky, G. A.; Ishmukhametova, V. T.; Orlyankin, V. N.; Shemyakina, E. M.

    2017-12-01

    The differentiated Bushveld complex is studied by remote-space and gravimagnetic methods. The syncline of Western Bushveld is recognized in the southwestern part of the complex, which is characterized by a radial and ring structure of the higher order. The structures, which control the localization of Pt mineralization, are revealed and the possible use of the Landsat 7 ETM+ multizonal space survey is shown for recognizing the rocks of the Basal, Critical, Main, and Upper zones of the norite complex of Western Bushveld.

  10. Design of online monitoring and forecasting system for electrical equipment temperature of prefabricated substation based on WSN

    NASA Astrophysics Data System (ADS)

    Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo

    2016-10-01

    In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.

  11. Mirador: A Simple, Fast Search Interface for Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Strub, Richard; Seiler, Edward; Joshi, Talak; MacHarrie, Peter

    2008-01-01

    A major challenge for remote sensing science researchers is searching and acquiring relevant data files for their research projects based on content, space and time constraints. Several structured query (SQ) and hierarchical navigation (HN) search interfaces have been develop ed to satisfy this requirement, yet the dominant search engines in th e general domain are based on free-text search. The Goddard Earth Sci ences Data and Information Services Center has developed a free-text search interface named Mirador that supports space-time queries, inc luding a gazetteer and geophysical event gazetteer. In order to compe nsate for a slightly reduced search precision relative to SQ and HN t echniques, Mirador uses several search optimizations to return result s quickly. The quick response enables a more iterative search strateg y than is available with many SQ and HN techniques.

  12. An Analysis of Applications Development Systems for Remotely Sensed, Multispectral Data for the Earth Observations Division of the NASA Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Vanrooy, D. L.; Smith, R. M.; Lynn, M. S.

    1974-01-01

    An application development system (ADS) is examined for remotely sensed, multispectral data at the Earth Observations Division (EOD) at Johnson Space Center. Design goals are detailed, along with design objectives that an ideal system should contain. The design objectives were arranged according to the priorities of EOD's program objectives. Four systems available to EOD were then measured against the ideal ADS as defined by the design objectives and their associated priorities. This was accomplished by rating each of the systems on each of the design objectives. Utilizing the established priorities, it was determined how each system stood up as an ADS. Recommendations were made as to possible courses of action for EOD to pursue to obtain a more efficient ADS.

  13. From Pixels to Population Stress: Global Multispectral Remote Sensing for Vulnerable Communities

    NASA Astrophysics Data System (ADS)

    Prashad, L.; Kaplan, E.; Letouze, E.; Kirkpatrick, R.; Luengo-Oroz, M.; Christensen, P. R.

    2011-12-01

    The Arizona State University (ASU) School of Earth and Space Exploration's Mars Space Flight Facility (MSFF) and 100 Cities Project, in collaboration with the United Nations Global Pulse initiative are utilizing NASA multispectral satellite data to visualize and analyze socioeconomic characteristics and human activity in Uganda. The Global Pulse initiative is exploring how new kinds of real-time data and innovative technologies can be leveraged to detect early social impacts of slow-onset crisis and global shocks. Global Pulse is developing a framework for real-time monitoring, assembling an open-source toolkit for analyzing new kinds of data and establishing a global network of country-level "Pulse Labs" where governments, UN agencies, academia and the private sector learn together how to harness the new world of "big data" to protect the vulnerable with targeted and agile policy responses. The ASU MSFF and 100 Cities Project are coordinating with the Global Pulse team to utilize NASA remote sensing data in this effort. Human behavior and socioeconomic parameters have been successfully studied via proxy through remote sensing of the physical environment by measuring the growth of city boundaries and transportation networks, crop health, soil moisture, and slum development from visible and infrared imagery. The NASA/ NOAA image of Earth's "Lights at Night" is routinely used to estimate economic development and population density. There are many examples of the conventional uses of remote sensing in humanitarian-related projects including the Famine Early Warning System Network (FEWS NET) and the UN's operational satellite applications programme (UNOSAT), which provides remote sensing for humanitarian and disaster relief. Since the Global Pulse project is focusing on new, innovative uses of technology for early crisis detection, we are focusing on three non-conventional uses of satellite remote sensing to understand what role NASA multispectral satellites can play in monitoring underlying socioeconomic and human parameters. These are: 1) measuring and visualizing changes in agriculture and fertilizer use in Ugandan villages in order to assist policymakers in designing land use policies and evaluating the impact of fertilizer use on smallholder farmers in developing countries; 2) monitoring the size and composition of large scale rubbish dumps to determine correlation with changes in policy and economic growth; 3) measuring the size and shape of open air markets, or proxies related to the markets, to determine if changes can be detected that correspond to fluctuations in economic activity. The ASU MSFF open source geographical information systems (GIS) platform, J-Earth, will be used to provide easy access to and analytical tools for the data and imagery resulting from this project. J-Earth is a part of the Java Mission-planning and Analysis for Remote Sensing (JMARS) suite of software first developed for targeting NASA instruments on planetary missions.

  14. Applying ECOSTRESS Diurnal Cycle Land Surface Temperature and Evapotranspiration to Agricultural Soil and Water Management

    NASA Astrophysics Data System (ADS)

    Pestana, S. J.; Halverson, G. H.; Barker, M.; Cooley, S.

    2016-12-01

    Increased demand for agricultural products and limited water supplies in Guanacaste, Costa Rica have encouraged the improvement of water management practices to increase resource use efficiency. Remotely sensed evapotranspiration (ET) data can contribute by providing insights into variables like crop health and water loss, as well as better inform the use of various irrigation techniques. EARTH University currently collects data in the region that are limited to costly and time-intensive in situ observations and will greatly benefit from the expanded spatial and temporal resolution of remote sensing measurements from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). In this project, Moderate Resolution Imaging Spectroradiometer (MODIS) Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) data, with a resolution of 5 km per pixel, was used to demonstrate to our partners at EARTH University the application of remotely sensed ET measurements. An experimental design was developed to provide a method of applying future ECOSTRESS data, at the higher resolution of 70 m per pixel, to research in managing and implementing sustainable farm practices. Our investigation of the diurnal cycle of land surface temperature, net radiation, and evapotranspiration will advance the model science for ECOSTRESS, which will be launched in 2018 and installed on the International Space Station.

  15. IIth AMS Conference on Satellite Meteorology and Oceanography.

    NASA Astrophysics Data System (ADS)

    Velden, Christopher; Digirolamo, Larry; Glackin, Mary; Hawkins, Jeffrey; Jedlovec, Gary; Lee, Thomas; Petty, Grant; Plante, Robert; Reale, Anthony; Zapotocny, John

    2002-11-01

    The American Meteorological Society (AMS) held its 11th Conference on Satellite Meteorology and Oceanography at the Monona Terrace Convention Center in Madison, Wisconsin, during 15-18 October 2001. The purpose of the conference, typically held every 18 months, is to promote a forum for AMS membership, international scientists, and student members to present and discuss the latest advances in satellite remote sensing for meteorological and oceanographical applications. This year, surrounded by inspirational designs by famed architect Frank Lloyd Wright, the meeting focused on several broad topics related to remote sensing from space, including environmental applications of land and oceanic remote sensing, climatology and long-term satellite data studies, operational applications, radiances and retrievals, and new technology and methods. A vision of an increasing convergence of satellite systems emerged that included operational and research satellite programs and interdisciplinary user groups.The conference also hosted NASA's Electronic Theater, which was presented to groups of middle and high school students totaling over 5500. It was truly a successful public outreach event. The conference banquet was held on the final evening, where a short tribute to satellite pioneer Verner Suomi was given by Joanne Simpson. Suomi was responsible for establishing the Space Science and Engineering Center at the University of Wisconsin in Madison.

  16. John C. Stennis Space Center overview

    NASA Astrophysics Data System (ADS)

    1994-05-01

    An overview of research being conducted at the John C. Stennis Space Center is given. The Space Center is not only a NASA Space Flight Center, but also houses facilities for 22 other governmental agencies. The programs described are Stennis' High Heat Flux Facility, the Component Test Facility (used to test propulsion rockets and for the development of the National Aerospace Plane), oceanographic and remote sensing research, and contributions to the development of Space Station Freedom.

  17. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  18. A potential hyperspectral remote sensing imager for water quality measurements

    NASA Astrophysics Data System (ADS)

    Zur, Yoav; Braun, Ofer; Stavitsky, David; Blasberger, Avigdor

    2003-04-01

    Utilization of Pan Chromatic and Multi Spectral Remote Sensing Imagery is wide spreading and becoming an established business for commercial suppliers of such imagery like ISI and others. Some emerging technologies are being used to generate Hyper-Spectral imagery (HSI) by aircraft as well as other platforms. The commercialization of such technology for Remote Sensing from space is still questionable and depends upon several parameters including maturity, cost, market reception and many others. HSI can be used in a variety of applications in agriculture, urban mapping, geology and others. One outstanding potential usage of HSI is for water quality monitoring, a subject studied in this paper. Water quality monitoring is becoming a major area of interest in HSI due to the increase in water demand around the globe. The ability to monitor water quality in real time having both spatial and temporal resolution is one of the advantages of Remote Sensing. This ability is not limited only for measurements of oceans and inland water, but can be applied for drinking and irrigation water reservoirs as well. HSI in the UV-VNIR has the ability to measure a wide range of constituents that define water quality. Among the constituents that can be measured are the pigment concentration of various algae, chlorophyll a and c, carotenoids and phycocyanin, thus enabling to define the algal phyla. Other parameters that can be measured are TSS (Total Suspended Solids), turbidity, BOD (Biological Oxygen Demand), hydrocarbons, oxygen demand. The study specifies the properties of such a space borne device that results from the spectral signatures and the absorption bands of the constituents in question. Other parameters considered are the repetition of measurements, the spatial aspects of the sensor and the SNR of the sensor in question.

  19. UniScan technology for innovative laboratory at a university for acquisition data from space in real-time

    NASA Astrophysics Data System (ADS)

    Gershenzon, V.; Gershenzon, O.; Sergeeva, M.; Ippolitov, V.; Targulyan, O.

    2012-04-01

    Keywords: Remote Sensing, UniScan ground station, Education, Monitoring. Remote Sensing Centers allowing real-time imagery acquisition from Earth observing satellites within the structure of Universities provides proper environment for innovative education. It delivers the efficient training for scientific and academic and teaching personnel, secure the role of the young professionals in science, education and hi-tech, and maintain the continuity of generations in science and education. Article is based on experience for creation such centers in more than 20 higher education institutions in Russia, Kazakhstan, and Spain on the base of UniScan ground station by R&D Center ScanEx. These stations serve as the basis for Earth monitoring from space providing the training and advanced training to produce the specialists having the state-of-the-art knowledge in Earth Remote Sensing and GIS, as well as the land-use monitoring and geo-data service for the economic operators in such diverse areas as the nature resource management, agriculture, land property management, disasters monitoring, etc. Currently our proposal of UniScan for universities all over the world allows to receive low resolution free of charge MODIS data from Terra and Aqua satellites, VIIRS from the NPP mission, and also high resolution optical images from EROS A and radar images from Radarsat-1 satellites, including the telemetry for the first year of operation, within the footprint of up to 2,500 kilometers in radius. Creation remote sensing centers at universities will lead to a new quality level for education and scientific studies and will enable to make education system in such innovation institutions open to modern research work and economy.

  20. Strategic positioning of the ERATOSTHENES Research Centre for atmospheric remote sensing research in the Eastern Mediterranean and Middle East region

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Hadjimitsis, Diofantos G.; Nisantzi, Argyro; Bühl, Johannes; Michaelides, Silas; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla; Kontoes, Charalampos; Schreier, Gunter; Komodromos, Georgios; Themistocleous, Kyriacos

    2017-10-01

    The aim of this article is to present the importance of a permanent state-of-the-art atmospheric remote sensing ground based station in the region of the Eastern Mediterranean and Middle East (EMME). The ERATOSTHENES Research Centre (ERC) with the vision to become a Centre of Excellence for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR H2020: Teaming project) already operates (within Phase 1) a fully established EARLINETt-Cloudnet supersite at Limassol, Cyprus, for a period of 2 years, in close collaboration with the German Leibniz Institute for Tropospheric Research (TROPOS), The scientific aspects of this prototype-like field campaign CyCARE (Cyprus Cloud Aerosol and Rain Experiment) - a common initiative between the Cyprus University of Technology (CUT), Limassol and TROPOS- are presented in this paper. Cy-CARE has been designed by TROPOS and CUT to fill a gap in the understanding of aerosol-cloud interaction in one of the key regions of climate change and how precipitation formation is influenced by varying aerosol/pollution and meteorological conditions The guiding questions are: How may rain patterns change in future and what may be the consequences of climate change in arid regions such as EMME. EXCELSIOR is a team effort between CUT (acting as the coordinator), the German Aerospace Centre (DLR), the Institute for Astronomy and Astrophysics Space Applications and Remote Sensing of the National Observatory of Athens (NOA), TROPOS and the Cyprus Department of Electronic Communications of the Ministry of Transport, Communications and Works (DEC-MTCW) who will work together to improve the network structures significantly, resulting in Cyprus being regarded as a cornerstone of a European Network of active remote sensing of the atmosphere.

  1. Scale in Remote Sensing and GIS: An Advancement in Methods Towards a Science of Scale

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    1998-01-01

    The term "scale", both in space and time, is central to remote sensing and geographic information systems (GIS). The emergence and widespread use of GIS technologies, including remote sensing, has generated significant interest in addressing scale as a generic topic, and in the development and implementation of techniques for dealing explicitly with the vicissitudes of scale as a multidisciplinary issue. As science becomes more complex and utilizes databases that are capable of performing complex space-time data analyses, it becomes paramount that we develop the tools and techniques needed to operate at multiple scales, to work with data whose scales are not necessarily ideal, and to produce results that can be aggregated or disaggregated in ways that suit the decision-making process. Contemporary science is constantly coping with compromises, and the data available for a particular study rarely fit perfectly with the scales at which the processes being investigated operate, or the scales that policy-makers require to make sound, rational decisions. This presentation discusses some of the problems associated with scale as related to remote sensing and GIS, and describes some of the questions that need to be addressed in approaching the development of a multidisciplinary "science of scale". Techniques for dealing with multiple scaled data that have been developed or explored recently are described as a means for recognizing scale as a generic issue, along with associated theory and tools that can be of simultaneous value to a large number of disciplines. These can be used to seek answers to a host of interrelated questions in the interest of providing a formal structure for the management and manipulation of scale and its universality as a key concept from a multidisciplinary perspective.

  2. Scale in Remote Sensing and GIS: An Advancement in Methods Towards a Science of Scale

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.

    1998-01-01

    The term "scale", both in space and time, is central to remote sensing and Geographic Information Systems (GIS). The emergence and widespread use of GIS technologies, including remote sensing, has generated significant interest in addressing scale as a generic topic, and in the development and implementation of techniques for dealing explicitly with the vicissitudes of scale as a multidisciplinary issue. As science becomes more complex and utilizes databases that are capable of performing complex space-time data analyses, it becomes paramount that we develop the tools and techniques needed to operate at multiple scales, to work with data whose scales are not necessarily ideal, and to produce results that can be aggregated or disaggregated ways that suit the decision-making process. Contemporary science is constantly coping with compromises, and the data available for a particular study rarely fit perfectly with the scales at which the processes being investigated operate, or the scales that policy-makers require to make sound, rational decisions. This presentation discusses some of the problems associated with scale as related to remote sensing and GIS, and describes some of the questions that need to be addressed in approaching the development of a multidisciplinary "science of scale". Techniques for dealing with multiple scaled data that have been developed or explored recently are described as a means for recognizing scale as a generic issue, along with associated theory and tools that can be of simultaneous value to a large number of disciplines. These can be used to seek answers to a host of interrelated questions in the interest of providing a formal structure for the management and manipulation of scale and its universality as a key concept from a multidisciplinary perspective.

  3. Centers for the commercial development of space

    NASA Technical Reports Server (NTRS)

    Walker, Susan E. (Editor)

    1989-01-01

    In 1985, NASA initiated an innovative effort called Centers for the Commercial Development of Space (CCDS). The CCDS program was designed to increase private-sector interest and investment in space-related activities, while encouraging U.S. economic leadership and stimulating advances in promising areas of research and development. Research conducted in the Centers handling the following areas is summarized: materials processing; life sciences; remote sensing; automation and robotics; space propulsion; space structures and materials; and space power.

  4. System enhancements of Mesoscale Analysis and Space Sensor (MASS) computer system

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.

    1985-01-01

    The interactive information processing for the mesoscale analysis and space sensor (MASS) program is reported. The development and implementation of new spaceborne remote sensing technology to observe and measure atmospheric processes is described. The space measurements and conventional observational data are processed together to gain an improved understanding of the mesoscale structure and dynamical evolution of the atmosphere relative to cloud development and precipitation processes. A Research Computer System consisting of three primary computers was developed (HP-1000F, Perkin-Elmer 3250, and Harris/6) which provides a wide range of capabilities for processing and displaying interactively large volumes of remote sensing data. The development of a MASS data base management and analysis system on the HP-1000F computer and extending these capabilities by integration with the Perkin-Elmer and Harris/6 computers using the MSFC's Apple III microcomputer workstations is described. The objectives are: to design hardware enhancements for computer integration and to provide data conversion and transfer between machines.

  5. Solar Polar ORbit Telescope (SPORT): A Potential Space Weather Mission of China

    NASA Astrophysics Data System (ADS)

    Liu, Y. D.; Xiong, M.; Wu, J.; Liu, H.; Zheng, J.; Li, B.; Zhang, C.; Sun, W.

    2013-12-01

    We describe a spacecraft mission, named Solar Polar ORbit Telescope (SPORT), which is currently under a scientific and engineering background study in China. SPORT was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences. It will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. It is intended to be the first mission that carries remote-sensing instruments from a high-latitude orbit around the Sun, the first mission that could image interplanetary CMEs at radio wavelengths from space, and the first mission that could measure solar high-latitude magnetism leading to eruptions and the fast solar wind. The first extended view of the polar region of the Sun and the ecliptic plane enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere and solar high-latitude magnetism giving rise to eruptions and the fast solar wind.

  6. Present statue of Japanese ERS-1 Project

    NASA Technical Reports Server (NTRS)

    Ishiwada, Yasufumi; Nemoto, Yoshiaki

    1986-01-01

    Earth Resources Satellite 1 (ERS-1) will be launched in the FY 1990 with the H-1 rocket from Tanegashima Space Center. ERS-1 will seek to firmly establish remote sensing technologies from space by using synthetic aperture radar and optical sensors, as well as primarily exploring for non-renewable resources and also monitoring for land use, agriculture, forestry, fishery, conservation of environment, prevention of disasters, and surveillance of coastal regions. ERS-1 is a joint project in which the main responsibility for the development of the mission equipment is assumed by the Agency of Industrial Science and Technology, MITI, and the Technology Research Association of Resources Remote Sensing System, while that for the satellite itself and launching rocket is assumed by the Science and Technology Agency (STA) and the National Space Development Agency (NASDA). In relation to this project, users have maintained a close working relationship with the manufacturers after submitting their requirements in 1984 on the specifications of the mission equipments. This missions parameters are outlined.

  7. REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH

    EPA Science Inventory

    Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...

  8. Radiation hardening commercial off-the-shelf erbium doped fibers by optimal photo-annealing source

    NASA Astrophysics Data System (ADS)

    Peng, Tz-Shiuan; Liu, Ren-Young; Lin, Yen-Chih; Mao, Ming-Hua; Wang, Lon A.

    2017-09-01

    Erbium doped fibers (EDFs) based devices are widely employed in space for optical communication [1], remote sensing [2], and navigation applications, e.g. interferometric fiber optic gyroscope (IFOG). However, the EDF suffers severely radiation induced attenuation (RIA) in radiation environments, e.g. space applications and nuclear reactors [3].

  9. Emissivity of half-space random media. [in passive remote sensing

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.

    1976-01-01

    Scattering of electromagnetic waves by a half-space random medium with three-dimensional correlation functions is studied with the Born approximation. The emissivity is calculated from a simple integral and is illustrated for various cases. The results are valid over a wavelength range smaller or larger than the correlation lengths.

  10. Geotechnical Study and Foundation Structural Design, Next Generation Ionosonde (NEXION) Installation, Thule Air Base, Greenland

    DTIC Science & Technology

    2015-10-01

    Richard Biagioni , Program Manager Space and Missile Systems Center (SMC) Remote Sensing Space Environmental Branch (RSSE) 1050 E. Stewart Ave...Environmental Branch (SMC/RSSE) under MIPR# F3LGWD5009G003. The technical monitor was Richard Biagioni , SMC/RSSE. The work was performed by Kevin Bjella

  11. Space technology in the discovery and development of mineral and energy resources

    NASA Technical Reports Server (NTRS)

    Lowman, P. D.

    1977-01-01

    Space technology, applied to the discovery and extraction of mineral and energy resources, is summarized. Orbital remote sensing for geological purposes has been widely applied through the use of LANDSAT satellites. These techniques also have been of value for protection against environmental hazards and for a better understanding of crustal structure.

  12. Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade?

    NASA Astrophysics Data System (ADS)

    Ramsey, Michael S.; Harris, Andrew J. L.

    2013-01-01

    Volcanological remote sensing spans numerous techniques, wavelength regions, data collection strategies, targets, and applications. Attempting to foresee and predict the growth vectors in this broad and rapidly developing field is therefore exceedingly difficult. However, we attempted to make such predictions at both the American Geophysical Union (AGU) meeting session entitled Volcanology 2010: How will the science and practice of volcanology change in the coming decade? held in December 2000 and the follow-up session 10 years later, Looking backward and forward: Volcanology in 2010 and 2020. In this summary paper, we assess how well we did with our predictions for specific facets of volcano remote sensing in 2000 the advances made over the most recent decade, and attempt a new look ahead to the next decade. In completing this review, we only consider the subset of the field focused on thermal infrared remote sensing of surface activity using ground-based and space-based technology and the subsequent research results. This review keeps to the original scope of both AGU presentations, and therefore does not address the entire field of volcanological remote sensing, which uses technologies in other wavelength regions (e.g., ultraviolet, radar, etc.) or the study of volcanic processes other than the those associated with surface (mostly effusive) activity. Therefore we do not consider remote sensing of ash/gas plumes, for example. In 2000, we had looked forward to a "golden age" in volcanological remote sensing, with a variety of new orbital missions both planned and recently launched. In addition, exciting field-based sensors such as hand-held thermal cameras were also becoming available and being quickly adopted by volcanologists for both monitoring and research applications. All of our predictions in 2000 came true, but at a pace far quicker than we predicted. Relative to the 2000-2010 timeframe, the coming decade will see far fewer new orbital instruments with direct applications to volcanology. However ground-based technologies and applications will continue to proliferate, and unforeseen technology promises many exciting possibilities that will advance volcano thermal monitoring and science far beyond what we can currently envision.

  13. Advancing Partnerships Towards an Integrated Approach to Oil Spill Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.

    2015-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.

  14. Integration and management of massive remote-sensing data based on GeoSOT subdivision model

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Cheng, Chengqi; Chen, Bo; Meng, Li

    2016-07-01

    Owing to the rapid development of earth observation technology, the volume of spatial information is growing rapidly; therefore, improving query retrieval speed from large, rich data sources for remote-sensing data management systems is quite urgent. A global subdivision model, geographic coordinate subdivision grid with one-dimension integer coding on 2n-tree, which we propose as a solution, has been used in data management organizations. However, because a spatial object may cover several grids, ample data redundancy will occur when data are stored in relational databases. To solve this redundancy problem, we first combined the subdivision model with the spatial array database containing the inverted index. We proposed an improved approach for integrating and managing massive remote-sensing data. By adding a spatial code column in an array format in a database, spatial information in remote-sensing metadata can be stored and logically subdivided. We implemented our method in a Kingbase Enterprise Server database system and compared the results with the Oracle platform by simulating worldwide image data. Experimental results showed that our approach performed better than Oracle in terms of data integration and time and space efficiency. Our approach also offers an efficient storage management system for existing storage centers and management systems.

  15. Method for Identifying Probable Archaeological Sites from Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Comer, Douglas C.; Priebe, Carey E.; Sussman, Daniel

    2011-01-01

    Archaeological sites are being compromised or destroyed at a catastrophic rate in most regions of the world. The best solution to this problem is for archaeologists to find and study these sites before they are compromised or destroyed. One way to facilitate the necessary rapid, wide area surveys needed to find these archaeological sites is through the generation of maps of probable archaeological sites from remotely sensed data. We describe an approach for identifying probable locations of archaeological sites over a wide area based on detecting subtle anomalies in vegetative cover through a statistically based analysis of remotely sensed data from multiple sources. We further developed this approach under a recent NASA ROSES Space Archaeology Program project. Under this project we refined and elaborated this statistical analysis to compensate for potential slight miss-registrations between the remote sensing data sources and the archaeological site location data. We also explored data quantization approaches (required by the statistical analysis approach), and we identified a superior data quantization approached based on a unique image segmentation approach. In our presentation we will summarize our refined approach and demonstrate the effectiveness of the overall approach with test data from Santa Catalina Island off the southern California coast. Finally, we discuss our future plans for further improving our approach.

  16. Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos

    NASA Astrophysics Data System (ADS)

    Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.

    2018-04-01

    It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.

  17. IR lasers in a struggle against dangerous cosmic objects

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Boris A.

    2001-03-01

    Humanity can struggle with the small dangerous cosmic objects in our time and its parameter knowledge are needed. A present paper deals with prospects for the perspective of the laser methods applications for a dangerous asteroids discovering and a remote sensing and for the course correction systems of the influence expedients. The cosmic IR lasers will be used for remote sensing measurement of the various cosmic objects parameters: dimensions are more than 50 m, velocity is more than 10 km/s. The laser methods have the good perspectives among a large fleet of diagnostics technical means. The more effective CO2-laser parameters were defined for the solar systems smaller bodies velocity analysis. The laser is supplied with modulated laser radiation and an automatic tuning optical system. The CO2-lidars are needed for the asteroids detections and remote sensing at the distances of 30,000 km to 1 Mkm. A laser Doppler anemometer method with adaptive selection is used. The power calculations were made for the various asteroids in a cosmic space. The possibilities are estimated for remote sensing and for the course correction systems of the influence expedients also. The such system must be good for the distances nearby 12600 km, as the asteroids velocity can be more than 70 km/s.

  18. News of Brazilian space activities. [use of satellite data in meteorology and Earth resources programs

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Remote sensing and meteorological observations of satellites are covered. Development of an oceanographic atlas, prediction of droughts, and results of geological surveys using satellite data are discussed.

  19. Elementary Education: What Is Project Omega?

    ERIC Educational Resources Information Center

    Kirman, Joseph M.

    1980-01-01

    Describes Project Omega for Research in Remote Sensing Education, a program in space education designed for inservice training of elementary social studies teachers. Explains a few research areas dealing with the classroom applications of Landsat imagery. (CS)

  20. Lunar & Planetary Science, 11.

    ERIC Educational Resources Information Center

    Geotimes, 1980

    1980-01-01

    Presents a summary of each paper presented at the Lunar and Planetary Science Conference at the Johnson Space Center, Houston in March 1980. Topics relate to Venus, Jupiter, Mars, asteroids, meteorites, regoliths, achondrites, remote sensing, and cratering studies. (SA)

  1. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. Part 1; Overview

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John

    1998-01-01

    Knowledge of the amount of water in the soil is of great importance to many earth science disciplines. Soil moisture is a key variable in controlling the exchange of water and energy between the land surface and the atmosphere. Thus, soil moisture information is valuable in a wide range of applications including weather and climate, runoff potential and flood control, early warning of droughts, irrigation, crop yield forecasting, soil erosion, reservoir management, geotechnical engineering, and water quality. Despite the importance of soil moisture information, widespread and continuous measurements of soil moisture are not possible today. Although many earth surface conditions can be measured from satellites, we still cannot adequately measure soil moisture from space. Research in soil moisture remote sensing began in the mid 1970s shortly after the surge in satellite development. Recent advances in remote sensing have shown that soil moisture can be measured, at least qualitatively, by several methods. Quantitative measurements of moisture in the soil surface layer have been most successful using both passive and active microwave remote sensing, although complications arise from surface roughness and vegetation type and density. Early attempts to measure soil moisture from space-borne microwave instruments were hindered by what is now considered sub-optimal wavelengths (shorter than 5 cm) and the coarse spatial resolution of the measurements. L-band frequencies between 1 and 3 GHz (10-30 cm) have been deemed optimal for detection of soil moisture in the upper few centimeters of soil. The Electronically Steered Thinned Array Radiometer (ESTAR), an aircraft-based instrument operating a 1,4 GHz, has shown great promise for soil moisture determination. Initiatives are underway to develop a similar instrument for space. Existing space-borne synthetic aperture radars (SARS) operating at C- and L-band have also shown some potential to detect surface wetness. The advantage of radar is its much higher resolution than passive microwave systems, but it is currently hampered by surface roughness effects and the lack of a good algorithm based on a single frequency and single polarization. In addition, its repeat frequency is generally low (about 40 days). In the meantime, two new radiometers offer some hope for remote sensing of soil moisture from space. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), launched in November 1997, possesses a 10.65 GHz channel and the Advanced Microwave Scanning Radiometer (AMSR) on both the ADEOS-11 and Earth Observing System AM-1 platforms to be launched in 1999 possesses a 6.9 GHz channel. Aside from issues about interference from vegetation, the coarse resolution of these data will provide considerable challenges pertaining to their application. The resolution of TMI is about 45 km and that of AMSR is about 70 km. These resolutions are grossly inconsistent with the scale of soil moisture processes and the spatial variability of factors that control soil moisture. Scale disparities such as these are forcing us to rethink how we assimilate data of various scales in hydrologic models. Of particular interest is how to assimilate soil moisture data by reconciling the scale disparity between what we can expect from present and future remote sensing measurements of soil moisture and modeling soil moisture processes. It is because of this disparity between the resolution of space-based sensors and the scale of data needed for capturing the spatial variability of soil moisture and related properties that remote sensing of soil moisture has not met with more widespread success. Within a single footprint of current sensors at the wavelengths optimal for this application, in most cases there is enormous heterogeneity in soil moisture created by differences in landcover, soils and topography, as well as variability in antecedent precipitation. It is difficult to interpret the meaning of 'mean' soil moisture under such conditions and even more difficult to apply such a value. Because of the non-linear relationships between near-surface soil moisture and other variables of interest, such as surface energy fluxes and runoff, mean soil moisture has little applicability at such large scales. It is for these reasons that the use of remote sensing in conjunction with a hydrologic model appears to be of benefit in capturing the complete spatial and temporal structure of soil moisture. This paper is Part I of a four-part series describing a method for intermittently assimilating remotely-sensed soil moisture information to improve performance of a distributed land surface hydrology model. The method, summarized in section II, involves the following components, each of which is detailed in the indicated section of the paper or subsequent papers in this series: Forward radiative transfer model methods (section II and Part IV); Use of a Kalman filter to assimilate remotely-sensed soil moisture estimates with the model profile (section II and Part IV); Application of a soil hydrology model to capture the continuous evolution of the soil moisture profile within and below the root zone (section III); Statistical aggregation techniques (section IV and Part II); Disaggregation techniques using a neural network approach (section IV and Part III); and Maximum likelihood and Bayesian algorithms for inversely solving for the soil moisture profile in the upper few cm (Part IV).

  2. Analysis of Human Activities in Nature Reserves Based on Nighttime Light Remote Sensing and Microblogging Data - by the Case of National Nature Reserves in Jiangxi Province

    NASA Astrophysics Data System (ADS)

    Shi, F.; Li, X.; Xu, H.

    2017-09-01

    The study used the mainstream social media in china - Sina microblogging data combined with nighttime light remote sensing and various geographical data to reveal the pattern of human activities and light pollution of the Jiangxi Provincial National Nature Reserves. Firstly, we performed statistical analysis based on both functional areas and km-grid from the perspective of space and time, and selected the key areas for in-depth study. Secondly, the relationship between microblogging data and nighttime light remote sensing, population, GDP, road coverage, road distance and road type in nature reserves was analyzed by Spearman correlation coefficient method, so the distribution pattern and influencing factors of the microblogging data were explored. Thirdly, a region where the luminance value was greater than 0.2 was defined as a light region. We evaluated the management status by analyzing the distribution of microblogging data in both light area and non-light area. Final results showed that in all nature reserves, the top three were the Lushan Nature Reserve, the Jinggangshan Nature Reserve, the Taohongling National Nature Reserve of Sikas both on the total number and density of microblogging ; microblogging had a significant correlation with nighttime light remote sensing , the GDP, population, road and other factors; the distribution of microblogging near roads in protected area followed power laws; luminous radiance of Lushan Nature Reserve was the highest, with 43 percent of region was light at night; analysis combining nighttime light remote sensing with microblogging data reflected the status of management of nature reserves.

  3. Combining optical remote sensing, agricultural statistics and field observations for culture recognition over a peri-urban region

    NASA Astrophysics Data System (ADS)

    Delbart, Nicolas; Emmanuelle, Vaudour; Fabienne, Maignan; Catherine, Ottlé; Jean-Marc, Gilliot

    2017-04-01

    This study explores the potential of multi-temporal optical remote sensing, with high revisit frequency, to derive missing information on agricultural calendar and crop types over the agricultural lands in the Versailles plain in the western Paris suburbs. This study comes besides past and ongoing studies on the use of radar and high spatial resolution optical remote sensing to monitor agricultural practices in this study area (e.g. Vaudour et al. 2014). Agricultural statistics, such as the Land Parcel Identification System (LPIS) for France, permit to know the nature of annual crops for each digitized declared field of this land parcel registry. However, within each declared field several cropped plots and a diversity of practices may exist, being marked by agricultural rotations which vary both spatially and temporally within it and differ from one year to the other. Even though the new LPIS to be released in 2016 is expected to describe individual plots within declared fields, its attributes may not enable to discriminate between winter and spring crops. Here we evaluate the potential of high observation frequency remote sensing to differentiate seasonal crops based essentially on the seasonality of the spectral properties. In particular, we use the Landsat data to spatially disaggregate the LPIS statistical data, on the basis of the analysis of the remote sensing spectral seasonality measured on a number of selected ground-observed fields. This work is carried out in the framework of the CNES TOSCA-PLEIADES-CO of the French Space Agency.

  4. Developing a flood monitoring system from remotely sensed data for the Limpopo basin

    USGS Publications Warehouse

    Asante, K.O.; Macuacua, R.D.; Artan, G.A.; Lietzow, R.W.; Verdin, J.P.

    2007-01-01

    This paper describes the application of remotely sensed precipitation to the monitoring of floods in a region that regularly experiences extreme precipitation and flood events, often associated with cyclonic systems. Precipitation data, which are derived from spaceborne radar aboard the National Aeronautics and Space Administration's Tropical Rainfall Measuring Mission and from National Oceanic and Atmospheric Administration's infrared-based products, are used to monitor areas experiencing extreme precipitation events that are defined as exceedance of a daily mean areal average value of 50 mm over a catchment. The remotely sensed precipitation data are also ingested into a hydrologic model that is parameterized using spatially distributed elevation, soil, and land cover data sets that are available globally from remote sensing and in situ sources. The resulting stream-flow is classified as an extreme flood event when flow anomalies exceed 1.5 standard deviations above the short-term mean. In an application in the Limpopo basin, it is demonstrated that the use of satellite-derived precipitation allows for the identification of extreme precipitation and flood events, both in terms of relative intensity and spatial extent. The system is used by water authorities in Mozambique to proactively initiate independent flood hazard verification before generating flood warnings. The system also serves as a supplementary information source when in situ gauging systems are disrupted. This paper concludes that remotely sensed precipitation and derived products greatly enhance the ability of water managers in the Limpopo basin to monitor extreme flood events and provide at-risk communities with early warning information. ?? 2007 IEEE.

  5. Remote Sensing Information Science Research

    NASA Technical Reports Server (NTRS)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  6. Preliminary investigation of submerged aquatic vegetation mapping using hyperspectral remote sensing.

    PubMed

    William, David J; Rybicki, Nancy B; Lombana, Alfonso V; O'Brien, Tim M; Gomez, Richard B

    2003-01-01

    The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.

  7. Intelligent Systems: Terrestrial Observation and Prediction Using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    NASA has made science and technology investments to better utilize its large space-borne remote sensing data holdings of the Earth. With the launch of Terra, NASA created a data-rich environment where the challenge is to fully utilize the data collected from EOS however, despite unprecedented amounts of observed data, there is a need for increasing the frequency, resolution, and diversity of observations. Current terrestrial models that use remote sensing data were constructed in a relatively data and compute limited era and do not take full advantage of on-line learning methods and assimilation techniques that can exploit these data. NASA has invested in visualization, data mining and knowledge discovery methods which have facilitated data exploitation, but these methods are insufficient for improving Earth science models that have extensive background knowledge nor do these methods refine understanding of complex processes. Investing in interdisciplinary teams that include computational scientists can lead to new models and systems for online operation and analysis of data that can autonomously improve in prediction skill over time.

  8. Remote sensing the plasmasphere, plasmapause, plumes and other features using ground-based magnetometers

    NASA Astrophysics Data System (ADS)

    Menk, Frederick; Kale, Zoë; Sciffer, Murray; Robinson, Peter; Waters, Colin; Grew, Russell; Clilverd, Mark; Mann, Ian

    2014-11-01

    The plasmapause is a highly dynamic boundary between different magnetospheric particle populations and convection regimes. Some of the most important space weather processes involve wave-particle interactions in this region, but wave properties may also be used to remote sense the plasmasphere and plasmapause, contributing to plasmasphere models. This paper discusses the use of existing ground magnetometer arrays for such remote sensing. Using case studies we illustrate measurement of plasmapause location, shape and movement during storms; refilling of flux tubes within and outside the plasmasphere; storm-time increase in heavy ion concentration near the plasmapause; and detection and mapping of density irregularities near the plasmapause, including drainage plumes, biteouts and bulges. We also use a 2D MHD model of wave propagation through the magnetosphere, incorporating a realistic ionosphere boundary and Alfvén speed profile, to simulate ground array observations of power and cross-phase spectra, hence confirming the signatures of plumes and other density structures.

  9. Remote sensing and geographic database management systems applications for the protection and conservation of cultural heritage

    NASA Astrophysics Data System (ADS)

    Palumbo, Gaetano; Powlesland, Dominic

    1996-12-01

    The Getty Conservation Institute is exploring the feasibility of using remote sensing associated with a geographic database management system (GDBMS) in order to provide archaeological and historic site managers with sound evaluations of the tools available for site and information management. The World Heritage Site of Chaco Canyon, New Mexico, a complex of archeological sites dating to the 10th to the 13th centuries AD, was selected as a test site. Information from excavations conducted there since the 1930s, and a range of documentation generated by the National Park Service was gathered. NASA's John C. Stennis Space Center contributed multispectral data of the area, and the Jet Propulsion Laboratory contributed data from ATLAS (airborne terrestrial applications sensor) and CAMS (calibrated airborne multispectral scanner) scanners. Initial findings show that while 'automatic monitoring systems' will probably never be a reality, with careful comparisons of historic and modern photographs, and performing digital analysis of remotely sensed data, excellent results are possible.

  10. Project MEDSAT: The design of a remote sensing platform for malaria research and control

    NASA Astrophysics Data System (ADS)

    1991-04-01

    Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission.

  11. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  12. A remote sensing applications update: Results of interviews with Earth Observations Commercialization Program (EOCAP) participants

    NASA Technical Reports Server (NTRS)

    Mcvey, Sally

    1991-01-01

    Earth remote sensing is a uniquely valuable tool for large-scale resource management, a task whose importance will likely increase world-wide through the foreseeable future. NASA research and engineering have virtually created the existing U.S. system, and will continue to push the frontiers, primarily through Earth Observing System (EOS) instruments, research, and data and information systems. It is the researchers' view that the near-term health of remote sensing applications also deserves attention; it seems important not to abandon the system or its clients. The researchers suggest that, like its Landsat predecessor, a successful Earth Observing System program is likely to reinforce pressure to 'manage' natural resources, and consequently, to create more pressure for Earth Observations Commercialization (EOCAP) type applications. The current applications programs, though small, are valuable because of their technical and commercial results, and also because they support a community whose contributions will increase along with our ability to observe the Earth from space.

  13. Human visual system consistent quality assessment for remote sensing image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Huang, Junyi; Liu, Shuguang; Li, Huali; Zhou, Qiming; Liu, Junchen

    2015-07-01

    Quality assessment for image fusion is essential for remote sensing application. Generally used indices require a high spatial resolution multispectral (MS) image for reference, which is not always readily available. Meanwhile, the fusion quality assessments using these indices may not be consistent with the Human Visual System (HVS). As an attempt to overcome this requirement and inconsistency, this paper proposes an HVS-consistent image fusion quality assessment index at the highest resolution without a reference MS image using Gaussian Scale Space (GSS) technology that could simulate the HVS. The spatial details and spectral information of original and fused images are first separated in GSS, and the qualities are evaluated using the proposed spatial and spectral quality index respectively. The overall quality is determined without a reference MS image by a combination of the proposed two indices. Experimental results on various remote sensing images indicate that the proposed index is more consistent with HVS evaluation compared with other widely used indices that may or may not require reference images.

  14. International Symposium on Remote Sensing of Environment, 17th, University of Michigan, Ann Arbor, MI, May 9-13, 1983, Proceedings. Volumes 1, 2 & 3

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The collection, processing, and analysis of remote-sensing data from ground-based, airborne, and spaceborne instruments for application to the monitoring and management of the earth and environment and resources are examined in reviews and reports, some in summary form. Subject areas covered include US policy and directions on remote sensing (RS); the future of terrestrial RS from space; RS of land, oceans, and atmosphere from a global perspective; RS in hydrological modeling; microprocessing technology; array processors; geobased information systems; artificial intelligence; the Shuttle imaging radar; and current results from Landsat-4. Among the specific topics discussed are RS application to hydrocarbon exploration, airborne gamma-radiation assessment of snow water equivalent, surface-vegetation-biomass modeling from AVHRR and Landsat data, Landsat imagery of Mediterranean pollution, fast two-dimensional filtering of thermal-scanner data, RS of severe convective storms, registration of rotated images by invariant moments, and the geometric accuracy of Landsat-4 Thematic-Mapper P-tapes.

  15. Determination of Winter Wheat Phenology in Bavaria- A Contribution to Regional Crop Health Monitoring from Space

    NASA Astrophysics Data System (ADS)

    Bruggemann, Lena; Bach, Heike; Ruf, Tobias; Appel, Florian; Migdall, Silke; Hank, Tobias; Mauser, Wolfram; Eiblmeier, Peter

    2016-08-01

    The central topic of this study is the monitoring of winter wheat phenology and the detection of anthesis (flowering) using remotely sensed data as well as crop growth modeling. It is not possible to directly observe the flowering of wheat with optical satellite sensors. Thus, an approach that combines crop growth modeling with remote sensing data covering optical and microwave spectral ranges was developed. This was done in three steps: The hydro-agroecological land surface model PROMET was first run in a stand-alone version for selected sites distributed throughout Bavaria using only static input parameters (e.g. soil map) and current meteorological data as driving factors. Thus, multitemporal information from optical remote sensing data was assimilated into the model runs in a second step to improve the accuracy of the results. Finally, the use of radar data for anthesis detection in winter wheat was tested using Sentinel-1 data of 2015 in dual polarization mode (VV+VH).

  16. Project MEDSAT: The design of a remote sensing platform for malaria research and control

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission.

  17. Tunnel-Site Selection by Remote Sensing Techniques

    DTIC Science & Technology

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  18. Concept, Simulation, and Instrumentation for Radiometric Inflight Icing Detection

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles; Koenig, George G.; Reehorst, Andrew L.; Scott, Forrest R.

    2009-01-01

    The multi-agency Flight in Icing Remote Sensing Team (FIRST), a consortium of the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), the National Center for Atmospheric Research (NCAR), the National Oceanographic and Atmospheric Administration (NOAA), and the Army Corps of Engineers (USACE), has developed technologies for remotely detecting hazardous inflight icing conditions. The USACE Cold Regions Research and Engineering Laboratory (CRREL) assessed the potential of onboard passive microwave radiometers for remotely detecting icing conditions ahead of aircraft. The dual wavelength system differences the brightness temperature of Space and clouds, with greater differences potentially indicating closer and higher magnitude cloud liquid water content (LWC). The Air Force RADiative TRANsfer model (RADTRAN) was enhanced to assess the flight track sensing concept, and a 'flying' RADTRAN was developed to simulate a radiometer system flying through simulated clouds. Neural network techniques were developed to invert brightness temperatures and obtain integrated cloud liquid water. In addition, a dual wavelength Direct-Detection Polarimeter Radiometer (DDPR) system was built for detecting hazardous drizzle drops. This paper reviews technology development to date and addresses initial polarimeter performance.

  19. System and method for evaluating wind flow fields using remote sensing devices

    DOEpatents

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  20. New Active Remote-sensing Capabilities: Laser Ablation Spectrometer and Lidar Atmospheric Species Profile Measurements

    NASA Technical Reports Server (NTRS)

    DeYoung, R. J.; Bergstralh, J. T.

    2005-01-01

    Introduction: With the anticipated development of high-capacity fission power and electric propulsion for deep-space missions, it will become possible to propose experiments that demand higher power than current technologies (e.g. radioisotope power sources) provide. Jupiter Icy Moons Orbiter (JIMO), the first mission in the Project Prometheus program, will explore the icy moons of Jupiter with a suite of high-capability experiments that take advantage of the high power levels (and indirectly, the high data rates) that fission power affords. This abstract describes two high-capability active-remote-sensing experiments that will be logical candidates for subsequent Prometheus-class missions.

  1. Automated extraction of metadata from remotely sensed satellite imagery

    NASA Technical Reports Server (NTRS)

    Cromp, Robert F.

    1991-01-01

    The paper discusses research in the Intelligent Data Management project at the NASA/Goddard Space Flight Center, with emphasis on recent improvements in low-level feature detection algorithms for performing real-time characterization of images. Images, including MSS and TM data, are characterized using neural networks and the interpretation of the neural network output by an expert system for subsequent archiving in an object-oriented data base. The data show the applicability of this approach to different arrangements of low-level remote sensing channels. The technique works well when the neural network is trained on data similar to the data used for testing.

  2. Potential of Remote Sensing in the Corps of Engineers Dredging Program.

    DTIC Science & Technology

    1985-11-01

    remotely sensed sultispectral data. Earth Resources Survey Symposium June 9-12, Houston. Texas. Lyndon B. Johnson Space Center, pp. 2087-2098. Kalle , K ...a" -- , :0 0 4 n - 0 00 0 𔃾A 14. U ,U a4 t4 f"’ 4- t4- -- cf 0 0-4 z so a 0 . 4," . +" ’," - AC8" N N- ,, . -o - o 0 0 - 4.4 o o 0’, K . 0...signal. Several studies have shown that many substances can be identified by their optical properties. Using cruise data, Kalle (1966) was one of the

  3. JACIE: A Model Partnership

    NASA Technical Reports Server (NTRS)

    Thome, Kurt; Goldberg, Mitch; Mita, Dath; Stensaas, Gregory L.

    2013-01-01

    The National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), the United States Department of Agriculture (USDA), and the United States Geological Survey (USGS), and their associates and partners, are directly responsible for establishing and leading a unique interagency team of scientists and engineers who work together to evaluate and enhance the quality remote sensing data for commercial and government use. This team is called "the Joint Agency Commercial Imagery Evaluation (JACIE) team". The team works together to define, prioritize, assign, and assess civil and commercial image quality and jointly sponsors an annual JACIE Civil Commercial Imagery Evaluation workshop with participation support from the remote sensing calibration and validation science community.

  4. Remote sensing/global change. A special bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-11-01

    The first portion of this bibliography contains citations (with abstracts, when available) to unclassified literature contained in the NASA STI Database. These citations also appeared in issues of the abstract journal 'Scientific and Technical Aerospace Reports (STAR)', or in other announcement products offered by the NASA STI Program. The citations appear in ascending accession number order. A second section provides several indexes to the citations. They are subject term, personal author, report number, and accession number. The citations are included for the following disciplines as they relate to remote sensing and global change: astronautics, engineering, geosciences, life sciences, mathematical andmore » computer sciences, social sciences, and space sciences.« less

  5. Remote Sensing of Multi-Level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Olivier, Lisa D.; Banta, Robert M.; Hardesty, R. Michael; Howell, James N.; Cutten, Dean R.; Johnson, Steven C.; Menzies, Robert T.; Tratt, David M.

    1997-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the troposphere and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  6. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.

    PubMed

    Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M

    1998-01-19

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  7. The use of remotely sensed soil moisture data in large-scale models of the hydrological cycle

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Gurney, R. J.; Schmugge, T. J.

    1985-01-01

    Manabe (1982) has reviewed numerical simulations of the atmosphere which provided a framework within which an examination of the dynamics of the hydrological cycle could be conducted. It was found that the climate is sensitive to soil moisture variability in space and time. The challenge arises now to improve the observations of soil moisture so as to provide up-dated boundary condition inputs to large scale models including the hydrological cycle. Attention is given to details regarding the significance of understanding soil moisture variations, soil moisture estimation using remote sensing, and energy and moisture balance modeling.

  8. Potential Pitfalls Related to Space-Based Lidar Remote Sensing of the Earth With an Emphasis on Wind Measurement

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Spiers, Gary D.; Frehlich, Rod G.

    2000-01-01

    A collection of issues is discussed that are potential pitfalls, if handled incorrectly, for earth-orbiting lidar remote sensing instruments. These issues arise due to the long target ranges, high lidar-to-target relative velocities, low signal levels, use of laser scanners, and other unique aspects of using lasers in earth orbit. Consequences of misunderstanding these topics range from minor inconvenience to improper calibration to total failure. We will focus on wind measurement using coherent detection Doppler lidar, but many of the potential pitfalls apply also to noncoherent lidar wind measurement, and to measurement of parameters other than wind.

  9. Remote sensing/global change. A special bibliography

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The first portion of this bibliography contains citations (with abstracts, when available) to unclassified literature contained in the NASA STI Database. These citations also appeared in issues of the abstract journal 'Scientific and Technical Aerospace Reports (STAR)', or in other announcement products offered by the NASA STI Program. The citations appear in ascending accession number order. A second section provides several indexes to the citations. They are subject term, personal author, report number, and accession number. The citations are included for the following disciplines as they relate to remote sensing and global change: astronautics, engineering, geosciences, life sciences, mathematical and computer sciences, social sciences, and space sciences.

  10. Solid State Laser Technology Development for Atmospheric Sensing Applications

    NASA Technical Reports Server (NTRS)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  11. Exploring Models and Data for Remote Sensing Image Caption Generation

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqiang; Wang, Binqiang; Zheng, Xiangtao; Li, Xuelong

    2018-04-01

    Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimal

  12. Remotely Powered Reconfigurable Receiver for Extreme Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J. (Inventor)

    2017-01-01

    Unmanned space programs are currently used to enable scientists to explore and research the furthest reaches of outer space. Systems and methods for low power communication devices in accordance with embodiments of the invention are disclosed, describing a wide variety of low power communication devices capable of remotely collecting, processing, and transmitting data from outer space in order to further mankind's goal of exploring the cosmos. Many embodiments of the invention include a Flash-based FPGA, an energy-harvesting power supply module, a sensor module, and a radio module. By utilizing technologies that withstand the harsh environment of outer space, more reliable low power communication devices can be deployed, enhancing the quality and longevity of the low power communication devices, enabling more data to be gathered and aiding in the exploration of outer space.

  13. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  14. The Use of Remote Sensing Satellites for Verification in International Law

    NASA Astrophysics Data System (ADS)

    Hettling, J. K.

    The contribution is a very sensitive topic which is currently about to gain significance and importance in the international community. It implies questions of international law as well as the contemplation of new developments and decisions in international politics. The paper will begin with the meaning and current status of verification in international law as well as the legal basis of satellite remote sensing in international treaties and resolutions. For the verification part, this implies giving a definition of verification and naming its fields of application and the different means of verification. For the remote sensing part, it involves the identification of relevant provisions in the Outer Space Treaty and the United Nations General Assembly Principles on Remote Sensing. Furthermore it shall be looked at practical examples: in how far have remote sensing satellites been used to verify international obligations? Are there treaties which would considerably profit from the use of remote sensing satellites? In this respect, there are various examples which can be contemplated, such as the ABM Treaty (even though out of force now), the SALT and START Agreements, the Chemical Weapons Convention and the Conventional Test Ban Treaty. It will be mentioned also that NGOs have started to verify international conventions, e.g. Landmine Monitor is verifying the Mine-Ban Convention. Apart from verifying arms control and disarmament treaties, satellites can also strengthen the negotiation of peace agreements (such as the Dayton Peace Talks) and the prevention of international conflicts from arising. Verification has played an increasingly prominent role in high-profile UN operations. Verification and monitoring can be applied to the whole range of elements that constitute a peace implementation process, ranging from the military aspects through electoral monitoring and human rights monitoring, from negotiating an accord to finally monitoring it. Last but not least the problem of enforcing international obligations needs to be addressed, especially the dependence of international law on the will of political leaders and their respective national interests.

  15. New initiatives in the commercial development of space

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1988-01-01

    This paper provides a status report on aggressive new initiatives by the NASA Office of Commercial Programs to implement new commercial space policy. The promotion of a strong U.S. commercial presence in space via Spacehab, the Space Shuttle external tanks, privatization of the Space Station, and the development of commercial remote sensing systems is addressed. The privatization of launch services and the development of a talent base for commercial space efforts are considered. Groups, policies, and plans involved in these developments are discussed.

  16. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  17. The Scintillation and Tomography Receiver in Space (CITRIS) Instrument for Ionospheric Research

    DTIC Science & Technology

    2008-01-01

    Z39-18 220 2008 NRL REVIEW REMOTE SENSING The Scintillation and Tomography Receiver in Space (CITRIS) Instrument for Ionospheric Research P.A...Scintillation and Tomography Receiver in Space (CITRIS) is currently in orbit sam- pling the ionosphere . CITRIS was developed at NRL to (a) permit...Koch, T.L. MacDonald, M.R. Wilkens, and G.P. Landis, “ Ionospheric Applications of the Scintillation and Tomography Receiver in Space (CITRIS

  18. Oahu: Perspective from Space.

    ERIC Educational Resources Information Center

    Johnson, Gary E.

    1982-01-01

    Presents a photograph of the Hawaiian island, Oahu, as taken by the Landsat 2 satellite on February 14, 1978. A description of Landsat 2 remote sensing procedures and discussion of the topographical details shown in the photograph are included. (AM)

  19. Studies in remotely sensed geophysical parameter retrieval and analysis

    NASA Technical Reports Server (NTRS)

    Perkey, Donald J.

    1993-01-01

    This report describes Universities Space Research Association (USRA) activities in support of the Geophysical Parameter Retrieval and Analysis studies. Specifically it addresses personnel assigned to the effort, travel, consultant participants, technical progress, and contract spending.

  20. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems II. Extension to the thermal infrared: equations and methods

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Lomheim, Terrence S.; Florio, Christopher J.; Harbold, Jeffrey M.; Muto, B. Michael; Schoolar, Richard B.; Wintz, Daniel T.; Keller, Robert A.

    2011-10-01

    In a previous paper in this series, we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) tool may be used to model space and airborne imaging systems operating in the visible to near-infrared (VISNIR). PICASSO is a systems-level tool, representative of a class of such tools used throughout the remote sensing community. It is capable of modeling systems over a wide range of fidelity, anywhere from conceptual design level (where it can serve as an integral part of the systems engineering process) to as-built hardware (where it can serve as part of the verification process). In the present paper, we extend the discussion of PICASSO to the modeling of Thermal Infrared (TIR) remote sensing systems, presenting the equations and methods necessary to modeling in that regime.

  1. Russian Earth Science Research Program on ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armand, N. A.; Tishchenko, Yu. G.

    1999-01-22

    Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements tomore » the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.« less

  2. Space-Time Data fusion for Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Nguyen, H.; Cressie, N.

    2011-01-01

    NASA has been collecting massive amounts of remote sensing data about Earth's systems for more than a decade. Missions are selected to be complementary in quantities measured, retrieval techniques, and sampling characteristics, so these datasets are highly synergistic. To fully exploit this, a rigorous methodology for combining data with heterogeneous sampling characteristics is required. For scientific purposes, the methodology must also provide quantitative measures of uncertainty that propagate input-data uncertainty appropriately. We view this as a statistical inference problem. The true but notdirectly- observed quantities form a vector-valued field continuous in space and time. Our goal is to infer those true values or some function of them, and provide to uncertainty quantification for those inferences. We use a spatiotemporal statistical model that relates the unobserved quantities of interest at point-level to the spatially aggregated, observed data. We describe and illustrate our method using CO2 data from two NASA data sets.

  3. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.

    2004-01-01

    Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  4. A Web-GIS Procedure Based on Satellite Multi-Spectral and Airborne LIDAR Data to Map the Road blockage Due to seismic Damages of Built-Up Urban Areas

    NASA Astrophysics Data System (ADS)

    Costanzo, Antonio; Montuori, Antonio; Silva, Juan Pablo; Silvestri, Malvina; Musacchio, Massimo; Buongiorno, Maria Fabrizia; Stramondo, Salvatore

    2016-08-01

    In this work, a web-GIS procedure to map the risk of road blockage in urban environments through the combined use of space-borne and airborne remote sensing sensors is presented. The methodology concerns (1) the provision of a geo-database through the integration of space-borne multispectral images and airborne LiDAR data products; (2) the modeling of building vulnerability, based on the corresponding 3D geometry and construction time information; (3) the GIS-based mapping of road closure due to seismic- related building collapses based on the building characteristic height and the width of the road. Experimental results, gathered for the Cosenza urban area, allow demonstrating the benefits of both the proposed approach and the GIS-based integration of multi-platforms remote sensing sensors and techniques for seismic road assessment purposes.

  5. The human quest in space; Proceedings of the Twenty-fourth Goddard Memorial Symposium, Greenbelt, MD, Mar. 20, 21, 1986

    NASA Technical Reports Server (NTRS)

    Burdett, Gerald L. (Editor); Soffen, Gerald A. (Editor)

    1987-01-01

    Papers are presented on the Space Station, materials processing in space, the status of space remote sensing, the evolution of space infrastructure, and the NASA Teacher Program. Topics discussed include visionary technologies, the effect of intelligent machines on space operations, future information technology, and the role of nuclear power in future space missions. Consideration is given to the role of humans in space exploration; medical problems associated with long-duration space flights; lunar and Martian settlements, and Biosphere II (the closed ecology project).

  6. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  7. 75 FR 65304 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Commercial Remote Sensing (ACCRES); Request for Nominations AGENCY: National Oceanic and Atmospheric... Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was... Atmosphere, on matters relating to the U.S. commercial remote sensing industry and NOAA's activities to carry...

  8. New Approaches to the Use and Integration of Multi-Sensor Remote Sensing for Historic Resource Identification and Evaluation

    DTIC Science & Technology

    2006-11-10

    features based on shape are easy to come by. The Great Pyramids at Giza are instantly identified from space, even at the very coarse spatial... Pyramids at Giza , Egypt, are recognized by their triangular faces in this 1 m resolution Ikonos image, as are nearby rectangular tombs (credit: Space

  9. Apollo 11: A good ending to a bad decade

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Gemini program and the Apollo program which culminated in landing a man on the moon and safely returning him to earth are highlighted. The space program in the aftermath of Apollo 11 is briefly summarized, including: Skylab, Apollo Soyuz, Mars and Venus probes, improved world communications, remote sensing of world resources, and finally, space shuttle.

  10. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  11. Learning Methods of Remote Sensing In the 2013 Curriculum of Secondary School

    NASA Astrophysics Data System (ADS)

    Lili Somantri, Nandi

    2016-11-01

    The new remote sensing material included in the subjects of geography in the curriculum of 1994. For geography teachers generation of 90s and over who in college do not get the material remote sensing, for teaching is a tough matter. Most teachers only give a theoretical matter, and do not carry out practical reasons in the lack of facilities and infrastructure of computer laboratories. Therefore, in this paper studies the importance about the method or manner of teaching remote sensing material in schools. The purpose of this paper is 1) to explain the position of remote sensing material in the study of geography, 2) analyze the Geography Curriculum 2013 Subjects related to remote sensing material, 3) describes a method of teaching remote sensing material in schools. The method used in this paper is a descriptive analytical study supported by the literature. The conclusion of this paper that the position of remote sensing in the study of geography is a method or a way to obtain spatial data earth's surface. In the 2013 curriculum remote sensing material has been applied to the study of land use and transportation. Remote sensing methods of teaching must go through a practicum, which starts from the introduction of the theory of remote sensing, data extraction phase of remote sensing imagery to produce maps, both visually and digitally, field surveys, interpretation of test accuracy, and improved maps.

  12. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  13. Single-Image Super Resolution for Multispectral Remote Sensing Data Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Liebel, L.; Körner, M.

    2016-06-01

    In optical remote sensing, spatial resolution of images is crucial for numerous applications. Space-borne systems are most likely to be affected by a lack of spatial resolution, due to their natural disadvantage of a large distance between the sensor and the sensed object. Thus, methods for single-image super resolution are desirable to exceed the limits of the sensor. Apart from assisting visual inspection of datasets, post-processing operations—e.g., segmentation or feature extraction—can benefit from detailed and distinguishable structures. In this paper, we show that recently introduced state-of-the-art approaches for single-image super resolution of conventional photographs, making use of deep learning techniques, such as convolutional neural networks (CNN), can successfully be applied to remote sensing data. With a huge amount of training data available, end-to-end learning is reasonably easy to apply and can achieve results unattainable using conventional handcrafted algorithms. We trained our CNN on a specifically designed, domain-specific dataset, in order to take into account the special characteristics of multispectral remote sensing data. This dataset consists of publicly available SENTINEL-2 images featuring 13 spectral bands, a ground resolution of up to 10m, and a high radiometric resolution and thus satisfying our requirements in terms of quality and quantity. In experiments, we obtained results superior compared to competing approaches trained on generic image sets, which failed to reasonably scale satellite images with a high radiometric resolution, as well as conventional interpolation methods.

  14. Scalability Issues for Remote Sensing Infrastructure: A Case Study

    PubMed Central

    Liu, Yang; Picard, Sean; Williamson, Carey

    2017-01-01

    For the past decade, a team of University of Calgary researchers has operated a large “sensor Web” to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging). Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system’s memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure. PMID:28468262

  15. IceCube: CubeSat 883-GHz Radiometry for Future Ice Cloud Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wu, Dongliang; Esper, Jaime; Ehsan, Negar; Johnson, Thomas; Mast, William; Piepmeier, Jeffery R.; Racette, Paul E.

    2015-01-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.

  16. Study on various elements of the geosciences with respect to space technology

    NASA Technical Reports Server (NTRS)

    Head, J. W., III

    1981-01-01

    The utility of data acquired in space for both basic and applied studies of the geology of the Earth was evaluated. Focus was placed upon the gaps in the current ability to make effective use of remote sensing technology within the Earth sciences. A long range plan is presented for future research that involves an appropriate balance between the development and application of space techniques.

  17. Landsat: A Global Land-Observing Program

    USGS Publications Warehouse

    ,

    2003-01-01

    Landsat represents the world's longest continuously acquired collection of space-based land remote sensing data. The Landsat Project is a joint initiative of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) designed to gather Earth resource data from space. NASA developed and launched the spacecrafts, while the USGS handles the operations, maintenance, and management of all ground data reception, processing, archiving, product generation, and distribution.

  18. A vegetational and ecological resource analysis from space and high flight photography

    NASA Technical Reports Server (NTRS)

    Poulton, C. E.; Faulkner, D. P.; Schrumpf, B. J.

    1970-01-01

    A hierarchial classification of vegetation and related resources is considered that is applicable to convert remote sensing data in space and aerial synoptic photography. The numerical symbolization provides for three levels of vegetational classification and three levels of classification of environmental features associated with each vegetational class. It is shown that synoptic space photography accurately projects how urban sprawl affects agricultural land use areas and ecological resources.

  19. Formation Flying: The Future of Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse

    2004-01-01

    Over the next two decades a revolution is likely to occur in how remote sensing of Earth, other planets or bodies, and a range of phenomena in the universe is performed from space. In particular, current launch vehicle fairing volume and mass constraints will continue to restrict the size of monolithic telescope apertures which can be launched to accommodate only slightly more performance capability than is achievable today, such as by the Hubble Space Telescope. Systems under formulation today, such as the James Webb Space Telescope will be able to increase aperture size and, hence, imaging resolution, by deploying segmented optics. However, this approach is limited as well, by ow ability to control such segments to optical tolerances over long distances with highly uncertain structural dynamics connecting them. Consequently, for orders of magnitude improved resolution as required for imaging black holes, imaging planets, or performing asteroseismology, the only viable approach will be to fly a collection of spacecraft in formation to synthesize a virtual segmented telescope or interferometer with very large baselines. This presentation describes some of the strategic science missions planned in the National Aeronautics and Space Administration, and identifies some of the critical technologies needed to enable some of the most challenging space missions ever conceived which have realistic hopes of flying.

  20. [A review on polarization information in the remote sensing detection].

    PubMed

    Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao

    2010-04-01

    Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.

Top