Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model
NASA Astrophysics Data System (ADS)
Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming
Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.
NASA-HBCU Space Science and Engineering Research Forum Proceedings
NASA Technical Reports Server (NTRS)
Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)
1989-01-01
The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).
NASA Astrophysics Data System (ADS)
Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.
2015-12-01
Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.
NASA Technical Reports Server (NTRS)
Barth, Janet
2004-01-01
Contents include the following: 1. Scientific Research: Space science. Earth science. Aeronautics and space. Transportation. Human exploration of space. 2. Navigation. 3. Telecommunications. 4. Defense. 5. Space Environment Monitoring.and 6. Terrestrial Weather Monitoring.
Space Weather Products at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.
2010-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.
NASA Astrophysics Data System (ADS)
Hu, X.; Zou, Z.
2017-12-01
For the next decades, comprehensive big data application environment is the dominant direction of cyberinfrastructure development on space science. To make the concept of such BIG cyberinfrastructure (e.g. Digital Space) a reality, these aspects of capability should be focused on and integrated, which includes science data system, digital space engine, big data application (tools and models) and the IT infrastructure. In the past few years, CAS Chinese Space Science Data Center (CSSDC) has made a helpful attempt in this direction. A cloud-enabled virtual research platform on space science, called Solar-Terrestrial and Astronomical Research Network (STAR-Network), has been developed to serve the full lifecycle of space science missions and research activities. It integrated a wide range of disciplinary and interdisciplinary resources, to provide science-problem-oriented data retrieval and query service, collaborative mission demonstration service, mission operation supporting service, space weather computing and Analysis service and other self-help service. This platform is supported by persistent infrastructure, including cloud storage, cloud computing, supercomputing and so on. Different variety of resource are interconnected: the science data can be displayed on the browser by visualization tools, the data analysis tools and physical models can be drived by the applicable science data, the computing results can be saved on the cloud, for example. So far, STAR-Network has served a series of space science mission in China, involving Strategic Pioneer Program on Space Science (this program has invested some space science satellite as DAMPE, HXMT, QUESS, and more satellite will be launched around 2020) and Meridian Space Weather Monitor Project. Scientists have obtained some new findings by using the science data from these missions with STAR-Network's contribution. We are confident that STAR-Network is an exciting practice of new cyberinfrastructure architecture on space science.
ERIC Educational Resources Information Center
Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.
2013-01-01
The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…
A shared-world conceptual model for integrating space station life sciences telescience operations
NASA Technical Reports Server (NTRS)
Johnson, Vicki; Bosley, John
1988-01-01
Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.
Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre
2009-01-01
The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.
2017-12-01
The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).
Deriving Tools from Real-Time Runs: A New CCMC Support for SEC and AFWA
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2007-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. In particular, the CCMC provides to the research community the execution of "runs-on-request" for specific events of interest to space science researchers. Through this activity and the concurrent development of advanced visualization tools, CCMC provides, to the general science community, unprecedented access to a large number of state-of-the-art research models. CCMC houses models that cover the entire domain from the Sun to the Earth. In this presentation, we will provide an overview of CCMC modeling services that are available to support activities at the Space Environment Center, or at the Air Force Weather Agency.
Modeling & Simulation Education for the Acquisition and T&E Workforce: FY07 Deliverable Package
2007-12-01
oceanography, meteorology, and near- earth space science) to represent how systems interact with and are influenced by their environment. E12.1 E12.2 E12.3 E12.4...fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems interact with and...description: Describe the fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems
NASA Astrophysics Data System (ADS)
Slutskin, R. L.
2001-12-01
Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Maddox, M. M.; Mays, M. L.; Mullinix, R.; MacNeice, P. J.; Pulkkinen, A. A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.; Wiegand, C.
2013-12-01
Community Coordinated Modeling Center (CCMC) was established at the dawn of the millennium as an essential element on the National Space Weather Program. One of the CCMC goals was to pave the way for progress in space science research to operational space weather forecasting. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment, in developing and maintaining powerful web-based tools and systems ready to be used by space weather service providers and decision makers as well as in space weather prediction capabilities assessments. The presentation will showcase latest innovative solutions for space weather research, analysis, forecasting and validation and review on-going community-wide initiatives enabled by CCMC applications.
Community Coordinated Modeling Center Support of Science Needs for Integrated Data Environment
NASA Technical Reports Server (NTRS)
Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Maddox, M.
2007-01-01
Space science models are essential component of integrated data environment. Space science models are indispensable tools to facilitate effective use of wide variety of distributed scientific sources and to place multi-point local measurements into global context. The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the- art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The majority of models residing at CCMC are comprehensive computationally intensive physics-based models. To allow the models to be driven by data relevant to particular events, the CCMC developed an online data file generation tool that automatically downloads data from data providers and transforms them to required format. CCMC provides a tailored web-based visualization interface for the model output, as well as the capability to download simulations output in portable standard format with comprehensive metadata and user-friendly model output analysis library of routines that can be called from any C supporting language. CCMC is developing data interpolation tools that enable to present model output in the same format as observations. CCMC invite community comments and suggestions to better address science needs for the integrated data environment.
The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform
NASA Astrophysics Data System (ADS)
Bhattacharya, S.
2018-02-01
Life science research on the Deep Space Gateway platform is an important precursor for long term human exploration of deep space. Ideas for utilizing flight hardware and well characterized model organisms will be discussed.
Designing Learning Spaces for Interprofessional Education in the Anatomical Sciences
ERIC Educational Resources Information Center
Cleveland, Benjamin; Kvan, Thomas
2015-01-01
This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which…
Strawman payload data for science and applications space platforms
NASA Technical Reports Server (NTRS)
1980-01-01
The need for a free flying science and applications space platform to host compatible long duration experiment groupings in Earth orbit is discussed. Experiment level information on strawman payload models is presented which serves to identify and quantify the requirements for the space platform system. A description data base on the strawman payload model is presented along with experiment level and group level summaries. Payloads identified in the strawman model include the disciplines of resources observations and environmental observations.
Implementation of small group discussion as a teaching method in earth and space science subject
NASA Astrophysics Data System (ADS)
Aryani, N. P.; Supriyadi
2018-03-01
In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.
NASA/NSF Antarctic Science Working Group
NASA Technical Reports Server (NTRS)
Stoklosa, Janis H.
1990-01-01
A collection of viewgraphs on NASA's Life Sciences Biomedical Programs is presented. They show the structure of the Life Sciences Division; the tentative space exploration schedule from the present to 2018; the biomedical programs with their objectives, research elements, and methodological approaches; validation models; proposed Antarctic research as an analog for space exploration; and the Science Working Group's schedule of events.
Designing learning spaces for interprofessional education in the anatomical sciences.
Cleveland, Benjamin; Kvan, Thomas
2015-01-01
This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.
CCMC: bringing space weather awareness to the next generation
NASA Astrophysics Data System (ADS)
Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.
2017-12-01
Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper atmosphere, for near real-time and historical space weather events.
USSR Space Life Sciences Digest, issue 20
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1988-01-01
Abstracts of research in the areas of biological rhythms, body fluids, botany, endrocrinology, enzymology, exobiology, genetics, human performance, immunology, life support systems, mathematical modeling, and numerous other topics related to space and life sciences are given.
2011-10-26
NASA, space science industry and government officials are seen in front of a full-size model of NASA's James Webb Space Telescope at the Maryland Science Center in Baltimore, Wednesday, Oct. 26, 2011. From left, back row are: Dr. John Grunsfeld, former astronaut and Deputy Director, Space Telescope Science Institute (STScI), Baltimore; Jeffrey Grant, VP and General Manager of the Space Systems Division, Northrop Grumman; Van Reiner, President and CEO of the Maryland Science Center, Baltimore and Adam Reiss, recipient of the 2011 Nobel Prize in Physics and professor of astronomy and physics at Johns Hopkins University. In the front row are NASA Deputy Administrator Lori Garver, left, and U.S. Senator Barbara Mikulski (D-Md.). Photo Credit: (NASA/Carla Cioffi)
IHY Modeling Support at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Chulaki, A.; Hesse, Michael; Kuznetsova, Masha; MacNeice, P.; Rastaetter, L.
2005-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. In particular, the CCMC provides to the research community the execution of "runs-onrequest" for specific events of interest to space science researchers. Through this activity and the concurrent development of advanced visualization tools, CCMC provides, to the general science community, unprecedented access to a large number of state-of-the-art research models. CCMC houses models that cover the entire domain from the Sun to the Earth. In this presentation, we will provide an overview of CCMC modeling services that are available to support activities during the International Heliospheric Year. In order to tailor CCMC activities to IHY needs, we will also invite community input into our IHY planning activities.
Suborbital Research and Development Opportunities
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2011-01-01
This slide presentation reviews the new strategies for problem solving in the life sciences in the suborbital realm. Topics covered are: an overview of the space life sciences, the strategic initiatives that the Space Life Sciences organization engaged in, and the new business model that these initiatives were developed. Several opportunities for research are also reviewed.
NASA at the Space & Science Festival
2017-08-05
An inflatable scale model of the SLS rocket is seen on Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)
NASA/Aerospace Education Services Program. Classroom Activities.
ERIC Educational Resources Information Center
Nations, Jim, Comp.
This document consists of a collection of classroom activities as they appeared in the "Aviation and Space Education News" from 1988 to 1991. The 45 activities in the document are organized in the following sections: (1) Aeronautics; (2) Earth Science; (3) Space Science; (4) Life in Space; (5) Rockets; and (6) Models. Each activity is…
SpacePy - a Python-based library of tools for the space sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, Steven K; Welling, Daniel T; Koller, Josef
Space science deals with the bodies within the solar system and the interplanetary medium; the primary focus is on atmospheres and above - at Earth the short timescale variation in the the geomagnetic field, the Van Allen radiation belts and the deposition of energy into the upper atmosphere are key areas of investigation. SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication quality output direct from analyses is emphasized. The SpacePy project seeks tomore » promote accurate and open research standards by providing an open environment for code development. In the space physics community there has long been a significant reliance on proprietary languages that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of widely used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be diminished. SpacePy includes implementations of widely used empirical models, statistical techniques used frequently in space science (e.g. superposed epoch analysis), and interfaces to advanced tools such as electron drift shell calculations for radiation belt studies. SpacePy also provides analysis and visualization tools for components of the Space Weather Modeling Framework - currently this only includes the BATS-R-US 3-D magnetohydrodynamic model and the RAM ring current model - including streamline tracing in vector fields. Further development is currently underway. External libraries, which include well-known magnetic field models, high-precision time conversions and coordinate transformations are wrapped for access from Python using SWIG and f2py. The rest of the tools have been implemented directly in Python. The provision of open-source tools to perform common tasks will provide openness in the analysis methods employed in scientific studies and will give access to advanced tools to all space scientists regardless of affiliation or circumstance.« less
Space Science at Los Alamos National Laboratory
NASA Astrophysics Data System (ADS)
Smith, Karl
2017-09-01
The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.
The NASA Space Radiation Health Program
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Sulzman, F. M.
1994-01-01
The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.
NASA Astrophysics Data System (ADS)
Rohrbach, Scott O.; Irvin, Ryan G.; Seals, Lenward T.; Skelton, Dennis L.
2016-09-01
This paper describes an integrated stray light model of each Science Instrument (SI) in the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) and the Optical Telescope Element Simulator (OSIM), the light source used to characterize the performance of ISIM in cryogenic-vacuum tests at the Goddard Space Flight Center (GSFC). We present three cases where this stray light model was integral to solving questions that arose during the testing campaign - 1) ghosting and coherent diffraction from hardware surfaces in the Near Infrared Imager and Slitless Spectrograph (NIRISS) GR700XD grism mode, 2) ghost spots in the Near Infrared Camera (NIRCam) GRISM modes, and 3) scattering from knife edges of the NIRCam focal plane array masks.
NASA Astrophysics Data System (ADS)
Saito, Akinori; Yoshida, Daiki; Odagi, Yoko; Takahashi, Midori; Tsugawa, Takuya; Kumano, Yoshisuke
We developed an educational program of space science data and science data observed from the space using a digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system. The educational program using Dagik Earth has been carried out in classrooms of schools, science museums, and research institutes to show the scientific data of the earth and planets in an intuitive way. We are developing the hardware system, data contents, and education manuals in cooperation with teachers, museum staffs and scientists. The size of the globe used in this system is from 15cm to 2m in diameter. It is selected according to the environment of the presentation. The contents cover the space science, such as aurora and geomagnetic field, the earth science, such as global clouds and earthquakes, and planetary science. Several model class plans are ready to be used in high school and junior high school. In public outreach programs of universities, research institutes, and scientific meetings, special programs have been carried out. We are establishing a community to use and develop this program for the space science education.
Project LAUNCH: Bringing Space into Math and Science Classrooms
NASA Technical Reports Server (NTRS)
Fauerbach, M.; Henry, D. P.; Schmidt, D. L.
2005-01-01
Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.
NASA Technical Reports Server (NTRS)
Gracey, Renee; Bartoszyk, Andrew; Cofie, Emmanuel; Comber, Brian; Hartig, George; Howard, Joseph; Sabatke, Derek; Wenzel, Greg; Ohl, Raymond
2016-01-01
The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance(STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIMs test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.
NASA Technical Reports Server (NTRS)
Hasha, Martin D.
1990-01-01
NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.
Global Lunar Topography from the Deep Space Gateway for Science and Exploration
NASA Astrophysics Data System (ADS)
Archinal, B.; Gaddis, L.; Kirk, R.; Edmundson, K.; Stone, T.; Portree, D.; Keszthelyi, L.
2018-02-01
The Deep Space Gateway, in low lunar orbit, could be used to achieve a long standing goal of lunar science, collecting stereo images in two months to make a complete, uniform, high resolution, known accuracy, global topographic model of the Moon.
Walsh, Matthew M; Gluck, Kevin A; Gunzelmann, Glenn; Jastrzembski, Tiffany; Krusmark, Michael
2018-06-01
The spacing effect is among the most widely replicated empirical phenomena in the learning sciences, and its relevance to education and training is readily apparent. Yet successful applications of spacing effect research to education and training is rare. Computational modeling can provide the crucial link between a century of accumulated experimental data on the spacing effect and the emerging interest in using that research to enable adaptive instruction. In this paper, we review relevant literature and identify 10 criteria for rigorously evaluating computational models of the spacing effect. Five relate to evaluating the theoretic adequacy of a model, and five relate to evaluating its application potential. We use these criteria to evaluate a novel computational model of the spacing effect called the Predictive Performance Equation (PPE). Predictive Performance Equation combines elements of earlier models of learning and memory including the General Performance Equation, Adaptive Control of Thought-Rational, and the New Theory of Disuse, giving rise to a novel computational account of the spacing effect that performs favorably across the complete sets of theoretic and applied criteria. We implemented two other previously published computational models of the spacing effect and compare them to PPE using the theoretic and applied criteria as guides. Copyright © 2018 Cognitive Science Society, Inc.
Modernizing Earth and Space Science Modeling Workflows in the Big Data Era
NASA Astrophysics Data System (ADS)
Kinter, J. L.; Feigelson, E.; Walker, R. J.; Tino, C.
2017-12-01
Modeling is a major aspect of the Earth and space science research. The development of numerical models of the Earth system, planetary systems or astrophysical systems is essential to linking theory with observations. Optimal use of observations that are quite expensive to obtain and maintain typically requires data assimilation that involves numerical models. In the Earth sciences, models of the physical climate system are typically used for data assimilation, climate projection, and inter-disciplinary research, spanning applications from analysis of multi-sensor data sets to decision-making in climate-sensitive sectors with applications to ecosystems, hazards, and various biogeochemical processes. In space physics, most models are from first principles, require considerable expertise to run and are frequently modified significantly for each case study. The volume and variety of model output data from modeling Earth and space systems are rapidly increasing and have reached a scale where human interaction with data is prohibitively inefficient. A major barrier to progress is that modeling workflows isn't deemed by practitioners to be a design problem. Existing workflows have been created by a slow accretion of software, typically based on undocumented, inflexible scripts haphazardly modified by a succession of scientists and students not trained in modern software engineering methods. As a result, existing modeling workflows suffer from an inability to onboard new datasets into models; an inability to keep pace with accelerating data production rates; and irreproducibility, among other problems. These factors are creating an untenable situation for those conducting and supporting Earth system and space science. Improving modeling workflows requires investments in hardware, software and human resources. This paper describes the critical path issues that must be targeted to accelerate modeling workflows, including script modularization, parallelization, and automation in the near term, and longer term investments in virtualized environments for improved scalability, tolerance for lossy data compression, novel data-centric memory and storage technologies, and tools for peer reviewing, preserving and sharing workflows, as well as fundamental statistical and machine learning algorithms.
USSR Space Life Sciences Digest, issue 13
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)
1987-01-01
This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.
Early use of Space Station Freedom for NASA's Microgravity Science and Applications Program
NASA Technical Reports Server (NTRS)
Rhome, Robert C.; O'Malley, Terence F.
1992-01-01
The paper describes microgravity science opportunities inherent to the restructured Space Station and presents a synopsis of the scientific utilization plan for the first two years of ground-tended operations. In the ground-tended utilization mode the Space Station is a large free-flyer providing a continuous microgravity environment unmatched by any other platform within any existing U.S. program. It is pointed out that the importance of this period of early Space Station mixed-mode utilization between crew-tended and ground-tended approaches is of such magnitude that Station-based microgravity science experiments many become benchmarks to the disciplines involved. The traffic model that is currently being pursued is designed to maximize this opportunity for the U.S. microgravity science community.
SeaQuaKE: Sea-Optimized Quantum Key Exchange
2014-08-01
which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13...aerosol model scenarios. 15. SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17...SeaQuaKE) project, which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN
Using Latent Class Modeling to Detect Bimodality in Spacing Effect Data
ERIC Educational Resources Information Center
Verkoeijen, Peter P. J. L.; Bouwmeester, Samantha
2008-01-01
A recently proposed theory of the spacing effect [Raaijmakers, J. G. W. (2003). Spacing and repetition effects in human memory: application of the SAM model. "Cognitive Science," 27, 431-452.] suggests that the spacing effect is conditional on study-phase retrieval leading to two groups of students showing different magnitudes of the spacing…
An Informal Outreach Model for Fostering Diversity and inclusion in the Sciences
NASA Astrophysics Data System (ADS)
Morris, P. A.; Obot, V.
2006-05-01
In the greater Houston area we have developed an effective informal education model that encourages communication between racial and ethnic groups, increases the base knowledge of space science, and promotes family involvement in science education. Space Science Student Ambassadors (SSSA), part of a NASA funded MUCERPI program, is student led and interacts with the community through interactive demonstrations, mini-classes for schools, museums, youth clubs, neighborhood centers and community family events. The events vary in length from one day to three weeks. The predominantly African American and Hispanic student ambassadors are recruited from inner city high schools and minority serving universities. NASA Johnson Space Center scientists are involved in the science education and training of the students. The students receive training in safety, classroom control, time management and team building skills. The lead SSSA contacts potential venues and establishes the event calendar. The students organize the activities for each venue. The SSSA increase their science knowledge. The diversity of the students and their cordial interactions serve as role models for venue participants. The participants can visually see the lack of ethnic or racial boundaries as the ambassadors interact with each other and the audience. Many of our SSSA have stated in evaluations that they have learned more about space science in our program than in their classes. Some of our SSSA are now pursuing graduate degrees in the geosciences. These students, prior to their involvement in our program, would not have pursued graduate degrees or they may have pursued degrees in other fields.
Space Object Classification and Characterization Via Multiple Model Adaptive Estimation
2014-07-14
BRDF ) which models light distribution scattered from the surface due to the incident light. The BRDF at any point on the surface is a function of two...uu B vu B nu obs I u sun I u I hu (b) Reflection Geometry Fig. 2: Reflection Geometry and Space Object Shape Model of the BRDF is ρdiff(i...Space Object Classification and Characterization Via Multiple Model Adaptive Estimation Richard Linares Director’s Postdoctoral Fellow Space Science
Inquiry into the Heart of a Comet
ERIC Educational Resources Information Center
Cobb, Whitney; Roundtree-Brown, Maura; McFadden, Lucy; Warner, Elizabeth
2011-01-01
Real science means wrangling with peers over real ideas. Wouldn't it be thrilling to emulate a real life model of science in action in classrooms? How? By starting with a great, hands-on activity modeling an object in space that introduces both key vocabulary and science concepts with visuals to support retention and learning; encouraging…
Aurorasaurus: A citizen science platform for viewing and reporting the aurora
NASA Astrophysics Data System (ADS)
MacDonald, E. A.; Case, N. A.; Clayton, J. H.; Hall, M. K.; Heavner, M.; Lalone, N.; Patel, K. G.; Tapia, A.
2015-09-01
A new, citizen science-based, aurora observing and reporting platform has been developed with the primary aim of collecting auroral observations made by the general public to further improve the modeling of the aurora. In addition, the real-time ability of this platform facilitates the combination of citizen science observations with auroral oval models to improve auroral visibility nowcasting. Aurorasaurus provides easily understandable aurora information, basic gamification, and real-time location-based notification of verified aurora activity to engage citizen scientists. The Aurorasaurus project is one of only a handful of space weather citizen science projects and can provide useful results for the space weather and citizen science communities. Early results are promising with over 2000 registered users submitting over 1000 aurora observations and verifying over 1700 aurora sightings posted on Twitter.
Atmospheric and Space Sciences: Ionospheres and Plasma Environments
NASA Astrophysics Data System (ADS)
Yiǧit, Erdal
2018-01-01
The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.
In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.
2011-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions
Making Astronomy and Space Science Accessible to the Blind and Visually Impaired
NASA Astrophysics Data System (ADS)
Beck-Winchatz, B.; Hoette, V.; Grice, N.
2003-12-01
One of the biggest obstacles blind and visually impaired people face in science is the ubiquity of important graphical information, which is generally not made available in alternate formats accessible to them. Funded by NASA's Initiative to Develop Education through Astronomy and Space Science (IDEAS), we have recently formed a team of scientists and educators from universities, the SOFIA NASA mission, a science museum, an observatory, and schools for the blind. Our goal is to develop and test Braille/tactile space science activities that actively engage students from elementary grades through introductory college-level in space science. We will discuss effective strategies and low-cost technologies that can be used to make graphical information accessible. We will also demonstrate examples, such a thermal expansion graphics created from telescope images of the Moon and other celestial objects, a tactile planisphere, three-dimensional models of near-Earth asteroids and tactile diagrams of their orbits, and an infrared detector activity.
Policy for Robust Space-based Earth Science, Technology and Applications
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Escobar, Vanessa M.; Macauley, Molly; Aschbacher, Josef; Milagro-Perez, Maria Pilar; Doorn, Bradley; Friedl, Lawrence
2012-01-01
Over the past six decades, satellite remote sensing technology has contributed to the transformation of using earth science not only to advance science, but to improve quality of life. With satellite missions launched almost every year, new types of earth science data are being incorporated into science, models and decision-making systems in a broad array of organizations. A challenge for space agencies has been ensuring that satellite missions serve both the scientific community and the applied community of decision makers without the missions becoming unfocused and overly expensive. By understanding and considering the needs of the environmental data and applied research user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in the European Space Agency and the National Aeronautics and Space Administration and compares and contrasts the successes of and challenges faced by these agencies in balancing science and applications within their missions.
Popularizing Space Education in Indian Context
NASA Astrophysics Data System (ADS)
Yalagi, Amrut
Indians have many mythological stories about many constellations and stars. Hindu months are based on MOON and 27 stars on Zodiac. They are very important for many Indians in ritual, religious functions. By prompting them to identify their birth star, really makes them elevated. Similarly conveying them the importance of star gazing with respect to their day today life makes them to take interest and active participation in Space Activities. Space activities should be driven by public; their requirements; their dreams and imaginations. Their active participation definitely gives valuable inputs to space scientists. Hence, there is a need of involving common man or public mass by appropriate motivation by organising sky gazing sessions, exhibitions, workshops, etc. In this connection, even if the some organisation are able to attract a small percent of qualified engineers/scientists,, enthusiastic students, it would result in the creation of a sizable pool of talent in space sciences,which may well determine the future mankind on this planet. Some simple motivation acts have made the people to take interest in space. we have been using certain methodologies to popularize space science - 1] Conducting theory sessions on basics of star gazing and conveying importance of sky gazing with respect to day-today life. 2] Organising seminars, workshops, lectures and other academic/popular science activities with special reference to space science 3] Projects - a] Cubsat Missions b] Automatic Weather Station Facility c] Model making d] Creating and simulating space models and rover making competitions. The 50 year's of Exploration has left tremendous impact on many society's working towards space education and exploration.
Parazynski, Scott E
2006-01-01
From simple childhood dreams to their fulfillment, this presentation chronicles the author's life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can be accomplished in the microgravity of space. NASA's efforts to develop inspection and repair capabilities in the aftermath of the Columbia tragedy are also covered, as are the nation's plans for returning to the Moon and continuing on to Mars as part of the Vision for Space Exploration (VSE).
Operational Space Weather Activities in the US
NASA Astrophysics Data System (ADS)
Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert
2016-07-01
We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
Advanced Methodologies for NASA Science Missions
NASA Astrophysics Data System (ADS)
Hurlburt, N. E.; Feigelson, E.; Mentzel, C.
2017-12-01
Most of NASA's commitment to computational space science involves the organization and processing of Big Data from space-based satellites, and the calculations of advanced physical models based on these datasets. But considerable thought is also needed on what computations are needed. The science questions addressed by space data are so diverse and complex that traditional analysis procedures are often inadequate. The knowledge and skills of the statistician, applied mathematician, and algorithmic computer scientist must be incorporated into programs that currently emphasize engineering and physical science. NASA's culture and administrative mechanisms take full cognizance that major advances in space science are driven by improvements in instrumentation. But it is less well recognized that new instruments and science questions give rise to new challenges in the treatment of satellite data after it is telemetered to the ground. These issues might be divided into two stages: data reduction through software pipelines developed within NASA mission centers; and science analysis that is performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad. Both stages benefit from the latest statistical and computational methods; in some cases, the science result is completely inaccessible using traditional procedures. This paper will review the current state of NASA and present example applications using modern methodologies.
User interfaces in space science instrumentation
NASA Astrophysics Data System (ADS)
McCalden, Alec John
This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.
Space Weather Models at the CCMC And Their Capabilities
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2007-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The 30 petri plates are bundled into groups of 10 and placed into one of three science kits. The science kits allow easy handling when the crew removes the plates from cold stowage on station. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Life sciences research in space: The requirement for animal models
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Philips, R. W.; Ballard, R. W.
1987-01-01
Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.
NASA Technical Reports Server (NTRS)
Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David
1987-01-01
The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.
ERIC Educational Resources Information Center
Merisotis, Jamie P.; Kee, Arnold M.
2006-01-01
The Model Institutions for Excellence (MIE) Grant, funded by the National Science Foundation and National Aeronautics and Space Administration, enhanced student pathways into science, technology, engineering, and math (STEM). It achieved these results through 10 years of sustained investment and collaborative leadership. Components of the MIE…
The AGU Data Management Maturity Model Initiative
NASA Astrophysics Data System (ADS)
Bates, J. J.
2015-12-01
In September 2014, the AGU Board of Directors approved two initiatives to help the Earth and space sciences community address the growing challenges accompanying the increasing size and complexity of data. These initiatives are: 1) Data Science Credentialing: development of a continuing education and professional certification program to help scientists in their careers and to meet growing responsibilities and requirements around data science; and 2) Data Management Maturity (DMM) Model: development and implementation of a data management maturity model to assess process maturity against best practices, and to identify opportunities in organizational data management processes. Each of these has been organized within AGU as an Editorial Board and both Boards have held kick off meetings. The DMM model Editorial Board will recommend strategies for adapting and deploying a DMM model to the Earth and space sciences create guidance documents to assist in its implementation, and provide input on a pilot appraisal process. This presentation will provide an overview of progress to date in the DMM model Editorial Board and plans for work to be done over the upcoming year.
NASA Astrophysics Data System (ADS)
Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.
2011-12-01
The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.
National Space Science Data Center (NSSDC) Data Listing
NASA Technical Reports Server (NTRS)
1980-01-01
Satellite and nonsatellite data available from the National Space Science Data Center are listed. The Satellite Data listing includes the spacecraft name, launch date, and an alphabetical list of experiments. The Non-Satellite Data listing contains ground based data, models, computer routines, and composite spacecraft data. The data set name, data form code, quantity of data, and the time space covered are included in the data sets of both listings where appropriate. Geodetic tracking data sets are also included.
Parazynski, Scott E
2006-01-01
From simple childhood dreams to their fulfillment, this presentation chronicles the author’s life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can be accomplished in the microgravity of space. NASA’s efforts to develop inspection and repair capabilities in the aftermath of the Columbia tragedy are also covered, as are the nation’s plans for returning to the Moon and continuing on to Mars as part of the Vision for Space Exploration (VSE). PMID:18528479
Fractal and multifractal models for extreme bursts in space plasmas.
NASA Astrophysics Data System (ADS)
Watkins, Nicholas; Chapman, Sandra; Credgington, Dan; Rosenberg, Sam; Sanchez, Raul
2010-05-01
Space plasmas may be said to show at least two types of "universality". One type arises from the fact that plasma physics underpins all astrophysical systems, while another arises from the generic properties of coupled nonlinear physical systems, a branch of the emerging science of complexity. Much work in complexity science is contributing to the physical understanding of the ways by which complex interactions in such systems cause driven or random perturbations to be nonlinearly amplified in amplitude and/or spread out over a wide range of frequencies. These mechanisms lead to non-Gaussian fluctuations and long-ranged temporal memory (referred to by Mandelbrot as the "Noah" and "Joseph" effects, respectively). This poster discusses a standard toy model (linear fractional stable motion, LFSM) which combines the Noah and Joseph effects in a controllable way. I will describe how LFSM is being used to explore the interplay of the above two effects in the distribution of bursts above thresholds, with applications to extreme events in space time series. I will describe ongoing work to improve the accuracy of maximum likelihood-based estimation of burst size and waiting time distributions for LFSM first reported in Watkins et al [Space Science Review, 2005; PRE, 2009]. The relevance of turbulent cascades to space plasmas necessitates comparison between this model and multifractal models, and early results will be described [Watkins et al, PRL comment, 2009].
Opening the Mind's Eye to Science.
ERIC Educational Resources Information Center
Hassard, Jack
1982-01-01
Emphasizes the importance of imagination in scientific discovery and science education and identifies three processes which increase the richness of the visualization experience: relaxing, concentrating, and seeing. Suggests topics for guided experiences and example models for earth/space, life, and physical sciences. (DC)
NASA Astrophysics Data System (ADS)
Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.
2015-12-01
The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.
Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces
NASA Technical Reports Server (NTRS)
Kroemer, Karl H. E. (Editor); Snook, Stover H. (Editor); Meadows, Susan K. (Editor); Deutsch, Stanley (Editor)
1988-01-01
The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
Materials Science Research Rack-1 (MSRR-1)
NASA Technical Reports Server (NTRS)
2001-01-01
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.
National Aeronautics and Space Administration Science and Engineering Apprentice Program
NASA Technical Reports Server (NTRS)
1997-01-01
The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.
ERIC Educational Resources Information Center
Joo, Soohyung; Kipp, Margaret E. I.
2015-01-01
Introduction: This study examines the structure of Web space in the field of library and information science using multivariate analysis of social tags from the Website, Delicious.com. A few studies have examined mathematical modelling of tags, mainly examining tagging in terms of tripartite graphs, pattern tracing and descriptive statistics. This…
ERIC Educational Resources Information Center
Cervato, Cinzia; Kerton, Charles; Peer, Andrea; Hassall, Lesya; Schmidt, Allan
2013-01-01
We describe the rationale and process for the development of a new hybrid Earth and Space Science course for elementary education majors. A five-step course design model, applicable to both online and traditional courses, is presented. Assessment of the course outcomes after two semesters indicates that the intensive time invested in the…
A model of professional development for urban teachers
NASA Astrophysics Data System (ADS)
Narasimhan, C.
Over the past five years, DePaul University has established a network of urban teachers who are focused on linking the learning of fundamental concepts of physics, chemistry, and biology to relevant and current discoveries in space science. One component of this effort has been a series of annual space science symposia for Chicago-area teachers. These symposia are mixtures of space science presentations by national and local scientists and discussions in areas such as curriculum and professional development, NASA resources, and communication. Since the first symposium, planning has been done in partnership with a small group of teachers who have moved into leadership positions in advancing space science in the Chicago area. This presentation will describe the evolution of the annual symposium as a professional development activity and give the results of a recent assessment project designed to measure the impact of these symposia on Chicago teachers and their classroom practices.
USSR Space Life Sciences Digest, issue 14
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph
1988-01-01
This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.
R and T report: Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald A. (Editor)
1993-01-01
The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.
Telemetric Sensors for the Space Life Sciences
NASA Technical Reports Server (NTRS)
Hines, John W.; Somps, Chris J.; Madou, Marc; Jeutter, Dean C.; Singh, Avtar; Connolly, John P. (Technical Monitor)
1996-01-01
Telemetric sensors for monitoring physiological changes in animal models in space are being developed by NASA's Sensors 2000! program. The sensors measure a variety of physiological measurands, including temperature, biopotentials, pressure, flow, acceleration, and chemical levels, and transmit these signals from the animals to a remote receiver via a wireless link. Thus physiologic information can be obtained continuously and automatically without animal handling, tethers, or percutaneous leads. We report here on NASA's development and testing of advanced wireless sensor systems for space life sciences research.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
ChemCam Rock Laser for the Mars Science Laboratory
LANL
2017-12-09
Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.
Explaining public support for space exploration funding in America: A multivariate analysis
NASA Astrophysics Data System (ADS)
Nadeau, François
2013-05-01
Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed "Apollo Nostalgia" in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.
Between the Rock and a Hard Place: The CCMC as a Transit Station Between Modelers and Forecasters
NASA Technical Reports Server (NTRS)
Hesse, Michael
2009-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involved model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the latter element. Specifically, we will discuss the process of transition research models, or information generated by research models, to Space Weather Forecasting organizations. We will analyze successes as well as obstacles to further progress, and we will suggest avenues for increased transitioning success.
Dedicated Space Science Education Centres Provide the Model for Effective Outreach
NASA Astrophysics Data System (ADS)
Brumfitt, A.
Planetaria and science centres are traditionally successful players in engaging all levels and ages of society. They have long played a supportive role to and within education. Their value in teacher circles has always been recognised as an effective resource. Given the decline in career choices in traditional Science Technology Engineering and Mathematics (STEM) and astronomy and planetary sciences, they are now more important than ever. Since their inception the role and function of Planetaria has been required to evolve to meet the changing demands of society. They are now faced with the challenge of meeting new requirements and the need for new and different resources, techniques, support and funding models to meet and effectively deliver to new target groups. To face these challenges these pivotal centres require new methodology in their development of programs to be effective in their support to education. New directions specifically tailored for teacher professional development and for student studies. The changing requirements have resulted in a new kind of science centre one dedicated and specially designed using space science and dedicated to formal education across stem activities. The space scientist forms an integral and key role in this type of centre by providing the science, the passion of discovery and the relevance of the science to the community. These programs need to be carefully aligned to flexible course requirements and objectives to ensure relevancy to the education and outreach sector. They need access to and the support and input from the scientist and research institutions. They need real and appropriate material and resources. Scientists need effective channels through which to inform and share their work. Here is the potential for enormously effective symbiosis. This paper describes how new multi million dollar state-of-the-art space science centres are working with cutting edge science, research institutes, universities, government education departments, all education stakeholders and deliverers in formal, informal and non-specialist education support. The dedicated space education centres provide realistic prototypes for the restructuring of existing planetaria and science centres to meet needs of education in 21st Century.
USSR Space Life Sciences Digest, issue 28
NASA Technical Reports Server (NTRS)
Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)
1990-01-01
This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.
USSR Space Life Sciences Digest, issue 30
NASA Technical Reports Server (NTRS)
Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)
1991-01-01
This is the thirtieth issue of NASA's Space Life Sciences Digest. It contains abstracts of 47 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, biospheric research, cardiovascular and respiratory systems, endocrinology, equipment and instrumentation, gastrointestinal system, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, psychology, radiobiology, and space biology and medicine.
Members of House Committee on Science and Astronautics Visited MSFC
NASA Technical Reports Server (NTRS)
1962-01-01
The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun and Joe Waggoner, Democratic representative of Louisiana, discuss Apollo models.
NASA Astrophysics Data System (ADS)
Arenberg, Jonathan; Conti, Alberto; Atkinson, Charles
2017-01-01
Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This paper will discuss the origins of these new questions and the steps to their answers.
General purpose simulation system of the data management system for Space Shuttle mission 18
NASA Technical Reports Server (NTRS)
Bengtson, N. M.; Mellichamp, J. M.; Smith, O. C.
1976-01-01
A simulation program for the flow of data through the Data Management System of Spacelab and Space Shuttle was presented. The science, engineering, command and guidance, navigation and control data were included. The programming language used was General Purpose Simulation System V (OS). The science and engineering data flow was modeled from its origin at the experiments and subsystems to transmission from Space Shuttle. Command data flow was modeled from the point of reception onboard and from the CDMS Control Panel to the experiments and subsystems. The GN&C data flow model handled data between the General Purpose Computer and the experiments and subsystems. Mission 18 was the particular flight chosen for simulation. The general structure of the program is presented, followed by a user's manual. Input data required to make runs are discussed followed by identification of the output statistics. The appendices contain a detailed model configuration, program listing and results.
NASA Technical Reports Server (NTRS)
Bennett, Jerome (Technical Monitor)
2002-01-01
The NASA Center for Computational Sciences (NCCS) is a high-performance scientific computing facility operated, maintained and managed by the Earth and Space Data Computing Division (ESDCD) of NASA Goddard Space Flight Center's (GSFC) Earth Sciences Directorate. The mission of the NCCS is to advance leading-edge science by providing the best people, computers, and data storage systems to NASA's Earth and space sciences programs and those of other U.S. Government agencies, universities, and private institutions. Among the many computationally demanding Earth science research efforts supported by the NCCS in Fiscal Year 1999 (FY99) are the NASA Seasonal-to-Interannual Prediction Project, the NASA Search and Rescue Mission, Earth gravitational model development efforts, the National Weather Service's North American Observing System program, Data Assimilation Office studies, a NASA-sponsored project at the Center for Ocean-Land-Atmosphere Studies, a NASA-sponsored microgravity project conducted by researchers at the City University of New York and the University of Pennsylvania, the completion of a satellite-derived global climate data set, simulations of a new geodynamo model, and studies of Earth's torque. This document presents highlights of these research efforts and an overview of the NCCS, its facilities, and its people.
Analysis of the coupling efficiency of a tapered space receiver with a calculus mathematical model
NASA Astrophysics Data System (ADS)
Hu, Qinggui; Mu, Yining
2018-03-01
We establish a calculus mathematical model to study the coupling characteristics of tapered optical fibers in a space communications system, and obtained the coupling efficiency equation. Then, using MATLAB software, the solution was calculated. After this, the sample was produced by the mature flame-brush technique. The experiment was then performed, and the results were in accordance with the theoretical analysis. This shows that the theoretical analysis was correct and indicates that a tapered structure could improve its tolerance with misalignment. Project supported by The National Natural Science Foundation of China (grant no. 61275080); 2017 Jilin Province Science and Technology Development Plan-Science and Technology Innovation Fund for Small and Medium Enterprises (20170308029HJ); ‘thirteen five’ science and technology research project of the Department of Education of Jilin 2016 (16JK009).
Recent advances in plasma modeling for space applications
NASA Astrophysics Data System (ADS)
Srinivasan, Bhuvana; Scales, Wayne; Cagas, Petr; Glesner, Colin
2017-02-01
This paper presents a brief overview of the application of advanced plasma modeling techniques to several space science and engineering problems currently of significant interest. Recent advances in both kinetic and fluid modeling provide the ability to study a wide variety of problems that may be important to space plasmas including spacecraft-environment interactions, plasma-material interactions for propulsion systems such as Hall thrusters, ionospheric plasma instabilities, plasma separation from magnetic nozzles, active space experiments, and a host of additional problems. Some of the key findings are summarized here.
ISD Model Building: From Tabula Rasa to Apple Peel
ERIC Educational Resources Information Center
Ruark, Benjamin E.
2008-01-01
An evidence-based practice (EBP) model is proposed to replace the more-art-than-science "rope bridge" currently spanning the defining space of a training need and the designing space of a training curriculum. The rope bridge analogy symbolizes a way to address perceived deficiencies and research gaps in the…
Life Space Crisis Intervention and Functional Behavioral Assessment: The Guiding Models.
ERIC Educational Resources Information Center
McGowan, Lawrence P.
2002-01-01
The Conflict Cycle employed in Life Space Crisis Intervention offers a model for conducting functional assessment with students facing disciplinary action for behavior that may be related to emotional disturbance and other disabilities. This article analyzes the Conflict Cycle, using principles from cognitive behavioral science. (Contains 13…
Service-Based Extensions to an OAIS Archive for Science Data Management
NASA Astrophysics Data System (ADS)
Flathers, E.; Seamon, E.; Gessler, P. E.
2014-12-01
With new data management mandates from major funding sources such as the National Institutes for Health and the National Science Foundation, architecture of science data archive systems is becoming a critical concern for research institutions. The Consultative Committee for Space Data Systems (CCSDS), in 2002, released their first version of a Reference Model for an Open Archival Information System (OAIS). The CCSDS document (now an ISO standard) was updated in 2012 with additional focus on verifying the authenticity of data and developing concepts of access rights and a security model. The OAIS model is a good fit for research data archives, having been designed to support data collections of heterogeneous types, disciplines, storage formats, etc. for the space sciences. As fast, reliable, persistent Internet connectivity spreads, new network-available resources have been developed that can support the science data archive. A natural extension of an OAIS archive is the interconnection with network- or cloud-based services and resources. We use the Service Oriented Architecture (SOA) design paradigm to describe a set of extensions to an OAIS-type archive: purpose and justification for each extension, where and how each extension connects to the model, and an example of a specific service that meets the purpose.
NASA Technical Reports Server (NTRS)
1999-01-01
Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.
NASA Astrophysics Data System (ADS)
Kragh, Helge
2012-12-01
The idea that space is not Euclidean by necessity, and that there are other kinds of "curved" spaces, diffused slowly to the physical and astronomical sciences. Until Einstein's general theory of relativity, only a handful of astronomers contemplated a connection between non-Euclidean geometry and real space. One of them, the German astrophysicist Johann Carl Friedrich Zöllner (1834-1882), suggested in 1872 a remarkable cosmological model describing a finite universe in closed space. I examine Zöllner's little-known contribution to cosmology and also his even more unorthodox speculations of a four-dimensional space including both physical and spiritual phenomena. I provide an overview of Zöllner's scientific work, of his status in the German scientific community, and of the controversies caused by his polemical style of science. Zöllner's cosmology was effectively forgotten, but there is no reason why it should remain an unwritten chapter in the history of science.
NASA Astrophysics Data System (ADS)
Ramalis, T. R.; Liliasari; Herdiwidjaya, D.
2016-08-01
The purpose this case study was to describe characteristic features learning activities in the domain of earth and space science. Context of this study is earth and space learning activities on three groups of student teachers prospective, respectively on the subject of the shape and size of Earth, land and sea breeze, and moon's orbit. The analysis is conducted qualitatively from activity data and analyze students doing project work, student worksheets, group project report documents, note and audio recordings of discussion. Research findings identified the type of abduction: theoretical models abduction, factual abduction, and law abduction during the learning process. Implications for science inquiry learning as well as relevant research were suggested.
NASA Astrophysics Data System (ADS)
Hwong, Y. L.; Oliver, C.; Van Kranendonk, M. J.
2016-12-01
The rise of social media has transformed the way the public engages with scientists and science organisations. `Retweet', `Like', `Share' and `Comment' are a few ways users engage with messages on Twitter and Facebook, two of the most popular social media platforms. Despite the availability of big data from these digital footprints, research into social media science communication is scant. This paper presents the results of an empirical study into the processes and outcomes of space science related social media communications using machine learning. The study is divided into two main parts. The first part is dedicated to the use of supervised learning methods to investigate the features of highly engaging messages., e.g. highly retweeted tweets and shared Facebook posts. It is hypothesised that these messages contain certain psycholinguistic features that are unique to the field of space science. We built a predictive model to forecast the engagement levels of social media posts. By using four feature sets (n-grams, psycholinguistics, grammar and social media), we were able to achieve prediction accuracies in the vicinity of 90% using three supervised learning algorithms (Naive Bayes, linear classifier and decision tree). We conducted the same experiments on social media messages from three other fields (politics, business and non-profit) and discovered several features that are exclusive to space science communications: anger, authenticity, hashtags, visual descriptions and a tentative tone. The second part of the study focuses on the extraction of topics from a corpus of texts using topic modelling. This part of the study is exploratory in nature and uses an unsupervised method called Latent Dirichlet Allocation (LDA) to uncover previously unknown topics within a large body of documents. Preliminary results indicate a strong potential of topic model algorithms to automatically uncover themes hidden within social media chatters on space related issues, with keywords such as `exoplanet', `water' and `life' being clustered together forming a topic (i.e. 'Astrobiology'). Results also demonstrate the freewheeling nature of social media conversations, while providing evidence for the role of these platforms in facilitating meaningful exchanges among science audience.
Space station needs, attributes and architectural options: Mission requirements
NASA Technical Reports Server (NTRS)
1983-01-01
Various mission requirements for the proposed space station are examined. Subjects include modelling methodology, science applications, commercial opportunities, operations analysis, integrated mission requirements, and the role of man in space station functions and activities. The information is presented through the use of graphs.
NASA Technical Reports Server (NTRS)
Shirazi, Yasaman; Choi, S.; Harris, C.; Gong, C.; Fisher, R. J.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. K.
2017-01-01
Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASA's life sciences research to perform long duration, rodent experiments on the International Space Station (ISS) to study effects of the space environment on the musculoskeletal and neurological systems of mice as model organisms of human health and disease, particularly in areas of muscle atrophy, bone loss, and fracture healing. To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research Project at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. The Rodent Research Habitat provides a living environment for animals on ISS according to standard animal welfare requirements, and daily health checks can be performed using the habitats camera system. Results from these studies contribute to the science community via both the primary investigation and banked samples that are shared in publicly available data repository such as GeneLab. Following each flight, through the Biospecimen Sharing Program (BSP), numerous tissues and thousands of samples will be harvested, and distributed from the Space Life and Physical Sciences (SLPS) to Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). Every completed mission sets a foundation to build and design greater complexity into future research and answer questions about common human diseases. Together, the hardware improvements (enrichment, telemetry sensors, cameras), new capabilities (live animal return), and experience that the Rodent Research team has gained working with principal investigator teams and ISS crew to conduct complex experiments on orbit are expanding capabilities for long duration rodent research on the ISS to achieve both basic science and biomedical research objectives.
1992-01-01
The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), The French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. This photograph shows Astronaut Norman Thagard performing the fluid experiment at the Fluid Experiment System (FES) facility inside the laboratory module. The FES facility had sophisticated optical systems for imaging fluid flows during materials processing, such as experiments to grow crystals from solution and solidify metal-modeling salts. A special laser diagnostic technique recorded the experiments, holograms were made for post-flight analysis, and video was used to view the samples in space and on the ground. Managed by the Marshall Space Flight Center (MSFC), the IML-1 mission was launched on January 22, 1992 aboard the Shuttle Orbiter Discovery (STS-42).
Large-Scale NASA Science Applications on the Columbia Supercluster
NASA Technical Reports Server (NTRS)
Brooks, Walter
2005-01-01
Columbia, NASA's newest 61 teraflops supercomputer that became operational late last year, is a highly integrated Altix cluster of 10,240 processors, and was named to honor the crew of the Space Shuttle lost in early 2003. Constructed in just four months, Columbia increased NASA's computing capability ten-fold, and revitalized the Agency's high-end computing efforts. Significant cutting-edge science and engineering simulations in the areas of space and Earth sciences, as well as aeronautics and space operations, are already occurring on this largest operational Linux supercomputer, demonstrating its capacity and capability to accelerate NASA's space exploration vision. The presentation will describe how an integrated environment consisting not only of next-generation systems, but also modeling and simulation, high-speed networking, parallel performance optimization, and advanced data analysis and visualization, is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions. The talk will conclude by discussing how NAS partnered with various NASA centers, other government agencies, computer industry, and academia, to create a national resource in large-scale modeling and simulation.
Chinese Manned Space Utility Project
NASA Astrophysics Data System (ADS)
Gu, Y.
Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured
Space Science Projects. LC Science Tracer Bullet. TB 06-3
ERIC Educational Resources Information Center
Shaw, Loretta, Comp.
2006-01-01
Space science, or the space sciences, are fields of science that are concerned with the study or utilization of outer space. There are several major fields of space science including astronomy, exobiology, space transport, and space exploration and colonization. In addition, space sciences impact or are related to many other fields, from the…
Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA
NASA Technical Reports Server (NTRS)
Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.
2001-01-01
Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
NASA Technical Reports Server (NTRS)
1983-01-01
Mission areas analyzed for input to the baseline mission model include: (1) commercial materials processing, including representative missions for producing metallurgical, chemical and biological products; (2) commercial Earth observation, represented by a typical carry-on mission amenable to commercialization; (3) solar terrestrial and resource observations including missions in geoscience and scientific land observation; (4) global environment, including representative missions in meteorology, climatology, ocean science, and atmospheric science; (5) materials science, including missions for measuring material properties, studying chemical reactions and utilizing the high vacuum-pumping capacity of space; and (6) life sciences with experiments in biomedicine and animal and plant biology.
ChemCam rock laser for Mars Science Laboratory "Curiosity"
Wiens, Roger
2018-02-06
Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.
ChemCam rock laser for Mars Science Laboratory "Curiosity"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiens, Roger
2010-09-03
Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008.more » The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.« less
NASA Technical Reports Server (NTRS)
1979-01-01
Needs and requirements for a free flying space science and applications platform to host groupings of compatible, extended mission experiments in earth orbit are discussed. A payload model which serves to define a typical set of mission requirements in the form of a descriptive data base is presented along with experiment leval and group level data summarizations and flight schedules. The payload descriptions are grouped by technology into the following categories: communications, materials (long term effect upon), materials technology development, power, sensors, and thermal control.
USSR Space Life Sciences Digest, issue 32
NASA Technical Reports Server (NTRS)
Stone, Lydia Razran (Editor); Rowe, Joseph (Editor)
1992-01-01
This is the thirty-second issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 34 journal or conference papers published in Russian and of 4 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, cardiovascular and respiratory systems, developmental biology, exobiology, habitability and environmental effects, human performance, hematology, mathematical models, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, and reproductive system.
NASA Astrophysics Data System (ADS)
Moldwin, M. B.; Fiello, D.; Harter, E.; Holman, G.; Nagumo, N.; Pryharski, A.; Takunaga, C.
2008-12-01
An elementary science education professional development partnership between Culver City Unified School District teachers and UCLA has been formed. The project was designed to assist teachers to comfortably present introductory space science concepts, to support them in their efforts, and to aid them in encouraging their students to develop inquiry skills related to space sciences. The project encourages teacher use of observational science techniques in their classrooms, the use of NASA solar mission images and enhanced use of astronomical observation to facilitate discovery learning. The integrated approach of the project has fostered collegial learning activities among the participating teachers and offered them opportunities for continued renewal and professional development of teacher competencies in astronomy and space science. The activities used in the classroom were developed by others, classroom tested, and specifically address National Science Education and California Science Content Standards. These activities have been sustained through on-going collaboration between the scientist and the teachers, a summer Research Experience for Teachers program, and on-going, grade-specific, district-sponsored workshops. Assessment of the value of the program is done by the school district and is used to continuously improve each workshop and program component. Culver City (California) Unified School District is a small urban school district located on the Westside of Los Angeles. This paper describes the program and the plans for incorporating IHY-themed science into the classroom.
A Space Science Summer Program for Minority Students in Middle School
NASA Astrophysics Data System (ADS)
Baker, A. M.; Patterson, L. A., III; Walter, D. K.
2003-05-01
South Carolina State University's (SCSU) Center for NASA Research and Technology started the Space Science Academy in 1998 for underrepresented minority students and teachers in grades 7-9. It has been offered every summer since then and has expanded from five half-days in 1998 to its current format as a full, two-week, residential program for the students with an additional three days of training for the teachers. Nearly 120 students and twenty teachers have participated over the years. The three day workshop for in-service and preservice teachers is based on the national and state science standards and includes hands-on, inquiry-based activities. The students live in the dorms on the campus at SCSU during the two weeks of the Space Science Academy. Sample activities include construction of model rockets and the planet Saturn, an in-depth study of the Sun and accessing astrophysical and NASA websites. We wish to acknowledge generous funding from the NASA MU-SPIN project through NCC 5-116 and NCC 5-534 as well as an IDEAS grant HST-ED-90242.01-A through the Space Telescope Science Institute.
USSR Space Life Sciences Digest, issue 9
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.
1987-01-01
This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.
Crew roles and interactions in scientific space exploration
NASA Astrophysics Data System (ADS)
Love, Stanley G.; Bleacher, Jacob E.
2013-10-01
Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.
Overview of NASA Heliophysics and the Science of Space Weather
NASA Astrophysics Data System (ADS)
Talaat, E. R.
2017-12-01
In this paper, an overview is presented on the various activities within NASA that address space weather-related observations, model development, and research to operations. Specific to space weather, NASA formulates and implements, through the Heliophysics division, a national research program for understanding the Sun and its interactions with the Earth and the Solar System and how these phenomena impact life and society. NASA researches and prototypes new mission and instrument capabilities in this area, providing new physics-based algorithms to advance the state of solar, space physics, and space weather modeling.
Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook
2012-01-01
The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.
USSR Space Life Sciences Digest, issue 25
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1990-01-01
This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.
New Paradigms for Ensuring the Enduring Viability of the Space Science Enterprise
NASA Astrophysics Data System (ADS)
Arenberg, Jonathan; Conti, Alberto
2018-01-01
Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future large space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This poster will present our recent results on the origins of these new questions and the steps to their answers.
Members of House Committee on Science and Astronautics Visited MSFC
NASA Technical Reports Server (NTRS)
1962-01-01
The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun and Richard L. Roudebush, Republican representative of Indiana, discuss Apollo models.
Protocol Architecture Model Report
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASA's four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. This report applies the methodology to three space Internet-based communications scenarios for future missions. CNS has conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. The scenarios are: Scenario 1: Unicast communications between a Low-Earth-Orbit (LEO) spacecraft inspace Internet node and a ground terminal Internet node via a Tracking and Data Rela Satellite (TDRS) transfer; Scenario 2: Unicast communications between a Low-Earth-Orbit (LEO) International Space Station and a ground terminal Internet node via a TDRS transfer; Scenario 3: Multicast Communications (or "Multicasting"), 1 Spacecraft to N Ground Receivers, N Ground Transmitters to 1 Ground Receiver via a Spacecraft.
NASA Technical Reports Server (NTRS)
Dhas, Chris
2000-01-01
NASAs Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASAs four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. CNS previously developed a report which applied the methodology, to three space Internet-based communications scenarios for future missions. CNS conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. GRC selected for further analysis the scenario that involved unicast communications between a Low-Earth-Orbit (LEO) International Space Station (ISS) and a ground terminal Internet node via a Tracking and Data Relay Satellite (TDRS) transfer. This report contains a tradeoff analysis on the selected scenario. The analysis examines the performance characteristics of the various protocols and architectures. The tradeoff analysis incorporates the results of a CNS developed analytical model that examined performance parameters.
Life Modeling for Nickel-Hydrogen Batteries in Geosynchronous Satellite Operation
2005-03-25
aerothermodynamics; chemical and electric propulsion; environmental chemistry; combustion processes; space environment effects on materials, hardening and...intelligent microinstruments for monitoring space and launch system environments . Space Science Applications Laboratory: Magnetospheric, auroral and cosmic-ray...hyperspectral imagery to defense, civil space, commercial, and environmental missions; effects of solar activity, magnetic storms and nuclear explosions on the
NASA Astrophysics Data System (ADS)
Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.
2012-12-01
Community Coordinated Modeling Center (CCMC) was established to enhance basic solar terrestrial research and to aid in the development of models for specifying and forecasting conditions in the space environment. In achieving this goal, CCMC has developed and provides a set of innovative tools varying from: Integrated Space Weather Analysis (iSWA) web -based dissemination system for space weather information, Runs-On-Request System providing access to unique collection of state-of-the-art solar and space physics models (unmatched anywhere in the world), Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and recently Mobile apps (iPhone/Android) to view space weather data anywhere to the scientific community. The number of runs requested and the number of resulting scientific publications and presentations from the research community has not only been an indication of the broad scientific usage of the CCMC and effective participation by space scientists and researchers, but also guarantees active collaboration and coordination amongst the space weather research community. Arising from the course of CCMC activities, CCMC also supports community-wide model validation challenges and research focus group projects for a broad range of programs such as the multi-agency National Space Weather Program, NSF's CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions), GEM (Geospace Environment Modeling) and Shine (Solar Heliospheric and INterplanetary Environment) programs. In addition to performing research and model development, CCMC also supports space science education by hosting summer students through local universities; through the provision of simulations in support of classroom programs such as Heliophysics Summer School (with student research contest) and CCMC Workshops; training next generation of junior scientists in space weather forecasting; and educating the general public about the importance and impacts of space weather effects. Although CCMC is organizationally comprised of United States federal agencies, CCMC services are open to members of the international science community and encourages interagency and international collaboration. In this poster, we provide an overview of using Community Coordinated Modeling Center (CCMC) tools and services to support worldwide space weather scientific communities and networks.;
V and V Efforts of Auroral Precipitation Models: Preliminary Results
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Kuznetsova, Masha; Rastaetter, Lutz; Hesse, Michael
2011-01-01
Auroral precipitation models have been valuable both in terms of space weather applications and space science research. Yet very limited testing has been performed regarding model performance. A variety of auroral models are available, including empirical models that are parameterized by geomagnetic indices or upstream solar wind conditions, now casting models that are based on satellite observations, or those derived from physics-based, coupled global models. In this presentation, we will show our preliminary results regarding V&V efforts of some of the models.
Space exploration: The interstellar goal and Titan demonstration
NASA Technical Reports Server (NTRS)
1982-01-01
Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed.
ScienceCast 121: The Effects of Space Weather on Aviation
2013-10-25
Ordinary air travelers can be exposed to significant doses of radiation during solar storms. A new computer model developed by NASA aims to help protect the public by predicting space weather hazards to aviation.
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.; Richard, Eliabeth E.; Fogarty, Jennifer A.; Rando, Cynthia M.
2011-01-01
This slide presentation reviews the Space Life Sciences Directorate (SLSD) new business model for problem solving, with emphasis on open collaboration and innovation. The topics that are discussed are: an overview of the work of the Space Life Sciences Directorate and the strategic initiatives that arrived at the new business model. A new business model was required to infuse open collaboration/innovation tools into existing models for research, development and operations (research announcements, procurements, SBIR/STTR etc). This new model involves use of several open innovation partnerships: InnoCentive, Yet2.com, TopCoder and NASA@work. There is also a new organizational structure developed to facilitate the joint collaboration with other NASA centers, international partners, other U.S. Governmental organizations, Academia, Corporate, and Non-Profit organizations: the NASA Human Health and Performance Center (NHHPC).
NASA Technical Reports Server (NTRS)
Cogoli, A. (Editor); Cogoli-Greuter, M. (Editor); Gruener, R. (Editor); Sievers, A. (Editor); Ubbels, G. A. (Editor); Halstead, T. W. (Editor); Ross, M. D. (Editor); Roux, S. J. (Editor); Oser, H. (Editor); Lujan, B. F. (Editor)
1994-01-01
The conference includes papers describing theories and models of cell biology in microgravity and weightlessness; experimental research on cellular responses to altered gravity in plants and animals, natural and simulated; graviresponses in plants; gravitational effects in developmental biology; mechanisms of gravisensing; effects on animals and humans; and educational programs in Space Life Sciences.
Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate
NASA Technical Reports Server (NTRS)
Kerr, Frank
1992-01-01
A visiting scientist program was conducted in the space and earth sciences at GSFC. Research was performed in the following areas: astronomical observations; broadband x-ray spectral variability; ground-based spectroscopic and photometric studies; Seyfert galaxies; active galactic nuclei (AGN); massive stellar black holes; the differential microwave radiometer (DMR) onboard the cosmic background explorer (COBE); atmospheric models; and airborne and ground based radar observations. The specific research efforts are detailed by tasks.
NASA's SPICE System Models the Solar System
NASA Technical Reports Server (NTRS)
Acton, Charles
1996-01-01
SPICE is NASA's multimission, multidiscipline information system for assembling, distributing, archiving, and accessing space science geometry and related data used by scientists and engineers for mission design and mission evaluation, detailed observation planning, mission operations, and science data analysis.
Encoding Dissimilarity Data for Statistical Model Building.
Wahba, Grace
2010-12-01
We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025
NASA Astrophysics Data System (ADS)
Fellous, Jean-Louis
2016-07-01
The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international cooperation.
Rising Above the Storm: DIG TEXAS
NASA Astrophysics Data System (ADS)
Ellins, K. K.; Miller, K. C.; Bednarz, S. W.; Mosher, S.
2011-12-01
For a decade Texas educators, scientists and citizens have shown a commitment to earth science education through planning at the national and state levels, involvement in earth science curriculum and teacher professional development projects, and the creation of a model senior level capstone Earth and Space Science course first offered in 2010 - 2011. The Texas state standards for Earth and Space Science demonstrate a shift to rigorous content, career relevant skills and use of 21st century technology. Earth and Space Science standards also align with the Earth Science, Climate and Ocean Literacy framework documents. In spite of a decade of progress K-12 earth science education in Texas is in crisis. Many school districts do not offer Earth and Space Science, or are using the course as a contingency for students who fail core science subjects. The State Board for Educator Certification eliminated Texas' secondary earth science teacher certification in 2009, following the adoption of the new Earth and Space Science standards. This makes teachers with a composite teacher certification (biology, physics and chemistry) eligible to teach Earth and Space Science, as well other earth science courses (e.g., Aquatic Science, Environmental Systems/Science) even if they lack earth science content knowledge. Teaching materials recently adopted by the State Board of Education do not include Earth and Space Science resources. In July 2011 following significant budget cuts at the 20 Education Service Centers across Texas, the Texas Education Agency eliminated key staff positions in its curriculum division, including science. This "perfect storm" has created a unique opportunity for a university-based approach to confront the crisis in earth science education in Texas which the Diversity and Innovation in the Geosciences (DIG) TEXAS alliance aims to fulfill. Led by the Texas A&M University College of Geosciences and The University of Texas Jackson School of Geosciences, with initial assistance of the American Geophysical Union, the alliance comprises earth scientists and educators at higher education institutions across the state, and science teachers, united to improve earth science literacy (geoscience-earth, ocean, atmospheric, planetary, and geography) among Texas science teachers in order to attract individuals from groups underrepresented in STEM fields to pursue earth science as a career. Members of the alliance are affiliated with one of eight regional DIG TEXAS hub institutions. With an NSF planning grant, DIG TEXAS leaders created the DIG TEXAS brand, developed a project website, organized and held the first community meeting in March, 2011 at Exxon Mobil's Training Center in Houston. DIG TEXAS members have also delivered testimony to the State Board for Educator Certification in support of a new earth science teacher certification and collaborated on proposals that seek funding to support recommendations formulated at the community meeting.
NASA Astrophysics Data System (ADS)
Lesinski-Roscoe, Rachel A.
This qualitative study sought to gain an understanding of science teachers' perceptions of reform and their role in implementing reform and science-based literacy practices in the classroom, as well as gain an understanding of science teachers' knowledge of disciplinary literacy as the implied framework of reform (i.e., the Next Generation Science Standards). Four focal participants from a suburban, middle-class high school district comprised of two high schools participated in semi-structured interviews, observations, and a stimulated recall task and interview. Data analysis revealed some of the Discourse memberships in which participants claimed membership and the tensions that resulted from those memberships. From this data, a theory emerged of the role of third space in navigating these tensions, and a model for developing a third space is presented, which literacy professionals can reference when working to develop collaborative relationships with science teachers in order to scaffold science-specific literacy practices for student engagement. The information in this study prompts future research regarding the ability of science teachers and literacy professionals to navigate Discourses in a Field Code Changed third space using a disciplinary literacy approach to developing curriculum in order to apprentice students into the discipline of science and develop a citizenry of scientifically literate individuals.
Informal science education at Science City
NASA Astrophysics Data System (ADS)
French, April Nicole
The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.
The GTTP Movement: Engaging young minds to the beauty of science and space exploration
NASA Astrophysics Data System (ADS)
Doran, Rosa
2015-03-01
The Galileo Teacher Training Program (GTTP) is a living legacy of IYA2009. As a cornerstone of this important moment in the history of Astronomy, GTTP has managed to name representatives in over 100 nations and reached over 15000 teachers at a global level. The model used so far ensures sustainability and a fast growing support network. The task at hand is to engage educators in the use of modern tools for science teaching. Building the classroom of tomorrow is a promising path to engage young minds to the beauty of science and space exploration.
NASA Technical Reports Server (NTRS)
Denkins, Pamela S.; Saganti, P.; Obot, V.; Singleterry, R.
2006-01-01
This viewgraph document reviews the Radiation Interuniversity Science and Engineering (RaISE) Project, which is a project that has as its goals strengthening and furthering the curriculum in radiation sciences at two Historically Black Colleges and Universities (HBCU), Prairie View A&M University and Texas Southern University. Those were chosen in part because of the proximity to NASA Johnson Space Center, a lead center for the Space Radiation Health Program. The presentation reviews the courses that have been developed, both in-class, and on-line.
Creating the Public Connection: Interactive Experiences with Real-Time Earth and Space Science Data
NASA Technical Reports Server (NTRS)
Reiff, Patricia H.; Ledley, Tamara S.; Sumners, Carolyn; Wyatt, Ryan
1995-01-01
The Houston Museum of Natural Sciences is less than two miles from Rice University, a major hub on the Internet. This project links these two institutions so that NASA real-time data and imagery can flow via Rice to the Museum where it reaches the public in the form of planetarium programs, computer based interactive kiosks, and space and Earth science problem solving simulation. Through this program at least 200,000 visitors annually (including every 4th and 7th grader in the Houston Independent School District) will have direct exposure to the Earth and space research being conducted by NASA and available over the Internet. Each information conduit established between Rice University and the Houston Museum of Natural Science will become a model for public information dissemination that can be replicated nationally in museums, planetariums, Challenger Centers, and schools.
Outreach to Space - A Collaborative Model for Rural Community Engagement
NASA Astrophysics Data System (ADS)
Schafer, Sheldon; Space Museum Collaborative, Outreach to
2008-05-01
Outreach to Space is a collaborative project of 11 mid-western and west coast science museums, designed to provide astronomy and space exploration content to non-traditional audiences in non-traditional venues. Members have developed a set of 12 portable, interactive astronomy exhibits that will be delivered to mostly underserved rural populations, at non-traditional venues in 2008-2009. These venues are to include county and regional fairs, and summer and fall festivals - places that attract diverse and underserved audiences. During the intervening year, the exhibits will visit groups and agencies such as Rotary clubs, Urban League after-school programs, inner city youth clubs & agencies, rural libraries, and other similar venues. The primary target audience is 5-13 year old children and their extended families that live in rural and lower-economic areas. Outreach to Space Partner Museums Alaska: The Imaginarium, Anchorage California: The Exploratorium, San Francisco Illinois: Discovery Center, Rockford Lakeview Museum, Peoria SciTech, Aurora Indiana: Children's Science Museum, Terre Haute Evansville Museum of Arts and Science Science Central, Fort Wayne Iowa: Bluedorn Imaginarium, Waterloo Science Station, Cedar Rapids Oregon: Science Works, Ashland This session will include an opportunity to interact with each of the exhibits, review the educational materials, and use the personal media player programs that have been developed to provide additional depth to the visitor experience. The exhibit development process and organizational elements of the collaborative will also be discussed. Outreach to Space is funded by a grant from the National Science Foundation's Informal Science Program.
The Space Academy: Going beyond "Inspiration"--A Pioneering Model for Science Education
ERIC Educational Resources Information Center
Ojha, Anu; Hill, Sarah
2012-01-01
This article outlines the Space Academy programme led by the National Space Centre from 2008 to 2011 with the stated goals of harnessing the inspirational contexts of space and climate change to support GCSE, A-level and vocational students in their curriculum studies as well as to enhance STEM teacher effectiveness and increase the awareness of…
Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences
NASA Astrophysics Data System (ADS)
Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.
The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge Rotor, which is capable of supporting variable gravity experiments from microgravity through 2g.
The Art and Science of Long-Range Space Weather Forecasting
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Wilson, Robert M.
2006-01-01
Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.
Members of House Committee on Science and Astronautics Visited MSFC
NASA Technical Reports Server (NTRS)
1962-01-01
The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Standing at the Apollo Applications Program Cluster Model in building 4745 are (left-to-right): Dr. Wernher von Braun, MSFC; Congressman Joe D. Waggoner, Democratic representative of Louisiana; Congressman Earle Cabell, Democratic representative of Texas; Subcommittee Chairman Olin E. Teague, Democratic representative of Texas; Congressman James G. Fulton, Republican representative of Pennsylvania; and Dr. Ernst Stuhlinger, associate MSFC director for science. The subcommittee was briefed on MSFC's manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program.
USSR Space Life Sciences Digest, issue 11
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)
1987-01-01
This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.
SpaceX Dragon returns on This Week @NASA- October 31, 2014
2014-10-31
The SpaceX Dragon cargo capsule was recently detached from the International Space Station for its return to Earth, just over a month after delivering about 5,000 pounds of supplies and experiments to the ISS. Dragon safely returned to Earth with more than 3,200 pounds of NASA cargo and science samples – completing the company’s fourth resupply mission to the station. Also, Destination Station ISS Tech Forum, Orbital Sciences investigating accident, Russian supply ships to and from the ISS, Next ISS crew trains in Russia, Wind tunnel tests of SLS model and more!
A Challenge for International Cooperation in Astronomy and Basic Space Science
NASA Astrophysics Data System (ADS)
Haubold, Hans
In 1990, the United Nations in cooperation with the European Space Agency initiated the organization of a series of annual Workshops on Basic Space Science for the benefit of astronomers and space scientists in (i) Asia and the Pacific, (ii) Latin America and the Caribbean, (iii) Africa, (iv) Western Asia, and (v) Europe. This article provides an update on accomplishments of three cycles of these workshops and their follow-up projects held for the five regions in (i) India (1991), Sri Lanka (1995), (ii) Costa Rica and Colombia (1992), Honduras (1997), (iii) Nigeria (1993), (iv) Egypt (1994), Jordan (1999), and (v) Germany (1996), France (2000). The workshop series is being considered unique and a model for the world-wide development of astronomy and space science. It has been organized based on the notion that astronomy has deep roots in virtually every human culture, that it helps to understand humanity's place in the vast scale of the Universe, and that it increases the knowledge of humanity about its origins and evolution.
NASA Astrophysics Data System (ADS)
Galluzzi, M. C.
2018-02-01
Three goals can be achieved by 2030: 1. NASA will have the capability for remote on-demand 3d printing of critical hardware using regolith material as feedstock, 2. Logistics footprint reduced by 35%, 3. Deep Space Gateway will become 75% self-sustaining.
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.
2005-01-01
When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored to SMART needs during mission development and science analysis. In this presentation, we will present an overview of SMART theory and modeling team activities. In particular, we will provide examples of science objectives derived from state-of-the art models, and of recent research results that continue to be utilized in SMART mission development.
KSC-20170216-MH-LCH01-0001-CRS_10_APH_Apex_4_and_Veggie_processing-3145683(H.265)
2017-02-16
APEX-04, or Advanced Plant Experiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX CRS-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
NASA Astrophysics Data System (ADS)
Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Akujärvi, Altti; Saari, Heikki; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe
2016-10-01
PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT Technical Research Centre of Finland Ltd, Clyde Space Ltd. (UK) and Centre Spatial de Liège (BE). The test campaign for the engineering model of the PICASSO VISION instrument, a miniaturized nanosatellite spectral imager, has been successfully completed. The test results look very promising. The proto-flight model of VISION has also been successfully integrated and it is waiting for the final integration to the satellite platform.
Space Weather Forecasting and Supporting Research in the USA
NASA Astrophysics Data System (ADS)
Pevtsov, A. A.
2017-12-01
In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.
NASA Technical Reports Server (NTRS)
Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
A Distributed Simulation Software System for Multi-Spacecraft Missions
NASA Technical Reports Server (NTRS)
Burns, Richard; Davis, George; Cary, Everett
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
End-to-End Trade-space Analysis for Designing Constellation Missions
NASA Astrophysics Data System (ADS)
LeMoigne, J.; Dabney, P.; Foreman, V.; Grogan, P.; Hache, S.; Holland, M. P.; Hughes, S. P.; Nag, S.; Siddiqi, A.
2017-12-01
Multipoint measurement missions can provide a significant advancement in science return and this science interest coupled with many recent technological advances are driving a growing trend in exploring distributed architectures for future NASA missions. Distributed Spacecraft Missions (DSMs) leverage multiple spacecraft to achieve one or more common goals. In particular, a constellation is the most general form of DSM with two or more spacecraft placed into specific orbit(s) for the purpose of serving a common objective (e.g., CYGNSS). Because a DSM architectural trade-space includes both monolithic and distributed design variables, DSM optimization is a large and complex problem with multiple conflicting objectives. Over the last two years, our team has been developing a Trade-space Analysis Tool for Constellations (TAT-C), implemented in common programming languages for pre-Phase A constellation mission analysis. By evaluating alternative mission architectures, TAT-C seeks to minimize cost and maximize performance for pre-defined science goals. This presentation will describe the overall architecture of TAT-C including: a User Interface (UI) at several levels of details and user expertise; Trade-space Search Requests that are created from the Science requirements gathered by the UI and validated by a Knowledge Base; a Knowledge Base to compare the current requests to prior mission concepts to potentially prune the trade-space; a Trade-space Search Iterator which, with inputs from the Knowledge Base, and, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generates multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, modeling orbits to balance accuracy and performance. The current version includes uniform and non-uniform Walker constellations as well as Ad-Hoc and precessing constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The current GUI automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost. The end-to-end system will be demonstrated as part of the presentation.
End-to-End Trade-Space Analysis for Designing Constellation
NASA Technical Reports Server (NTRS)
Le Moigne, Jacqueline; Dabney, Philip; Foreman, Veronica; Grogan, Paul T.; Hache, Sigfried; Holland, Matthew; Hughes, Steven; Nag, Sreeja; Siddiqi, Afreen
2017-01-01
Multipoint measurement missions can provide a significant advancement in science return and this science interest coupled with as many recent technological advances are driving a growing trend in exploring distributed architectures for future NASA missions. Distributed Spacecraft Missions (DSMs) leverage multiple spacecraft to achieve one or more common goals. In particular, a constellation is the most general form of DSM with two or more spacecraft placed into specific orbit(s) for the purpose of serving a common objective (e.g., CYGNSS). Because a DSM architectural trade-space includes both monolithic and distributed design variables, DSM optimization is a large and complex problem with multiple conflicting objectives. Over the last two years, our team has been developing a Trade-space Analysis Tool for Constellations (TAT-C), implemented in common programming languages for pre-Phase A constellation mission analysis. By evaluating alternative mission architectures, TAT-C seeks to minimize cost and maximize performance for pre-defined science goals. This presentation will describe the overall architecture of TAT-C including: a User Interface (UI) at several levels of details and user expertise; Trade-space Search Requests that are created from the Science requirements gathered by the UI and validated by a Knowledge Base; a Knowledge Base to compare the current requests to prior mission concepts to potentially prune the trade-space; a Trade-space Search Iterator which, with inputs from the Knowledge Base, and, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generates multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, modeling orbits to balance accuracy and performance. The current version includes uniform and non-uniform Walker constellations as well as Ad-Hoc and precessing constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The current GUI automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost. The end-to-end system will be demonstrated as part of the presentation.
In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.
2012-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.
Transforming community access to space science models
NASA Astrophysics Data System (ADS)
MacNeice, Peter; Hesse, Michael; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-04-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
Transforming Community Access to Space Science Models
NASA Technical Reports Server (NTRS)
MacNeice, Peter; Heese, Michael; Kunetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti
2012-01-01
Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.
NASA Astrophysics Data System (ADS)
Scalzo, F.; Frost, J.; Carlson, B. E.; Marchese, P.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Baruh, H.; Decker, S.; Thangam, S.; Miles, J.; Moshary, F.; Rossow, W.; Greenbaum, S.; Cheung, T. K.; Johnson, L. P.
2010-12-01
1 Frank Scalzo, 1 Barbara Carlson, 2 Leon Johnson, 3 Paul Marchese, 1 Cynthia Rosenzweig, 2 Shermane Austin, 1 Dorothy Peteet, 1 Len Druyan, 1 Matthew Fulakeza, 1 Stuart Gaffin, 4 Haim Baruh, 4 Steven Decker, 5 Siva Thangam, 5 Joe Miles, 6 James Frost, 7 Fred Moshary, 7 William Rossow, 7 Samir Ahmed, 8 Steven Greenbaum and 3 Tak Cheung 1 NASA Goddard Institute for Space Studies, USA 2 Physical, Environmental and Computer Sciences, Medgar Evers College, CUNY, Brooklyn, NY, USA 3 Physics, Queensborough Community College, CUNY, Queens, NY, USA 4 Rutgers University, Newark, NJ, USA 5 Stevens Institute of Technology, Hoboken, NJ, USA 6 Physics, LaGuardia Community College, CUNY, Queens, NY, USA 7 Electrical Engineering, City College of New York, CUNY, USA 8 Physics, Hunter College, CUNY, USA The New York City Research Initiative (NYCRI) is a research and academic program that involves high school, undergraduate and graduate students, and high school teachers in research teams under the mentorship of college/university principal investigator of NASA funded projects and/or NASA scientists. The principal investigators are at 7 colleges/universities within a 20-mile radius of New York City (NYC and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies. The program supports research in Earth Science, Space Science, and Space Technology. Research investigations include: Sea Surface Temperature and Precipitation in the West African Monsoon, Urban Heat Island: Sun and Rain Effects, Decadal Changes in Aerosol and Asthma, Variations in Salinity and River Discharge in the Hudson River Estuary, Environmental Change in the Hudson Estuary Wetlands, Verification of Winter Storm Scale Developed for Nor’easters, Solar Weather and Tropical Cyclone Activity, Tropospheric and Stratospheric Ozone Investigation in Metropolitan NYC, Aerosol Optical Depth through use of a MFRSR, Detection of Concentration in the Atmosphere Using a Quantum Cascade Laser System, Optimization Model for Future Lunar Colony, Models of Space Travel, and NMR Investigation of MnO2 Infused Carbon Nanofoams. We describe student research, significant results and enrichment activities during the Summer 2010. The NYCRI partners with the CUNY-GISS Center for Global Climate Change, an NSF REU Site. The NYCRI is supported by NASAâ^À^Ùs Earth Science Office, GSFC Education Office, as well as NASA and NSF awards to NYCRI College/University Principal Investigators.
Advancing participation of blind students in Science, Technology, Engineering, and Math
NASA Astrophysics Data System (ADS)
Beck-Winchatz, Bernhard; Riccobono, Mark A.
2008-12-01
Like their sighted peers, many blind students in elementary, middle, and high school are naturally interested in space. This interest can motivate them to learn fundamental scientific, quantitative, and critical thinking skills, and sometimes even lead to careers in Science, Technology, Engineering, and Math (STEM) disciplines. However, these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats, the unfamiliarity of teachers with non-visual teaching methods, lack of access to blind role models, and the low expectations of their teachers and parents. We discuss joint efforts by the National Aeronautics and Space Administration (NASA) and the National Federation of the Blind’s (NFB) National Center for Blind Youth in Science (NCBYS) to develop and implement strategies to promote opportunities for blind youth in science. These include the development of tactile space science books and curriculum materials, science academies for blind middle school and high school students, and college-level internship and mentoring programs. The partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals.
USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.
2005-08-01
A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).
Oklahoma Space Industry Development Authority
NASA Technical Reports Server (NTRS)
2002-01-01
The purpose of this grant was to increase the awareness of students of space sciences and commerce through experimentation. This objective was carried out through the award and administration, by OSIDA, the Oklahoma Space Industry Development Authority, of eleven smaller grants to fund thirteen projects at schools determined by competitive application. Applications were graded on potential outreach, experimentation objectives and impact on students' awareness of space sciences. We chose projects from elementary, middle and high schools as well as colleges that would encourage students through research and experimentation to consider education and careers in related disciplines. Each organization did not receive an equal share of the grant; instead, OSIDA distributed the money to each project based on the organization's need. A copy of the dispersement record is enclosed with this final grant report. The projects covered topics such as: space colonization, space stations, constellations, model rocketry, and space commerce.
USSR Space Life Sciences Digest, issue 29
NASA Technical Reports Server (NTRS)
Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)
1991-01-01
This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.
Exploring Space Physics Concepts Using Simulation Results
NASA Astrophysics Data System (ADS)
Gross, N. A.
2008-05-01
The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the National Science Foundation, has the goal of developing a suite of integrated physics based computer models of the space environment that can follow the evolution of a space weather event from the Sun to the Earth. In addition to the research goals, CISM is also committed to training the next generation of space weather professionals who are imbued with a system view of space weather. This view should include an understanding of both helio-spheric and geo-space phenomena. To this end, CISM offers a yearly Space Weather Summer School targeted to first year graduate students, although advanced undergraduates and space weather professionals have also attended. This summer school uses a number of innovative pedagogical techniques including devoting each afternoon to a computer lab exercise that use results from research quality simulations and visualization techniques, along with ground based and satellite data to explore concepts introduced during the morning lectures. These labs are suitable for use in wide variety educational settings from formal classroom instruction to outreach programs. The goal of this poster is to outline the goals and content of the lab materials so that instructors may evaluate their potential use in the classroom or other settings.
Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs
NASA Astrophysics Data System (ADS)
Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.
2005-05-01
Our methods of teaching Earth and space science as two disciplines do not represent the spirit of earlier scientists such as Aristotle, da Vinci, and Galileo. We need to re-evaluate these methods and take advantage of the excitement created in the general public over the recent space science exploration programs. The information that we are obtaining from both the Mars missions and Cassini-Huygens focuses on interpreting geomorphology, mineral compositions and gas identification based on Earth as a baseline for data evaluation. This type of evaluation is an extension of Hutton's 18th century principle of Uniformitarianism, the present is the key to the past, or Earth is the key for understanding extraterrestrial bodies. Geomorphological examples are volcanic activity, meteoritic impacts, and evidence of water altering surface features. The Hawaiian, or shield, type volcanoes are analogues for Olympus Mons and the other volcanoes on Mars. Other examples include comparing sand dunes on Earth with possible Martian dunes, known stream patterns on Earth with potential stream patterns on Mars, and even comparing meteoritic impact features on Mars, the Earth, Moon and Mercury. All of these comparisons have been developed into inquiry-based activities and are available through NASA publications. Each of these activities is easily adapted to emphasize either Earth science or space science or both. Beyond geomorphology, solar storms are an excellent topic for integrating Earth and space science. Solar storms are traditionally part of space science studies, but most students do not understand their effect on Earth or the intense effects they could have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include Earth's magnetosphere, which in turn, affect radio transmission and potentially climate. Like geomorphology courses, there are extensive NASA programs available via either the Internet or CD (e.g., those distributed by P. Reiff, Rice University) that provide inquiry-based activities for students. There is great potential to share the connections of Earth and space science by using NASA developed education materials. The materials can be adapted for the classroom, after school programs, family outreach events, and summer science enrichment programs.
The Geospace Mission Definition Team report
NASA Astrophysics Data System (ADS)
Kintner, P.; Spann, J.
The Geospace Mission Definition Team (GMDT) is the portion of the Living With a Star (LWS) Program that has been charged by NASA to examine how the Geospace environment responds to solar variability. The goal is to provide science recommendations that guide NASA in the formulation of Geospace missions. The GMDT's first meeting with September 10, 2001 and has met on four subsequent dates. The top level space weather effects were initially defined by the LWS Science Architecture Team (SAT). From these effects the GMDT has distilled general objectives and specific objectives. These objectives have been prioritized and compelling science questions have been identified that are required to address the objectives. A set of candidate missions has been defined with minimum, baseline, and augmentation measurements identified. The priority science questions focus on two broad areas: (1) ionospheric variability, especially at mid-latitudes, that affects navigation and communications and (2) the source, acceleration mechanisms, and sinks of the radiation belts that degrade satellite lifetimes, produce surface charging, and threaten manned space flight. In addition the measurements required for understanding ionospheric variability will also address science issues associated with thermospheric satellite drag and orbital prediction. Candidate missions to address these science focii have been developed and studied. The team concludes that it is possible to address the compelling science questions with a cost effective program that yields major advances in our understanding of space weather science, that inspires and validates better ionospheric and magnetospheric models, and that will enable operational advances mitigating the societal impacts of space weather.
NASA Astrophysics Data System (ADS)
Kuznetsova, Maria
The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) was established at the dawn of the new millennium as a long-term flexible solution to the problem of transition of progress in space environment modeling to operational space weather forecasting. CCMC hosts an expanding collection of state-of-the-art space weather models developed by the international space science community. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment and developing and maintaining custom displays and powerful web-based systems and tools ready to be used by researchers, space weather service providers and decision makers. In support of space weather needs of NASA users CCMC is developing highly-tailored applications and services that target specific orbits or locations in space and partnering with NASA mission specialists on linking CCMC space environment modeling with impacts on biological and technological systems in space. Confidence assessment of model predictions is an essential element of space environment modeling. CCMC facilitates interaction between model owners and users in defining physical parameters and metrics formats relevant to specific applications and leads community efforts to quantify models ability to simulate and predict space environment events. Interactive on-line model validation systems developed at CCMC make validation a seamless part of model development circle. The talk will showcase innovative solutions for space weather research, validation, anomaly analysis and forecasting and review on-going community-wide model validation initiatives enabled by CCMC applications.
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station missions are analyzed. Telecommunications missions, space science, Earth sensing, and space testing missions, research and applications missions, defense missions, and satellite servicing missions are modeled and mission needs discussed. The satellite servicing missions are analyzed in detail, including construction and servicing equipment requirements, mission needs and benefits, differential drag characteristics of co-orbiting satellites, and satellite servicing transportation requirements.
Design and implementation of space physics multi-model application integration based on web
NASA Astrophysics Data System (ADS)
Jiang, Wenping; Zou, Ziming
With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.
Space Weather Research at the National Science Foundation
NASA Astrophysics Data System (ADS)
Moretto, T.
2015-12-01
There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.
Policy for Robust Space-based Earth Science, Technology and Applications
NASA Technical Reports Server (NTRS)
Brown, Molly Elizabeth; Escobar, Vanessa Marie; Aschbacher, Josef; Milagro-Pérez, Maria Pilar; Doorn, Bradley; Macauley, Molly K.; Friedl, Lawrence
2013-01-01
Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.
GSFC Heliophysics Science Division 2008 Science Highlights
NASA Technical Reports Server (NTRS)
Gilbert, Holly R.; Strong, Keith T.; Saba, Julia L. R.; Firestone, Elaine R.
2009-01-01
This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2008, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 261 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include Lead science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Lead the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Provide access to measurements from the Heliophysics Great Observatory through our Science Information Systems, and Communicate science results to the public and inspire the next generation of scientists and explorers.
GSFC Heliophysics Science Division 2009 Science Highlights
NASA Technical Reports Server (NTRS)
Strong, Keith T.; Saba, Julia L. R.; Strong, Yvonne M.
2009-01-01
This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2009, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 299 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include: Leading science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Leading the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Providing access to measurements from the Heliophysics Great Observatory through our Science Information Systems; and Communicating science results to the public and inspiring the next generation of scientists and explorers.
JPL future missions and energy storage technology implications
NASA Technical Reports Server (NTRS)
Pawlik, Eugene V.
1987-01-01
The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.
A SLAM II simulation model for analyzing space station mission processing requirements
NASA Technical Reports Server (NTRS)
Linton, D. G.
1985-01-01
Space station mission processing is modeled via the SLAM 2 simulation language on an IBM 4381 mainframe and an IBM PC microcomputer with 620K RAM, two double-sided disk drives and an 8087 coprocessor chip. Using a time phased mission (payload) schedule and parameters associated with the mission, orbiter (space shuttle) and ground facility databases, estimates for ground facility utilization are computed. Simulation output associated with the science and applications database is used to assess alternative mission schedules.
NASA Astrophysics Data System (ADS)
Glesener, G. B.; Vican, L.
2015-12-01
Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to further develop the MEDL-CMC model.
The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission
NASA Technical Reports Server (NTRS)
Crisp, David
2003-01-01
A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.
Real-time remote scientific model validation
NASA Technical Reports Server (NTRS)
Frainier, Richard; Groleau, Nicolas
1994-01-01
This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.
Testimony to the House Science Space and Technology Committee.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Church, Michael Kenton; Tannenbaum, Benn
Chairman Smith, Ranking Member Johnson, and distinguished members of the Committee on Science, Space, and Technology, I thank you for the opportunity to testify today on the role of science, engineering, and research at Sandia National Laboratories, one of the nation’s premiere national labs and the nation’s largest Federally Funded Research and Development Center (FFRDC) laboratory. I am Dr. Susan Seestrom, Sandia’s Associate Laboratories Director for Advanced Science & Technology (AST) and Chief Research Officer (CRO). As CRO I am responsible for research strategy, Laboratory Directed Research & Development (LDRD), partnerships strategy, and technology transfer. As director and line managermore » for AST I manage capabilities and mission delivery across a variety of the physical and mathematical sciences and engineering disciplines, such as pulsed power, radiation effects, major environmental testing, high performance computing, and modeling and simulation.« less
A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Davis, M. H.
1989-01-01
A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.
A crisis in the NASA space and earth sciences programme
NASA Technical Reports Server (NTRS)
Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.
1987-01-01
Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.
Space Weather Models and Their Validation and Verification at the CCMC
NASA Technical Reports Server (NTRS)
Hesse, Michael
2010-01-01
The Community Coordinated l\\lodeling Center (CCMC) is a US multi-agency activity with a dual mission. With equal emphasis, CCMC strives to provide science support to the international space research community through the execution of advanced space plasma simulations, and it endeavors to support the space weather needs of the CS and partners. Space weather support involves a broad spectrum, from designing robust forecasting systems and transitioning them to forecasters, to providing space weather updates and forecasts to NASA's robotic mission operators. All of these activities have to rely on validation and verification of models and their products, so users and forecasters have the means to assign confidence levels to the space weather information. In this presentation, we provide an overview of space weather models resident at CCMC, as well as of validation and verification activities undertaken at CCMC or through the use of CCMC services.
Research on application of intelligent computation based LUCC model in urbanization process
NASA Astrophysics Data System (ADS)
Chen, Zemin
2007-06-01
Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents of complexity science research and the conception of complexity feature to reveal the complexity features of LUCC research in urbanization process. Urban space system is a complex economic and cultural phenomenon as well as a social process, is the comprehensive characterization of urban society, economy and culture, and is a complex space system formed by society, economy and nature. It has dissipative structure characteristics, such as opening, dynamics, self-organization, non-balance etc. Traditional model cannot simulate these social, economic and natural driving forces of LUCC including main feedback relation from LUCC to driving force. 2. Establishment of Markov extended model of LUCC analog research in urbanization process. Firstly, use traditional LUCC research model to compute change speed of regional land use through calculating dynamic degree, exploitation degree and consumption degree of land use; use the theory of fuzzy set to rewrite the traditional Markov model, establish structure transfer matrix of land use, forecast and analyze dynamic change and development trend of land use, and present noticeable problems and corresponding measures in urbanization process according to research results. 3. Application of intelligent computation research and complexity science research method in LUCC analog model in urbanization process. On the basis of detailed elaboration of the theory and the model of LUCC research in urbanization process, analyze the problems of existing model used in LUCC research (namely, difficult to resolve many complexity phenomena in complex urban space system), discuss possible structure realization forms of LUCC analog research in combination with the theories of intelligent computation and complexity science research. Perform application analysis on BP artificial neural network and genetic algorithms of intelligent computation and CA model and MAS technology of complexity science research, discuss their theoretical origins and their own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.
USSR Space Life Sciences Digest, issue 4
NASA Technical Reports Server (NTRS)
Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)
1986-01-01
The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.
USSR Space Life Sciences Digest, issue 7
NASA Technical Reports Server (NTRS)
Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)
1986-01-01
This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.
Impact of the Columbia Supercomputer on NASA Space and Exploration Mission
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Kwak, Dochan; Kiris, Cetin; Lawrence, Scott
2006-01-01
NASA's 10,240-processor Columbia supercomputer gained worldwide recognition in 2004 for increasing the space agency's computing capability ten-fold, and enabling U.S. scientists and engineers to perform significant, breakthrough simulations. Columbia has amply demonstrated its capability to accelerate NASA's key missions, including space operations, exploration systems, science, and aeronautics. Columbia is part of an integrated high-end computing (HEC) environment comprised of massive storage and archive systems, high-speed networking, high-fidelity modeling and simulation tools, application performance optimization, and advanced data analysis and visualization. In this paper, we illustrate the impact Columbia is having on NASA's numerous space and exploration applications, such as the development of the Crew Exploration and Launch Vehicles (CEV/CLV), effects of long-duration human presence in space, and damage assessment and repair recommendations for remaining shuttle flights. We conclude by discussing HEC challenges that must be overcome to solve space-related science problems in the future.
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.
2001-06-05
This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.
NASA Astrophysics Data System (ADS)
Fried, B.; Levy, M.; Reyes, C.; Austin, S.
2003-05-01
A unique and innovative partnership has recently developed between NASA and John Dewey High School, infusing Space Science into the curriculum. This partnership builds on an existing relationship with MUSPIN/NASA and their regional center at the City University of New York based at Medgar Evers College. As an outgrowth of the success and popularity of our Remote Sensing Research Program, sponsored by the New York State Committee for the Advancement of Technology Education (NYSCATE), and the National Science Foundation and stimulated by MUSPIN-based faculty development workshops, our science department has branched out in a new direction - the establishment of a Space Science Academy. John Dewey High School, located in Brooklyn, New York, is an innovative inner city public school with students of a diverse multi-ethnic population and a variety of economic backgrounds. Students were recruited from this broad spectrum, which covers the range of learning styles and academic achievement. This collaboration includes students of high, average, and below average academic levels, emphasizing participation of students with learning disabilities. In this classroom without walls, students apply the strategies and methodologies of problem-based learning in solving complicated tasks. The cooperative learning approach simulates the NASA method of problem solving, as students work in teams, share research and results. Students learn to recognize the complexity of certain tasks as they apply Earth Science, Mathematics, Physics, Technology and Engineering to design solutions. Their path very much follows the NASA model as they design and build various devices. Our Space Science curriculum presently consists of a one-year sequence of elective classes taken in conjunction with Regents-level science classes. This sequence consists of Remote Sensing, Planetology, Mission to Mars (NASA sponsored research program), and Microbiology, where future projects will be astronomy related. This program has been well received by both students and parents and has motivated some students to consider careers in the field of space science and related areas. [This program is partially supported by NASA MU-SPIN NCC5-330 and NASA Space Science/Minority Initiative NAG5-10142
Earthspace: A National Clearinghouse For Higher Education In Space And Earth Sciences
NASA Astrophysics Data System (ADS)
CoBabe-Ammann, Emily; Shipp, S.; Dalton, H.
2012-10-01
The EarthSpace is a searchable database of undergraduate classroom materials for undergraduate faculty teaching earth and space sciences at both the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets - from homeworks and computerinteractives to laboratories and demonstrations. All materials are reviewedbefore posting, and authors adhere to the Creative Commons Non-Commercial Attribution (CC-BY NC 3.0). If authors wish, their EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities(e.g., Connexions). As new electronic repositories come online, EarthSpace materials will automatically be sent. So faculty submit their materials only once and EarthSpace ensures continual distribution as time goes on and new opportunities arise. In addition to classroom materials, EarthSpace provides news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. http://www.lpi.usra.edu/earthspace
The Humans in Space Art Program - Engaging the Mind, and the Heart, in Science
NASA Astrophysics Data System (ADS)
McPhee, J. C.
2017-12-01
How can we do a better job communicating about space, science and technology, getting more people engaged, understanding the impact that future space exploration will have on their lives, and thinking about how they can contribute? Humans naturally express their visions and interests through various forms of artistic expression because art is inherently capable of expressing not only the "what and how" but also the "why" of ideas. Offering opportunities that integrate space, science and technology with art allows more people to learn about space, relay their visions of the future, and discuss why exploration and research are important. The Humans in Space Art Program, managed by the nonprofit SciArt Exchange, offers a science-integrated-with-art opportunity. Through international online competitions, we invite participants to share their visions of the future using visual, literary, musical and video art. We then use their artwork in multi-media displays and live performances online, locally worldwide, and in space to engage listeners and viewers. The Program has three projects, targeting different types of participants: the Youth Competition (ages 10-18), the Challenge (college and early career) and Celebrity Artist-Fed Engagement (CAFÉ: professional artists). To date, the Program has received 3400 artworks from over 52 countries and displayed the artwork in 110 multi-media events worldwide, on the International Space Station and bounced off the Moon. 100,000's have thus viewed artwork considering topics such as: why we explore; where and how we will go and when; and what we will do when we arrive. The Humans in Space Art Program is a flexible public engagement model applicable to multiple settings, including classrooms, art and entertainment events, and scientific conferences. It provides a system to accessibly inspire all ages about space, science and technology, making them hungry to learn more and to take a personal role.
NASA Astrophysics Data System (ADS)
Scalzo, F.; Johnson, L.; Marchese, P.
2006-05-01
The New York City Research Initiative (NYCRI) is a research and academic program that involves high school students, undergraduate and graduate students, and high school teachers in research teams that are led by college/university principal investigators of NASA funded projects and/or NASA scientists. The principal investigators are at 12 colleges/universities within a 50-mile radius of New York City (NYC and surrounding counties, Southern Connecticut and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies (GISS). This program has a summer research institute component in Earth Science and Space Science, and an academic year component that includes the formulation and implementation NASA research based learning units in existing STEM courses by high school and college faculty. NYCRI is a revision and expansion of the Institute on Climate and Planets at GISS and is funded by NASA MURED and the Goddard Space Flight Center's Education Office.
The Application of the SPASE Metadata Standard in the U.S. and Worldwide
NASA Astrophysics Data System (ADS)
Thieman, J. R.; King, T. A.; Roberts, D.
2012-12-01
The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has not needed any structural modifications since January 2011 . The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. While we anticipate additional modifications to the model in the future to accommodate simulation and model data, these changes will not affect the data descriptions already generated for instrument-related datasets. Examples of SPASE descriptions can be viewed at
Exploring gravitational lensing model variations in the Frontier Fields galaxy clusters
NASA Astrophysics Data System (ADS)
Harris James, Nicholas John; Raney, Catie; Brennan, Sean; Keeton, Charles
2018-01-01
Multiple groups have been working on modeling the mass distributions of the six lensing galaxy clusters in the Hubble Space Telescope Frontier Fields data set. The magnification maps produced from these mass models will be important for the future study of the lensed background galaxies, but there exists significant variation in the different groups’ models and magnification maps. We explore the use of two-dimensional histograms as a tool for visualizing these magnification map variations. Using a number of simple, one- or two-halo singular isothermal sphere models, we explore the features that are produced in 2D histogram model comparisons when parameters such as halo mass, ellipticity, and location are allowed to vary. Our analysis demonstrates the potential of 2D histograms as a means of observing the full range of differences between the Frontier Fields groups’ models.This work has been supported by funding from National Science Foundation grants PHY-1560077 and AST-1211385, and from the Space Telescope Science Institute.
NASA Technical Reports Server (NTRS)
Edgerton, V. R.; Roy, R. R.; Hodgson, J. A.; Day, M. K.; Weiss, J.; Harkema, S. J.; Dobkin, B.; Garfinkel, A.; Konigsberg, E.; Koslovskaya, I.
2000-01-01
Space programs support experimental investigations related to the unique environment of space and to the technological developments from many disciplines of both science and engineering that contribute to space studies. Furthermore, interactions between scientists, engineers and administrators, that are necessary for the success of any science mission in space, promote interdiscipline communication, understanding and interests which extend well beyond a specific mission. NASA-catalyzed collaborations have benefited the spinal cord rehabilitation program at UCLA in fundamental science and in the application of expertise and technologies originally developed for the space program. Examples of these benefits include: (1) better understanding of the role of load in maintaining healthy muscle and motor function, resulting in a spinal cord injury (SCI) rehabilitation program based on muscle/limb loading; (2) investigation of a potentially novel growth factor affected by spaceflight which may help regulate muscle mass; (3) development of implantable sensors, electronics and software to monitor and analyze long-term muscle activity in unrestrained subjects; (4) development of hardware to assist therapies applied to SCI patients; and (5) development of computer models to simulate stepping which will be used to investigate the effects of neurological deficits (muscle weakness or inappropriate activation) and to evaluate therapies to correct these deficiencies.
2018 USA Science and Engineering Festival
2018-04-06
Attendees walk past an inflatable model of NASA's Space Launch System during Sneak Peek Friday at the USA Science and Engineering Festival, Friday, April 6, 2018 at the Walter E. Washington Convention Center in Washington, DC. The festival is open to the public April 7-8. Photo Credit: (NASA/Joel Kowsky)
2018 USA Science and Engineering Festival
2018-04-06
A model of NASA's James Webb Space Telescope is seen during Sneak Peek Friday at the USA Science and Engineering Festival, Friday, April 6, 2018 at the Walter E. Washington Convention Center in Washington, DC. The festival is open to the public April 7-8. Photo Credit: (NASA/Joel Kowsky)
Building a future full of opportunity for blind youths in science
NASA Astrophysics Data System (ADS)
Beck-Winchatz, B.; Riccobono, M. A.
Like their sighted peers many blind students in elementary middle and high school are naturally interested in space This interest can motivate them to learn fundamental scientific quantitative and critical thinking skills and sometimes even lead to careers in SMET disciplines However these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats the unfamiliarity of teachers with non-visual teaching methods lack of access to blind role models and the low expectations of their teachers and parents In this presentation we will describe joint efforts by NASA and the National Federation of the Blind s NFB Center for Blind Youth in Science to develop and implement strategies to promote opportunities for blind youth in science These include the development of tactile space science books and curriculum materials science academies for blind middle school and high school students internship and mentoring programs as well as research on non-visual learning techniques This partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals Session participants will also have the opportunity to examine some of the recently developed tactile space science education materials themselves
The ship as laboratory: making space for field science at sea.
Adler, Antony
2014-01-01
Expanding upon the model of vessels of exploration as scientific instruments first proposed by Richard Sorrenson, this essay examines the changing nature of the ship as scientific space on expedition vessels during the late nineteenth century. Particular attention is paid to the expedition of H.M.S. Challenger (1872-1876) as a turning point in the design of shipboard spaces that established a place for scientists at sea and gave scientific legitimacy to the new science of oceanography. There was a progressive development in research vessel design from "ship as instrument" to "ship as laboratory" and changing spatial practices aboard these vessels were paralleled by changes in shipboard culture. I suggest that the "ship as laboratory" has now in turn been supplanted by a new model, the "ship as invisible technician", as oceanographic research vessels deploy remote-sensing equipment and gather data that are no longer analyzed on board.
The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion
NASA Technical Reports Server (NTRS)
Schmidt, George R.; Patterson, Michael J.; Benson, Scott W.
2008-01-01
NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications.
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer
2009-01-01
This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.
NASA Technical Reports Server (NTRS)
2005-01-01
This is a Roadmap to understanding the environment of our Earth, from its life-sustaining Sun out past the frontiers of the solar system. A collection of spacecraft now patrols this space, revealing not a placid star and isolated planets, but an immense, dynamic, interconnected system within which our home planet is embedded and through which space explorers must journey. These spacecraft already form a great observatory with which the Heliophysics program can study the Sun, the heliosphere, the Earth, and other planetary environments as elements of a system--one that contains dynamic space weather and evolves in response to solar, planetary, and interstellar variability. NASA continually evolves the Heliophysics Great Observatory by adding new missions and instruments in order to answer the challenging questions confronting us now and in the future as humans explore the solar system. The three heliophysics science objectives: opening the frontier to space environment prediction; understanding the nature of our home in space, and safeguarding the journey of exploration, require sustained research programs that depend on combining new data, theory, analysis, simulation, and modeling. Our program pursues a deeper understanding of the fundamental physical processes that underlie the exotic phenomena of space.
Linking Space Weather Science and Decision Making (Invited)
NASA Astrophysics Data System (ADS)
Fisher, G. M.
2009-12-01
Linking scientific knowledge to decision making is a challenge for both the science and policy communities. In particular, in the field of space weather, there are unique challenges such as decision makers may not know that space has weather that poses risks to our technologically-dependent economy. Additionally, in an era of limited funds for scientific research, hazards posed by other natural disasters such as flooding and earthquakes are by contrast well known to policy makers, further making the importance of space weather research and monitoring a tough sell. Today, with industries and individuals more dependent on the Global Positioning System, wireless technology, and satellites than ever before, any disruption or inaccuracy can result in severe economic impacts. Therefore, it is highly important to understand how space weather science can most benefit society. The key to connecting research to decision making is to ensure that the information is salient, credible, and legitimate. To achieve this, scientists need to understand the decision makers' perspectives, including their language and culture, and recognize that their needs may evolve. This presentation will take a closer look at the steps required to make space weather research, models, and forecasts useful to decision makers and ultimately, benefit society.
NASA's Earth science flight program status
NASA Astrophysics Data System (ADS)
Neeck, Steven P.; Volz, Stephen M.
2010-10-01
NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019-2020 timeframe. NASA will begin refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2013 and will initiate a Gravity Recovery and Climate Experiment (GRACE) Follow-on mission for launch in 2016.
Creating State-based Alliances to Support Earth and Space Science Education Reform
NASA Astrophysics Data System (ADS)
Geary, E. E.; Manduca, C. A.; Barstow, D.
2002-05-01
Seven years after the publication of the National Science Education Standards and adoption of new state science education standards, Earth and space science remains outside the mainstream K-12 curriculum. Currently, less than ten percent of high school students in the United States of America take an Earth or space science course before graduation. This state of affairs is simply unacceptable. "All of us who live on this planet have the right and the obligation to understand Earth's unique history, its dynamic processes, its abundant resources, and its intriguing mysteries. As citizens of Earth, with the power to modify our climate and ecosystems, we also have a personal and collective responsibility to understand Earth so that we can make wise decisions about its and our future". As one step toward addressing this situation, we support the establishment of state-based alliances to promote Earth and space science education reform. "In many ways, states are the most vital locus of change in our nation's schools. State departments of education define curriculum frameworks, establish testing policies, support professional development and, in some cases, approve textbooks and materials for adoption". State alliance partners should include a broad spectrum of K-16 educators, scientists, policy makers, parents, and community leaders from academic institutions, businesses, museums, technology centers, and not-for profit organizations. The focus of these alliances should be on systemic and sustainable reform of K-16 Earth and space science education. Each state-based alliance should focus on specific educational needs within their state, but work together to share ideas, resources, and models for success. As we build these alliances we need to take a truly collaborative approach working with the other sciences, geography, and mathematics so that collectively we can improve the caliber and scope of science and mathematics education for all students.
NASA Technical Reports Server (NTRS)
Barth, Janet L.; LaBel, Kenneth; Brewer, Dana; Withbroe, George; Kauffman, Billy
2001-01-01
NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. A pre-formulation study determined the optimum combination of science missions, modeling, and technology infusion elements to accomplish this goal. The results of the study are described.
GSFC Heliophysics Science Division FY2010 Annual Report
NASA Technical Reports Server (NTRS)
Gilbert, Holly R.; Strong, Keith T.; Saba, Julia L. R.; Clark, Judith B.; Kilgore, Robert W.; Strong, Yvonne M.
2010-01-01
This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2010, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 323 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include: Leading science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Leading the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Providing access to measurements from the Heliophysics Great Observatory through our Science Information Systems; and Communicating science results to the public and inspiring the next generation of scientists and explorers.
NASA Technical Reports Server (NTRS)
Ross, M. D.
2001-01-01
Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...
Code of Federal Regulations, 2014 CFR
2014-10-01
... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...
NASA Astrophysics Data System (ADS)
Race, M. S.; Lafayette Library; Learning Center Foundation (Lllcf)
2011-12-01
In these times of budget cuts, tight school schedules, and limited opportunities for student field trips and teacher professional development, it is especially difficult to expose elementary and middle school students to the latest STEM information-particularly in the space sciences. Using our library as a facilitator and catalyst, we built a volunteer-based, multi-faceted, curriculum-linked program for students and teachers in local middle schools (Grade 8) and showcased new astronomical and planetary science information using mainly NASA resources and volunteer effort. The project began with the idea of bringing free NASA photo exhibits (FETTU) to the Lafayette and Antioch Libraries for public display. Subsequently, the effort expanded by adding layers of activities that brought space and science information to teachers, students and the pubic at 5 libraries and schools in the 2 cities, one of which serves a diverse, underserved community. Overall, the effort (supported by a pilot grant from the Bechtel Foundation) included school and library based teacher workshops with resource materials; travelling space museum visits with hands-on activities (Chabot-to-Go); separate powerpoint presentations for students and adults at the library; and concurrent ancillary space-related themes for young children's programs at the library. This pilot project, based largely on the use of free government resources and online materials, demonstrated that volunteer-based, standards-linked STEM efforts can enhance curriculum at the middle school, with libraries serving a special role. Using this model, we subsequently also obtained a small NASA-Space Grant award to bring star parties and hand-on science activities to three libraries this Fall, linking with numerous Grade 5 teachers and students in two additional underserved areas of our county. It's not necessary to reinvent the wheel, you just collect the pieces and build on what you already have.
USSR Space Life Sciences Digest, issue 15
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the 15th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 59 papers published in Russian language periodicals or presented at conferences and of two new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is a review of a conference devoted to the physiology of extreme states. The abstracts included in this issue have been identified as relevant to 29 areas of space biology and medicine. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, enzymology, equipment and instrumentation, exobiology, genetics, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception. personnel selection, psychology, radiobiology, reproductive biology, and space biology and medicine.
Space life sciences: A status report
NASA Technical Reports Server (NTRS)
1990-01-01
The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.
Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2008-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.
Geocoded data structures and their applications to Earth science investigations
NASA Technical Reports Server (NTRS)
Goldberg, M.
1984-01-01
A geocoded data structure is a means for digitally representing a geographically referenced map or image. The characteristics of representative cellular, linked, and hybrid geocoded data structures are reviewed. The data processing requirements of Earth science projects at the Goddard Space Flight Center and the basic tools of geographic data processing are described. Specific ways that new geocoded data structures can be used to adapt these tools to scientists' needs are presented. These include: expanding analysis and modeling capabilities; simplifying the merging of data sets from diverse sources; and saving computer storage space.
NASA Human Health and Performance Center: Open innovation successes and collaborative projects
NASA Astrophysics Data System (ADS)
Richard, Elizabeth E.; Davis, Jeffrey R.
2014-11-01
In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, setting the course for development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the successful execution of the strategy, driving organizational change through open innovation efforts and collaborative projects, including efforts of the NASA Human Health and Performance Center (NHHPC).
NASA Technical Reports Server (NTRS)
Ido, Haisam; Burns, Rich
2015-01-01
The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.
Traveling Exhibitions: translating current science into effective science exhibitions
NASA Astrophysics Data System (ADS)
Dusenbery, P.; Morrow, C.; Harold, J.
The Space Science Institute (SSI) of Boulder, Colorado has recently developed two museum exhibits called the Space Weather Center and MarsQuest. It is currently planning to develop two other exhibitions called Cosmic Origins and InterActive Earth. Museum exhibitions provide research scientists the opportunity to engage in a number of activities that are vital to the success of earth and space outreach programs. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. The focus of the presentation will be on the Institute's MarsQuest exhibition. This project is a 5000 square-foot, 2.5M, traveling exhibition that is now touring the country. The exhibit's 3-year tour is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and learn more about their own planet in the process. The associated planetarium show and education program will also be described, with particular emphasis on workshops to orient host museum staff (e.g. museum educators and docents). The workshops make innovative connections between the exhibitions interactive experiences and lesson plans aligned with the National Science Education Standards. SSI is also developing an interactive web site called MarsQuest On-line. The linkage between the web site, education program and exhibit will be discussed. MarsQuest and SSI's other exhibitions are good models for actively involving scientists and their discoveries to help improve informal science education in the museum community and for forging a stronger connection between formal and informal education.
SeaQuaKE: Sea-optimized Quantum Key Exchange
2014-06-01
is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13-001...In addition, we discuss our initial progress towards the free - space quantum channel model and planning for the experimental validation effort. 15...SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as
Deriving Tools from Real-time Runs: A New CCMC Support for SEC and AFWA
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2008-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions. the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models. and on the transition of appropriate models to space weather forecast centers. As part of the latter activity. the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.
1999-12-01
Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.
Spatiotemporal stochastic models for earth science and engineering applications
NASA Astrophysics Data System (ADS)
Luo, Xiaochun
1998-12-01
Spatiotemporal processes occur in many areas of earth sciences and engineering. However, most of the available theoretical tools and techniques of space-time daft processing have been designed to operate exclusively in time or in space, and the importance of spatiotemporal variability was not fully appreciated until recently. To address this problem, a systematic framework of spatiotemporal random field (S/TRF) models for geoscience/engineering applications is presented and developed in this thesis. The space-tune continuity characterization is one of the most important aspects in S/TRF modelling, where the space-time continuity is displayed with experimental spatiotemporal variograms, summarized in terms of space-time continuity hypotheses, and modelled using spatiotemporal variogram functions. Permissible spatiotemporal covariance/variogram models are addressed through permissibility criteria appropriate to spatiotemporal processes. The estimation of spatiotemporal processes is developed in terms of spatiotemporal kriging techniques. Particular emphasis is given to the singularity analysis of spatiotemporal kriging systems. The impacts of covariance, functions, trend forms, and data configurations on the singularity of spatiotemporal kriging systems are discussed. In addition, the tensorial invariance of universal spatiotemporal kriging systems is investigated in terms of the space-time trend. The conditional simulation of spatiotemporal processes is proposed with the development of the sequential group Gaussian simulation techniques (SGGS), which is actually a series of sequential simulation algorithms associated with different group sizes. The simulation error is analyzed with different covariance models and simulation grids. The simulated annealing technique honoring experimental variograms, is also proposed, providing a way of conditional simulation without the covariance model fitting which is prerequisite for most simulation algorithms. The proposed techniques were first applied for modelling of the pressure system in a carbonate reservoir, and then applied for modelling of springwater contents in the Dyle watershed. The results of these case studies as well as the theory suggest that these techniques are realistic and feasible.
THE SPACE PUBLIC OUTREACH TEAM (SPOT)
NASA Astrophysics Data System (ADS)
Williamson, Kathryn; National Radio Astronomy Observatory; Montana Space Grant Consortium; West Virginia Space Grant Consortium; NASA Independent Verification and Validation Center
2014-01-01
The Space Public Outreach Team (SPOT) has shown over 17 years of success in bringing astronomy and space science-themed presentations to approximately 10,000 students per year in Montana, and the program is now being piloted in West Virginia through a joint partnership between the National Radio Astronomy Observatory (NRAO), the West Virginia Space Grant Consortium, and NASA Independent Verification and Validation Center. SPOT recruits and trains undergraduate presenters from all over the state to learn interactive slide shows that highlight the state’s on-going and world-class space science research. Presenters then travel to K-12 schools to deliver these presentations and provide teachers additional supplemental information for when the SPOT team leaves. As a large-scale, low-cost, and sustainable program being implemented in both Montana and West Virginia, SPOT has the potential to become a nation-wide effort that institutions in other states can model to increase their education and public outreach presence.
USSR Space Life Sciences Digest, issue 19
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Eric Morris from the cold stowage group places the APEX-04 science kits into the Double Cold Bag (DCB), which is a non-powered container that keeps the APEX petri plates at +4 degrees Celsius during launch and ascent. The cold bricks in the lower right of the photo are placed in the DCB prior to closure. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
Research in Satellite-Fiber Network Interoperability
NASA Technical Reports Server (NTRS)
Edelson, Burt
1997-01-01
This four part report evaluated the performance of high data rate transmission links using the ACTS satellite, and to provide a preparatory test framework for two of the space science applications that have been approved for tests and demonstrations as part of the overall ACTS program. The test plan will provide guidance and information necessary to find the optimal values of the transmission parameters and then apply these parameters to specific applications. The first part will focus on the satellite-to-earth link. The second part is a set of tests to study the performance of ATM on the ACTS channel. The third and fourth parts of the test plan will cover the space science applications, Global Climate Modeling and Keck Telescope Acquisition Modeling and Control.
Solomon M. Hsiang Receives 2013 Science for Solutions Award: Response
NASA Astrophysics Data System (ADS)
Hsiang, Solomon M.
2014-01-01
I am honored to receive this award, created by Peter Schlosser, nominated by my postdoc advisor Michael Oppenheimer, and alongside my thesis advisor Mark Cane, recipient of this year's Maurice Ewing Medal—all role models and original pioneers in "the application and use of Earth and space sciences to solve societal problems."
NASA Astrophysics Data System (ADS)
Cobabe-Ammann, E.; Jakosky, B.
2007-12-01
Historically, there has been a delineation between those activities that promote the education of the general public (formal and information education) and those that involve journalists and the media (public affairs). However, over the last several years, there has been recognition that in the interest of "full spectrum science communication", journalists, who deliver more than 85% of the science news and content to the general public, may be legitimately seen as an audience for education activities. The goal of these activities is not primarily to promote a specific story, event or theme, but instead to broaden and deepen journalists' understanding of space science and to promote increased communication and understanding among journalists, scientists and educators. In the last several years, the Laboratory for Atmospheric and Space Physics has initiated workshops for the professional development of journalists as a cornerstone of its Education program. To date, workshops have covered Mars System Science, Life in Extreme Environments, Extrasolar Planets, Out Planets, and soon, the Role of Uncertainty in Climate Change. These programs bring together 20 elite journalists from both print and broadcast and 6-8 internationally recognized scientists in a 3-4 day encounter. Evaluation of past workshops suggests that the journalists not only feel that these workshops are a worthwhile use of their time, but that they impact the quality of their writing. Several indicated that the quality of the writing and its content had been noticed by their editor and allowed them to more easily 'pitch' space science stories when they were in the news. Many, including several regional journalists, commented that the workshop provided a level of background information that would help them for years to come. In this talk, we present the LASP media workshop model, talk about editorial barriers for journalists and the impact of the workshops, and discuss lessons learned that increase participation by the nation's leading media outlets.
The New Space Weather Action Center; the Next Level on Space Weather Education
NASA Astrophysics Data System (ADS)
Collado-Vega, Y. M.; Lewis, E. M.; Cline, T. D.; MacDonald, E.
2016-12-01
The Space Weather Action Center (SWAC) provides access for students to near real-time space weather data, and a set of easy instructions and well-defined protocols that allow them to correctly interpret such data. It is a student centered approach to teaching science and technology in classrooms, as students are encouraged to act like real scientists by accessing, collecting, analyzing, recording, and communicating space weather forecasts. Integration and implementation of several programs will enhance and provide a rich education experience for students' grades 5-16. We will enhance the existing data and tutorials available using the Integrated Space Weather Analysis (iSWA) tool created by the Community Coordinated Modeling Center (CCMC) at NASA GSFC. iSWA is a flexible, turn-key, customer-configurable, Web-based dissemination system for NASA-relevant space weather information that combines data based on the most advanced space weather models available through the CCMC with concurrent space environment information. This tool provides an additional component by the use of videos and still imagery from different sources as a tool for educators to effectively show what happens during an eruption from the surface of the Sun. We will also update content on the net result of space weather forecasting that the public can experience by including Aurorasaurus, a well established, growing, modern, innovative, interdisciplinary citizen science project centered around the public's visibility of the northern lights with mobile applications via the use of social media connections.
Spitzer Space Telescope Sequencing Operations Software, Strategies, and Lessons Learned
NASA Technical Reports Server (NTRS)
Bliss, David A.
2006-01-01
The Space Infrared Telescope Facility (SIRTF) was launched in August, 2003, and renamed to the Spitzer Space Telescope in 2004. Two years of observing the universe in the wavelength range from 3 to 180 microns has yielded enormous scientific discoveries. Since this magnificent observatory has a limited lifetime, maximizing science viewing efficiency (ie, maximizing time spent executing activities directly related to science observations) was the key operational objective. The strategy employed for maximizing science viewing efficiency was to optimize spacecraft flexibility, adaptability, and use of observation time. The selected approach involved implementation of a multi-engine sequencing architecture coupled with nondeterministic spacecraft and science execution times. This approach, though effective, added much complexity to uplink operations and sequence development. The Jet Propulsion Laboratory (JPL) manages Spitzer s operations. As part of the uplink process, Spitzer s Mission Sequence Team (MST) was tasked with processing observatory inputs from the Spitzer Science Center (SSC) into efficiently integrated, constraint-checked, and modeled review and command products which accommodated the complexity of non-deterministic spacecraft and science event executions without increasing operations costs. The MST developed processes, scripts, and participated in the adaptation of multi-mission core software to enable rapid processing of complex sequences. The MST was also tasked with developing a Downlink Keyword File (DKF) which could instruct Deep Space Network (DSN) stations on how and when to configure themselves to receive Spitzer science data. As MST and uplink operations developed, important lessons were learned that should be applied to future missions, especially those missions which employ command-intensive operations via a multi-engine sequence architecture.
NASA Technical Reports Server (NTRS)
Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.
2015-01-01
A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.
Science, art and geometrical imagination
NASA Astrophysics Data System (ADS)
Luminet, Jean-Pierre
2011-06-01
From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental rôle of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Dürer, Kepler, Escher, Grisey or the author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as on beauty, conciseness and an emotional approach of the world.
Origins Space Telescope: Tracing Dark Molecular Gas in the Milky Way
NASA Astrophysics Data System (ADS)
Narayanan, Desika; Li, Qi; Krumholz, Mark; Dave, Romeel; Origins Space Telescope Science and Technology Definition Team
2018-01-01
We present theoretical models for quantifying the fraction of CO-dark molecular gas in galaxies. To do this, we combine novel thermal, chemical, and radiative equilibrium calculations with high-resolution cosmological zoom galaxy formation models. We discuss how this dark molecular gas will be uncovered by the Origins Space Telescope, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey.
Code of Federal Regulations, 2011 CFR
2011-01-01
... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...
Code of Federal Regulations, 2012 CFR
2012-01-01
... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...
Code of Federal Regulations, 2013 CFR
2013-01-01
... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...
Space Station Freedom - A resource for aerospace education
NASA Technical Reports Server (NTRS)
Brown, Robert W.
1988-01-01
The role of the International Space Station in future U.S. aerospace education efforts is discussed from a NASA perspective. The overall design concept and scientific and technological goals of the Space Station are reviewed, and particular attention is given to education projects such as the Davis Planetarium Student Space Station, the Starship McCullough, the Space Habitat, the working Space Station model in Austin, TX, the Challenger Center for Space Life Education, Space M+A+X, and the Space Science Student Involvement Program. Also examined are learning-theory aspects of aerospace education: child vs adult learners, educational objectives, teaching methods, and instructional materials.
Technology assessment of advanced automation for space missions
NASA Technical Reports Server (NTRS)
1982-01-01
Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.
1954-07-01
Dr. Wernher von Braun (center), then Chief of the Guided Missile Development Division at Redstone Arsenal, Alabama, discusses a "bottle suit" model with Dr. Heinz Haber (left), an expert on aviation medicine, and Willey Ley, a science writer on rocketry and space exploration. The three men were at the Disney studios appearing in the motion picture, entitled "Man in Space."
2011-02-27
10th Anniversary of Reachout for the Rainbow after School Science Festival highlighting NASA Ames and the Traveling Space Museum exhibits and activities at the South San Francisco Bayview Opera House. Stephen Horsley gets a close up look at the cockpit of one the models provided by the Traveling Space Museum (TCS). photo release on file
Code of Federal Regulations, 2013 CFR
2013-10-01
... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...
Code of Federal Regulations, 2014 CFR
2014-10-01
... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...
NASA Astrophysics Data System (ADS)
Bulatova, Dr.
2012-04-01
Modern research in the domains of Earth sciences is developing from the descriptions of each individual natural phenomena to the systematic complex research in interdisciplinary areas. For studies of its kind in the form numerical analysis of three-dimensional (3D) systems, the author proposes space-time Technology (STT), based on a Ptolemaic geocentric system, consist of two modules, each with its own coordinate system: (1) - 3D model of a Earth, the coordinates of which provides databases of the Earth's events (here seismic), and (2) - a compact model of the relative motion of celestial bodies in space - time on Earth known as the "Method of a moving source" (MDS), which was developed in MDS (Bulatova, 1998-2000) for the 3D space. Module (2) was developed as a continuation of the geocentric Ptolemaic system of the world, built on the astronomical parameters heavenly bodies. Based on the aggregation data of Space and Earth Sciences, systematization, and cooperative analysis, this is an attempt to establish a cause-effect relationship between the position of celestial bodies (Moon, Sun) and Earth's seismic events.
NASA Central Operation of Resources for Educators (CORE): Educational Materials Catalog
NASA Technical Reports Server (NTRS)
1999-01-01
This catalog contains order information for video cassettes with topics such as: aeronautics, earth science, weather, space exploration/satellites, life sciences, energy, living in space, manned spaceflight, social sciences, space art, space sciences, technology education and utilization, and mathematics/physics.
NASA Astrophysics Data System (ADS)
Volonte, S.
2018-04-01
The Space Science Programme of ESA encompasses three broad areas of investigation, namely solar system science (the Sun, the planets and space plasmas), fundamental physics and space astronomy and astrophysics.
NASA Astrophysics Data System (ADS)
Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Damas, M. C.; Boxe, C.; Sohl, L. E.; Cheung, T. D.; Zavala-Gutierrez, R.; Jiang, M.
2016-12-01
This presentation describes student projects and accomplishments of the NSF REU Site: The City University of New York / NASA Goddard Institute for Space Studies Center for Global Climate Research. These student experiences contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, atmospheric science, climate change, heliophysics and space technology. It is important to motivate students to continue their studies towards advanced degrees and pursue careers related to these fields of study. This is best accomplished by involving undergraduates in research. For the past three years, this REU Site has supported research for more than 35 students, approximately 60 percent from underrepresented minorities and 35 percent female. All the students have progressed towards their degrees and some have advanced to graduate study. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium and in collaboration with the NASA Goddard Institute for Space Studies (GISS).
The ROSEO Project: Retrospective and a Look to the Future
NASA Astrophysics Data System (ADS)
Culver, R. B.; TeBockhorst, D.; Radman, C.; Geiselman, A.
2005-12-01
In 2004 the Science Discovery Center in Fort Collins, Colorado, with funding provided by the Space Telescope Science Institute of the NASA-IDEAS program, initiated the Rural Outreach Science Education Opportunities (ROSEO) project in which educational resources in astronomy and space science are to be made available to the rural areas of Northern Colorado and Southern Wyoming which otherwise suffer from a limited access to the science education facilities that exist along the Colorado Front Range region as well as the limited resources available within these rural school districts themselves. In one aspect of this outreach effort, a portable Starlab has travelled to several sites in the rural areas of Northern Colorado and Southern Wyoming and has provided a planetarium simulation of the night sky in a regular on-site daytime classroom environment. To date several hundred students and over two dozen teachers spread out over some 25,000 square miles of rural Colorado and Wyoming have experienced these simulations. Even though the travelling schedule of the Starlab is operating in what is very much a preliminary mode, the response to these visits has nonetheless been quite enthusiastic.thus far. In addition 18 science teachers representing 12 different schools from 8 different school districts in rural Colorado and Wyoming were brought together in a Summer Institute conducted June 6-10, 2005 at the Discovery Science Center in Fort Collins, Colorado, during which time innovative methods and techniques for presenting concepts in astronomy and space science that are especially designed for the needs and resources of the rural classroom environment were described and discussed in considerable detail. The information and experience gleaned from the travelling Starlab and this year's Summer Institute are being galvanized into a preliminary version of an educational template which is ultimately intended to be a model for astronomy and space science education in other rural areas which find themselves in circumstances similiar to those in Northern Colorado and Southern Wyoming. This work is funded by the Space Telescope Science Institute of the NASA-IDEAS grant program.
A Unique Perspective from Space on our Planet: Science, Technologies and Applications
NASA Technical Reports Server (NTRS)
Habib, Shaid
2006-01-01
The study of Planet earth is a very complex problem. It has many non-linear and chaotic systems operating in parallel and have interdependencies. In reality, these systems/phenomena s are not well understood or mathematically modeled because of our lack of knowledge of such intricate processes. However, in order to further the subject of Earth as an integrated system, space provides excellent vantage points to look at these processes in multidimensional framework. For example, we can make strives to understand the global water cycle, carbon cycle, atmospheric chemistry, biomass changes, oceans and solid Earth variations by making multitude of global measurements such as soil moisture, precipitation, tropospheric and stratospheric gases, aerosols, tropospheric winds, ocean salinity, ocean color, vegetation cover, crustal dynamics and many more. Such suites of measurements derive the coupled models so we may predict the changes due to natural and anthropogenic forcing. NASA along with other international space agencies have made tremendous investments in recent years in developing and flying remote sensing space borne sensors to enable these measurements. These science measurements and products are further used to address pressing issues such as coastal zone erosion, air quality, severe weather, water availability and quality, public health, fires, earthquakes, land slides and others for societal benefits. This presentation provides a comprehensive overview of NASA s science investigations, related technologies and satellites/sensors and applications.
CAWSES (Climate and Weather of the Sun-Earth System) Science: Progress thus far and the next steps
NASA Astrophysics Data System (ADS)
Pallamraju, D.; Kozyra, J.; Basu, S.
Climate and Weather of the Sun Earth System CAWSES is the current program of Scientific Committee for Solar Terrestrial Physics SCOSTEP for 2004 - 2008 The main aim of CAWSES is to bring together scientists from various nations to address the coupled and global nature of the Sun-Earth System phenomena Towards that end CAWSES provides a platform for international cooperation in observations data analysis theory and modeling There has been active international participation thus far with endorsement of the national CAWSES programs in some countries and many scientists around the globe actively volunteering their time in this effort The CAWSES Science Steering Group has organized the CAWSES program into five Themes for better execution of its science Solar Influence on Climate Space Weather Science and Applications Atmospheric Coupling Processes Space Climatology and Capacity Building and Education CAWSES will cooperate with International programs that focus on the Sun-Earth system science and at the same time compliment the work of programs whose scope is beyond the realm of CAWSES This talk will briefly review the science goals of CAWSES provide salient results from different Themes with emphasis on those from the Space Weather Theme This talk will also indicate the next steps that are being planned in this program and solicit inputs from the community for the science efforts to be carried out in the future
USSR Space Life Sciences Digest, Issue 18
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.
USSR Space Life Sciences Digest, issue 16
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)
1988-01-01
This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.
USSR Space Life Sciences Digest, issue 6
NASA Technical Reports Server (NTRS)
Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)
1986-01-01
This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.
1962-03-08
The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Standing at the Apollo Applications Program Cluster Model in building 4745 are (left-to-right): Dr. Wernher von Braun, MSFC; Congressman Joe D. Waggoner, Democratic representative of Louisiana; Congressman Earle Cabell, Democratic representative of Texas; Subcommittee Chairman Olin E. Teague, Democratic representative of Texas; Congressman James G. Fulton, Republican representative of Pennsylvania; and Dr. Ernst Stuhlinger, associate MSFC director for science. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program.
Alignment of Content and Pedagogy in an Earth Systems Course for Pre-Service Middle School Teachers
NASA Astrophysics Data System (ADS)
Cole, T.; Teed, R.; Slattery, W.
2006-12-01
In 2003 the Ohio Department of Education developed the Ohio K-12 Science Content Standards. These new science standards substantially tracked the goals and objectives of The National Research Council's National Science Education Standards. The Ohio K-12 Science Content Standards followed the National Standards in the content areas of Physical Science, Life Science and Earth and Space Science. At the same time, the state's K-12 schools were gearing up for a new high school graduation requirement, the successful passing of a high-stakes Ohio Graduation Test, given during a student's tenth grade year. Earth and Space science questions make up approximately one third of the science test items. To make it more likely that teachers have the requisite science content knowledge Ohio has recently changed from certification of K-12 teachers to a more content rich licensure standard. This new licensure requirement splits the older certification designation of K-8 into the elementary and middle school licensure areas. Under the new licensure requirements middle school licensure candidates wishing to earn a science concentration now have to take 15 semester hours of content class work in Science. The Ohio Department of Education has strongly suggested that teacher preparation institutions develop new courses for middle school educators in all four areas of concentration, including science. In response to this call for new courses science education faculty in all science areas worked together to develop a comprehensive suite of courses that would target the science content standards guidelines in the state and national standards. The newly developed Earth and Space science course is titled Earth Systems. The course carries 4.5quarter hours of credit and is intended expressly for pre-service middle school (grades 4- 9) science teachers. The content is structured around three modules of study that are designed to develop interdisciplinary science content within the context of past, present and future Earth Systems science. Because the course is created for pre-service teachers, the class models the jigsaw teaching technique, an effective and age-appropriate method of science instruction. This enables pre-service teachers to experience a technique they can use in their own classroom. Course content is aligned with all state and national 4-10 Earth/Space Science standards, which supports pre- service Middle School Science teachers by covering the content areas tested in the Praxis Middle School Science test, a requirement for graduation with licensure from Wright State University. It also helps the pre- service teachers gain experience with the content that they will need to teach to their K-12 students, so they will be able to pass the high-stakes Ohio Graduation Test. Assessment of the Earth Systems course suggests that the course leads to increased science content knowledge that leads to success in passing the Praxis Middle Childhood Science Test, and that the pedagogy modeled in the course is used by the pre- service teachers in their own K-12 teaching upon graduation.
NASA Astrophysics Data System (ADS)
Greene, G.; Kyprianou, M.; Levay, K.; Sienkewicz, M.; Donaldson, T.; Dower, T.; Swam, M.; Bushouse, H.; Greenfield, P.; Kidwell, R.; Wolfe, D.; Gardner, L.; Nieto-Santisteban, M.; Swade, D.; McLean, B.; Abney, F.; Alexov, A.; Binegar, S.; Aloisi, A.; Slowinski, S.; Gousoulin, J.
2015-09-01
The next generation for the Space Telescope Science Institute data management system is gearing up to provide a suite of archive system services supporting the operation of the James Webb Space Telescope. We are now completing the initial stage of integration and testing for the preliminary ground system builds of the JWST Science Operations Center which includes multiple components of the Data Management Subsystem (DMS). The vision for astronomical science and research with the JWST archive introduces both solutions to formal mission requirements and innovation derived from our existing mission systems along with the collective shared experience of our global user community. We are building upon the success of the Hubble Space Telescope archive systems, standards developed by the International Virtual Observatory Alliance, and collaborations with our archive data center partners. In proceeding forward, the “one archive” architectural model presented here is designed to balance the objectives for this new and exciting mission. The STScI JWST archive will deliver high quality calibrated science data products, support multi-mission data discovery and analysis, and provide an infrastructure which supports bridges to highly valued community tools and services.
Artistic Research on Freedom in Space and Science
NASA Astrophysics Data System (ADS)
Foing, Bernard H.; Schelfhout, Ronald; Gelfand, Dmitry; Van der Heide, Edwin; Preusterink, Jolanda; Domnitch, Evelina
ArtScience ESTEC: Space science in the arts. Since the earliest scientific preparations for extra-terrestrial travel at the beginning of the 20th century, the exploration of outer space has become a quintessential framework of the human condition and its creative manifestations. Although the artistic pursuit of space science is still in its infancy, an accelerated evolution is currently underway. Perspective: With the current state of the planet and the development of technology, humankind has the ability to look from a greater distance to the damage that has been done. This offers potential in the form of early detection and prevention of disasters. Meanwhile our aim seems to be directed away from the earth into the universe. In the Space science in the arts project I tried to encapsulate these two viewpoints that tend to avoid each other. We are still earthbound and that is our basis. A tree cannot grow tall without strong roots. Space, a promise of freedom. Line of thought: Space sounds like freedom but to actually send people out there they have to be strapped tightly on top of a giant missile to reach a habitat of interconnecting tubes with very little space. It is impossible to escape protocol with- out risking your life and the lives of astronauts have been fixed years in advance. This is the human predicament which does not apply to the telescopes and other devices used to reach far into the universe. Providing information instantly the various forms of light allow us to travel without moving. Description of the installation: The research on freedom in space and science led to the development of an installation that reflects the dualistic aspect which clings to the exploration of the universe. The installation is a model on multiple scales. You can look at the material or the feeling it evokes as well as at the constantly changing projections. The image is light. Inside this glass circle there is a broken dome placed over a dark and reflective surface on which light manipulating machines continuously alter the projected image. Development: In order to delve deeper into the subject of freedom in space and science this setup can serve as a vantage point. And it can offer an interactive environment to explore notions of freedom in space and science. The addition of a specific environment around and above the installation, referring to the fabric of space would highly increase the impact it has on an audience. You would then be able to immerse yourself in the world of this settlement, somewhere in outer space. Sound, light and projection screens will orbit the table changing the projections even more. Triggering the imagination with every movement. Results: Freedome has been exhibited at TecArt in Rotterdam, at ILEWG/Artscience day and the Lunar conference at ESTEC in February 2014. The images underneath (courtesy J. Preusterink BH Foing) depict the installation in some ways it can be experienced http://www.youtube.com/watch?v=Qn8DHARrlU (images: Jolanda Preusterink and Bernard Foing, from ILEWG/ESTEC/ArtScience-The Hague workshop Space Science in the Arts) Authors: Ronald Schelfhout, Bernard Foing, Evelina Domnitch, Dmitry Gelfand, Edwin van der Heide, Jolanda Preusterink
NASA Technical Reports Server (NTRS)
1995-01-01
In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.
2003-06-01
NASA’s Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.
Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program
NASA Technical Reports Server (NTRS)
Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.
2000-01-01
This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.
Improving Early Career Science Teachers' Ability to Teach Space Science
NASA Astrophysics Data System (ADS)
Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.
2012-12-01
The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their assigned interning student teachers in using the GEMS Space Science Sequence. As such, the project targeted the high leverage point of early career teachers who may well go on to use the GEMS materials for the next 30 years of their teaching careers, impacting potentially many hundreds of students. External evaluation showed that the novice teachers mentored by the master teachers felt knowledgeable about the topics covered in the four units after teaching the Space Science units. However, they seemed relatively less confident about the solar system, and objects beyond the solar system, which are covered in Units 3 and 4, respectively. This may be due to the fact that not all of them taught these units. Overall, mentees felt strongly on the post-survey taken at the end of the year that they have acquired good strategies for teaching the various topics, suggesting that the support they received while teaching and working with a mentor was of real benefit to them. The main challenges reported by the novice teachers were not having time to meet or talk with their mentors, and having different approaches to teaching from their mentors. In general, however, the novice teachers had very positive experiences with their mentor teachers and the curriculum materials provided.
A new open-source Python-based Space Weather data access, visualization, and analysis toolkit
NASA Astrophysics Data System (ADS)
de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.
2013-12-01
Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.
NASA Astrophysics Data System (ADS)
Glocer, A.; Rastätter, L.; Kuznetsova, M.; Pulkkinen, A.; Singer, H. J.; Balch, C.; Weimer, D.; Welling, D.; Wiltberger, M.; Raeder, J.; Weigel, R. S.; McCollough, J.; Wing, S.
2016-07-01
We present the latest result of a community-wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPC's effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K-index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high-latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event-by-event basis, aggregated over events, at specific station locations, and separated into high-latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC.
NASA Technical Reports Server (NTRS)
Glocer, A.; Rastaetter, L.; Kuznetsova, M.; Pulkkinen, A.; Singer, H. J.; Balch, C.; Weimer, D.; Welling, D.; Wiltberger, M.; Raeder, J.;
2016-01-01
We present the latest result of a community-wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPCs effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K-index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high-latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event-by-event basis, aggregated over events, at specific station locations, and separated into high-latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC.
The Henry Cecil Ranson McBay Chair in Space Science
NASA Technical Reports Server (NTRS)
Bota, Kofi B.; King, James, Jr.
1999-01-01
The goals and objectives of the Henry Cecil Ransom McBay Chair in Space Sciences were to: (1) provide leadership in developing and expanding Space Science curriculum; (2) contribute to the research and education endeavors of NASA's Mission to Planet Earth program; (3) expand opportunities for education and hands-on research in Space and Earth Sciences; (4) enhance scientific and technological literacy at all educational levels and to increase awareness of opportunities in the Space Sciences; and (5) develop a pipeline, starting with high school, of African American students who will develop into a cadre of well-trained scientists with interest in Space Science Research and Development.
NASA Technical Reports Server (NTRS)
Morgenthaler, George W.; Glover, Fred W.; Woodcock, Gordon R.; Laguna, Manuel
2005-01-01
The 1/14/04 USA Space Exploratiofltilization Initiative invites all Space-faring Nations, all Space User Groups in Science, Space Entrepreneuring, Advocates of Robotic and Human Space Exploration, Space Tourism and Colonization Promoters, etc., to join an International Space Partnership. With more Space-faring Nations and Space User Groups each year, such a Partnership would require Multi-year (35 yr.-45 yr.) Space Mission Planning. With each Nation and Space User Group demanding priority for its missions, one needs a methodology for obiectively selecting the best mission sequences to be added annually to this 45 yr. Moving Space Mission Plan. How can this be done? Planners have suggested building a Reusable, Sustainable, Space Transportation Infrastructure (RSSn) to increase Mission synergism, reduce cost, and increase scientific and societal returns from this Space Initiative. Morgenthaler and Woodcock presented a Paper at the 55th IAC, Vancouver B.C., Canada, entitled Constrained Optimization Models For Optimizing Multi - Year Space Programs. This Paper showed that a Binary Integer Programming (BIP) Constrained Optimization Model combined with the NASA ATLAS Cost and Space System Operational Parameter Estimating Model has the theoretical capability to solve such problems. IAA Commission III, Space Technology and Space System Development, in its ACADEMY DAY meeting at Vancouver, requested that the Authors and NASA experts find several Space Exploration Architectures (SEAS), apply the combined BIP/ATLAS Models, and report the results at the 56th Fukuoka IAC. While the mathematical Model is in Ref.[2] this Paper presents the Application saga of that effort.
ERIC Educational Resources Information Center
Veloso, Luísa; Marques, Joana S.
2017-01-01
This article on secondary schools science laboratories in Portugal focuses on how school space functions as a pedagogical and political instrument by contributing to shape the conditions for teaching and learning dynamics. The article places the impact of changes to school layouts within the larger context of a public school renovation programme,…
Teaching Einsteinian Physics at Schools: Part 1, Models and Analogies for Relativity
ERIC Educational Resources Information Center
Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan
2017-01-01
The Einstein-First project aims to change the paradigm of school science teaching through the introduction of modern Einsteinian concepts of space and time, gravity and quanta at an early age. These concepts are rarely taught to school students despite their central importance to modern science and technology. The key to implementing the…
Foresight Model of Turkey's Defense Industries' Space Studies until 2040
NASA Astrophysics Data System (ADS)
Yuksel, Nurdan; Cifci, Hasan; Cakir, Serhat
2016-07-01
Being advanced in science and technology is inevitable reality in order to be able to have a voice in the globalized world. Therefore, for the countries, making policies in consistent with their societies' intellectual, economic and political infrastructure and attributing them to the vision having been embraced by all parties of the society is quite crucial for the success. The generated policies are supposed to ensure the usage of countries' resources in the most effective and fastest way, determine the priorities and needs of society and set their goals and related roadmaps. In this sense, technology foresight studies based on justified forecasting in science and technology have critical roles in the process of developing policies. In this article, Foresight Model of Turkey's Defense Industries' Space Studies, which is turned out to be the important part of community life and fundamental background of most technologies, up to 2040 is presented. Turkey got late in space technology studies. Hence, for being fast and efficient to use its national resources in a cost effective way and within national and international collaboration, it should be directed to its pre-set goals. By taking all these factors into consideration, the technology foresight model of Turkey's Defense Industry's Space Studies was presented in the study. In the model, the present condition of space studies in the World and Turkey was analyzed; literature survey and PEST analysis were made. PEST analysis will be the inputs of SWOT analysis and Delphi questionnaire will be used in the study. A two-round Delphi survey will be applied to the participants from universities, public and private organizations operating in space studies at Defense Industry. Critical space technologies will be distinguished according to critical technology measures determined by expert survey; space technology fields and goals will be established according to their importance and feasibility indexes. Finally, for the decision makers, opportunist and possible prospective exploratory scenarios will be set forth according to determined vision. Keywords Turkey's Defense Industries, Space Studies, Foresight, PEST, SWOT, Delphi
Common Data Model to Handle PDS3 and PDS4 Data
NASA Astrophysics Data System (ADS)
Saiz, J.; Macfarlane, A.; Docasal, R.; Rios, C.; Barbarisi, I.; Vallejo, F.; Besse, S.; Vallat, C.; Arviset, C.
2017-06-01
European Space Agency's (ESA) planetary missions following either the PDS3 or the PDS4 standards preserve their data in the Planetary Science Archive (PSA). A common data model has been developed to provide transparency to all PSA services.
NASA Technical Reports Server (NTRS)
Trauger, John
2008-01-01
Topics include and overview, science objectives, study objectives, coronagraph types, metrics, ACCESS observatory, laboratory validations, and summary. Individual slides examine ACCESS engineering approach, ACCESS gamut of coronagraph types, coronagraph metrics, ACCESS Discovery Space, coronagraph optical layout, wavefront control on the "level playing field", deformable mirror development for HCIT, laboratory testbed demonstrations, high contract imaging with the HCIT, laboratory coronagraph contrast and stability, model validation and performance predictions, HCIT coronagraph optical layout, Lyot coronagraph on the HCIT, pupil mapping (PIAA), shaped pupils, and vortex phase mask experiments on the HCIT.
NASA Astrophysics Data System (ADS)
Sylla, Lamine; Duffar, Thierry
2007-05-01
A global thermal modelling of a cadmium telluride (CdTe) space experiment has been performed to determine the temperature field within the sample cartridge assembly of the Material Science Laboratory-low gradient furnace (MSL-LGF) apparatus. Heat transfer and phase change have been treated with a commercial CFD software based on a control volume technique. This work underlines the difficult compromise between enhancing the crystal quality and the occurrence of the dewetting phenomenon when using a Cd overpressure or inert gas in the ampoule.
Solar System Science with the Twinkle Space Mission
NASA Astrophysics Data System (ADS)
Bowles, N.; Lindsay, S.; Tessenyi, M.; Tinetti, G.; Savini, G.; Tennyson, J.; Pascale, E.; Jason, S.; Vora, A.
2017-09-01
Twinkle is a space-based telescope mission designed for the spectroscopic observation (0.4 to 4.5 μm) of exoplanet atmospheres and Solar System objects. The system design and mission implementation are based on existing, well studied concepts pioneered by Surrey Satellite Technology Ltd for low-Earth orbit Earth Observation satellites, supported by a novel international access model to allow facility access to researchers worldwide. Whilst Twinkle's primary science goal is the observation of exoplanet atmospheres its wide spectroscopic range and photometric stability also make it a unique platform for the observation of Solar system objects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... agreements for science or space exploration activities unrelated to the International Space Station. § 1266...-WAIVER OF LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space... implement a cross-waiver of liability between the parties to agreements for NASA's science or space...
Space Life Sciences Research and Education Program
NASA Technical Reports Server (NTRS)
Coats, Alfred C.
2001-01-01
Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.
Science on the International Space Station: Stepping Stones for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2007-01-01
This viewgraph presentation reviews the state of science research on the International Space Station (ISS). The shuttle and other missions that have delivered science research facilities to the ISS are shown. The different research facilities provided by both NASA and partner organizations available for use and future facilities are reviewed. The science that has been already completed is discussed. The research facilitates the Vision for Space Exploration, in Human Life Sciences, Biological Sciences, Materials Science, Fluids Science, Combustion Science, and all other sciences. The ISS Focus for NASA involves: Astronaut health and countermeasure, development to protect crews from the space environment during long duration voyages, Testing research and technology developments for future exploration missions, Developing and validating operational procedures for long-duration space missions. The ISS Medical Project (ISSMP) address both space systems and human systems. ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions. Including complete programmatic review with medical operations (space medicine/flight surgeons) to identify: (1) evidence base on risks (2) gap analysis.
NASA Human Research Program Space Radiation Program Element
NASA Technical Reports Server (NTRS)
Chappell, Lori; Huff, Janice; Patel, Janapriya; Wang, Minli; Hu, Shaowwen; Kidane, Yared; Myung-Hee, Kim; Li, Yongfeng; Nounu, Hatem; Plante, Ianik;
2013-01-01
The goal of the NASA Human Research Program's Space Radiation Program Element is to ensure that crews can safely live and work in the space radiation environment. Current work is focused on developing the knowledge base and tools required for accurate assessment of health risks resulting from space radiation exposure including cancer and circulatory and central nervous system diseases, as well as acute risks from solar particle events. Division of Space Life Sciences (DSLS) Space Radiation Team scientists work at multiple levels to advance this goal, with major projects in biological risk research; epidemiology; and physical, biophysical, and biological modeling.
Bonvillian, William B
2002-07-01
Science is entering an alliance with the economy that will speed the effect of innovation through society. Despite the slowdown of the 'new economy', a cascade paradigm of innovation appears key to increasing the rate of economic growth. Yet for science to continue to thrive and make this contribution to innovation, it must traverse at least three key crossroads. First, while life sciences have built a strong advocacy model to secure growing federal research funding, the physical sciences (including mathematics and engineering) have not and must now do so to thrive. Second, the drop in the numbers of physical scientists and engineers must be reversed if we are to have the talent to maintain a strong trend of scientific advance. Third, although science advances are increasingly interdisciplinary and occurring in the space between the historic science stovepipes, the organization of federal science support is largely unchanged since the beginning of the cold war. While a decentralized model has value, we must also consider new approaches that encourage deeper cooperation across science sectors and agencies.
Our Place in Space: Exploring the Earth-Moon System and Beyond with NASA's CINDI E/PO Program
NASA Astrophysics Data System (ADS)
Urquhart, M. L.; Hairston, M. R.
2010-12-01
Where does space begin? How far is the Moon? How far is Mars? How does our dynamic star, the Sun, affect its family of planets? All of these questions relate to exploration of our Solar System, and are also part of the Education/Public Outreach (E/PO) Program for NASA’s CINDI project, a space weather mission of opportunity. The Coupled Ion Neutral Dynamics Investigation has been flying aboard the US Air Force Communication/Navigation Outage Forecast System (C/NOFS) satellite in the upper atmosphere of the Earth since April 2008. The Earth’s ionosphere, the part of the atmosphere CINDI studies, is also in space. The CINDI E/PO program uses this fact in lessons designed to help students in middle schools and introductory astronomy classes develop a sense of their place in space. In the activity "How High is Space?" students’ start by building an 8-page scale model of the Earth’s atmosphere with 100 km/page. The peak of Mount Everest, commercial airplanes, and the tops of thunderheads all appear at the bottom of the first page of the model, with astronaut altitude -where space begins- at the top of the same sheet of paper. In "Where Would CINDI Be?" the idea of scale is further developed by modeling the Earth-Moon system to scale first in size, then in distance, using half of standard containers of play dough. With a lowest altitude of about 400 km, similar to that of the International Space Station and orbiting Space Shuttle, CINDI is close to the Earth when compared with the nearly thousand times greater distance to the Moon. Comparing and combining the atmosphere and Earth-Moon system models help reinforce ideas of scale and build student understanding of how far away the Moon actually is. These scale models have also been adapted for use in Family Science Nights, and to include the planet Mars. In this presentation, we will show how we use CINDI’s scale modeling activities and others from our broader space sciences E/PO program in formal and informal settings. We will also show how their use as embedded assessments in classroom instruction to identify and address naïve conceptions of scale in the Solar System. For the International Year of the Solar System, we are sharing these resources with teachers through several teacher professional development programs at The University of Texas at Dallas and at area and state science teacher conferences. All CINDI E/PO materials including our popular "Cindi in Space" comic book, the new "Cindi in the Electric Atmosphere" comic book for high school, and our resource on "How Big is a Million?" are all available for free downloads from our website or on CD.
76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-10
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...
NASA Technical Reports Server (NTRS)
Hamilton, Douglas; Kramer, Leonard; Mikatarian, Ron; Polk, James; Duncan, Michael; Koontz, Steven
2010-01-01
The models predict that, for low voltage exposures in the space suit, physiologically active current could be conducted across the crew member causing catastrophic hazards. Future work with Naval Health Research Center Detachment Directed Energy Bio-effects Laboratory is being proposed to analyze additional current paths across the human torso and upper limbs. These models may need to be verified with human studies.
NASA Astrophysics Data System (ADS)
Gay, Pamela L.; Bakerman, Maya; Graziano, Nancy; Murph, Susan; Reiheld, Alison; CosmoQuest
2017-10-01
In today's connected world, scientists & space science projects are turning to social media outlets like Twitter to share our achievements, request aid, & discuss the issues of our profession. Maintaining these disparate feeds requires time & resources that are already in short supply. To justify these efforts, we must examine the data to determine: are we speaking to our intended audiences; are our varied efforts needed; & what types of messages achieve the greatest interactions. The software used to support this project is available on GitHub.Previously, it has been unclear if our day-to-day social media efforts have been merely preaching to one homogeneous choir from which we have all drawn our audiences, or if our individual efforts have been able to reach into different communities to multiply our impact. In this preliminary study, we examine the social media audiences of several space science Twitter feeds that relate to: podcasting; professional societies; individual programs; & individuals. This study directly measures the overlap in audiences & the diversity of interests held by these audiences. Through statistical analysis, we can discern if these audiences are all drawn from one single population, or if we are sampling different base populations with different feeds.The data generated in this project allow us to look beyond how our audiences interact with space science, with the added benefit of revealing their other interests. These interests are reflected by the non-space science accounts they follow on Twitter. This information will allow us to effectively recruit new people from space science adjacent interests.After applying large data analytics & statistics to social media interactions, we can model online communications, audience population types, & the causal relationships between how we tweet &how our audiences interact. With this knowledge, we are then able to institute reliable communications & effective interactions with our target audience.This work is supported through NASA cooperative agreement NNX17AD20A.
Space Research, Education, and Related Activities in the Space Sciences
NASA Technical Reports Server (NTRS)
Black, David; Marshall, Frank (Technical Monitor)
2002-01-01
The Universities Space Research Association received an award of Cooperative Agreement NCC5-356 on September 29, 1998. The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.
Space Research, Education, and Related Activities In the Space Sciences
NASA Technical Reports Server (NTRS)
Black, David
2002-01-01
The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.
Space Research, Education, and Related Activities in the Space Sciences
NASA Technical Reports Server (NTRS)
2000-01-01
The Universities Space Research Association received an award of Cooperative Agreement #NCC5-356 on September 29, 1998. The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.
NASA Technical Reports Server (NTRS)
Kuan, Gary M.; Dekens, Frank G.
2006-01-01
The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.
The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor
2009-01-01
The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.
NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability
NASA Technical Reports Server (NTRS)
Dankanich, John; Anderson, David J.
2008-01-01
The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.
NASA Technical Reports Server (NTRS)
1989-01-01
The Life Science Division of the NASA Office of Space Science and Applications (OSSA) describes its plans for assuring the health, safety, and productivity of astronauts in space, and its plans for acquiring further fundamental scientific knowledge concerning space life sciences. This strategic implementation plan details OSSA's goals, objectives, and planned initiatives. The following areas of interest are identified: operational medicine; biomedical research; space biology; exobiology; biospheric research; controlled ecological life support; flight programs and advance technology development; the life sciences educational program; and earth benefits from space life sciences.
NASA Astrophysics Data System (ADS)
Mathers, Naomi; Pakakis, Michael; Christie, Ian
2011-09-01
The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive environment promotes high order thinking skills such as problem solving, team work, communication skills and leadership. To promote the teaching of science in the classroom, and prepare the students for their mission, the program includes a pre-visit program. These classroom-based lessons model best practice in effective science teaching and learning to support the development of confident primary science teachers.
NASA Astrophysics Data System (ADS)
Pacheco-Guffrey, H. A.
2016-12-01
Classroom teachers face many challenges today such as new standards, the moving targets of high stakes tests and teacher evaluations, inconsistent/insufficient access to resources and evolving education policies. Science education in the K-5 context is even more complex. NGSS can be intimidating, especially to K-5 educators with little science background. High stakes science tests are slow to catch up with newly drafted state level science standards, leaving teachers unsure about what to change and when to implement updated standards. Amid all this change, many schools are also piloting new technology programs. Though exciting, tech initiatives can also be overwhelming to teachers who are already overburdened. A practical way to support teachers in science while remaining mindful of these stressors is to design and share resources that leverage other K-5 school initiatives. This is often done by integrating writing or math into science learning to meet Common Core requirements. This presentation will suggest a method for bringing Earth and space science learning into elementary / early childhood classrooms by utilizing the current push for tablet technology. The goal is to make science integration reasonable by linking it to technology programs that are in their early stages. The roles and uses of K-5 Earth and space science apps will be examined in this presentation. These apps will be linked to NGSS standards as well as to the science and engineering practices. To complement the app resources, two support frameworks will also be shared. They are designed to help educators consider new technologies in the context of their own classrooms and lessons. The SAMR Model (Puentadura, 2012) is a conceptual framework that helps teachers think critically about the means and purposes of integrating technology into existing lessons. A practical framework created by the author will also be shared. It is designed to help teachers identify and address the important logistical and curricular decision-making aspects of integrating technology into K-5 classroom science. This method provides clear applications for new technology while also bringing meaningful Earth and space science learning into K-5 classrooms.
Creating Simulated Microgravity Patient Models
NASA Technical Reports Server (NTRS)
Hurst, Victor; Doerr, Harold K.; Bacal, Kira
2004-01-01
The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).
2013-03-01
weapons, 2012. Private Communication. 22. A. Valfells, H.P. Verboncoeur, and Y.Y. Lau. Space - charge effects on multipactor dielectric . Plasma Science...when space charge effects are omitted modeled particles have no associated fields and when emitted from the dielectric do not have leave behind a...Experimental research performed at Texas Tech [16] showed that space charge must be included to properly characterize the multipactor evolution [22
NASA Technical Reports Server (NTRS)
Estes, John E.; Smith, Terence; Star, Jeffrey L.
1987-01-01
Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.
Hands on the sun: Teaching SEC science through hands on inquiery and direct observation
NASA Astrophysics Data System (ADS)
Mayo, L.; Cline, T.; Lewis, E.
2003-04-01
Hands on the Sun is a model partnership between the NASA Sun Earth Connection Education Forum (SECEF), Coronado Instruments, Space Science Institute, NOAO/Kitt Peak, Flandrau Planetarium, Astronomical League, and professional astronomers. This joint venture uses experiential learning, provocative talks, and direct observation in both formal and informal education venues to teach participants (K-12 educators, amateur astronomers, and the general public) about the sun, its impact on the Earth, and the importance of understanding the sun-Earth system. The program consists of three days of workshops and activities including tours and observing sessions on Kitt Peak including the National Solar Observatory, planetarium shows, exhibits on space weather, and professional development workshops targeted primarily at Hispanic public school science teachers which are intended to provide hands on activities demonstrating solar and SEC science that can be integrated into the classroom science curriculum. This talk will describe the many facets of this program and discuss our plans for future events.
The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform
NASA Technical Reports Server (NTRS)
Bhattacharya, S.
2018-01-01
Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.
The Brain in Space: A Teacher's Guide with Activities for Neuroscience.
ERIC Educational Resources Information Center
MacLeish, Marlene Y.; McLean, Bernice R.
This educators guide discusses the brain and contains activities on neuroscience. Activities include: (1) "The Space Life Sciences"; (2) "Space Neuroscience: A Special Area within the Space Life Sciences"; (3) "Space Life Sciences Research"; (4) "Neurolab: A Special Space Mission to Study the Nervous System"; (5) "The Nervous System"; (6)…
Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation
Halavanau, A.; Piot, P.
2016-03-03
Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge ismore » used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.« less
NASA Astrophysics Data System (ADS)
Yang, Y. M.; Buccino, D.; Folkner, W. M.; Oudrhiri, K.; Phipps, P. H.; Parisi, M.; Kahan, D. S.
2017-12-01
Interplanetary and Earth ionosphere plasma electrons can have significant impacts on radio frequency signal propagation such as telecommunication between spacecraft and the Deep Space Network (DSN). On 27 August 2016, the first closest approach of The Juno spacecraft (Perijove 1) provided an opportunity to observe plasma electrons inside of the Io plasma torus using radio science measurements from Juno. Here, we report on the derivations of plasma electron content in the Io plasma torus by using two-way coherent radio science measurements made from Juno's Gravity Science Instrument and the Deep Space Network. During Perijove 1, Juno spacecraft passed through the inner region (perijove altitude of 1.06 Jovian Radii) between Jupiter and the Io plasma torus. Significant plasma electron variations of up to 30 TEC units were observed while the radio link between Juno and the DSN traveled through the Io plasma torus. In this research, we compare observations made by open-loop and closed-loop processes using different frequency radio signals, corresponding Io plasma torus model simulations, and other Earth ionosphere observations. The results of three-dimensional Io plasma model simulations are consistent with observations with some discrepancies. Results are shown to improve our understanding of the Io plasma torus effect on Juno gravity science measurements and its calibrations to reduce the corresponding (non-gravity field induced) radio frequency shift.
First Year K-12 Teachers as High Leverage Point to Implement GEMS Space Science Curriculum Sequence
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Mendez, B. J.; Schultz, G.; Wierman, T.
2013-01-01
The recurring challenge for curriculum developers is how to efficiently prepare K-12 classroom teachers to use new curricula. First-year teachers, numbering nearly 250,000 in the US each year, have the greatest potential to impact the largest number of students because they have potential to be in the classroom for thirty years. At the same time, these novice teachers are often the most open minded about adopting curricular innovation because they are not yet deeply entrenched in existing practices. To take advantage of this high leverage point, a collaborative of space scientists and science educators at the University of California, Berkeley’s Lawrence Hall of Science and Center for Science Education at the Space Sciences Laboratory with experts from the Astronomical Society of the Pacific, the University of Wyoming, and the CAPER Center for Astronomy & Physics Education experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers and trained these master teachers to use the GEMS Space Science Curriculum Sequence. Then, these master teachers were mentored in coaching interning student teachers assigned to them in using GEMS materials. Evaluation showed that novice teachers mentored by the master teachers felt knowledgeable after teaching the GEMS units. However, they seemed relatively less confident about the solar system and objects beyond the solar system. Overall, mentees felt strongly at the end of the year that they have acquired good strategies for teaching the various topics, suggesting that the support they received while teaching and working with a mentor was of real benefit to them. Funding provided in part by NASA ROSES AMANTISS NNX09AD51G
Center for Space and Earth Science
Search Site submit Los Alamos National LaboratoryCenter for Space and Earth Science Part of the Partnerships NSEC » CSES Center for Space and Earth Science High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and Earth systems Contact Director Reiner Friedel (505
Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction
NASA Astrophysics Data System (ADS)
Pottinger, James E.
With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space science courses are different than typical online courses in that they need to incorporate an inquiry-based component to ensure students fully understand the course concepts and science principles in the Earth and Space sciences. Studies have addressed the barriers in other inquiry-based online science courses, including biology, physics, and chemistry. This holistic, multiple-case qualitative study investigated perceived barriers and strategies to effective online Earth and Space science instruction through in-depth interviews with six experienced post-secondary online science instructors. Data from this study was analyzed using a thematic analysis approach and revealed four common themes when teaching online Earth and Space science. A positive perception and philosophy of online teaching is essential, the instructor-student interaction is dynamic, course structure and design modification will occur, and online lab activities must make science operational and relevant. The findings in this study demonstrated that online Earth and Space science instructors need institutional support in the form of a strong faculty development program and support staff in order to be as effective as possible. From this study, instructors realize that the instructor-student relationship and course structure is paramount, especially when teaching online science with labs. A final understanding from this study was that online Earth and Space science lab activities must incorporate the use and application of scientific skills and knowledge. Recommendations for future research include (a) qualitative research conducted in specific areas within the Earth and Space sciences to determine if similar conclusions may be reached, (b) conduct a quantitative study looking at the available online technologies and their effectiveness in each area, and (c) utilize students that took online Earth and Space science classes and compare their perception of effectiveness to the instructor's perception of effectiveness in the online Earth and Space science classroom.
NASA Astrophysics Data System (ADS)
Cobb, W. H.; Buxner, S.; Lebofsky, L. A.; Ristvey, J.; Weeks, S.; Zolensky, M.
2011-12-01
Small Bodies, Big Concepts is a multi-disciplinary, professional development project that engages 5th - 8th grade teachers in high end planetary science using a research-based pedagogical framework, Designing Effective Science Instruction (DESI). In addition to developing sound background knowledge with a focus on visual analysis, teachers' awareness of the process of learning new content is heightened, and they use that experience to deepen their science teaching practice. Culling from NASA E/PO educational materials, activities are sequenced to enhance conceptual understanding of big ideas in space science: what do we know, how do we know it, why do we care? Helping teachers develop a picture of the history and evolution of our understanding of the solar system, and honing in on the place of comets and asteroids in helping us answer old questions and discover new ones, teachers see the power and excitement underlying planetary science as human endeavor. Research indicates that science inquiry is powerful in the classroom and mission scientists are real-life models of science inquiry in action. Using guest scientist facilitators from the Planetary Science Institute, NASA Johnson Space Center, Lockheed Martin, and NASA E/PO professionals from McREL and NASA AESP, teachers practice framing scientific questions, using current visual data, and adapting NASA E/PO activities related to current exploration of asteroids and comets in our Solar System. Cross-curricular elements included examining research-based strategies for enhancing English language learners' ability to engage in higher order questions and a professional astronomy artist's insight into how visual analysis requires not just our eyes engaged, but our brains: comparing, synthesizing, questioning, evaluating, and wondering. This summer we pilot tested the SBBC curriculum with thirteen 5th- 10th grade teachers modeling a variety of instructional approaches over eight days. Each teacher developed lesson plans that incorporate DESI strategies with new space science content to implement during the coming year in their classroom. Initial evaluation of the workshop showed that teachers left with an increased understanding of small bodies in the solar system, current exploration, and ways to integrate this exploration into their current curriculum. We will reconvene the teachers in the spring of 2012 to share their implementation experiences. The professional development is a year-long effort, supported both online and through future face-to-face workshops. Next summer there will be a field test of the project will be implemented after evaluation data informs best steps for improvement. The result of the project will be a model for implementing professional development that integrates research-based instructional strategies and science findings from NASA missions to improve teacher practice. Small Bodies, BIG Concepts is based upon work supported by the National Aeronautics and Space Administration (NASA) under Grant/Contract/Agreement No. 09-EPOESS09-0044 issued through the Science Mission Directorate.
NASA Technical Reports Server (NTRS)
1990-01-01
Johnson High School, Huntsville, Alabama started an international magnet program in 1987. One of the courses in the curriculum was in space science. They appealed to Marshall Space Flight Center (MSFC) when they couldn't find a suitable textbook, nor locate other classes in space science to provide a guideline. MSFC agreed to help and placed the school under an official 'Adopt-A-School' program. MSFC's chief scientist and others at the space center helped prepare a very comprehensive space science program. Examples of the subjects covered include problems of space travel, materials processing in space, technology utilization, robotics, space colonization, etc. MSFC followed up by working with Johnson High to determine if the curriculum is generally usable and workable. If it is, MSFC may make it available to other schools. MSFC not only developed the space science curriculum; they continue to support the program by sponsoring hands- on activities and tours of space research facilities.
Space shuttle and life sciences
NASA Technical Reports Server (NTRS)
Mason, J. A.
1977-01-01
During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.
USSR Space Life Sciences Digest, Issue 10
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Garshnek, Victoria; Rowe, Joseph E.
1987-01-01
The USSR Space Life Sciences Digest contains abstracts of 37 papers recently published in Russian language periodicals and bound collections and of five new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include the translation of a book chapter concerning use of biological rhythms as a basis for cosmonaut selection, excerpts from the diary of a participant in a long-term isolation experiment, and a picture and description of the Mir space station. The abstracts included in this issue were identified as relevant to 25 areas of aerospace medicine and space biology. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculosketal system, neurophysiology, nutrition, personnel selection, psychology, and radiobiology.
Aurorasaurus Database of Real-Time, Soft-Sensor Sourced Aurora Data for Space Weather Research
NASA Astrophysics Data System (ADS)
Kosar, B.; MacDonald, E.; Heavner, M.
2017-12-01
Aurorasaurus is an innovative citizen science project focused on two fundamental objectives i.e., collecting real-time, ground-based signals of auroral visibility from citizen scientists (soft-sensors) and incorporating this new type of data into scientific investigations pertaining to aurora. The project has been live since the Fall of 2014, and as of Summer 2017, the database compiled approximately 12,000 observations (5295 direct reports and 6413 verified tweets). In this presentation, we will focus on demonstrating the utility of this robust science quality data for space weather research needs. These data scale with the size of the event and are well-suited to capture the largest, rarest events. Emerging state-of-the-art computational methods based on statistical inference such as machine learning frameworks and data-model integration methods can offer new insights that could potentially lead to better real-time assessment and space weather prediction when citizen science data are combined with traditional sources.
Future prospects for space life sciences from a NASA perspective
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.
Mission Simulation of Space Lidar Measurements for Seasonal and Regional CO2 Variations
NASA Technical Reports Server (NTRS)
Kawa, Stephan; Collatz, G. J.; Mao, J.; Abshire, J. B.; Sun, X.; Weaver, C. J.
2010-01-01
Results of mission simulation studies are presented for a laser-based atmospheric [82 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to the Active Sensing of [82 over Nights, Days, and Seasons (ASCENDS) recommended by the US National Academy of Sciences Decadal Survey of Earth Science and Applications from Space. One prerequisite for meaningful quantitative sensor evaluation is realistic CO2 process modeling across a wide range of scales, i.e., does the model have representative spatial and temporal gradients? Examples of model comparison with data will be shown. Another requirement is a relatively complete description of the atmospheric and surface state, which we have obtained from meteorological data assimilation and satellite measurements from MODIS and [ALIPS0. We use radiative transfer model calculations, an instrument model with representative errors ' and a simple retrieval approach to complete the cycle from "nature" run to "pseudo-data" CO2, Several mission and instrument configuration options are examined/ and the sensitivity to key design variables is shown. We use the simulation framework to demonstrate that within reasonable technological assumptions for the system performance, relatively high measurement precision can be obtained, but errors depend strongly on environmental conditions as well as instrument specifications. Examples are also shown of how the resulting pseudo - measurements might be used to address key carbon cycle science questions.
The Microgravity Vibration Isolation Mount: A Dynamic Model for Optimal Controller Design
NASA Technical Reports Server (NTRS)
Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.
1997-01-01
Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design.
NSF's Perspective on Space Weather Research for Building Forecasting Capabilities
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.
2017-12-01
Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.
NASA Astrophysics Data System (ADS)
Slough, Scott Wayne
The purpose of this study was to describe high school science teachers' perceptions of telecommunications. The data were collected through open-ended ethnographic interviews with 24 high school science teachers from five different high schools in a single suburban school district who had been in an emerging telecommunications-rich environment for two and one-half years. The interview protocol was adapted from Honey and Henriquez (1993), with the Concerns-Based Adoption Model (CBAM) (Bailey & Palsha, 1992) providing a conceptual framework for data analysis. For this study, the emerging telecommunications-rich environment included a district-wide infrastructure that had been in place for two and one-half years that included a secure district-wide Intranet, 24 network connections in each classroom, full Internet access from the network, four computers per classroom, and a variety of formal and informal professional development opportunities for teachers. Categories of results discussed include: (a) teacher's profession use of telecommuunications; (b) teachers' perceptions of student's use of telecommunications; (c) teachers' perceptions of barriers to the implementation of telecommunications; (d) teachers' perceptions of supporting conditions for the implementation of telecommunications; (e) teachers' perceptions of the effect of telecommunications on high school science instruction; (f) teachers' perceptions of the effect of telecommunications on student's learning in high school science; and (g) the demographic variables of the sex of the teacher, years of teaching experience, school assignment within the district, course assignment(s), and academic preparation. Implications discussed include: (a) telecommunications can be implemented successfully in a variety of high school science classrooms with adequate infrastructure support and sufficient professional development opportunities, including in classes taught by females and teachers who were not previously computer experts; (b) confirmation of the basic tenets of the CBAM model; (c) the need for a model that addresses nonstatic innovations; (d) the need for a model that addresses concerns of teachers who choose not to implement telecommunications; (e) the need for new assessment strategies; (f) informal professional development, teachers teaching other teachers, is essential in implementing telecommunications; (g) the pressure that telecommunications places upon the science curriculum; and (h) space and safety concerns associated with telecommunications in the science laboratory space.
The Role of Structural Models in the Solar Sail Flight Validation Process
NASA Technical Reports Server (NTRS)
Johnston, John D.
2004-01-01
NASA is currently soliciting proposals via the New Millennium Program ST-9 opportunity for a potential Solar Sail Flight Validation (SSFV) experiment to develop and operate in space a deployable solar sail that can be steered and provides measurable acceleration. The approach planned for this experiment is to test and validate models and processes for solar sail design, fabrication, deployment, and flight. These models and processes would then be used to design, fabricate, and operate scaleable solar sails for future space science missions. There are six validation objectives planned for the ST9 SSFV experiment: 1) Validate solar sail design tools and fabrication methods; 2) Validate controlled deployment; 3) Validate in space structural characteristics (focus of poster); 4) Validate solar sail attitude control; 5) Validate solar sail thrust performance; 6) Characterize the sail's electromagnetic interaction with the space environment. This poster presents a top-level assessment of the role of structural models in the validation process for in-space structural characteristics.
Discover Space Weather and Sun's Superpowers: Using CCMC's innovative tools and applications
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Maddox, M. M.; Kuznetsova, M. M.; Chulaki, A.; Rastaetter, L.; Mullinix, R.; Weigand, C.; Boblitt, J.; Taktakishvili, A.; MacNeice, P. J.; Pulkkinen, A. A.; Pembroke, A. D.; Mays, M. L.; Zheng, Y.; Shim, J. S.
2015-12-01
Community Coordinated Modeling Center (CCMC) has developed a comprehensive set of tools and applications that are directly applicable to space weather and space science education. These tools, some of which were developed by our student interns, are capable of serving a wide range of student audiences, from middle school to postgraduate research. They include a web-based point of access to sophisticated space physics models and visualizations, and a powerful space weather information dissemination system, available on the web and as a mobile app. In this demonstration, we will use CCMC's innovative tools to engage the audience in real-time space weather analysis and forecasting and will share some of our interns' hands-on experiences while being trained as junior space weather forecasters. The main portals to CCMC's educational material are ccmc.gsfc.nasa.gov and iswa.gsfc.nasa.gov
Global partnerships: Expanding the frontiers of space exploration education
NASA Astrophysics Data System (ADS)
MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.
2012-11-01
Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed as a model for developing sustainable partnerships and indigenous programs that support Africa's steady emergence as a global space-faring force. The IAC will provide timely: 2011 South Africa will provide timely feedback to refine that report's strategies for space life sciences education and public engagement in Africa and around the globe.
2018 USA Science and Engineering Festival
2018-04-06
Steven Pawson, Chief of the Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center, speaks about NASA's observations of Earth during Sneak Peek Friday at the USA Science and Engineering Festival, Friday, April 6, 2018 at the Walter E. Washington Convention Center in Washington, DC. The festival is open to the public April 7-8. Photo Credit: (NASA/Joel Kowsky)
NASA Astrophysics Data System (ADS)
Polishuk, Alexander; Verner, Igor; Mir, Ronen
This paper presents our experience of teaching robotics to primary and middle school students at the Gelfand Center for Model Building, Robotics & Communication which is part of the Israel National Museum of Science, Technology and Space (MadaTech). The educational study examines the value and characteristics of students’ teamwork in the museum robotics workshops.
USSR Space Life Sciences Digest, volume 2, no.1
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1981-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.
USSR Space Life Sciences Digest, volume 1, no. 3
NASA Technical Reports Server (NTRS)
Wallace, P. M.
1980-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.
Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research
NASA Astrophysics Data System (ADS)
Boice, D. C.; Reiff, P. H.
2009-12-01
During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.
Life sciences - On the critical path for missions of exploration
NASA Technical Reports Server (NTRS)
Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen
1988-01-01
Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.
Cooperative Program In Space Science
NASA Technical Reports Server (NTRS)
Black, David
2003-01-01
The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.
NASA Technical Reports Server (NTRS)
1988-01-01
The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.
Does Geophysics Need "A new kind of Science"?
NASA Astrophysics Data System (ADS)
Turcotte, D. L.; Rundle, J. B.
2002-12-01
Stephen Wolfram's book "A New Kind of Science" has received a great deal of attention in the last six months, both positive and negative. The theme of the book is that "cellular automata", which arise from spatial and temporal coarse-graining of equations of motion, provide the foundations for a new nonlinear science of "complexity". The old science is the science of partial differential equations. Some of the major contributions of this old science have been in geophysics, i.e. gravity, magnetics, seismic waves, heat flow. The basis of the new science is the use of massive computing and numerical simulations. The new science is motivated by the observations that many physical systems display a vast multiplicity of space and time scales, and have hidden dynamics that in many cases are impossible to directly observe. An example would be molecular dynamics. Statistical physics derives continuum equations from the discrete interactions between atoms and molecules, in the modern world the continuum equations are then discretized using finite differences, finite elements, etc. in order to obtain numerical solutions. Examples of widely used cellular automata models include diffusion limited aggregation and site percolation. Also the class of models that are said to exhibit self-organized criticality, the sand-pile model, the slider-block model, the forest-fire model. Applications of these models include drainage networks, seismicity, distributions of minerals,and the evolution of landforms and coastlines. Simple cellular automata models generate deterministic chaos, i.e. the logistic map.
Spiro K. Antiochos Receives 2013 John Adam Fleming Medal: Citation
NASA Astrophysics Data System (ADS)
Klimchuk, James A.
2014-01-01
The John Adam Fleming Medal is awarded for "original research and technical leadership in geomagnetism, atmospheric electricity, aeronomy, space physics, and related sciences." Originality and technical leadership are exactly the characteristics that distinguish the research of Spiro K. Antiochos. Spiro possesses a truly unique combination of physical insight, creativity, and mastery of the concepts and mathematical and numerical tools of space physics. These talents have allowed him to develop completely original theories for major observational problems and to test and refine those theories using sophisticated numerical simulation codes that he himself helped to develop. Spiro's physical insight is especially impressive. He has an uncanny ability to identify the fundamental aspects of complex problems and to see physical connections where others do not. This can sometimes involve ideas that may initially seem counterintuitive to those with less creativity. Many of Spiro's revolutionary advances have opened up whole new areas of study and shaped the course of space physics. Examples include the breakout model for coronal mass ejections (CMEs), the S-web model for the slow solar wind, and the thermal nonequilibrium model for solar prominences. The breakout model is of special significance to AGU as it strives to promote science for the betterment of humanity. CMEs are enormous explosions on the Sun that can have major "space weather" impacts here on Earth. They affect technologies ranging from communication and navigation systems to electrical power grids. Breakout is the leading theory for why CMEs occur and may one day be the foundation for more accurate space weather forecasting.
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.
2000-01-01
The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.
NASA Astrophysics Data System (ADS)
Génot, V.; André, N.; Cecconi, B.; Bouchemit, M.; Budnik, E.; Bourrel, N.; Gangloff, M.; Dufourg, N.; Hess, S.; Modolo, R.; Renard, B.; Lormant, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.
2014-11-01
The interest for data communication between analysis tools in planetary sciences and space physics is illustrated in this paper via several examples of the uses of SAMP. The Simple Application Messaging Protocol is developed in the frame of the IVOA from an earlier protocol called PLASTIC. SAMP enables easy communication and interoperability between astronomy software, stand-alone and web-based; it is now increasingly adopted by the planetary sciences and space physics community. Its attractiveness is based, on one hand, on the use of common file formats for exchange and, on the other hand, on established messaging models. Examples of uses at the CDPP and elsewhere are presented. The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (Automated Multi Dataset Analysis, http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search and cataloging. Besides AMDA, the 3DView (http://3dview.cdpp.eu/) tool provides immersive visualizations and is further developed to include simulation and observational data. These tools and their interactions with each other, notably via SAMP, are presented via science cases of interest to planetary sciences and space physics communities.
Scientists' Role in Educational Content Development.
ERIC Educational Resources Information Center
Christian, Carol A.
2003-01-01
Describes a model developed as part of the National Aeronautics and Space Administration's (NASA) overall plan to create increased learning opportunities related to its scientific and technical enterprises. Uses this model to create multimedia resources designed to improve science and mathematics skills in students to improve public awareness of…
NASA Astrophysics Data System (ADS)
Marshall, R. H.; Gabrys, R.
2016-12-01
NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.
Experiments using Semantic Web technologies to connect IUGONET, ESPAS and GFZ ISDC data portals
NASA Astrophysics Data System (ADS)
Ritschel, Bernd; Borchert, Friederike; Kneitschel, Gregor; Neher, Günther; Schildbach, Susanne; Iyemori, Toshihiko; Koyama, Yukinobu; Yatagai, Akiyo; Hori, Tomoaki; Hapgood, Mike; Belehaki, Anna; Galkin, Ivan; King, Todd
2016-11-01
E-science on the Web plays an important role and offers the most advanced technology for the integration of data systems. It also makes available data for the research of more and more complex aspects of the system earth and beyond. The great number of e-science projects founded by the European Union (EU), university-driven Japanese efforts in the field of data services and institutional anchored developments for the enhancement of a sustainable data management in Germany are proof of the relevance and acceptance of e-science or cyberspace-based applications as a significant tool for successful scientific work. The collaboration activities related to near-earth space science data systems and first results in the field of information science between the EU-funded project ESPAS, the Japanese IUGONET project and the GFZ ISDC-based research and development activities are the focus of this paper. The main objective of the collaboration is the use of a Semantic Web approach for the mashup of the project related and so far inoperable data systems. Both the development and use of mapped and/or merged geo and space science controlled vocabularies and the connection of entities in ontology-based domain data model are addressed. The developed controlled vocabularies for the description of geo and space science data and related context information as well as the domain ontologies itself with their domain and cross-domain relationships will be published in Linked Open Data.[Figure not available: see fulltext.
NASA Human Health and Performance Center: Open Innovation Successes and Collaborative Projects
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.; Richard, Elizabeth E.
2014-01-01
In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, which resulted in the development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the open innovation successes and collaborative projects developed over this timeframe, including the efforts of the NASA Human Health and Performance Center (NHHPC), which was established to advance human health and performance innovations for spaceflight and societal benefit via collaboration in new markets.
Commerce Lab - A program of commercial flight opportunities
NASA Technical Reports Server (NTRS)
Robertson, J.; Atkins, H. L.; Williams, J. R.
1985-01-01
Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.
USSR Space Life Sciences Digest, issue 21
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph
1989-01-01
This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.
NASA Enterprise Architecture and Its Use in Transition of Research Results to Operations
NASA Astrophysics Data System (ADS)
Frisbie, T. E.; Hall, C. M.
2006-12-01
Enterprise architecture describes the design of the components of an enterprise, their relationships and how they support the objectives of that enterprise. NASA Stennis Space Center leads several projects involving enterprise architecture tools used to gather information on research assets within NASA's Earth Science Division. In the near future, enterprise architecture tools will link and display the relevant requirements, parameters, observatories, models, decision systems, and benefit/impact information relationships and map to the Federal Enterprise Architecture Reference Models. Components configured within the enterprise architecture serving the NASA Applied Sciences Program include the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool. The Earth Science Components Knowledge Base systematically catalogues NASA missions, sensors, models, data products, model products, and network partners appropriate for consideration in NASA Earth Science applications projects. The Systems Components database is a centralized information warehouse of NASA's Earth Science research assets and a critical first link in the implementation of enterprise architecture. The Earth Science Architecture Tool is used to analyze potential NASA candidate systems that may be beneficial to decision-making capabilities of other Federal agencies. Use of the current configuration of NASA enterprise architecture (the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool) has far exceeded its original intent and has tremendous potential for the transition of research results to operational entities.
Atmospheric and Geophysical Sciences Division Program Report, 1988--1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-06-01
In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.
Science Fiction and the Big Questions
NASA Astrophysics Data System (ADS)
O'Keefe, M.
Advocates of space science promote investment in science education and the development of new technologies necessary for space travel. Success in these areas requires an increase of interest and support among the general public. What role can entertainment media play in inspiring the public  especially young people  to support the development of space science? Such inspiration is badly needed. Science education and funding in the United States are in a state of crisis. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. This paper draws on interviews with professionals in science, technology, engineering and mathematics (STEM) fields, as well as students interested in those fields. The interviewees were asked about their lifelong media-viewing habits. Analysis of these interviews, along with examples from popular culture, suggests that science fiction can be a valuable tool for space advocates. Specifically, the aspects of character, story, and special effects can provide viewers with inspiration and a sense of wonder regarding space science and the prospect of long-term human space exploration.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.
2012-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
JPRS report: Science and technology. Central Eurasia: Space
NASA Astrophysics Data System (ADS)
1994-12-01
Translated articles cover the following topics: plasma instabilities and space vehicles, need discussed for protection against space catastrophes, Russians offer new energy concept for space stations, Russian space projects: Martian research, multi-impulse rendezvous trajectory for two spacecraft in circular orbit, placement of spacecraft into orbit around Mars with aerobraking, model of the shielding for the inhabited compartments of the base module of the Mir station, and measurement of the background electrostatic and variable electric fields on the outer surface of the Kvant module of the Mir orbital station. There are 25 translated articles in this 28 December 1994 edition.
2017-02-16
APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
A "Kanes's Dynamics" Model for the Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Hampton, R. David; Beech, Geoffrey
1999-01-01
Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state-space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop an state-space, analytical (algebraic) set of linearized equations of motion for ARIS.
A "Kane's Dynamics" Model for the Active Rack Isolation System
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Beech, G. S.; Rao, N. N. S.; Rupert, J. K.; Kim, Y. K.
2001-01-01
Many microgravity space science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (International Standard Payload Rack (ISPR)) level. Effective model-based vibration isolation requires: (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop a state-space, analytical (algebraic) set of linearized equations of motion for ARIS.
Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.
2005-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.
Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu
2016-03-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.
Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew
2014-01-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456
Autonomous operations through onboard artificial intelligence
NASA Technical Reports Server (NTRS)
Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.
2002-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.
NASA Astrophysics Data System (ADS)
Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.
2013-12-01
The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive learning activities for planetary science will be explored. These lesson plans incorporate state of the art interactive pedagogy and current NASA Planetary Science materials.
Parameter estimation uncertainty: Comparing apples and apples?
NASA Astrophysics Data System (ADS)
Hart, D.; Yoon, H.; McKenna, S. A.
2012-12-01
Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests that M-NSMC can provide a computationally efficient and practical solution for predictive uncertainty analysis in highly nonlinear and complex subsurface flow and transport models. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Staging scientific controversies: a gallery test on science museums' interactivity.
Yaneva, Albena; Rabesandratana, Tania Mara; Greiner, Birgit
2009-01-01
The "transfer" model in science communication has been addressed critically from different perspectives, while the advantages of the interactive model have been continuously praised. Yet, little is done to account for the specific role of the interactive model in communicating "unfinished science." The traditional interactive methods in museums are not sufficient to keep pace with rapid scientific developments. Interactive exchanges between laypeople and experts are thought mainly through the lens of a dialogue that is facilitated and framed by the traditional "conference room" architecture. Drawing on the results of a small-scale experiment in a gallery space, we argue for the need for a new "architecture of interaction" in museum settings based on art installation and simulation techniques, which will enhance the communication potentials of science museums and will provide conditions for a fruitful even-handed exchange of expert and lay knowledge.
USSR Space Life Sciences Digest, volume 1, no. 4
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1980-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology, and life sciences and technology.
USSR Space Life Sciences Digest, volume 2, no. 2
NASA Technical Reports Server (NTRS)
Paulson, L. D.
1981-01-01
An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences and technology.
Mathematical Model of the Public Understanding of Space Science
NASA Astrophysics Data System (ADS)
Prisniakov, V.; Prisniakova, L.
The success in deployment of the space programs now in many respects depends on comprehension by the citizens of necessity of programs, from "space" erudition of country. Purposefulness and efficiency of the "space" teaching and educational activity depend on knowledge of relationships between separate variables of such process. The empirical methods of ``space'' well-information of the taxpayers should be supplemented by theoretical models permitting to demonstrate a ways of control by these processes. Authors on the basis of their experience of educational activity during 50- years of among the students of space-rocket profession obtain an equation of ``space" state of the society determining a degree of its knowledge about Space, about achievements in its development, about indispensable lines of investigations, rates of informatization of the population. It is supposed, that the change of the space information consists of two parts: (1) - from going of the information about practical achievements, about development special knowledge requiring of independent financing, and (2) from intensity of dissemination of the ``free" information of a general educational line going to the population through mass-media, book, in family, in educational institutions, as a part of obligatory knowledge of any man, etc. In proposed model the level space well-information of the population depends on intensity of dissemination in the society of the space information, and also from a volume of financing of space-rocket technology, from a part of population of the employment in the space-rocket programs, from a factor of education of the population in adherence to space problems, from welfare and mentality of the people, from a rate of unemployment and material inequality. Obtained in the report on these principles the equation of a space state of the society corresponds to catastrophe such as cusp, the analysis has shown which one ways of control of the public understanding of space science. The boundary sectioning area of effective and unefficient modes of training and education of the population of country in space spirit is determined. The mathematical model of quality of process of education concern to an outer space exploration is reviewed separately. The coefficient of quality of education in an estimation of space event is submitted as relation Δ I' to mismatch of the universal standard of behavior with the information, which is going to the external spectator, about the applicable reacting of the considered individual Δ I''. The obtained outcomes allow to control a learning process and education of the society spirit of adherence to space ideals of mankind.
Contribution to "AIAA Aerospace Year in Review" article
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Downey, J. Patton
2012-01-01
The NASA Marshall Space Flight Center Microgravity Science Program is dedicated to promoting our understanding of materials processing by conducting relevant experiments in the microgravity environment and supporting related modeling efforts with the intent of improving ground-based practices. Currently funded investigations include research on dopant distribution and defect formation in semiconductors, microstructural development and transitions in dendritic casting alloys, coarsening phenomena, competition between thermal and kinetic phase formation, and the formation of glassy vs. crystalline material. NASA Microgravity Materials Science Principle Investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by collaborating on a team that has successfully proposed to a foreign space agency research announcement. In the latter case, a US investigator can then apply to NASA for funding through an unsolicited proposal. The International Space Station (ISS) facilities used for the experimental investigations are provided primarily by partnering with foreign agencies and often US investigators are working as a part of a larger team studying a specific area of materials science. Facilities for conducting experiments aboard the ISS include the European Space Agency (ESA) Low Gradient Facility (LGF) and the Solidification and Quench (SQF) modular inserts to the Materials Research Rack/Materials Science Laboratory and are primarily used for controlled solidification studies. The French Space Agency (CNES) provided DECLIC facility allows direct observation of morphological development in transparent materials that solidify analogously to metals. The ESA provided Electro ]Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to determine material properties, study nucleation behavior, and document phase transitions. Finally, the Microgravity Science Glovebox (MSG) serves as a onboard facility for supporting the hardware required to conduct a number of smaller, short-term investigations.
2013-09-12
CAPE CANAVERAL, Fla. – Tracey Kickbusch, chief of computational sciences at NASA's Kennedy Space Center in Florida, discusses modeling and simulations with attendees at the Technology Transfer Forum of the Economic Development Commission of Florida's Space Coast. A goal of the session was to showcase ways commercial businesses can work with NASA to develop technology and apply existing technology to commercial uses. Photo credit: NASA/Glenn Benson
Analysis of Big Data from Space
NASA Astrophysics Data System (ADS)
Tan, J.; Osborne, B.
2017-09-01
Massive data have been collected through various space mission. To maximize the investment, the data need to be exploited to the fullest. In this paper, we address key topics on big data from space about the status and future development using the system engineering method. First, we summarized space data including operation data and mission data, on their sources, access way, characteristics of 5Vs and application models based on the concept of big data, as well as the challenges they faced in application. Second, we gave proposals on platform design and architecture to meet the demand and challenges on space data application. It has taken into account of features of space data and their application models. It emphasizes high scalability and flexibility in the aspects of storage, computing and data mining. Thirdly, we suggested typical and promising practices for space data application, that showed valuable methodologies for improving intelligence on space application, engineering, and science. Our work will give an interdisciplinary knowledge to space engineers and information engineers.
Telerobotic Tending of Space Based Plant Growth Chamber
NASA Technical Reports Server (NTRS)
Backes, P. G.; Long, M. K.; Das, H.
1994-01-01
The kinematic design of a telerobotic mechanism for tending a plant growth space science experiment chamber is described. Ground based control of tending mechanisms internal to space science experiments will allow ground based principal investigators to interact directly with their space science experiments.
ERIC Educational Resources Information Center
Verbickas, Sarah
2002-01-01
Introduces the Classroom Space project aimed at revitalizing science education at Key Stages 3 and 4 by using exciting examples from Space Science and Astronomy to illustrate key science concepts. (Author/YDS)
Mars Science Laboratory Press Conference
2011-07-22
John Grotzinger, Mars Science Laboratory (MSL) project scientist, Jet Propulsion Lab (JPL), Pasadena, Calif., holds up a model of the MSL, or Curiosity, at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)
Engineering and simulation of life science Spacelab experiments
NASA Technical Reports Server (NTRS)
Bush, B.; Rummel, J.; Johnston, R. S.
1977-01-01
Approaches to the planning and realization of Spacelab life sciences experiments, which may involve as many as 16 Space Shuttle missions and 100 tests, are discussed. In particular, a Spacelab simulation program, designed to evaluate problems associated with the use of live animal specimens, the constraints imposed by zero gravity on equipment operation, training of investigators and data management, is described. The simulated facility approximates the hardware and support systems of a current European Space Agency Spacelab model. Preparations necessary for the experimental program, such as crew activity plans, payload documentation and inflight experimental procedures are developed; health problems of the crew, including human/animal microbial contamination, are also assessed.
Alternative probability theories for cognitive psychology.
Narens, Louis
2014-01-01
Various proposals for generalizing event spaces for probability functions have been put forth in the mathematical, scientific, and philosophic literatures. In cognitive psychology such generalizations are used for explaining puzzling results in decision theory and for modeling the influence of context effects. This commentary discusses proposals for generalizing probability theory to event spaces that are not necessarily boolean algebras. Two prominent examples are quantum probability theory, which is based on the set of closed subspaces of a Hilbert space, and topological probability theory, which is based on the set of open sets of a topology. Both have been applied to a variety of cognitive situations. This commentary focuses on how event space properties can influence probability concepts and impact cognitive modeling. Copyright © 2013 Cognitive Science Society, Inc.
Crew Roles and Interactions in Scientific Space Exploration
NASA Technical Reports Server (NTRS)
Love, Stanley G.; Bleacher, Jacob E.
2013-01-01
Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"Great Explorations in Math and Science[R] (GEMS[R]) Space Science" is an instructional sequence for grades 3-5 that covers fundamental concepts, including planetary sizes and distance, the Earth's shape and movement, gravity, and moon phases and eclipses. Part of the "GEMS"[R] core curriculum, "GEMS[R] Space Science"…
Credentialing Data Scientists: A Domain Repository Perspective
NASA Astrophysics Data System (ADS)
Lehnert, K. A.; Furukawa, H.
2015-12-01
A career in data science can have many paths: data curation, data analysis, metadata modeling - all of these in different commercial or scientific applications. Can a certification as 'data scientist' provide the guarantee that an applicant or candidate for a data science position has just the right skills? How valuable is a 'generic' certification as data scientist for an employer looking to fill a data science position? Credentials that are more specific and discipline-oriented may be more valuable to both the employer and the job candidate. One employment sector for data scientists are the data repositories that provide discipline-specific data services for science communities. Data science positions within domain repositories include a wide range of responsibilities in support of the full data life cycle - from data preservation and curation to development of data models, ontologies, and user interfaces, to development of data analysis and visualization tools to community education and outreach, and require a substantial degree of discipline-specific knowledge of scientific data acquisition and analysis workflows, data quality measures, and data cultures. Can there be certification programs for domain-specific data scientists that help build the urgently needed workforce for the repositories? The American Geophysical Union has recently started an initiative to develop a program for data science continuing education and data science professional certification for the Earth and space sciences. An Editorial Board has been charged to identify and develop curricula and content for these programs and to provide input and feedback in the implementation of the program. This presentation will report on the progress of this initiative and evaluate its utility for the needs of domain repositories in the Earth and space sciences.
The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center
NASA Astrophysics Data System (ADS)
Singer, H. J.
2017-12-01
The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.
NASA Technical Reports Server (NTRS)
Stovall, John R.; Wray, Richard B.
1994-01-01
This paper presents a description of a model for a space vehicle operational scenario and the commands for avionics. This model will be used in developing a dynamic architecture simulation model using the Statemate CASE tool for validation of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA has been proposed as an avionics architecture standard to NASA through its Strategic Avionics Technology Working Group (SATWG) and has been accepted by the Society of Automotive Engineers (SAE) for conversion into an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division (FDSD) of the NASA Johnson Space Center (JSC) by the Lockheed Engineering and Sciences Company (LESC), Houston, Texas. This SGOAA includes a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, and a nine class model of interfaces. The SGOAA is both scalable and recursive and can be applied to any hierarchical level of hardware/software processing systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoffrey D.
To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.
Langley's CSI evolutionary model: Phase O
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.
1991-01-01
A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.
Recent Advances in Solar Sail Propulsion at NASA
NASA Technical Reports Server (NTRS)
Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV
2006-01-01
Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science and Technology.
Congressional hearings held on October 8-10, 1985, were meant to characterize the attributes of past successes of the United States' efforts in the space sciences, and to project the direction of future research in that area. This report prepared by the subcommittee on space science and application includes recommendations of expert panels on…
The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering
NASA Technical Reports Server (NTRS)
Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen
2006-01-01
This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.
Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1
NASA Technical Reports Server (NTRS)
Estes, Ronald H. (Editor)
1993-01-01
This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.
Valid and Reliable Science Content Assessments for Science Teachers
NASA Astrophysics Data System (ADS)
Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn
2013-03-01
Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper describes multiple sources of validity and reliability (Cronbach's alpha greater than 0.8) evidence for physical, life, and earth/space science assessments—part of the Diagnostic Teacher Assessments of Mathematics and Science (DTAMS) project. Validity was strengthened by systematic synthesis of relevant documents, extensive use of external reviewers, and field tests with 900 teachers during assessment development process. Subsequent results from 4,400 teachers, analyzed with Rasch IRT modeling techniques, offer construct and concurrent validity evidence.
NASA/MSFC/NSSTC Science Communication Roundtable
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.
Fundamental plant biology enabled by the space shuttle.
Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J
2013-01-01
The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.
NASA Astrophysics Data System (ADS)
Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo
2015-04-01
With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.
Life sciences interests in Mars missions
NASA Technical Reports Server (NTRS)
Rummel, John D.; Griffiths, Lynn D.
1989-01-01
NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.
Using Science Data and Models for Space Weather Forecasting - Challenges and Opportunities
NASA Technical Reports Server (NTRS)
Hesse, Michael; Pulkkinen, Antti; Zheng, Yihua; Maddox, Marlo; Berrios, David; Taktakishvili, Sandro; Kuznetsova, Masha; Chulaki, Anna; Lee, Hyesook; Mullinix, Rick;
2012-01-01
Space research, and, consequently, space weather forecasting are immature disciplines. Scientific knowledge is accumulated frequently, which changes our understanding or how solar eruptions occur, and of how they impact targets near or on the Earth, or targets throughout the heliosphere. Along with continuous progress in understanding, space research and forecasting models are advancing rapidly in capability, often providing substantially increases in space weather value over time scales of less than a year. Furthermore, the majority of space environment information available today is, particularly in the solar and heliospheric domains, derived from research missions. An optimal forecasting environment needs to be flexible enough to benefit from this rapid development, and flexible enough to adapt to evolving data sources, many of which may also stem from non-US entities. This presentation will analyze the experiences obtained by developing and operating both a forecasting service for NASA, and an experimental forecasting system for Geomagnetically Induced Currents.
OSSA Space Station Freedom science utilization plans
NASA Astrophysics Data System (ADS)
Cressy, Philip J.
Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.
OSSA Space Station Freedom science utilization plans
NASA Technical Reports Server (NTRS)
Cressy, Philip J.
1992-01-01
Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.
A Model for Effective Professional Development of Formal Science Educators
NASA Astrophysics Data System (ADS)
Bleacher, L.; Jones, A. P.; Farrell, W. M.
2015-12-01
The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.
A Model for Effective Professional Development of Formal Science Educators
NASA Technical Reports Server (NTRS)
Bleacher, L. V.; Jones, A. J. P.; Farrell, W. M.
2015-01-01
The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.
The Application and Future Direction of the SPASE Metadata Standard in the U.S. and Worldwide
NASA Astrophysics Data System (ADS)
King, Todd; Thieman, James; Roberts, D. Aaron
2013-04-01
The Space Physics Archive Search and Extract (SPASE) Metadata standard for Heliophysics and related data is now an established standard within the NASA-funded space and solar physics community and is spreading to the international groups within that community. Development of SPASE had involved a number of international partners and the current version of the SPASE Metadata Model (version 2.2.2) has been stable since January 2011. The SPASE standard has been adopted by groups such as NASA's Heliophysics division, the Canadian Space Science Data Portal (CSSDP), Canada's AUTUMN network, Japan's Inter-university Upper atmosphere Global Observation NETwork (IUGONET), Centre de Données de la Physique des Plasmas (CDPP), and the near-Earth space data infrastructure for e-Science (ESPAS). In addition, portions of the SPASE dictionary have been modeled in semantic web ontologies for use with reasoners and semantic searches. In development are modifications to accommodate simulation and model data, as well as enhancements to describe data accessibility. These additions will add features to describe a broader range of data types. In keeping with a SPASE principle of back-compatibility, these changes will not affect the data descriptions already generated for instrument-related datasets. We also look at the long term commitment by NASA to support the SPASE effort and how SPASE metadata can enable value-added services.
NASA Space Biology Plant Research for 2010-2020
NASA Technical Reports Server (NTRS)
Levine, H. G.; Tomko, D. L.; Porterfield, D. M.
2012-01-01
The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA's Space Biology research will optimize ISS research utilization, develop and demonstrate technology and hardware that will enable new science, and contribute to the base of fundamental knowledge that will facilitate development of new tools for human space exploration and Earth applications. By taking these steps, NASA will energize the Space Biology user community and advance our knowledge of the effect of the space flight environment on living systems.
The effects of a problem-based learning digital game on continuing motivation to learn science
NASA Astrophysics Data System (ADS)
Toprac, Paul K.
The purpose of this study was to determine whether playing a problem-based learning (PBL) computer game, Alien Rescue III, would promote continuing motivation (CM) to learn science, and to explore the possible sources of CM. Another goal was to determine whether CM and interest to learn science in the classroom were identical constructs. CM was defined as the pursuit of academic learning goals in noninstructional contexts that were initially encountered in the classroom. Alien Rescue was played for a total of 9 hours in the seventh grade of a private middle school with 44 students, total, participating. The study used a design-based research approach that attempted to triangulate quantitative and qualitative methods. A science knowledge test, and two self-report questionnaires---one measuring motivation and one measuring CM---were administered preintervention, postintervention, and follow-up. Qualitative data was also collected, including student interviews, classroom observations, written responses, and a science teacher interview. Repeated measures ANOVAs were used to determine any significant changes in scores. A multiple regression analysis was used to explore whether a model of CM could be determined using the Eccles' expectancy-value achievement motivation model. The constant comparative method was used to obtain relevant information from the qualitative data. Based on contradictory quantitative and qualitative findings, results were mixed as to whether students exhibited an increase in CM to learn space science. Students continued to freely engage Alien Rescue during the mid-class break, but this does not strictly adhere to the definition of CM. However, many students did find space science more interesting than anticipated and developed increased desire to learn more in class, if not outside of class. Results also suggest that CM and interest in learning more in class are separate but related constructs. Finally, no satisfactory model emerged from the multiple regression analysis but based on students' interviews, continuing interest to learn is influenced by all the components of Eccles' expectancy-value model. Response effects may have confounded quantitative results. Discussion includes challenges of researching in classrooms, CM, and Eccles' motivational model, and the tension between PBL and game based approaches. Future design recommendations and research directions are provided.
Solar Week 2000: Using role models to encourage an interest in science
NASA Astrophysics Data System (ADS)
Alexander, D.
2000-12-01
Solar Week 2000 is a week-long set of games and activities allowing students to interact directly with solar science and solar scientists. The main goal of Solar Week was to provide young women, primarily in grades 6-8, with access to role models in the sciences. The scientists participating in Solar Week are women from a variety of backgrounds and with a variety of scientific expertise. An online bulletin board was used to foster discussion between the students and the scientists about both science and career issues. In this presentation I will discuss the successes and failures of the first run of Solar Week which occurred on 9-13 October 2000. Our aim is to provide some insight into doing activity-based space science on the web and to discuss the lessons-learned from tailoring to a specific group of participants.
Dan Goldin Presentation: Pathway to the Future
NASA Technical Reports Server (NTRS)
1999-01-01
In the "Path to the Future" presentation held at NASA's Langley Center on March 31, 1999, NASA's Administrator Daniel S. Goldin outlined the future direction and strategies of NASA in relation to the general space exploration enterprise. NASA's Vision, Future System Characteristics, Evolutions of Engineering, and Revolutionary Changes are the four main topics of the presentation. In part one, the Administrator talks in detail about NASA's vision in relation to the NASA Strategic Activities that are Space Science, Earth Science, Human Exploration, and Aeronautics & Space Transportation. Topics discussed in this section include: space science for the 21st century, flying in mars atmosphere (mars plane), exploring new worlds, interplanetary internets, earth observation and measurements, distributed information-system-in-the-sky, science enabling understanding and application, space station, microgravity, science and exploration strategies, human mars mission, advance space transportation program, general aviation revitalization, and reusable launch vehicles. In part two, he briefly talks about the future system characteristics. He discusses major system characteristics like resiliencey, self-sufficiency, high distribution, ultra-efficiency, and autonomy and the necessity to overcome any distance, time, and extreme environment barriers. Part three of Mr. Goldin's talk deals with engineering evolution, mainly evolution in the Computer Aided Design (CAD)/Computer Aided Engineering (CAE) systems. These systems include computer aided drafting, computerized solid models, virtual product development (VPD) systems, networked VPD systems, and knowledge enriched networked VPD systems. In part four, the last part, the Administrator talks about the need for revolutionary changes in communication and networking areas of a system. According to the administrator, the four major areas that need cultural changes in the creativity process are human-centered computing, an infrastructure for distributed collaboration, rapid synthesis and simulation tools, and life-cycle integration and validation. Mr. Goldin concludes his presentation with the following maxim "Collaborate, Integrate, Innovate or Stagnate and Evaporate." He also answers some questions after the presentation.
NASA Technical Reports Server (NTRS)
Glazer, Stuart; Comber, Brian (Inventor)
2016-01-01
The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results; lists problems encountered during testing and lessons learned.
Earth Science and Applications attached payloads on Space Station
NASA Technical Reports Server (NTRS)
Wicks, Thomas G.; Arnold, Ralph R.
1990-01-01
This paper describes the Office of Space Science and Applications' process for Attached Payloads on Space Station Freedom from development through on-orbit operations. Its primary objectives are to detail the sequential steps of the attached payload methodology by tracing in particular the selected Earth Science and Applications' payloads through this flow and relate the integral role of Marshall Space Flight Center's Science Utilization Management function of integration and operations.
2017 Space Station Science in Pictures
2018-01-02
From molecular biology to fluid physics, life sciences and robotics, 2017 was a robust year for research aboard Earth’s only microgravity laboratory. The International Space Station hosts more than 300 experiments during a given Expedition, each working to further space exploration and/or benefit life back on Earth. Here’s a look back at just some of the science that happened on the orbiting laboratory. HD Download: https://archive.org/details/jsc2017m001167_2017_Space_Station_Science_in_Pictures _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
Space Station life sciences guidelines for nonhuman experiment accommodation
NASA Technical Reports Server (NTRS)
Arno, R.; Hilchey, J.
1985-01-01
Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.
ERIC Educational Resources Information Center
An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.
2016-01-01
The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…
Space science and applications: Strategic plan 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The Office of Space Science and Applications (OSSA) 1991 Strategic Plan reflects a transitional year in which we respond to changes and focus on carrying out a vital space science program and strengthening our research base to reap the benefits of current and future missions. The Plan is built on interrelated, complementary strategies for the core space science program, for Mission to Planet Earth, and for Mission from Planet Earth. Each strategy has its own unique themes and mission priorities, but they share a common set of principles and a common goal - leadership through the achievement of excellence. Discussed here is the National Space Policy; an overview of OSSA activities, goals, and objectives; and the implications of the OSSA space science and applications strategy.
Observations and Modelling of the Zodiacal Light
NASA Astrophysics Data System (ADS)
Kelsall, T.
1994-12-01
The DIRBE instrument on the COBE satellite performed a full-sky survey in ten bands covering the spectral range from 1.25 to 240 microns, and made measurements of the polarization from 1.25 to 3.5 microns. These observations provide a wealth of data on the radiations from the interplanetary dust cloud (IPD). The presentation covers the observations, the model-independent findings, and the results from the extensive efforts of the DIRBE team to model the IPD. Emphasis is placed on describing the importance of correctly accounting for the IPD contribution to the observed-sky signal for the purpose of detecting the cosmic infrared background. (*) The NASA/Goddard Space Flight Center (GSFC) is responsible for the design, development, and operation of the COBE mission. GSFC is also responsible for the development of the analysis software and for the production of the mission data sets. Scientific guidance is provided by the COBE Science Working Group. The COBE program is supported by the Astrophysics Division of NASA's Office of Space Science.
NASA Technical Reports Server (NTRS)
Wilkins, Richard
2010-01-01
The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the international space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Medical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materials. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scientific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technology, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
NASA Astrophysics Data System (ADS)
Wilkins, Richard
The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the inter-national space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Med-ical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materi-als. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scien-tific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technol-ogy, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
76 FR 7235 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [11-013] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
Modeling Interferometric Structures with Birefringent Elements: A Linear Vector-Space Formalism
2013-11-12
Annapolis, Maryland ViNceNt J. Urick FraNk BUcholtz Photonics Technology Branch Optical Sciences Division i REPORT DOCUMENTATION PAGE Form...a Linear Vector-Space Formalism Nicholas J. Frigo,1 Vincent J. Urick , and Frank Bucholtz Naval Research Laboratory, Code 5650 4555 Overlook Avenue, SW...Annapolis, MD Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 29 Vincent J. Urick (202) 767-9352 Coupled mode
NASA Astrophysics Data System (ADS)
McGinty, A. B.
1982-04-01
Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.
Edible Earth and Space Science Activities
NASA Astrophysics Data System (ADS)
Lubowich, D.; Shupla, C.
2014-07-01
In this workshop we describe using Earth and Space Science demonstrations with edible ingredients to increase student interest. We show how to use chocolate, candy, cookies, popcorn, bagels, pastries, Pringles, marshmallows, whipped cream, and Starburst candy for activities such as: plate tectonics, the interior structure of the Earth and Mars, radioactivity/radioactive dating of rocks and stars, formation of the planets, lunar phases, convection, comets, black holes, curvature of space, dark energy, and the expansion of the Universe. In addition to creating an experience that will help students remember specific concepts, edible activities can be used as a formative assessment, providing students with the opportunity to create something that demonstrates their understanding of the model. The students often eat the demonstrations. These demonstrations are an effective teaching tool for all ages, and can be adapted for cultural, culinary, and ethnic differences among the students.
What the Heliophysics System Observatory is teaching us about future constellations
NASA Astrophysics Data System (ADS)
Angelopoulos, V.
2017-12-01
Owing to the benign space weather during the recent solar cycle numerous Heliophysics missions have outlived their original purpose and have exceeded expectations in terms of science return. The simultaneous availability of several multi-spacecraft fleets also offers conjunction opportunities that compounds their science yield. It allows the Heliophysics System, a vast region of Sun-Earth interactions, to be peered through the colletive eyes of a fortuitous grand Observatory. The success of this Heliophysics/Geospace System Observatory (H/GSO) has been partly due to fuel resources available on THEMIS, allowing it to reconfigure its orbit lines of apsides, apogees and mean anomalies to optimize conjunctions with the rest of the H/GSO. The other part of the success has been a mandatory open data policy, the accessibility of the data though common data formats, unified analysis tools (e.g. SPEDAS) and distributed data repositories. Future constellations are motivated by the recent science lessons learned: Tight connections between dayside and nightside processes, evidenced by fortuitous conjunctions of ground and space-based assets, suggest that regional activations drive classical global modes of circulation. Like regional tornadoes and hurricanes synthesize global atmospheric weather that cannot be studied with 5 weather stations alone, one per continent, so do dayside reconnection, and nightside injections require more than a handful of point measurements. Like atmospheric weather, space weather too requires networks of stations built to meet a minimum set of requirements to "play together" and build on each other over time. Like Argo's >3000 buoys have revolutionized research, modeling and prediction by global circulation models, "space buoys" can study space weather fronts and double-up as monitors and inputs to space weather models, increasing fidelity and advance warning. Reconfigurability can allow versatility as the scientific targets adjust to the knowledge gained over the years. Classical single-satellite, multi-sensor or imaging missions can benefit from the context that constellations provide. CubeSats, a disruptive technology, are catalysts for the emergence of constellations, a new research and operations asset for Heliophysics.
NASA Astrophysics Data System (ADS)
Alzate, N.; Grande, M.; Matthiae, D.
2017-09-01
Planetary Space Weather Services (PSWS) within the Europlanet H2020 Research Infrastructure have been developed following protocols and standards available in Astrophysical, Solar Physics and Planetary Science Virtual Observatories. Several VO-compliant functionalities have been implemented in various tools. The PSWS extends the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. One of the five toolkits developed as part of these services is a model dedicated to the Mars environment. This model has been developed at Aberystwyth University and the Institut fur Luft- und Raumfahrtmedizin (DLR Cologne) using modeled average conditions available from Planetocosmics. It is available for tracing propagation of solar events through the Solar System and modeling the response of the Mars environment. The results have been synthesized into look-up tables parameterized to variable solar wind conditions at Mars.
Our school's Earth and Space Sciences Club: 12 years promoting interdisciplinary explorations
NASA Astrophysics Data System (ADS)
Margarida Maria, Ana; Pereira, Hélder
2017-04-01
During the past 12 years, we have been engaging secondary level science students (15 to 18 years old) in the extracurricular activities of our school's Earth and Space Sciences Club, providing them with some of the skills needed to excel in science, technology, engineering, arts, and mathematics (STEAM). Our approach includes the use of authentic scientific data, project based learning, and inquiry-centred activities that go beyond the models and theories present in secondary level textbooks. Moreover, the activities and projects carried out, being eminently practical, also function as an extension of the curriculum and frequently enable the demonstration of the applicability of several concepts taught in the classroom in real life situations. The tasks carried out during these activities and research projects often require the combination of two or more subjects, promoting an interdisciplinary approach to learning. Outside of the traditional classroom settings, through interdisciplinary explorations, students also gain hands-on experience doing real science. Thereby, during this time, we have been able to promote meaningful and lasting experiences and spark students' interest in a wide diversity of topics.
The Role of Theory and Modeling in the International Living with a Star Program
NASA Technical Reports Server (NTRS)
Hesse, M.
2004-01-01
Today, theory and modeling play a critical role in our quest to understand the connection between solar eruptive phenomena, and their impacts in interplanetary space and in the near-Earth space environment. This new role is based on two developments, one related to the goal of basic physical understanding, and the other to space weather-related applications. When targeting physical our focus is shifting away from investigations aiming at basic discoveries, to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical explanations that need to be verified or falsified by empirical evidence. Within this paradigm, a much more tight integration between theory modeling, and space flight mission design and execution is not only beneficial, but essential. One of the prime objectives of space weather research, on the other hand, is the prediction of space environmental conditions for the benefit of humans and their assets in near-Earth space and on the ground, as well as on solar system bodies like Mars that are of interest to exploration by humans. By its very nature, prediction requires modeling, which, in turn, requires understanding. We will present an overview of the role of theory and modeling within the International Living With a Star program. Specifically, we will focus on an assessment of present-day and future capabilities, as well as on strategies for tight integration of theory and modeling in space science investigations.
NASA's Space Science Programming Possibilities for Planetaria
NASA Technical Reports Server (NTRS)
Adams, M. L.
2003-01-01
The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.
NASA Technical Reports Server (NTRS)
2001-01-01
The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)
NASA Astrophysics Data System (ADS)
Morrow, Cherilynn A.
1993-11-01
The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.
NASA Technical Reports Server (NTRS)
Morrow, Cherilynn A.
1993-01-01
The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.
75 FR 50783 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-17
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-088)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
76 FR 75914 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-117)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
75 FR 36445 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-069)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
76 FR 64387 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-098] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
76 FR 62456 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-089] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
78 FR 64024 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-122)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
77 FR 4837 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-31
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-007)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
76 FR 10626 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-019)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
78 FR 15378 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-022)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
78 FR 56246 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-12
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-113] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
77 FR 53919 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-071] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
75 FR 80851 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-169)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
77 FR 22807 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-17
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-029] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...
Effects of Free Molecular Heating on the Space Shuttle Active Thermal Control System
NASA Technical Reports Server (NTRS)
McCloud, Peter L.; Wobick, Craig A.
2007-01-01
During Space Transportation System (STS) flight 121, higher than predicted radiator outlet temperatures were experienced from post insertion and up until nominal correction (NC) burn two. Effects from the higher than predicted heat loads on the radiator panels led to an additional 50 lbm of supply water consumed by the Flash Evaporator System (FES). Post-flight analysis and research revealed that the additional heat loads were due to Free Molecular Heating (FMH) on the radiator panels, which previously had not been considered as a significant environmental factor for the Space Shuttle radiators. The current Orbiter radiator heat flux models were adapted to incorporate the effects of FMH in addition to solar, earth infrared and albedo sources. Previous STS flights were also examined to find additional flight data on the FMH environment. Results of the model were compared to flight data and verified against results generated by the National Aeronautics and Space Administration (NASA), Johnson Space Center (JSC) Aero-sciences group to verify the accuracy of the model.
Role Models in Science - An Effective Dissemination Strategy
NASA Astrophysics Data System (ADS)
Chatzichristou, Eleni; Daglis, Ioannis A.; Anastasiadis, Anastasios; Balasis, George; Bourdarie, Sebastien; Horne, Richard B.; Khotyaintsev, Yuri; Mann, Ian R.; Santolik, Ondrej; Turner, Drew L.; Giannakis, Omiros; Ropokis, George
2014-05-01
We present the outreach efforts of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, intended to provide the general public with simplified information concerning the scientific objectives of the project and its expected outcomes, to strengthen their understanding of space science, as well as to engage and inspire the next generation of scientists. MAARBLE involves monitoring of the geospace environment through space and ground-based observations, in order to understand various aspects of the radiation belts, an important element of the space weather system, which have direct impact on human endeavors in space (spacecraft and astronauts exposure). The public outreach website of MAARBLE, besides instructive text and regular updates with relevant news, also employs a variety of multimedia (image and video galleries) and characteristic sounds of space related to very low and ultra low frequency (VLF/ULF) electromagnetic waves. It also provides links to some of the most interesting relevant educational activities, including those at partner institutions such as the Institute of Geophysics and Planetary Physics at UCLA, the University of Alberta, the Swedish Institute of Space Physics and the Institute of Atmospheric Physics of the Academy of Sciences of the Czech Republic. We will focus on a specific activity: "Interviewing a MAARBLE Scientist", which enriches and broadens the scope of the MAARBLE outreach website. The profile of a MAARBLE scientist appears every month through an inspired interview, the scientists relating to the public their real stories, aspirations and endeavors. The intimacy of this approach is very effective in catching the attention of an otherwise indifferent public, and to inspire young people to pursue science careers by identifying themselves with "real" scientists. We cover one interview per month, featuring either a high-profile scientist from each partner institute, or a young researcher on a successful career path to both act as role model and to show the challenges that young scientists are facing today. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.
NASA Astrophysics Data System (ADS)
DaPonte, John S.; Sadowski, Thomas; Thomas, Paul
2006-05-01
This paper describes a collaborative project conducted by the Computer Science Department at Southern Connecticut State University and NASA's Goddard Institute for Space Science (GISS). Animations of output from a climate simulation math model used at GISS to predict rainfall and circulation have been produced for West Africa from June to September 2002. These early results have assisted scientists at GISS in evaluating the accuracy of the RM3 climate model when compared to similar results obtained from satellite imagery. The results presented below will be refined to better meet the needs of GISS scientists and will be expanded to cover other geographic regions for a variety of time frames.
Kennedy Space Center Launch and Landing Support
NASA Technical Reports Server (NTRS)
Wahlberg, Jennifer
2010-01-01
The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.
NASA Technical Reports Server (NTRS)
Winkler, C. E. (Editor)
1973-01-01
The involvement of the Marshall Space Flight Center's Space Sciences Laboratory in the Skylab program from the early feasibility studies through the analysis and publication of flight scientific and technical results is described. This includes mission operations support, the Apollo telescope mount, materials science/manufacturing in space, optical contamination, environmental and thermal criteria, and several corollary measurements and experiments.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Huff, H.; Wilkins, R.; Thibeault, Sheila
2002-01-01
Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study. Published by Elsevier Science Ltd.
Thermal vacuum chamber repressurization with instrument purging
NASA Astrophysics Data System (ADS)
Woronowicz, Michael S.
2016-09-01
At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center's (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.
NASA Technical Reports Server (NTRS)
McElwain, Michael; Van Gorkom, Kyle; Bowers, Charles W.; Carnahan, Timothy M.; Kimble, Randy A.; Knight, J. Scott; Lightsey, Paul; Maghami, Peiman G.; Mustelier, David; Niedner, Malcolm B.;
2017-01-01
The James Webb Space Telescope (JWST) is a large (6.5 m) cryogenic segmented aperture telescope with science instruments that cover the near- and mid-infrared from 0.6-27 microns. The large aperture not only provides high photometric sensitivity, but it also enables high angular resolution across the bandpass, with a diffraction limited point spread function (PSF) at wavelengths longer than 2 microns. The JWST PSF quality and stability are intimately tied to the science capabilities as it is convolved with the astrophysical scene. However, the PSF evolves at a variety of timescales based on telescope jitter and thermal distortion as the observatory attitude is varied. We present the image quality and stability requirements, recent predictions from integrated modeling, measurements made during ground-based testing, and performance characterization activities that will be carried out as part of the commissioning process.
2014-07-03
CAPE CANAVERAL, Fla. – Former NASA astronaut Tom Jones, left, presses the button on a simulated model of an asteroid to mark the grand opening of the new Great Balls of Fire exhibit at NASA’s Kennedy Space Center Visitor Complex in Florida. To his right is Therrin Protze, chief operating officer with Delaware North Parks and Resorts at the visitor complex. Great Balls of Fire shares the story of the origins of our solar system, asteroids and comets and their possible impacts and risks. The 1,500-square-foot exhibit, located in the East Gallery of the IMAX theatre at the visitor complex, features several interactive displays, real meteorites and replica asteroid models. The exhibit is a production of The Space Science Institute's National Center for Interactive Learning. It is a traveling exhibition that also receives funding from NASA and the National Science Foundation. Photo credit: NASA/Daniel Casper
Thermal Vacuum Chamber Repressurization with Instrument Purging
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.
2014-01-01
At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center’s (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.
1962-03-08
The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun and Joe Waggoner, Democratic representative of Louisiana, discuss Apollo models.
2017-02-16
Drs. Rob Ferl and Anna-Lisa Paul in a cold room in the Kennedy Space Center Processing Facility with the petri plates they prepped at the University of Florida for APEX-04. Paul is the principal investigator (PI) and Ferl is co-PI. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.
WFIRST: Update on the Coronagraph Science Requirements
NASA Astrophysics Data System (ADS)
Douglas, Ewan S.; Cahoy, Kerri; Carlton, Ashley; Macintosh, Bruce; Turnbull, Margaret; Kasdin, Jeremy; WFIRST Coronagraph Science Investigation Teams
2018-01-01
The WFIRST Coronagraph instrument (CGI) will enable direct imaging and low resolution spectroscopy of exoplanets in reflected light and imaging polarimetry of circumstellar disks. The CGI science investigation teams were tasked with developing a set of science requirements which advance our knowledge of exoplanet occurrence and atmospheric composition, as well as the composition and morphology of exozodiacal debris disks, cold Kuiper Belt analogs, and protoplanetary systems. We present the initial content, rationales, validation, and verification plans for the WFIRST CGI, informed by detailed and still-evolving instrument and observatory performance models. We also discuss our approach to the requirements development and management process, including the collection and organization of science inputs, open source approach to managing the requirements database, and the range of models used for requirements validation. These tools can be applied to requirements development processes for other astrophysical space missions, and may ease their management and maintenance. These WFIRST CGI science requirements allow the community to learn about and provide insights and feedback on the expected instrument performance and science return.
LAMDA at TREC CDS track 2015: Clinical Decision Support Track
2015-11-20
outperforms all the other vector space models supported by Elasticsearch. MetaMap is the online tool that maps biomedical text to the Metathesaurus, and...cases. The medical knowledge consists of 700,000 biomedical documents supported by the PubMed Central [3] which is online digital database freely...Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT , and Future Planning (MSIP
JPRS Report, Science & Technology, USSR: Science & Technology Policy.
1987-07-10
gas exploration are being increased by 1.7-fold, while the amount of deep drilling is being increased by 1.5-fold. Such imposing tasks require new...territory based on geotraverses, ultradeep drilling , and space geological research has been introduced, a number of geodynamic models, including...cooperation of the ministry with the academy. The gauge of success of our cooperation is the implementation of these programs with the attainment of specific
NASA Technical Reports Server (NTRS)
Rash, James L. (Editor); Dent, Carolyn P. (Editor)
1989-01-01
Theoretical and implementation aspects of AI systems for space applications are discussed in reviews and reports. Sections are devoted to planning and scheduling, fault isolation and diagnosis, data management, modeling and simulation, and development tools and methods. Particular attention is given to a situated reasoning architecture for space repair and replace tasks, parallel plan execution with self-processing networks, the electrical diagnostics expert system for Spacelab life-sciences experiments, diagnostic tolerance for missing sensor data, the integration of perception and reasoning in fast neural modules, a connectionist model for dynamic control, and applications of fuzzy sets to the development of rule-based expert systems.
Modeling Advance Life Support Systems
NASA Technical Reports Server (NTRS)
Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan
1996-01-01
Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.
Bringing Space Science into the Kindergarten Classroom
NASA Technical Reports Server (NTRS)
Bonett, D. M.; Little, K. E.
2000-01-01
With the advent of probes to Mars and the construction of the ISS, it is not presumptuous to introduce 5-year-olds to space science. A variety of projects have been implemented to integrate space science into the kindergarten curriculum.
United Nations/European Space Agency Workshops on Basic Space Science
NASA Technical Reports Server (NTRS)
Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.
1995-01-01
In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.
Life sciences utilization of Space Station Freedom
NASA Technical Reports Server (NTRS)
Chambers, Lawrence P.
1992-01-01
Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.
76 FR 16841 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-025)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... [[Page 16842
Long-Term Preservation of NASA Heliophysics Data and Access: Where We Were and Where We're Going
NASA Technical Reports Server (NTRS)
McGuire, Robert E.
2011-01-01
The importance of ensuring preservation and useful access to the unique science potential of past, present and future NASA solar and space physics (i.e. heliophysics) data has been recognized since the inception of NASA but remains challenging. In this talk, I will briefly review the history of this topic and and then discuss the present NASA model for heliophysics science data management, including key current resources for finding and using data projects like the Space Physics Data Facility. I will highlight expected future directions, building on working elements of the present program and exploiting new technology, to further improve the data environment, address existing issues and anticipate emerging challenges.
Summer graduate research program for interns in science and engineering
NASA Technical Reports Server (NTRS)
Lee, Clinton B.
1992-01-01
The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; prediction of atmospheric ozone content; and applications of industrial engineering.
The Life Sciences program at the NASA Ames Research Center - An overview
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, Joan; Sharp, Joseph C.
1989-01-01
The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.
2014-07-03
CAPE CANAVERAL, Fla. – Former NASA astronaut Tom Jones welcomes visitors to the grand opening of the Great Balls of Fire exhibit at NASA’s Kennedy Space Center Visitor Complex in Florida. Great Balls of Fire shares the story of the origins of our solar system, asteroids and comets and their possible impacts and risks. The 1,500-square-foot exhibit, located in the East Gallery of the IMAX theatre at the visitor complex, features several interactive displays, real meteorites and replica asteroid models. The exhibit is a production of The Space Science Institute's National Center for Interactive Learning. It is a traveling exhibition that also receives funding from NASA and the National Science Foundation. Photo credit: NASA/Daniel Casper
Summer graduate research program for interns in science and engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.B.
1992-03-01
The goal of the 10 week graduate intern program was to increase the source of candidates for positions in science and engineering at the Goddard Space Flight Center. Students participating in this program submitted papers on the work they performed over the 10 week period and also filled out questionnaires on the program's effectiveness, their own performance, and suggestions on improvements. The topics covered by the student's papers include: microsoft excel applications; fast aurora zone analysis; injection seeding of a Q-switched alexandrite laser; use of high temperature superconductors; modifications on a communication interface board; modeling of space network activities; predictionmore » of atmospheric ozone content; and applications of industrial engineering.« less
The Microgravity Isolation Mount: A Linearized State-Space Model a la Newton and Kane
NASA Technical Reports Server (NTRS)
Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.
1999-01-01
Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design. The equations are first derived using Newton's Second Law directly; then a second derivation (i.e., validation) of the same equations is provided, using Kane's approach.
NASA Astrophysics Data System (ADS)
Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.
2015-12-01
This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ( Ubunifu) and what students learn in secondary schools in Kenya, Tanzania, and Uganda. In an effort to reconcile the difference between students' lived experiences and Science, Technology, Engineering, and Mathematics (STEM) taught in classrooms, this study presents an experiential iSPACES instructional model as an example of curriculum integration in science classrooms. The culmination is presentation of lessons learned from history, including Africa's unique contributions to science, theory, and indigenous innovations, in the hope that these lessons can spur the development of new instructional practices, standards, curriculum materials, professional and community development, and dialogue among nations.
Investigation of Electrostatic Accelerometer in HUST for Space Science Missions
NASA Astrophysics Data System (ADS)
Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing
2014-05-01
High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.
USSR Space Life Sciences Digest, issue 8
NASA Technical Reports Server (NTRS)
Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)
1985-01-01
This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.
NASA Technical Reports Server (NTRS)
Murray, S.
1999-01-01
In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.
ERIC Educational Resources Information Center
Vick, Raymond
The implications of space science terminology and concepts for elementary science teaching are explored. Twenty-two concepts were identified which elementary and junior high school teachers were invited to introduce in their teaching. Booklets explaining the concepts were distributed together with report forms for teacher feedback. The numbers of…
Requirements and specifications of the space telescope for scientific operations
NASA Technical Reports Server (NTRS)
West, D. K.
1976-01-01
Requirements for the scientific operations of the Space Telescope and the Science Institute are used to develop operational interfaces between user scientists and the NASA ground system. General data systems are defined for observatory scheduling, daily science planning, and science data management. Hardware, software, manpower, and space are specified for several science institute locations and support options.
The International Space Life Sciences Strategic Planning Working Group
NASA Technical Reports Server (NTRS)
White, Ronald J.; Rabin, Robert; Lujan, Barbara F.
1993-01-01
Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.
The future of space - Space tomorrow: The Antarctica model
NASA Technical Reports Server (NTRS)
Beggs, J.
1983-01-01
The exploration and settling of Antarctica with permanent bases are used as illustrative points for establishing a permanent human presence in near-earth space. NASA activities since 1958 have spawned the computer science, solid-state electronics, medical electronics, and communications satellites industries, which are also rapidly expanding in other countries, as are space-faring capabilities. Antarctica is a paradigm for space exploration in that it is hard to reach, hostile to human life, and a great amount of planning is necessary to arrive at the destination and survive. Aircraft made permanent settlements possible on Antarctica, just as the Shuttle does for space. A space station would provide the remote base from which exploration of other planets and settling on the moon could proceed.
Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research
NASA Astrophysics Data System (ADS)
Boice, D. C.; Reiff, P. H.
2010-12-01
During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements: We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.
NASA Astrophysics Data System (ADS)
Bérczi, Sz.; Hegyi, S.; Hudoba, Gy.; Hargitai, H.; Kokiny, A.; Drommer, B.; Gucsik, A.; Pintér, A.; Kovács, Zs.
Several teachers and students had the possibility to visit International Space Camp in the vicinity of the MSFC NASA in Huntsville Alabama USA where they learned the success of simulators in space science education To apply these results in universities and colleges in Hungary we began a unified complex modelling in planetary geology robotics electronics and complex environmental analysis by constructing an experimental space probe model system First a university experimental lander HUNVEYOR Hungarian UNiversity surVEYOR then a rover named HUSAR Hungarian University Surface Analyser Rover has been built For Hunveyor the idea and example was the historical Surveyor program of NASA in the 1960-ies for the Husar the idea and example was the Pathfinder s rover Sojouner rover The first step was the construction of the lander a year later the rover followed The main goals are 1 to build the lander structure and basic electronics from cheap everyday PC compatible elements 2 to construct basic experiments and their instruments 3 to use the system as a space activity simulator 4 this simulator contains lander with on board computer for works on a test planetary surface and a terrestrial control computer 5 to harmonize the assemblage of the electronic system and instruments in various levels of autonomy from the power and communication circuits 6 to use the complex system in education for in situ understanding complex planetary environmental problems 7 to build various planetary environments for application of the
Southeast Regional Clearinghouse(SERCH)Mini-grants:Big Impacts on Future Explorers
NASA Astrophysics Data System (ADS)
Runyon, C.; Guimond, K.
2004-12-01
SERCH is one of seven regional Broker/Facilitator programs funded by NASA's Space Science Mission Directorate. Our purpose is to promote space science awareness and to enhance interest in science, math, and technology through the use of NASA's mission data, information, and educational products. We work closely with educators and NASA-funded scientists in 14 states (AL, AR, DC, FL, GA, KY, LA, MD, MS, NC, PR, SC/VI, TN, and VA) throughout the southeastern U.S. to share what NASA is doing in space science. Every year SERCH dedicates money from its budget to support education/outreach initiatives that increase the awareness and understanding of the four major scientific themes, or forums from NASA's space science program: 1) Sun-Earth Connection, 2) Solar System Exploration, 3) Structure and Evolution of the Universe, and 4) Astronomical Search for Origins and Planetary Systems. SERCH is particularly interested in proposals for education/outreach efforts that establish strong and lasting partnerships between the space science and education communities and that support the NASA's education mission. We encourage innovative, inter-disciplinary teams involving both scientists and educators to apply. These peer-reviewed grants are awarded for a period of one year in amounts usually ranging from 5,000 to 10,000. Three examples of highly successful previous grant awards include: 1) Teaching Astronomy and Space Science in Kentucky (KY): Designed to improve knowledge of science core concepts and teaching skills in astronomy and space science and increased expertise in achieving current Kentucky academic expectations; 2) Development of Multi-media Space Science Education/Tutorial Modules (MD): The objective is the production of three "turn-key" internet-based multi-media student tutorial modules to enable the mostly part-time professors/instructors teaching introductory astronomy in community colleges to add exciting and cutting-edge topics to their existing astronomy courses; and 3) Space Science the Special Way (SSS Way) (VA): This conference focused on solutions to the challenges faced when accommodating inclusive earth/space science instruction to students from the following special needs groups: blind and visually impaired, deaf and hard of hearing and the learning disabled.
Climate Change Education Today in K-12: What's Happening in the Earth and Space Science Classroom?
NASA Astrophysics Data System (ADS)
Holzer, M. A.; National Earth Science Teachers Association
2011-12-01
Climate change is a highly interdisciplinary topic, involving not only multiple fields of science, but also social science and the humanities. There are many aspects of climate change science that make it particularly well-suited for exploration in the K-12 setting, including opportunities to explore the unifying processes of science such as complex systems, models, observations, change and evolution. Furthermore, this field of science offers the opportunity to observe the nature of science in action - including how scientists develop and improve their understanding through research and debate. Finally, climate change is inherently highly relevant to students - indeed, students today will need to deal with the consequences of the climate change. The science of climate change is clearly present in current science education standards, both at the National level as well as in the majority of states. Nonetheless, a significant number of teachers across the country report difficulties addressing climate change in the classroom. The National Earth Science Teachers Association has conducted several surveys of Earth and space science educators across the country over the past several years on a number of issues, including their needs and concerns, including their experience of external influences on what they teach. While the number of teachers that report external pressures to not teach climate change science are in the minority (and less than the pressure to not teach evolution and related topics), our results suggest that this pressure against climate change science in the K-12 classroom has grown over the past several years. Some teachers report being threatened by parents, being encouraged by administrators to not teach the subject, and a belief that the "two sides" of climate change should be taught. Survey results indicate that teachers in religious or politically-conservative districts are more likely to report difficulties in teaching about climate change than in other areas of the country. This presentation will provide an overview of our most recent survey results on climate change education in the K-12 Earth and space science classroom, including highlighting some of the strategies that teachers are using to bring this critically important area of science to their students.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration
NASA Astrophysics Data System (ADS)
Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc
As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.
75 FR 2892 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-001)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...
75 FR 12310 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-026)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...
Space Studies Board Annual Report 2012
NASA Technical Reports Server (NTRS)
2013-01-01
The Space Studies Board (SSB) was established in 1958 to serve as the focus of the interests and responsibilities in space research for the National Academies. The SSB provides an independent, authoritative forum for information and advice on all aspects of space science and applications, and it serves as the focal point within the National Academies for activities on space research. It oversees advisory studies and program assessments, facilitates international research coordination, and promotes communications on space science and science policy between the research community, the federal government, and the interested public. The SSB also serves as the U.S. National Committee for the International Council for Science Committee on Space Research (COSPAR). The present volume reviews the organization, activities, and reports of the SSB for the year 2012.
Life science experiments performed in space in the ISS/Kibo facility and future research plans
Ohnishi, Takeo
2016-01-01
Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692
History of nutrition in space flight: overview
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Feeback, Daniel L.
2002-01-01
Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.
History of nutrition in space flight: overview.
Lane, Helen W; Feeback, Daniel L
2002-10-01
Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.
NASA Technical Reports Server (NTRS)
Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David
2010-01-01
The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.
Progress in space weather predictions and applications
NASA Astrophysics Data System (ADS)
Lundstedt, H.
The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.
The autonomous sciencecraft constellations
NASA Technical Reports Server (NTRS)
Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.
2003-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.
Microblogging as an extension of science reporting.
Büchi, Moritz
2017-11-01
Mass media have long provided general publics with science news. New media such as Twitter have entered this system and provide an additional platform for the dissemination of science information. Based on automated collection and analysis of >900 news articles and 70,000 tweets, this study explores the online communication of current science news. Topic modeling (latent Dirichlet allocation) was used to extract five broad themes of science reporting: space missions, the US government shutdown, cancer research, Nobel Prizes, and climate change. Using content and network analysis, Twitter was found to extend public science communication by providing additional voices and contextualizations of science issues. It serves a recommender role by linking to web resources, connecting users, and directing users' attention. This article suggests that microblogging adds a new and relevant layer to the public communication of science.
Sally Ride Women in Science Panel
2013-05-17
Panel discussion participants, from left, Linda Billings, research professor, Media and Public Affairs, The George Washington University, Ellen Ochoa, director, NASA Johnson Space Center, Tom Costello, NBC News and moderator for the event, Margaret Weitekamp, space history curator, National Air and Space Museum, Dan Vergano, science writer for USA Today, and Rene McCormick, director of standards and quality, National Math and Science Initiative, are seen during a program titled "Sally Ride: How Her Historic Space Mission Opened Doors for Women in Science" held on Friday, May 17, 2013 at the National Air and Space Museum in Washington. Photo Credit: (NASA/Bill Ingalls)
Space science curriculum design and research at NC A&T state university
NASA Astrophysics Data System (ADS)
Kebede, Abebe; Nair, Jyoti; Smith, Galen
2007-12-01
Recently, North Carolina Agricultural and Technical State University (NCAT) won one of the largest awards from NASA to develop curriculum and research capability in space science in partnership with NASA centres, National Institute of Aerospace, the North Carolina Space Grant, the American Astronomical Society and a number of institutions affiliated with NASA. The plan is to develop curricula and research platforms that prepare science, technology, engineering and mathematics (STEM) students to be employed by NASA. The research programme initially focuses on the study of space and atmospheric physics, and the development of a general capability in atmospheric/space science.
TESS Ground System Operations and Data Products
NASA Astrophysics Data System (ADS)
Glidden, Ana; Guerrero, Natalia; Fausnaugh, Michael; TESS Team
2018-01-01
We describe the ground system operations for processing data from the Transiting Exoplanet Survey Satellite (TESS), highlighting the role of the Science Operations Center (SOC). TESS is a spaced-based (nearly) all-sky mission, designed to find small planets around nearby bright stars using the transit method. We detail the flow of data from pixel measurements on the instrument to final products available at the Mikulski Archive for Space Telescopes (MAST). The ground system relies on a host of players to process the data, including the Payload Operations Center at MIT, the Science Processing Operation Center at NASA Ames, and the TESS Science Office, led by the Harvard-Smithsonian Center for Astrophysics and MIT. Together, these groups will deliver TESS Input Catalog, instrument calibration models, calibrated target pixels and full frame images, threshold crossing event reports, two-minute light curves, and the TESS Objects of Interest List.
Attitudes and learning difficulties in middle school science in South Korea
NASA Astrophysics Data System (ADS)
Jung, Eun Sook
The purpose of this study is to investigate the relationship between cognitive and attitudinal aspects of learning science, concentrating mainly on the influence of cognitive understanding and learning difficulty on attitudes to science. This theme is selected, in particular, because it is reported that Korean students at secondary level do not enjoy studying science and have not enough confidence, although their achievements are high. Johnstone's information processing model (1993) is used to account for cognitive aspects of science education. Learning processes are understood in terms of student's own knowledge construction through the operation of perception filters, processing in working memory space and storing in long term memory. In particular, the overload of student's working memory space is considered as the main factor causing learning difficulty and, in consequence, learning failure. The research took place in one middle school located in Seoul, the capital city in South Korea. 364 students aged 13 and 350 aged 15 participated. In order to try to find relationships between cognitive and affective factors of science learning, individual student's working memory space was measured and a questionnaire designed to gather information about students' attitudes was prepared and given to all students. To determine the working memory space capacity of the students, the Figural Intersection Test (F.I.T), designed by Pascual-Leone, was used. Two kinds of analysis, comparison and correlation, were performed with data from the Figural Intersection Test and the questionnaire applied to students. For the comparison of attitudes between age 13 and 15, the distributions of frequencies of responses were analyzed for each particular statement in a question. The Chi-square (?[2]) test was applied to judge the statistically significant differences in responses of the two groups. The levels of significance used were 0.05, 0.01 and 0.001. In order to see whether there is difference of opinions related to various aspects of learning science between age 13 and 15, and between high and middle and low working memory capacity groups, students responses were compared by just looking at the distribution of percentages without doing more statistics. Correlation coefficients were calculated to see if student's working memory capacity is linked with attitudes. As a result of data analyses from the working memory test and the questionnaire, it is seen that working memory space is related to some student attitudes towards science and their way of studying. Compared to students with high working memory capacity, students who have low working memory capacity are likely to lose their interest in science, feel science is difficult, and have low confidence about studying science. In addition, they tend to depend on memorization when they study science, consider science as a future career less, and are less motivated to study science by attitudinal factors such as "I really enjoy studying science", "Science is useful in my life". This exploratory study has suggested some important issues which need addressed in developing positive attitudes as well as encouraging meaningful learning.
The CAS-NAS forum for new leaders in space science
NASA Astrophysics Data System (ADS)
Smith, David H.
The space science community is thoroughly international, with numerous nations now capable of launching scientific payloads into space either independently or in concert with others. As such, it is important for national space-science advisory groups to engage with like-minded groups in other spacefaring nations. The Space Studies Board of the US National Academy of Sciences' (NAS') National Research Council has provided scientific and technical advice to NASA for more than 50 years. Over this period, the Board has developed important multilateral and bilateral partnerships with space scientists around the world. The primary multilateral partner is COSPAR, for which the Board serves as the US national committee. The Board's primary bilateral relationship is with the European Science Foundation’s European Space Science Committee. Burgeoning Chinese space activities have resulted in several attempts in the past decade to open a dialogue between the Board and space scientists in China. On each occasion, the external political environment was not conducive to success. The most recent efforts to engage the Chinese space researchers began in 2011 and have proved particularly successful. Although NASA is currently prohibited from engaging in bilateral activities with China, the Board has established a fruitful dialogue with its counterpart in the Chinese Academy of Sciences (CAS). A joint NAS-CAS activity, the Forum for New Leaders in Space Science, has been established to provide opportunities for a highly select group of young space scientists from China and the United States to discuss their research activities in an intimate and collegial environment at meetings to be held in both nations. The presentation will describe the current state of US-China space relations, discuss the goals of the joint NAS-CAS undertaking and report on the activities at the May, 2014, Forum in Beijing and the planning for the November, 2014, Forum in Irvine, California.
An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education
NASA Astrophysics Data System (ADS)
Lulla, Kamlesh
2012-07-01
This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.
The Information Science Experiment System - The computer for science experiments in space
NASA Technical Reports Server (NTRS)
Foudriat, Edwin C.; Husson, Charles
1989-01-01
The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.
Bridging the Technology Readiness "Valley of Death" Utilizing Nanosats
NASA Technical Reports Server (NTRS)
Bauer, Robert A.; Millar, Pamela S.; Norton, Charles D.
2015-01-01
Incorporating new technology is a hallmark of space missions. Missions demand ever-improving tools and techniques to allow them to meet the mission science requirements. In Earth Science, these technologies are normally expressed in new instrument capabilities that can enable new measurement concepts, extended capabilities of existing measurement techniques, or totally new detection capabilities, and also, information systems technologies that can enhance data analysis or enable new data analyses to advance modeling and prediction capabilities. Incorporating new technologies has never been easy. There is a large development step beyond demonstration in a laboratory or on an airborne platform to the eventual space environment that is sometimes referred to as the "technology valley of death." Studies have shown that non-validated technology is a primary cause of NASA and DoD mission delays and cost overruns. With the demise of the New Millennium Program within NASA, opportunities for demonstrating technologies in space have been rare. Many technologies are suitable for a flight project after only ground testing. However, some require validation in a relevant or a space flight environment, which cannot be fully tested on the ground or in airborne systems. NASA's Earth Science Technology Program has initiated a nimble program to provide a fairly rapid turn-around of space validated technologies, and thereby reducing future mission risk in incorporating new technologies. The program, called In-Space Validation of Earth Science Technology (InVEST), now has five tasks in development. Each are 3U CubeSats and they are targeted for launch opportunities in the 2016 time period. Prior to formalizing an InVEST program, the technology program office was asked to demonstrate how the program would work and what sort of technologies could benefit from space validation. Three projects were developed and launched, and have demonstrated the technologies that they set out to validate. This paper will provide a brief status of the pre-InVEST CubeSats, and discuss the development and status of the InVEST program. Figure
NASA Astrophysics Data System (ADS)
Halprin, L.
Manned space flight has stagnated for over forty years. No humans have travelled beyond LEO since 1972. This paper examines the historical reasons for this situation, postulates a possible explanation and proposes a potential way forward. The science required for manned space flight has existed for a very long time. The Chinese first developed rockets almost a millennium ago. The Laws of Universal Gravitation were described by Newton in the 17th century, and the rocket equation was formulated by Tsiolkovsky over a hundred years ago. Advances in chemical, electronic and materials technologies enabled manned space flight fifty years ago. But it still required the political will to authorise the enormous expense of the undertaking. Since the original political impetus for manned space flight evaporated after men reached the moon, the enterprise has stagnated. A three stage model linking (a) the science and technology, (b) the economic resources and (c) the will or motivation is presented as a possible explanation. A way for progressing the enterprise of manned space flight beyond this three-way nexus is proposed. By accepting the propositions put forward in this paper, it is plausible that stakeholders may be empowered to push beyond the excuses that have retarded manned space flight for so long.
Chinese Space Program for Heliophysics
NASA Astrophysics Data System (ADS)
Wu, Ji; Gan, Weiqun; Wang, Chi; Liu, Weining; Yan, Yihua; Liu, Yong; Sun, Lilin; Liu, Ying
As one of the major field of space science, heliophysics research in China has not only long history but also strong research forces. Many space missions have been proposed by the community but with few got support. Since 2006, Chinese Academy of Science has organized a long term strategic study in space science. In 2011, the space science program has been kicked off with several new missions being selected for Phase A study. In this presentation, first a brief review on past programs, such as Double Star, Chang’e, and an introduction on the space science strategic study are given. Under the guidance of this strategic study or roadmap, a few missions have been proposed or re-proposed with new element, such as DSO, KUAFU, MIT, SPORT and ASO-S. Brief introductions of these programs and their current status will be given.
Outer Space Place: Exploring Space at the Maryland Science Center
NASA Astrophysics Data System (ADS)
Jan, M. W.; Mendez, F.
1999-05-01
The Maryland Science Center has been the state's premier vehicle for informal science education for over 20 years. Every day thousands of school children, families, and out-of-state visitors come for fun and come away with ideas, exciting experiences, and an appetite for more information about science. Opened on April 15, 1999, Outer Space Place (OSP) consolidates the Science Center's space exhibits and activities, both new and refurbished. In this paper, we describe OSP, which features SpaceLink, the Crosby Ramsey Memorial Observatory, the Davis Planetarium, Earth Orbit Gallery, and the Hubble Space Telescope National Visitor Center and provides hands-on educational experiences for kids of all ages. We illustrate how astronomers contribute to and educators benefit from OSP. We conclude with concrete suggestions for astronomers and educators who wish to enhance astronomy education in their local areas.
Examination of the Transfer of Astronomy and Space Sciences Knowledge to Daily Life
ERIC Educational Resources Information Center
Emrahoglu, Nuri
2017-01-01
In this study, it was aimed to determine the levels of the ability of science teaching fourth grade students to transfer their knowledge of astronomy and space sciences to daily life within the scope of the Astronomy and Space Sciences lesson. For this purpose, the research method was designed as the mixed method including both the quantitative…
Microgravity Science Glovebox - Glove
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Interior Reach
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows the interior reach in the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
New Millenium Program Serving Earth and Space Sciences
NASA Technical Reports Server (NTRS)
Li, Fuk
1999-01-01
A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.
(abstract) Space Science with Commercial Funding
NASA Technical Reports Server (NTRS)
1994-01-01
The world-wide recession, and other factors, have led to reduced or flat budgets in real terms for space agencies around the world. Consequently space science projects and proposals have been under pressure and seemingly will continue to be pressured for some years into the future. A new concept for space science funding is underway at JPL. A partnership has been arranged with a commercial, for-profit, company that proposes to implement a (bandwidth-on-demand) information and telephone system through a network of low earth orbiting satellites (LEO). This network will consist of almost 1000 satellites operating in polar orbit at Ka-band. JPL has negotiated an agreement with this company that each satellite will also carry one or more science instruments for astrophysics, astronomy, and for earth observations. This paper discussed the details of the arrangement and the financial arrangements. It describes the technical parameters, such as the 60 GHz wideband inter-satellite links and the frequency, time, and position control, on which the science is based, and it also discusses the complementarity of this commercially funded space science with conventional space science.
Achievements and Challenges in the Science of Space Weather
NASA Astrophysics Data System (ADS)
Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf
2017-11-01
In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.
Event patterns extracted from top quark-related spectra in proton-proton collisions at 8 TeV
NASA Astrophysics Data System (ADS)
Chen, Ya-Hui; Liu, Fu-Hu; Lacey, Roy A.
2018-02-01
We analyze the transverse momentum (p T) and rapidity (y) spectra of top quark pairs, hadronic top quarks, and top quarks produced in proton-proton (pp) collisions at center-of-mass energy \\sqrt{s}=8 TeV. For {p}{{T}} spectra, we use the superposition of the inverse power-law suggested by the QCD (quantum chromodynamics) calculus and the Erlang distribution resulting from a multisource thermal model. For y spectra, we use the two-component Gaussian function resulting from the revised Landau hydrodynamic model. The modelling results are in agreement with the experimental data measured at the detector level, in the fiducial phase-space, and in the full phase-space by the ATLAS Collaboration at the Large Hadron Collider (LHC). Based on the parameter values extracted from p T and y spectra, the event patterns in three-dimensional velocity (βx -βy -βz ), momentum (px -py -pz ), and rapidity (y 1-y 2-y) spaces are obtained, and the probability distributions of these components are also obtained. Supported by National Natural Science Foundation of China (11575103, 11747319), the Shanxi Provincial Natural Science Foundation (201701D121005), the Fund for Shanxi “1331 Project” Key Subjects Construction and the US DOE (DE-FG02-87ER40331.A008)