Sample records for space science programme

  1. ESA's space science programme

    NASA Astrophysics Data System (ADS)

    Volonte, S.

    2018-04-01

    The Space Science Programme of ESA encompasses three broad areas of investigation, namely solar system science (the Sun, the planets and space plasmas), fundamental physics and space astronomy and astrophysics.

  2. The United Nations programme on space applications: priority thematic areas

    NASA Astrophysics Data System (ADS)

    Haubold, H.

    The Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) was held in 1999 with efforts to identify world wide benefits of developing space science and technology, particularly in the developing nations. One of the main vehicles to implement recommendations of UNISPACE III is the United Nations Programme on Space Applications of the Office for Outer Space Affairs at UN Headquarters in Vienna. Following a process of prioritization by Member States, the Programme focus its activities on (i) knowledge-based themes as space law and basic space science, (ii) application-based themes as disaster management, natural resources management, environmental monitoring, tele-health, and (iii) enabling technologies such as remote sensing satellites, communications satellites, global navigation satellite systems, and small satellites. Current activities of the Programme will be reviewed. Further information available at http://www.oosa.unvienna.org/sapidx.html

  3. Utilization of sounding rockets and balloons in the German Space Programme

    NASA Astrophysics Data System (ADS)

    Preu, Peter; Friker, Achim; Frings, Wolfgang; Püttmann, Norbert

    2005-08-01

    Sounding rockets and balloons are important tools of Germany's Space Programme. DLR manages these activities and promotes scientific experiments and validation programmes within (1) Space Science, (2) Earth Observation, (3) Microgravity Research and (4) Re-entry Technologies (SHEFEX). In Space Science the present focus is at atmospheric research. Concerning Earth Observation balloon-borne measurements play a key role in the validation of atmospheric satellite sounders (ENVISAT). TEXUS and MAXUS sounding rockets are successfully used for short duration microgravity experiments. The Sharp Edge Flight Experiment SHEFEX will deliver data from a hypersonic flight for the validation of a new Thermal Protection System (TPS), wind tunnel testing and numerical analysis of aerothermodynamics. Signing the Revised Esrange and Andøya Special Project (EASP) Agreement 2006-2010 in June 2004 Germany has made an essential contribution to the long-term availability of the Scandinavian ranges for the European science community.

  4. Leading Practice in Space Education: Successful Approaches by Specialist Schools

    ERIC Educational Resources Information Center

    Schools Network, 2010

    2010-01-01

    The aim of the Government's Science, Technology, Engineering and Mathematics (STEM) programme is to ensure Britain's future success as a major centre for science, engineering and innovation. Specialist science, technology, engineering and maths & computing colleges help to drive this programme by becoming centres of excellence in STEM…

  5. ESA achievements: more than thirty years of pioneering space activity

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew

    2005-06-01

    Contents: ESA and science. ESA and Earth observation (Explorer Core missions, Explorer opportunity missions, Earth Watch). ESA and telecommunications. ESA and navigation. ESA and launchers. ESA and manned spaceflight. The ESA Science Programme is one of the Agency's mandatory activities, in which all Member States participate. The origins of the Science Programme, the oldest in the Agency, hark back to the days of ESRO. ESRO's seven successful scientific satellites paved the way for ESA's remarkable series of pioneering missions that have placed Europe at the vanguard of disciplines such as X-ray, gamma-ray and infrared astronomy; astrometry; solar system sciences (especially cometary), solar and heliospheric physics, as well as space plasma physics. Driven by the limited available means, ESA's Science Programme has consistently focused on missions with strong innovative contents. All of the missions launched or approved so far are covered in separate entries in this volume.

  6. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  7. Mini-Satellites for Affordable Space Science

    NASA Astrophysics Data System (ADS)

    Phipps, Andy; da Silva Curiel, Alex; Gibbon, Dave; Richardson, Guy; Cropp, Alex; Sweeting, Martin, , Sir

    Magnetospheric science missions are a key component of solar terrestrial physics programmes - charged with the unravelling of these fundamental processes. These missions require distributed science gathering in a wide variety of alternative orbits. Missions typically require constellations of high delta-v formation flying spacecraft - single launch vehicles are usually mandated. Typical missions baseline space standard technology and standard communication and operations architectures - all driving up programme cost. By trading on the requirements, applying prudent analysis of performance as well as selection of subsystems outside the traditional space range most of the mission objectives can be met for a reduced overall mission cost. This paper describes Surrey's platform solution which has been studied for a future NASA opportunity. It will emphasise SSTL's proven spacecraft engineering philosophies and the use of terrestrial commercial off-the-shelf technology in this demanding environment. This will lead to a cost-capped science mission, and extend the philosophy of affordable access to space beyond Low Earth Orbit.

  8. El Programa de Fortalecimiento de Capacidades de COSPAR

    NASA Astrophysics Data System (ADS)

    Gabriel, C.

    2016-08-01

    The provision of scientific data archives and analysis tools by diverse institutions in the world represents a unique opportunity for the development of scientific activities. An example of this is the European Space Agency's space observatory XMM-Newton with its Science Operations Centre at the European Space Astronomy Centre near Madrid, Spain. It provides through its science archive and web pages, not only the raw and processed data from the mission, but also analysis tools, and full documentation greatly helping their dissemination and use. These data and tools, freely accesible to anyone in the world, are the practical elements around which COSPAR (COmmittee on SPAce Research) Capacity Building Workshops have been conceived and developed, and held for a decade and a half in developing countries. The Programme started with X-ray workshops, but in-between it has been broadened to the most diverse space science areas. The workshops help to develop science at the highest level in those countries, in a long and substainable way, with a minimal investment (computer plus a moderate Internet connection). In this paper we discuss the basis, concepts, and achievements of the Capacity Building Programme. Two instances of the Programme have already taken place in Argentina, one of them devoted to X-ray astronomy and another to Infrared Astronomy. Several others have been organised for the Latin American region (Brazil, Uruguay and Mexico) with a large participation of young investigators from Argentina.

  9. Writing the History of Space Missions: Rosetta and Mars Express

    NASA Astrophysics Data System (ADS)

    Coradini, M.; Russo, A.

    2011-10-01

    Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-­-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-­-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-­-1990s as an exemplar of a "flexible mission" that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.

  10. Antarctica: a review of recent medical research.

    PubMed

    Olson, James J

    2002-10-01

    This article reviews recent developments and areas of research in Antarctic medical science. Nineteen nations are part of the Antarctic treaty and undertake research programmes in Antarctica. Medical science is a small but important part of these programmes. Areas that have been studied include aspects of cold physiology, ultraviolet light effects, endocrine changes (including polar T3 syndrome), alterations in immune function, chronobiology, psychology, microbiology, epidemiology and telemedicine. Antarctica has been recognized as the closest thing on Earth to a testing ground for aspects of space exploration and as such has been termed a space analogue.

  11. Space science curriculum design and research at NC A&T state university

    NASA Astrophysics Data System (ADS)

    Kebede, Abebe; Nair, Jyoti; Smith, Galen

    2007-12-01

    Recently, North Carolina Agricultural and Technical State University (NCAT) won one of the largest awards from NASA to develop curriculum and research capability in space science in partnership with NASA centres, National Institute of Aerospace, the North Carolina Space Grant, the American Astronomical Society and a number of institutions affiliated with NASA. The plan is to develop curricula and research platforms that prepare science, technology, engineering and mathematics (STEM) students to be employed by NASA. The research programme initially focuses on the study of space and atmospheric physics, and the development of a general capability in atmospheric/space science.

  12. The Role of the United Nations Committee on the Peaceful Uses of Outer Space in Building Capacity

    NASA Astrophysics Data System (ADS)

    Haubold, Hans

    The Office for Outer Space Affairs (OOSA) will provide an overview of achievements of UN- COPUOS, UNISPACE Conferences, particularly the establishment of the Programme on Space Applications and its priority thematic areas, UN-affiliated Regional Centres for Space Science and Technology Education, the International Committee on Global Navigation Satellite Systems (ICG), the UN Platform for Space-based Information for Disaster Management and Emergency Response (UN-Spider), and legal framework governing space activities of UN Member States. OOSA will review results of the United Nations Basic Space Science Initiative, particularly the development of networks of astronomical telescope facilities, planetariums, and instrument arrays for space research in developing nations. The mission of OOSA, implemented through on-going programmes developed for the International Heliophysical Year 2007 (IHY2007) and the International Year of Astronomy 2009 (IYA2009) will be highlighted.

  13. The Night Sky, The Forgotten Nature: Uncovering the Impact of One Television Programme on Astronomy Communication in Iran

    NASA Astrophysics Data System (ADS)

    Nazemi, P.

    2017-09-01

    In 2001, two brothers known as the Saffarianpour brothers started a television programme on Iranian state television called Aseman-e-shab (The Night Sky). The programme, which explores astronomy and space science, became one of the longest-running television shows in the history of Iranian television and played a major role in the public communication of science and astronomy. It inspired many of the next generation of Iranian scientists and astronomers and played a key role in the advancement of science journalism and science communication in Iranian media. This article outlines a brief history of the show and its producer and describes the role they played in Iranian society.

  14. REXUS/BEXUS: launching student experiments -a step towards a stronger space science community

    NASA Astrophysics Data System (ADS)

    Fittock, Mark; Stamminger, Andreas; Maria, Roth; Dannenberg, Kristine; Page, Helen

    The REXUS/BEXUS (Rocket/Balloon Experiments for University Students) programme pro-vides opportunities to teams of European student scientists and engineers to fly experiments on sounding rockets and high altitude balloons. This is an opportunity for students and the scientific community to benefit from encouragement and support for experiments. An important feature of the programme is that the students experience a full project life-cycle which is typically not a part of their university education and which helps to prepare them for further scientific work. They have to plan, organize, and control their project in order to develop and build up an experiment but must also work on the scientic aspects. Many of the students continue to work in the field on which they focused in the programme and can often build upon both the experience and the results from flight. Within the REXUS/BEXUS project cycle, they are encouraged to write and present papers about their experiments and results; increasing amounts of scientific output are seen from the students who participate. Not only do the students learn and develop from REXUS/BEXUS but the scientific community also reaps significant benefits. Another major benefit of the programme is the promotion that the students are able to bring to the whole space community. Not only are the public made more aware of advanced science and technical concepts but an advantage is present in the contact that the students who participate have to other university level students. Students are less restricted in their publicity and attract large public followings online as well as presenting themselves in more traditional media outlets. Many teams' creative approach to outreach is astonishing. The benefits are not only for the space science community as a whole; institutes, universities and departments can see increased interest following the support of participating students in the programme. The programme is realized under a bilateral Agency Agreement between the German Aerospace Center (DLR) and the Swedish National Space Board (SNSB). The Swedish share of the payload has been made available to students from other European countries through collaboration with the European Space Agency (ESA). EuroLaunch, a cooperation between the Esrange Space Center of the Swedish Space Corporation (SSC) and the Mobile Rocket Base (MORABA) of DLR, is responsible for the campaign management and operations of the launch vehicles. Project coordination is carried out at DLR's Institute of Space Systems and SSC's Esrange. Experts from DLR, SSC and ESA provide technical support to the student teams throughout their project cycles. The REXUS/BEXUS programme has been carried out in its current format since 2007. In that time, it has developed significantly, building upon strengths to provide a richer experience and increasing the educational, scientific, and promotional outputs. The programme is now showing the potential for students to reach out to a truly broad audience and promote the space science community with youthful enthusiasm and an accessible image.

  15. The case for support of manned spaceflight as a platform for research on sarcopenia and osteopenia

    NASA Astrophysics Data System (ADS)

    Rennie, Michael J.; Narici, Marco V.

    2004-06-01

    The United Kingdom government has decided to be part of the European Space Agency’s Aurora programme, but so far it has declared an intention only to participate in aspects of the programme which do not involve human space flight. Personally, we believe this to be a mistake, mainly because of the inherent limitations of robots, especially in unforeseen circumstances. However the arguments we make are different to this and are focussed mainly upon the benefits to earth based science, medicine, technology and education which would accrue from a manned space flight programme.

  16. Advanced user support programme—TEMPUS IML-2

    NASA Astrophysics Data System (ADS)

    Diefenbach, A.; Kratz, M.; Uffelmann, D.; Willnecker, R.

    1995-05-01

    The DLR Microgravity User Support Centre (MUSC) in Cologne has supported microgravity experiments in the field of materials and life sciences since 1979. In the beginning of user support activities, MUSC tasks comprised the basic ground and mission support, whereas present programmes are expanded on, for example, powerful telescience and advanced real time data acquisition capabilities for efficient experiment operation and monitoring. In view of the Space Station era, user support functions will increase further. Additional tasks and growing responsibilities must be covered, e.g. extended science support as well as experiment and facility operations. The user support for TEMPUS IML-2, under contract of the German Space Agency DARA, represents a further step towards the required new-generation of future ground programme. TEMPUS is a new highly sophisticated Spacelab multi-user facility for containerless processing of metallic samples. Electromagnetic levitation technique is applied and various experiment diagnosis tools are offered. Experiments from eight U.S. and German investigator groups have been selected for flight on the second International Microgravity Laboratory Mission IML-2 in 1994. Based on the experience gained in the research programme of the DLR Institute for Space Simulation since 1984, MUSC is performing a comprehensive experiment preparation programme in close collaboration with the investigator teams. Complex laboratory equipment has been built up for technology and experiment preparation development. New experiment techniques have been developed for experiment verification tests. The MUSC programme includes thorough analysis and testing of scientific requirements of every proposed experiment with respect to the facility hard- and software capabilities. In addition, studies on the experiment-specific operation requirements have been performed and suitable telescience scenarios were analysed. The present paper will give a survey of the TEMPUS user support tasks emphasizing the advanced science support activities, which are considered significant for future ground programmes.

  17. Putting the International Space Station to work.

    PubMed

    Clancy, Paul

    2003-08-01

    The International Space Station (ISS) is the largest international cooperative science and technology project ever undertaken. Involving the United States, Russia, Japan, Canada and 10 ESA Member States, it is now rapidly becoming a reality in orbit, offering unprecedented access for research and applications under space conditions. Europe has invested heavily in this endeavour and plans to exploit that investment by a vigorous utilisation of the ISS for life and physical sciences research and applications, space science, Earth observation, space technology development, the promotion of commercial access to space, and the use of space for educational purposes. In recent years, ESA has engaged in an intensive promotional effort to encourage potential user communities to exploit the novel opportunities that the ISS offers. It has also made significant financial commitments to develop both multi-user facilities for life and physical sciences studies in the Columbus Laboratory, and observational and technology exposure instruments using the external Columbus mounting locations, as well as giving financial support to promote commercial and educational activities. ESA has now elaborated a European Strategy for the efficient utilisation of the ISS by European scientists and other users, which is being coordinated with the Agency's Member States contributing to the ISS Programme, and with the European Science Foundation (ESF). In cooperation with the European Commission, ESA is also fostering synergy with the European Commission's Framework Programmes in terms of shared R&D objectives. This article describes the plan that has been evolved to integrate all of these various elements.

  18. Space Sciences Education and Outreach Project of Moscow State University

    NASA Astrophysics Data System (ADS)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space sciences educational activity of Moscow State University is a non-profit project and is open for all interested parties. “Space schools” for university teachers and students were held in the autumn of 2004 and 2005. The main objective of those schools was to attract interest in space research. Tutors and students who took part in these schools had never before been involved in the space sciences. The idea behind these schools was to join forces: Moscow State University scientists gave space science lectures, students from different universities (Ulianovsk, Samara, Kostroma and other Russian universities) performed the work (prepared educational material) and their university teachers managed the students. After participating in these schools, both students and teachers started to study space science related topics emphasizing the success of these schools. It is important for the educational community to understand what skills future space scientists and space industry employees must be equipped with. In the next years, emphasis is to be placed on space science education at all educational levels and better communication should be practiced between universities and industry.

  19. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  20. BEYSIK: Language description and handbook for programmers (system for the collective use of the Institute of Space Research, Academy of Sciences USSR)

    NASA Technical Reports Server (NTRS)

    Orlov, I. G.

    1979-01-01

    The BASIC algorithmic language is described, and a guide is presented for the programmer using the language interpreter. The high-level algorithm BASIC is a problem-oriented programming language intended for solution of computational and engineering problems.

  1. Support of Herschel Key Programme Teams at the NASA Herschel Science Center

    NASA Astrophysics Data System (ADS)

    Shupe, David L.; Appleton, P. N.; Ardila, D.; Bhattacharya, B.; Mei, Y.; Morris, P.; Rector, J.; NHSC Team

    2010-01-01

    The first science data from the Herschel Space Observatory were distributed to Key Programme teams in September 2009. This poster describes a number of resources that have been developed by the NASA Herschel Science Center (NHSC) to support the first users of the observatory. The NHSC webpages and Helpdesk serve as the starting point for information and queries from the US community. Details about the use of the Herschel Common Science Software can be looked up in the Helpdesk Knowledgebase. The capability of real-time remote support through desktop sharing has been implemented. The NHSC continues to host workshops on data analysis and observation planning. Key Programme teams have been provided Wiki sites upon request for their team's private use and for sharing information with other teams. A secure data storage area is in place for troubleshooting purposes and for use by visitors. The NHSC draws upon close working relationships with Instrument Control Centers and the Herschel Science Center in Madrid in order to have the necessary expertise on hand to assist Herschel observers, including both Key Programme teams and respondents to upcoming open time proposal calls.

  2. Communicating Science; a collaborative approach through Art, Dance, Music and Science

    NASA Astrophysics Data System (ADS)

    Smart, Sarah-Jane; Mortimer, Hugh

    2016-04-01

    A collaborative approach to communicating our amazing science. RAL Space at the Rutherford Appleton Lab, has initiated a unique collaboration with a team of award-winning performing artists with the aim of making space science research engaging and accessible to a wide audience. The collaboration has two distinct but connected strands one of which is the development of a contemporary dance work inspired by solar science and including images and data from the Space Physics Division of STFC RAL Space. The work has been commissioned by Sadler's Wells, one of the world's leading dance venues. It will be created by choreographer Alexander Whitley, video artist Tal Rosner and composers Ella Spira and Joel Cadbury and toured throughout the UK and internationally by the Alexander Whitley Dance Company (AWDC). The work will come about through collaboration with the work of the scientists of RAL Space and in particular the SOHO, CDS and STEREO missions, taking a particular interest in space weather. Choreographer Alexander Whitley and composers Ella Spira and Joel Cadbury will take their inspiration from the images and data that are produced by the solar science within RAL Space. Video artist Tal Rosner will use these spectacular images to create an atmospheric backdrop to accompany the work, bringing the beauty and wonder of space exploration to new audiences. Funding for the creation and touring of the work will be sought from Arts Council England, the British Council, partner organisations, trusts and foundations and private donors.The world premiere of the work will take place at Sadler's Wells in June 2017. It will then tour throughout the UK and internationally to theatres, science conferences and outreach venues with the aim of bringing the work of STFC RAL Space and the science behind solar science and space weather to new audiences. An education programme will combine concepts of choreography and space science aimed at young people in year 5 Key Stage 2 and be developed by a Creative Learning specialist with input from RAL Space scientists and engineers, the RAL Space communication and outreach group and Alexander Whitley Dance Company. The programme will be piloted in selected East London schools and then, following evaluation, be rolled out to several schools across the UK.

  3. Astro Academy: Principia--A Suite of Physical Science Demonstrations Conducted Aboard the ISS

    ERIC Educational Resources Information Center

    McMurray, Andy

    2016-01-01

    Astro Academy: Principia is an education programme developed by the UK National Space Academy for the UK Space Agency (UKSA) and the European Space Agency (ESA). The Academy designed, constructed, flight-qualified and developed experimental procedures for a suite of physics and chemistry demonstration experiments that were conducted by ESA…

  4. ENGage: The use of space and pixel art for increasing primary school children's interest in science, technology, engineering and mathematics

    NASA Astrophysics Data System (ADS)

    Roberts, Simon J.

    2014-01-01

    The Faculty of Engineering at The University of Nottingham, UK, has developed interdisciplinary, hands-on workshops for primary schools that introduce space technology, its relevance to everyday life and the importance of science, technology, engineering and maths. The workshop activities for 7-11 year olds highlight the roles that space and satellite technology play in observing and monitoring the Earth's biosphere as well as being vital to communications in the modern digital world. The programme also provides links to 'how science works', the environment and citizenship and uses pixel art through the medium of digital photography to demonstrate the importance of maths in a novel and unconventional manner. The interactive programme of activities provides learners with an opportunity to meet 'real' scientists and engineers, with one of the key messages from the day being that anyone can become involved in science and engineering whatever their ability or subject of interest. The methodology introduces the role of scientists and engineers using space technology themes, but it could easily be adapted for use with any inspirational topic. Analysis of learners' perceptions of science, technology, engineering and maths before and after participating in ENGage showed very positive and significant changes in their attitudes to these subjects and an increase in the number of children thinking they would be interested and capable in pursuing a career in science and engineering. This paper provides an overview of the activities, the methodology, the evaluation process and results.

  5. The Space Academy: Going beyond "Inspiration"--A Pioneering Model for Science Education

    ERIC Educational Resources Information Center

    Ojha, Anu; Hill, Sarah

    2012-01-01

    This article outlines the Space Academy programme led by the National Space Centre from 2008 to 2011 with the stated goals of harnessing the inspirational contexts of space and climate change to support GCSE, A-level and vocational students in their curriculum studies as well as to enhance STEM teacher effectiveness and increase the awareness of…

  6. Spaced Learning: The Design, Feasibility and Optimisation of SMART Spaces. Evaluation Report and Executive Summary

    ERIC Educational Resources Information Center

    O'Hare, Liam; Stark, Patrick; McGuinness, Carol; Biggart, Andy; Thurston, Allen

    2017-01-01

    This report describes the development and pilot evaluation of SMART Spaces. This programme aims to boost GCSE science outcomes by applying the principle that information is more easily learnt when it is repeated multiple times, with time passing between the repetitions. This approach is known as "spaced learning" and is contrasted with a…

  7. Collaborative Imaginaries and Multi-Sited Ethnography: Space-Time Dimensions of Engagement in an Afterschool Science Programme for Girls

    ERIC Educational Resources Information Center

    Rahm, Jrene

    2012-01-01

    Temporal and spatial configurations that constitute learning and identity work across practices have been little explored in studies of science literacy development. Grounded in multi-sited ethnography, this paper explores diverse girls' engagement with and identity work in science locally, inside a newsletter activity in an afterschool programme…

  8. Benefits of ESA Gravity-Related Hands-on Programmes for University Students' Careers

    NASA Astrophysics Data System (ADS)

    Callens, Natacha; Ha, Lily; Galeone, Piero

    2016-10-01

    The Education Office of the European Space Agency (ESA) offers university students, from ESA Member and Cooperating States, the opportunity to perform investigations in physical sciences, life sciences, and technology, under different gravity conditions through three educational programmes. The "Fly Your Thesis!" (FYT) programme makes use of parabolic flights and the "Drop Your Thesis!" (DYT) programme utilizes a drop tower as microgravity carriers, while the "Spin Your Thesis!" (SYT) programme uses a large centrifuge to create hypergravity. To date, more than hundred university students had the chance to participate in the design, development, and performance of one or more experiments during dedicated campaigns. In the following paper, we examine demographics of past participants of the ESA Education Office gravity-related opportunities over the past seven years and evaluate the benefits of these educational programmes for the participants' studies and careers. Student teams that participated in one of the programmes between 2009 and 2013 were contacted to fill in a questionnaire. The feedback from the students demonstrate significant benefits extending far beyond the primary educational objectives of these programmes.

  9. New developments in Indian space policies and programmes—The next five years

    NASA Astrophysics Data System (ADS)

    Sridhara Murthi, K. R.; Bhaskaranarayana, A.; Madhusudana, H. N.

    2010-02-01

    Over past four decades Indian space programme has systematically acquired capabilities in space technologies and implemented its programmes with a high level of focus on societal applications. It is developed into a multi-dimensional programme where its strategy is directed towards diverse stake holders and actors such as government, users and beneficiaries including general public, industrial suppliers as well as customers, academia and other space agencies/international organisations. Over the next five years, the Indian space programme has charted an ambitious set of policies and programmes that aim to enhance impacts on society. The major task is to enlarge and diversify the services delivered to a large section of population affected by income, connectivity and digital divides. While efficacy of application of space based systems have been proven in several fields such as tele-education, water resources management, improving productivity of land and out reaching quality health services and others, the crux of the problem is to evolve sustainable and scalable delivery mechanisms on a very large scale and extending over large geographical areas. Essentially the problem shifts from being predominately a technology problem to one of a composite of economic, cultural and social problems. Tackling such problems would need renewal of policies relating to commercial as well as public service systems. Major programmatic initiatives are planned in the next five years involving new and upgraded technologies to expand services from space to fill the gaps and to improve economic efficiency. Thrust is also given to science and exploration mission beyond Chandrayaan-1 and some initial steps for the participation in human space flight. This paper discusses the policy and strategy perspectives of the programmes planned by Indian Space Research Organisation over next five years.

  10. The role of the third world academy of sciences (TWAS)

    NASA Astrophysics Data System (ADS)

    Hassan, M. H. A.

    The Third World Academy of Sciences (TWAS) is a non-governmental organization founded in 1983 and officially launched by the former Secretary General of the United Nations in 1985. TWAS has united the most eminent scientists from the South. It currently has 350 members from 55 developing countries, including the 9 living Nobel Laureates of Third World origin. The main mission of TWAS is to promote scientific excellence for sustainable development in the South. In 1988, TWAS facilitated the establishment of the Third World Network of Scientific Organizations (TWNSO), a non-governmental alliance of over 133 scientific organizations, including 27 Ministries of Science and Technology and Higher Education, 42 Research Councils and 36 Academies from 70 Third World countries. TWNSO's mission is to assist in building political and scientific leadership for science- based economic development in the South and in promoting broad-based South-South and South-North partnerships in areas of science and technology critical to sustainable development. TWAS and TWNSO have established a number of programmes that can benefit scientists in developing countries conducting ground-based experiments for the utilization of global satellite data. These programmes include the awarding of research grants to promising space scientists to enable them to purchase equipment and spare parts needed for their experimental work, and the awarding of fellowships to space scientists in the South for research and training in other space research institutions in the South. In addition, TWNSO has recently launched a major South-South collaboration programme which will provide competitive research grants to joint research projects (including those related to the utilization of global satellite data) involving 2-3 competent institutions from different countries in the South.

  11. Press briefing on results from the solar spacecraft SOHO

    NASA Astrophysics Data System (ADS)

    1998-04-01

    After its launch on 2 December 1995, SOHO travelled to take up a special orbit 1.5 million kilometres away on the sunward side of the Earth, where the Sun never sets. The full scientific programme began in April 1996. The occasion for the briefing is the celebration of that second anniversary and of the mission's extension to 2003. Organized by the European Space Agency, the briefing will be hosted by the Rutherford Appleton Laboratory, which is near Oxford. Leading scientists associated with SOHO will announce to the press some remarkable new discoveries about the Sun's interior, atmosphere and solar wind. They will also briefly review the main achievements of the past two years. The role of SOHO as the chief watchdog for storms on the Sun that may affect the Earth will be demonstrated. Europe's creation of the finest spacecraft ever built to observe the Sun will be recalled by a top engineer from ESA. A speaker from NASA will explain transatlantic contributions to SOHO, which is a project of international cooperation between ESA and NASA. ESA's director of science will also be present, to relate SOHO to ESA's general science programme. A lunch-time talk by the BNSC's director of science completes the line-up of speakers. This is also an exceptional opportunity for the press to meet and interview scientists from all over Europe and the USA, who are attending a meeting at the Rutherford Appleton Laboratory of SOHO's Science Working Team (SWT). Journalists are usually excluded from such meetings. The Rutherford Appleton Laboratory plays a prominent part in SOHO, particularly through its provision of the CDS ultraviolet spectrometer. A visit to the CDS group will provide a chance to see what space research is really like. Please indicate your intention to attend, on the accreditation form that follows the schedule. Guidance on how to get to the Rutherford Appleton Laboratory is appended. PROGRAMME Rutherford Appleton Laboratory (RAL), 28 April 1998 10:30 Assembly of media representatives, with coffee 11:00 Press briefing starts: welcome to RAL and SOHO Richard Harrison, RAL, principal investigator for SOHO/CDS Congratulatory remarks Roger Bonnet, Director of Science, European Space Agency, Paris The watch on the Sun, including images of the day from SOHO Richard Harrison and link to Goddard Space Flight Center SOHO: technological highlights John Credland, Head of Scientific Projects, ESTEC, Noordwijk International cooperation David Bohlin, National Aeronautics and Space Administration, USA Scientific highlights and news from SOHO: Inside the Sun (helioseismology) :Douglas Gough, University of Cambridge The Sun's atmosphere : Eric Priest, University of St Andrews The solar wind and particles : Antoinette Galvin, University of New Hampshire ESA's science programme : Roger Bonnet, Director of Science, European Space Agency, Paris 12:00 Questions and answers 12:15 Press visit to the SOHO/CDS facility at RAL 12:45 Buffet lunch, with remarks by: Paul Murdin, Director of Science, British National Space Centre, and Head of Astronomy, PPARC 12:15-14:00 Opportunities for interviews 14:00 Resumption of Science Working Team technical meeting - Media representatives are welcome to attend. SOHO Science Presentations : D. Gough - Helioseismology E. Priest - Solar Atmosphere A. Galvin - Solar Wind and Particles 15:30-16:00 Discussion and closing remarks

  12. Methodology and results of a space station education pilot programme in the primary school

    NASA Astrophysics Data System (ADS)

    Mirra, G.; Mirra, C.

    Potential users of the Space Station Freedom are now still in the Primary School. Subject studies 1 have shown that a robust familiarization programme has to be developed in order to increase public awareness on the microgravity environment and its capabilities to perform unique science. At the same time, several surveys 2 have demonstrated that elementary school students are showing the greatest interest and enthusiasm in space related activities among all school students. With these boundary conditions, a pilot programme, aimed at verifying the capabilities of young primary school pupils (aged between 10 and 12) in understanding why one performs research in space, has been conceived. In order to overcome the lack of space training of school teachers, an expert in space operations joined a group of elementary teachers to activate this program: merging the necessary didactic and technical capabilities. Consequently, the aim of the program becomes two folded: •generate critical thinking and problem solving capacities as well as inventiveness in children making them aware on the use of space to improve life on Earth. •identify the key issues for the definition of a robust space utilization educational programme. The programme has been managed by MARS Center. the Italian User Support Center for the Space Station utilization, and the institute "Speranzas" in the nearby of Naples, Italy. MARS Center, in particular, is responsible towards the national agency ASI, Agenzia Spaziale Italiana, of the execution of the promotional activity towards all the possible target groups: young students are among these groups. This programme started in late 1992 and is currently ongoing. The objective of this paper is to provide a description of the methodology and the reasons of such a programme with a snapshot on the preliminary results and future trends. Means used as supporting tools, such as films, posters and role plays are herein depicted as well as statistics on the pupils apprehension level.

  13. The Europlanet Prize for Public Engagement with Planetary Science: three years of honouring outstanding achievements

    NASA Astrophysics Data System (ADS)

    Heward Fouchet, T.

    2012-09-01

    Europlanet launched an annual Prize for Public Engagement with Planetary Sciences at the European Planetary Science Congress (EPSC) in 2009. At EPSC 2012, the prize will be presented for the third time. To date, the prize has been awarded to: • 2010 - Dr Jean Lilensten of the Laboratoire de Planétologie de Grenoble for his development and dissemination of his 'planeterrella' experiment; • 2011 - The Austrian Space Forum for their coordinated programme of outreach activities, which range from simple classroom presentations to space exhibitions reaching 15 000 visitors; • 2012 - Yaël Nazé, for the diverse outreach programme she has individually initiated over the years, carefully tailored to audiences across the spectrum of society, including children, artists and elderly people. These three prizes cover a spectrum of different approaches to outreach and provide inspiration for anyone wishing to become engaged in public engagement, whether at an individual and institutional level.

  14. ISO science - observations of dusty discs.

    NASA Astrophysics Data System (ADS)

    Heske, A.

    1992-12-01

    ISO, the Infrared Space Observatory, will be an infrared observing facility in space. Via submission of observing proposals, use of this facility will be open to the astronomical community. The scientific payload consists of two spectrometers, a camera and a photo-polarimeter. Following an overview of the ISO mission, this paper describes the highlights of the Central Programme - proposals which are being prepared by the instrument groups, the mission scientists and the astronomers of the ISO Science Operations Team - with special emphasis on the proposals concerned with dusty discs.

  15. Risk management and lessons learned solutions for satellite product assurance

    NASA Astrophysics Data System (ADS)

    Larrère, Jean-Luc

    2004-08-01

    The historic trend of the space industry towards lower cost programmes and more generally a better economic efficiency raises a difficult question to the quality assurance community: how to achieve the same—or better—mission success rate while drastically reducing the cost of programmes, hence the cost and level of quality assurance activities. EADS Astrium Earth Observation and Science (France) Business Unit have experimented Risk Management and Lessons Learned on their satellite programmes to achieve this goal. Risk analysis and management are deployed from the programme proposal phase through the development and operations phases. Results of the analysis and the corresponding risk mitigation actions are used to tailor the product assurance programme and activities. Lessons learned have been deployed as a systematic process to collect positive and negative experience from past and on-going programmes and feed them into new programmes. Monitoring and justification of their implementation in programmes is done under supervision from the BU quality assurance function. Control of the system is ensured by the company internal review system. Deployment of these methods has shown that the quality assurance function becomes more integrated in the programme team and development process and that its tasks gain focus and efficiency while minimising the risks associated with new space programmes.

  16. Space-Related Education as a Whole

    NASA Astrophysics Data System (ADS)

    Rémondière, André

    2002-01-01

    In the framework of the 52nd IAC a forum combining forces of IAF, ISSAT and ISU has been held in Toulouse. The theme was "Space Education for the New Millennium". Due to an ESA very remarkable initiative, with the participation of CNES, four hundred students coming from miscellaneous countries participated to the Congress. Simultaneously with the Congress an important and fascinating Public Outreach Programme (POP) has been organized by ISSAT (Institut des Sciences Spatiales et Applications de Toulouse). This POP was dedicated to young people, local students and large public. Several volunteers, just retired from a space- related professional career helped the organizers to prepare and to implement this Public Outreach Programme. After this successful experience it appears very interesting to proceed to a large vision of space related education and training. Avoiding to share the field of education between youth, students graduated and post-graduated, continuous education catalogued or customized, it seems possible through associations like ISSAT, and with the participation of its Members (Space Agency ; Universities ; High Graduate Schools ; Industrial Firms; Services Providers) and the participation of individual members just retired to give a very strong continuity to space-related education all along the time since secondary school to professional training, through university, graduated and post graduated steps, doctorates, continuous education, etc... So it will be possible to increase the interest of young people and students for sciences and technologies, to contribute to the development of a space-related task force for the 21st century and to promote space sciences and applications at the international level.

  17. The definition of ESA's scientific programme for the 1980's.

    NASA Astrophysics Data System (ADS)

    Russo, A.

    1997-09-01

    The following topics were dealt with: discussing a long-term strategy for ESA's scientific activities; the SAC's (Science Advisory Committee) vision of European space science in the 1980s; the role of Spacelab (and Ariane); more money for science?; studying future scientific projects (the comets and the Moon); the selection of ESA's next scientific mission (the comet and the stars, the SPC decision, Giotto and Hipparcos adopted).

  18. Designing Science Laboratories: Learning Environments, School Architecture and Teaching and Learning Models

    ERIC Educational Resources Information Center

    Veloso, Luísa; Marques, Joana S.

    2017-01-01

    This article on secondary schools science laboratories in Portugal focuses on how school space functions as a pedagogical and political instrument by contributing to shape the conditions for teaching and learning dynamics. The article places the impact of changes to school layouts within the larger context of a public school renovation programme,…

  19. Space School

    ERIC Educational Resources Information Center

    Fitzgerald, Victoria

    2012-01-01

    Part of the School of Physical Sciences mission and plan is to deliver an effective outreach programme to the community and South East regions to stimulate interest, both in school pupils and the general public, in science. To do this, it offers many activities that are school-based and aimed at students in Key stages 3, 4 and 5 (ages 11-18).…

  20. Cosmic Vision 2015-2025 media briefing - 19 April 2005

    NASA Astrophysics Data System (ADS)

    2005-04-01

    On 19 April over 150 scientists from all ESA member states will convene at the European Space Research and Technology Centre in Noordwijk, the Netherlands, for a three-day symposium entitled "Trends in Space Science and Cosmic Vision 2015-2025". The conference will include a number of invited talks giving an overview of the scientific themes that will form the basis of future ESA missions. Topics to be addressed now will keep space scientists busy over the next 15-20 years. Amongst them are: the nature of planets beyond our solar system; a possible mission to Jupiter and its moon Europa, or perhaps back to Titan; spotting the first black holes; an interstellar probe powered by a solar sail; and many others. Open questions include the priority ESA should give to near-Earth objects and the threat they pose, or whether and when we should return to a comet after Rosetta. Members of the media are invited to a press conference at 10.00 CET on 19 April, at ESA's Visitor Centre (Space Expo) in Noordwijk, the Netherlands. The press briefing will provide an overview of the current ideas for new missions, the expected results and their implications for the advancement of science and human knowledge. Programme 09.30 - Arrival/Registration/Coffee in the Mars Corner at Space Expo 10.00 - Welcome 10.00 - Present and future of ESA's Science Programme - Prof. David Southwood (ESA Director of Science) 10.15 - Hubble: Fifteen years of discovery - Dr Duccio Macchetto (Head of ESA Space Telescope Division) 10.30 - Europe's space science in fifteen years’ time - Prof. Giovanni Bignami (Chairman of ESA Space Science Advisory Committee) 10.45 - Question and answer time 11.00 - End Members of the media interested in attending the briefing or listening to it via telephone should complete the form below and return it as soon as possible by fax as indicated. Instructions on how to listen in via the telephone line will be given to those that register. The presentation material will be made available to registered participants via the worldwide web shortly before the briefing.

  1. The Austrian Space Plan

    NASA Astrophysics Data System (ADS)

    Pseiner, K.; Balogh, W.

    2002-01-01

    After several years of preparation and discussion among the involved players, the Austrian Space Plan was approved for implementation in November 2001. Based on careful benchmarking and analysis of the capabilities of the Austrian space sector it aims to create excellent conditions for the sector's further development. The new space strategy embraces Austria's participation in the mandatory and optional programmes of the European Space Agency and establishes a National Space Programme supported by separate funding opportunities. A set of clearly-defined indicators ensures that the progress in implementing the Space Plan can be objectively judged through independent, annual reviews. The National Space Programme promotes international cooperation in space research and space activities with the aim to strengthen the role of space science and to better prepare Austrian space industry for the commercial space market. In the framework of the Space Plan the Austrian Space Agency has been tasked with integrating the industry's growing involvement in aeronautics activities to better utilize synergies with the space sector. This paper reviews the various steps leading to the approval of the new space strategy and discusses the hurdles mastered in this process. It reports on the Space Plan's first results, specifically taking into account projects involving international cooperation. For the first the Austria aerospace-sector can rely on an integrated strategy for aeronautics- and space activities which is firmly rooted in the efforts to enhance the country's R&D activities. It may also act as a useful example for other small space- using countries planning to enhance their involvement in space activities.

  2. "Making dreams come true"

    NASA Astrophysics Data System (ADS)

    1998-11-01

    At an exciting stage in the evolution of the European Space Agency's Science Programme, Director-General Antonio Rodota and Director of Science Roger Bonnet will meet the press in ESA Head Office for a frank discussion of progress and problems. The Science Programme serves scientists in all of ESA's Member States, who want to do adventurous research in space of importance to all mankind. Making their dreams come true is more difficult in the face of recent cuts in the Programme's budget. Scientific boldness combined with administrative prudence nevertheless results in a series of current and future projects in which Europe can take pride. Highlights for discussion at the Press Conference will include: * MARS. In 2003, the newly approved mission Mars Express will make Europe's debut at the Red Planet, with innovative science at a very low cost. * THE SUN. SOHO is back in business after a nail-biting summer, Ulysses is heading for its second visit to the polar regions of the Sun, and Cluster II is on schedule for launch in 2000. * ASTRONOMY. Following the outstanding successes of ISO's infrared observations, completed this year, XMM and Integral are preparing to match its achievements by detecting X-rays and gamma-rays from the Universe. Journalists will also be updated about the status of Huygens (already en route for Titan), SMART-1 (new propulsion), Rosetta (comet mission), MiniSTEP (relativity), FIRST (far infra-red astronomy) and Planck (microwave background) -- as well as other adventurous missions under study.

  3. Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change

    NASA Astrophysics Data System (ADS)

    Taylor, Dale L.; Booth, Shirley

    2015-05-01

    Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions of teaching found in different cultural and disciplinary contexts have contextual differences but have resonances with the results of research into teacher beliefs. Our sample of eight South African secondary physical science teachers was schooled in a system which encouraged knowledge transmission, but they were prepared in their initial teacher education for a learner-centred approach. After they had taught for a few years, we explored their conceptions of science teaching, using phenomenographic interviews. Four conceptions emerged inductively from the analysis: transferring science knowledge from mind to mind; transferring problematic science knowledge from mind to mind; creating space for learning science knowledge and creating space for learning problematic science knowledge. Internally these conceptions are constituted by three dimensions of variation: the nature of the science knowledge to be learnt, the role of the students and the role of the teacher. Media and practical work play different roles in the external horizon of these conceptions. These conceptions reflect the disciplinary context as well as the emphases of the sample's initial teacher education programme. This suggests that initial teacher education can significantly shape teachers' conceptions of teaching.

  4. Aspects of ESA s public outreach programme

    NASA Astrophysics Data System (ADS)

    Maree, H.

    The Science Programme Communication Service is currently implementing a new policy to increase the overall public interest in ESA Science Programme by adopting new ways of promoting its activities, accordingly to the simple principle that "different target audiences have different needs". It is clear that the general public (i.e. "the man in the street" / "the average tax- payer") rarely has the knowledge and the background to understand what exactly a space mission is, what it does and why it does it ("Mission oriented approach"). The experience has shown that a space mission becomes "popular" amongst this target audience when the relevant communication is done by passing generic/bas ic/simple messages ("Thematic oriented approach"). The careful selection of adequate supports together with efficient distribution and promotion networks are also key parameters for success of the latter approach. One should also note that the overall objective of this new policy, is to raise people's interest in space in general. By presenting the information under the ESA brand, the public will start more and more to associate this brand and Europe to space exploration. Within the next twelve months, four scientific missions will be launched. Interestingly, tree of them (SMART-1, ROSETTA and MARS EXPRESS) offer a unique opportunity to implement the new communication policy under the single thematic : Europe is exploring the Solar System. Nevertheless, the study of the various mission profiles and their potential communication impact lead us to choose to reach out the general public primarily via the sub-thematic : Europe goes to Mars.

  5. PERICLES: a knowledge management programme applied to solar data from International Space Station-Columbus

    NASA Astrophysics Data System (ADS)

    Muller, Christian; PERICLES Consortium

    2017-06-01

    The FP-7 (Framework Programme 7 of the European Union) PERICLES project addresses the life-cycle of large and complex data sets to cater for the evolution of context of data sets and user communities, including groups unanticipated when the data was created. Semantics of data sets are thus also expected to evolve and the project includes elements which could address the reuse of data sets at periods where the data providers and even their institutions are not available any more. This paper presents the PERICLES science case with the example of the SOLAR (SOLAR monitoring observatory) payload on International Space Station-Columbus.

  6. ESSC-ESF Position Paper-Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    NASA Astrophysics Data System (ADS)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R.; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J.; Marco, Robert; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John

    2009-02-01

    In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.

  7. ESSC-ESF position paper--science-driven scenario for space exploration: report from the European Space Sciences Committee (ESSC).

    PubMed

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J; Marco, Roberto; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John

    2009-01-01

    In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.

  8. Towards AN Integrated Scientific and Social Case for Human Space Exploration

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.

    2004-06-01

    I will argue that an ambitious programme of human space exploration, involving a return to the Moon, and eventually human missions to Mars, will add greatly to human knowledge. Gathering such knowledge is the primary aim of science, but science’s compartmentalisation into isolated academic disciplines tends to obscure the overall strength of the scientific case. Any consideration of the scientific arguments for human space exploration must therefore take a holistic view, and integrate the potential benefits over the entire spectrum of human knowledge. Moreover, science is only one thread in a much larger overall case for human space exploration. Other threads include economic, industrial, educational, geopolitical and cultural benefits. Any responsibly formulated public space policy must weigh all of these factors before deciding whether or not an investment in human space activities is scientifically and socially desirable.

  9. Protecting the Moon for research: ILEWG report

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We give a report on recommendations with emphasis on environment protection, and since last COSPAR from ILEWG International conferences Exploration and Utilisation of the Moon on held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration, as debated at ILEWG. ILEWG Science task group has listed priorities for scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life; sciences from a biology lunar laboratory. We discuss how to preserve Moon research potential in these areas while operating with instruments, landers, rover during a cooperative robotic village, and during the transition form lunar human outpost to permanent sustainable human base. We discuss how Moon-Mars Exploration can inspire solutions to global Earth sustained development with the trade-off of In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental and planetary protection aspects and lessons for Mars; Life sciences laboratories, and support to human exploration. Co-authors: ILEWG Task Groups on Science, Technology and Human Lunar Bases ILEWG Reference documents: http://sci.esa.int/ilewg -10th ILEWG Conference on Exploration and Utilisation of the Moon, NASA Lunar Ex-ploration Analysis Group-PSace Resources Roundtable, Cape Canaveral October 2008, pro-gramme online at http://sci.esa.int/ilewg/ -9th ILEWG Conference on Exploration and Utilisation of the Moon, ICEUM9 Sorrento 2007, programme online at http://sci.esa.int/ilewg/ -8th ILEWG Conference on Exploration and Utilisation of the Moon, Beijing July 2006, programme online at http://sci.esa.int/ilewg/ -The Moon and Near Earth Objects (P. Ehrenfreund , B.H. Foing, A. Cellino Editors), Ad-vances in Space Research, Volume 37, Issue 1, pp 1-192, 2006 -7th ILEWG Conference on Exploration and Utilisation of the Moon, Toronto Sept 2005, Programme and Proceedings on line at www.ilewg.org, R. Richards et al Editors -6th ILEWG Conference on Exploration and Utilisation of the Moon, Udaipur Nov. 2004, Proceedings ( N. Bhandari Editor), Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841 -5th ILEWG Conference on Exploration and Utilisation of the Moon, Hawaii Nov 2003, Pro-ceedings ILC2005/ICEUM5 (S.M. Durst et al Editors), Vol 108, 1-576 pp, Science and Tech-nology Series, American Astronautical Society, 2004 -'The next steps in exploring deep space -A cosmic study by the IAA', W. Huntress, D. Stetson, R. Farquhar, J. Zimmerman, B. Clark, W. O'Neil, R. Bourke and B. Foing, Acta Astronautica, Vol 58, Issues 6-7, March-April 2006, p302-377 -IAA/ESA workshop on "Next Steps in Exploring Deep Space", ESTEC 22-23 sept. 2003 (B.H. Foing W. Huntress, conveners) Lunar Exploration, Planetary and Space Science, Vol 50, issue 14-15, Dec 2002 (B.H. Foing al) -ESLAB36 symposium on "Earth-like Planets and Moons", 2002, ESA-SP514, pp. 1-356, (B.H.Foing B. Battrick, editors) -'Lunar Exploration 2000', (B.H. Foing, D. Heather, Editors), Adv. Space Research Vol 30, Nr 8, 2002 -'Earth-Moon Relationships', Proceedings of the Conference held in Padova, Italy at the Ac-cademia Galileiana di Scienze Lettere ed Arti, Nov. 2000, (C. Barbieri and F. Rampazzi, Editors), in Earth, Moon , Planets Vol. 85-86, Nos 1-3, pp 1-575, 2001 -4th International Conference on Exploration and Utilisation of the Moon, ESTEC, 2000, ESA SP-462 (B.H. Foing M. Perry, editors) -Investing in Space: The Challenge for Europe. Long-Term Space Policy Committee, Second Report, May 1999. ESA-SP-2000 -2nd International Lunar Workshop, held at Kyoto in October 1996, Proceedings, H. Mizutani, editor, Japan Space Forum Publisher, 1997 International Lunar Workshop, 1994 May 31-June 3, Beatenberg, Switzerland. Proceedings. Ed. Balsiger, H. et al. European Space Agency, 1994. ESA-SP-1170 -Astronomy and Space Science from the Moon', Proceedings of COSPAR/IAF session at World Congress, Washington, (B.H. Foing et al editors), Advances in Space Research, Volume 14, Issue 6, 1994 -Mission to the Moon, Europe's Priorities for Scientific Exploration and Utilisation of the Moon', R.M. Bonnet et al, European Space Agency, ESA SP-1150, June 1992

  10. VESPA: Developing the Planetary Science Virtual Observatory in H2020

    NASA Astrophysics Data System (ADS)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Capria, T.; Rossi, A. P.; Schmitt, B.; André, N.; Vandaele, A.-C.; Scherf, M.; Hueso, R.; Maattanen, A.; Thuillot, W.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Bollard, Ph.

    2015-10-01

    The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.

  11. VESPA: developing the planetary science Virtual Observatory in H2020

    NASA Astrophysics Data System (ADS)

    Erard, Stéphane; Cecconi, Baptiste; Le Sidaner, Pierre; Capria, Teresa; Rossi, Angelo Pio

    2016-04-01

    The Europlanet H2020 programme will develop a research infrastructure in Horizon 2020. The programme includes a follow-on to the FP7 activity aimed at developing the Planetary Science Virtual Observatory (VO). This activity is called VESPA, which stands for Virtual European Solar and Planetary Access. Building on the IDIS activity of Europlanet FP7, VESPA will distribute more data, will improve the connected tools and infrastructure, and will help developing a community of both users and data providers. One goal of the Europlanet FP7 programme was to set the basis for a European Virtual Observatory in Planetary Science. A prototype has been set up during FP7, most of the activity being dedicated to the definition of standards to handle data in this field. The aim was to facilitate searches in big archives as well as sparse databases, to make on-line data access and visualization possible, and to allow small data providers to make their data available in an interoperable environment with minimum effort. This system makes intensive use of studies and developments led in Astronomy (IVOA), Solar Science (HELIO), plasma physics (SPASE), and space archive services (IPDA). It remains consistent with extensions of IVOA standards.

  12. Outreach of Astronomy with emphasis to the Solar System by the Space group in Greece

    NASA Astrophysics Data System (ADS)

    Moussas, X.; Dialynas, K.; Babasides, G.; Fasoulopoulos, G.; Dimitropoulou, V.; Prassopoulos, D.; Kouphos, S.; Spandagos, E.; Strikis, J.

    We have a long tradition in Space and Solar System outreach at the University of Athens (Space Group). We have contributed with many popular science articles in encyclopaedias (a total of some 200000 words), magazines and newspapers, public lectures around Greece and radio and TV programmes. We contribute in exhibitions for the public on many occasions (e.g. The British Exploration of the Planets, an exhibition organized by the British Council, at Eugenides Foundation and The Planetarium, where I prepared some 15 posters). We are preparing an outreach site of Astrophysics with sections for the planets, the exploration of the solar system and solar terrestrial relations. I am preparing several posters for the planets. We organize with the Hellenic Physical Union a series of Astrophysics Lectures at the University of Athens. Together with the Hellenic Physical Union we are planning to produce a theatrical play and CD or DVD concerning the planets. We have excellent collaboration with the amateur astronomers allover Greece and Cyprus. We organize, together with Physics or mathematics teachers in high schools several events related to astronomical observations (e.g. Venus transit, solar eclipe, astronomy nights). 1 We also organize popular science programmes in TV channels. I brief we consider Astronomy and especially the planetary system as a "Great Attractor" of pupil and the general public to science and we use it on every occasion for the benefit of the pupil and science. 2

  13. CSSTEAP for meeting the challenges of society

    NASA Astrophysics Data System (ADS)

    Deekshatulu, B.; Kant, Y.

    Continuous development of human resources is crucial to ensuring the scientific and technological as well as economic &cultural development in any society/country. One such lead step was taken by UN-OOSA to introduce space science &technology Education for capacity building for direct social needs. Many such centres have been established across the developing regions of the world. One such centre is the Centre for Space Science for Technology Education for Asia and the Pacific (CSSTEAP) established on November 1, 1995 in India for the Asia-Pacific region. It has been imparting education/training in the areas of Remote Sensing &GIS, Satellite Communications (SATCOM), Satellite Meteorology &Global Climate (SATMET), Space &Atmospheric science using modern infrastructure, technology &training tools and practices. The centre is conceived as an institute that offers the best possible education, research and applications programme and experiences to the participants in all the 4 disciplines. The centre conducts long (9 months) and short courses /workshops (2 - 4 weeks) for scientists, technologists, teachers, decision makers and planners etc, in the above disciplines. So far 340 participants from 39 countries have been benefited. The centre has established linkages with many International organizations. In addition to education/training, centre plans to start collaboration projects in the above disciplines, also to start internet based training programmes and data bank generation of Asia-Pacific region. The vision of the centre is to outreach all the Asia-Pacific countries and hopes to be in the hub for space education and training activities in the region - linking national programs and academia.

  14. Advanced earth observation spacecraft computer-aided design software: Technical, user and programmer guide

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.; Krauze, L. D.

    1983-01-01

    The IDEAS computer of NASA is a tool for interactive preliminary design and analysis of LSS (Large Space System). Nine analysis modules were either modified or created. These modules include the capabilities of automatic model generation, model mass properties calculation, model area calculation, nonkinematic deployment modeling, rigid-body controls analysis, RF performance prediction, subsystem properties definition, and EOS science sensor selection. For each module, a section is provided that contains technical information, user instructions, and programmer documentation.

  15. Columbus future evolution potential

    NASA Astrophysics Data System (ADS)

    Altmann, G.; Rausch, G.; Sax, H.

    Europe is at a crossroads in the evolution of manned space flight. Following the invitation of President Reagan to participate in the US Space Station Programme, Europe is now to decide on the content and financial envelope for such a programme. The actual path chosen will determine the way forward to the end of this century and beyond. The preparatory Columbus programme initiated in 1985 and planned to be completed by the end of 1987 has now reached a critical point with the definition of a new programme baseline for further study in phase B2 running from November 1986 to May 1987. The new programme baseline as described in chapter 3 covers the following elements: ∘ A pressurised module for permanent attachment to the NASA Space Station, to be launched by the NASA STS. ∘ A man-tended free flyer (MTFF) consisting of a pressurised module and a resource module to be designed and developed for a launch by ARIANE 5. ∘ A polar platform primarily dedicated to Earth Observation user requirements designed for launch by ARIANE 5. ∘ As an option an enhanced version of the present EURECA carrier to be deployed as a coorbiting platform dedicated primarily to microgravity and space sciences. The planned contribution to the international Space Station based on the above space segment definition must be viewed in the light of a European long term plan, the ultimate goal of which is an autonomous capability. Considering that the core element of a potential European Space Station is the MTFF the paper will describe in more detail how the presently defined MTFF capability could grow further to satisfy the needs of interested user communities in the long term. The evolution of this element will essentially pass through two stages, the man-tended stage during which automated systems (robotics) will assist with the implementation of research and commercial processes and the manned stage where permanent presence of man in combination with automated systems will bring about the degree of flexibility needed for efficient operations in space. The present assumptions made in the context of describing the future potential of the MTFF are subject to revision as further results become available from the ongoing COLUMBUS programme definition process.

  16. Towards human exploration of space: the THESEUS review series on neurophysiology research priorities.

    PubMed

    White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H

    2016-01-01

    The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.

  17. Progress and Achievements at the Mid Term of the Dragon 3 Programme

    NASA Astrophysics Data System (ADS)

    Desnos, Yves-Louis; Li, Zengyuan; Zmuda, Andy; Gao, Zhihai

    2014-11-01

    The Dragon Programme is a joint undertaking between ESA and the Ministry of Science and Technology (MOST) of China and the National Remote Sensing Center of China (NRSCC). Its purpose is to encourage increased exploitation of ESA and Chinese space resources within China as well as stimulate increased scientific cooperation in the field of Earth Observation (EO) science and applications between China and Europe. Since 2004, this pioneering programme has become a model for scientific and technological cooperation between China and Europe. By successfully encouraging joint research using ESA, Third Party Missions and Chinese EO data across a range of thematic areas, Dragon continues to deliver outstanding scientific results. The programme has successfully completed two phases, Dragon 1 from 2004 to 2008, Dragon 2 from 2008 to 2012. The third phase of Dragon was started in 2012 and will be completed in 2016. The Dragon 3 project teams are led by leading EO scientists and young scientists are also engaged on the projects. Advanced training in land, ocean and atmospheric applications is a feature of the programme and a course on land and one course on ocean applications have been successfully held in 2012 and 2013 in China. Here-in provided is an overview of the results, reporting and training activities at the mid-term stage of the programme.

  18. User interfaces in space science instrumentation

    NASA Astrophysics Data System (ADS)

    McCalden, Alec John

    This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.

  19. Usability-driven evolution of a space instrument

    NASA Astrophysics Data System (ADS)

    McCalden, Alec

    2012-09-01

    The use of resources in the cradle-to-grave timeline of a space instrument might be significantly improved by considering the concept of usability from the start of the mission. The methodology proposed here includes giving early priority in a programme to the iterative development of a simulator that models instrument operation, and allowing this to evolve ahead of the actual instrument specification and fabrication. The advantages include reduction of risk in software development by shifting much of it to earlier in a programme than is typical, plus a test programme that uses and thereby proves the same support systems that may be used for flight. A new development flow for an instrument is suggested, showing how the system engineering phases used by the space agencies could be reworked in line with these ideas. This methodology is also likely to contribute to a better understanding between the various disciplines involved in the creation of a new instrument. The result should better capture the science needs, implement them more accurately with less wasted effort, and more fully allow the best ideas from all team members to be considered.

  20. A pinch of salt goes a long way in communicating astronomy

    NASA Astrophysics Data System (ADS)

    Manxoyi, S.

    2008-06-01

    The building of the Southern African Large Telescope not only revolutionised the methods of data collection in astronomy as a science in South Africa, but also changed the face, approach and impact of astronomy communication in our country. This presentation examines the various ways in which SALT has been supporting and continues to drive astronomy communication with the public. These include the following strands: learner activities, educator programmes, special events and national events as well general public programmes. The learner activities include SALT tours, space camps, stargazing, astronomy quiz, workshops, science clubs and job shadowing. The educators' strand includes workshops, projects, mini conferences, tours, team and co teaching. The public is catered for through special events, national events, exhibitions, star parties and festivals.

  1. The Soviet-Russian space suits a historical overview of the 1960's.

    PubMed

    Skoog, A Ingemar; Abramov, Isaac P; Stoklitsky, Anatoly Y; Doodnik, Michail N

    2002-01-01

    The development of protective suits for space use started with the Vostok-suit SK-1, first used by Yu. Gagarin on April 12, 1961, and then used on all subsequent Vostok-flights. The technical background for the design of these suits was the work on full pressure protective suits for military pilots and stratospheric flights in the 1930's through 50's. The Soviet-Russian space programme contains a large number of 'firsts', and one of the most well known is the first EVA by Leonov in 1965. This event is also the starting point for a long series of space suit development for Extravehicular Activities over the last 35 years. The next step to come was the transfer in void space of crew members between the two spacecraft Soyuz 4 and 5 in 1969. As has later become known this was an essential element in the planned Soviet lunar exploration programme, which in itself required a new space suit. After the termination of the lunar programme in 1972, the space suit development concentrated on suits applicable to zero-gravity work around the manned space stations Salyut 6, Salyut 7 and MIR. These suits have become known as the ORLAN-family of suits, and an advanced version of this suit (ORLAN-M) will be used on the International Space Station together with the American EMU. This paper covers the space suit development in the Soviet Union in the 1960's and the experience used from the pre-space era. c2002 Published by Elsevier Science Ltd.

  2. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  3. GMES Space Component: Programme overview

    NASA Astrophysics Data System (ADS)

    Aschbacher, J.; Milagro-Perez, M. P.

    2012-04-01

    The European Union (EU) and the European Space Agency (ESA) have developed the Global Monitoring for Environment and Security (GMES) programme as Europe's answer to the vital need for joined-up data about our climate, environment and security. Through a unique combination of satellite, atmospheric and Earth-based monitoring systems, the initiative will provide new insight into the state of the land, sea and air, providing policymakers, scientists, businesses and the public with accurate and timely information. GMES capabilities include monitoring and forecasting of climatic change, flood risks, soil and coastal erosion, crop and fish resources, air pollution, greenhouse gases, iceberg distribution and snow cover, among others. To accomplish this, GMES has been divided into three main components: Space, In-situ and Services. The Space Component, led by ESA, comprises five types of new satellites called Sentinels that are being developed by ESA specifically to meet the needs of GMES, the first of which to be launched in 2013. These missions carry a range of technologies, such as radar and multi-spectral imaging instruments for land, ocean and atmospheric monitoring. In addition, access to data from the so-called Contributing Missions guarantees that European space infrastructure is fully used for GMES. An integrated Ground Segment ensures access to Sentinels and Contributing Missions data. The in-situ component, under the coordination of the European Environment Agency (EEA), is composed of atmospheric and Earth based monitoring systems, and based on established networks and programmes at European and international levels. The European Commission is in charge of implementing the services component of GMES and of leading GMES overall. GMES services, fed with data from the Space and In-situ components, will provide essential information in five main domains, atmosphere, ocean and land monitoring as well as emergency response and security. Climate change has been added as a new GMES service and cross-cuts all these domains. Even if GMES is built to primarily serve operational services, there is a large benefit for science users as well. In addition, science will be crucial to advance services and provide critical input to the definition of new observation systems. Access to Sentinel data is governed by the Sentinel data policy, which is part of a wider GMES data and information access policy. The Sentinel data policy envisages free and open access, subject to restrictions only if security or other European interests need to be preserved. The programme will enter the operational phase in 2014, when the first dedicated spacecraft, the Sentinel missions, will be in orbit. The main programmatic challenge is to ensure the programme's long-term sustainability. This session aims at informing users about the current programme's overall status and its potential for users in the services and scientific fields.

  4. Towards human exploration of space: the THESEUS review series on neurophysiology research priorities

    PubMed Central

    White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H

    2016-01-01

    The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe’s strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space. PMID:28725734

  5. "Control Must Be Maintained": Exploring Teachers' Pedagogical Practice outside the Classroom

    ERIC Educational Resources Information Center

    Glackin, Melissa

    2018-01-01

    Drawing on qualitative data, this article presents an analysis of six secondary science teachers' expectations and practices related to teaching outdoors during a professional development programme. Using Foucault's and Bernstein's theories of "space", routines and set practices, I argue that participant teachers' fear of losing control…

  6. Impact of space research and technology on small countries

    NASA Astrophysics Data System (ADS)

    Serafimov, K. B.

    Space research has generated and stimulated development in the following five ways: influence on other sciences; space technology transfer and spin-offs; rocket industry, direct use of space (communications, remote sensing, meteorology, navigation, etc.); growing interest towards education, science and creative work, increased prestige, etc. The necessity of small and developing countries to participate in space research has been recognized. Their role in international space cooperation has been pointed out. A number of problems have been presented for the small countries related to their adequate engagement in space research activities, as well as some considerations and conclusions in respect to their participation in space research, such as: creating their own `space specialization', optimal choice of participation in international projects and programmes, ensurance of financing, material and technical foundation and other possibilities; active participation in COPEOS, COSPAR, IAF and other space organizations. Some possible negative features in the space activities of small countries have been shown, and a brief review is given as an example of Bulgaria's participation in space research. Some possibilities of help to small and developing countries by COSPAR and IAF are analyzed.

  7. The Changing Earth Science Network- Projects and Results from the First Call

    NASA Astrophysics Data System (ADS)

    Dransfeld, Steffen; Fernandez, Diego; Doron, Maeva; Martinez, Elodie; Shutler, Jamie; Papandrea, Enzo; Biggs, Juliet; Dagestad, Knut-Frode; Palazzi, Elisa; Garcia-Comas, Maya; de Graaf, Martin; Schneising, Oliver; Pavon, Patricia Oliva

    2010-12-01

    To better understand the different processes and interactions that govern the earth system and to determine whether recent human-induced changes could ultimately de-stabilise its dynamics, both natural system variability and the consequences of human activities have to be observed and quantified. In this context, the European Space Agency published in 2006 "The Changing Earth: New Scientific Challenges for ESA's living Planet Programme" as the main driver of ESA's new EO science strategy. The document outlines 25 major scientific challenges covering all the different aspects of the Earth system, where EO technology and ESA missions may provide a key contribution. In this context, and responding to a request from ESAC (Earth Science Advisory Committee) to enhance the ESA scientific support towards the achievement of "The Challenges", the Agency has launched the Changing Earth Science Network as an important programmatic component of the new Support To Science Element (STSE) of the Earth Observation Envelope Programme (EOEP). In this paper we summarize the objectives of this initive and provide a review of the first projects that were selected in 2009 and are now generating their first results.

  8. Progress and Achievements at the Mid Term Stage of the Dragon 3 Programme

    NASA Astrophysics Data System (ADS)

    Desnos, Yves-Louis; Li, Zengyuan; Zmuda, Andy; Gao, Zhihai

    2014-11-01

    The Dragon Programme is a joint undertaking between ESA and the Ministry of Science and Technology (MOST) of China and the National Remote Sensing Center of China (NRSCC). Its purpose is to encourage increased exploitation of ESA and Chinese space resources within China as well as stimulate increased scientific cooperation in the field of Earth Observation (EO) science and applications between China and Europe. Since 2004, this pioneering programme has become a model for scientific and technological cooperation between China and Europe. By successfully encouraging joint research using ESA, Third Party Missions and Chinese EO data across a range of thematic areas, Dragon continues to deliver outstanding scientific results. The programme has successfully completed two phases, Dragon 1 from 2004 to 2008, Dragon 2 from 2008 to 2012. The third phase of Dragon was started in 2012 and will be completed in 2016. The Dragon 3 project teams are led by leading EO scientists and young scientists are also engaged on the projects. Advanced training in land, ocean and atmospheric applications is a feature of the programme and a course on land and one course on ocean applications have been successfully held in 2012 and 2013 in China. Here-in provided is an overview of the results, reporting and training activities at the mid-term stage of the programme.

  9. European Space Science Scales New Heights

    NASA Astrophysics Data System (ADS)

    1995-06-01

    Satellites, comprising nine tonnes of hardware and sixty experiments, will be placed in orbit with a view to giving scientists a new perspective on the Sun, the Earth's magnetic environment and the universe in general. ISO, the Infrared Space Observatory, will allow astronomers to study all types of objects in the so1al. system - from nearby planets to the farthermost galaxies - with unparalleled sensitivity through the invisible, cold light of infrared radiation. Soho, the solar observatory, will be the fist satellite to continuously observe the Sun in detail, and will do so for at least two yews. The quartet of identical Cluster satellites will probe the Earth's magnetosphere in order to study the storms that can occur there which disrupt radio communications or electrical power supplies on Earth. As Roger Bonnet, Director of the European Space Agency's science programme, points out: "For the programme, this year marks the culmination often years of endeavour now drawing to a close. This shows that Europe is now taking the lead in in situ exploration of the universe". On 23 May ISO successfully completed final testing which validated the satellite's technical performance. It is currently on its way to Guiana onboard the Ariana. It will be launched from the Space Centre at Kourou by an Ariane 44P launcher in late October. On 14 June Soho will undergo similar checkouts which should give it a clean bill of health for dispatch to the Kennedy Space Center (Florida). It is scheduled for a launch on 30 October by NASA's Atlas rocket. Authorisation to dispatch the Cluster quartet to Kourou should be given in late June with a view to a launch at the end of the year on a flagship launcher: the first Ariane-5, which is set to become the most competitive launcher on the world market, Another milestone in space exploration is in the offing: the journey over the Sun's north pole by ESA's Ulysses probe begins this month and will continue through to September. During this phase, Ulysses will have an unprecedented birds'-eye view of the day star's northern reaches. will it find the same anomaly as that observed last year above the south pole? Will the north magnetic pole prove to be as astonishingly inexistent as its southerly counterpart did last summer? The measurements collected during the next three months will be decisive in continuing the global investigation of the star that heats and sustains life on Earth. Moreover, there; could be other surprises in store for solar astrophysicists. For, at their request, ESA and NASA have decided to extend the Ulysses mission by six yews, from 1995 to 2001, so as to allow them to observe the Sun during a period of magnetic activity. With three new missions - ISO, Soho and Cluster - due to be launched and a fourth - Ulysses - embarking on a critical exploration phase, 1995 marks a crucial stage in the history of European space science. But all this is no mere coincidence. It should rather be seen as the result of a sustained planning effort that started ten years ago and is now coming up to its half-way point. For in 1985, at the request of the scientists themselves, ESA set up a 20-year (1985-2005) programme designed to pave the way for ambitious science missions. In other words, giving Europe the wherewithal to play its proper part in peaceful exploration of the universe. The "Horizon 2000" plan was devised solely according to certain key criteria: scientific excellence, project coherence, balance, technological content and realistic budgeting. Management efficiency in particular has allowed Horizon 2000 today to work to a budget of ECU 343 million (12.8iln of ESA's general budget), equivalent in terms of purchasing power to European space science funding twenty-five yews ago. The missions comprising Horizon 2000 were proposed by the scientific community and then selected by groups of leading research scien16sts. They include qualified beacon projects, "Cornerstone missions", costing the equivalent of about two years' budget and medium-size projects accounting for one years budget. It is on the basis of the Horizon 2000 programme that Europe has: launched the Giotto probe, which successfully encountered Comets Halley (1986) and Grigg-Skjellerup (1992); developed the Hipparcos satellite, whose catalogue of 120 000 stars will be published in late 1996; built the Ulysses probe, which has been exploring the third dimension of the solar system since 1992; and contributed at a rate of 20%to the Hubble Space Telescope programme. It is thanks to Horizon 2000 that Europe is now preparing to launch ISO, Soho and Cluster. It is on the basis of the same long-term plan that Europe will build: Huygens, the probe to be launched in 1997, in co-operation with the United States, to explore the organic planet Titan; XMM, the X-ray telescope scheduled for a launch in 1999; Integral, the gamma-ray observatory due to be launched in 2001 in co-operation with Russia; Rosette, the probe which is to land on Comet Wirtanen in 2012; and FIRST, the submillimetre telescope planned to be in orbit in 2006. After a long and fruitful apprenticeship, European space science therefore now looks set to come into its own. It currently ranks an honourable second place in the world and regularly leads the way in certain specific areas of exploration. Thus Europe is now at the forefront of cometary exploration, fundamental astronomy or "astrometry", solar physics and the physics of interplanetary plasma. So it should also be able to take the lead in infrared astronomy, high- energy astronomy and planetary exploration while continuing to conduct cometary studies with Rosetta. One remarkable fact is that the approach and success of Horizon 2000 have attracted unanimous praise both in and beyond Europe. The programme is being supported by virtually all Europe's scien1ilsts. It is drawing on and inspiring increasing numbers of scientists, including many of the younger generation. Its content and management have been approved by all ESA's Member States. Outside Europe, the stability and solidity of Horizon 2000 have made ESA an extremely credible and reliable partner, arousing ever greater interest in international - including transatlantic - co-operation. Given that the first results look positive, it makes sense to think about continuing the work done to date. Which is why this year, half-way through Horizon 2000, it is time to look ahead to the next twenty-year period and embark on the follow-up programme which will lead to further missions being carried out between 2006 and 2016. At ESA Council meeting to be held in October in Toulouse, European ministers responsible for space will therefore have to take a decision on a "Horizon 2000 PLUS " programme designed to ensure successful European space science over a further ten-year period. The proposal being put forward by ESA's directorate of scientific programmes involves setting up three large-scale missions: * a mission to explore Mercury, the least known of the inner solar planets, 60iln of whose surface has yet to be mapped * an interferometry observatory designed to map the sky a hundred times more accurately than the Hipparcos satellite * a gravitational observatory able to pick up the space time waves emitted by the universe at the precise moment of the Big Bang. In parallel four medium-size missions - their content still to be defined - would be carried out. As with its forerunner, Horizon 2000 PLUS has been defined on the basis of proposals submitted by the scientific community following open competition. In all, I10 mission concepts were proposed by a total of 2500 scientists. These were then examined by peer-review groups, involving 75 scientists in all who announced their final choice on I October 1994. The agency is proposing to start preparing for Horizon 2000 PLUS on the basis of level funding up to the year 2000. This means that ESA would undertake to conduct preliminary Horizon 2000 PLUS technological studies by drawing on the Horizon 2000 budget, even though this ,vas not initially planned and despite the increased demands of the new missions. The Horizon 2000 PLUS proposals also include an extremely ambitious fundamental physics project - gravitational antenna - not originally covered by the European space science programme. Consequently, putting this Cornerstone mission in place could lead to a modest 5% increase in the annual budgets being requested over the period 2001-2005. The European space science programme is part of the driving force for industrial technology, fundamental knowledge and European policy generally. Ten years ago, its development was managed in successive stages without a long-term framework, thus ruling out ambitious projects. Today, the European space science community is working to a 20-year plan which has given it its second-place world ranking and prompted regular breakthroughs in hitherto uncharted areas of advanced technology. The task now is to continue down that road with ever greater rigour, professionalism, stability and effectiveness in order to emulate the programme's current success. Note for TV editors: A betacam tape with new video material on ISO, SOHO and CLUSTER is available upon request. To get a copy please contact the ESA Public Relations Division in Paris (Tel: (33.1) 53.69.71.55 - Fax: (33.1) 53.69.76,90),

  10. ESA'S Biomass Mission System And Payload Overview

    NASA Astrophysics Data System (ADS)

    Arcioni, M.; Bensi, P.; Fois, F.; Gabriele, A.; Heliere, F.; Lin, C. C.; Massotti, L.; Scipal, K.

    2013-12-01

    Earth Explorers are the backbone of the science and research element of ESA's Living Planet Programme, providing an important contribution to the understanding of the Earth system. Following the User Consultation Meeting held in Graz, Austria on 5-6 March 2013, the Earth Science Advisory Committee (ESAC) has recommended implementing Biomass as the 7th Earth Explorer Mission within the frame of the ESA Earth Observation Envelope Programme. This paper will give an overview of the satellite system and its payload. The system technical description presented here is based on the results of the work performed during parallel Phase A system studies by two industrial consortia led by EADS Astrium Ltd. and Thales Alenia Space Italy. Two implementation concepts (respectively A and B) are described and provide viable options capable of meeting the mission requirements.

  11. ESA and the arts: A programme in the making

    NASA Astrophysics Data System (ADS)

    Raitt, David

    2007-01-01

    Space exploration is arguably the greatest voyage of discovery ever undertaken and just as artists have traditionally accompanied the great ocean and land voyages of the past, so artists have been and are at the forefront of space voyages of the future. Increasingly, the European Space Agency (ESA) is being asked to support or participate in artistic and cultural events, largely as a result of its study into science fiction literature and artwork. The paper first gives an overview of the relationship between space and art by discussing art that has been sent into space, orbital sculptures, art on Earth seen from space, and performance art and dance in zero gravity. The paper then provides an update on ESA's involvement in some activities in this domain including the organization of science fiction and space art exhibitions, workshops and competitions, and a recently launched study into how ESA might use the European components of the International Space Station for artistic and cultural events to enable the public to better share the human experience of space missions and interact with the sights and sounds of space.

  12. United Nations Human Space Technology Initiative (HSTI)

    NASA Astrophysics Data System (ADS)

    Ochiai, Mika; Niu, Aimin; Steffens, Heike; Balogh, Werner; Haubold, Hans; Othman, Mazlan; Doi, Takao

    2014-11-01

    The Human Space Technology Initiative was launched in 2010 within the framework of the United Nations Programme on Space Applications implemented by the Office for Outer Space Affairs of the United Nations. It aims to involve more countries in activities related to human spaceflight and space exploration and to increase the benefits from the outcome of such activities through international cooperation, to make space exploration a truly international effort. The role of the Initiative in these efforts is to provide a platform to exchange information, foster collaboration between partners from spacefaring and non-spacefaring countries, and encourage emerging and developing countries to take part in space research and benefit from space applications. The Initiative organizes expert meetings and workshops annually to raise awareness of the current status of space exploration activities as well as of the benefits of utilizing human space technology and its applications. The Initiative is also carrying out primary science activities including the Zero-Gravity Instrument Project and the Drop Tower Experiment Series aimed at promoting capacity-building activities in microgravity science and education, particularly in developing countries.

  13. The COSPAR Capacity Building Initiative - past, present, future, and highlights

    NASA Astrophysics Data System (ADS)

    Gabriel, Carlos; Mendez, Mariano; D'Amicis, Raffaella; Santolik, Ondrej; Mathieu, Pierre-Philippe; Smith, Randall

    At the time of the COSPAR General Assembly in Moscow, the 21st workshop of the Programme for Capacity Building will have taken place. We have started in 2001 with the aim of: i) increasing the knowledge and use of public archives of space data in developing countries, ii) providing highly-practical instruction in the use of these archives and the associated publicly-available software, and iii) fostering personal links between participants and the experienced scientists who lecture during the workshops and supervise the projects carried on by the students. Workshops in many space disciplines have been successfully held so far (X-ray, Gamma-ray and Space Optical and UV Astronomy, Magnetospheric Physics, Space Oceanography, Remote Sensing and Planetary Science) in thirteen countries (Argentina, Brazil, China, Egypt, India, Indonesia, Malaysia, Morocco, Romania, Russia, South Africa, Thailand and Uruguay). An associated Fellowship Programme is helping former participants of these workshops to build on skills gained at them. We will summarize the past and discuss the present and future of the Programme, including highlights like the most recent one: the identification of a transient magnetar (the 9th object of this class so far discovered) in the vicinity of a supernova by one of our students, during the CB workshop on high-energy Astrophysics in Xuyi, China, in September 2013.

  14. A truly international lunar base as the next logical step for human spaceflight

    NASA Astrophysics Data System (ADS)

    Bonneville, R.

    2018-06-01

    A human mission to Mars has been highlighted as the long term goal for space exploration, with intermediate stages such as missions to the Moon and/or to asteroids, but a human mission to Mars will not be feasible before several decades. For the time being the major ambitious accomplishment in the field of human spaceflight is the International Space Station but a human spaceflight programme which would be restricted to Low Earth orbit (LEO) has indeed little interest. Thus the next step in the field of human exploration should be the definition of a new exploration programme beyond LEO, built within a long term perspective. We must acknowledge that science is not the main driver of human space exploration and that the main success of the ISS is to have allowed its partners to work together. The main goal of a new human exploration programme will be to promote international cooperation between the major space-faring countries. The only sensible and feasible objective of a near/mid-term human spaceflight programme should be the edification of a lunar base, under the condition that this base is built as a truly international venture. The ISS in the 1990s had illustrated a calmed relation between the USA, together with Europe, Canada and Japan, and Russia; a lunar base would be the symbol of a similar calmed relation between the same partners and China, and possibly others such as India. For the benefit of all humankind this extra continent, the Moon, should be used only for peaceful purposes like Antarctica today, and should not become the theatre or the stake of conflicts. Such a programme is technically feasible and financially affordable in a rather short term. So let us go to the Moon, but let us get there together.

  15. High Resolution Mass Spectrometry for future space instrumentation : current development within the French Space Orbitrap Consortium

    NASA Astrophysics Data System (ADS)

    Briois, Christelle; Lebreton, Jean-Pierre; Szopa, Cyril; Thirkell, Laurent; Aradj, Kenzi; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chalumeau, Gilles; Chapelon, Olivier; Colin, Fabrice; Cottin, Hervé; Engrand, Cécile; Grand, Noel; Kukui, Alexandre; Pennanech, Cyril; Thissen, Roland; Vuitton, Véronique; Zapf, Pascal; Makarov, Alexander

    2014-05-01

    Mass spectrometry has been used for years in space exploration to characterise the chemical composition of solar system bodies and their environment. Because of the harsh constraints imposed to the space probe instruments, their mass resolution is quite limited compared to laboratory instruments, sometimes leading to significant limitations in the treatment of the data collected with this type of instrumentation. Future in situ solar system exploration missions would significantly benefit from High Resolution Mass Spectrometry (HRMS). For a few years, 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) involved in the chemical investigation of solar system bodies formed a Consortium to develop HRMS for future space exploration, based on the use of the Orbitrap technology (C. Briois et al., 2014, to be submitted). This development is carried out in the frame of a Research and Technology (R&T) development programme partly funded by the French Space Agency (CNES). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercialises Orbitrap-based laboratory instruments. The R&T activities are currently concentrating on the core elements of the Orbitrap analyser that are required to reach a sufficient maturity level for allowing design studies of future space instruments. We are indeed pursuing, within international collaborations, the definition of several instrument concepts based on the core elements that are subject of our R&T programme. In this talk, we briefly discuss science applications for future orbitrap-based HRMS space instruments. We highlight present results of our R&T programme.

  16. Outcomes for Engineering Students Delivering a STEM Education and Outreach Programme

    ERIC Educational Resources Information Center

    Fitzallen, Noleine; Brown, Natalie Ruth

    2017-01-01

    University science outreach programmes are used to encourage more school students to select science, technology, engineering, and mathematics (STEM) subjects in further education and pursue science-related careers. The benefits of science outreach programmes are often espoused from the perspective of programme participants. Little attention,…

  17. Application of X-ray topography to USSR and Russian space materials science

    PubMed Central

    Shul’pina, I. L.; Prokhorov, I. A.; Serebryakov, Yu. A.; Bezbakh, I. Zh.

    2016-01-01

    The authors’ experience of the application of X-ray diffraction imaging in carrying out space technological experiments on semiconductor crystal growth for the former USSR and for Russia is reported, from the Apollo–Soyuz programme (1975) up to the present day. X-ray topography was applied to examine defects in crystals in order to obtain information on the crystallization conditions and also on their changes under the influence of factors of orbital flight in space vehicles. The data obtained have promoted a deeper understanding of the conditions and mechanisms of crystallization under both microgravity and terrestrial conditions, and have enabled the elaboration of terrestrial methods of highly perfect crystal growth. The use of X-ray topography in space materials science has enriched its methods in the field of digital image processing of growth striations and expanded its possibilities in investigating the inhomogeneity of crystals. PMID:27158506

  18. Application of X-ray topography to USSR and Russian space materials science.

    PubMed

    Shul'pina, I L; Prokhorov, I A; Serebryakov, Yu A; Bezbakh, I Zh

    2016-05-01

    The authors' experience of the application of X-ray diffraction imaging in carrying out space technological experiments on semiconductor crystal growth for the former USSR and for Russia is reported, from the Apollo-Soyuz programme (1975) up to the present day. X-ray topography was applied to examine defects in crystals in order to obtain information on the crystallization conditions and also on their changes under the influence of factors of orbital flight in space vehicles. The data obtained have promoted a deeper understanding of the conditions and mechanisms of crystallization under both microgravity and terrestrial conditions, and have enabled the elaboration of terrestrial methods of highly perfect crystal growth. The use of X-ray topography in space materials science has enriched its methods in the field of digital image processing of growth striations and expanded its possibilities in investigating the inhomogeneity of crystals.

  19. `Discover, Understand, Implement, and Transfer': Effectiveness of an intervention programme to motivate students for science

    NASA Astrophysics Data System (ADS)

    Schütte, Kerstin; Köller, Olaf

    2015-09-01

    Considerable research has focused on how best to satisfy modern societies' needs for skilled labour in the field of science. The present study evaluated an intervention programme designed to increase secondary school students' motivation to pursue a science career. Students from 3 schools of the highest educational track participated for up to 2 years in the intervention programme, which was implemented as an elective in the school curriculum. Our longitudinal study design for evaluating the effectiveness of the intervention programme included all students at the grade levels involved in the programme with students who did not participate serving as a control group. Mixed-model analyses of variance showed none of the intended effects of the intervention programme on science motivation; latent growth models corroborated these results. When the programme began, students who enrolled in the science elective (n = 92) were already substantially more motivated than their classmates (n = 228). Offering such an intervention programme as an elective did not further increase the participating students' science motivation. It seems worthwhile to carry out intervention programmes with talented students who show (comparatively) little interest in science at the outset rather than with highly motivated students who self-select into the programme.

  20. ESA's CCD test bench for the PLATO mission

    NASA Astrophysics Data System (ADS)

    Beaufort, Thierry; Duvet, Ludovic; Bloemmaert, Sander; Lemmel, Frederic; Prod'homme, Thibaut; Verhoeve, Peter; Smit, Hans; Butler, Bart; van der Luijt, Cornelis; Heijnen, Jerko; Visser, Ivo

    2016-08-01

    PLATO { PLAnetary Transits and Oscillations of stars { is the third medium-class mission to be selected in the European Space Agency (ESA) Science and Robotic Exploration Cosmic Vision programme. Due for launch in 2025, the payload makes use of a large format (8 cm x 8 cm) Charge-Coupled Devices (CCDs), the e2v CCD270 operated at 4 MHz and at -70 C. To de-risk the PLATO CCD qualification programme initiated in 2014 and support the mission definition process, ESA's Payload Technology Validation section from the Future Missions Office has developed a dedicated test bench.

  1. Batman flies: a compact spectro-imager for space observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane

    2017-11-01

    Multi-object spectroscopy (MOS) is a key technique for large field of view surveys. MOEMS programmable slit masks could be next-generation devices for selecting objects in future infrared astronomical instrumentation for space telescopes. MOS is used extensively to investigate astronomical objects by optimizing the Signal-to-Noise Ratio (SNR): high precision spectra are obtained and the problem of spectral confusion and background level occurring in slitless spectroscopy is cancelled. Fainter limiting fluxes are reached and the scientific return is maximized both in cosmology and in legacy science. Major telescopes around the world are equipped with MOS in order to simultaneously record several hundred spectra in a single observation run. Next generation MOS for space like the Near Infrared Multi-Object Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) require a programmable multi-slit mask. Conventional masks or complex fiber-optics-based mechanisms are not attractive for space. The programmable multi-slit mask requires remote control of the multislit configuration in real time. During the early-phase studies of the European Space Agency (ESA) EUCLID mission, a MOS instrument based on a MOEMS device has been assessed. Due to complexity and cost reasons, slitless spectroscopy was chosen for EUCLID, despite a much higher efficiency with slit spectroscopy. A promising possible solution is the use of MOEMS devices such as micromirror arrays (MMA) [1,2,3] or micro-shutter arrays (MSA) [4]. MMAs are designed for generating reflecting slits, while MSAs generate transmissive slits. In Europe an effort is currently under way to develop single-crystalline silicon micromirror arrays for future generation infrared multi-object spectroscopy (collaboration LAM / EPFL-CSEM) [5,6]. By placing the programmable slit mask in the focal plane of the telescope, the light from selected objects is directed toward the spectrograph, while the light from other objects and from the sky background is blocked. To get more than 2 millions independent micromirrors, the only available component is a Digital Micromirror Device (DMD) chip from Texas Instruments (TI) that features 2048 x 1080 mirrors and a 13.68μm pixel pitch. DMDs have been tested in space environment (-40°C, vacuum, radiations) by LAM and no showstopper has been revealed [7]. We are presenting in this paper a DMD-based spectrograph called BATMAN, including two arms, one spectroscopic channel and one imaging channel. This instrument is designed for getting breakthrough results in several science cases, from high-z galaxies to nearby galaxies and Trans-Neptunian Objects of Kuiper Belt.

  2. On the pedagogy of pharmacological communication: a study of final semester health science students.

    PubMed

    Zetterqvist, Ann; Aronsson, Patrik; Hägg, Staffan; Kjellgren, Karin; Reis, Margareta; Tobin, Gunnar; Booth, Shirley

    2015-10-26

    There is a need to improve design in educational programmes for the health sciences in general and in pharmacology specifically. The objective of this study was to investigate and problematize pharmacological communication in educational programmes for the health sciences. An interview study was carried out where final semester students from programmes for the medical, nursing and specialist nursing in primary health care professions were asked to discuss the pharmacological aspects of two written case descriptions of the kind they would meet in their everyday work. The study focused on the communication they envisaged taking place on the concerns the patients were voicing, in terms of two features: how communication would take place and what would be the content of the communication. A phenomenographic research approach was used. The results are presented as outcome spaces, sets of categories that describe the variation of ways in which the students voiced their understanding of communication in the two case descriptions and showed the qualitatively distinct ways in which the features of communication were experienced. The results offer a base of understanding the students' perspectives on communication that they will take with them into their professional lives. We indicate that there is room for strengthening communication skills in the field of pharmacology, integrating them into programmes of education, by more widely implementing a problem-based, a case-oriented or role-playing pedagogy where final year students work across specialisations and there is a deliberate effort to evoke and assess advanced conceptions and skills.

  3. Capacity building in Developing Countries: a challenge ahead for the European Space Agency to continue its successful experience to date

    NASA Astrophysics Data System (ADS)

    Fea, M.

    The European Space Agency (ESA) has built a long tradition and a large experience in the domain of education, training and capacity building throughout its space programmes. As an example, the ESA Science Programme dedicates 1% of its budget to these activities. One of the key reasons for it is the need of closing the loop along the chain from the provider to the user, that is to say between the space and the users elements. In fact, besides the obvious need for technology development, there is actually not very much justification in the long term for a space programme if the user communities are not able to make good use of programme outputs and provide feedback and proper requirements to space agencies. The case of ESA Earth Observation programmes is described to illustrate these considerations, as a way to also implement the European Space Policy and UNISPACE III recommendations. Since its foundation in 1975 and the implementation of its EO programme with the launch of Meteosat-1 in 1977 and the birth of the Earthnet Programme Office in 1978, the European Space Agency is very active in the field of capacity building in developing countries. That is performed through both ESA's specific projects and international co-operation activities. In the latter domain, ESA enjoys a long-standing collaboration with many entities, such as the Committee of Earth Observation Satellites (CEOS), and organisations, such as WMO, UN and its specialised agencies (FAO, UNESCO, UNEP, and so on). In that respect, the Agency is an active member of the CEOS Working Group on Education (WGEdu) and of the World Summit for Sustainable Development Follow-Up (WSSD) Module 1 group dedicated to education, training and capacity building. The overall ESA strategy targets various citizen communities and takes into account the fact that today's young generations will become tomorrow's professionals and decision makers. ESA's activities in this domain are in particular based on an end-to-end concept that includes a) the "train the trainer" approach, b) the prerequisite of a project proposal prepared by the trainee of a target institution on an issue of, possibly, national interest and focused towards establishing an operational autonomy and a routine practice in the integration and use of EO satellite data, c) the firm commitment of the institution to support the project and the trainee, d) the involvement of final users since the very beginning, and e) the exposure of trainees to public for presenting their results. In order to demonstrate how the Agency implements all the above, besides the typical training of external satellite ground station operators, and the way ahead strategy considered within the CEOS WGEdu and WSSD Mod.1 framework, three ESA endeavours are presented, namely the multi-language EDUSPACE web portal (www.eduspace.esa.int), the hosting of UN trainees, and the UN/ESA Course Follow-up Programme.

  4. A hybrid model of mathematics support for science students emphasizing basic skills and discipline relevance

    NASA Astrophysics Data System (ADS)

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-09-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support centre. The programme was delivered through first-year science and statistics subjects with large enrolments and focused on basic mathematical skills relevant to each science discipline. The programme offered a new approach to the traditional mathematical support centre or class. It was designed through close collaboration between science subject coordinators and the project leader, a mathematician, and includes resources relevant to science and mathematics questions written in context. Evaluation of the programme showed it improved the confidence of the participating students who found it helpful and relevant. The programme was delivered through three learning modes to allow students to select activities most suitable for them, which was appreciated by students. Mathematics skills appeared to increase following completion of the programme and student participation in the programme correlated positively and highly with academic grades in their relevant science subjects. This programme offers an alternative model for mathematics support tailored to science disciplines.

  5. The (Un)Bearable Educational Lightness of Common Practices: On the Use of Urban Spaces by Schoolchildren

    ERIC Educational Resources Information Center

    Gomes, Elisabete Xavier

    2012-01-01

    The present paper is about the author's current research on children's education in urban contexts. It departs from the rising offer of programmes for school children in out-of-school contexts (e.g. museums, libraries, science centres). It asks what makes these practices educational (and not just interesting, entertaining and/or audience…

  6. Next Generation P-Band Planetary Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel

    2016-01-01

    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple DecadalSurvey Science Goals.

  7. Next Generation P-Band Planetary Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel

    2017-01-01

    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple Decadal Survey Science Goals.

  8. Columbus VIII - Symposium on Space Station Utilization, 8th, Munich, Germany, Mar. 30-Apr. 4, 1992, Selected Papers

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The symposium includes topics on the Columbus Programme and Precursor missions, the user support and ground infrastructure, the scientific requirements for the Columbus payloads, the payload operations, and the Mir missions. Papers are presented on Columbus Precursor Spacelab missions, the role of the APM Centre in the support of Columbus Precursor flights, the refined decentralized concept and development support, the Microgravity Advanced Research and Support (MARS) Center update, and the Columbus payload requirements in human physiology. Attention is also given to the fluid science users requirements, European space science and Space Station Freedom, payload operations for the Precursor Mission E1, and the strategic role of automation and robotics for Columbus utilization. Other papers are on a joint Austro-Soviet space project AUSTROMIR-91; a study of cognitive functions in microgravity, COGIMIR; the influence of microgravity on immune system and genetic information; and the Mir'92 project. (For individual items see A93-26552 to A93-26573)

  9. 18 years of science with the Hubble Space Telescope.

    PubMed

    Dalcanton, Julianne J

    2009-01-01

    After several decades of planning, the Hubble Space Telescope (HST) was launched in 1990 as the first of NASA's Great Observatories. After a rocky start arising from an error in the fabrication of its main mirror, it went on to change forever many fields of astronomy, and to capture the public's imagination with its images. An ongoing programme of servicing missions has kept the telescope on the cutting edge of astronomical research. Here I review the advances made possible by the HST over the past 18 years.

  10. EPM - The European Facility for human physiology research on ISS.

    PubMed

    Rieschel, Mats; Nasca, Rosario; Junk, Peter; Gerhard, Ingo

    2002-07-01

    The European Physiology Modules (EPM) Facility is one of the four major Space Station facilities being developed within the framework of ESA's Microgravity Facilities for Columbus (MFC) programme. In order to allow a wide spectrum of physiological studies in weightlessness conditions, the facility provides the infrastructure to accommodate a variable set of scientific equipment. The initial EPM configuration supports experiments in the fields of neuroscience, bone & muscle research, cardiovascular research and metabolism. The International Space Life Science Working Group (ISLSWG) has recommended co-locating EPM with the 2 NASA Human Research Facility racks.

  11. The Japanese and Indian space programmes : two roads into space

    NASA Astrophysics Data System (ADS)

    Harvey, Brian

    The development of the space industry in the Asian and Pacific Rim region provides the context for this book. The two major countries hoping for leadership in the area (apart from China) are Japan and India, both of whom have significant launcher capabilities.There is a general introductory chapter which places the space programmes of the region in the comparative context of the other space-faring nations of the world. The author reviews the main space programmes of Japan and India in turn, concentrating on their origins, the development of launcher and space facilities, scientific and engineering programmes, and future prospects.The book concludes with a chapter comparing how similarly/differently Japan and India are developing their space programmes, how they are likely to proceed in the future, and what impact the programmes have had in their own region and what they have contributed so far to global space research.

  12. ESF EUROCORES Programmes In Geosciences And Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Jonckheere, I. G.

    2007-12-01

    In close cooperation with its Member Organisations, the European Science Foundation (ESF) has launched since late 2003 a series of European Collaborative Research (EUROCORES) Programmes. Their aim is to enable researchers in different European countries to develop cooperation and scientific synergy in areas where European scale and scope are required in a global context. The EUROCORES Scheme provides an open, flexible and transparent framework that allows national science funding and science performing agencies to join forces to support excellent European-led research, following a selection among many science-driven suggestions for new Programmes themes submitted by the scientific community. The EUROCORES instrument represents the first large scale attempt of national research (funding) agencies to act together against fragmentation, asynchronicity and duplication of research (funding) within Europe. There are presently 7 EUROCORES Programmes specifically dealing with cutting edge science in the fields of Earth, Climate and Environmental Sciences. The EUROCORES Programmes consist of a number of international, multidisciplinary collaborative research projects running for 3-4 years, selected through independent peer review. Under the overall responsibility of the participating funding agencies, those projects are coordinated and networked together through the scientific guidance of a Scientific Committee, with the support of a Programme Coordinator, responsible at ESF for providing planning, logistics, and the integration and dissemination of science. Strong links are aimed for with other major international programmes and initiatives worldwide. In this framework, linkage to IYPE would be of major interest for the scientific communities involved. Each Programme mobilises 5 to 13 million Euros in direct science funding from 9 to 27 national agencies from 8 to 20 countries. Additional funding for coordination, networking and dissemination is allocated by the ESF through these distinctive research initiatives, to build on the national research efforts and contribute to the capacity building, in relation with typically about 15-20 post-doc positions and/or PhD studentships supported nationally within each Programme. Typical networking activities are topical workshops, open sessions in a larger conference, Programme conference, (summer / winter) schools, exchange visits across projects or programmes. Overall, EUROCORES Programmes are supported by more than 60 national agencies from 30 countries and by the European Science Foundation (ESF) with support by the European Commission, DG Research (Sixth Framework Programme, contract ERAS-CT-2003-980409). In the framework of AGU, a series of present EUROCORES Programmes in the field of Geosciences and Environmental Sciences are presented (e.g., EuroDIVERSITY, EuroDEEP, EUROMARGINS, EuroCLIMATE, and EuroMinScI).

  13. Engaging Karen refugee students in science learning through a cross-cultural learning community

    NASA Astrophysics Data System (ADS)

    Harper, Susan G.

    2017-02-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as co-teachers for fourth- and fifth-grade Karen and non-Karen students in a science and culture after-school programme in a public elementary school in the rural southeastern United States. Photovoice provided a critical platform for students to create their own cultural discourses for the learning community. The theoretical framework of critical pedagogy of place provided a way for the learning community to decolonise and re-inhabit the learning spaces with knowledge they co-constructed. Narrative analysis of video transcripts of the after-school programme, ethnographic interviews, and focus group discussions from Photovoice revealed a pattern of emerging agency by Karen students in the scientific practice of constructing scientific explanations based on evidence and in Karen language lessons. This evidence suggests that science learning embedded within a cross-cultural learning community can empower refugee students to construct their own hybrid cultural knowledge and leverage that knowledge to engage in a meaningful way with the epistemology of science.

  14. "Cosmic Vision": the new ESA Science Programme

    NASA Astrophysics Data System (ADS)

    2002-05-01

    The outcome of the ESA Council at Ministerial level held in Edinburgh in November 2001 was not as positive as expected for the Agency's Science Programme. It appeared that the money made available would not be sufficient to carry out the Long Term Programme approved by the Science Programme Committee in October 2000, based on financial assumptions approved by the same Committee in Bern in May 1999. The resources granted in Edinburgh taken at their face value meant the cancellation of a mission (e.g. GAIA). At the conclusion of the exercise, following extensive consultations with all its partners, the Executive could propose a revised plan, which not only maintained the missions approved in October 2000, but added the Eddington mission in addition. The new plan, strongly endorsed by the Science Programme Committee on the occasion of its 99th meeting, contains the following missions, listed by production groups: Astrophysics Group 1: XMM-Newton (1999), INTEGRAL (2002). X and Gamma Ray Observatories (studying the 'violent' universe) Group 2: Herschel, exploring the infrared and microwave universe; Planck, to study the cosmic microwave background; Eddington, searching for extra-solar planets and studying the stellar seismology. (The three missions will be launched in the 2007-2008 timeframe.) Group 3: GAIA, the ultimate galaxy mapper (to be launched no later than 2012). Missions will follow in the same group after 2012. Solar System Science: Group 1:Rosetta, a trip to a comet (2003); Mars Express, a Mars orbiter carrying the Beagle2 lander (2003); (Venus Express, a Venus orbiter, would have been in this group.) Group 2: SMART-1, which will demonstrate solar propulsion technology while on its way to the Moon (2003); BepiColombo, a mission to Mercury, Solar Orbiter, a mission to take a closer look at the Sun (missions to be launched in 2011-2012). Fundamental Physics missions: (one group only) STEP (2005) the 'equivalence principle' test, SMART2, a technology demonstration mission (2006) for LISA, a joint mission with NASA, searching for gravitational waves (2011). In addition the Agency is committed to cooperation with NASA in NGST (the Next Generation Space Telescope), the successor of the Hubble Space telescope, with launch in 2010. STEP (2005), the mission to test of the nature of mass and the basis of mechanics, relies on a decision by NASA, the major partner. The production groups are more than scientific groupings. Missions within each will be built synergistically using common technologies and engineering teams where possible. Such a scenario is going to rely on specific commitment to new ways of working: - The implementation of BepiColombo and Solar Orbiter with international partners. Both missions will be implemented as a single activity, leading to significant savings. - The implementation of Herschel/Planck and Eddington in a single project, re-using the same bus. This implies a launch of Eddington not later than 2008. - Major technical changes reducing the cost of GAIA with no science loss. GAIA will be launched no later than 2012, the date agreed in Bern. - Significant gains through new technology in cost effectiveness of spacecraft development and procurement. - The timely availability of payloads, one of the current pressing problems. - Acceptance of increased managerial complexity and overall programmatic risk. Obviously, the implementation of such an ambitious programme requires full commitment of all involved parties, namely industry, the Executive, the national funding agencies and the scientific community from the start. Initially the Executive had included in its proposal also VENUS EXPRESS, which would have started immediately. However, the Director of the Science Programme felt that the precondition had not been met and decided to withdraw the proposal. The Executive is going to have to keep such an attitude in the future if it is to implement the programme successfully. Increased programmatic risk means that the programme will be less resilient to an event like the Cluster mission loss in 1996 where a recovery was instituted in 4 years. The approved scenario, stretching over ten years, naturally includes some uncertainties. These will be exploited to the best advantage of the overall programme in a flexible way: Within each combined set of missions (Herschel/ Planck/ Eddington; BepiColombo/ Solar Orbiter) the launch sequence can be optimised. Work will start immediately on GAIA to ensure earlier launch dates remain a possibility. Launch dates of some major collaborative elements of the programme (e.g. STEP, NGST, LISA) are outside the control of ESA. Parallel (ESA controlled) activities need to be carried out in a flexible way to adjust to the workload. Further international collaboration on missions and payloads can be beneficial. Specifically a significant contribution from NASA on Solar Orbiter as part of the International Living with a Star (ILWS) programme may be linked to European participation in other elements of the American LWS/STP programme. Speaking of his feelings about the new plan, the Director of Science, David Southwood said 'Apparent miracles or no, one should realise that much of this is simply our building on the legacy of my predecessor, Roger Bonnet. Of course, we are pushing further. However, his culture of welcoming change and demanding commitment to science from everyone involved lie at the base of what we are doing.' Whilst the new name 'Cosmic Vision' refers to the universe, the programme is also providing vision in technological and managerial innovation down here on Earth. The overall funding assumption underlying the new plan is that the buying power will be preserved in the years following 2005. Is this unduly pessimistic? The Executive feels that no more proofs are needed that the science programme is an extremely good investment. More resources can only improve the leverage. Should they become available, literally the heavens would be the limit.

  15. The ISES: A non-intrusive medium for in-space experiments in on-board information extraction

    NASA Technical Reports Server (NTRS)

    Murray, Nicholas D.; Katzberg, Stephen J.; Nealy, Mike

    1990-01-01

    The Information Science Experiment System (ISES) represents a new approach in applying advanced systems technology and techniques to on-board information extraction in the space environment. Basically, what is proposed is a 'black box' attached to the spacecraft data bus or local area network. To the spacecraft the 'black box' appears to be just another payload requiring power, heat rejection, interfaces, adding weight, and requiring time on the data management and communication system. In reality, the 'black box' is a programmable computational resource which eavesdrops on the data network, taking and producing selectable, real-time science data back on the network. This paper will present a brief overview of the ISES Concept and will discuss issues related to applying the ISES to the polar platform and Space Station Freedom. Critical to the operation of ISES is the viability of a payload-like interface to the spacecraft data bus or local area network. Study results that address this question will be reviewed vis-a-vis the solar platform and the core space station. Also, initial results of processing science and other requirements for onboard, real-time information extraction will be presented with particular emphasis on the polar platform. Opportunities for a broader range of applications on the core space station will also be discussed.

  16. Space data routers: Space networking for enhancing data exploitation for space weather applications

    NASA Astrophysics Data System (ADS)

    Daglis, I.; Anastasiadis, A.; Balasis, G.; Paronis, D.; Diamantopoulos, S.

    2013-09-01

    Data sharing and access are major issues in space sciences, as they influence the degree of data exploitation. The project “Space-Data Routers” relies on space internetworking and in particular on Delay Tolerant Networking (DTN), which marks the new era in space communications, unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The main goal is to allow space agencies, academic institutes and research centers to share space-data generated by single or multiple missions, in an efficient, secure and automated manner. Here we are presenting the architecture and basic functionality of a DTN-based application specifically designed in the framework of the SDR project, for data query, retrieval and administration that will enable to address outstanding science questions related to space weather, by providing simultaneous real- time sampling of space plasmas from multiple points with cost-effective means and measuring of phenomena with higher resolution and better coverage. This work has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1, SP1 Cooperation, Collaborative project) under grant agreement No 263330 (project title: Space-Data Routers for Exploiting Space Data). This presentation reflects only the authors’ views and the Union is not liable for any use that may be made of the information contained therein.

  17. Outcomes for engineering students delivering a STEM education and outreach programme

    NASA Astrophysics Data System (ADS)

    Fitzallen, Noleine; Brown, Natalie Ruth

    2017-11-01

    University science outreach programmes are used to encourage more school students to select science, technology, engineering, and mathematics (STEM) subjects in further education and pursue science-related careers. The benefits of science outreach programmes are often espoused from the perspective of programme participants. Little attention, however, is given to what university students delivering the programmes gain from the experience. This paper seeks to illustrate the benefits of engineering students delivering STEM outreach programmes in schools. It reports on a qualitative case study of the experiences of two STEM Education and Outreach team members from a regional university in Australia. Content analysis of interview data highlighted not only the participants' motivations and perceived benefits of being involved in the STEM programme but also revealed the skills and attributes honed throughout the experience. Involvement in the STEM outreach programme resulted in the development of social and personal responsibility generic graduate attribute skills, evidenced through their motivations to be involved, the demonstration of understanding of teaching and learning, and application of science communication skills. This study demonstrates that designing and delivering STEM outreach programmes assists in the development of skills that will be beneficial when pursuing careers in engineering in the future.

  18. The (Re)Construction of a Philosophical and Pedagogical Position for the Foundation Programme at UKZN with Particular Reference to the Biology Module

    ERIC Educational Resources Information Center

    Kirby, N. F.; Dempster, E. R.

    2011-01-01

    The Centre for Science Access Foundation Programme at the University of KwaZulu-Natal provides alternative access to tertiary science studies to educationally disadvantaged students. The philosophical basis for this Programme is that of constructivism, as adopted by the original Science Foundation Programme (SFP) which was initiated in 1991 on the…

  19. The Incorporation of the USA "Science Made Sensible" Programme in South African Primary Schools: A Cross-Cultural Approach to Science Education

    ERIC Educational Resources Information Center

    de Villiers, Rian; Plantan, Tiffany; Gaines, Michael

    2016-01-01

    The Science Made Sensible (SMS) programme began as a partnership between the University of Miami (UM), Florida, USA, and some public schools in Miami. In this programme, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of…

  20. Primary Science Curriculum Development in Africa--Strategies, Problems and Prospects with Particular Reference to the African Primary Science Programme.

    ERIC Educational Resources Information Center

    Bajah, Sam Tunde

    1981-01-01

    The African Primary Science Programme (APSP) was one of the three major projects in Africa sponsored by Educational Services Incorporated (ESI), later the Educational Development Center (EDC), Newton, Massachusetts. The problems of introducing this programme in the anglophone African States and its implications for science education are discussed.…

  1. Preface to the Special Issue on Thunderstorm Effects in the Atmosphere-Ionosphere System

    NASA Astrophysics Data System (ADS)

    Gordillo-Vázquez, F. J.; Luque, A.

    2013-11-01

    The first summer school of the "Thunderstorm Effects in the Atmosphere-Ionosphere System" (TEA-IS) funded by the European Science Foundation through its Research Network Programme took place in Torremolinos (Spain) on June 17-22, 2012. The meeting gathered almost 100 scientists with different backgrounds (plasma physics, electrical and signal engineering, geophysics, space physics and computational science) coming from 20 countries, both from inside and outside TEA-IS member countries. We very briefly comment here on the five review papers included in this Special Issue of Surveys in Geophysics devoted to the 2012 TEA-IS summer school.

  2. Science in 60 – Tiny Satellites, Big Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Erica

    2016-05-05

    When cube satellites first sprung on the scene in the late 1990s, they were seen as cheap, cute and novel. But today, these lunch-box-sized orbiters are heralded as powerful, cost-effective tools that help strengthen our national security presence in space. Los Alamos National Laboratory developed, built and tested CubeSats that are easily programmable from the ground, making them responsive to up-to-the-minute, mission-critical needs. While CubeSats are still the new kid on the celestial block, that’s about to change. These small, agile pieces of technology hold a universe of promise.

  3. LISA Pathfinder: First steps to observing gravitational waves from space

    NASA Astrophysics Data System (ADS)

    McNamara, Paul; LISA Pathfinder Collaboration

    2017-01-01

    With the first direct detection of gravitational waves a little over a year ago, the gravitational window to the Universe has been opened. The gravitational wave spectrum spans many orders of magnitude in frequency, with several of the most interesting astronomical sources emitting gravitational waves at frequencies only observable from space The European Space Agency (ESA) has been active in the field of space-borne gravitational wave detection for many years, and in 2013 selected the Gravitational Universe as the science theme for the third large class mission in the Cosmic Vision science programme. In addition, ESA took the step of developing the LISA Pathfinder mission to demonstrate the critical technologies required for a future mission. The goal of the LISA Pathfinder mission is to place a test body in free fall such that any external forces (acceleration) are reduced to levels lower than those expected from the passage of a gravitational wave LISA Pathfinder was launched on the 3rd December 2015 from the European Spaceport in Kourou, French Guiana. After a series of 6 apogee raising manoeuvres, the satellite left earth orbit, and travelled to its final science orbit around the first Sun-Earth Lagrange point (L1). Following a relatively short commissioning phase, science operations began on 1st March 2016. In the following 3 months over 100 experiments and over 1500hours of noise measurements have been performed, demonstrating that the observation of gravitational waves from space can be realised.

  4. Looking ahead ...

    NASA Astrophysics Data System (ADS)

    1999-07-01

    `Prospering through science' is the theme of this year's British Association Annual Festival of Science, taking place in Sheffield on 13-17 September 1999. This unique event for people with a professional or lay interest in science will be exploring how advances in many fields of science and engineering can provide opportunities to ensure prosperity through improving the quality of life and creating new wealth. Under the heading Creating economic prosperity will be talks on `Chips in a changing world', `From Big Bang to eternity - understanding the Cosmos', `Making money with physics' and `In the material world'. Building scientific awareness and understanding will comprise sessions on `Science education in the new century - challenges and opportunities', `IT - a mixed blessing' and `Exploration Earth'. Working towards a sustainable environment will examine `Energy for the 21st century: what are the choices?', whilst Learning from the past includes the topic `Retrospects and Prospects - two forums for science education'. Plenary lectures will cover the Hubble Space Telescope, New business, and Antibiotics and Resistance, and there will be student quiz and comedy nights, a careers event as well as many other social activities. As plans progress, the programme will be updated on the British Association's website at www.britassoc.org.uk but further details may also be obtained from the British Association for the Advancement of Science, 23 Savile Row, London W1X 2NB (tel: 0171 973 3500, fax: 0171 973 3051). Leeds University will be host to the next Annual Meeting of the Association for Science Education, being held on 6-8 January 2000. As in previous years, the main conference entitled `Forging the future in science education' will be preceded by an international programme of meetings on current issues and developments for all science educators. There will be the usual well-balanced mix of talks, practical workshops, academic lectures, exhibitions, courses, visits and social events, including the Physics Education lecture to be given this year by Institute of Physics Publishing's Journals Director, Professor Robert Brown. Programmes for the meeting will be available in September and full details can be obtained from the Conference Office, ASE, College Lane, Hatfield AL10 9AA (fax: +44 (0) 1707 266532, e-mail: mbrookman@ase.org.uk).

  5. Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns.

    PubMed

    Pletser, Vladimir

    2004-11-01

    Aircraft parabolic flights provide repetitively up to 20 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences, to test instrumentation and to train astronauts before a space flight. The European Space Agency (ESA) has organized since 1984 thirty parabolic flight campaigns for microgravity research experiments utilizing six different airplanes. More than 360 experiments were successfully conducted during more than 2800 parabolas, representing a cumulated weightlessness time of 15 h 30 m. This paper presents the short duration microgravity research programme of ESA. The experiments conducted during these campaigns are summarized, and the different airplanes used by ESA are shortly presented. The technical capabilities of the Airbus A300 'Zero-G' are addressed. Some Physical Science, Technology and Life Science experiments performed during the last ESA campaigns with the Airbus A300 are presented to show the interest of this unique microgravity research tool to complement, support and prepare orbital microgravity investigations. c2004 Elsevier Ltd. All rights reserved.

  6. STEAMakers- a global initiative to connect STEM career professionals with the public to inspire the next generation and nurture a creative approach to science, technology, maths & engineering

    NASA Astrophysics Data System (ADS)

    Shaw, Niamh; Sorkhabi, Elburz; Gasquez, Oriol; Yajima, Saho

    2016-04-01

    STEAMakers is a global initiative founded by Niamh Shaw, Elburz Sorkhabi, Oriol Gasquez & Saho Yajima, four alumni of The International Space University's Space Studies Programme 2015 who each shared a vision to inspire the next generation to embrace science, technology, engineering & maths (STEM) in new ways, by embedding the Arts within STEM, putting the 'A' in STEAM. STEAMakers invited STEM professionals around the world to join their community, providing training and a suite of STEAM events, specially designed to encourage students to perceive science, technology, engineering & maths as a set of tools with which to create, design, troubleshoot, innovate, and imagine. The ultimate goal of STEAMakers is to grow this community and create a global culture of non-linear learning among the next generation, to nurture within them a new multidisciplinary mindset and incubate new forms of innovation and thought leadership required for the future through the power of inspiration and creativity.

  7. Early-Years Teachers' Professional Upgrading in Science: A Long-Term Programme

    ERIC Educational Resources Information Center

    Kallery, Maria

    2018-01-01

    In this paper, we present a professional development/upgrading programme in science for early-years teachers and investigate its impact on the teachers' competencies in relation to their knowledge and teaching of science. The basic idea of the programme was to motivate the teachers by making them members of an action research group aimed at…

  8. A Reflection upon the "Getting Practical" Programme: Rethinking How We Teach Practical Science

    ERIC Educational Resources Information Center

    Brennan, Nikki

    2010-01-01

    In this article, the author provides an overview of the "Getting Practical" training programme of professional development for all those involved with teaching practical science at primary, secondary, and post-16 levels. The programme is being led by the ASE, working with its co-ordinating partners: the Centre for Science Education,…

  9. Ideal Pictures and Actual Perspectives of Junior Secondary School Science: Comparisons Drawn from Australian Students in an Astronomy Education Programme

    ERIC Educational Resources Information Center

    Danaia, L.; McKinnon, D. H.; Fitzgerald, M.

    2017-01-01

    Background: This research investigates the impact of a junior secondary astronomy education programme undertaken in four Australian educational jurisdictions. Purpose: Junior secondary students' perceptions of the science they experience at School are examined both before, during and after their engagement with a science programme targeting…

  10. ESA's Earth Observation Programmes in the Changing Anthropocene

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-07-01

    The intervention will present ESA's Earth Observation programmes and their relevance to studying the anthropocene. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific studies of the anthropocene. In the anthropocene human activities affect the whole planet and space is a very efficient means to measure their impact, but for relevant endeavours to be successful they can only be carried out in international cooperation. ESA maintains long-standing partnerships with other space agencies and institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges and to requirements resulting from political priorities set by decision makers. Activities related to Climate Change are a prime example. Within ESA's Climate Change Initiative, 13 Essential Climate Variables are constantly monitored to create a long-term record of key geophysical parameters.

  11. A longitudinal investigation of the preservice science teachers' beliefs about science teaching during a science teacher training programme

    NASA Astrophysics Data System (ADS)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants were composed of 76 preservice teachers, and the DASTT-C was used as the data collection tool. As a result of the study, it was determined that the students had conventional teaching beliefs after the first years of the teacher training programme. Moreover, the mental teaching styles of preservice teachers about the science teaching were found to undergo changes throughout their undergraduate education. Participants' beliefs about conventional teaching started to change, especially after they first took a science method course in their third year and their beliefs shifted towards student-centred teaching. Implications for science teacher training programmes were also addressed.

  12. Uptake of Space Technologies - An Educational Programme

    NASA Astrophysics Data System (ADS)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be demonstrated. The results from these workshops and awareness building campaigns will show the end-user 'pull' in the uptake of remote sensing and Earth Observation data to implement successful Local Authority action plans and projects developing innovative solutions to critical Local Authority issues.

  13. The ESA Herschel Space Observatory -first year achievements and early science highlights

    NASA Astrophysics Data System (ADS)

    Pilbratt, Göran

    The Herschel Space Observatory was suc-cessfully launched on 14 May 2009, carried into space by an Ariane 5 ECA launcher together with the second passenger Planck, both spacecraft being injected into transfer orbits towards L2 with exquisite precision. Herschel is the most recent observatory mission in the European Space Agency (ESA) science programme. It carries a 3.5 metre diameter Cassegrain passively cooled monolithic silicon carbide telescope. The focal plane units of the science payload complement -two cameras/medium resolution imaging spectrometers, the Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging REceiver (SPIRE), and the very high resolution Heterodyne Instrument for the Far-Infrared (HIFI) spectrometer -are housed in a superfluid helium cryostat. Herschel is the first large aperture space infrared observatory, it builds on previous infrared space missions including the IRAS, ISO, AKARI, and Spitzer observatories, by offering a much larger telescope and pushes towards longer wavelengths. It will perform imaging photometry and spectroscopy in the far infrared and submillimetre part of the spectrum, covering approximately the 55-672 micron range. I will describe Herschel and its science capabilities putting it into perspective. Herschel is designed to observe the 'cool universe'; the key science objectives include star and galaxy formation and evolution, and in particular the physics, dynamics, and chemistry of the interstellar medium and its molecular clouds, the wombs of the stars and planets. Herschel is currently opening a new window to study how the universe has evolved to become the universe we see today, and how our star the sun, our planet the earth, and we ourselves fit in. I will outline the early inflight operations of Herschel and the transition from launch and early operational phases into the routine science phase. I will present the demonstrated science capabilities and provide examples of scientific highlights to date. Herschel has been designed to offer a minimum of 3 years of routine science observations. Nominally 20,000 hours will be available for astronomy, 32(OT) offered to the general astronomical community through a standard competitive proposal procedure. I will describe future observing opportunities.

  14. KUSPACE: Embedding Science Technology and Mathematics Ambassador Activities in the Undergradiuate Engineering Curriculum

    NASA Astrophysics Data System (ADS)

    Welch, C.; Osborne, B.

    The UK national STEM Ambassadors programme provides inspiring role models for school students in science, technology, engineering, mathematics (STEM) subjects. STEMNET, the national body responsible for STEM Ambassa- dors aims to provide more than 27,000 STEM Ambassadors nationwide by the end of 2011. This paper reports on a project at Kingston University to embed STEM Ambassador training and activity in Year 2 of the undergraduate Aerospace Engineering, Astronautics and Space Technology degree. The project, known as KUSPACE (Kingston University Students Providing Amazing Classroom Experiences), was conceived to develop students' communication, planning and presentation skills and build links between different cohort years, while providing a valuable contribution to local primary schools' STEM programmes and simultaneously raising the public engagement profile of the university. This paper describes the pedagogical conception of the KUSPACE, its implementation in the curriculum, the delivery of it in the university and schools and its effect on the undergraduate students, as well as identifying good practice and drawing attention to lessons learned.STEMNET (www.stemnet.org) is the UK's Science, Technol- ogy, Engineering and Mathematics Network. Working with a broad range of UK partners and funded by the UK govern- ment's Department for Business Innovation and Skills, STEMNET plays a significant role in ensuring that five to nineteen year olds and their teachers can experience a wide range of activities and schemes which enhance and enrich the school curriculum [1]. Covering all aspects of Science, Tech- nology, Engineering and Maths (STEM), these activities and schemes are designed both to increase STEM awareness and literacy in the young people and also to encourage more of them to undertake post-16 STEM qualifications and associated careers [2]. STEMNET operates through forty-five local con- tract holders around the UK which help the network deliver its programmes to schools and organisations in their particular areas, mainly through the STEM Ambassador Programme (see below) and the Schools STEM Advisory Network.In support of its vision - `To increase young people's choice and chances through science, technology, engineering, and mathematics ' - STEMNET seeks to be a recognised leader in enabling all young people to achieve their potential in STEM by:

  15. The Value of Fidelity of Implementation Criteria to Evaluate School-Based Science Curriculum Innovations

    NASA Astrophysics Data System (ADS)

    Lee, Yew-Jin; Chue, Shien

    2013-10-01

    School-based curriculum innovations, including those in science education, are usually not adequately evaluated, if at all. Furthermore, current procedures and instruments for programme evaluations are often unable to support evidence-based decision-making. We suggest that adopting fidelity of implementation (FOI) criteria from healthcare research can both characterize and narrow the separation between programme intent and actual implementation, which is a mandatory stage of evaluation before determining overall programme value. We demonstrate how such a process could be applied by science educators using data from a secondary school in Singapore that had devised a new curriculum to promote interest, investigative processes, and knowledge in science. Results showed that there were ambivalent student responses to this programme, while there were high levels of science process skill instruction and close alignment with the intended lesson design. The implementation of this programme appeared to have a satisfactory overall level of FOI, but we also detected tensions between programme intent and everyday classroom teaching. If we want to advance science education, then our argument is that applying FOI criteria is necessary when evaluating all curricular innovations, not just those that originate from schools.

  16. Evaluating the Success of a Science Academic Development Programme at a Research-Intensive University

    ERIC Educational Resources Information Center

    Engelbrecht, Johann; Harding, Ansie; Potgieter, Marietjie

    2014-01-01

    Academic development (AD) programmes for students not complying with the entrance requirements of mainstream programmes in science have been running at a number of universities in South Africa. In this study we contribute to the debate on criteria for the success of AD programmes, specifically in the context of research-intensive universities in…

  17. Science in 60 – Tiny Satellites, Big Science

    ScienceCinema

    Sullivan, Erica

    2018-05-31

    When cube satellites first sprung on the scene in the late 1990s, they were seen as cheap, cute and novel. But today, these lunch-box-sized orbiters are heralded as powerful, cost-effective tools that help strengthen our national security presence in space. Los Alamos National Laboratory developed, built and tested CubeSats that are easily programmable from the ground, making them responsive to up-to-the-minute, mission-critical needs. While CubeSats are still the new kid on the celestial block, that’s about to change. These small, agile pieces of technology hold a universe of promise.

  18. The role of small satellites in the development of the South African space programme

    NASA Astrophysics Data System (ADS)

    Martinez, Peter

    In the 1990s a team of scientists and engineers at Stellenbosch University built the first South African satellite to fly in space, the 64-kg Sunsat. This university-based satellite programme took advantage of the skills and facilities developed in the previous South African space programme of the 1980s and early 1990s, which had developed a much larger satellite (Greensat), but was cancelled in the mid-1990s prior to launch. Sunsat incorporated a number of novel capabilities for a microsatellite platform, and interest was shown in these technologies by other groups developing similar satellites. As the University was not the ideal environment to develop the commercial potential of these microsatellite technologies, a company called Sunspace was later established, thus creating industrial capacity in South Africa in a niche area of space technology. This new industrial capability, together with the infrastructure from the previous space programme, have created a foundation upon which to build the new South African space programme. This paper discusses the historical, current and possible future roles of small satellites in the development of the South African space programme.

  19. Making Physics Matter in Primary Schools

    NASA Astrophysics Data System (ADS)

    Flaherty, Jackie; Cox, Wendy; Poole, Amanda; Watson, Jenny; Greygoose, Kirstin

    2016-04-01

    "Efforts to broaden students' aspirations, particularly in relation to STEM, need to begin in primary school." Kings College London "Aspires" Research Project 2013 From my outreach activity I have learnt that primary teachers could feel under pressure when faced with delivering the science curriculum. The teachers could be lacking confidence in their subject knowledge, lacking the equipment needed to deliver practical science or lacking enthusiasm for the subject. In addition, English and Mathematics were the subjects that were externally tested and reported to the authorities and so some teachers felt that time for science was being marginalised to ensure the best results in the externally assessed subjects. In my work with The Ogden Trust Primary Science team I have been involved in developing a range of strategies to address some of the issues outlined above. • CPD (Teacher Training) Programme We have provided free training to improve teachers knowledge and understanding of key physics concepts to GCSE standard and a practical workshop consisting of ten investigations, extension and challenge tasks. The teachers each receive a book of lesson plans and a resource box containing a class set of the equipment required. The four year programme covers Forces Light and Sound Electricity Earth & Space • "Phiz Labs" Funding from The Ogden Trust has allowed us to set up science laboratories within primary schools. The pupils have lab coats, goggles and access to a range of equipment that allows them to participate in more practical science activity and open-ended investigative work. My Phiz Lab is in the secondary school where I teach physics and practical workshops for primary pupils and teachers are held there on a regular basis. • Enrichment In order to enthuse and challenge the primary pupils a variety of enrichment activities take place. These include "Physics of Go-Karts" and "Particle Physics for Primary" workshops, competitions and regional Science Fairs held at Universities. Stargazing evenings and Family Learning Nights where parents join their children to learn about science together are very popular. • Sixth Form Science Ambassadors A-level Physics students (age17-18) are trained as STEM Ambassadors to run after school science clubs for primary schools. I have worked with the British Science Association to develop this scheme and my students have received Gold CREST Awards for their science communication skills. This year, in conjunction with the Royal Institution, we have introduced "Maths for Physics Masterclasses" for gifted and talented primary pupils. Sixth form Space Ambassadors also train their younger peers to use the Bradford University Robotic Space Telescope to take images of planets and stars and to analyse the images. These schemes benefit the primary pupils, the sixth form students who gain invaluable teamwork and science communication skills and the primary teachers who attend these sessions. Initial evaluations have shown a greatly increased engagement in science in primary schools. Many of the schools involved have received the Primary Science Quality Mark.

  20. The Early-Career Development of Science Teachers from Initial Training Onwards: The Advantages of a Multifaceted Five-Year Programme

    ERIC Educational Resources Information Center

    Clarke, Julian; Howarth, Sue; King, Chris; Perry, John; Tas, Maarten; Twidle, John; Warhurst, Adrian; Garrett, Caro

    2014-01-01

    If a programme were to be devised for the early-career development of science teachers, what might such a programme look like? This was the focus of a meeting of science educators interested in developing such a structure, from the start of initial teacher training onwards. The contributions, modified and written up here, include a suggested…

  1. Increasing Equity and Compensating Historically Academically Disadvantaged Students at a Tertiary Level: Benefits of a Science Foundation Programme as a Way of Access

    ERIC Educational Resources Information Center

    Downs, Colleen

    2010-01-01

    An approach to remedy the scarcity of Black students within the sciences at southern African universities has been the development of access programmes. There has been little acknowledgement of the contribution of these access programmes in increasing the quantity and quality of graduates. The contribution made by the Science Foundation Programme…

  2. The Role of Foundation Programmes in Science Education: The UNIFY Programme at the University of Limpopo, South Africa

    ERIC Educational Resources Information Center

    Mabila, T. E.; Malatje, S. E.; Addo-Bediako, A.; Kazeni, M. M. M.; Mathabatha, S. S.

    2006-01-01

    Since its inception in 1992, the University of the North's, Science Foundation Year (UNIFY) Programme has provided access to higher education to over 1500 previously disadvantaged students. However, there has always been doubt about whether the concept of a foundation programme is a worthwhile endeavour. To date, government has not yet fully…

  3. Expectations of Majlis Amanah Rakyat (MARA) Stakeholders on the Ulul Albab Curriculum at a MARA Junior Science College (MRSM)

    ERIC Educational Resources Information Center

    Manaf, Umi Kalthom Abdul; Alias, Nurul Fitriah; Azman, Ady Hameme Nor; Rahman, Fadzilah Abdul; Zulkifli, Hafizah

    2014-01-01

    Ulul Albab is an educational programme of integration between the existing programmes in MARA Junior Science College (MRSM) with the religious school programme including Tahfiz Al-Quran. MRSM Ulul Albab education programme is designed to produce professional experts, entrepreneurs and technocrats that are well versed in the field of religion-based…

  4. Technology-Enhanced Physics Programme for Community-Based Science Learning: Innovative Design and Programme Evaluation in a Theme Park

    ERIC Educational Resources Information Center

    Tho, Siew Wei; Chan, Ka Wing; Yeung, Yau Yuen

    2015-01-01

    In this study, a new physics education programme is specifically developed for a famous theme park in Hong Kong to provide community-based science learning to her visitors, involving her three newly constructed rides. We make innovative use of digital technologies in this programme and incorporate a rigorous evaluation of the learning…

  5. Reviews

    NASA Astrophysics Data System (ADS)

    2006-01-01

    WE RECOMMEND GLX Xplorer Datalogger This hand-held device offers great portability and robustness. Theoretical Concepts in Physics A first-rate reference tool for physics teachers. Do Your Ears Pop in Space? This little gem gives a personal insight into space travel. Full Moon A collection of high-quality photographs from the Apollo missions. The Genius of Science A collection of memories from leading 20th-century physicists. The Simple Science of Flight An excellent source of facts and figures about flight. SUREHigherPhysics This simulation-based software complies with Higher physics. Interactive Physics A programme that makes building simulations quick and easy. WORTH A LOOK Astronomical Enigmas This guide to enigmas could be a little shorter. HANDLE WITH CARE Standing-wave machine This is basically a standing-wave generator with a built-in strobe. WEB WATCH Sounds Amazing is a fantastic site, aimed at Key Stage 4 pupils, for learning about sound and waves.

  6. Space-Data Routers: Advanced data routing protocols for enhancing data exploitation for space weather applications

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anastasios; Daglis, Ioannis A.; Balasis, George; Papadimitriou, Constantinos; Tsaoussidis, Vassilios; Diamantopoulos, Sotirios

    2014-05-01

    Data sharing and access are major issues in space sciences, as they influence the degree of data exploitation. The availability of multi-spacecraft distributed observation methods and adaptive mission architectures require computationally intensive analysis methods. Moreover, accurate space weather forecasting and future space exploration far from Earth will be in need of real-time data distribution and assimilation technologies. The FP7-Space collaborative research project "Space-Data Routers" (SDR) relies on space internetworking and in particular on Delay Tolerant Networking (DTN), which marks the new era in space communications. SDR unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The main goal is to allow space agencies, academic institutes and research centers to share space-data generated by single or multiple missions, in an efficient, secure and automated manner. Here we are presenting the architecture and basic functionality of a DTN-based application specifically designed in the framework of the SDR project, for data query, retrieval and administration that will enable addressing outstanding science questions related to space weather, through the provision of simultaneous real-time data sampling at multiple points in space. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement no. 263330 for the SDR (Space-Data Routers for Exploiting Space Data) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.

  7. Evolution of the concept of Capacity-building, results achieved during the past years and the future

    NASA Astrophysics Data System (ADS)

    Laffaiteur, M.; Camacho, S.

    Capacity-building is one of the key elements for the implementation of space applications programmes, particularly in developing countries. As early as 1982, the work programme of the United Nations Programme on Space Applications was expanded in order to promote education and training by organizing seminars, training courses and workshops in various areas, such as astronomy, telecommunications and Earth observation. In the framework of this Programme, the Office for Outer Space Affairs undertook the initiative, at the beginning of the 1990's, aimed at establishing regional centres for space science and technology education, affiliated to the United Nations and located in developing countries. These centres have started their activities between 1995 and 2000 in Africa, Asia and the Pacific, and Latin America and the Caribbean. The centres are based on the concept that by pooling material and human resources, developing countries can have education and training centres, of an international-level quality. A considerable impetus has been given to capacity-building after the UNISPACE III Conference, in particular in the "Vienna Declaration on Space and Human Development". The necessity to enhance capacity-building through the development of human and budgetary resources, the training of teachers, the exchange of teaching methods, materials and experience and the development of infrastructure and policy regulatories. In the process of the implementation of the recommendations of UNISPACE III, Action Teams led by Governments were established. One of them was exclusively dealing with capacity-building. Its proposals have been reviewed last June by the Committee on the Peaceful Uses of Outer Space (COPUOS) and will be examined, among other reports of Action Teams, by the General Assembly in next October. A lot of work has been done during the past years and have produced very important results. But there is still an important gap in capacity-building between space-faring countries and developing countries. A strategy has been presented by the Action Team in order to implement a strategy aimed at increasing again the impact of the various initiatives already going on. The promotion of the sharing of educational materials and information could be facilitated by a network of bodies in UN Member States, dedicated organizations and UN regional centres. This presentation will aim to show the current status of this issue and to present results already achieved and the way forward.

  8. University Programme Preferences of High School Science Students in Singapore and Reasons that Matter in their Preferences: A Rasch analysis

    NASA Astrophysics Data System (ADS)

    Oon, Pey-Tee; Subramaniam, R.

    2015-01-01

    This study explored an under-researched area in science education-the university programmes preferred by high school students who take physical science subjects and the reasons that matter in their preferences. A total of 1,071 upper secondary and pre-university students in Singapore, who take physical science subjects among their range of subjects, participated in this study. A survey method was adopted and the Rasch model was used to analyse the data. Overall, Business Studies was ranked as the predominant choice; nonetheless, scientific programmes such as Science, Engineering, and Mathematics are generally still well liked by the students. When gender differences were examined, we found that students largely followed gender-typical programme preferences, in which males tend to incline towards Engineering while females tend to incline towards Arts and Social Sciences. Students prefer a university programme based on their individual interest and ability, with career aspiration and remuneration coming next. Interestingly, females place greater emphasis on career aspiration than males. Some implications of the study are discussed.

  9. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.

  10. BioSIGHT: Interactive Visualization Modules for Science Education

    NASA Technical Reports Server (NTRS)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high-speed network capabilities. The BioSIGHT project at is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches toward the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students.

  11. Progress in space weather predictions and applications

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  12. Links in the Chain: Bringing Together Literacy and Science

    ERIC Educational Resources Information Center

    Taylor, Neil; Hansford, Diane; Rizk, Nadya; Taylor, Subhashni

    2017-01-01

    In Australia, the Federal Government and the Australian Academy of Science have developed a programme entitled "Primary Connections" (primaryconnections.org. au), aimed at supporting the teaching of science in the primary sector. The programme makes strong and explicit links between science and literacy through the use of word walls,…

  13. A Longitudinal Investigation of the Preservice Science Teachers' Beliefs about Science Teaching during a Science Teacher Training Programme

    ERIC Educational Resources Information Center

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants…

  14. Seos - EARSEL'S Project on Science Education Through Earth Observation for High Schools

    NASA Astrophysics Data System (ADS)

    Reuter, R.

    2011-09-01

    SEOS is an initiative for using remote sensing in science education curricula in high schools funded under the 6th Framework Programme of the European Commission (EC). Eleven partners from several European countries, in cooperation with the European Space Agency (ESA) and teachers from European high schools, created e-learning tutorials for science students in high schools. The tutorials cover many disciplines such as physics, biology, geography, mathematics and engineering, emphasising the interdisciplinary character of remote sensing. They are the core element of the SEOS Learning Management System, allowing teachers to create their own courses, to distribute already available or new worksheets to the students for homework and to collect the results. Forums are available for teachers, students and other users to exchange information and discuss topics relevant for their study.

  15. Doctors in space (ships): biomedical uncertainties and medical authority in imagined futures

    PubMed Central

    Henderson, Lesley; Carter, Simon

    2016-01-01

    There has been considerable interest in images of medicine in popular science fiction and in representations of doctors in television fiction. Surprisingly little attention has been paid to doctors administering space medicine in science fiction. This article redresses this gap. We analyse the evolving figure of ‘the doctor’ in different popular science fiction television series. Building upon debates within Medical Sociology, Cultural Studies and Media Studies we argue that the figure of ‘the doctor’ is discursively deployed to act as the moral compass at the centre of the programme narrative. Our analysis highlights that the qualities, norms and ethics represented by doctors in space (ships) are intertwined with issues of gender equality, speciesism and posthuman ethics. We explore the signifying practices and political articulations that are played out through these cultural imaginaries. For example, the ways in which ‘the simple country doctor’ is deployed to help establish hegemonic formations concerning potentially destabilising technoscientific futures involving alternative sexualities, or military dystopia. Doctors mostly function to provide the ethical point of narrative stability within a world in flux, referencing a nostalgia for the traditional, attentive, humanistic family physician. The science fiction doctor facilitates the personalisation of technological change and thus becomes a useful conduit through which societal fears and anxieties concerning medicine, bioethics and morality in a ‘post 9/11’ world can be expressed and explored. PMID:27694600

  16. Wine biotechnology in South Africa: towards a systems approach to wine science.

    PubMed

    Moore, John P; Divol, Benoit; Young, Philip R; Nieuwoudt, Hélène H; Ramburan, Viresh; du Toit, Maret; Bauer, Florian F; Vivier, Melané A

    2008-11-01

    The wine industry in South Africa is over three centuries old and over the last decade has reemerged as a significant competitor in world wine markets. The Institute for Wine Biotechnology (IWBT) was established in partnership with the Department of Viticulture and Oenology at Stellenbosch University to foster basic fundamental research in the wine sciences leading to applications in the broader wine and grapevine industries. This review focuses on the different research programmes of the Institute (grapevine, yeast and bacteria biotechnology programmes, and chemical-analytical research), commercialisation activities (SunBio) and new initiatives to integrate the various research disciplines. An important focus of future research is the Wine Science Research Niche Area programme, which connects the different research thrusts of the IWBT and of several research partners in viticulture, oenology, food science and chemistry. This 'Functional Wine-omics' programme uses a systems biology approach to wine-related organisms. The data generated within the programme will be integrated with other data sets from viticulture, oenology, analytical chemistry and the sensory sciences through chemometrics and other statistical tools. The aim of the programme is to model aspects of the wine making process, from the vineyard to the finished product.

  17. Gravitational-wave Mission Study

    NASA Technical Reports Server (NTRS)

    Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.

    2014-01-01

    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies

  18. The Impact of a Professional Development Programme on Primary Teachers' Classroom Practice and Pupils' Attitudes to Science

    NASA Astrophysics Data System (ADS)

    Smith, Greg

    2015-04-01

    This study investigates the relationship, if any, between teacher participation in a targeted professional development programme and changes in participants' instructional practice and their pupils' attitudes to learning primary science. The programme took place over a 2-year period in 15 small rural schools in the West of Ireland. Data sources include teacher and pupil questionnaires, semi-structured interviews and informal classroom observations. The findings reveal that as a result of their involvement in the programme, (a) teachers' instructional practice in science lessons became more inquiry-based and they were engaging their pupils in substantially more hands-on activities in science lessons and (b) pupils developed more positive attitudes towards learning science. The findings from this study add to what is known about delivering effective professional development.

  19. "Getting Practical" and the National Network of Science Learning Centres

    ERIC Educational Resources Information Center

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  20. Huygens landing site to be named after Hubert Curien

    NASA Astrophysics Data System (ADS)

    2007-03-01

    The naming ceremony for the Huygens landing site, which will be known as the "Hubert Curien Memorial Station", will be held at ESA’s Headquarters on 14 March, in the presence of ESA Council delegates and of Professor Curien’s wife, Mrs Perrine Curien, and one of their sons. Media interested in attending are invited to submit the reply form below. Huygens' landing on Saturn’s largest moon in January 2005 represented one of the greatest successes achieved by humankind in the history of space exploration. The part played by ESA, in cooperation with NASA and the Italian Space Agency (ASI), was made possible thanks to the commitment of a man who, for several decades, worked to promote and strengthen the role of scientific research in his home country - France - and in Europe. Among his numerous responsibilities, Hubert Curien was French Minister of Research and Space under four Prime Ministers. As Chairman of the ESA Council from 1981 to 1984, Professor Curien played a crucial part in setting up ESA's former long-term science programme, "Horizon 2000", which included the Huygens mission among its projects. Professor Roger Bonnet, current President of COSPAR, and former ESA Director of Science (1983-2001), commented: "Curien’s diplomatic skills were hugely influential in bringing about the birth of European space science. In 1985, his support was pivotal when the European ministers had to decide how to build a solid space science programme and ensure that it would be financially sustainable in the long term." "ESA's present science programme, Cosmic Vision, draws on the heritage left by Hubert Curien", said Professor David Southwood, ESA's current Director of Science. "He encouraged cooperation between nations in the belief that space research is fundamental to the progress and welfare of a knowledge-based society like ours. He also promoted the concept of long-term planning", he continued. "It would seem almost inconceivable today to initiate any space venture without such pillar concepts in mind". "The role played by Hubert Curien in creating a European space dimension, with all its various facets, has been absolutely essential", said Jean-Jacques Dordain, ESA Director General. "Curien was one of the fathers of the Ariane Programme, which provided Europe with independent access to space, and one of those who, in the late seventies, persuaded other countries to join ESA by creating the 'fair return' system for industrial contracts." Dordain continued, "This exceptional man of vision was appreciated by all for his scientific competence and his outstanding human, political and diplomatic abilities. It is therefore a true honour for us to pay tribute to his memory by linking his name forever to this very significant place on the surface of an alien world that, also thanks to him, we were able to reach." For more information please contact : Franco Bonacina ESA Media Relations Office Communication Department Tel: +33(0)1.53.69.7155 Fax: +33(0)1.53.69.7690 Note for editors Short biography of Hubert Curien Hubert Curien was born on 30 October 1924 in the Vosges region of eastern France. While a student, he enlisted in the French resistance and was commended for bravery in action. He entered the Ecole Normale Supérieure in Paris and went on to pursue a research career in crystallography, joining the Sorbonne Mineralogy Laboratory. He was always keen to encourage collaboration between mineralogists and physicists. He was appointed lecturer at the University of Paris in 1949, obtained his PhD in 1951, and became professeur in 1956. From 1968 onwards, he continued with his teaching career at the 'Pierre et Marie Curie/Paris VI' University, which he left only in 1994, despite all his political duties. Aside from his scientific career, Hubert Curien is known mostly for his managerial and political responsibilities, pursued with commitment, efficiency and vision both in France and in Europe. He left his mark on an impressive number of scientific institutions. From 1966 to 1969, he was Scientific Director for Physics at the CNRS, France's scientific research centre, becoming its Director General in 1969. In 1973, he was given responsibility for reorganising research in France. From 1976 to 1984, he was President of the French space agency (CNES), and from 1984 to1993, served as Minister of Research and Space under four different governments. From 1981 to 1984, he was Chairman of the ESA Council, and he is now still remembered - among his many achievements - as one of the fathers of the Ariane programme and as a promoter of a Europe united through science. From 1994 to 1996, he also headed the European Organization for Nuclear Research (CERN), and in 1993, was elected to the French Academy of Science. For his work, Hubert Curien received the highest distinctions and awards. He was known for his great intelligence and managerial and political abilities, but also for his simplicity, modesty, sense of humour and willingness to listen to others. He died on 6 February 2005, and is survived by his wife, Perrine, and their sons, Nicolas, Christophe and Pierre-Louis. Huygens highlights The European-built Huygens probe was part of the Cassini-Huygens mission to Saturn - a joint endeavour of ESA, NASA and the Italian Space Agency (ASI). It is the most ambitious effort in planetary space exploration ever mounted. Launched on 15 October 1997, Cassini (a sophisticated robotic spacecraft designed to orbit the ringed planet and study the Saturnian system in detail), bearing the Huygens probe, reached Saturn on 1 July 2004. Cassini delivered Huygens to Saturn’s largest moon, Titan, on 14 January 2005. This was the first ever descent and landing onto a celestial body in the outer Solar System, and it provided the most spectacular view of Titan yet. During its 2½-hour descent onto this alien world, Huygens performed a series of measurements by means of its highly advanced suite of six instruments. It detected information about Titan’s atmosphere and winds. It also took remarkable pictures of the approaching surface, up to touchdown, which took place in Titanian 'mud', where, amazingly, it continued to take measurements for more than 3 hours. Now, thanks to the Huygens measurements and also to the complementary, global measurements made by Cassini, we actually know that Titan’s landscapes truly resemble those on Earth, with mountains, lakes, shorelines and outflow channels, where methane plays a role similar to that of water on Earth. By detecting Argon 40, Huygens also helped to reveal that the interior of Titan is still active, as confirmed later by Cassini, which observed icy 'lava' flows emerging from 'cryo-volcanoes'. The Cassini-Huygens results so far tell us that Titan, once thought to resemble an early, frozen Earth, in reality appears to be as complex as any of the terrestrial planets that have an atmosphere. Huygens has exceeded expectations and shown Titan to be an 'alien earth', probably more similar to our own planet than either Mars or Venus, and is enabling planetary scientists to explore a new, fascinating world.

  1. The first Spanish space programme 1968 1974

    NASA Astrophysics Data System (ADS)

    Dorado, José M.

    2007-06-01

    This paper presents the situation of the Spanish aeronautical industry in the early 1960s, the problems suffered during the first ESRO years, the situation in 1975 as a result of the first National Space Programme (1968-1974) and the specific developments carried out within that programme: the first Spanish satellite successfully launched in 1974 (INTASAT) and the first INTA sounding rockets launched from the own Arenosillo range. This justifies the importance of that Programme for the Spanish aeronautical industry, a programme that permitted its transition to the aerospace field. In parallel, agreements with NASA led to the installation of large space ground stations in Spain operated by INTA personnel, to support major NASA space missions, and to the operation of a very active rockets range. These actions allowed Spain to have one of the largest space sectors in Europe, in those years. This paper's purpose is to find out the main reasons behind this effort.

  2. A Statistical Evaluation of the Effects of a Structured Postdoctoral Programme

    ERIC Educational Resources Information Center

    Bessudnov, Alexey; Guardiancich, Igor; Marimon, Ramon

    2015-01-01

    Postdoctoral programmes have recently become an important step leading from doctoral education to permanent academic careers in the social sciences. This paper investigates the effects of a large and structured postdoctoral programme in the social sciences on a number of academic and non-academic outcomes of fellows. Propensity score matching is…

  3. IDIS Small Bodies and Dust Node

    NASA Astrophysics Data System (ADS)

    de Sanctis, M. C.; Capria, M. T.; Carraro, F.; Fonte, S.; Giacomini, L.; Turrini, D.

    2009-04-01

    The EuroPlaNet information service provides access to lists of researchers, laboratories and data archives relevant to many aspects of planetary and space physics. Information can be accessed through EuroPlaNet website or, for advanced searches, via web-services available at the different thematic nodes. The goal of IDIS is to provide easy-to-use access to resources like people, laboratories, modeling activities and data archives related to planetary sciences. The development of IDIS is an international effort started under the European Commission's 6th Framework Programme and which will expand its capabilities during the 7th Framework Programme, as part of the Capacities Specific Programme/Research Infrastructures. IDIS is complemented by a set of other EuroPlaNet web-services maintained under the responsibility of separate institutions. Each activity maintains its own web-portal with cross-links pointing to the other elements of EuroPlaNet. General access is provided via the EuroPlaNet Homepage. IDIS is not a repository of original data but rather supports the access to various data sources. The final goal of IDIS is to provide Virtual Observatory tools for the access to data from laboratory measurements and ground- and spaced-based observations to modeling results, allowing the combination of as divergent data sources as feasible. IDIS is built around four scientific nodes located in different European countries. Each node deals with a subset of the disciplines related to planetary sciences and, working in cooperation with international experts in these fields, provides a wealth of information to the international planetary science community. The EuroPlaNet IDIS thematic node "Small Bodies and Dust Node" is hosted by the Istituto di Fisica dello Spazio Interplanetario and is established in close cooperation with the Istituto di Astrofisica Spaziale. Both these institutes are part of the Istituto Nazionale di Astrofisica (INAF). The IDIS Small Bodies and Dust Node aims at becoming a focus point in the fields of Solar System's minor bodies and interplanetary dust by providing the community with a central, user friendly resource and service inventory and contact point. The main aim of the Small Bodies and Dust Node will be to: • support collaborative work in the field of Small Bodies and Dust • provide information about databases and scientific tools in this field • establish a scientific information management system • define and develop Science Cases regarding IDIS

  4. Audience reach of science on television in 10 European countries: An analysis of people-meter data.

    PubMed

    Lehmkuhl, Markus; Boyadjieva, Pepka; Cunningham, Yvonne; Karamanidou, Christina; Mörä, Tuomo

    2016-02-01

    Beginning with a differentiation of science programmes into five different editorial concepts, this article explores the audience reach of science on television in 10 European countries with a special emphasis on young audiences aged between 14 and 29 years. In relation to the share of this age group in the entire population, science programmes in all countries reach a considerably smaller proportion of younger viewers. Specific preferences for science content on television do not seem to be relevant in explaining aggregated viewing behaviours especially of young audiences. Unlike all other segments, the young science viewer segment is almost intangible as an aggregated group, as a definable segment of a mass audience that can be targeted by science programme makers. © The Author(s) 2014.

  5. Herschel Space Observatory - Overview and Observing Opportunities

    NASA Astrophysics Data System (ADS)

    Pilbratt, G. L.

    2005-12-01

    The Herschel Space Observatory is the fourth cornerstone mission in the European Space Agency (ESA) science programme. It will perform imaging photometry and spectroscopy in the far infrared and submillimetre part of the spectrum, covering approximately the 55-650 micron range. The key science objectives emphasize current questions connected to the formation and evolution of galaxies, stars, and our own planetary system. However, Herschel will offer unique observing capabilities available to the entire astronomical community. Herschel will carry a 3.5 metre diameter passively cooled telescope. The science payload complement - two cameras/medium resolution spectrometers (PACS and SPIRE) and a very high resolution heterodyne spectrometer (HIFI) - will be housed in a superfluid helium cryostat. The ground segment will be jointly developed by the ESA, the three instrument teams, and NASA/IPAC. Once operational in orbit around L2 sometime in 2008, Herschel will offer a minimum of 3 years of routine observations; roughly 2/3 of the available observing time is open to the general astronomical community through a standard competitive proposal procedure. I will report on the current implementation status of the various elements that together make up the Herschel mission, introduce the mission from the perspective of the prospective user of this major facility, and describe the plans for announcing observing opportunities.

  6. Rethinking the Theory and Practice of Continuing Professional Development: Science Teachers' Perspectives

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser; EL-Deghaidy, Heba; Alshamrani, Saeed; Aldahmash, Abdulwali

    2014-12-01

    The aim of this study was to investigate science teachers' views of continuing professional development (CPD) provision in Saudi Arabia and science teachers' perspectives of the CPD contextual issues that have an impact on putting the learning emerging from the CPD programmes into practice. The study used mixed methods (open-ended questionnaires and interviews) with Saudi Arabian science teachers framed by a socio-cultural perspective. This study argues that science teachers' voices concerning their professional development needs should be the key guide for their CPD. Our study shows the significance of engaging critically with science teachers' voices and views of their CPD programme. One of the unique findings of this study indicated CPD programmes should take place at school where teachers have the opportunity to collaborate with others in an authentic context and where they can participate in the content of the CPD that directly meets their needs within their work context. The study has shown that science teacher development can be effective and successful when science teachers are able to talk with each other as part of the learning activities of the CPD programmes about what they are doing in the classroom, and how they can implement the ideas of the CPD programmes into their classroom and school settings. This might shed light on why teachers were either able or unable to put some aspects of their CPD learning into practice.

  7. Science Teachers Accelerated Programme Model: A Joint Partnership in the Pacific Region

    ERIC Educational Resources Information Center

    Sharma, Bibhya; Lauano, Faatamali'i Jenny; Narayan, Swasti; Anzeg, Afshana; Kumar, Bijeta; Raj, Jai

    2018-01-01

    The paper heralds a new pedagogical model known as the Science Teachers Accelerated Programme as a platform to upgrade the qualifications of secondary school science teachers throughout the Pacific region. Based on a tripartite partnership between a higher education provider, a regional government and a cohort of science teachers, the model offers…

  8. "Adventures in Science": Casting Scientifically Talented Youth as National Resources on American Radio, 1942-1958

    ERIC Educational Resources Information Center

    Terzian, Sevan G.

    2008-01-01

    From 1942 to 1958, a national weekly programme on CBS radio and presented by Science Service, Inc. devoted 37 of its broadcasts to profiling American high school students' achievements in science talent searches, clubs and fairs. These "Adventures in Science" radio programmes cast scientifically talented youth as potential contributors to national…

  9. Priorities in national space strategies and governance of the member states of the European Space Agency

    NASA Astrophysics Data System (ADS)

    Adriaensen, Maarten; Giannopapa, Christina; Sagath, Daniel; Papastefanou, Anastasia

    2015-12-01

    The European Space Agency (ESA) has twenty Member States with a variety of strategic priorities and governance structures regarding their space activities. A number of countries engage in space activities exclusively though ESA, while others have also their own national space programme. Some consider ESA as their prime space agency and others have additionally their own national agency with respective programmes. The main objective of this paper is to provide an up-to date overview and a holistic assessment of strategic priorities and the national space governance structures in 20 ESA Member States. This analysis and assessment has been conducted by analysing the Member States public documents, information provided at ESA workshop on this topic and though unstructured interviews. The paper is structured to include two main elements: priorities and trends in national space strategies and space governance in ESA Member States. The first part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators that boost engagement in space. These vary from one Member State to another and include with different levels of engagement in technology domains amongst others: science and exploration, navigation, Earth observation, human space flight, launchers, telecommunications, and integrated applications. Member States allocate a different role of space as enabling tool adding to the advancement of sustainability areas including: security, resources, environment and climate change, transport and communication, energy, and knowledge and education. The motivators motivating reasoning which enhances or hinders space engagement also differs. The motivators identified are industrial competitiveness, job creation, technology development and transfer, social benefits, international cooperation, and European non-dependence. The second part of the paper provides a categorisation of national space governance structures in ESA Member States. Different governance models are identified depending on the responsible ministries for space for a number of space related organisations and ESA. In the case of ESA, these can typically vary from the more traditional ministry of science and/or education, the ministry of industry and/or innovation to the more recent ones being the ministry of economy and the ministry of transport. Recognising the transverse nature of space and its potential as a tool for a number of policies like agriculture, environment, maritime, disaster management, etc., other ministries are more and more getting involved in space activities. The development and implementation of the space strategy and policy of a Member State is realised though the engagement of an implementing entity. The type, role and activity vary from Member State to Member State.

  10. Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 Science

    ERIC Educational Resources Information Center

    Bybee, Rodger; McCrae, Barry

    2011-01-01

    International assessments provide important knowledge about science education and help inform decisions about policies, programmes, and practices in participating countries. In 2006, science was the primary domain for the Programme for International Student Assessment (PISA), supported by the Organisation for Economic Cooperation and Development…

  11. Proposal for a United Nations Basic Space Technology Initiative

    NASA Astrophysics Data System (ADS)

    Balogh, Werner

    Putting space technology and its applications to work for sustainable economic and social development is the primary objective of the United Nations Programme on Space Applications, launched in 1971. A specific goal for achieving this objective is to establish a sustainable national space capacity. The traditional line of thinking has supported a logical progression from building capacity in basic space science, to using space applications and finally - possibly - to establishing indigenous space technology capabilities. The experience in some countries suggests that such a strict line of progression does not necessarily hold true and that priority given to the establishment of early indigenous space technology capabilities may contribute to promoting the operational use of space applications in support of sustainable economic and social development. Based on these findings and on the experiences with the United Nations Basic Space Science Initiative (UNBSSI) as well as on a series of United Nations/International Academy of Astronautics Workshops on Small Satellites in the Service of Developing Countries, the United Nations Office for Outer Space Affairs (UNOOSA) is considering the launch of a dedicated United Nations Basic Space Technology Initiative (UNBSTI). The initiative would aim to contribute to capacity building in basic space technology and could include, among other relevant fields, activities related to the space and ground segments of small satellites and their applications. It would also provide an international framework for enhancing cooperation between all interested actors, facilitate the exchange of information on best practices, and contribute to standardization efforts. It is expected that these activities would advance the operational use of space technology and its applications in an increasing number of space-using countries and emerging space nations. The paper reports on these initial considerations and on the potential value-adding role the United Nations could play with such an initiative.

  12. Human spaceflight and an asteroid redirect mission: Why?

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.

    2014-08-01

    The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.

  13. The challenges and opportunities of a commercial human spaceflight mission to the ISS.

    PubMed

    Belingheri, M; Mirra, C

    2003-01-01

    ESA astronauts' ISS flight opportunities are considered as a vital source to meet the utilisation, operation and political objectives that Europe has established for participating in the International Space Station programme. Recent internal ESA assessments have demonstrated that a rate of three flights per year for European Astronauts should be maintained as a minimum objective. The current flight rate is lower than this. In order to improve this situation, in the context of the activation of the ESA ISS Commercialisation programme, ESA is developing the conditions for the establishment of commercially based human spaceflights with the financial support of both ESA and the private sector or, in the future, only the latter. ESA is working in a Partnership with the space industry to facilitate the implementation of such projects and support customers with a range of end-to-end commercial services. The opportunities and challenges of a "commercial human spaceflight", involving a member of the European Astronaut Corps, or a privately employed flight participant, are discussed here. c2003 Elsevier Science Ltd. All rights reserved.

  14. XML-based information system for planetary sciences

    NASA Astrophysics Data System (ADS)

    Carraro, F.; Fonte, S.; Turrini, D.

    2009-04-01

    EuroPlaNet (EPN in the following) has been developed by the planetological community under the "Sixth Framework Programme" (FP6 in the following), the European programme devoted to the improvement of the European research efforts through the creation of an internal market for science and technology. The goal of the EPN programme is the creation of a European network aimed to the diffusion of data produced by space missions dedicated to the study of the Solar System. A special place within the EPN programme is that of I.D.I.S. (Integrated and Distributed Information Service). The main goal of IDIS is to offer to the planetary science community a user-friendly access to the data and information produced by the various types of research activities, i.e. Earth-based observations, space observations, modeling, theory and laboratory experiments. During the FP6 programme IDIS development consisted in the creation of a series of thematic nodes, each of them specialized in a specific scientific domain, and a technical coordination node. The four thematic nodes are the Atmosphere node, the Plasma node, the Interiors & Surfaces node and the Small Bodies & Dust node. The main task of the nodes have been the building up of selected scientific cases related with the scientific domain of each node. The second work done by EPN nodes have been the creation of a catalogue of resources related to their main scientific theme. Both these efforts have been used as the basis for the development of the main IDIS goal, i.e. the integrated distributed service. An XML-based data model have been developed to describe resources using meta-data and to store the meta-data within an XML-based database called eXist. A search engine has been then developed in order to allow users to search resources within the database. Users can select the resource type and can insert one or more values or can choose a value among those present in a list, depending on selected resource. The system searches for all the resources containing the inserted values within the resources descriptions. An important facility of the IDIS search system is the multi-node search capability. This is due to the capacity of eXist to make queries on remote databases. This allows the system to show all resources which satisfy the search criteria on local node and to show how many resources are found on remote nodes, giving also a link to open the results page on remote nodes. During FP7 the development of the IDIS system will have the main goal to make the service Virtual Observatory compliant.

  15. Dragon 2 Programme Achievements and Cooperation

    NASA Astrophysics Data System (ADS)

    Desnos, Yves-Louis; Li, Zengyuan; Zmuda, Andy; Gao, Zhihai

    2013-01-01

    The cooperation between ESA and National Remote Sensing Center of China (NRSCC) / Ministry of Science and Technology of China (MOST) in the development of Earth Observation (EO) applications started 17 years ago. In 2004, a new phase in cooperation began with the start of the Dragon Programme which focused on science and application using ESA ERS and Envisat satellite data. The programme was completed in 2008. Following on, the cooperation took on greater momentum with the start of a four-year EO science and exploitation programme called “Dragon 2”. The programme formally closed in June at the 2012 Beijing Symposium. The programme brought together joint Sino-European teams to investigate land, ocean and atmospheric applications in P.R. China using EO data from ESA, Third Party Mission (TPM) and Chinese satellites. The teams were led by principal EO scientists. Young European and Chinese scientists were also engaged on the projects. Advanced training courses in land, ocean and atmospheric applications were held in each year of the programme in China. Altogether, two courses on land, one course on atmospheric applications and one course on oceanographic applications were held. Here-in provided is an overview of the achievements, cooperation, reporting and training activities at the completion of the programme. The Sino-European teams have delivered world-class scientific results across a wide range of disciplines. The programme provided a platform for the joint exploitation of ESA, TPM and Chinese EO data from optical, thermal and microwave sensors for geo-science application and development in China.

  16. Science, Courses of Study for the Four-Year Programme and Comments on the Courses of Study for the Five-Year, Two-Year, and Occupational Programmes.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto.

    The major portion of this booklet contains detailed specifications for the content of science courses for grades 10-12 in the Arts and Science, Business and Commerce, and Science, Technology, and Trades Branches of Ontario secondary schools. Chemical, physical, and biological topics are emphasized. Brief notes on other science courses are…

  17. Accreditation of Library and Information Science Programmes in the Gulf Cooperation Council Nations

    ERIC Educational Resources Information Center

    Rehman, Sajjad ur

    2012-01-01

    This paper investigates the accreditation possibilities and prospects for the library and information science education programmes located in the six member nations of the Gulf Cooperation Council. This paper has been based on the findings of a study focused on the evaluation practices of these programmes and the perceptions of the leading…

  18. Collaborative Framework for Designing a Sustainability Science Programme: Lessons Learned at the National Autonomous University of Mexico

    ERIC Educational Resources Information Center

    Charli-Joseph, Lakshmi; Escalante, Ana E.; Eakin, Hallie; Solares, Ma. José; Mazari-Hiriart, Marisa; Nation, Marcia; Gómez-Priego, Paola; Pérez-Tejada, César A. Domínguez; Bojórquez-Tapia, Luis A.

    2016-01-01

    Purpose: The authors describe the challenges and opportunities associated with developing an interdisciplinary sustainability programme in an emerging economy and illustrate how these are addressed through the approach taken for the development of the first postgraduate programme (MSc and PhD) in sustainability science at the National Autonomous…

  19. Television programming and advertisements: help or hindrance to effective science education?

    NASA Astrophysics Data System (ADS)

    McSharry, Gabrielle

    2002-05-01

    Investigations were carried out to find the amount of science portrayed by terrestrial television in the UK and the public comprehension of that science as shown on television. UK terrestrial programming was derived from the Radio Times. Advertisement information was derived from UK terrestrial commercial television commercials. Public opinions were solicited by a survey of 200 members of the public (n = 196). Science-based programming formed 5.36% of all terrestrial broadcasting time, with people watching an average of 1.75 science programmes per week (approx. 0.2% of programmes possible). 65% of all television advertisements were found to be science-based, although only 26% of advertisement categories were recognized as being science-based by the public. If interest in science is reflected in the amount of science programmes watched then the public are not interested in science. The lack of comprehension of the scientific basis of many advertisements is indicative of the lack of relevance of science education to people in modern society.

  20. Metaphorical Roots of Beliefs about Teaching and Learning Science and Their Modifications in the Standard-Based Science Teacher Preparation Programme

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2011-01-01

    Beliefs are psychological constructs potentially driving a teacher to make pedagogical decisions and act. In this study, the metaphor construction task (MCT) was utilised to uncover beliefs about teaching and learning science held by 110 pre-service science teachers participating in the standard-based teacher preparation programme. Overall, the…

  1. Ways into Integrating Science

    ERIC Educational Resources Information Center

    Boulter, Caroline

    2005-01-01

    The ideas in this article arose from the National Union of Teachers' professional development programme "Putting life into science -- primary science and citizenship" that the author ran with Will Ord from SAPERE. As with other NUT "Teacher 2Teacher" programmes, this course had two major inputs, in January and June, with the intervening time…

  2. Science Across the World in Teacher Training

    ERIC Educational Resources Information Center

    Schoen, Lida; Weishet, Egbert; Kennedy, Declan

    2007-01-01

    Science Across the World is an exchange programme between schools world-wide. It has two main components: existing resources for students (age 6-10) and a database with all participating schools. The programme exists since 1990. It is carried out in partnership with the British Association of Science Education (ASE) and international…

  3. a New IAA Cosmic Study: Establishing a Radio Observatory on the Moon Farside

    NASA Astrophysics Data System (ADS)

    Heidmann, J.

    2002-01-01

    In 1998, the IAA decided to develop a new Cosmic Study following a suggestion by its President, M. Yarymovych, based on work I initiated in 1993. This project is jointly fully supported by G. Haerendel, Vice-President of the IAA and President of the COSPAR. After the Symposium " Protection of Part of a Celestial Body for the Scientific Benefit of Humankind: the Lunar Farside Crater SAHA Proposal", which I organized at the COSPAR 1998 Scientific Assembly, the IAA Space Science Committee endorsed also this study. I assembled a Committee including D. McNally, University of London Observatory, for Radio Protection, B. Reijnen, International Institute of Space Law, for Space Law, G. Genta, Politecnico di Torino, for Astronautics, J.-F. Lestrade, Paris-Meudon Observatory, for Radioastronomy, and C. Maccone, IAA SETI and Interstellar Space Exploration Committees, for Mission Management. We encourage contributions from workers in a wide range of interdisciplinary domains: space lawyers, space engineers, astronomers, policy-makers, economists, educationists, media analysts. I started to invite potential contributors from various sources such as programmes of recent conferences of IAF, IAA, IISL, COSPAR, IAU, NASA, ESA and other space agencies, together with news from journals such as Science, Nature, Space News. The basic philosophy is not to refrain from giving access to persons of different opinions, so that a balance can be presented, aiming at some synthetizing consensus. I shall be the Editor, submitting each paper to two referees and taking advice from the Committee in controversial cases.

  4. The European space exploration programme: current status of ESA's plans for Moon and Mars exploration.

    PubMed

    Messina, Piero; Vennemann, Dietrich

    2005-01-01

    After a large consultation with the scientific and industrial communities in Europe, the Aurora Space Exploration Programme was unanimously approved at the European Space Agency (ESA) Council at ministerial level in Edinburgh in 2001. This marked the start of the programme's preparation phase that was due to finish by the end of 2004. Aurora features technology development robotic and crewed rehearsal missions aimed at preparing a human mission to Mars by 2033. Due to the evolving context, both international and European, ESA has undertaken a review of the goals and approach of its exploration programme. While maintaining the main robotic missions that had been conceived during Aurora, the European Space Exploration Programme that is currently being proposed to the Aurora participating states and other ESA Member States has a reviewed approach and will feature a greater synergy with other ESA programmes. The paper will present the process that led to the revision of ESA's plans in the field of exploration and will give the current status of the programme. c2005 Published by Elsevier Ltd.

  5. Capacity building in emerging space nations: Experiences, challenges and benefits

    NASA Astrophysics Data System (ADS)

    Jason, Susan; da Silva Curiel, Alex; Liddle, Doug; Chizea, Francis; Leloglu, Ugur Murat; Helvaci, Mustafa; Bekhti, Mohammed; Benachir, Djouad; Boland, Lee; Gomes, Luis; Sweeting, Martin

    2010-09-01

    This paper focuses on ways in which space is being used to build capacity in science and technology in order to: Offer increasing support for national and global solutions to current and emerging problems including: how to improve food security; resource management; understanding the impacts of climate change and how to deal with them; improving disaster mitigation, management and response. Support sustainable economic development. We present some of the experiences, lessons learned and benefits gained in capacity building projects undertaken by Surrey Satellite Technology Ltd. and our partners from developing and mature space nations. We focus on the Turkish, Algerian and Nigerian know-how and technology transfer programmes which form part of the first Disaster Monitoring Constellation (DMC) in orbit. From the lessons learned on Surrey's know-how and technology transfer partnership programmes, it is clear that space technology needs to be implemented responsibly as part of a long-term capacity building plan to be a sustainable one. It needs to be supported with appropriate policy and legal frameworks, institutional development, including community participation, human resources development and strengthening of managerial systems. In taking this on board, DMC has resulted in a strong international partnership combining national objectives, humanitarian aid and commerce. The benefits include: Ownership of space-based and supporting ground assets with low capital expenditure that is in line with national budgets of developing nations. Ownership of data and control over data acquisition. More for the money via collaborative consortium. Space related capacity building in organisations and nations with the goal of sustainable development. Opportunities for international collaboration, including disaster management and relief.

  6. Introducing new diagnostics into STI control programmes: the importance of programme science.

    PubMed

    Peeling, Rosanna W; Mabey, David; Ballard, Ronald C

    2013-03-01

    Many innovative diagnostic technologies will become commercially available over the next 5-10 years. These tests can potentially transform the diagnosis of sexually transmitted infections but their introduction into control programmes can be hampered by health system constraints, and political, cultural, socioeconomic and behavioural factors. We used the introduction of syphilis rapid tests to illustrate the importance of programme science to address the gap between accruing evidence of acceptable test performance and the complexity of programme design, implementation and evaluation of test deployment to address public health needs and improve patient-important outcomes.

  7. N° 15-2000: ESA, CERN and ESO launch "Physics on Stage"

    NASA Astrophysics Data System (ADS)

    2000-03-01

    But how much do the citizens of Europe really know about physics? Here is a unique opportunity to learn more about this elusive subject! Beginning in February 2000, three major European research establishments [1] are organising a unique Europe-wide programme to raise the public awareness of physics and related sciences. "Physics on Stage" is launched by the European Space Agency (ESA), the European Laboratory for Particle Physics (CERN), and the European Southern Observatory (ESO), with support from the European Union (EU). Other partners include the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). This exciting programme is part of the European Week for Science and Technology and will culminate in a Science Festival during November 6-11, 2000, at CERN, Geneva. Why "Physics on Stage"? The primary goal of "Physics on Stage" is to counteract the current decline in interest and knowledge of physics among Europe's citizens by means of a series of highly visible promotional activities. It will bring together leading scientists and educators, government bodies and the media, to confront the diminishing attraction of physics to young people and to develop strategies to reverse this trend. The objective in the short term is to infuse excitement and to provide new educational materials. In the longer term, "Physics on Stage" will generate new developments by enabling experts throughout Europe to meet, exchange and innovate. "Physics on Stage" in 22 European Countries. "Physics on Stage" has been initiated in 22 European countries [2]. In each country, a dedicated National Steering Committee (NSC) is being formed which will be responsible for their own national programme. A list of contact addresses is attached below. "Physics on Stage" is based on a series of high-profile physics-related activities that will inform the European public in general, and European high school physics teachers and media representatives in particular, about innovative ways to convey information about physics. It will stress the intimate connection of this natural science with our daily lives. It will be accompanied by a broad media debate on these subjects. This effort is undertaken in the context of a progressive decline in physics literacy amongst the European population at all levels and ages. Fewer and fewer young people are attracted towards careers in core sciences and technologies - this could potentially lead to a crisis in European technology in the coming decades unless action is taken now. Too few people possess the basic knowledge that is necessary to understand even common physical phenomena. And not enough are able to form their own substantiated opinions about them. What will happen during "Physics on Stage"? During the first phase of "Physics on Stage", from now until October 2000, the individual national steering committees (NSC) will survey the situation in their respective countries. The NSCs will collaborate with national media to identify new and exciting educational approaches to physics. These may involve demonstrations, interactive experiments, video and CD-Rom presentations, web applications, virtual reality, theatre performances, etc. Nationally run competitions will select some of the best and most convincing new ideas for presentations and educational materials which will receive development support from "Physics on Stage". The project will culminate in November 2000, with approximately 400 delegates converging on CERN, in Geneva, for the "Physics on Stage" conference. The conference will enable the national competition winners, science teachers, science communicators, publishers, top scientists and high-level representatives of the ministries and European organisations to brainstorm solutions to bolster physics' popularity. The programme will also include spectacular demonstrations of educational tools; the best will be disseminated over the national TV networks and other media to the European public. Why ESA, CERN, and ESO? As Europe's principal organisations in physics research (particle physics, space and astronomy), the three recognised their mutual responsibility to address the issue with the launch of a new initiative and the creative use of their own research to attract the attention of the general public and teachers alike. About the "European Science and Technology Week" The objective of the "European Science and Technology Week" is to improve the public's knowledge and understanding of science and technology - including the associated benefits for society as a whole. The week focuses on the European dimension of research, such as pan-European scientific and technological co-operation. The rationale for holding the Week has its roots in the importance of the role of science and technology in modern societies and the need therefore, to ensure that the public recognises its significance in our lives. The Week is a framework for special TV programmes, exhibitions, contests, conferences, electronic networking, and other science related activities to promote the public understanding of science and technology. The Week was launched in 1993, on the initiative of the European Commission. Raising public awareness of science and technology is now the subject of a clearly defined action within the Human Potential Programme of the Fifth Framework Programme. Notes [1] The same press release is published also by CERN and ESO. [2] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. Statements by the Directors General of ESA, CERN, and ESO Antonio Rodotà (ESA): "Space has become an integral part of every day life. The immense technological development that has led to this achievement has taken place and might be taken for granted. But now is the time to follow up and form the future on this basis, a future that has to be made by the youth and has to give its benefits to the youth. The European Space Agency is dedicated to support the youth in its development to become a space generation. Many activities have been done and are taking place, and many more are planned for the future. Teachers and educational institutions and organisations form a key role in this development. ESA is enthusiastic about co-operating with ESO, CERN and the European Union to create an opportunity to receive ideas from the educational society and will perform a dedicated effort in finding ways to support the realisation of those ideas." Luciano Maiani (CERN): "Science is a critical resource for mankind and, among natural sciences, physics will continue to play a crucial role, well into the next century. The young people of Europe deserve the best possible physics teaching. An enormous resource of first class teachers, teaching materials and innovative thinking exists in our Countries. The "Physics on Stage" project will bring these together to generate a new interest in physics education which will be to the long term benefit of children all over Europe. CERN is delighted to take part in this collaboration between the European Community and the continent's three leading physics research organisations." Catherine Cesarsky (ESO): "Astronomy and Astrophysics are at the very heart of modern physics. As vibrant research disciplines they use the most advanced technology available to humanity to explore Cosmos. It is also a science of extreme conditions - the largest distances, the longest periods of time, the highest temperatures, the strongest electrical and magnetic fields, the highest and lowest densities and the most extreme energies. Cosmos is indeed the greatest physics laboratory. For years, ESO - Europe's Astronomy Organisation - has been engaged in communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About ESA, CERN, and ESO The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, co-operation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO observatory La Silla in Chile is one of the largest and best-equipped observatories in the world. ESO's Very Large Telescope Array (VLT), an array of giant telescopes, is under construction at Cerro Paranal in the Chilean Atacama Desert. When completed in 2001, the VLT will be the largest and best optical telescope in the world. The CERN, European Organisation for Nuclear Research, has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco have observer status.

  8. Examining the Sustainability of Teacher Learning Following a Year-Long Science Professional Development Programme for Inservice Primary School Teachers

    ERIC Educational Resources Information Center

    Drits-Esser, Dina; Gess-Newsome, Julie; Stark, Louisa A.

    2017-01-01

    This two-year, mixed-methods study explored teacher learning during a year-long professional development programme and during the year following the programme. The study examined patterns of change in primary school teachers' inquiry practices, inquiry beliefs and physical science content knowledge during both years as well as the effects of…

  9. The Impact of a Professional Development Programme on Primary Teachers' Classroom Practice and Pupils' Attitudes to Science

    ERIC Educational Resources Information Center

    Smith, Greg

    2015-01-01

    This study investigates the relationship, if any, between teacher participation in a targeted professional development programme and changes in participants' instructional practice and their pupils' attitudes to learning primary science. The programme took place over a 2-year period in 15 small rural schools in the West of Ireland. Data sources…

  10. Perceptions of Science Graduating Students on their Learning Gains

    NASA Astrophysics Data System (ADS)

    Varsavsky, Cristina; Matthews, Kelly E.; Hodgson, Yvonne

    2014-04-01

    In this study, the Science Student Skills Inventory was used to gain understanding of student perceptions about their science skills set developed throughout their programme (scientific content knowledge, communication, scientific writing, teamwork, quantitative skills, and ethical thinking). The study involved 400 responses from undergraduate science students about to graduate from two Australian research-intensive institutions. For each skill, students rated on a four-point Likert scale their perception of the importance of developing the skill within the programme, how much they improved it throughout their undergraduate science programme, how much they saw the skill included in the programme, how confident they were about the skill, and how much they will use the skill in the future. Descriptive statistics indicate that overall, student perception of importance of these skills was greater than perceptions of improvement, inclusion in the programme, confidence, and future use. Quantitative skills and ethical thinking were perceived by more students to be less important. t-Test analyses revealed some differences in perception across different demographic groups (gender, age, graduate plans, and research experience). Most notably, gender showed significant differences across most skills. Implications for curriculum development are discussed, and lines for further research are given.

  11. The Impact of a Cryogenics-Based Enrichment Programme on Attitude Towards Science and the Learning of Science Concepts. Research Report

    ERIC Educational Resources Information Center

    Caleon, Imelda; Subramaniam, R.

    2005-01-01

    This study explores the impact of a cryogenics-based enrichment programme, which involves demonstrations that use liquid nitrogen, on attitudes towards science and the learning of science concepts. The findings presented in this paper are based on a sample of 214 fifth-grade students from two schools in Singapore who had their enrichment lesson in…

  12. University Programme Preferences of High School Science Students in Singapore and Reasons That Matter in Their Preferences: A Rasch Analysis

    ERIC Educational Resources Information Center

    Oon, Pey-Tee; Subramaniam, R.

    2015-01-01

    This study explored an under-researched area in science education--the university programmes preferred by high school students who take physical science subjects and the reasons that matter in their preferences. A total of 1,071 upper secondary and pre-university students in Singapore, who take physical science subjects among their range of…

  13. Effective Practical Work in Primary Science: The Role of Empathy

    ERIC Educational Resources Information Center

    Abrahams, Ian; Reiss, Michael

    2010-01-01

    "Getting Practical-Improving practical work in science" is a government-funded programme intended to improve the effectiveness and affective value of practical work in school science in England. In order to evaluate the effectiveness of the programme in terms of achieving its aims, ten primary and twenty secondary schools have been…

  14. Art and Science Education Collaboration in a Secondary Teacher Preparation Programme

    ERIC Educational Resources Information Center

    Medina-Jerez, William; Dambekalns, Lydia; Middleton, Kyndra V.

    2012-01-01

    Background and purpose: The purpose of this study was to record and measure the level of involvement and appreciation that prospective teachers in art and science education programmes demonstrated during a four-session integrated activity. Art and science education prospective teachers from a Rocky Mountain region university in the US worked in…

  15. Reconfigurable Transceiver and Software-Defined Radio Architecture and Technology Evaluated for NASA Space Communications

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and used to assess RT and SDR system architectures and core technology elements to determine an appropriate investment strategy to advance these technologies to meet future mission needs. The use of these radios in the space environment represents a challenge because of the space radiation suitability of the components, which drastically reduces the processing capability. The radios available for space are considered to be RTs (as opposed to SDRs), which are digitally programmable radios with selectable changes from an architecture combining analog and digital components. The limited flexibility of this design contrasts against the desire to have a power-efficient solution and open architecture.

  16. The impact of the `Getting Practical: Improving Practical Work in Science' continuing professional development programme on teachers' ideas and practice in science practical work

    NASA Astrophysics Data System (ADS)

    Abrahams, Ian; Reiss, Michael J.; Sharpe, Rachael

    2014-09-01

    Background:Despite the widespread use of practical work in school it has been recognised that more needs to be done to improve its effectiveness in developing conceptual understanding. The 'Getting Practical' CPD (Continuing Professional Development) programme was designed to contribute towards an improvement in the effectiveness of practical work through initiating changes in teachers' predominantly 'hands-on' approach to practical work to one which manifests a more equitable balance between 'hands-on' and 'minds-on'. Purpose:To evaluate the impact of the Getting Practical: Improving Practical Work in Science CPD programme on teachers' ideas and practice in science practical work in primary and secondary schools in England. Programme description:The CPD programme was designed to improve the effectiveness of science practical work in developing conceptual understanding in primary and secondary schools in England. Sample:Ten teachers of primary science and 20 secondary science teachers. Design and methods:The study employed a condensed fieldwork strategy with data collected using interviews, observational field notes and pre- and post-CPD training observations in practical lessons within 30 schools. Results:Whilst the CPD programme was effective in getting teachers to reflect on the ideas associated with the Getting Practical programme, it was much less effective in bringing about changes in actual teaching practice. Conclusion:The findings suggest that if change, rather than only an enhanced awareness of the issues, is to be brought about in established teaching practice then there is a need for ongoing support over an extended period of time. Furthermore, the impact of such CPD is more likely to be effective if it is undertaken by a senior member of a department or school with the full support of the SMT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ESASP.684E...2D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ESASP.684E...2D"><span>Progress and Achievements At the Mid Term Stage of the Dragon 2 Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desnos, Yves-Louis; Li, Zhengyuan; Zmuda, Andy; Gao, Zhihai</p> <p>2010-10-01</p> <p>The cooperation between ESA and National Remote Sensing Center of China (NRSCC) / Ministry Of Science and Technology of China (MOST) in the development of Earth Observation (EO) applications started 15 years ago. In 2004, a new phase in cooperation began with the start of the Dragon Programme which focused on science and application using ESA satellite data. The programme was completed in 2008. Following on, the cooperation took on greater momentum with the start of a four-year EO science and exploitation programme called 'Dragon 2'. This programme brings together joint Sino-European teams to investigate land, ocean and atmospheric applications in P.R. China using data from ESA, Third Party Mission and Chinese Earth Observation satellites. The teams are led by leading EO scientists and young scientists are also engaged on the projects. Advanced training in land, ocean and atmospheric applications is a feature of the programme and after 2 years, two courses on land and one course on atmospheric applications have been successfully held in 2008, 2009 and 2010 in China. Here-in provided is an overview of the results, reporting and training activities at the mid term stage of the programme. The Sino-European teams continue to deliver world-class scientific results across a wide range of disciplines. The programme provides a platform for the joint exploitation of ESA, TPM and Chinese EO data from optical, infrared, thermal and microwave sensors for science and application development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000eso..pres....4.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000eso..pres....4."><span>CERN, ESA and ESO Launch "Physics On Stage"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2000-03-01</p> <p>Physics is everywhere . The laws of physics govern the Universe, the Sun, the Earth and even our own lives. In today's rapidly developing society, we are becoming increasingly dependent on high technology - computers, transport, and communication are just some of the key areas that are the result of discoveries by scientists working in physics. But how much do the citizens of Europe really know about physics? Here is a unique opportunity to learn more about this elusive subject! [Go to Physics On Stage Website] Beginning in February 2000, three major European research organisations are organising a unique Europe-wide programme to raise the public awareness of physics and related sciences. "Physics on Stage" is launched by the European Laboratory for Particle Physics (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , with support from the European Union. Other partners are the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). This exciting programme is part of the European Week for Science and Technology and will culminate in a Science Festival during November 6-11, 2000, on the CERN premises at the French-Swiss border near Geneva. Why "Physics on Stage"? The primary goal of "Physics on Stage" is to counteract the current decline in interest and knowledge about physics among Europe's citizens by means of a series of highly visible promotional activities. It will bring together leading scientists and educators, government bodies and the media, to confront the diminishing attraction of physics to young people and to develop strategies to reverse this trend. The objective in the short term is to infuse excitement and to provide new educational materials. In the longer term, "Physics on Stage" will generate new developments by enabling experts throughout Europe to meet, exchange and innovate. "Physics on Stage" in 22 European Countries "Physics on Stage" has been initiated in 22 European countries [2]. In each of these, a dedicated National Steering Committee is being formed which will be responsible for its own national programme. A list of contact addresses is attached below. "Physics on Stage" is based on a series of high-profile physics-related activities that will inform the European public in general and European high school physics teachers and media representatives in particular about innovative ways to convey information about physics. It will stress the intimate connection of this natural science with our daily lives. It will be accompanied by a broad media debate on these subjects. This effort is undertaken in the context of a progressive decline of physics literacy amongst the European population at all levels. Fewer and fewer young people are attracted towards careers in core sciences and technologies - this could potentially lead to a crisis in European technology in the coming decades unless action is taken now. Too few people possess the basic knowledge that is necessary to understand even common physical phenomena. And not enough are able to form their own substantiated opinions about them. What will happen during "Physics on Stage"? During the first phase of "Physics on Stage" , from now until October 2000, the individual National Steering Committees (NSCs) will survey the situation in their respective countries. The NSCs will collaborate with national media to identify new and exciting educational approaches to physics. These may involve demonstrations, interactive experiments, video and CD-Rom presentations, Web applications, virtual reality, theatre performances, etc. Nationally run competitions will select some of the best and most convincing new ideas for presentations and educational materials which will receive development support from "Physics on Stage" . The project will culminate in November 2000, with approximately 400 delegates converging on CERN, in Geneva, for the Physics on Stage Festival . During this event, the national competion winners, science teachers, science communicators, publishers, top scientists and high-level representatives of the ministries and European organisations will brainstorm future solutions to bolster physics' popularity. The programme will also include spectacular demonstrations of new educational tools; the best will be disseminated over the national TV networks and other media to the European public. Why CERN, ESA and ESO? As Europe's principal organisations in physics research (particle physics, space and astronomy), the three recognised their mutual responsibility to address the issue through the creation of a new initiative and the creative use of their own research to attract the public and teachers alike. About the "European Science and Technology Week" [Go to EWST Website] The objective of the European Science and Technology Week is to improve the public's knowledge and understanding of science and technology - including the associated benefits for society as a whole. The Week focuses on the European dimension of research, such as pan-European scientific and technological co-operation. The rationale for holding the Week has its roots in the importance of the role of science and technology in modern societies and the need, therefore, to ensure that the public recognises its significance in our lives. The Week is a framework for special TV programmes, exhibitions, contests, conferences, electronic networking, and other science related activities to promote the public understanding of science and technology. The Week was launched in 1993, on the initiative of the European Commission. Raising public awareness of science and technology is now the subject of a clearly defined action within the Human Potential Programme of the Fifth Framework Programme. Notes [1] This is a joint Press Release by the European Organization for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO). [1] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. Statements by the Directors General of CERN, ESA and ESO Luciano Maiani (CERN) : "Science is a critical resource for mankind and, among natural sciences, physics will continue to play a crucial role, well into the next century. The young people of Europe deserve the best possible physics teaching. An enormous resource of first class teachers, teaching materials and innovative thinking exists in our countries. The "Physics on Stage" project will bring these together to generate a new interest in physics education which will be to the long term benefit of children all over Europe. CERN is delighted to take part in this collaboration between the European Community and the continent's three leading physics research organizations." Antonio Rodotà (ESA) : "Space has become an integral part of every day life. The immense technological development that has led to this achievement has taken place and might be taken for granted. But now is the time to follow up and form the future on this basis, a future that has to made by the youth and has to give its benefits to the youth. The European Space Agency is dedicated to support the youth in its development to become a space generation. Many activities have been done and are taking place, and many more are planned for the future. Teachers and educational institutions and organisations form a key role in this development. ESA is enthusiastic about co-operating with ESO and CERN to create an opportunity to receiving ideas from the educational society and will perform a dedicated effort in finding ways to support the realisation of those ideas." Catherine Cesarsky (ESO) : "Astronomy and Astrophysics are at the very heart of modern physics. As vibrant research disciplines they use the most advanced technology available to humanity to explore Cosmos. It is also a science of extreme conditions - the largest distances, the longest periods of time, the highest temperatures, the strongest electrical and magnetic fields, the highest and lowest densities and the most extreme energies. Cosmos is indeed the greatest physics laboratory. For years, ESO - Europe's Astronomy Organisation - has been engaged in communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About CERN, ESA and ESO CERN , the European Organization for Nuclear Research , has its headquarters in Geneva. At present, its Member States are Austria, Belgium,Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco have observer status. The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, cooperation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO La Silla observatory (Chile) is one of the largest and best-equipped in the world. ESO's Very Large Telescope Array (VLT) is under construction at Cerro Paranal (Chile). When completed in 2001, the VLT will be the largest optical telescope in the world. Useful Physics On Stage addresses "Physics on Stage" webaddress: http://www.estec.esa.nl/outreach/pos International Steering Committee (ISC) Clovis de Matos (Executive Coordinator) ESA/ESTEC European Space Research and Technology Centre Office for Educational Outreach Activities Keplerlaan 1 Postbus 299 NL-2200 AG Noordwijk The Netherlands email: cdematos@estec.esa.nl Telephone: +31-71-565- 5518 Fax: +31-71-565 5590</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010IJSEd..32.2451E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010IJSEd..32.2451E"><span>Undergraduate Biotechnology Students' Views of Science Communication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato</p> <p>2010-12-01</p> <p>Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology sector by providing a pipeline of university graduates entering into the profession, it has been proposed that formal science communication training be introduced at this early stage of career development. The aim of the present study was to examine the views of biotechnology students towards science communication and science communication training. Using an Australian biotechnology degree programme as a case study, 69 undergraduates from all three years of the programme were administered a questionnaire that asked them to rank the importance of 12 components of a biotechnology curriculum, including two science communication items. The results were compared to the responses of 274 students enrolled in other science programmes. Additional questions were provided to the second year biotechnology undergraduates and semi-structured interviews were undertaken with 13 of these students to further examine their views of this area. The results of this study suggest that the biotechnology students surveyed do not value communication with non-scientists nor science communication training. The implications of these findings for the reform of undergraduate biotechnology courses yet to integrate science communication training into their science curriculum are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25833799','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25833799"><span>'The televising of science is a process of television': establishing Horizon, 1962-1967.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boon, Timothy</p> <p>2015-03-01</p> <p>BBC Television's Horizon series, fifty years old on 2 May 2014, despite its significance to the history of the public culture of science, has been little studied. This microhistorical account follows the gestation and early years of the programme, demonstrating how it established a social and cultural account of science. This was a result of televisual factors, notably the determination to follow the format of the successful arts television programme Monitor. It illuminates how the processes of television production, with a handful of key participants - Aubrey Singer, Gerald Leach, Philip Daly, Gordon Rattray Taylor, Ramsay Short, Michael Peacock and Robert Reid - established the format of the programme. This occurred over seventeen months of prior preparation followed by three troubled years of seeking to establish a stable form. This was finally achieved in 1967 when the programme adopted a film documentary approach after extended attempts at making it as a studio-based magazine programme. The story has implications for understanding the social accounts of science that were circulating in the key decade of the 1960s.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1215639S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1215639S"><span>Steps towards equal gender representation: TANDEMplusIDEA - an international mentoring and personal development scheme for female scientists</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaefli, Bettina; Breuer, Elke</p> <p>2010-05-01</p> <p>TANDEMplusIDEA was a European mentoring programme conducted by the technical universities RWTH Aachen, Imperial College London, ETH Zurich and TU Delft between 2007 and 2010 to achieve more gender equality in science. Given the continuing underrepresentation of women in science and technology and the well-known structural and systematic disadvantages in male-dominated scientific cultures, the main goal of this programme was to promote excellent female scientists through a high-level professional and personal development programme. Based on the mentoring concept of the RWTH Aachen, TANDEMplusIDEA was the first mentoring programme for female scientists realized in international cooperation. As a pilot scheme funded by the 6th Framework Programme of the European Commission, the scientific evaluation was an essential part of the programme, in particular in view of the development of a best practice model for international mentoring. The participants of this programme were female scientists at an early stage of their academic career (postdoc or assistant professor) covering a wide range of science disciplines, including geosciences. This transdisciplinarity as well as the international dimension of the programme have been identified by the participants as one of the keys of success of the programme. In particular, the peer-mentoring across discipline boarders proved to have been an invaluable component of the development programme. This presentation will highlight some of the main findings of the scientific evaluation of the programme and focus on some additional personal insights from the participants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030063261','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030063261"><span>Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.</p> <p>2003-01-01</p> <p>Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=fer&pg=4&id=EJ975203','ERIC'); return false;" href="https://eric.ed.gov/?q=fer&pg=4&id=EJ975203"><span>Design of a Model for a Professional Development Programme for a Multidisciplinary Science Subject in the Netherlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Visser, Talitha C.; Coenders, Fer G. M.; Terlouw, Cees; Pieters, Jules M.</p> <p>2012-01-01</p> <p>Schools are increasingly integrating multidisciplinary education into their programmes. The Minister of Education, Culture and Science has introduced a new, integrated science subject in secondary education in the Netherlands, called Nature, Life and Technology (NLT). This research note describes the design of a generic model for a professional…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ979640.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ979640.pdf"><span>Science Teacher Training Programme in Rural Schools: An ODL Lesson from Zimbabwe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mhishi, Misheck; Bhukuvhani, Crispen Erinos; Sana, Abel Farikai</p> <p>2012-01-01</p> <p>This case study looked at 76 randomly selected preservice science teachers from Mbire and Guruve districts who were learning at the Mushumbi Centre in Zimbabwe and assessed their motivations for enrolling under the Bindura University of Science Education (BUSE)'s Virtual and Open Distance Learning (VODL) programme. It also looked at the challenges…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=employment+AND+meets+AND+wants+AND+needs&id=EJ743622','ERIC'); return false;" href="https://eric.ed.gov/?q=employment+AND+meets+AND+wants+AND+needs&id=EJ743622"><span>Science-Based Business Studies at Leiden University</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Jousma, Harmen</p> <p>2006-01-01</p> <p>The Science Based Business (SBB) programme was established at Leiden University in 2001 in an effort to counter the unidirectional professionalism of students in science studies--not explicitly to meet the needs of business and industry. Nor is SBB a stand-alone Master's programme like the MS/MBA or the PSM in the USA: rather, it is designed to be…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=college+AND+mathematics+AND+syllabus&pg=4&id=EJ848657','ERIC'); return false;" href="https://eric.ed.gov/?q=college+AND+mathematics+AND+syllabus&pg=4&id=EJ848657"><span>Studying Computer Science in a Multidisciplinary Degree Programme: Freshman Students' Orientation, Knowledge, and Background</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kautz, Karlheinz; Kofoed, Uffe</p> <p>2004-01-01</p> <p>Teachers at universities are facing an increasing disparity in students' prior IT knowledge and, at the same time, experience a growing disengagement of the students with regard to involvement in study activities. As computer science teachers in a joint programme in computer science and business administration, we made a number of similar…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1128148.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1128148.pdf"><span>Is There "Space" for International Baccalaureate? A Case Study Exploring Space and the Adoption of the IB Middle Year Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Monreal, Timothy</p> <p>2016-01-01</p> <p>Henri Lefebvre (1991) wrote, "[representational] space is alive: it speaks" (p. 42). This article explores how we might "listen" to space in education by examining the role of space in one school's decision to adopt the International Baccalaureate's Middle Years Programme [IB MYP]. It builds upon recent scholarship that applies…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyEd..53a5020S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyEd..53a5020S"><span>Original Research By Young Twinkle Students (ORBYTS): when can students start performing original research?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sousa-Silva, Clara; McKemmish, Laura K.; Chubb, Katy L.; Gorman, Maire N.; Baker, Jack S.; Barton, Emma J.; Rivlin, Tom; Tennyson, Jonathan</p> <p>2018-01-01</p> <p>Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students feeling engaged in modern science and the scientific method. As part of the Twinkle Space Mission’s educational programme, EduTwinkle, students between the ages of 15 and 18 have been performing original research associated with the exploration of space since January 2016. The student groups have each been led by junior researchers—PhD and post-doctoral scientists—who themselves benefit substantially from the opportunity to supervise and manage a research project. This research aims to meet a standard for publication in peer-reviewed journals. At present the research of two ORBYTS teams have been published, one in the Astrophysical Journal Supplement Series and another in JQSRT; we expect more papers to follow. Here we outline the necessary steps for a productive scientific collaboration with school children, generalising from the successes and downfalls of the pilot ORBYTS projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23111309S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23111309S"><span>Original Research By Young Twinkle Students(ORBYTS): When can students start performingoriginal research?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sousa-Silva, Clara; ORBYTS, Twinkle Space Mission, ExoMol</p> <p>2018-01-01</p> <p>Involving students in state-of-the-art research from an early age eliminates the idea that science is only for the scientists and empowers young people to explore STEM (Science, Technology, Engineering and Maths) subjects. It is also a great opportunity to dispel harmful stereotypes about who is suitable for STEM careers, while leaving students feeling engaged in modern science and the scientific method. As part of the Twinkle Space Mission’s educational programme, EduTwinkle, students between the ages of 15 and 18 have been performing original research associated with the exploration of space since January 2016. The student groups have each been led by junior researchers - PhD student and post-doctoral scientists - who themselves benefit substantially from the opportunity to supervise and manage a research project. This research aims to meet a standard for publication in peer-reviewed journals. At present the research of one ORBYTS team has been published in the Astrophysical Journal Supplement Series and another submitted to JQSRT; we expect more papers to follow. Here we outline the necessary steps for a productive scientific collaboration with school children, generalising from the successes and downfalls of the pilot ORBYTS projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH53A..02Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH53A..02Z"><span>Solar Orbiter Status Update</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zouganelis, Y.; Mueller, D.; St Cyr, O. C.; Gilbert, H. R.</p> <p>2016-12-01</p> <p>Solar Orbiter, the first mission of ESA's Cosmic Vision 2015-2025 programme, promises to deliver groundbreaking science with previously unavailable observational capabilities provided by a suite of in-situ and remote-sensing instruments in a unique orbit. The mission will address the central question of heliophysics: How does the Sun create and control the heliosphere? The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. In this talk, we highlight the scientific goals of Solar Orbiter, address the synergy between this joint ESA/NASA mission and other new space and ground-based observatories, and present the mission's development status.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192627','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192627"><span>Safari Science: Assessing the reliability of citizen science data for wildlife surveys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Steger, Cara; Butt, Bilal; Hooten, Mevin B.</p> <p>2017-01-01</p> <p>Protected areas are the cornerstone of global conservation, yet financial support for basic monitoring infrastructure is lacking in 60% of them. Citizen science holds potential to address these shortcomings in wildlife monitoring, particularly for resource-limited conservation initiatives in developing countries – if we can account for the reliability of data produced by volunteer citizen scientists (VCS).This study tests the reliability of VCS data vs. data produced by trained ecologists, presenting a hierarchical framework for integrating diverse datasets to assess extra variability from VCS data.Our results show that while VCS data are likely to be overdispersed for our system, the overdispersion varies widely by species. We contend that citizen science methods, within the context of East African drylands, may be more appropriate for species with large body sizes, which are relatively rare, or those that form small herds. VCS perceptions of the charisma of a species may also influence their enthusiasm for recording it.Tailored programme design (such as incentives for VCS) may mitigate the biases in citizen science data and improve overall participation. However, the cost of designing and implementing high-quality citizen science programmes may be prohibitive for the small protected areas that would most benefit from these approaches.Synthesis and applications. As citizen science methods continue to gain momentum, it is critical that managers remain cautious in their implementation of these programmes while working to ensure methods match data purpose. Context-specific tests of citizen science data quality can improve programme implementation, and separate data models should be used when volunteer citizen scientists' variability differs from trained ecologists' data. Partnerships across protected areas and between protected areas and other conservation institutions could help to cover the costs of citizen science programme design and implementation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.271a1001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.271a1001A"><span>FOREWORD Foreword</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Appourchaux, Thierry</p> <p>2011-01-01</p> <p>Volume 271 (2011) of the Journal of Physics: Conference Series provides a record of the invited and contributed talks, and of the posters presented at the GONG2010-SoHO24 conference entitled 'A new era of seismology of the Sun and solar-like stars'. The conference was held from 27 June 2010 to 2 July 2010 in Aix-en-Provence, France. More than 120 scientists from all over the world attended the conference. I would like to express my gratitude for the the financial support from the following organisations: Université Paris-Sud; the Centre National d'Etudes Spatiales (CNES); the Programme National des Relations Soleil-Terre (PNST) and the Programme National de Physique Stellaire (PNPS) (both programmes under the umbrella of the Institut National des Sciences de l'Univers, INSU); INSU of the Centre National de la Recherche Scientifique (CNRS); the SoHO project of the European Space Agency (ESA), and the Science Programme of ESA; the Global Oscillations Network Group (GONG); and finally the European Aeronautic Defence and Space Company (EADS). The Scientific Organizing Committee comprised Thierry Appourchaux (chairman, Institut d'Astrophysique Spatiale, Orsay, France), Frank Hill (co-chairman, GONG / National Solar Observatory, Tucson, Arizona, United States), Annie Baglin (Observatoire de Paris-Meudon, France), William Chaplin (University of Birmingham, United Kingdom), Jørgen Christensen-Dalsgaard (Aarhus Universitet, Denmark), Thierry Corbard (Observatoire de la Côte d'Azur, Nice, France), Bernhard Fleck (European Space Agency), Laurent Gizon (Max-Planck-Institut für Sonnensystemforschung, Lindau, Germany), Travis Metcalfe (National Center for Atmospheric Research, Boulder, Colorado, United States), Michael Thompson (Sheffied University, United Kingdom; High Altitude Observatory, Boulder, Colorado, United States) and Jesper Schou (Stanford University, California, United States). The Editorial Committee of these proceedings was composed of Thierry Appourchaux (chairman), Annie Baglin, William Chaplin, Jørgen Christensen-Dalsgaard, Laurent Gizon, Michael Thompson, Takashi Sekii (National Astronomical Observatory of Japan, Tokyo) and John Leibacher (IAS, Orsay, France; GONG / NSO, Tucson, Arizona, United States). This volume consists of 86 articles organised in sections reflecting the scientific programme of the conference: 012001-012024 Local helioseismology 012025-012030 Solar diameter, irradiance and activity 012031-012044 Solar and stellar modelling 012045-012056 Low degree stellar seismology 012057-012063 First results from space missions 012064-012082 Convection, dynamo and flows 012083-012086 Prospective All papers are freely accessible on the internet, in colour, at http://iopscience.iop.org/1742-6596/271/1, and an interactive picture of the conference is available in the attached PDF. I am also grateful to the Local Organizing Committee for making this conference a success: Catherine Cougrand (secretary), Stéphane Caminade (web designer), Delphine Prival (administration) and Jean-Paul Rozet (logistics). I could not have done it without your help! Last but not least, let me also thank the official photographer of the conference, Pierre Assus, for producing excellent photographs, including the group photo. Please feel free to send me an e-mail at Thierry.Appourchaux@ias.u-psud.fr if you would like copies of these pictures. Thierry Appourchaux Editor Orsay, France 24 December 2010 Conference photograph IAS logo  Université Paris-Sud logo  CNRS logo  SOHO logo ESA logo  NASA logo  Gong logo  EADS ASTRIUM logo</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003921','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003921"><span>ARC Cell Science Validation (CS-V) Payload Overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gilkerson, Nikita</p> <p>2017-01-01</p> <p>Automated cell biology system for laboratory and International Space Station (ISS) National Laboratory research. Enhanced cell culture platform that provides undisturbed culture maintenance, including feedback temperature control, medical grade gas supply, perfusion nutrient delivery and removal of waste, and automated experiment manipulations. Programmable manipulations include: media feeds change out, injections, fraction collections, fixation, flow rate, and temperature modification within a one-piece sterile barrier flow path. Cassette provides 3 levels of containment and allows Crew access to the bioculture chamber and flow path assembly for experiment initiation, refurbishment, or sample retrieval and preservation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=control+AND+group&pg=4&id=EJ1181297','ERIC'); return false;" href="https://eric.ed.gov/?q=control+AND+group&pg=4&id=EJ1181297"><span>An Experimental Study of a Museum-Based, Science PD Programme's Impact on Teachers and Their Students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Aaron Price, C.; Chiu, A.</p> <p>2018-01-01</p> <p>We present results of an experimental study of an urban, museum-based science teacher PD programme. A total of 125 teachers and 1676 of their students in grades 4-8 were tested at the beginning and end of the school year in which the PD programme took place. Teachers and students were assessed on subject content knowledge and attitudes towards…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29242195','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29242195"><span>Key Programme Science lessons from an HIV prevention 'Learning Site' for sex workers in Mombasa, Kenya.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McClarty, Leigh M; Bhattacharjee, Parinita; Isac, Shajy; Emmanuel, Faran; Kioko, Japheth; Njiraini, Margaret; Gichangi, Peter; Okoth, Clifford Duncan; Musimbi-Mbole, Janet; Blanchard, James F; Moses, Stephen; Muysyoki, Helgar; Becker, Marissa L</p> <p>2017-12-14</p> <p>In 2013, Kenya's National AIDS and STI Control Programme established a Learning Site (LS) in Mombasa County to support and strengthen capacity for HIV prevention programming within organisations working with sex workers. A defining feature of LS was the use of a Programme Science approach throughout its development and implementation. We provide an overview of the key components of LS, present findings from 23 months of programme monitoring data, and highlight key Programme Science lessons from its implementation and monitoring. Routine monitoring data collected from September 2013 through July 2015 are presented. Individual-level service utilisation data were collected monthly and indicators of interest were analysed over time to illustrate trends in enrolment, programme coverage and service utilisation among sex workers in Mombasa County. Over the monitoring period, outreach programme enrolment occurred rapidly; condom distribution targets were met consistently; rates of STI screening remained high and diagnoses declined; and reporting of and response to violent incidents increased. At the same time, enrolment in LS clinics was relatively low among female sex workers, and HIV testing at LS was low among both female and male sex workers. Lessons learnt from operationalising the Programme Science framework through the Mombasa LS can inform the development and implementation of similar LS in different geographical and epidemiological contexts. Importantly, meaningful involvement of sex workers in the design, implementation and monitoring processes ensures that overall programme performance is optimised in the context of local, 'on-the-ground' realities. Additionally, learnings from LS highlight the importance of introducing enhanced monitoring and evaluations systems into complex programmes to better understand and explain programme dynamics over time. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2858A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2858A"><span>Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>André, Nicolas; Grande, Manuel</p> <p>2016-04-01</p> <p>Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RScEd.tmp...22K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RScEd.tmp...22K"><span>Early-Years Teachers' Professional Upgrading in Science: a Long-Term Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kallery, Maria</p> <p>2017-04-01</p> <p>In this paper, we present a professional development/upgrading programme in science for early-years teachers and investigate its impact on the teachers' competencies in relation to their knowledge and teaching of science. The basic idea of the programme was to motivate the teachers by making them members of an action research group aimed at developing and implementing curriculum activities to which they would contribute and thus meaningfully engaging them in their own learning. The programme used a `collaborative partnership' model for the development of the activities. In this model, the collaborative notion is defined as an act of `shared creation': partners share a goal and members bring their expertise to the partnership. Within this context, the partners were a researcher in science education with a background in physics, who also served as a facilitator, and six in-service early-years teachers with a background in early-years pedagogy and developmental sciences, who had many years of experience (classroom experts). These teachers participated in the programme as co-designers, but were involved to a significantly lesser degree than the researcher. The programme procedures comprised group work and individual teachers' class work. Data sources included teachers' essays, field-notes, lesson recordings and group-work records. Data were qualitatively analysed. The main results indicate improvement of teachers' `transformed' knowledge of the subject matter, development/improvement of knowledge of instructional strategies, including factors related to quality of implementation of the activities, knowledge of the pupils and improvement of the teachers' efficacy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1715783C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1715783C"><span>Lunar Exploration and Science in ESA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard</p> <p>2015-04-01</p> <p>ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the Russian led science payload, focusing on developing an characterising the resource opportunities offered at the lunar surface. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. In the frame of a broader future international programme under discussion through the International Space Exploration Coordination Group (ISECG) future missions are under investigation that would provide access to the lunar surface through international cooperation and human-robotic partnerships.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=economy+AND+science&pg=7&id=EJ1121164','ERIC'); return false;" href="https://eric.ed.gov/?q=economy+AND+science&pg=7&id=EJ1121164"><span>Education in the New Era: The Dissemination of Education for Sustainable Development in the Political Science Programmes at Notre Dame University--Louaize</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Labaki, Georges</p> <p>2012-01-01</p> <p>Sustainable development is continuous process of change requiring painful choices resting on political will. This paper examines the developments needed to engage with sustainable development in the field of political science through the following: the reform in political science programmes to cope with the need for sustainable development in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=teaching+AND+Science+AND+primary&pg=2&id=EJ1087981','ERIC'); return false;" href="https://eric.ed.gov/?q=teaching+AND+Science+AND+primary&pg=2&id=EJ1087981"><span>Changing Practice: An Evaluation of the Impact of a Nature of Science Inquiry-Based Professional Development Programme on Primary Teachers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Murphy, Clíona; Smith, Greg; Varley, Janet; Razi, Özge</p> <p>2015-01-01</p> <p>This study investigates how a two-year continuing professional development (CPD) programme, with an emphasis on teaching about science through inquiry, impacted the experiences of, approaches to and attitudes towards teaching science of 17 primary teachers in Dublin. Data sources included interview, questionnaire and reflective journal strategies.…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=motivation+AND+labour&pg=2&id=EJ1075015','ERIC'); return false;" href="https://eric.ed.gov/?q=motivation+AND+labour&pg=2&id=EJ1075015"><span>"Discover, Understand, Implement, and Transfer": Effectiveness of an Intervention Programme to Motivate Students for Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schütte, Kerstin; Köller, Olaf</p> <p>2015-01-01</p> <p>Considerable research has focused on how best to satisfy modern societies' needs for skilled labour in the field of science. The present study evaluated an intervention programme designed to increase secondary school students' motivation to pursue a science career. Students from 3 schools of the highest educational track participated for up to 2…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=geber&id=EJ998097','ERIC'); return false;" href="https://eric.ed.gov/?q=geber&id=EJ998097"><span>Can Low-Cost Support Programmes with Coaching Accelerate Doctoral Completion in Health Science Faculty Academics?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Geber, Hilary; Bentley, Alison</p> <p>2012-01-01</p> <p>Career development for full-time Health Sciences academics through to doctoral studies is a monumental task. Many academics have difficulty completing their studies in the minimum time as well as publishing after obtaining their degree. As this problem is particularly acute in the Health Sciences, the PhD Acceleration Programme in Health Sciences…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=identify+AND+tree&pg=2&id=EJ1038055','ERIC'); return false;" href="https://eric.ed.gov/?q=identify+AND+tree&pg=2&id=EJ1038055"><span>Using Decision Tree Analysis to Understand Foundation Science Student Performance. Insight Gained at One South African University</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kirby, Nicola Frances; Dempster, Edith Roslyn</p> <p>2014-01-01</p> <p>The Foundation Programme of the Centre for Science Access at the University of KwaZulu-Natal, South Africa provides access to tertiary science studies to educationally disadvantaged students who do not meet formal faculty entrance requirements. The low number of students proceeding from the programme into mainstream is of concern, particularly…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=cognitive+AND+science&pg=7&id=EJ1155012','ERIC'); return false;" href="https://eric.ed.gov/?q=cognitive+AND+science&pg=7&id=EJ1155012"><span>The Use of CASE to Bridge the Transition between Primary and Secondary School Science in Ireland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>McCormack, Lorraine</p> <p>2016-01-01</p> <p>This article describes how the Cognitive Acceleration through Science Education (CASE) programme was implemented in the final year of primary school and the first year of secondary school in a number of schools in Ireland. The original CASE programme, pioneered in the 1980s, proved successful in its aim to develop the science-reasoning abilities…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhyW...29d..12K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhyW...29d..12K"><span>NSF announces diversity programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kruesi, Liz</p> <p>2016-04-01</p> <p>The US National Science Foundation (NSF) has initiated a new funding programme that will create schemes to increase diversity in science, technology, engineering and mathematics (STEM). The initiative - Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (INCLUDES) - aims to increase the participation of women, those with a low socioeconomic status, people with disabilities and those from minority racial backgrounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPA32A..02V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPA32A..02V"><span>Integrated Science and Logistical Planning to Support Big Questions in Antarctic Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaughan, D. G.; Stockings, T. M.</p> <p>2015-12-01</p> <p>Each year, British Antarctic Survey (BAS) supports an extensive programme of science at five Antarctic and sub-Antarctic stations, ranging from the tiny Bird Island Research Station at 54°S in the South Atlantic, to the massive, and fully re-locatable, Halley Research Station on Brunt Ice Shelf at 75°S. The BAS logistics hub, Rothera Research Station on the Antarctic Peninsula supports deployment of deep-field and airborne field campaigns through much of the Antarctic continent, and an innovative new UK polar research vessel is under design, and planned to enter service in the Southern Ocean in 2019. BAS's core science programme covering all aspects of physical, biological and geological science is delivered by our own science teams, but every year many other UK scientists and overseas collaborators also access BAS's Antarctic logistics to support their own programmes. As an integrated science and logistics provider, BAS is continuously reviewing its capabilities and operational procedures to ensure that the future long-term requirements of science are optimally supported. Current trends are towards providing the capacity for heavier remote operations and larger-scale field camps, increasing use of autonomous ocean and airborne platforms, and increasing opportunities to provide turnkey solutions for low-cost experimental deployments. This talk will review of expected trends in Antarctic science and the opportunities to conduct science in Antarctica. It will outline the anticipated logistic developments required to support future stakeholder-led and strategically-directed science programmes, and the long-term ambitions of our science communities indentified in several recent horizon-scanning activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21889111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21889111"><span>Are UK undergraduate Forensic Science degrees fit for purpose?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Welsh, Charles; Hannis, Marc</p> <p>2011-09-01</p> <p>In October 2009 Skills for Justice published the social research paper 'Fit for purpose?: Research into the provision of Forensic Science degree programmes in UK Higher Education Institutions.' The research engaged employers representing 95% of UK Forensic Science providers and 79% of UK universities offering Forensic Science or Crime Scene degree programmes. In addition to this, the research collected the views of 430 students studying these degrees. In 2008 there were approximately 9000 people working in the Forensic Science sector in the UK. The research found that the numbers of students studying Forensic Science or Crime Scene degrees in the UK have more than doubled since 2002-03, from 2191 in to 5664 in 2007-08. Over the same period there were twice as many females as males studying for these degrees. The research concluded that Forensic Science degree programmes offered by UK universities were of a good quality and they provided the student with a positive learning experience but the content was not relevant for Forensic Science employers. This echoed similar research by the former Government Department for Innovation, Universities and Skills on graduates from wider science, technology, engineering and mathematics degree programmes. The research also found that 75% of students studying Forensic Science or Crime Scene degrees expected to have a career in the Forensic Science sector, meaning that ensuring these courses are relevant for employers is a key challenge for universities. This paper reflects on the original research and discusses the implications in light of recent government policy. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26790620','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26790620"><span>Who is excluded and how? An analysis of community spaces for maternal and child health in Pakistan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aziz, Ayesha; Khan, Fazal Ali; Wood, Geof</p> <p>2015-11-25</p> <p>The maternal, newborn, and child health (MNCH) indicators of Pakistan depict the deplorable state of the poor and rural women and children. Many MNCH programmes stress the need to engage the poor in community spaces. However, caste and class based hierarchies and gendered social norms exclude the lower caste poor women from accessing healthcare. To find pathways for improving the lives of the excluded, this study considers the social system as a whole and describes the mechanisms of exclusion in the externally created formal community spaces and their interaction with the indigenous informal spaces. The study used a qualitative case study design to identify the formal and informal community spaces in three purposively selected villages of Thatta, Rajanpur, and Ghizer districts. Community perspectives were gathered by conducting 37 focus group discussions, based on participatory rural appraisal tools, with separate groups of women and men. Relevant documents of six MNCH programmes were reviewed and 25 key informant interviews were conducted with programme staff. We found that lower caste poor tenants and nomadic peasants were excluded from formal and informal spaces. The formal community spaces formed by MNCH programmes across Pakistan included fixed, small transitory, large transitory, and emerging institutional spaces. Programme guidelines mandated selection of community notables in groups/committees and used criteria that prevented registration of nomadic groups as eligible clients. The selection criteria and adverse attitude of healthcare workers, along with inadequacy of programmatic resources to sustain outreach activities also contributed to exclusion of the lower caste poor women from formal spaces. The informal community spaces were mostly gender segregated. Infrequently, MNCH information trickled down from the better-off to the lower caste poor women through transitory interactions in the informal domestic sphere. A revision of the purpose and implementation mechanisms for MNCH programmes is mandated to transform formal health spaces into sites of equitable healthcare.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSEd...27...30C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSEd...27...30C"><span>An evaluation of a professional learning network for computer science teachers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cutts, Quintin; Robertson, Judy; Donaldson, Peter; O'Donnell, Laurie</p> <p>2017-01-01</p> <p>This paper describes and evaluates aspects of a professional development programme for existing CS teachers in secondary schools (PLAN C) which was designed to support teachers at a time of substantial curricular change. The paper's particular focus is on the formation of a teacher professional development network across several hundred teachers and a wide geographical area. Evidence from a series of observations and teacher surveys over a two-year period is analysed with respect to the project's programme theory in order to illustrate not only whether it worked as intended, by why. Results indicate that the PLAN C design has been successful in increasing teachers' professional confidence and appears to have catalysed powerful change in attitudes to learning. Presentation of challenging pedagogical content knowledge and conceptual frameworks, high-quality teacher-led professional dialogue, along with the space for reflection and classroom trials, triggered examination of the teachers' own current practices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015HiA....16..544P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015HiA....16..544P"><span>Status of astronomy in Rwanda and volunteer work at Kigali Institute of Education (KIE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pović, M.; Nkundabakura, P.; Uwamahoro, J.</p> <p>2015-03-01</p> <p>Until 2009, astronomy was undeveloped in Rwanda, without astronomy courses at universities and schools, astronomical facilities, or any outreach programmes. With the international year of astronomy in 2009, Dr. Pheneas Nkundabakura and Dr. Jean Uwamahoro from the KIE Maths-Physics department, both graduates from the South African NASSP Programme (http://www.star.ac.za), started a program of implementing the astronomical knowledge at schools and universities. During the same year 2009, IAU donated 100 galileoscopes for the secondary schools, and several astronomy workshops were organised for the teachers. IAU donated also 5 laptops to help students and lecturers to learn and use astronomy software. With this, KIE students have now a possibility to choose astronomy/space science for their undergraduate final year research projects. Moreover, there is an ongoing effort to look for further collaboration towards establishing the first astronomical facility (observatory) in the country.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27694600','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27694600"><span>Doctors in space (ships): biomedical uncertainties and medical authority in imagined futures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Henderson, Lesley; Carter, Simon</p> <p>2016-12-01</p> <p>There has been considerable interest in images of medicine in popular science fiction and in representations of doctors in television fiction. Surprisingly little attention has been paid to doctors administering space medicine in science fiction. This article redresses this gap. We analyse the evolving figure of 'the doctor' in different popular science fiction television series. Building upon debates within Medical Sociology, Cultural Studies and Media Studies we argue that the figure of 'the doctor' is discursively deployed to act as the moral compass at the centre of the programme narrative. Our analysis highlights that the qualities, norms and ethics represented by doctors in space (ships) are intertwined with issues of gender equality, speciesism and posthuman ethics. We explore the signifying practices and political articulations that are played out through these cultural imaginaries. For example, the ways in which 'the simple country doctor' is deployed to help establish hegemonic formations concerning potentially destabilising technoscientific futures involving alternative sexualities, or military dystopia. Doctors mostly function to provide the ethical point of narrative stability within a world in flux, referencing a nostalgia for the traditional, attentive, humanistic family physician. The science fiction doctor facilitates the personalisation of technological change and thus becomes a useful conduit through which societal fears and anxieties concerning medicine, bioethics and morality in a 'post 9/11' world can be expressed and explored. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27023321','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27023321"><span>The Introduction of "Safety Science" into an Undergraduate Nursing Programme at a Large University in the United Kingdom.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>White, Nick; Clark, Deborah; Lewis, Robin; Robson, Wayne</p> <p>2016-04-13</p> <p>Implementing safety science {a term adopted by the authors which incorporates both patient safety and human factors (Sherwood, G. (2011). Integrating quality and safety science in nursing education and practice. Journal of Research in Nursing, 16(3), 226-240. doi: 10.1177/1744987111400960)} into healthcare programmes is a major challenge facing healthcare educators worldwide (National Advisory Group on the Safety of Patients in England, 2013; World Health Organisation, 2009). Patient safety concerns relating to human factors have been well-documented over the years, and the root cause(s) of as many as 65-80 % of these events are linked to human error (Dunn et al., 2007; Reason, 2005). This paper will describe how safety science education was embedded into a pre-registration nursing programme at a large UK university. The authors argue that the processes described in this paper, may be successfully applied to other pre-registration healthcare programmes in addition to nursing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJSEd..36.2825K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJSEd..36.2825K"><span>Using Decision Tree Analysis to Understand Foundation Science Student Performance. Insight Gained at One South African University</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirby, Nicola Frances; Dempster, Edith Roslyn</p> <p>2014-11-01</p> <p>The Foundation Programme of the Centre for Science Access at the University of KwaZulu-Natal, South Africa provides access to tertiary science studies to educationally disadvantaged students who do not meet formal faculty entrance requirements. The low number of students proceeding from the programme into mainstream is of concern, particularly given the national imperative to increase participation and levels of performance in tertiary-level science. An attempt was made to understand foundation student performance in a campus of this university, with the view to identifying challenges and opportunities for remediation in the curriculum and processes of selection into the programme. A classification and regression tree analysis was used to identify which variables best described student performance. The explanatory variables included biographical and school-history data, performance in selection tests, and socio-economic data pertaining to their year in the programme. The results illustrate the prognostic reliability of the model used to select students, raise concerns about the inefficiency of school performance indicators as a measure of students' academic potential in the Foundation Programme, and highlight the importance of accommodation arrangements and financial support for student success in their access year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Evaporation&pg=6&id=EJ682143','ERIC'); return false;" href="https://eric.ed.gov/?q=Evaporation&pg=6&id=EJ682143"><span>Primary Teachers' Changing Attitudes and Cognition during a Two-Year Science In-Service Programme and Their Effect on Pupils. Research Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Jarvis, Tina; Pell, Anthony</p> <p>2004-01-01</p> <p>Changes in 70 teachers' confidence, attitudes and science understanding were tested before and after a major in-service programme. Attitudes were assessed using a 49-item Likert-scale test that probed attitudes to practical science teaching and in-service training. Multi-choice and open-ended questions measured understanding of electricity;…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JBIS...55..188S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JBIS...55..188S"><span>Live from the Mars Hotel - Space Locations and the Film Industry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sivier, D.</p> <p></p> <p>Space exploration is the subject of intense media interest in a way unparalleled in any other branch of science. It is the subject of countless films and television programmes, both fact and fiction, many using original footage from space. Astronauts have broadcast live from the Moon, and TV journalists have travelled to Mir, similar to the use of exotic terrestrial locations for filming by professional film crews. Although prohibitively expensive at the moment, the next generation of spacecraft may lower launch costs to an affordable level, so that space locations become competitive against computer graphics and model work. The construction of orbital hotels will create the demand for human interest stories similar to those set in holiday locations like the south of France and Italy made just after the Second World War, at a time when mass tourism on foreign holidays was just beginning, aided by the development of large transport aircraft able to cater to the demand for mass flight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000011927','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000011927"><span>BioSIGHT: Interactive Visualization Modules for Science Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wong, Wee Ling</p> <p>1998-01-01</p> <p>Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science, Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students. Our collaborators include TERC, a research and education organization with extensive k-12 math and science curricula development from Cambridge, MA.; SRI International of Menlo Park, CA.; teachers and students from local area high schools (Newbury Park High School, USC's Family of Five schools, Chadwick School, and Pasadena Polytechnic High School).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011HESSD...8.9843B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011HESSD...8.9843B"><span>Promoting interdisciplinary education - the Vienna Doctoral Programme on Water Resource Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blöschl, G.; Carr, G.; Bucher, C.; Farnleitner, A. H.; Rechberger, H.; Wagner, W.; Zessner, M.</p> <p>2011-11-01</p> <p>The Vienna Doctoral Programme on Water Resource Systems (DK-WRS) is a programme that aims to educate students in interdisciplinary water science through cutting edge research at an international level. It is funded by the Austrian Science Fund and designed to run over a period of 12 yr during which 80 doctoral students are anticipated to graduate. This paper reports on our experiences of setting up and implementing the Programme. We identify three challenges: integrating the disciplines, maintaining depth in an interdisciplinary programme, and teaching subjects remote to each student's core expertise. To address these challenges we adopted a number of approaches. We use three levels of instruments to foster integration across the disciplines: joint groups (e.g. a joint study programme), joint science questions (e.g. developed in annual symposia), and joint study sites. To maintain depth we apply a system of quality control including regular feedback sessions, theses by journal publications and international study exchange. For simultaneously teaching students from civil and environmental engineering, biology, geology, chemistry, mathematics we use visually explicit teaching, learning by doing, extra mentoring and by cross relating associated subjects. Our initial assessment of the Programme shows some very positive outcomes. Joint science questions formed between students from various disciplines indicate integration is being achieved. The number of successful publications in top journals suggests that depth is maintained. Positive feedback from the students on the variety and clarity of the courses indicates the teaching strategy is working well. Our experiences have shown that implementing and running an interdisciplinary doctoral programme has its challenges and is demanding in terms of time and human resources but seeing interactions progress and watching people grow and develop their way of thinking in an interdisciplinary environment is a valuable reward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012HESS...16..457B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012HESS...16..457B"><span>Promoting interdisciplinary education - the Vienna Doctoral Programme on Water Resource Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blöschl, G.; Carr, G.; Bucher, C.; Farnleitner, A. H.; Rechberger, H.; Wagner, W.; Zessner, M.</p> <p>2012-02-01</p> <p>The Vienna Doctoral Programme on Water Resource Systems (DK-WRS) is a programme that aims to educate students in interdisciplinary water science through cutting edge research at an international level. It is funded by the Austrian Science Fund and designed to run over a period of 12 yr during which 80 doctoral students are anticipated to graduate. This paper reports on our experiences of setting up and implementing the Programme. We identify three challenges: integrating the disciplines, maintaining depth in an interdisciplinary programme, and teaching subjects remote to each student's core expertise. To address these challenges we adopt a number of approaches. We use three levels of instruments to foster integration across the disciplines: joint groups (e.g. a joint study programme), joint science questions (e.g. developed in annual symposia), and joint study sites. To maintain depth we apply a system of quality control including regular feedback sessions, theses by journal publications and international study exchange. For simultaneously teaching students from civil and environmental engineering, biology, geology, chemistry, mathematics we use visually explicit teaching, learning by doing, extra mentoring and by cross relating associated subjects. Our initial assessment of the Programme shows some very positive outcomes. Joint science questions formed between students from various disciplines indicate integration is being achieved. The number of successful publications in top journals suggests that depth is maintained. Positive feedback from the students on the variety and clarity of the courses indicates the teaching strategy is working well. Our experiences have shown that implementing and running an interdisciplinary doctoral programme has its challenges and is demanding in terms of time and human resources but seeing interactions progress and watching people grow and develop their way of thinking in an interdisciplinary environment is a valuable reward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112413J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112413J"><span>The EuroDIVERSITY Programme: Challenges of Biodiversity Science in Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jonckheere, I.</p> <p>2009-04-01</p> <p>In close cooperation with its Member Organisations, the European Science Foundation (ESF) has launched since late 2003 a series of European Collaborative Research (EUROCORES) Programmes. Their aim is to enable researchers in different European countries to develop cooperation and scientific synergy in areas where European scale and scope are required in a global context. The EUROCORES instrument represents the first large scale attempt of national research (funding) agencies to act together against fragmentation, asynchronicity and duplication of research (funding) within Europe. Although covering all scientific fields, there are presently 13 EUROCORES Programmes dealing with cutting edge science in the fields of Earth, Climate and Environmental Sciences. The aim of the EuroDIVERSITY Programme is to support the emergence of an integrated biodiversity science based on an understanding of fundamental ecological and social processes that drive biodiversity changes and their impacts on ecosystem functioning and society. Ecological systems across the globe are being threatened or transformed at unprecedented rates from local to global scales due to the ever-increasing human domination of natural ecosystems. In particular, massive biodiversity changes are currently taking place, and this trend is expected to continue over the coming decades, driven by the increasing extension and globalisation of human affairs. The EuroDIVERSITY Programme meets the research need triggered by the increasing human footprint worldwide with a focus on generalisations across particular systems and on the generation and validation of theory relevant to experimental and empirical data. The EURODIVERSITY Programme tries to bridge the gaps between the natural and social sciences, between research work on terrestrial, freshwater and marine ecosystems, and between research work on plants, animals and micro-organisms. The Programme was launched in April 2006 and includes 10 international, multidisciplinary collaborative research projects, which are expected to contribute to this goal by initiating or strengthening major collaborative research efforts. Some projects are dealing primarily with microbial diversity (COMIX, METHECO, MiCROSYSTEMS), others try to investigate the biogeochemistry in grassland and forest ecosystems (BEGIN, BioCycle), the landscape and community ecology of biodiversity changes (ASSEMBLE, AGRIPOPES, EcoTRADE), and others focus on the diversity in freshwater (BIOPOOL, MOLARCH). In 2009, the EuroDIVERSITY Programme will integrate the different European research teams involved with collaborative field work campaigns over Europe, international workshops and conferences, as well as joint peer-review publications. For more information about the Programme and its activities, please check the Programme website: www.esf.org/eurodiversity</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960022574&hterms=display+rules&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddisplay%2Brules','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960022574&hterms=display+rules&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddisplay%2Brules"><span>Application of advanced computing techniques to the analysis and display of space science measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Klumpar, D. M.; Lapolla, M. V.; Horblit, B.</p> <p>1995-01-01</p> <p>A prototype system has been developed to aid the experimental space scientist in the display and analysis of spaceborne data acquired from direct measurement sensors in orbit. We explored the implementation of a rule-based environment for semi-automatic generation of visualizations that assist the domain scientist in exploring one's data. The goal has been to enable rapid generation of visualizations which enhance the scientist's ability to thoroughly mine his data. Transferring the task of visualization generation from the human programmer to the computer produced a rapid prototyping environment for visualizations. The visualization and analysis environment has been tested against a set of data obtained from the Hot Plasma Composition Experiment on the AMPTE/CCE satellite creating new visualizations which provided new insight into the data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1071264.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1071264.pdf"><span>Statistics Anxiety among Postgraduate Students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Koh, Denise; Zawi, Mohd Khairi</p> <p>2014-01-01</p> <p>Most postgraduate programmes, that have research components, require students to take at least one course of research statistics. Not all postgraduate programmes are science based, there are a significant number of postgraduate students who are from the social sciences that will be taking statistics courses, as they try to complete their…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Infrastructure+AND+code&pg=5&id=ED291380','ERIC'); return false;" href="https://eric.ed.gov/?q=Infrastructure+AND+code&pg=5&id=ED291380"><span>Awareness List of Principal Documents and Publications of the General Information Programme.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lermyte, Catherine; Philippon, Brigitte</p> <p></p> <p>This bibliography lists and provides abstracts for the principal documents and publications of the General Information Programme and UNISIST, including guidelines, studies, manuals, directories, and materials from international conferences that are concerned with various aspects of information science, librarianship, and archive science. The list…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=demise+AND+development&pg=3&id=EJ627002','ERIC'); return false;" href="https://eric.ed.gov/?q=demise+AND+development&pg=3&id=EJ627002"><span>The Lifecycle of a South African Non-governmental Organisation: Primary Science Programme, 1983-1999.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Harvey, Stephen; Peacock, Alan</p> <p>2001-01-01</p> <p>Traces the lifecycle of the Primary Science Programme (PSP), 1983-99, a representative South African nongovernmental organization. Shows how the social and economic environment shaped PSP development and demise. Highlights tensions between quality versus quantity, subject versus holistic focus, and participatory versus authoritarian management…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJSEd..38..409G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJSEd..38..409G"><span>`Risky fun' or `Authentic science'? How teachers' beliefs influence their practice during a professional development programme on outdoor learning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glackin, Melissa</p> <p>2016-02-01</p> <p>Teaching outdoors has been established as an important pedagogical strategy; however, science classes rarely take place outside. Previous research has identified characteristics of teachers who have integrated out-of-classroom opportunities into their teaching repertoire; yet little is understood as to why teachers make these different pedagogical decisions. This paper explores the relationship between secondary science teachers' beliefs and their pedagogical practice during a two-year professional development programme associated with the 'Thinking Beyond the Classroom' project. Using data from lesson observations, interviews, session questionnaires and field notes, six teacher case studies were developed from participants completing the programme. Data analysis reveals that teachers who successfully taught outside generally held social constructivist beliefs about learning and valued 'authentic' science opportunities. Conversely, teachers who were less successful in teaching outside generally held traditional learning beliefs and simply valued the outdoors for the novelty and potential for fun. All the case study teachers were concerned about managing student learning outside, and for the majority, their concerns influenced their subsequent pedagogical practice. The findings are discussed in detail, as are the implications for pre-service and in-service professional development programmes related to outdoor science learning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Knowledge+AND+space&pg=5&id=EJ1033536','ERIC'); return false;" href="https://eric.ed.gov/?q=Knowledge+AND+space&pg=5&id=EJ1033536"><span>Collaborative Doctoral Programmes: Employer Engagement, Knowledge Mediation and Skills for Innovation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kitagawa, Fumi</p> <p>2014-01-01</p> <p>This paper investigates forms of collaborative doctoral programmes that enable employer engagement in innovation and skills development. Collaborative doctoral programmes exist in different national contexts for the development of the science and technology human capital. Such programmes are also seen as policy tools that enhance relationships…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.9666E..0CM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.9666E..0CM"><span>Optics outreach in Irish context</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McHugh, Emer; Smith, Arlene</p> <p>2009-06-01</p> <p>The Applied Optics Group, National University of Ireland Galway is a research centre involved in programmes that cover a wide variety of topics in applied optics and imaging science, including smart optics, adaptive optics, optical scattering and propagation, and engineering optics. The Group have also developed significant outreach programmes both in Primary and Post-Primary schools. It is recognised that there is a need for innovation in Science Education in Ireland and we are committed to working extensively with schools. The main aim of these outreach programmes is to increase awareness and interest in science with students and enhance the communication skills of the researchers working in the Group. The education outreach team works closely with the relevant teachers in both Primary and Post-Primary schools to design and develop learning initiatives to match the needs of the target group of students. The learning programmes are usually delivered in the participating schools during normal class time by a team of Applied Optics specialists. We are involved in running these programmes in both Primary and Post-Primary schools where the programmes are tailored to the curriculum and concentrating on optics and light. The students may also visit the Groups research centre where presentations and laboratory tours are arranged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMIN21B1429B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMIN21B1429B"><span>Developing Data System Engineers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behnke, J.; Byrnes, J. B.; Kobler, B.</p> <p>2011-12-01</p> <p>In the early days of general computer systems for science data processing, staff members working on NASA's data systems would most often be hired as mathematicians. Computer engineering was very often filled by those with electrical engineering degrees. Today, the Goddard Space Flight Center has special position descriptions for data scientists or as they are more commonly called: data systems engineers. These staff members are required to have very diverse skills, hence the need for a generalized position description. There is always a need for data systems engineers to develop, maintain and operate the complex data systems for Earth and space science missions. Today's data systems engineers however are not just mathematicians, they are computer programmers, GIS experts, software engineers, visualization experts, etc... They represent many different degree fields. To put together distributed systems like the NASA Earth Observing Data and Information System (EOSDIS), staff are required from many different fields. Sometimes, the skilled professional is not available and must be developed in-house. This paper will address the various skills and jobs for data systems engineers at NASA. Further it explores how to develop staff to become data scientists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11669136','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11669136"><span>Reflections on human presence in space.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arnould, J</p> <p>2001-01-01</p> <p>Humankind's exploration of Space has until now been understood as analogous to that of planet Earth: sending out crews to far-off, unknown lands in the hope of finding supplies of food, water or energy along with shelter and living-space. But Space is turning out to be much less hospitable than our earthly milieu in terms of resources as well as energy costs. It seems appropriate to ask what level of adaptation is needed for humans to travel and live in the cosmos, and to assess if the next logical step should necessarily be a programme of conquest analogous to that of the Moon--for example, towards Mars. Should we not rather be making more use of Earth's immediate neighbourhood, namely the sphere of a million of kilometres we call "Greater Earth"? In the same way, it is appropriate to ask questions about the conception of human beings which will from now on sustain the conquest of Space. The astronaut of the last forty years is the direct heir of the explorers of Ancient and Modern times; now, through the influence of science and technology, humanity has been put "into motion" not only geographically, but also in its most essential foundations: culture, psychology, philosophy. If the development of telepresence technology now gives us the ability to talk about a "Greater Human Being", it is chiefly through freedom of choice for oneself, for humanity and even for Earth. c 2001. Elsevier Science Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000040117&hterms=kuhn&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dkuhn','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000040117&hterms=kuhn&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dkuhn"><span>Development of Individually Addressable Micro-Mirror-Arrays for Space Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dutta, Sanghamitra B.; Ewin, Audrey J.; Jhabvala, Murzy; Kotecki, Carl A.; Kuhn, Jonathan L.; Mott, D. Brent</p> <p>2000-01-01</p> <p>We have been developing a 32 x 32 prototype array of individually addressable Micro-Mirrors capable of operating at cryogenic temperature for Earth and Space Science applications. Micro-Mirror-Array technology has the potential to revolutionize imaging and spectroscopy systems for NASA's missions of the 21st century. They can be used as programmable slits for the Next Generation Space Telescope, as smart sensors for a steerable spectrometer, as neutral density filters for bright scene attenuation etc. The, entire fabrication process is carried out in the Detector Development Laboratory at NASA, GSFC. The fabrication process is low temperature compatible and involves integration of conventional CMOS technology and surface micro-machining used in MEMS. Aluminum is used as the mirror material and is built on a silicon substrate containing the CMOS address circuit. The mirrors are 100 microns x l00 microns in area and deflect by +/- 10 deg induced by electrostatic actuation between two parallel plate capacitors. A pair of thin aluminum torsion straps allow the mirrors to tilt. Finite-element-analysis and closed form solutions using electrostatic and mechanical torque for mirror operation were developed and the results were compared with laboratory performance. The results agree well both at room temperature and at cryogenic temperature. The development demonstrates the first cryogenic operation of two-dimensional Micro-Mirrors with bi-state operation. Larger arrays will be developed meeting requirements for different science applications. Theoretical analysis, fabrication process, laboratory test results and different science applications will be described in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26744043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26744043"><span>Interdisciplinary science for future governance and management of forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nordin, Annika; Sandström, Camilla</p> <p>2016-02-01</p> <p>The sustainable use of forests constitutes one of the great challenges for the future due to forests' large spatial coverage, long-term planning horizons and inclusion of many ecosystem services. The mission of the Future Forests programme is to provide a scientifically robust knowledge base for sustainable governance and management of forests preparing for a future characterized by globalization and climate change. In this introduction to the Special Issue, we describe the interdisciplinary science approach developed in close collaboration with actors in the Future Forests programme, and discuss the potential impacts of this science on society. In addition, we introduce the 13 scientific articles and present results produced by the programme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4945291','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4945291"><span>The National Institute for Health Research Leadership Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jones, Molly Morgan; Wamae, Watu; Fry, Caroline Viola; Kennie, Tom; Chataway, Joanna</p> <p>2012-01-01</p> <p>Abstract RAND Europe evaluated the National Institute for Health Research (NIHR) Leadership Programme in an effort to help the English Department of Health consider the extent to which the programme has helped to foster NIHR's aims, extract lessons for the future, and develop plans for the next phase of the leadership programme. Successful delivery of high-quality health research requires not only an effective research base, but also a system of leadership supporting it. However, research leaders are not often given the opportunity, nor do they have the time, to attend formal leadership or management training programmes. This is unfortunate because research has shown that leadership training can have a hugely beneficial effect on an organisation. Therefore, the evaluation has a particular interest in understanding the role of the programme as a science policy intervention and will use its expertise in science policy analysis to consider this element alongside other, more traditional, measures of evaluation. PMID:28083231</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=%22architecture+design%22&id=EJ895588','ERIC'); return false;" href="https://eric.ed.gov/?q=%22architecture+design%22&id=EJ895588"><span>Space to Develop: How Architecture Can Play a Vital Role in Young Children's Lives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Cohen, Bronwen</p> <p>2010-01-01</p> <p>As Scotland moves ahead with both an ambitious school building programme and forward-thinking educational reforms, the author explores the background to "Making Space 2010", an exciting design programme which aims to focus international vision on the importance of space. Run by Children in Scotland, in partnership with the Scottish…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997xmm..pres....9.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997xmm..pres....9."><span>Huygens space probe ready to leave Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>1997-03-01</p> <p>Over the past year, the Huygens probe has been integrated and extensively tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Ottobrunn near Munich. It was designed and developed for ESA by a European industrial consortium led by Aerospatiale (F) as prime contractor. The European activities have been successfully completed and this is to be formalised by the Flight Acceptance Review which will release the probe for shipment to the USA. To mark this important milestone a press briefing is scheduled for Wednesday, 26 March at 10.00 hours at Daimler-Benz Aerospace Dornier Satellitensysteme in Ottobrunn. The detailed programme of the press briefing is attached. If you wish to attend the press briefing, please complete the attached accreditation form and return it, preferably by fax, to : Daimler Benz Aerospace Dornier Satellitensysteme Mr. Mathias Pikelj, Fax. + 49 7545 8 5589, Tel. + 49 7545 8 9123 NOTE FOR THE EDITORS: Background facts about the Cassini Huygens mission Huygens is a medium-sized mission of ESA's Horizons 2000 programme for space science, and a contribution to the joint NASA ESA Cassini mission. Christiaan Huygens discovered Saturn s moon Titan in 1655, and the mission named after him aims to land a 343 kilogram probe on Titan carrying a package of scientific instruments through the atmosphere. Six sets of instruments will analyse the chemical composition of the atmosphere, observe the weather and topography of Titan, and examine the nature of its surface. Titan is larger than the planet Mercury, and its unique atmosphere, rich in nitrogen and hydrocarbons, may resemble the atmosphere of the primitive Earth, before life began. Nominal dates for the Huygens mission are as follows: * launch, 6 October 1997 * arrival at Saturn, 1 July 2004 * release of Huygens, 6 November 2004 * entry into Titan's atmosphere, 27 November 2004. The Saturn Orbiter, the other element in the Cassini mission, will relay the signals from Huygens to the Earth, before settling down to prolonged observations of Saturn and its rings and moons. European and American scientists are partners in all the experiments, both in the Orbiter and in the Huygens Probe. Farthest out for Europe Huygens will travel to a greater distance from the Sun than any previous ESA mission, out to the orbit of Saturn at 1400 million kilometres, or nearly ten times the Sun Earth distance. For comparison, the farthest ranging mission at present is Ulysses, orbiting over the poles of the Sun and out to the orbit of Jupiter, 800 million kilometres from the Sun. As no other mission planned or contemplated by ESA at present will go as far as Saturn, Huygens is likely to hold the European record for many years. HUYGENS READY TO LEAVE EUROPE PRESS BRIEFING Wednesday 26 March, 10:00 hrs. Location : Daimler-Benz Aerospace/ Dornier Satellitensysteme Gate 2, Building 5.1 Ludwig-B>lkow-Allee Ottobrunn (Munich) Programme: 10h00 Registration of press 10h15 Huygens video introduction 10h20 Welcoming addresses: Klaus Ensslin, President, Dornier Satellitensysteme Roger Bonnet, Director of Science, ESA Michel Delaye, President, Aerospatiale Espace & Defense 10h30 NASA News and Cassini status Wesly T. Huntress, Associate Administrator of Space Science, NASA Richard Spehalski, Head of Cassini Project, NASA/JPL 10h40 The Huygens Project: Hamid Hassan, Head of the Huygens Project, ESA/ESTEC Hans-Joachim Hoffman, Head of the Huygens Project, Dornier Satellitensysteme Gerard Huttin, Head of the Huygens Project, Aerospatiale 11h00 The Huygens Scientific Programme: Jean-Pierre Lebreton, Huygens Project Scientist, ESA supported by European and American scientists. 11h15 The ESA Science programme, current and future missions Roger Bonnet, Director of Science, ESA 11h25 Question and Answer session 11h55 Visit to the Huygens spacecraft (access inside the clean room limited to photographers and TV teams only). 12h45 Buffet lunch 14h00 End of activties HUYGENS READY TO LEAVE EUROPE PRESS BRIEFING Wednesday 26 March, 10:00 hrs. Location : Daimler-Benz Aerospace/ Dornier Satellitensysteme Gate 2, Building 5.1 Ludwig-B>lkow-Allee Ottobrunn (Munich)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005xmm..pres...54.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005xmm..pres...54."><span>ESA `Huygens and Mars Express' science highlights - call to press</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2005-11-01</p> <p>Almost one year has passed since ESA’s Huygens probe landed on Saturn’s largest moon, Titan. Today, a set of new wide-ranging results from the probe’s two-and-a-half hour descent and landing, part of the extraordinary NASA/ESA/ASI Cassini-Huygens mission to Saturn and its moons, is ready for release. At the same time, ESA’s Mars Express mission is continuing its investigations of Mars, painting a new picture of the 'red planet'. This includes the first ever probing below the surface of Mars, new geological clues with implications for the climate, newly-discovered surface and atmospheric features and, above all, traces of the presence of water on this world. These and other exciting findings from just one year of observations and data analysis - in the context of ESA’s overall scientific achievements - will be the focus of a press conference to be held at ESA Headquarters in Paris at 16:00 on 30 November 2005. Media interested in attending are invited to complete the following registration form. Press conference programme Space Science Highlights 2005 From Huygens to Mars Express 30 November 2005, 16:00 hrs Room 137, European Space Agency Headquarters 8-10 Rue Mario-Nikis, F-75738 Paris Cedex, France 15:30 - Registration 16:00 - A Year of European Space Science Successes Prof. David Southwood, ESA Director of Science Programme 16:10 - Highlights of the Huygens Mission Results Jean-Pierre Lebreton, ESA Huygens Project Scientist 16:15 - Robin Duttaroy, Co-Investigator, Doppler Wind Experiment, University of Bonn, Germany 16:20 - Marcello Fulchignoni , Principal Investigator, Huygens Atmospheric Structure Instrument, Université de Paris 7, France 16:25 - John Zarnecki, Principal Investigator, Surface Science Package, Open University, UK 16:30 - François Raulin, Co-Investigator, Gas Chromatograph Mass Spectrometer, Université de Paris 12 - Créteil, France 16:35 - Guy Israel, Principal Investigator, Aerosol Collector and Pyrolyser, Service d'Aéronomie/CNRS, France 16:40 - Bruno Bezard, Co-Investigator, Descent Imager/Spectral Radiometer, Laboratoire d'études spatiales et d'instrumentation en astrophysique, Observatoire de Paris, France 16:45 - Jonathan Lunine, Interdisciplinary Scientist, Titan surface-atmosphere interactions, LPL/U, Arizona (USA) and INAF/IFSI, Rome (Italy) 16:55 - Questions and AnswersV 17:05 - Coffee break 17:10 - Mars Express: results in the overall context of Martian science, Agustin Chicarro, ESA Mars Express Project Scientist 17:15 - Giovanni Picardi, MARSIS Radar Principal Investigator, University of Rome La Sapienza, Italy Jeffrey Plaut, MARSIS Co-Principal Investigator, NASA/JPL, USA 17:25 - Martin Pätzold, Mars Radio Science Experiment, Principal Investigator, Universität Koln, Cologne, Germany 17:30 - Jean-Pierre Bibring, OMEGA Principal Investigator, Institut d’Astrophysique spatiale, Orsay, France 17:40 - Gerhard Neukum, HRSC Camera Principal Investigator, Freie Universität Berlin, Germany 17:45 - Questions and Answers 17:55 - Interview opportunities</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1054896.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1054896.pdf"><span>Evaluating a Professional Development Programme for Implementation of a Multidisciplinary Science Subject</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Visser, Talitha C.; Coenders, Fer G. M.; Terlouw, Cees; Pieters, Jules</p> <p>2013-01-01</p> <p>This study aims to evaluate a professional development programme that prepares and assists teachers with the implementation of a multidisciplinary science module, basing the evaluation on "participants' reactions," the first level of Guskey's five-level model for evaluation (2002). Positive evaluations at the higher levels in Guskey's…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=calculus&pg=7&id=EJ929285','ERIC'); return false;" href="https://eric.ed.gov/?q=calculus&pg=7&id=EJ929285"><span>Improving Student Learning in Calculus through Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.</p> <p>2011-01-01</p> <p>Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=made+AND+classification&pg=3&id=EJ1132921','ERIC'); return false;" href="https://eric.ed.gov/?q=made+AND+classification&pg=3&id=EJ1132921"><span>Making Sense of Curriculum--The Transition into Science and Engineering University Programmes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ulriksen, Lars; Holmegaard, Henriette T.; Madsen, Lene Møller</p> <p>2017-01-01</p> <p>Research on students' transition, retention and experiences in science, technology, engineering and mathematics (STEM) has increasingly focused on identity formation and on students' integration in the study programmes. However, studies focusing on the role of the curriculum in this process at the level of higher education are scarce. The present…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Science+AND+Australia&id=EJ993849','ERIC'); return false;" href="https://eric.ed.gov/?q=Science+AND+Australia&id=EJ993849"><span>Effects of a Cognitive Acceleration Programme in a Low Socioeconomic High School in Regional Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Oliver, Mary; Venville, Grady; Adey, Philip</p> <p>2012-01-01</p> <p>This paper presents research on the effects of a cognitive acceleration intervention in science lessons on low socioeconomic students in a government high school in regional Western Australia. "Thinking Science Australia" is a programme currently being implemented in Australian junior high school classes. The research was conducted for…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=A+AND+Swift+AND+Guide&id=EJ829042','ERIC'); return false;" href="https://eric.ed.gov/?q=A+AND+Swift+AND+Guide&id=EJ829042"><span>Beyond Constructivism: The Progressive Research Programme into Learning Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Taber, Keith S.</p> <p>2006-01-01</p> <p>In this paper, it is suggested that while there are a variety of frames or perspectives that guide research into learning science, a pre-paradigmatic field need not be a "free-for-all". Lakatos suggested that academic research fields were characterised by research programmes (RP), which offered heuristic guidance to researchers, and which…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JSWSC...3E..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JSWSC...3E..01C"><span>Space weather in the EU's FP7 Space Theme. Preface to the special issue on "EU-FP7 funded space weather projects"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiarini, Paola</p> <p>2013-11-01</p> <p>Technological infrastructures in space and on ground provide services on which modern society and economies rely. Space weather related research is funded under the 7th Framework Programme for Research and Innovation (FP7) of the European Union in response to the need of protecting such critical infrastructures from the damage which could be caused by extreme space weather events. The calls for proposals published under the topic "Security of space assets from space weather events" of the FP7 Space Theme aimed to improve forecasts and predictions of disruptive space weather events as well as identify best practices to limit the impacts on space- and ground-based infrastructures and their data provision. Space weather related work was also funded under the topic "Exploitation of space science and exploration data", which aims to add value to space missions and Earth-based observations by contributing to the effective scientific exploitation of collected data. Since 2007 a total of 20 collaborative projects have been funded, covering a variety of physical phenomena associated with space weather, from ionospheric disturbances and scintillation, to geomagnetically induced currents at Earth's surface, to coronal mass ejections and solar energetic particles. This article provides an overview of the funded projects, touching upon some results and referring to specific websites for a more exhaustive description of the projects' outcomes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015HiA....16..566N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015HiA....16..566N"><span>An exemplary developing astronomy movement in Nepal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neupane, Sudeep</p> <p>2015-03-01</p> <p>Astronomy and space science education had been given least importance by Nepalese government in the past. The modern astronomy movement is believed to have started when an official observation programme of Haley's comet was organized by Royal Nepal Academy of Science and Technology (RONAST) in 1986. Following the huge pressure from the scientific community, the Nepal government (Kingdom of Nepal at that time) established B.P. Koirala Memorial Planetarium, Observatory and Science Museum Development Board in 1992. Initiatives of the project started with observatory set up and the development of astrophysics syllabus for university students. Astrophysics is included as an elective paper in the Physics masters course. The lead astrophysicist of Nepal Dr. Binil Aryal is running a research group in Tribhuvan University since 2005 which has a significant number of international publications. The developing government initiatives and achievements will be discussed. In 2007, a group of astronomy enthusiastic students along with amateurs working independently in past established Nepal Astronomical Society (NASO), which surprisingly increased the amateur activities and inspired other amateur groups to revive. During IYA 2009, more than 80 outreach and observation events were organized solely by NASO. NASO was able to collaborate with many international programmes and projects like GHOU/GTTP, EurAstro, AWB, UNAWE, SGAC, Star Peace, TWAN etc during and beyond IYA2009. Currently Nepal is recognized as the most eventful country of outreach and astronomy education among the amateur community. The success story of the astronomy movement and the local difficulties while organizing the events will be explained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJSEd..39..742M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJSEd..39..742M"><span>A comparative study on student perceptions of their learning outcomes in undergraduate science degree programmes with differing curriculum models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthews, Kelly E.; Firn, Jennifer; Schmidt, Susanne; Whelan, Karen</p> <p>2017-04-01</p> <p>This study investigated students' perceptions of their graduate learning outcomes including content knowledge, communication, writing, teamwork, quantitative skills, and ethical thinking in two Australian universities. One university has a traditional discipline-orientated curriculum and the other, an interdisciplinary curriculum in the entry semester of first year. The Science Students Skills Inventory asked students (n = 613) in first and final years to rate their perceptions of the importance of developing graduate learning outcomes within the programme; how much they improved their graduate learning outcomes throughout their undergraduate science programme; how much they saw learning outcomes included in the programme; and how confident they were about their learning outcomes. A framework of progressive curriculum development was adopted to interpret results. Students in the discipline-oriented degree programme reported higher perceptions of scientific content knowledge and ethical thinking while students from the interdisciplinary curriculum indicated higher perceptions of oral communication and teamwork. Implications for curriculum development include ensuring progressive development from first to third years, a need for enhanced focus on scientific ethics, and career opportunities from first year onwards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020033032&hterms=neuroscience&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dneuroscience','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020033032&hterms=neuroscience&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dneuroscience"><span>Sensor Systems for Space Life Sciences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Somps, Chris J.; Hines, John W.; Connolly, John P. (Technical Monitor)</p> <p>1995-01-01</p> <p>Sensors 2000! (S2K!) is a NASA Ames Research Center engineering initiative designed to provide biosensor and bio-instrumentation systems technology expertise to NASA's life sciences spaceflight programs. S2K! covers the full spectrum of sensor technology applications, ranging from spaceflight hardware design and fabrication to advanced technology development, transfer and commercialization. S2K! is currently developing sensor systems for space biomedical applications on BION (a Russian biosatellite focused on Rhesus Monkey physiology) and NEUROLAB (a Space Shuttle flight devoted to neuroscience). It's Advanced Technology Development-Biosensors (ATD-B) project focuses efforts in five principle areas: biotelemetry Systems, chemical and biological sensors, physiological sensors, advanced instrumentation architectures, and data and information management. Technologies already developed and tested included, application-specific sensors, preamplifier hybrids, modular programmable signal conditioners, power conditioning and distribution systems, and a fully implantable dual channel biotelemeter. Systems currently under development include a portable receiver system compatible with an off-the-shelf analog biotelemeter, a 4 channel digital biotelemetry system which monitors pH, a multichannel, g-processor based PCM biotelemetry system, and hand-held personal monitoring systems. S2K! technology easily lends itself to telescience and telemedicine applications as a front-end measurement and data acquisition device, suitable for obtaining and configuring physiological information, and processing that information under control from a remote location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.737G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.737G"><span>Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grande, Manuel; Andre, Nicolas</p> <p>2016-07-01</p> <p>Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003eso..pres...21.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003eso..pres...21."><span>Catherine Cesarsky - President Elect of the International Astronomical Union (IAU)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2003-07-01</p> <p>The General Assembly of the International Astronomical Union (IAU), meeting in Sydney (Australia), has appointed the ESO Director General, Dr. Catherine Cesarsky, as President Elect for a three-year period (2003-2006). The IAU is the world's foremost organisation for astronomy, uniting almost 9000 professional scientists on all continents. The IAU General Assembly also elected Prof. Ron Ekers (Australia) as President (2003 - 2006). Dr. Cesarsky will then become President of the IAU in 2006, when the General Assembly next meets in Prague (The Czech Republic). Dr. Cesarsky is the first woman scientist to receive this high distinction. "The election of Catherine Cesarsky as President-Elect of the IAU is an important recognition for a scientist who has made impressive contributions to various areas of modern astrophysics, from cosmic rays to the interstellar medium and cosmology" , commented the outgoing IAU President, Prof. Franco Pacini. "It is also an honour and an important accolade for the European astronomical community in general and ESO in particular." Dr. Cesarsky, who assumed the function as ESO Director General in 1999, was born in France. She received a degree in Physical Sciences at the University of Buenos Aires and graduated with a PhD in Astronomy in 1971 from Harvard University (Cambridge, Mass., USA). Afterwards she worked at the California Institute of Technology (CALTECH). In 1974, she became a staff member of the Service d'Astrophysique (SAp), Direction des Sciences de la Matière (DSM), Commissariat à l'Energie Atomique (CEA) (France). As Director of DSM (1994 - 1999), she was leading about 3000 scientists, engineers and technicians active within a broad spectrum of basic research programmes in physics, chemistry, astrophysics and earth sciences. Dr. Cesarsky is known for her successful research activities in several central areas of modern astrophysics. She first worked on the theory of cosmic ray propagation and acceleration, and galactic gamma-ray emission. Later, she led the design and construction of the ISOCAM camera onboard the Infrared Space Observatory (ISO) of the European Space Agency (ESA), and the ISOCAM Central Programme which studied the infrared emission from many different galactic and extragalactic sources. This has led to new and exciting results on star formation and galactic evolution, and in the identification of the sources providing the bulk of the energy in the Cosmic Infrared Background. As ESO Director General, she has been a driving force towards the realisation of the full potential of ESO's unique Very Large Telescope (VLT) and its associated interferometer ( VLTI), and also towards the recent European-North American agreement on the powerful Atacama Large Millimeter Array (ALMA). Dr. Cesarsky received the COSPAR (Committee on Space Research) Space Science Award in 1998. She is married and has two children.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..578H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..578H"><span>The ESA Nanosatellite Beacons for Space Weather Monitoring Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hapgood, M.; Eckersley, S.; Lundin, R.; Kluge, M.</p> <p>2008-09-01</p> <p>This paper will present final results from this ESA-funded study that has investigated how current and emerging concepts for nanosats may be used to monitor space weather conditions and provide improved access to data needed for space weather services. The study has reviewed requirements developed in previous ESA space weather studies to establish a set of service and measurements requirements appropriate to nanosat solutions. The output is conveniently represented as a set of five distinct classes of nanosat constellations, each in different orbit locations and which can address a specific group of measurement requirements. One example driving requirement for several of the constellations was the need for real-time data reception. Given this background, the study then iterated a set of instrument and spacecraft solutions to address each of the nanosat constellations from the requirements. Indeed, iteration has proved to be a critical aspect of the study. The instrument solutions have driven a refinement of requirements through assessment of whether or not the physical parameters to be measured dictate instrument components too large for a nanosat. In addition, the study has also reviewed miniaturization trends for instruments relevant to space weather monitoring by nanosats, looking at the near, mid and far-term timescales. Within the spacecraft solutions the study reviewed key technology trends relevant to space weather monitoring by nanosats: (a) micro and nano-technology devices for spacecraft communications, navigation, propulsion and power, and (b) development and flight experience with nanosats for science and for engineering demonstration. These requirements and solutions were then subject to an iterative system and mission analysis including key mission design issues (e.g. launch/transfer, mission geometry, instrument accommodation, numbers of spacecraft, communications architectures, de-orbit, nanosat reliability and constellation robustness) and the impact of nanosat fundamental limitations (e.g. mass, volume/size, power, communications). As a result, top-level Strawman mission concepts were developed for each constellation, and ROM costs were derived for programme development, operation and maintenance over a ten-year period. Nanosat reliability and constellation robustness were shown to be a key driver in deriving mission costs. In parallel with the mission analysis the study results have been reviewed to identify key issues that determine the prospects for a space weather nanosat programme and to make recommendations on measures to enable implementation of such a programme. As a follow-on to this study, a student MSc project was initiated by Astrium at Cranfield University to analyse a potential space weather precursor demonstration mission in GTO (one of the recommendations from this ESA study), composing of a reduced constellation of nanosats, launched on ASAP or some other low cost method. The demonstration would include: 1/ Low cost multiple manufacture techniques for a fully industrial nanosat constellation programme 2/ Real time datalinks and fully operational mission for space weather 3/ Miniaturised payloads to fit in a nanosat for space weather monitoring: 4/ Other possible demonstrations of advanced technology The aim was to comply with ESA demonstration mission (i.e. PROBA-type) requirements, to be representative on issues such as cost and risk</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002iaf..confE.611G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002iaf..confE.611G"><span>Turkey BILSAT-1: a Case Study for the Surrey Know-How Transfer and Training Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghafoor, Nadeem; Murat Leloglu, Ugur; Sweeting, Martin, , Sir</p> <p>2002-01-01</p> <p>Surrey has established itself over the past 18 years as a world leader in providing hands-on spacecraft engineering training through its Small Satellite Engineering Know-How Transfer and Training (`KHTT') programme. This 18- month course runs alongside the construction of a microsatellite executed through SSTL, and strikes a balance between classroom-based teaching and total immersion within professional engineering teams. Hands-on training is provided covering the entire satellite engineering process, from mission and subsystem design, through module manufacture, assembly and integration, to qualification and flight model environmental tests, launch and commissioning. SSTL's experience in providing the KHTT programme has resulted in a well-defined course structure that yet retains the ability to accommodate individual customer requirements. The programme also takes full advantage of SSTL's intrinsic link with the Surrey Space Centre (`SSC') at the University of Surrey, offering a range of MSc and PhD research programmes pursuing common research interests of both SSTL and the customer, and in many cases complementing the development of either the customer's satellite or their future plans for an evolved space capability. Throughout 2002, three KHTT programmes have run in parallel at SSTL. A team of 11 engineers from the Centre Nationale des Techniques Spatiales in Algeria have now reached completion of their programme with Alsat-1, the first enhanced microsatellite of the Disaster Monitoring Constellation (`DMC'). In December 2001, 15 engineers from the Federal Ministry of Science and Technology in Nigeria arrived at SSTL and are now midway through their programme with Nigeriasat-1, the second enhanced microsatellite of the DMC. Thirdly, arriving slightly earlier in August 2001, a team from Tubitak-Bilten in Turkey commenced their KHTT programme with BILSAT-1, a high-capability enhanced microsatellite also contributing to the DMC, and are due to continue through February 2003. This paper explores the case of BILSAT-1 as a particular example of the SSTL KHTT approach. The BILSAT-1 KHTT team comprises a core group of 8 young engineers with strong backgrounds in mechanical, electrical and electronic engineering. Complementing the activities of this SSTL-based team are 4 MSc students conducting research at the Surrey Space Centre and a number of academic staff and technicians at Tubitak-Bilten in Ankara. The core team engineers, upon completing their academic lecture programme, immediately became involved in the development work on BILSAT-1. Hardware experience has been gained through the building, integrating and testing of an engineering model, before the team proceeds with testing of the assembled BILSAT-1 flight model. The team has also worked with their colleagues at Tubitak-Bilten in proposing and designing two of the BILSAT-1 payloads, the multispectral imager and the high-performance DSP card, both being manufactured in Turkey. In support of the new facility being built at Tubitak-Bilten several future cleanroom and ECAD staff visited SSTL earlier this year to attend soldering and PCB manufacturing courses. With training in project management forming the final component of the KHTT team's training a firm basis is established from which Tubitak-Bilten hopes to further develop its own satellite production capabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20506743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20506743"><span>Confronting the stigma of eugenics: genetics, demography and the problems of population.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ramsden, Edmund</p> <p>2009-12-01</p> <p>Building upon the work of Thomas Gieryn and Erving Goffman, this paper will explore how the concepts of stigma and boundary work can be usefully applied to history of population science. Having been closely aligned to eugenics in the early 20th century, from the 1930s both demographers and geneticists began to establish a boundary between their own disciplines and eugenic ideology. The eugenics movement responded to this process of stigmatization. Through strategies defined by Goffman as 'disclosure' and 'concealment', stigma was managed, and a limited space for eugenics was retained in science and policy. Yet by the 1960s, a revitalized eugenics movement was bringing leading social and biological scientists together through the study of the genetic demography of characteristics such as intelligence. The success of this programme of 'stigma transformation' resulted from its ability to allow geneticists and demographers to conceive of eugenic improvement in ways that seemed consistent with the ideals of individuality, diversity and liberty. In doing so, it provided them with an alternative, and a challenge, to more radical and controversial programmes to realize an optimal genotype and population. The processes of stigma attribution and management are, however, ongoing, and since the rise of the nature-nurture controversy in the 1970s, the use of eugenics as a 'stigma symbol' has prevailed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CoTPh..63..413L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CoTPh..63..413L"><span>Bosonized Supersymmetric Sawada-Kotera Equations: Symmetries and Exact Solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Ping; Zeng, Bao-Qing; Liu, Li-Ming</p> <p>2015-04-01</p> <p>The Bosonized Supersymmetric Sawada-Kotera (BSSK) system is constructed by applying bosonization method to a Supersymmetric Sawada-Kotera system in this paper. The symmetries on the BSSK equations are researched and the calculation shows that the BSSK equations are invariant under the scaling transformations, the space-time translations and Galilean boosts. The one-parameter invariant subgroups and the corresponding invariant solutions are researched for the BSSK equations. Four types of reduction equations and similarity solutions are proposed. Period Cnoidal wave solutions, dark solitary wave solutions and bright solitary wave solutions of the BSSK equations are demonstrated and some evolution curves of the exact solutions are figured out. Supported by the National Natural Science Foundation of China under Grant No. 11305031, the Natural Science Foundation of Guangdong Province under Grant No. S2013010011546, the Science and Technology Project Foundation of Zhongshan under Grant Nos. 2013A3FC0264 and 2013A3FC0334, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A34E..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A34E..06D"><span>Enabling Higher Data Rates for Planetary Science Missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deutsch, L. J.; Townes, S. A.; Lazio, J.; Bell, D. J.; Chahat, N. E.; Kovalik, J. M.; Kuperman, I.; Sauder, J.; Liebrecht, P. E.</p> <p>2017-12-01</p> <p>The data rate from deep space spacecraft has increased by more than 10 orders of magnitude since the first lunar missions in the 1960s. The demand for increased data rates has stemmed from the increasing sophistication of the science questions being addressed and the concomitant increase in the complexity of the missions themselves (from fly-by to orbit to land and rove). Projections for the next few decades suggest the demand for data rates for deep space missions will continue to increase by approximately one order of magnitude every decade, driven by these same factors. Achieving higher data rates requires a partnership between the spacecraft and the ground system. We describe a series of technology developments for flight telecommunications systems, both at radio frequency (RF) and optical, to enable spacecraft to transmit and receive larger data volumes. These technology developments include deployable high gain antennas for small spacecraft, re-programmable software-defined radios, and optical communication packages designed for CubeSat form factors. The intent is that these developments would provide enhancements in capability for both spacecraft-Earth and spacecraft-spacecraft telecommunications. We also describe the future planning for NASA's Deep Space Network (DSN), which remains the prime conduit for data from all planetary science missions. Through a combination of new antennas and backends being installed over the next five years and incorporation of optical communications, the DSN aims to ensure that the historical improvements in data rates and volumes will continue for many decades. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.3071B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.3071B"><span>The ESA Mice in Space (MIS) habitat: effects of cage confinement on neuromusculoskeletal structure and function and stress/behavior using wild-type C57Bl/6JRj mice in a modular science reference model (MSRM) test on ground</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blottner, Dieter; Vico, Laurence; Jamon, D. Berckmansp L. Vicop Y. Liup R. Canceddap M.</p> <p></p> <p>Background: Environmental conditions likely affect physiology and behaviour of mice used for Life Sciences Research on Earth and in Space. Thus, mice habitats with sufficient statistical numbers should be developed for adequate life support and care and that should meet all nesces-sary ethical and scientific requirements needed to successfully perform animal experimentation in Space. Aim of study: We here analysed the effects of cage confinement on the weightbear-ing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based MSRM (modular science ref-erence module) in the frame of breadboard activities for a fully automated life support habitat called "Mice in Space" (MIS) at the Leuven University, Belgium. Results: Compared with control housing (individually ventilated cages, IVC-mice) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, ag-gressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). Conclusions: The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure on orbit as planned for future biosatellite programmes. Sponsors: ESA-ESTEC, Noordwijk, NL</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED085212.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED085212.pdf"><span>Report of Programme Commission II (Natural Sciences), Annex - Recommendations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>United Nations Educational, Scientific, and Cultural Organization, Paris (France). General Conference.</p> <p></p> <p>As the second part of the report of the Programme Commission II, a summary of recommendations on plans for natural sciences and their applications is presented in this document. Resolutions and budgetary appropriations are two major concerns in the document. The topics are related to the 1973-74 draft program and budget, the 1973-78 draft…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED085211.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED085211.pdf"><span>Report of Programme Commission II (Natural Sciences).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>United Nations Educational, Scientific, and Cultural Organization, Paris (France). General Conference.</p> <p></p> <p>As the first part of the report of the Programme Commission II, a summary of discussions on plans for natural sciences and their applications is presented in this document. The two agenda items are: (1) detailed consideration of the 1973-74 draft program and budget and of the 1973-78 draft medium-term outline, and (2) desirability of adopting an…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1050889.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1050889.pdf"><span>Me and My Body (MAMBO): An Interactive Science Education Programme for Primary Schools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Scalzo, Clare; Killard, Fiona; MacCormac, Aoife; Fryar, James; O' Brien, Emma; O'Kennedy, Richard</p> <p>2008-01-01</p> <p>This paper describes a novel science education initiative developed for 8-to 12-year-old children by the Biomedical Diagnostics Institute at Dublin City University, Ireland. "Me and My Body" (MAMBO) is an interactive, multi-faceted programme that enables children to explore and understand the dynamic physiological parameters of the human…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=strategic+AND+business+AND+reporting&id=EJ1120361','ERIC'); return false;" href="https://eric.ed.gov/?q=strategic+AND+business+AND+reporting&id=EJ1120361"><span>Professional Field in the Accreditation Process: Examining Information Technology Programmes at Dutch Universities of Applied Sciences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Frederik, Hans; Hasanefendic, Sandra; van der Sijde, Peter</p> <p>2017-01-01</p> <p>In this paper, we analyse 53 Dutch accreditation reports in the field of information technology to assess the mechanisms of the reported involvement of the professional field in the undergraduate programmes of universities of applied sciences. The results of qualitative content analysis reveal a coupling effect in reporting on mechanisms of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=virtual+AND+laboratory&id=EJ1156837','ERIC'); return false;" href="https://eric.ed.gov/?q=virtual+AND+laboratory&id=EJ1156837"><span>Virtual Laboratories in Science Education: Students' Motivation and Experiences in Two Tertiary Biology Courses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dyrberg, Nadia Rahbek; Treusch, Alexander H.; Wiegand, Claudia</p> <p>2017-01-01</p> <p>Potential benefits of simulations and virtual laboratory exercises in natural sciences have been both theorised and studied recently. This study reports findings from a pilot study on student attitude, motivation and self-efficacy when using the virtual laboratory programme Labster. The programme allows interactive learning about the workflows and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Lakatos&id=EJ812414','ERIC'); return false;" href="https://eric.ed.gov/?q=Lakatos&id=EJ812414"><span>Lakatos' Scientific Research Programmes as a Framework for Analysing Informal Argumentation about Socio-Scientific Issues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chang, Shu-Nu; Chiu, Mei-Hung</p> <p>2008-01-01</p> <p>The purpose of this study is to explore how Lakatos' scientific research programmes might serve as a theoretical framework for representing and evaluating informal argumentation about socio-scientific issues. Seventy undergraduate science and non-science majors were asked to make written arguments about four socio-scientific issues. Our analysis…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1098767.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1098767.pdf"><span>Seven Years of Linking Scottish Schools and Industry with SSTN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Whittington, Gary; Lowson, Sandra</p> <p>2007-01-01</p> <p>The Scottish Science and Technology Network (SSTN) is a major collaboration between Careers Scotland and Scottish industry to promote science and technology via an on-line and integrated learning programme. An initial two-year pilot project has grown considerably and has now been running for over 7 years. The SSTN programme is a web-based…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=plagiarism+AND+academic&pg=5&id=EJ1052725','ERIC'); return false;" href="https://eric.ed.gov/?q=plagiarism+AND+academic&pg=5&id=EJ1052725"><span>Reducing Unintentional Plagiarism amongst International Students in the Biological Sciences: An Embedded Academic Writing Development Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Divan, Aysha; Bowman, Marion; Seabourne, Anna</p> <p>2015-01-01</p> <p>There is general agreement in the literature that international students are more likely to plagiarise compared to their native speaker peers and, in many instances, plagiarism is unintentional. In this article we describe the effectiveness of an academic writing development programme embedded into a Biological Sciences Taught Masters course…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=communication+AND+skills&pg=5&id=EJ1096813','ERIC'); return false;" href="https://eric.ed.gov/?q=communication+AND+skills&pg=5&id=EJ1096813"><span>A Programme-Wide Training Framework to Facilitate Scientific Communication Skills Development amongst Biological Sciences Masters Students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Divan, Aysha; Mason, Sam</p> <p>2016-01-01</p> <p>In this article we describe the effectiveness of a programme-wide communication skills training framework incorporated within a one-year biological sciences taught Masters course designed to enhance the competency of students in communicating scientific research principally to a scientific audience. In one class we analysed the numerical marks…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EOSTr..95..300R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EOSTr..95..300R"><span>Morrow, Reiff, Receive 2013 Space Physics and Aeronomy Richard Carrington Awards: Response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reiff, Patricia H.</p> <p>2014-08-01</p> <p>It is a special privilege to receive this award honoring Richard Carrington's discovery of what we now call space weather. It is particularly appropriate that this award also recognizes Cherilynn Morrow, who 20 years ago made a presentation to the Space Science Advisory Committee on Jeff Rosendhal's idea of mission-based E/PO. We worked together, bringing that idea to the successful, but threatened, network it is today. For me, learning and teaching go hand in hand—as we publish our findings for our peers, we should also repay the public investment in our research with accurate, understandable results. My interest in space science was sparked by a father-daughter course in astronomy sponsored by the Brownies at the Oklahoma City Planetarium and kindled by the Bell Labs production The Strange Case of the Cosmic Rays directed by Frank Capra. Knowing that planetarium shows and educational movies can change lives, I have devoted a large portion of my last 25 years to creating software, shows, and portable planetariums to inspire and engage youth. This has not been a one-person effort, of course. My work Cherilynn Ann Morrow would have been impossible without the collaboration of Carolyn Sumners, vice president of the Houston Museum of Natural Science. Our museum kiosk and planetarium control software would not have happened without the skill and perseverance of my chief programmer, Colin Law. Jim Burch has been first a mentor and then a colleague on both the research and outreach sides of my career. I share this honor with a long line of highly talented students and postdocs who have contributed science content and outreach efforts. Most importantly, without the support of my husband, Tom Hill, I would not have had the time and freedom to build an educational network while continuing research and raising a family. I thank AGU for bestowing this honor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AcAau.110..161N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AcAau.110..161N"><span>Indian space transportation programme: Near term outlook and issues for commercialisation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nagendra, Narayan Prasad</p> <p>2015-05-01</p> <p>The Indian space transportation programme has grown from strength to strength with the launching of sounding rockets in the 60's to the development of heavy lift vehicles for telecommunication satellites in the present decade. With the growing market confidence in Indian Space Research Organisation's ability to reliably deliver payloads to low Earth orbit with its Polar Satellite Launch Vehicle, there is an inherent opportunity for India to cater to the commercial market. The present work assesses the current launch capacity of India in retrospect of international launches and provides India's outlook for the space transportation in the current decade. Launch capacity correlation with the requirements within the Indian space programme as well as the current space transportation infrastructure have been considered to identify bottlenecks in catering to the current national requirements alongside securing a greater market share in the international launch market. The state of commercialisation of launch vehicle development has been presented to provide an overview of policy and organisational issues for commercialisation of space transportation in India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28173928','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28173928"><span>The role of physiotherapy in the European Space Agency strategy for preparation and reconditioning of astronauts before and after long duration space flight.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lambrecht, Gunda; Petersen, Nora; Weerts, Guillaume; Pruett, Casey; Evetts, Simon; Stokes, Maria; Hides, Julie</p> <p>2017-01-01</p> <p>Spaceflight and exposure to microgravity have wide-ranging effects on many systems of the human body. At the European Space Agency (ESA), a physiotherapist plays a key role in the multidisciplinary ESA team responsible for astronaut health, with a focus on the neuro-musculoskeletal system. In conjunction with a sports scientist, the physiotherapist prepares the astronaut for spaceflight, monitors their exercise performance whilst on the International Space Station (ISS), and reconditions the astronaut when they return to Earth. This clinical commentary outlines the physiotherapy programme, which was developed over nine long-duration missions. Principles of physiotherapy assessment, clinical reasoning, treatment programme design (tailored to the individual) and progression of the programme are outlined. Implications for rehabilitation of terrestrial populations are discussed. Evaluation of the reconditioning programme has begun and challenges anticipated after longer missions, e.g. to Mars, are considered. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160013321&hterms=mallik&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmallik','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160013321&hterms=mallik&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmallik"><span>Maturing CCD Photon-Counting Technology for Space Flight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; Hicks, Brian</p> <p>2015-01-01</p> <p>This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ca07.conf..508R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ca07.conf..508R"><span>Meteorite, a rock from space: A planetarium adventure for children</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodríguez Hidalgo, I.; Naveros Y Naveiras, R.; González Sánchez, O.</p> <p>2008-06-01</p> <p>At the Museum of the Science and the Cosmos (MCC, La Laguna, Tenerife) there is a small planetarium. All the different planetarium shows are carried out entirely by the Museum staff, from the original idea and the script to the final production. In February 2007, Meteorite, a rock from space, a new show, specifically for children, was released. The characters (astronomical bodies) are played by puppets, designed and manufactured for this occasion; the script has been carefully written, and introduces many astronomical concepts in the form of an entertaining tale, which encourages the children to participate by crying, counting, helping the characters - just like a traditional puppet show. The aim of this contribution is to review the different resources (some of them really innovative) used to create this programme, which offers plenty of future possibilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4567H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4567H"><span>Europlanet NA2 Science Networking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harri, Ari-Matti; Szego, Karoly; Genzer, Maria; Schmidt, Walter; Krupp, Norbert; Lammer, Helmut; Kallio, Esa; Haukka, Harri</p> <p>2013-04-01</p> <p>Europlanet RI / NA2 Science Networking [1] focused on determining the major goals of current and future European planetary science, relating them to the Research Infrastructure that the Europlanet RI project [2] developed, and placing them in a more global context. NA2 also enhanced the ability of European planetary scientists to participate on the global scene with their own agenda-setting projects and ideas. The Networking Activity NA2 included five working groups, aimed at identifying key science issues and producing reference books on major science themes that will bridge the gap between the results of present and past missions and the scientific preparation of the future ones. Within the Europlanet RI project (2009-2012) the NA2 and NA2-WGs organized thematic workshops, an expert exchange program and training groups to improve the scientific impact of this Infrastructure. The principal tasks addressed by NA2 were: • Science activities in support to the optimal use of data from past and present space missions, involving the broad planetary science community beyond the "space club" • Science activities in support to the preparation of future planetary missions: Earth-based preparatory observations, laboratory studies, R&D on advanced instrumentation and exploration technologies for the future, theory and modeling etc. • Develop scientific activities, joint publications, dedicated meetings, tools and services, education activities, engaging the public and industries • Update science themes and addressing the two main scientific objectives • Prepare and support workshops of the International Space Science Institute (ISSI) in Bern and • Support Trans National Activities (TNAs), Joined Research Activities (JRAs) and the Integrated and Distributed Information Service (IDIS) of the Europlanet project These tasks were achieved by WG workshops organized by the NA2 working groups, by ISSI workshops and by an Expert Exchange Program. There were 17 official WG workshops and in addition there were numerous smaller NA2 WG meetings during the conferences (EPSC, EGU, etc.) and other events. The total number of NA2 meetings and workshops was 37. There were three NA2 supported ISSI workshops within the Europlanet project. The first ISSI workshop "Comparison of the plasma-spheres of Mars, Venus, and Titan" organized by K. Szego was held in December 2009. The second workshop "Quantifying the Martian Geochemical Reservoirs" by M. Toplis was held in April 2011. The third one, themed "Giant Planet Magnetodiscs and Aurorae" by N. Krupp, N. Achilleos and C. Arridge, was in November 2012. All three ISSI workshops were selected by the ISSI scientific committee to be organized within the frame of ISSI/Europlanet agreement and held in Bern. The main objective of the Expert Exchange Program was to support the activities of Europlanet RI with experts whenever needed. The programme provided funding for short visits (up to one week) of expert with the goal of improving infrastructure facilities and services offered to the scientific community by the Europlanet RI participant (contractor) laboratories or institutes. Between July 2009 and September 2012 26 applications were selected. Acknowledgement: Europlanet RI was funded by the European Commission under the 7th Framework Program, grant 228319 "Capacities Specific Programme" - Research Infrastructures Action. References: [1] http://www.europlanet-ri.eu/ [2] https://europlanet-scinet.fi/</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EAS....35...15P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EAS....35...15P"><span>The Herschel mission and observing opportunities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pilbratt, G. L.</p> <p></p> <p>Herschel is the fourth cornerstone mission in the European Space Agency (ESA) science programme. It will perform imaging photometry and spectroscopy in the far infrared and submillimetre part of the spectrum, covering approximately the 55--672 μm range and thus bridging the traditional space infrared range with the groundbased capabilities. The key science objectives emphasize fundamental issues connected to the formation and evolution of galaxies and stars and stellar systems. However, Herschel will be an observatory facility and its unique capabilities will be available to the entire astronomical community for a wide range of observations. Herschel is equipped with a passively cooled 3.5 m diameter classical Cassegrain telescope. The science payload complement two cameras/medium resolution spectrometers (PACS and SPIRE) and a very high resolution heterodyne spectrometer (HIFI) is housed in a superfluid helium cryostat. The ground segment is jointly developed by the ESA, the three instrument consortia, and NASA/IPAC. Herschel is scheduled to be launched into a transfer trajectory towards its operational orbit around the Earth-Sun L2 point by an Ariane 5 ECA (shared with the ESA cosmic background mapping mission Planck) in 2009. Once operational about half a year after launch, Herschel will offer 3 years of routine science operations. Almost 20 000 hours of observing time will nominally be made available for astronomy, 32% is guaranteed time, the remainder is open time which is offered to the worldwide general astronomical community through a standard competitive proposal procedure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJSEd..36.2892M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJSEd..36.2892M"><span>The CASE Programme Implemented Across the Primary and Secondary School Transition in Ireland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCormack, Lorraine; Finlayson, Odilla E.; McCloughlin, Thomas J. J.</p> <p>2014-11-01</p> <p>In the Irish education system, there is little continuity between the primary and secondary education systems. The transfer between these systems is particularly problematic in the area of science. In order to alleviate some of these problems, as well as to enhance the cognitive development of students, the Cognitive Acceleration through Science Education programme was adapted for use and implemented across the primary-secondary school transition in Ireland. The programme was delivered in a variety of ways across the two levels, including the teacher and researcher teaching the programmes individually and team-teaching arrangements. The results on cognitive development measures showed that the students who were taught the programme in primary and secondary school made significant gains, when compared to the non-intervention group. There were also gains evident for students who only received one part of the programme (i.e. in either primary or secondary school). The greater gains, in terms of effect size, were evident at secondary school. The rationale, methodology and results are detailed in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004ESASP.554..767L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004ESASP.554..767L"><span>A 1.3 giga pixels focal plane for GAIA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laborie, Anouk; Pouny, Pierre; Vetel, Cyril; Collados, Emmanuel; Rougier, Gilles; Davancens, Robert; Zayer, Igor; Perryman, Michael; Pace, Oscar</p> <p>2004-06-01</p> <p>The astrometric mission GAIA is a cornerstone mission of the European Space Agency, due for launch in the 2010 time frame. Requiring extremely demanding performance GAIA calls for the development of an unprecedented large focal plane featuring innovative technologies. For securing the very challenging GAIA development, a significant number of technology activities have been initiated by ESA through a competitive selection process. In this context, an industrial consortium led by EADS-Astrium (France) with e2v technologies (UK) as major subcontractor was selected for the GAIA CCD and Focal Plane Technology Demonstrators programme, which is by far the most significant and the most critical GAIA pre-development for all aspects: science performance, development schedule and cost. This programme has started since August 2002 and will end early 2005 prior to commencement of the GAIA Phase B. While the GAIA payload will host three instruments and related focal planes, the major mission objectives are assigned to the Astrometric (ASTRO) Focal Plane, which is the subject of this presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..APR.S2003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..APR.S2003S"><span>Growing Physics and Astronomy Public Outreach in Montreal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simard, Gabrielle; Lepo, Kelly</p> <p>2017-01-01</p> <p>AstroMcGill was founded in 2011 by an enthusiastic group of undergraduate students, graduate students and post-doctoral fellows. It serves as the education and public outreach (EPO) branch of the astronomy group within the Physics Department at McGill University in Montreal, Quebec. Over the last five years, AstroMcGill has grown from organizing sporadic visits in a couple primary schools to running a successful inquiry-based outreach programme for grade 4-6 students, the McGill Space Explorers. During the same time span, the attendance at public AstroNight lectures ramped up from attracting a few dozen people to over 500 people each month. We will highlight the recent successes of the programme and our best guesses for the reasons behind this success. We will also discuss the challenges of working in a bilingual city as we juggle our majority anglophone volunteers, a mandatory french science curriculum for primary school children and the (somewhat) overlapping English- and French-speaking communities in the city.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614204C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614204C"><span>Role Models in Science - An Effective Dissemination Strategy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatzichristou, Eleni; Daglis, Ioannis A.; Anastasiadis, Anastasios; Balasis, George; Bourdarie, Sebastien; Horne, Richard B.; Khotyaintsev, Yuri; Mann, Ian R.; Santolik, Ondrej; Turner, Drew L.; Giannakis, Omiros; Ropokis, George</p> <p>2014-05-01</p> <p>We present the outreach efforts of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, intended to provide the general public with simplified information concerning the scientific objectives of the project and its expected outcomes, to strengthen their understanding of space science, as well as to engage and inspire the next generation of scientists. MAARBLE involves monitoring of the geospace environment through space and ground-based observations, in order to understand various aspects of the radiation belts, an important element of the space weather system, which have direct impact on human endeavors in space (spacecraft and astronauts exposure). The public outreach website of MAARBLE, besides instructive text and regular updates with relevant news, also employs a variety of multimedia (image and video galleries) and characteristic sounds of space related to very low and ultra low frequency (VLF/ULF) electromagnetic waves. It also provides links to some of the most interesting relevant educational activities, including those at partner institutions such as the Institute of Geophysics and Planetary Physics at UCLA, the University of Alberta, the Swedish Institute of Space Physics and the Institute of Atmospheric Physics of the Academy of Sciences of the Czech Republic. We will focus on a specific activity: "Interviewing a MAARBLE Scientist", which enriches and broadens the scope of the MAARBLE outreach website. The profile of a MAARBLE scientist appears every month through an inspired interview, the scientists relating to the public their real stories, aspirations and endeavors. The intimacy of this approach is very effective in catching the attention of an otherwise indifferent public, and to inspire young people to pursue science careers by identifying themselves with "real" scientists. We cover one interview per month, featuring either a high-profile scientist from each partner institute, or a young researcher on a successful career path to both act as role model and to show the challenges that young scientists are facing today. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996xmm..pres....5.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996xmm..pres....5."><span>SOHO, an early start, a long lifetime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>1996-01-01</p> <p>SOHO currently cruises through space towards its station near the so-called first Lagrange point 1.5 million km towards the Sun where it will be in uninterrupted daylight and where the gravitational pull of the Sun and the Earth are balanced. The spacecraft is now expected to arrive at its station on 14 March 1996, two weeks earlier than originally planned. Coincidentally, this is the tenth anniversary of another space milestone, the encounter of ESA's Giotto probe with Comet Halley! An optimised orbit-shaping manoeuvre on 4 January, further refined SOHO's trajectory. Enough fuel remains on board to maintain SOHO's position in space for at least twenty instead of the planned six years. All systems of the 1850 kg spacecraft designed and built by European industry have been checked after launch and are in excellent shape. Their nominal performance has allowed an early and uninterrupted start of the commissioning of the scientific payload. SOHO's 12 scientific instruments* are currently being tested. Scientists are studying the first images and calibrating their instruments for the scheduled start of operations in late March. The craft's particle detectors investigating "in situ" the solar wind streaming around SOHO at its vantage point near Lagrange point 1, have been operational for some time and SOHO's first image of the Sun was taken on 19 December 1995. "All those who have worked tirelessly on the SOHO payload, spacecraft and ground-segment are to be congratulated on their excellent work and for having developed the most remarkable tool to help us understand the Sun and its environment, the heliosphere" said Roger Bonnet, ESA's Director of Science. According to present plans one month of early science is scheduled to begin around end of March and scientists hope to present their initial findings to the wide public by early May. SOHO is a project of international cooperation between ESA and NASA. The mission is led and coordinated by ESA who also procured the spacecraft; NASA provided the launch and operates the satellite. The European scientists who designed nine of the observatory's instruments and their US colleagues who built a further three are all present at Goddard Space Flight Center, where they jointly plan the optimum scientific use of the satellite. The spacecraft is part of the international Solar-Terrestrial Science Programme, the next member of which is Cluster, a flotilla of four spacecraft that will study how the Sun affects Earth and surrounding space. Cluster is scheduled for launch in May 1996 on the first Ariane 5 rocket. It will be the second mission belonging to the first "Cornerstone" of ESA's long- term scientific programme "Horizon 2000".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=improve+AND+effectiveness+AND+teaching+AND+science&pg=2&id=EJ1041694','ERIC'); return false;" href="https://eric.ed.gov/?q=improve+AND+effectiveness+AND+teaching+AND+science&pg=2&id=EJ1041694"><span>The Impact of the "Getting Practical: Improving Practical Work in Science" Continuing Professional Development Programme on Teachers' Ideas and Practice in Science Practical Work</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Abrahams, Ian; Reiss, Michael J.; Sharpe, Rachael</p> <p>2014-01-01</p> <p>Background: Despite the widespread use of practical work in school it has been recognised that more needs to be done to improve its effectiveness in developing conceptual understanding. The "Getting Practical" CPD (Continuing Professional Development) programme was designed to contribute towards an improvement in the effectiveness of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=king%27s+AND+college+AND+london&pg=2&id=EJ1117188','ERIC'); return false;" href="https://eric.ed.gov/?q=king%27s+AND+college+AND+london&pg=2&id=EJ1117188"><span>Re-Thinking Science Capital: The Role of "Capital" and "Identity" in Mediating Students' Engagement with Mathematically Demanding Programmes at University</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Black, Laura; Hernandez-Martinez, Paul</p> <p>2016-01-01</p> <p>A wide body of literature has highlighted how high achievement in mathematics in secondary school does not necessarily motivate students to both choose and succeed on mathematically demanding programmes at post-compulsory level. The recent Enterprising Science project [Archer et al. (2015, "J. Res. Sci. Teach.," 52, 922-948)] and before…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=settlements&pg=3&id=EJ994025','ERIC'); return false;" href="https://eric.ed.gov/?q=settlements&pg=3&id=EJ994025"><span>Problem Solving and Immigrant Student Mathematics and Science Achievement: Multination Findings from the Programme for International Student Assessment (PISA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Martin, Andrew J.; Liem, Gregory A. D.; Mok, Magdalena M. C.; Xu, Jacob</p> <p>2012-01-01</p> <p>The present study investigates problem-solving skill alongside more widely recognized settlement and sociodemographic factors in first-generation (1G) and second-generation (2G) immigrant students' science and mathematics achievement. A total of 113,767 students (ages 15-16 years) from 17 countries were drawn from the 2003 Programme for…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1130657.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1130657.pdf"><span>Variations in Primary Teachers' Responses and Development during Three Major Science In-Service Programmes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Jarvis, Tina; Pell, Anthony; Hingley, Philip</p> <p>2011-01-01</p> <p>This paper reports on how different types of teachers responded to in-service aimed at developing investigative-based science education (IBSE) in primary schools, and the extent to which they applied their new skills in the classroom. Common items from evaluation questionnaires allowed data to be combined from three major in-service programmes.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013IJMES..44..782M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013IJMES..44..782M"><span>Factors influencing students' perceptions of their quantitative skills</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthews, Kelly E.; Hodgson, Yvonne; Varsavsky, Cristina</p> <p>2013-09-01</p> <p>There is international agreement that quantitative skills (QS) are an essential graduate competence in science. QS refer to the application of mathematical and statistical thinking and reasoning in science. This study reports on the use of the Science Students Skills Inventory to capture final year science students' perceptions of their QS across multiple indicators, at two Australian research-intensive universities. Statistical analysis reveals several variables predicting higher levels of self-rated competence in QS: students' grade point average, students' perceptions of inclusion of QS in the science degree programme, their confidence in QS, and their belief that QS will be useful in the future. The findings are discussed in terms of implications for designing science curricula more effectively to build students' QS throughout science degree programmes. Suggestions for further research are offered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010068919','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010068919"><span>Adaptive Instrument Module: Space Instrument Controller "Brain" through Programmable Logic Devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Darrin, Ann Garrison; Conde, Richard; Chern, Bobbie; Luers, Phil; Jurczyk, Steve; Mills, Carl; Day, John H. (Technical Monitor)</p> <p>2001-01-01</p> <p>The Adaptive Instrument Module (AIM) will be the first true demonstration of reconfigurable computing with field-programmable gate arrays (FPGAs) in space, enabling the 'brain' of the system to evolve or adapt to changing requirements. In partnership with NASA Goddard Space Flight Center and the Australian Cooperative Research Centre for Satellite Systems (CRC-SS), APL has built the flight version to be flown on the Australian university-class satellite FEDSAT. The AIM provides satellites the flexibility to adapt to changing mission requirements by reconfiguring standardized processing hardware rather than incurring the large costs associated with new builds. This ability to reconfigure the processing in response to changing mission needs leads to true evolveable computing, wherein the instrument 'brain' can learn from new science data in order to perform state-of-the-art data processing. The development of the AIM is significant in its enormous potential to reduce total life-cycle costs for future space exploration missions. The advent of RAM-based FPGAs whose configuration can be changed at any time has enabled the development of the AIM for processing tasks that could not be performed in software. The use of the AIM enables reconfiguration of the FPGA circuitry while the spacecraft is in flight, with many accompanying advantages. The AIM demonstrates the practicalities of using reconfigurable computing hardware devices by conducting a series of designed experiments. These include the demonstration of implementing data compression, data filtering, and communication message processing and inter-experiment data computation. The second generation is the Adaptive Processing Template (ADAPT) which is further described in this paper. The next step forward is to make the hardware itself adaptable and the ADAPT pursues this challenge by developing a reconfigurable module that will be capable of functioning efficiently in various applications. ADAPT will take advantage of radiation tolerant RAM-based field programmable gate array (FPGA) technology to develop a reconfigurable processor that combines the flexibility of a general purpose processor running software with the performance of application specific processing hardware for a variety of high performance computing applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19172490','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19172490"><span>Science in the Making: Right Hand, Left Hand. I: A BBC television programme broadcast in 1953.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McManus, I C; Rawles, Richard; Moore, James; Freegard, Matthew</p> <p>2010-01-01</p> <p>In August 1953, the BBC broadcast a television science programme entitled Science in the Making: Right Hand, Left Hand. The programme was broadcast live, being presented by Dr Jacob Bronowski in collaboration with Dr Kenneth Smith, and produced by George Noordhof. It not only presented a popular account of current ideas about right- and left-handedness, by using a group of celebrities (and a chimpanzee) in the studio, but also asked viewers to complete a brief questionnaire on handedness, which was printed in the Radio Times. Recently 6,336 of the returned questionnaires, which were said to have been analysed by Sir Cyril Burt and a colleague, were found in the archive of the Psychology Department of University College London. The present paper describes what we have discovered about the programme from various sources, including the producer and the son of Dr Kenneth Smith, and also presents basic descriptions of the postcards and the response to the programme. In two subsequent papers we will describe our analysis of the data from the postcards, which represents an unusual, large-scale survey of handedness in the mid-twentieth century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CEAS....9..517W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CEAS....9..517W"><span>The design and development of low- and high-voltage ASICs for space-borne CCD cameras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waltham, N.; Morrissey, Q.; Clapp, M.; Bell, S.; Jones, L.; Torbet, M.</p> <p>2017-12-01</p> <p>The CCD remains the pre-eminent visible and UV wavelength image sensor in space science, Earth and planetary remote sensing. However, the design of space-qualified CCD readout electronics is a significant challenge with requirements for low-volume, low-mass, low-power, high-reliability and tolerance to space radiation. Space-qualified components are frequently unavailable and up-screened commercial components seldom meet project or international space agency requirements. In this paper, we describe an alternative approach of designing and space-qualifying a series of low- and high-voltage mixed-signal application-specific integrated circuits (ASICs), the ongoing development of two low-voltage ASICs with successful flight heritage, and two new high-voltage designs. A challenging sub-system of any CCD camera is the video processing and digitisation electronics. We describe recent developments to improve performance and tolerance to radiation-induced single event latchup of a CCD video processing ASIC originally developed for NASA's Solar Terrestrial Relations Observatory and Solar Dynamics Observatory. We also describe a programme to develop two high-voltage ASICs to address the challenges presented with generating a CCD's bias voltages and drive clocks. A 0.35 μm, 50 V tolerant, CMOS process has been used to combine standard low-voltage 3.3 V transistors with high-voltage 50 V diffused MOSFET transistors that enable output buffers to drive CCD bias drains, gates and clock electrodes directly. We describe a CCD bias voltage generator ASIC that provides 24 independent and programmable 0-32 V outputs. Each channel incorporates a 10-bit digital-to-analogue converter, provides current drive of up to 20 mA into loads of 10 μF, and includes current-limiting and short-circuit protection. An on-chip telemetry system with a 12-bit analogue-to-digital converter enables the outputs and multiple off-chip camera voltages to be monitored. The ASIC can drive one or more CCDs and replaces the many discrete components required in current cameras. We also describe a CCD clock driver ASIC that provides six independent and programmable drivers with high-current capacity. The device enables various CCD clock parameters to be programmed independently, for example the clock-low and clock-high voltage levels, and the clock-rise and clock-fall times, allowing configuration for serial clock frequencies in the range 0.1-2 MHz and image clock frequencies in the range 10-100 kHz. Finally, we demonstrate the impact and importance of this technology for the development of compact, high-performance and low-power integrated focal plane electronics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860064748&hterms=transformer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtransformer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860064748&hterms=transformer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtransformer"><span>A programmable transformer coupled converter for high-power space applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kapustka, R. E.; Bush, J. R., Jr.; Graves, J. R.; Lanier, J. R., Jr.</p> <p>1986-01-01</p> <p>A programmable transformer coupled converter (PTCC) is being developed by NASA/Marshall Space Flight Center for application in future large space power systems. The PTCC uses an internal microprocessor to control the output characteristics of its three Cuk integrated magnetics type power stages which have a combined capability of 5.4 kW (30 V at 180 A). Details of design trade-offs and test results are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=openmindedness&pg=5&id=EJ796251','ERIC'); return false;" href="https://eric.ed.gov/?q=openmindedness&pg=5&id=EJ796251"><span>Critical Thinking Tendencies among Teacher Candidates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Genc, Salih Zeki</p> <p>2008-01-01</p> <p>The study aims to determine critical thinking tendencies among teacher candidates. 720 students from primary school teaching department (Primary School Teaching Programme, Science Teaching Programme and Pre-School Teaching Programme) form the sample of the study. When the gender and age distributions were investigated, 253 candidates are males and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=science+AND+news&pg=7&id=EJ1082154','ERIC'); return false;" href="https://eric.ed.gov/?q=science+AND+news&pg=7&id=EJ1082154"><span>Opportunities across Boundaries: Lessons from a Collaboratively Delivered Cross-Institution Master's Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>de Róiste, Mairéad; Breetzke, Gregory; Reitsma, Femke</p> <p>2015-01-01</p> <p>Advances in technology have created opportunities for collaborative multi-institution programme delivery which are increasingly attractive within a constrained financial environment. This paper details the development of a cross-institution collaboratively delivered masters and postgraduate diploma programme in Geographical Information Science in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJSEd..33.1169K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJSEd..33.1169K"><span>Professional Identity Development of Teacher Candidates Participating in an Informal Science Education Internship: A focus on drawings as evidence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katz, Phyllis; McGinnis, J. Randy; Hestness, Emily; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy; Pease, Rebecca</p> <p>2011-06-01</p> <p>This study investigated the professional identity development of teacher candidates participating in an informal afterschool science internship in a formal science teacher preparation programme. We used a qualitative research methodology. Data were collected from the teacher candidates, their informal internship mentors, and the researchers. The data were analysed through an identity development theoretical framework, informed by participants' mental models of science teaching and learning. We learned that the experience in an afterschool informal internship encouraged the teacher candidates to see themselves, and to be seen by others, as enacting key recommendations by science education standards documents, including exhibiting: positive attitudes, sensitivity to diversity, and increasing confidence in facilitating hands-on science participation, inquiry, and collaborative work. Our study provided evidence that the infusion of an informal science education internship in a formal science teacher education programme influenced positively participants' professional identity development as science teachers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245h2002C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245h2002C"><span>Using Space Syntax to Assess Safety in Public Areas - Case Study of Tarbiat Pedestrian Area, Tabriz-Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cihangir Çamur, Kübra; Roshani, Mehdi; Pirouzi, Sania</p> <p>2017-10-01</p> <p>In studying the urban complex issues, simulation and modelling of public space use considerably helps in determining and measuring factors such as urban safety. Depth map software for determining parameters of the spatial layout techniques; and Statistical Package for Social Sciences (SPSS) software for analysing and evaluating the views of the pedestrians on public safety were used in this study. Connectivity, integration, and depth of the area in the Tarbiat city blocks were measured using the Space Syntax Method, and these parameters are presented as graphical and mathematical data. The combination of the results obtained from the questionnaire and statistical analysis with the results of spatial arrangement technique represents the appropriate and inappropriate spaces for pedestrians. This method provides a useful and effective instrument for decision makers, planners, urban designers and programmers in order to evaluate public spaces in the city. Prior to physical modification of urban public spaces, space syntax simulates the pedestrian safety to be used as an analytical tool by the city management. Finally, regarding the modelled parameters and identification of different characteristics of the case, this study represents the strategies and policies in order to increase the safety of the pedestrians of Tarbiat in Tabriz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSA13B2167G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSA13B2167G"><span>A General Purpose Experiment Controller for low cost Space Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guzman-Garcia, D.; Rowland, D. E.; Uribe, P.; Nieves-Chinchilla, T.</p> <p>2012-12-01</p> <p>Space activities are very expensive and include a high degree of risk. Nowadays, CubeSat missions represent a fast and inexpensive way to conduct scientific space research. These platforms are less expensive to develop and build than conventional satellites. There are ample demonstration that these platforms are well suited for a wide range of science missions in different fields, such as astrobiology, astronomy, atmospheric science, space weather and biology. This paper presents a hybrid "processor in an Field Programmable Gate Array (FPGA)" experiment/spacecraft controller for Cubesat missions. The system has two objectives, first is to obtain a multipurpose and easily customizable system aimed at processing the data from the widest kind of instruments and second, to provide the system with the highest processing capabilities in order to be able to perform complex onboard algorithms. Due to the versatility of the system and its reduced dimensions, it can be employed in different space platforms. The system is envisioned to be employed for the first time as the smart radio receiver for the upcoming NASA FireStation instrument. It is one of four experiments manifested to fly on an experiment pallet the U.S Department of Defense plans to deploy on the International Space Station in 2013. FireStation will continue analyzing the link between the Lightning and the Terrestrial Gamma Rays initiated by the FireFly Cubesat. The system is responsible for the management of a set of small Heliophysics instrumentats, including a photometer, magnetometer, and electric and magnetic field antennas. A description of the system architecture and its main features are presented. The main functional and performance tests during the integration and calibration phase of the instruments are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IREdu..60..793C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IREdu..60..793C"><span>Which preparatory curriculum for the International Baccalaureate Diploma Programme is best? The challenge for international schools with regard to mathematics and science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corlu, M. Sencer</p> <p>2014-12-01</p> <p>There are two mainstream curricula for international school students at the junior high level: the International Baccalaureate (IB) Middle Years Programme (MYP) and the Cambridge International General Certificate of Secondary Education (IGCSE). The former was developed in the mid-1990s and is currently being relaunched in a 21st-century approach. The latter programme of study was developed by University of Cambridge International Examinations in 1985 and has become popular in recent years among British domestic and international schools worldwide due to the clarity of its learning content. The prevailing uncertainty about which curriculum is best to prepare students for the IB Diploma Programme represents a challenge for international schools. The purpose of the current study is to develop a methodology through causal models which can explain the relationship between student performance in the IGCSE and the Diploma Programme with regard to mathematics and science. The data evaluated here consisted of external examination scores of students who attended a private international high school between the years 2005 and 2012. Two structural equation models were developed. The first model employed a maximum likelihood estimation, while the second model used a Bayesian estimation with a Markov Chain Monte Carlo method. Both models fit the data well. The evidence suggests that the IGCSE provides a good foundational preparation for the Diploma Programme in mathematics and science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25676598','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25676598"><span>The relevance of basic sciences in undergraduate medical education.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lynch, C; Grant, T; McLoughlin, P; Last, J</p> <p>2016-02-01</p> <p>Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017xru..conf..240Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017xru..conf..240Y"><span>Exploring transient X-ray sky with Einstein Probe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, W.; Zhang, C.; Ling, Z.; Zhao, D.; Chen, Y.; Lu, F.; Zhang, S.</p> <p>2017-10-01</p> <p>The Einstein Probe is a small satellite in time-domain astronomy to monitor the soft X-ray sky. It is a small mission in the space science programme of the Chinese Academy of Sciences. It will carry out systematic survey and characterisation of high-energy transients at unprecedented sensitivity, spatial resolution, Grasp and monitoring cadence. Its wide-field imaging capability is achieved by using established technology of micro-pore lobster-eye X-ray focusing optics. Complementary to this is X-ray follow-up capability enabled by a narrow-field X-ray telescope. It is capable of on-board triggering and real time downlink of transient alerts, in order to trigger fast follow-up observations at multi-wavelengths. Its scientific goals are concerned with discovering and characterising diverse types of X-ray transients, including tidal disruption events, supernova shock breakouts, high-redshift GRBs, and of particular interest, X-ray counterparts of gravitational wave events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=sedimentation+AND+engineering&id=ED282757','ERIC'); return false;" href="https://eric.ed.gov/?q=sedimentation+AND+engineering&id=ED282757"><span>Marine Sciences in CMEA Countries: Programme and Results of Co-operation. Unesco Reports in Marine Science No. 38.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Aksionov, A. A.</p> <p></p> <p>In 1971, the 25th Session of the Council for Mutual Economic Assistance (CMEA) adopted a Programme for the Development of Socialist Economic Integration. Later, part of this program became a program of cooperation in the field of oceanography, particularly the chemical, physical, and biological processes of certain important areas of the ocean. To…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Science+AND+Australia&id=EJ1087645','ERIC'); return false;" href="https://eric.ed.gov/?q=Science+AND+Australia&id=EJ1087645"><span>Researching the Effectiveness of a Science Professional Learning Programme Using a Proposed Curriculum Framework for Schools: A Case Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Paige, Kathryn; Zeegers, Yvonne; Lloyd, David; Roetman, Philip</p> <p>2016-01-01</p> <p>This paper reports on an action research-based professional learning programme (PLP) in which early career teachers volunteered to identify and then research an aspect of their science teaching practice. The PLP was facilitated by academics from the School of Education and the Barbara Hardy Institute at the University of South Australia. The…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcAau.139..385B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcAau.139..385B"><span>Towards a results-based management approach for capacity-building in space science, technology and applications to support the implementation of the 2030 agenda for sustainable development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balogh, Werner R.; St-Pierre, Luc; Di Pippo, Simonetta</p> <p>2017-10-01</p> <p>The United Nations Office for Outer Space Affairs (UNOOSA) has the mandate to assist Member States with building capacity in using space science, technology and their applications in support of sustainable economic, social and environmental development. From 20 to 21 June 2018 the international community will gather in Vienna for UNISPACE + 50, a special segment of the 61st session of the Committee on the Peaceful Uses of Outer Space (COPUOS), to celebrate the 50th anniversary of the first UNISPACE conference and to reach consensus on a global space agenda for the next two decades. ;Capacity-building for the twenty-first century; is one of the seven thematic priorities of UNISPACE + 50, identified and agreed upon by COPUOS. The Committee has tasked UNOOSA with undertaking the work under this thematic priority and with reporting regularly to the Committee and its Subcommittees on the progress of its work. It is therefore appropriate, in this context, to take stock of the achievements of the capacity-building activities of the Office, to review the relevant mandates and activities and to consider the necessity to strengthen and better align them with the future needs of the World and in particular with the 2030 Agenda for Sustainable Development. This paper describes the efforts on-going at UNOOSA, building on its experiences with implementing the United Nations Programme on Space Applications and the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER) and working with Member States and other United Nations entities, to develop a results-based management approach, based on an indicator framework and a database with space solutions, for promoting the use of space-based solutions to help Member States achieve the Sustainable Development Goals (SDGs) and successfully implement the 2030 Agenda for Sustainable Development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23571976','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23571976"><span>Fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Amaya, N; Irfan, M; Zervas, G; Nejabati, R; Simeonidou, D; Sakaguchi, J; Klaus, W; Puttnam, B J; Miyazawa, T; Awaji, Y; Wada, N; Henning, I</p> <p>2013-04-08</p> <p>We present the first elastic, space division multiplexing, and multi-granular network based on two 7-core MCF links and four programmable optical nodes able to switch traffic utilising the space, frequency and time dimensions with over 6000-fold bandwidth granularity. Results show good end-to-end performance on all channels with power penalties between 0.75 dB and 3.7 dB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Msngr.161....6P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Msngr.161....6P"><span>Shaping ESO2020+ Together: Feedback from the Community Poll</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Primas, F.; Ivison, R.; Berger, J.-P.; Caselli, P.; De Gregorio-Monsalvo, I.; Alonso Herrero, A.; Knudsen, K. K.; Leibundgut, B.; Moitinho, A.; Saviane, I.; Spyromilio, J.; Testi, L.; Vennes, S.</p> <p>2015-09-01</p> <p>A thorough evaluation and prioritisation of the ESO science programme into the 2020+ timeframe took place under the auspices of a working group, comprising astronomers drawn from ESO’s advisory structure and from within ESO. This group reported to ESO’s Scientific Technical Committee, and to ESO Council, concluding the exercise with the publication of a report, “Science Priorities at ESO”. A community poll and a dedicated workshop, held in January 2015, formed part of the information gathering process. The community poll was designed to probe the demographics of the user community, its scientific interests, use of observing facilities and plans for use of future telescopes and instruments, its views on types of observing programmes and on the provision of data processing and archiving. A total of 1775 full responses to the poll were received and an analysis of the results is presented here. Foremost is the importance of regular observing programmes on all ESO observing facilities, in addition to Large Programmes and Public Surveys. There was also a strong community requirement for ESO to process and archive data obtained at ESO facilities. Other aspects, especially those related to future facilities, are more challenging to interpret because of biases related to the distribution of science expertise and favoured wavelength regime amongst the targeted audience. The results of the poll formed a fundamental component of the report and pro-vide useful data to guide the evolution of ESO’s science programme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJSEd..39.1733C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJSEd..39.1733C"><span>The development of elementary teacher identities as teachers of science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrier, Sarah J.; Whitehead, Ashley N.; Walkowiak, Temple A.; Luginbuhl, Sarah C.; Thomson, Margareta M.</p> <p>2017-09-01</p> <p>The purpose of this qualitative study was to investigate the contributions of pre-service teachers' memories of science and science education, combined with their experiences in a STEM-focused teacher preparation programme, to their developing identities as elementary school teachers of science. Data collected over three years include a series of interviews and observations of science teaching during elementary teacher preparation and the first year of teaching. Grounded within a theoretical framework of identity and using a case-study research design, we examined experiences that contributed to the participants' identity development, focusing on key themes from teacher interviews: memories of science and science instruction, STEM-focused teacher preparation programme, field experiences, first year of teaching, and views of effective science instruction. Findings indicate the importance of exposure to reform strategies during teacher preparation and are summarised in main assertions and discussed along with implications for teacher preparation and research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930013853','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930013853"><span>Field programmable gate arrays: Evaluation report for space-flight application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sandoe, Mike; Davarpanah, Mike; Soliman, Kamal; Suszko, Steven; Mackey, Susan</p> <p>1992-01-01</p> <p>Field Programmable Gate Arrays commonly called FPGA's are the newer generation of field programmable devices and offer more flexibility in the logic modules they incorporate and in how they are interconnected. The flexibility, the number of logic building blocks available, and the high gate densities achievable are why users find FPGA's attractive. These attributes are important in reducing product development costs and shortening the development cycle. The aerospace community is interested in incorporating this new generation of field programmable technology in space applications. To this end, a consortium was formed to evaluate the quality, reliability, and radiation performance of FPGA's. This report presents the test results on FPGA parts provided by ACTEL Corporation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24117688','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24117688"><span>Nurses' encounters with children in child and school health care: negotiated guidance within a given frame.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Golsäter, Marie; Enskär, Karin; Harder, Maria</p> <p>2014-09-01</p> <p>Throughout childhood, children take part in health visits according to a health-monitoring programme. The visits are aimed to promote the children's development and health and to strengthen them to take own responsibility for their health. Nurses' actions when encountering children at these visits are not explored to any great extent. Exploring nurses' actions can facilitate their reflections on their actions towards children and thereby promote children's involvement in such visits. The aim of this study was to explore nurses' actions when encountering children at health visits. A qualitative explorative design, based on 30 video recordings of health visits in child and school health care, was used in this study. These visits were ordinary real-life health visits. The data were subjected to qualitative content analysis. The right to conduct video recordings during health visits was approved by appropriate research ethics committees. The findings show that nurses, in order to carry out the health visits, encounter children through negotiated guidance. This guidance is understood as the process through which the nurses reach agreement with the children, and is comprised of directed and pliable strategies. At one moment, the nurse can use a directed strategy to inform the child and at the next moment a pliable strategy to provide the child space within the given frame, the health-monitoring programme. By using these strategies intertwined, the nurse can provide the child space within the given frame and, at the same time, fulfil his/her responsibility to promote children's health and development. The results highlight nurses' challenging and complex assignment of guiding children to promote their engagement in the health visits, thereby enabling the nurses to promote the children's health and development according to the national health-monitoring programme. © 2013 Nordic College of Caring Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015597','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015597"><span>ISS-Experiments of Columnar-to-Equiaxed Transition in Solidification Processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sturz, Laszlo; Zimmermann, Gerhard; Gandin, Charles, Andre; Billia, Bernard; Magelinck, Nathalie; Nguyen-Thi, Henry; Browne, David John; Mirihanage, Wajira U.; Voss, Daniela; Beckermann, Christoph; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120015597'); toggleEditAbsImage('author_20120015597_show'); toggleEditAbsImage('author_20120015597_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120015597_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120015597_hide"></p> <p>2012-01-01</p> <p>The main topic of the research project CETSOL in the framework of the Microgravity Application Promotion (MAP) programme of the European Space Agency (ESA) is the investigation of the transition from columnar to equiaxed grain growth during solidification. Microgravity environment allows for suppression of buoyancy-driven melt flow and for growth of equiaxed grains free of sedimentation and buoyancy effects. This contribution will present first experimental results obtained in microgravity using hypo-eutectic AlSi alloys in the Materials Science Laboratory (MSL) on-board the International Space Station (ISS). The analysis of the experiments confirms the existence of a columnar to equiaxed transition, especially in the refined alloy. Temperature evolution and grain structure analysis provide critical values for the position, the temperature gradient and the solidification velocity at the columnar to equiaxed transition. These data will be used to improve modeling of solidification microstructures and grain structure on different lengths scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=record+AND+scientific&pg=7&id=EJ1041912','ERIC'); return false;" href="https://eric.ed.gov/?q=record+AND+scientific&pg=7&id=EJ1041912"><span>Young "Science Ambassadors" Raise the Profile of Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ridley, Katie</p> <p>2014-01-01</p> <p>Katie Ridley, science coordinator at St. Gregory's Catholic Primary School, Liverpool, UK, states that the inspiration for "science ambassadors" came after embarking on the Primary Science Quality Mark programme at their school. Ridley realized that science was just not recognised as such by the children, they talked about scientific…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=siemens&id=EJ1130910','ERIC'); return false;" href="https://eric.ed.gov/?q=siemens&id=EJ1130910"><span>Facilitating Small-Scale Implementation of Inquiry-Based Teaching: Encounters and Experiences of Experimento Multipliers in One South African Province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dudu, Washington Takawira</p> <p>2017-01-01</p> <p>This paper explores the experiences of 37 physical science high school teachers who participated in a professional development (PD) programme coordinated by three Experimento multipliers. The Experimento programme is a Siemens Stiftung international educational programme aimed at providing didactic and methodological approaches to classroom…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=social+AND+commerce&pg=3&id=EJ769234','ERIC'); return false;" href="https://eric.ed.gov/?q=social+AND+commerce&pg=3&id=EJ769234"><span>Students' Perceptions of a University Access (Bridging) Programme for Social Science, Commerce and Humanities: Research Article</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Quayle, Michael; Essack, Zaynab</p> <p>2007-01-01</p> <p>Universities in South Africa face the challenge of redressing past (and continuing) inequalities in higher education by increasing accessibility to previously (and currently) disadvantaged students. One means of doing so is through 'access' or 'bridging' programmes. This article explores successful students' perceptions of one such programme at…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1082770.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1082770.pdf"><span>The Reflective Professional Honours Programme of the Dutch Saxion Universities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>van Dijk, Trijntje</p> <p>2012-01-01</p> <p>The Reflective Professional Honours Programme of the Saxion Universities of Applied Sciences in the Netherlands centers on a profile of what graduates of the program should have accomplished in addition to their regular bachelor's degree program. The development team for our programme first investigated what the profile should be, interviewing…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110013048','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110013048"><span>Digital Front End for Wide-Band VLBI Science Receiver</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jongeling, Andre; Sigman, Elliott; Navarro, Robert; Goodhart, Charles; Rogstad, Steve; Chandra, Kumar; Finley, Sue; Trinh, Joseph; Soriano, Melissa; White, Les; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20110013048'); toggleEditAbsImage('author_20110013048_show'); toggleEditAbsImage('author_20110013048_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20110013048_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20110013048_hide"></p> <p>2006-01-01</p> <p>An upgrade to the very-long-baseline-interferometry (VLBI) science receiver (VSR) a radio receiver used in NASA's Deep Space Network (DSN) is currently being implemented. The current VSR samples standard DSN intermediate- frequency (IF) signals at 256 MHz and after digital down-conversion records data from up to four 16-MHz baseband channels. Currently, IF signals are limited to the 265-to-375-MHz range, and recording rates are limited to less than 80 Mbps. The new digital front end, denoted the Wideband VSR, provides improvements to enable the receiver to process wider bandwidth signals and accommodate more data channels for recording. The Wideband VSR utilizes state-of-the-art commercial analog-to-digital converter and field-programmable gate array (FPGA) integrated circuits, and fiber-optic connections in a custom architecture. It accepts IF signals from 100 to 600 MHz, sampling the signal at 1.28 GHz. The sample data are sent to a digital processing module, using a fiber-optic link for isolation. The digital processing module includes boards designed around an Advanced Telecom Computing Architecture (ATCA) industry-standard backplane. Digital signal processing implemented in FPGAs down-convert the data signals in up to 16 baseband channels with programmable bandwidths from 1 kHz to 16 MHz. Baseband samples are transmitted to a computer via multiple Ethernet connections allowing recording to disk at rates of up to 1 Gbps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA625932','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA625932"><span>Coordination and Data Management of the International Arctic Buoy Programme (IABP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2001-09-30</p> <p>Coordination and Data Management of the International Arctic Buoy Programme ( IABP ) Ignatius G. Rigor 1013 NE 40th Street Polar Science Center...analyzed geophysical fields. APPROACH Coordination of the IABP falls into the categories of information, resource management, and meeting...the Polar Science Center (PSC) via anonymous ftp. These data and other research products of the IABP are available on the World Wide Web at http</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1017463.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1017463.pdf"><span>Students' Attitudes towards Technology-Enabled Learning: A Change in Learning Patterns? The Case of a Master's Course in Political Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Paunescu, Mihai</p> <p>2013-01-01</p> <p>This article sets to explore the attitudes of higher education students enrolled in a political science programme at Master level towards e-learning facilitated by the introduction of a Moodle platform. The students have been surveyed at the end of public management course in the first semester of the programme asking them to evaluate both the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004IJSEd..26.1269N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004IJSEd..26.1269N"><span>Perceived professional needs of Korean science teachers majoring in chemical education and their preferences for online and on-site training</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noh, Taehee; Cha, Jeongho; Kang, Sukjin; Scharmann, Lawrence C.</p> <p>2004-10-01</p> <p>In this study, we investigated the perceived professional needs of Korean science teachers majoring in chemical education, and examined their preferences for online and on-site inservice teacher training programmes. The results were also compared with those of preservice teachers. Participants were 120 secondary school teachers and 67 preservice teachers, whose majors were either chemical education or science education with emphasis in chemistry. A questionnaire consisting of a modified Science Teacher Inventory of Need and a section concerning respondents' demographic information and their use of the Internet was administered. In contrast to previous studies, the perceived needs of Korean inservice and preservice teachers were found to be very strong in all 30 needs assessment items, and their prominent needs were from all seven categories. Preservice teachers indicated significantly greater needs than inservice teachers on several items. Korean teachers generally tended to prefer online inservice to traditional on-site training programmes, although they still preferred on-site types of programmes in areas such as conducting laboratory sessions and demonstrating manipulative skills. Preferences for online programmes tended to be stronger among preservice teachers than inservice teachers, and among non-veteran teachers than in veteran teachers. Educational implications are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJMES..42..591Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJMES..42..591Y"><span>Improving student learning in calculus through applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.</p> <p>2011-07-01</p> <p>Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the key requirements for STEM majors is a strong foundation in Calculus. To improve student learning in calculus, the EXCEL programme developed two special courses at the freshman level called Applications of Calculus I (Apps I) and Applications of Calculus II (Apps II). Apps I and II are one-credit classes that are co-requisites for Calculus I and II. These classes are teams taught by science and engineering professors whose goal is to demonstrate to students where the calculus topics they are learning appear in upper level science and engineering classes as well as how faculty use calculus in their STEM research programmes. This article outlines the process used in producing the educational materials for the Apps I and II courses, and it also discusses the assessment results pertaining to this specific EXCEL activity. Pre- and post-tests conducted with experimental and control groups indicate significant improvement in student learning in Calculus II as a direct result of the application courses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29204434','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29204434"><span>A qualitative study of patients' experiences of participating in SPACE for COPD: a Self-management Programme of Activity, Coping and Education.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Apps, Lindsay D; Harrison, Samantha L; Mitchell, Katy E; Williams, Johanna E A; Hudson, Nicky; Singh, Sally J</p> <p>2017-10-01</p> <p>The aim of this study was to understand experiences of participation in a supported self-management programme for chronic obstructive pulmonary disease (COPD). There is a wealth of clinical trials examining the outcomes of self-management interventions for individuals with COPD, but current understanding regarding patients' perspectives of such complex interventions is limited. Further insight may help to tailor self-management interventions and maximise patient engagement. Semi-structured interviews were conducted with individuals participating in a self-management programme, SPACE for COPD. Interviews took place at 6 weeks and 6 months following the programme. Data were analysed at each time point using inductive thematic analysis, and subsequently re-examined together. 40 interviews were undertaken and four themes emerged from the analysis: perceptions of the programme; lifestyle changes; social support; and disrupting factors and barriers to maintaining routines. SPACE for COPD was acceptable to participants in this study. The importance of education and social support was emphasised at both time points studied, but there were challenges such as comorbidities, ill health of family members and limited maintenance of exercise behaviours over the longer term. Further consideration of the role of carers and partners may help to improve adherence to self-management programmes once healthcare professional support has stopped.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915564C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915564C"><span>ESA SSA Space Radiation Expert Service Centre: the Importance of Community Feedback</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crosby, Norma; Dierckxsens, Mark; Kruglanski, Michel; De Donder, Erwin; Calders, Stijn; Messios, Neophytos; Glover, Alexi</p> <p>2017-04-01</p> <p>End-users in a wide range of sectors both in space and on the ground are affected by space weather. In the frame of its Space Situational Awareness (SSA) programme (http://swe.ssa.esa.int/) the European Space Agency (ESA) is establishing a Space Weather (SWE) Service Network to support end-users in three ways: mitigate the effects of space weather on their systems, reduce costs, and improve reliability. Almost 40 expert groups from institutes and organisations across Europe contribute to this Network organised in five Expert Service Centres (ESCs) - Solar Weather, Heliospheric Weather, Space Radiation, Ionospheric Weather, Geomagnetic Conditions. To understand the end-user needs, the ESCs are supported by the SSCC (SSA Space Weather Coordination Centre) that offers first line support to the end-users. Here we present the mission of the Space Radiation ESC (R-ESC) (http://swe.ssa.esa.int/space-radiation) and the space domain services it supports. Furthermore, we describe how the R-ESC project complements past and ongoing projects both on national level as well as international (e.g. EU projects), emphasizing the importance of inter-disciplinary communication between different communities ranging from scientists, engineers to end-users. Such collaboration is needed if basic science is to be used most efficiently for the development of products and tools that provide end-users with what they actually need. Additionally, feedback from the various communities (projects) is also essential when defining future projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSEdT..24..580T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSEdT..24..580T"><span>Technology-Enhanced Physics Programme for Community-Based Science Learning: Innovative Design and Programme Evaluation in a Theme Park</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tho, Siew Wei; Chan, Ka Wing; Yeung, Yau Yuen</p> <p>2015-10-01</p> <p>In this study, a new physics education programme is specifically developed for a famous theme park in Hong Kong to provide community-based science learning to her visitors, involving her three newly constructed rides. We make innovative use of digital technologies in this programme and incorporate a rigorous evaluation of the learning effectiveness of the programme. A total of around 200 students from nine local secondary schools participated in both the physics programme and its subsequent evaluation which consists of a combination of research and assessment tools, including pre- and post-multiple-choice tests, a questionnaire survey and an interview as specifically developed for this programme, or adopted from some well-accepted research instruments. Based on the evaluation of students' academic performance, there are two educationally significant findings on enhancing the students' physics learning: (a) traditionally large gender differences in physics performance and interest of learning are mostly eliminated; and (b) a less-exciting ride called the aviator (instead of the most exciting roller-coaster ride) can induce the largest learning effect (or gain in academic performance) amongst teenagers. Besides, findings from the questionnaire survey and interviews of participants are reported to reveal their views, perceptions, positive and negative comments or feedback on this programme which could provide valuable insights for future development of other similar community-based programmes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007xmm..pres....4.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007xmm..pres....4."><span>Planck satellite to be presented to media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2007-01-01</p> <p>Planck will make the most accurate maps yet of the microwave background radiation that fills space. It will be sensitive to temperature variations of a few millionths of a degree and will map the full sky in nine wavelengths. The immediate outcome of the Big Bang and the initial conditions for the evolution in the universe’s structure are the primary target of this important mission. From the results, a great deal more will be learnt not only about the nature and amount of dark matter, the ‘missing mass’ of the universe, but also about the nature of dark energy and the expansion of the universe itself. To address such challenging objectives, Planck will need to operate at very low, stable temperatures. Once in space, its detectors will have to be cooled to temperature levels close to absolute zero (-273.15ºC), ranging from -253ºC to only a few tenths of a degree above absolute zero. The Planck spacecraft thus has to be a marvel of cryotechnology. After integration, Planck will start a series of tests that will continue into early-2008. It will be launched by end-July 2008 in a dual-launch configuration with Herschel, ESA’s mission to study the formation of galaxies, stars and planetary systems in the infrared. Interested media are invited to fill in the reply form below. Note to editors The Planck spacecraft was built by AAS Cannes, the prime contractor, leading a consortium of industrial partners with the AAS industry branch in Turin, Italy, responsible for the satellite’s service module. ESA and the Danish National Space Centre (Copenhagen, Denmark) are responsible for the hardware provision of Planck’s telescope mirrors, manufactured by EADS Astrium (Friedrichshafen, Germany). AAS Cannes is also responsible for the payload module, the platform that hosts the telescope and the two onboard instruments, HFI and LFI. The instruments themselves are being supplied by a consortium of scientists and institutes led by the Institut d'Astrophysique Spatiale at Orsay (France) in the case of HFI, and by the Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) in Bologna (Italy) in that of LFI. There are also numerous subcontractors spread throughout Europe, with several more in the USA. For further information, please contact: ESA Media Relations Office Tel: +33(0)1.53.69.7155 Fax: +33(0)1.53.69.7690 Press event programme 1 February 2007, 10:00 am Alcatel Alenia Space 100 Boulevard du Midi, Cannes (France) 10:00 - 10:05 - Opening address, by Patrick Maute - Head of Optical Observation and Science Programmes - Alcatel Alenia Space, and by Jacques Louet - Head of Science Projects - ESA 10:05 - 10:15 - Herschel/Planck Mission overview, by Thomas Passvogel - Planck Project Manager - ESA 10:15 - 10:25 - Planck satellite, by Jean-Jacques Juillet - Programme Manager - Alcatel Alenia Space 10:25 - 10:35 - The scientific mission, by Jan Tauber - Planck Project Scientist - ESA 10:35 - 10:45 - The High-Frequency Instrument, by Jean-Loup Puget - HFI Principal Investigator 10:45 - 10:55 - The Low-Frequency Instrument, by Reno Mandolesi - LFI Principal Investigator 10:55 - 11:05 - Special guest - Nobel prize winner G.F. Smoot 11:05 - 11:25 - Questions and answers 11:25 - 12:35 - Visit of the integration room to see Planck spacecraft and face-to-face interviews 12:45 - 14:30 - Lunch hosted by Alcatel Alenia Space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AcAau..51..601K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AcAau..51..601K"><span>Science operations planning and implementation for Rosetta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koschny, Detlef; Sweeney, Mark; Montagon, Elsa; Hoofs, Raymond; van der Plas, Peter</p> <p>2002-07-01</p> <p>The Rosetta mission is a cornerstone mission of the Horizon 2000 programme of the European Space Agency. It will be launched to comet 46P/Wirtanen in January 2003. This mission is the first of a series of planetary missions, including Mars Express, Smart-I (to the Moon), and BepiColombo (to Mercury). All these missions have similar requirements for their scientific operations. The Experiments H/W and S/W are developed by Principal Investigators, working at scientific institutes. They are also responsible for the operation of their experiments and for the generation of related operational documentation. The Science Operations Centre (SOC) has the task to consolidate the inputs of the different experimenters and the Lander and ensure that the resulting science operations timeline is free of conflicts. It forwards this timeline to the Mission Operations Centre (MOC) which combines the science operations with the operations of the other spacecraft subsystems and the orbit and attitude of the spacecraft. The MOC is also responsible for uplinking the operational command sequences to the spacecraft and for returning the received telemetry to the user. In a collaboration between the team of the Rosetta Project Scientist at the Research and Science Support Department of ESA/ESTEC and the European Space Operations Centre (ESA/ESOC), a concept for the SOC/MOC and their interfaces was developed for the Rosetta mission. This concept is generic enough to allow its implementation also for the other planetary missions. The design phase is now complete, and implementation is on-going. This paper briefly presents the architecture of the complex ground segment, concentrating on the elements required for planning of scientific operations, and then details the software tools EPS (Experiment Planning System) and PTB (Project Test Bed) which are used in the planning process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AcAau..63..503S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AcAau..63..503S"><span>Strategic considerations in Indian space programme—Towards maximising socio-economic benefits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sridhara Murthi, K. R.; Madhusudan, H. N.</p> <p>2008-07-01</p> <p>Strategic thinking and planning have been the hallmarks of Indian space programme, whose objectives are sharply focused on deriving socio-economic benefits of space technology. The purpose of this paper is to identify various strategies, which played a role in different phases of the programme, contributing to social and economic outcomes and effectiveness. While self-reliant development of technological capacity and evaluation of applications with involvement of users formed the backbone of strategy in the initial phase of the programme, subsequent strategies were centred on development of organisational culture and systems, industry role and promotion of spin offs. Other strategies dealt with the response to challenges inherent in space endeavours in terms of risk management, sustainability, investments and long-term commitments, judicious make or buy decisions, safeguard of sensitive technologies, space commerce and finally harmonising international cooperation with national objectives. The strategies in the programme were consistently driven by a clear-cut vision and objectives to develop and use space technology in diverse areas where space systems become relevant for socio-economic development such as telecommunications and broadcasting, meteorology, disaster management support, remote sensing of natural and anthropogenic phenomena, and positioning and navigation services. This paper synthesises various studies and experiences in India in order to analyse strategies in the face of changes in technology, application needs and international policies. It also examines the effectiveness of these strategies in terms of economic and social costs and benefits. Based on the above analysis, a typical conceptual model for use of space for development is suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10562E..0FK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10562E..0FK"><span>Remote sensing optical instrumentation for enhanced space weather monitoring from the L1 and L5 Lagrange points</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kraft, S.; Puschmann, K. G.; Luntama, J. P.</p> <p>2017-09-01</p> <p>As part of the Space Situational Awareness Programme (SSA), ESA has initiated the assessment of two missions currently foreseen to be implemented to enable enhanced space weather monitoring. These missions utilize the positioning of satellites at the Lagrangian L1 and L5 points. These Phase 0 or Pre-Phase A mission studies are about to be completed and will thereby have soon passed the Mission Definition Review. Phase A studies are planned to start in 2017. The space weather monitoring system currently considers four remote sensing optical instruments and several in-situ instruments to analyse the Sun and the solar wind conditions, in order to provide early warnings of increased solar activity and to identify and mitigate potential threats to society and ground, airborne and space based infrastructure. The suggested optical instruments take heritage from ESA and NASA science missions like SOHO, STEREO and Solar Orbiter, but the instruments are foreseen to be optimized for operational space weather monitoring purposes with high reliability and robustness demands. The instruments are required to provide high quality measurements particularly during severe space weather events. The program intends to utilize the results of the on-going ESA instrument prototyping and technology development activities, and to initiate pre-developments of the operational space weather instruments to ensure the required maturity before the mission implementation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19671160','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19671160"><span>A model for integrating strategic planning and competence-based curriculum design in establishing a public health programme: the UNC Charlotte experience.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thompson, Michael E; Harver, Andrew; Eure, Marquis</p> <p>2009-08-11</p> <p>The University of North Carolina at Charlotte, a doctoral/research-intensive university, is the largest institution of higher education in the Charlotte region. The university currently offers 18 doctoral, 62 master's and 90 baccalaureate programmes. Fall 2008 enrolment exceeded 23,300 students, including more than 4900 graduate students. The university's Department of Health Behavior and Administration was established on 1 July 2002 as part of a transformed College of Health & Human Services. In 2003, the Department initiated a series of stakeholder activities as part of its strategic planning and programmatic realignment efforts. The Department followed an empirically derived top-down/bottom-up strategic planning process that fostered community engagement and coordination of efforts across institutional levels. This process culminated in a vision to transform the unit into a Council on Education for Public Health accredited programme in public health and, eventually, an accredited school of public health. To date, the Department has revised its Master of Science in health promotion into an Master of Science in Public Health programme, renamed itself the Department of Public Health Sciences, launched a Bachelor of Science in Public Health major, laid plans for a doctoral programme, and received accreditation from the Council on Education for Public Health as a public health programme. Furthermore, the campus has endorsed the programme's growth into a school of public health as one of its priorities. It is only through this rigorous and cyclical process of determining what society needs, designing a curriculum specifically to prepare graduates to meet those needs, ensuring that those graduates meet those needs, and reassessing society's needs that we can continue to advance the profession and ensure the public's health. Community stakeholders should be active contributors to programme innovation. Lessons learnt from this process include: being connected to your community and knowing its needs, being responsive to your community, remembering that process is as important as product, and preparing for success. The efforts reported here can be informative to other institutions by exemplifying an integrated top-down/bottom-up process of strategic planning that ensures that a department's degree programmes meet current needs and that students graduate with the competences to address those needs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyW...30g..11J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyW...30g..11J"><span>CERN launches high-school internship programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnston, Hamish</p> <p>2017-07-01</p> <p>The CERN particle-physics lab has hosted 22 high-school students from Hungary in a pilot programme designed to show teenagers how science, technology, engineering and mathematics is used at the particle-physics lab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19531271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19531271"><span>Side effects of problem-solving strategies in large-scale nutrition science: towards a diversification of health.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Penders, Bart; Vos, Rein; Horstman, Klasien</p> <p>2009-11-01</p> <p>Solving complex problems in large-scale research programmes requires cooperation and division of labour. Simultaneously, large-scale problem solving also gives rise to unintended side effects. Based upon 5 years of researching two large-scale nutrigenomic research programmes, we argue that problems are fragmented in order to be solved. These sub-problems are given priority for practical reasons and in the process of solving them, various changes are introduced in each sub-problem. Combined with additional diversity as a result of interdisciplinarity, this makes reassembling the original and overall goal of the research programme less likely. In the case of nutrigenomics and health, this produces a diversification of health. As a result, the public health goal of contemporary nutrition science is not reached in the large-scale research programmes we studied. Large-scale research programmes are very successful in producing scientific publications and new knowledge; however, in reaching their political goals they often are less successful.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28562731','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28562731"><span>[Helminthology according to the philosophy of science of Imre Lakatos].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Orensanz, Martín; Denegri, Guillermo</p> <p>2017-01-01</p> <p>Lakatos's philosophy of science has been used for different branches of biology, however this has not been true for helminthology. Therefore, this article examines the possibility of using his methodology of scientific research programmes (SRP) for reconstructing the history of the discipline of helminthology. It is upheld that the first SRP in biology was inaugurated by Aristotle, and its protective belt included a small group of auxiliary hypotheses referring to helminths. This programme continued up until the 17th century, when two rival programmes in helminthology arose: the internalist and the externalist. After the second half of the 19th century the internalist SRP was abandoned, while the externalist considerably broadened its protective belt during the 20th century. The internalist programme was abandoned due to the crucial experiments of Küchenmeister, which permitted the consolidation of the externalist SRP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=development+AND+socio-economic+AND+development+AND+programmes&pg=3&id=EJ1089660','ERIC'); return false;" href="https://eric.ed.gov/?q=development+AND+socio-economic+AND+development+AND+programmes&pg=3&id=EJ1089660"><span>Accommodating Those Most at Risk. Responding to a Mismatch in Programme Selection Criteria and Foundation Biology Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kirby, Nicola F.; Dempster, Edith R.</p> <p>2015-01-01</p> <p>In South Africa, foundation programmes are a well-established alternative access route to tertiary science study for educationally disadvantaged students. Student access to, and performance in, one such foundation programme has been researched by the authors seeking opportunities to improve student retention. The biology module in particular has…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=enrichment&pg=5&id=EJ908832','ERIC'); return false;" href="https://eric.ed.gov/?q=enrichment&pg=5&id=EJ908832"><span>Diving in and Exploring Curricular Frameworks: The New Zealand Marine Studies Centre Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Riley, Tracy; MacIntyre, Bill; Bicknell, Brenda; Cutler, Steve</p> <p>2010-01-01</p> <p>The New Zealand Marine Studies Centre has developed a programme for secondary gifted and talented students offering hands-on science in the real world. These programmes are designed to include elements of the Enrichment Triad Model (ETM), specifically the three types of enrichment, and, to a lesser degree, some aspects of the Schoolwide Enrichment…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=telecommunication&id=EJ1010990','ERIC'); return false;" href="https://eric.ed.gov/?q=telecommunication&id=EJ1010990"><span>Review and Redesign of the Curriculum of a Masters Programme in Telecommunications Engineering--Towards an Outcome-Based Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gharaibeh, Khaled; Harb, Bassam; Salameh, Haythem Bany; Zoubi, Asem; Shamali, Ahmed; Murphy, Noel; Brennan, Conor</p> <p>2013-01-01</p> <p>This article presents the methodology and results of the curriculum review of the Masters of Science programme in Wireless Communications offered by the Telecommunications Engineering Department at Yarmouk University in Jordan. The review is based on expert opinion collected through questionnaires and meetings about the programme and focuses on…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9911E..0QP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9911E..0QP"><span>Management of the camera electronics programme for the World Space Observatory ultraviolet WUVS instrument</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patel, Gayatri; Clapp, Matthew; Salter, Mike; Waltham, Nick; Beardsley, Sarah</p> <p>2016-08-01</p> <p>World Space Observatory Ultraviolet (WSO-UV) is a major international collaboration led by Russia and will study the universe at ultraviolet wavelengths between 115 nm and 320 nm. The WSO Ultraviolet Spectrograph (WUVS) subsystem is led by a consortium of Russian institutes and consists of three spectrographs. RAL Space is contracted by e2v technologies Ltd to provide the CCD readout electronics for each of the three WUVS channels. The programme involves the design, manufacturing, assembly and testing of each Camera Electronics Box (CEB), its associated Interconnection Module (ICM), Electrical Ground Support Equipment (EGSE) and harness. An overview of the programme will be presented, from the initial design phase culminating in the development of an Engineering Model (EM) through qualification whereby an Engineering Qualification Model (EQM) will undergo environmental testing to characterize the performance of the CEB against the space environment, to the delivery of the Flight Models (FMs). The paper will discuss the challenges faced managing a large, dynamic project. This includes managing significant changes in fundamental requirements mid-programme as a result of external political issues which forced a complete re-design of an existing CEB with extensive space heritage but containing many ITAR controlled electronic components to a new, more efficient solution, free of ITAR controlled parts. The methodology and processes used to ensure the demanding schedule is maintained through each stage of the project will be presented including an insight into planning, decision-making, communication, risk management, and resource management; all essential to the continued success of the programme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5537575','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5537575"><span>Prevent: what is pre-criminal space?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Goldberg, David; Jadhav, Sushrut; Younis, Tarek</p> <p>2017-01-01</p> <p>Prevent is a UK-wide programme within the government's anti-terrorism strategy aimed at stopping individuals from supporting or taking part in terrorist activities. NHS England's Prevent Training and Competencies Framework requires health professionals to understand the concept of pre-criminal space. This article examines pre-criminal space, a new term which refers to a period of time during which a person is referred to a specific Prevent-related safeguarding panel, Channel. It is unclear what the concept of pre-criminal space adds to the Prevent programme. The term should be either clarified or removed from the Framework. PMID:28811915</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJSEd..40..941A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJSEd..40..941A"><span>An experimental study of a museum-based, science PD programme's impact on teachers and their students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aaron Price, C.; Chiu, A.</p> <p>2018-06-01</p> <p>We present results of an experimental study of an urban, museum-based science teacher PD programme. A total of 125 teachers and 1676 of their students in grades 4-8 were tested at the beginning and end of the school year in which the PD programme took place. Teachers and students were assessed on subject content knowledge and attitudes towards science, along with teacher classroom behaviour. Subject content questions were mostly taken from standardised state tests and literature, with an 'Explain:' prompt added to some items. Teachers in the treatment group showed a 7% gain in subject content knowledge over the control group. Students of teachers in the treatment group showed a 4% gain in subject content knowledge over the control group on multiple-choice items and an 11% gain on the constructed response items. There was no overall change in science attitudes of teachers or students over the control groups but we did find differences in teachers' reported self-efficacy and teaching anxiety levels, plus PD teachers reported doing more student-centered science teaching activities than the control group. All teachers came into the PD with high initial excitement, perhaps reflecting its context within an informal learning environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JBIS...65..185C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JBIS...65..185C"><span>The Enzmann Starship: History and Engineering Appraisal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crowl, A.; Long, K. F.; Obousy, R.</p> <p></p> <p>During his student days Robert Duncan-Enzmann imagined a space vehicle design which he depicted in a watercolour painting and apparently dated 1949. In the 1960s he was heavily involved in space-mission design and introduced the concept of a fusion powered interstellar spacecraft design which utilised a 305 m diameter sphere of frozen Deuterium and a long cylindrical habitat/propulsion section joined onto it by a connecting structural column. The spacecraft was to be manned by a small community of people setting out to colonise nearby stars and the entire vessel would have a launch mass of between 3-12 million tons, most of which would be the propellant. Long time space advocate G. Harry Stine, presented the concept to a wider audience via ``Analog Science Fact & Science Fiction '' magazine in 1973. Stine envisioned the Starship to be part of a wider programme of interstellar exploration, beginning in the 1990s. Although the Enzmann Starship is relatively well known in science fiction circles, it is not well known within the interstellar research community and indeed just as little is known about its creator, Robert Enzmann. Very little has been written about the concept in the academic literature and no modern assessment of its engineering credibility exists. This paper sets out to reliably describe what is known about the Enzmann Starship design and also how the idea originated, based upon what is known to date. In this paper the engineering configuration is described, and a performance assessment is given in the context of modern scientific knowledge. Further information on the history and design of the Enzmann Starship is invited so that this concept can take its rightful place in the history of interstellar spacecraft design proposals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10566E..08Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10566E..08Z"><span>MOEMs devices designed and tested for future astronomical instrumentation in space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zamkotsian, Frédéric; Lanzoni, Patrick; Waldis, Severin; Noell, Wilfried; Conedera, Veronique; Fabre, Norbert; Viard, Thierry; Buisset, Christophe</p> <p>2017-11-01</p> <p>Next generation of astronomical instrumentation for space telescopes requires Micro-Opto-Electro- Mechanical Systems (MOEMS) with remote control capability and cryogenic operation. MOEMS devices have the capability to tailor the incoming light in terms of intensity and object selection with programmable slit masks, in terms of phase and wavefront control with micro-deformable mirrors, and finally in terms of spectrum with programmable diffraction gratings. Applications are multi-object spectroscopy (MOS), wavefront correction and programmable spectrographs. We are engaged since several years in the design, realization and characterization of MOEMS devices suited for astronomical instrumentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780063234&hterms=Job+Sharing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DJob%2BSharing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780063234&hterms=Job+Sharing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DJob%2BSharing"><span>A comparison of time-shared vs. batch development of space software</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Forthofer, M.</p> <p>1977-01-01</p> <p>In connection with a study regarding the ground support software development for the Space Shuttle, an investigation was conducted concerning the most suitable software development techniques to be employed. A time-sharing 'trial period' was used to determine whether or not time-sharing would be a cost-effective software development technique for the Ground Based Shuttle system. It was found that time-sharing substantially improved job turnaround and programmer access to the computer for the representative group of ground support programmers. Moreover, this improvement resulted in an estimated saving of over fifty programmer days during the trial period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EJPh...38b5704W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EJPh...38b5704W"><span>Teaching advanced science concepts through Freshman Research Immersion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wahila, M. J.; Amey-Proper, J.; Jones, W. E.; Stamp, N.; Piper, L. F. J.</p> <p>2017-03-01</p> <p>We have developed a new introductory physics/chemistry programme that teaches advanced science topics and practical laboratory skills to freshmen undergraduate students through the use of student-led, bona fide research activities. While many recent attempts to improve college-level physics education have focused on integrating interactive demonstrations and activities into traditional passive lectures, we have taken the idea of active-learning several steps further. Working in conjunction with several research faculty at Binghamton University, we have created a programme that puts undergraduate students on an accelerated path towards working in real research laboratories performing publishable research. Herein, we describe in detail the programme goals, structure, and educational content, and report on our promising initial student outcomes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14...91M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14...91M"><span>The Graduate School of Climate Sciences, University of Bern</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, L.</p> <p>2012-04-01</p> <p>The Graduate School of Climate Sciences, University of Bern, offers a specialised M.Sc. and a Ph.D. study programme in climate sciences. The graduate school has a highly interdisciplinary profile involving not only natural sciences, but also humanities/history, economics and law. The ten participating institutes with a total of 45 academics provide expertise in long-term climate variability, climate modelling, climate reconstruction, predictability of the future climate and extreme events, the impact of climate change on ecosystems and climate risks for society and economy. The graduate school is fully compliant with the Bologna Accords and collaborates closely with the sister institution C2SM at ETH Zurich by, e.g., jointly organised lectures. There are currently 23 master and 37 doctoral students in the programme. These originate from the University of Bern (28 %), from other Swiss universities (30 %) and from foreign universities (42 %). Comprehensive information about the Graduate School of Climate Sciences is available at http://www.climatestudies.unibe.ch . The M.Sc. in Climate Sciences programme (120 ECTS credits) is designed to attract students from all disciplines in natural sciences and offers them a tailor-made curriculum to reach their career aspirations. The students make their own course selection according to their profile envisaged (specialised versus broad education) and ideally already guided by a job perspective. Selecting the courses and the topic of the master thesis they specialise in one of five fields: climate and earth system science; atmospheric science; economics; economic, social and environmental history; statistics. Several courses are organised jointly with public authorities and the private industry, e.g. from experts working in the insurance business, in weather forecasting or in environmental pollution control. This provides the students hands-on experience and contacts to future employers. The master thesis (60 ECTS) involves the students in an ongoing research project and gives them the opportunity to collaborate with experienced scientists in a team. Alternatively, a short thesis (30 ECTS) may be combined with an internship (30 ECTS) at another university, in the private sector or in the administration. A bachelor degree in any field of science at university level (B.A. for specialisation in economics or history) or an equivalent degree is required for admission to the M.Sc. programme. The teaching language is English. The Ph.D. in Climate Sciences is research oriented and consists mainly of 3 to 4 years full time work in a project within one of the institutes involved in the Graduate School of Climate Sciences. The Ph.D. programme is research oriented and has a compulsory module of 12 ECTS credits containing workshops (professional skills), a summer school, an international conference, colloquia, seminars and optionally lectures. The compulsory module gives the Ph.D. students the opportunity to build up their own network in the local and international research community. The Ph.D. thesis is usually written in the form of research articles in international peer reviewed journals. A M.Sc. or an equivalent academic degree is conditional for admission to the Ph.D. programme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.6594J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.6594J"><span>The stars and the birds in a school life</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jokin, Ivo</p> <p>2010-05-01</p> <p>The Stars in a School s Life Astroparty is held every year and its 6st edition was held in this year. Owing to it a lot of new Astronomy clubs are built up at regional level; the party itself rouses interest in Astronomy as a science and as a subject in school as well.When taking part in the party students get more skills both in theory itself and in making watching experiments of space. They learn how to analize and describe such experiments. These activities are not held at schools competitions in Astronomy. The party itself gives a lot of possibilities for carrying out a variety of methodical activities with Physics and Astronomy teachers. We think that this is the way of joining of the children to natural sciences and mastering of sound knowledge and skills. Another important idea of Astro Party is the integration of astronomy with biology, in particular ecology - use of the telescopes for observation of water-floating and water-loving birds. Aims: - Rising students, interest in Astronomy and watching space; - Providing a suitable environment for developing teachers and students creative and intellectual skills; - Exchange of teaching experience. Work , style and methods: innovation methods, team work, workshop, students that proved to be good in Astronomy teach their classmates beginners. The Birds in a School's Life http://www.stella-science.eu/pool_good_practices.php This eBook ‘Science Education in European Schools - Selected Practices from the STELLA Catalogue' provides a sample of selected practices, collected in the scope of the European Lifelong Learning Programme. Project STELLA (Science Teaching in a Lifelong Learning Approach) in order to support educational authorities, school heads and science teachers in fostering and adopting innovative practices in science education. INITIATIVE The aim of the initiative is that of raising young people's interest in learning about the nature of local birdlife including waterfowl as well as those of the surrounding fi elds and city parks and understanding the needs and methods for its preservation. The initiative includes the preparation of feeding racks from materials at hand, observations using binoculars and telescopes, counting the types and numbers of different waterfowl present during midwinter. SUBJECT/S The subject of the initiative is in the fi eld of science - specifi cally biological and environmental science, and involves an interdisciplinary approach to the study of environmental science and ecology. METHODOLOGY As part of the project activity, the behaviour of the birds is both monitored and studied. The working methods employed include talks, lectures, presentations, meetings, round table discussions, excursions, workshops and fi eldwork, i.e. outdoor studies and bird watching as well as eco campaigns. INVOLVEMENT OF PUPILS In the multimedia laboratory pupils arrange the video shots with the help of software programmes for film processing and create short documentary films and video clips. The documentary "Kids and Birds" has been created by the pupils, who worked together in various roles such as script-writers, actors and operators and were directed in this activity by the responsible for the initiative, Prof. Joikin. The documentary was presented at the international film festival "Ecofilms" in Rhodes, Greece.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4314K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4314K"><span>The Bremen International Graduate School for Marine Sciences (GLOMAR) - Postgraduate education with an interdisciplinary focus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klose, Christina</p> <p>2013-04-01</p> <p>The Bremen International Graduate School for Marine Sciences (GLOMAR) provides a dedicated research training programme for PhD students in all fields related the marine realm combined with an exceptional supervision and support programme in a stimulating research environment. The graduate school is part of MARUM - Center for Marine Environmental Sciences which is funded by the Deutsche Forschungsgemeinschaft (DFG) within the frame of the Excellence Initiative by the German federal and state governments to promote top-level research at German universities. GLOMAR hosts approx. 75 PhD students from different research institutions in Bremen and Bremerhaven. 50% of them are German, 50% have an international background. All students are a member of one of the four GLOMAR research areas: (A) Ocean & Climate, (B) Ocean & Seafloor, (C) Ocean & Life and (D) Ocean & Society. Their academic background ranges from the classical natural sciences to law, social and political sciences. The research areas are supervised by research associates who share their experience and offer advice for their younger colleagues. GLOMAR students work in an interdisciplinary and international context. They spend several months at a foreign research institution and are encouraged to actively participate in international conferences and publish their research results in international scientific journals. The services GLOMAR offers for its PhD students include team supervision by a thesis committee, a comprehensive course programme, research seminars and retreats, a family support programme, a mentoring programme for women in science, an ombudsperson and a funding system for conference trips, research residencies and publication costs. The graduate school offers different formats for interdisciplinary exchange within the PhD student community. Monthly research seminars, which are conducted by the GLOMAR research associates, provide an opportunity to discuss research results, practice oral and poster presentations and learn about methods in research fields other than their own. In the framework of two annual young scientist conferences, PhD students can learn how to organize a conference and practice their skills in presenting, discussing, chairing sessions and building their own network within the community of young scientists. Introductory and expert training courses cover a wide range of topics from different disciplines. More information about the graduate school and its programme can be found on the GLOMAR web page: http://www.marum.de/en/GLOMAR.html</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AN....331.1065D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AN....331.1065D"><span>Asteroseismology of OB stars with CoRoT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Degroote, P.; Aerts, C.; Samadi, R.; Miglio, A.; Briquet, M.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Michel, E.</p> <p>2010-12-01</p> <p>The CoRoT satellite is revolutionizing the photometric study of massive O-type and B-type stars. During its long runs, CoRoT observed the entire main sequence B star domain, from typical hot β Cep stars, via cooler hybrid p- and g-mode pulsators to the SPB stars near the edge of the instability strip. CoRoT lowers the sensitivity barrier from the typical mmag-precision reached from the ground, to the μmag-level reached from space. Within the wealth of detected and identified pulsation modes, relations have been found in the form of multiplets, combination of frequencies, and frequency- and period spacings. This wealth of observational evidence is finally providing strong constraints to test current models of the internal structure and pulsations of hot stars. Aside from the expected opacity driven modes with infinite lifetime, other unexpected types of variability are detected in massive stars, such as modes of stochastic nature. The simultaneous observation of all these light curve characteristics implies a challenge for both observational asteroseismology and stellar modelling. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA243508','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA243508"><span>Summary of Professional Activities, Center for Intelligence and Special Programs. 1990</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-06-01</p> <p>Interest History of Science American Society for Group on Information (U.K.) Non-Destructive Testing RetrievalCogtive Science Society American Society for...Apple Programmers and Information Systems Science Developers Association i 1990 Professional Summary of Societies Professional Activities History of Science Society</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED499656.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED499656.pdf"><span>Space Science Projects. LC Science Tracer Bullet. TB 06-3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Shaw, Loretta, Comp.</p> <p>2006-01-01</p> <p>Space science, or the space sciences, are fields of science that are concerned with the study or utilization of outer space. There are several major fields of space science including astronomy, exobiology, space transport, and space exploration and colonization. In addition, space sciences impact or are related to many other fields, from the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013RScEd..43..457B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013RScEd..43..457B"><span>Frequency and Efficacy of Talk-Related Tasks in Primary Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braund, Martin; Leigh, Joanne</p> <p>2013-04-01</p> <p>Pupil talk and discussion are seen as having important social and cognitive outcomes. In science classes, pupils' collaborative talk supports the construction of meaning and helps examine the status of evidence, theory and knowledge. However, pupil interactive talk in groups is rare in science lessons. The research reported is part of a project to increase the amount of pupil-pupil talk in primary schools through a programme of teaching and professional development. Pupils' self-reports of the frequency and learning efficacies of talk related activities in science lessons were collected before and after a programme of teaching in 24 schools in one of the most socially and educationally deprived areas of England. Findings showed pupils valued talking about their ideas over listening to those of other pupils. Science talk frequency (STF) was closely correlated with science talk efficacy (STE) and both were positively correlated with pupils' attitudes to school science. Analysis of covariance (ANCOVA) of the correlation of STF with STE showed values were independent of gender and ability but that school experience was a significant factor. After the teaching programme and, contrary to expectations, the frequency of talk activities in science lessons appeared to have decreased but varied according to class grades. The degree of correlation between STF and STE was stronger after the teaching in over half of the schools. Schools where STF/STE strengthened most as a result of teaching were those involved in an additional initiative to use modelled talk related to industrial contexts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28151584','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28151584"><span>Can a peri-rectal hydrogel spaceOAR programme for prostate cancer intensity-modulated radiotherapy be successfully implemented in a regional setting?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Te Velde, Bridget L; Westhuyzen, Justin; Awad, Nader; Wood, Maree; Shakespeare, Thomas P</p> <p>2017-08-01</p> <p>The aim of this study was to investigate whether the implementation of a hydrogel spacer (SpaceOAR) programme for patients treated with 81 Gy prostate intensity-modulated radiotherapy (IMRT) in a regional setting can reduce rectal doses and toxicity. In this retrospective study, 125 patients with localised prostate cancer treated between April 2014 (programme commencement) and June 2015 were compared: 65 with SpaceOAR (inserted by five different urologists) and 60 patients treated over the same time period without SpaceOAR. Patients were treated with 81 Gy in 45Fx of IMRT over 9 weeks. Planning aims included restricting rectal doses to V40 Gy < 35%, V65 Gy < 17%, V75 Gy < 10%. Acute toxicity was assessed weekly during radiotherapy and at 12 weeks. Rectal volume parameters were all significantly lower in the SpaceOAR group, with an associated reduction in acute diarrhoea (13.8% vs 31.7%). There were no significant differences in the very low rates of acute and late faecal incontinence or proctitis, however, there was a trend towards increased haemorrhoid rate in the SpaceOAR group (11.7% vs 3.1%, P = 0.09). A SpaceOAR programme in a regional setting with urologists performing low volumes of insertions (<1 per month on average) is of clinical benefit, and was associated with significantly lower radiation doses to the rectum and lower rates of acute diarrhoea. © 2017 The Royal Australian and New Zealand College of Radiologists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RScEd.tmp...79M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RScEd.tmp...79M"><span>Investigating the Longer-Term Impact of the CREST Inquiry-Based Learning Programme on Student Self-regulated Processes and Related Motivations: Views of Students and Teachers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moote, Julie</p> <p>2017-07-01</p> <p>This study investigates the impact of participation in the CREativity in Science and Technology (CREST) programme on student self-regulated processes and related motivations. The CREST scheme, a student-run science project managed by the British Science Association, is currently being implemented in schools across the UK to increase student engagement and motivation in science. Through implementing a rigorous quasi-experimental research design using two intervention conditions and one control group with immediate as well as 3-month delayed post-test data, the results documented both the immediate and longer-term positive impact of CREST participation on students' self-reported levels of self-regulation. The present study also investigates changes in teachers' perceptions of students' self-regulated learning through CREST programme participation. Group differences regarding changes in student self-reported self-regulation were not matched when looking at the teacher-reported self-regulated learning results at both immediate post-test and delayed post-test. These discrepancies are discussed in relation to analyses conducted on the other motivational constructs measured.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJSEd..39.2209C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJSEd..39.2209C"><span>Engineering design skills coverage in K-12 engineering program curriculum materials in the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chabalengula, Vivien M.; Mumba, Frackson</p> <p>2017-11-01</p> <p>The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22828733','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22828733"><span>Transforming research for food and health in Europe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCarthy, M</p> <p>2012-10-01</p> <p>Eating causes up to a quarter of premature deaths from chronic diseases in Europe through poor diet and excess consumption. FAHRE (Food and Health Research in Europe) was funded to determine needs and gaps in research structures and programmes. Most food research links towards agriculture and the environmental sciences, whereas most health research links towards clinical diseases, biochemical pathways and biology. Research on food and health together includes food safety research addressing biological and chemical contaminants, and biotechnology research supporting clinical nutrition. Research for healthy eating must draw on social and behavioural sciences for studies of policy, regulation and interventions. The food industry, across production, retail and catering, must be part of the research programme, and civil society. Better coordination and improved levels of funding are needed in the coming European research programme 'Horizon 2020', and national programmes linked in the Joint Programming Initiative. Transforming the research agenda can give great benefits to Europe's citizens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMSM53B..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMSM53B..05L"><span>ESA SSA Programme in support of Space Weather forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luntama, J.; Glover, A.; Hilgers, A. M.</p> <p>2010-12-01</p> <p>In 2009 European Space Agency (ESA) started a new programme called Space Situational Awareness (SSA) Preparatory Programme. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The SSA Preparatory Program will establish the initial elements that will eventually lead into the full deployment of the European SSA services. The SWE Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010 will include a selected subset of these services based on pre-existing space weather applications and services in Europe. This paper will present the key characteristics of the SSA SWE system that is currently being designed. The presentation will focus on the system characteristics that support space weather forecasting and the related services. The presentation will show results from the analysis of the existing European assets and the identified development needs in the mid and long term future to ensure forecasting capability for the services requested the by SSA SWE users. The analysis covers the future SSA SWE space segment and the service development needs for the ground segment.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2608232','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2608232"><span>Behavioural science at the Auckland Medical School: introduction and evaluation of a revised programme.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raeburn, J M; Dubignon, J M; Grant, V J; Richmond, D E</p> <p>1989-12-13</p> <p>This paper provides an overview of developments in the Auckland Medical School behavioural science programme. From 1984 to 1987, an entirely new five year course was phased in, its design based on a survey of 165 clinical teachers. This course has eight topic streams oriented towards producing a behaviourally knowledgeable and skilled clinician. Evaluation of the course shows good acceptance by students. Recent and planned modifications to the course are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=mathematics&pg=6&id=EJ1143703','ERIC'); return false;" href="https://eric.ed.gov/?q=mathematics&pg=6&id=EJ1143703"><span>Pre-Service Science Teachers' Perceptions of Mathematics Courses in a Science Teacher Education Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Incikabi, Lutfi; Serin, Mehmet Koray</p> <p>2017-01-01</p> <p>Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245d2075M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245d2075M"><span>Shaping space programme as a tool for educating youth about architecture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marczak, Piotr</p> <p>2017-10-01</p> <p>The Polish Architectural Policy’s vision of a systematic promotion of spatial culture has made its way into the national curriculum for 2009 - 2016 designed for various stages of child and teenager education. The objective of this effort was to furnish a basis for a system of architectural education which allows teaching society to be more conscious in their decisions as to spatial order with the effect of improving the quality of our living space. Educating individuals to engage consciously in activities related to the protection of space and transformations taking place within that space requires an understanding of basic issues connected with space, the nature of space and the interrelations of various elements which form it. The “Shaping space” programme under the patronage of the Chamber of Polish Architects is one of the tools dedicated to students of lower and higher secondary schools, designed to assist teachers as architectural educators. The aim of this paper is to present the results of a survey related to the implementation of the programme in Lower Secondary School 3 in Malbork in the years 2013-2016. The programme involved observation of students (of grades 1 to 3) in architecture-oriented classes, assistance for the teacher in the class rooms well as an evaluation of the usefulness of educational materials. A number of problems became evident during the implementation of the “Shaping space” programme which is now available in book form. The size of the book is large enough to discourage any potential readers. The subject matter of the book is not suitable for the intended age group (age: 13-16). Another issue was the teacher’s suitability to conduct this type of class. Class observation in grades 1-3 of the lower secondary school and discussions with teachers in charge of that programme served as a basis for developing our own tools and materials in the form of multimedia presentations, templates and lesson scenarios designed to convey and put in order the knowledge related to spatial planning. The conclusions drawn based on these observations have been used in classes at the Faculty of Architecture of the Gdansk University of Technology with a group of students in the 3rd semester of their MA studies, who have helped to prepare auxiliary materials for teachers conducting this type of programmes in primary schools. The joint effort has produced a dictionary entitled Pomeranian ABC of Space, which is designed as a tool for teachers in their own work related to architectural education.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080037796&hterms=programmable&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dprogrammable','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080037796&hterms=programmable&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dprogrammable"><span>High Contrast Programmable Field Masks for JWST NIRSpec</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kutyrev, Alexander S.</p> <p>2008-01-01</p> <p>Microshutter arrays are one of the novel technologies developed for the James Webb Space Telescope (JWST). It will allow Near Infrared Spectrometer (NIRSpec) to acquire spectra of hundreds of objects simultaneously therefore increasing its efficiency tremendously. We have developed these programmable arrays that are based on Micro-Electro Mechanical Structures (MEMS) technology. The arrays are 2D addressable masks that can operate in cryogenic environment of JWST. Since the primary JWST science requires acquisition of spectra of extremely faint objects, it is important to provide very high contrast of the open to closed shutters. This high contrast is necessary to eliminate any possible contamination and confusion in the acquired spectra by unwanted objects. We have developed and built a test system for the microshutter array functional and optical characterization. This system is capable of measuring the contrast of the microshutter array both in visible and infrared light of the NIRSpec wavelength range while the arrays are in their working cryogenic environment. We have measured contrast ratio of several microshutter arrays and demonstrated that they satisfy and in many cases far exceed the NIRSpec contrast requirement value of 2000.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=programme+AND+development&id=EJ1098220','ERIC'); return false;" href="https://eric.ed.gov/?q=programme+AND+development&id=EJ1098220"><span>Teachers' Experience from a School-Based Collaborative Teacher Professional Development Programme: Reported Impact on Professional Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Svendsen, Bodil</p> <p>2016-01-01</p> <p>The aim of this study was to find out how science teachers who have participated in a one-year school-based collaborative teacher professional development programme, perceive the programme's impact on their professional development. Constant comparative analysis was used on data from three schools to generate the findings in this study. The…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=open+AND+book+AND+management&pg=2&id=EJ808690','ERIC'); return false;" href="https://eric.ed.gov/?q=open+AND+book+AND+management&pg=2&id=EJ808690"><span>Open-Book Tests to Complement Assessment-Programmes: Analysis of Open and Closed-Book Tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Heijne-penninga, M.; Kuks, J. B. M.; Schonrock-adema, J.; Snijders, T. A. B.; Cohen-schotanus, J.</p> <p>2008-01-01</p> <p>Today's health sciences educational programmes have to deal with a growing and changing amount of knowledge. It is becoming increasingly important for students to be able to use and manage knowledge. We suggest incorporating open-book tests in assessment programmes to meet these changes. This view on the use of open-book tests is discussed and the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15225986','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15225986"><span>Current status of medical and veterinary entomology in France: endangered discipline or promising science?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cuisance, Dominique; Antoine Rioux, Jean</p> <p>2004-09-01</p> <p>Following alarming statements (French Senate, Académie des Sciences) on the present situation concerning entomology and systematics in France, the Conseil Général Vétérinaire designated one of us (D.C.) to carry out a survey on the status of medical and veterinary entomology (MVE) with respect to research orientations and university curricula. Around 100 participants, including scientists, teachers and several directors of research and educational bodies, were interviewed and filled in questionnaires for this survey. On the basis of the results, it was concluded that the deterioration of MVE in France is associated with: (1) the hasty reorganisation of training and research in the life sciences, leading to the disappearance of several disciplines. Hence, the postgraduate DEA degree in entomology was eliminated, and even the name 'entomology' no longer appears in teaching programmes or on research contracts; (2) France's withdrawal from action research programmes in developing countries. Although these programmes were efficient in controlling outbreaks of major endemic diseases, integrated pest and vector management programmes have been replaced by basic health care ('Health for everyone in 2000') and vaccination programmes; (3) the general shift from field to laboratory research, focused mainly on molecular mechanisms. The survey results confirmed generally acknowledged trends concerning many points and highlighted several specific problems, such as the disappearance of systematics experts. Several potential solutions are proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000SPIE.4109....1P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000SPIE.4109....1P"><span>Why advanced computing? The key to space-based operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phister, Paul W., Jr.; Plonisch, Igor; Mineo, Jack</p> <p>2000-11-01</p> <p>The 'what is the requirement?' aspect of advanced computing and how it relates to and supports Air Force space-based operations is a key issue. In support of the Air Force Space Command's five major mission areas (space control, force enhancement, force applications, space support and mission support), two-fifths of the requirements have associated stringent computing/size implications. The Air Force Research Laboratory's 'migration to space' concept will eventually shift Science and Technology (S&T) dollars from predominantly airborne systems to airborne-and-space related S&T areas. One challenging 'space' area is in the development of sophisticated on-board computing processes for the next generation smaller, cheaper satellite systems. These new space systems (called microsats or nanosats) could be as small as a softball, yet perform functions that are currently being done by large, vulnerable ground-based assets. The Joint Battlespace Infosphere (JBI) concept will be used to manage the overall process of space applications coupled with advancements in computing. The JBI can be defined as a globally interoperable information 'space' which aggregates, integrates, fuses, and intelligently disseminates all relevant battlespace knowledge to support effective decision-making at all echelons of a Joint Task Force (JTF). This paper explores a single theme -- on-board processing is the best avenue to take advantage of advancements in high-performance computing, high-density memories, communications, and re-programmable architecture technologies. The goal is to break away from 'no changes after launch' design to a more flexible design environment that can take advantage of changing space requirements and needs while the space vehicle is 'on orbit.'</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26916809','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26916809"><span>Health education programmes to improve foot self-care practices and foot problems among older people with diabetes: a systematic review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmad Sharoni, Siti Khuzaimah; Minhat, Halimatus Sakdiah; Mohd Zulkefli, Nor Afiah; Baharom, Anisah</p> <p>2016-09-01</p> <p>To assess the effectiveness of health education programmes to improve foot self-care practices and foot problems among older people with diabetes. The complications of diabetes among older people are a major health concern. Foot problems such as neuropathy, ulcer and ultimately amputation are a great burden on older people with diabetes. Diabetes foot education programmes can influence the behaviour of older people in practising foot self-care and controlling the foot problems. However, the educational approaches used by the educators are different. Therefore, it is important to assess the education programmes from various evidence-based practices. Six databases, EBSCOhost medical collections (MEDLINE, CINAHL, Psychology and Behavioral Sciences Collection), SAGE, Wiley Online Library, ScienceDirect, SpringerLink and Web of Science, were used to search for articles published from January 2000 to March 2015. The search was based on the inclusion criteria and keywords including 'foot', 'care' and 'diabetes'. Fourteen studies were assessed and reviewed in the final stage. Health education programmes varied according to their design, setting, approach, outcome measured and results. Foot assessment, verbal and written instructions and discussion were proved to improve the foot self-care and foot problems. Subsequent follow-ups and evaluations had a significant effect. An improvement was observed in foot self-care scores and foot problems (such as neuropathy, foot disability, lesion, ulcer, tinea pedis and callus grade) after implementation of the health education programme. The findings of this study support the claim that a health education programme increases the foot self-care scores and reduces the foot problems. However, there were certain methodological concerns in the reviewed articles, indicating the need for further evaluation. In future, researchers and practitioners must implement a vigorous education programme focusing on diabetes foot self-care among the older population. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25985226','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25985226"><span>[Sustainable Implementation of Evidence-Based Programmes in Health Promotion: A Theoretical Framework and Concept of Interactive Knowledge to Action].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rütten, A; Wolff, A; Streber, A</p> <p>2016-03-01</p> <p>This article discusses 2 current issues in the field of public health research: (i) transfer of scientific knowledge into practice and (ii) sustainable implementation of good practice projects. It also supports integration of scientific and practice-based evidence production. Furthermore, it supports utilisation of interactive models that transcend deductive approaches to the process of knowledge transfer. Existing theoretical approaches, pilot studies and thoughtful conceptual considerations are incorporated into a framework showing the interplay of science, politics and prevention practice, which fosters a more sustainable implementation of health promotion programmes. The framework depicts 4 key processes of interaction between science and prevention practice: interactive knowledge to action, capacity building, programme adaptation and adaptation of the implementation context. Ensuring sustainability of health promotion programmes requires a concentrated process of integrating scientific and practice-based evidence production in the context of implementation. Central to the integration process is the approach of interactive knowledge to action, which especially benefits from capacity building processes that facilitate participation and systematic interaction between relevant stakeholders. Intense cooperation also induces a dynamic interaction between multiple actors and components such as health promotion programmes, target groups, relevant organisations and social, cultural and political contexts. The reciprocal adaptation of programmes and key components of the implementation context can foster effectiveness and sustainability of programmes. Sustainable implementation of evidence-based health promotion programmes requires alternatives to recent deductive models of knowledge transfer. Interactive approaches prove to be promising alternatives. Simultaneously, they change the responsibilities of science, policy and public health practice. Existing boundaries within disciplines and sectors are overcome by arranging transdisciplinary teams as well as by developing common agendas and procedures. Such approaches also require adaptations of the structure of research projects such as extending the length of funding. © Georg Thieme Verlag KG Stuttgart · New York.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Issues+AND+teaching+AND+learning+AND+science&pg=4&id=EJ1012000','ERIC'); return false;" href="https://eric.ed.gov/?q=Issues+AND+teaching+AND+learning+AND+science&pg=4&id=EJ1012000"><span>Science Teaching and Learning Activities and Students' Engagement in Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hampden-Thompson, Gillian; Bennett, Judith</p> <p>2013-01-01</p> <p>The purpose of this analysis is to describe the variation in students' reports of engagement in science across science teaching and learning activities. In addition, this study examines student and school characteristics that may be associated with students' levels of engagement in science. Data are drawn from the Programme for International…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JBIS...67..460C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JBIS...67..460C"><span>The Ethical Implications of Cultural Intervention by Space-faring Civilizations -- What Science Fiction Has to Say</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ciupa, M.</p> <p></p> <p>Science fiction (Scifi) plays out the concerns of our possible scientistic futures; it is a source for exploring the deep rooted psychological concerns of mankind with science and the humanities. In this paper it is proposed Scifi is a valid source of hypotheses to examine, not as "evidence", but as candidate ­ often cautionary ­ notions, i.e., scenarios to be studied. Scifi represents a kind of Jungian mythological based story-telling, putting forward tales that express our conscious/unconscious concerns. Thus, when looking into ethical questions like, "where will techno-progressive futures take us?", we import into them these archetypes, hopes and fears, as a result they frequently reappear as familiar tropes. In this respect it is appropriate not to ignore them, but to openly challenge/appreciate them: to see what scenarios are indeed likely and how they may impact us reciprocally. This paper examines some of these aspects, and provides examples of how they are represented in the Scifi genre, in particular with consideration of the ethical implications of cultural intervention by space-faring civilizations. Given the specific analysis/examples provided, it concludes with an ethical scenario analysis (a dialectic argument), within the limiting conditions of the Drake Equation, Fermi Paradox and Cultural History. It comments on the potential existential risk of the Active SETI programmes recently initiated, indeed the need for an ethical exosociological review of all proposed Interstellar projects that express an "Intervention-Propensity".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006eso..pres...32.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006eso..pres...32."><span>Catherine Cesarsky elected President of the International Astronomical Union and Ian Corbett elected Assistant General Secretary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2006-08-01</p> <p>The General Assembly of the International Astronomical Union (IAU), meeting in Prague (Czech Republic), has elected the ESO Director General, Dr. Catherine Cesarsky, as President for a three-year period (2006-2009). The IAU is a body of distinguished professional astronomers, founded in 1919 to promote and safeguard the science of astronomy in all its aspects through international cooperation. It now has almost 10 000 individual members drawn from all continents. Dr. Cesarsky is the first woman to receive this high distinction. At the same General Assembly, Dr. Ian Corbett, ESO's Deputy Director General, was elected Assistant General Secretary for 2006-2009, with the expectation of becoming General Secretary in 2009-2012. ESO PR Photo 32/06 ESO PR Photo 32/06 The New IAU Officers Prof. Ron Ekers, the outgoing IAU President said: "The past few years have been highly productive for astronomy, with many discoveries giving new insights into our Universe which have excited scientists and general public alike. Catherine Cesarsky is internationally honoured as a scientist, and I am delighted that she has agreed to serve the IAU as President. She has already given invaluable service to the IAU and I am confident that she will provide outstanding leadership as President." "It is a great honour and a pleasure for me to be President of the International Astronomical Union for the next three years, especially in view of the proposed International Year of Astronomy in 2009, in which the IAU will play a leading role as a catalyst and a coordinator," said Catherine Cesarsky. "I am very much looking forward to working with my colleagues in the IAU to ensure that this is a great success." Dr. Cesarsky, ESO Director General since 1999, is known for her successful research activities in several central areas of modern astrophysics. She first worked on the theory of cosmic ray propagation and acceleration, and galactic gamma-ray emission. Later, she led the design and construction of the ISOCAM camera onboard the Infrared Space Observatory (ISO) of the European Space Agency (ESA), and the ISOCAM Central Programme that studied the infrared emission from many different galactic and extragalactic sources. This has led to new and exciting results on star formation and galactic evolution, and in the identification of the sources providing the bulk of the energy in the Cosmic Infrared Background. Dr. Cesarsky is author of more than 250 scientific papers. As ESO Director General, she has ensured that ESO is now accepted as the leading ground based observatory with its unique Very Large Telescope (VLT) and its associated interferometer (the VLTI). She has headed the European involvement in the international Atacama Large Millimeter Array (ALMA) project, due for completion in 2012. She is now leading the efforts by the European astronomy community to define the European Extremely Large Telescope (E-ELT), expected to be operational well before the end of the next decade. Dr. Cesarsky received the COSPAR (Committee on Space Research) Space Science Award in 1998 and is member of several renowned national and international Science Academies. She is married and has two children. Dr. Ian Corbett came to ESO from the UK Particle Physics and Astronomy Research Council (PPARC) in 2001. He started his research in particle physics and moved into astronomy about 25 years ago, initially with involvement in the UK telescopes on Hawaii, La Palma, and Australia, and then with Gemini and the UK space science programme. He has represented the UK on a large number of international bodies concerned with scientific collaboration. With ESO he has been particularly concerned with ALMA. At the same General Assembly, the IAU choose Dr. Robert Williams of the Space Telescope Science Institute as President-Elect and Prof. Karel A. van der Hucht of SRON, Netherlands, as General Secretary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.3900S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.3900S"><span>Education in astronomy and solar-terrestrial relations in science research environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoeva, Penka; Stoev, Alexey</p> <p></p> <p>In recent years, more and more attention is paid to educational programmes, which are closely connected with the process of scientific research. Such programmes are developed in collab-oration and included in the schools, universities and scientific institutes in Bulgaria. They are also used in the organization of public events aimed to demonstrate beauty, relevance and significance of Space and Earth science to the whole world. During the last four years, So-lar-Terrestrial Influences Institute of the Bulgarian Academy of Sciences, and the Yuri Gagarin Public Astronomical Observatory and Planetarium, Stara Zagora succeeded to build an ex-cellent partnership, working on the International Heliophysical year and International Year of Astronomy -global efforts initiated by the UNESCO and the International Astronomical Union (IAU) to help the citizens of the world rediscover their place in the Universe. They organized and tutored all the Astronomical Observatories and Planetaria, and teachers from all around Bulgaria to participate in the world initiatives Solar Week, Sun-Earth Day,Yuri's Night, World Astronomy day and World Space week, and use them in the process of education and public outreach. After the official closing of the International Heliophysical year, the IHY follow-on activities in Bulgaria continued and were devoted to the International Year of Astronomy 2009. A lot of lectures, public talks and exhibitions have been organized. Stara Zagora became a host of IHY Space Weather Monitor -SID (Sudden Ionospheric Disturbances), numerous of educational materials have been adapted and translated in Bulgarian. Cycle of lectures "Epock of Great astronomical discoveries", devoted to the International Year of Astronomy was given in April 2009 in the Stara Zagora Art Gallery. Participation in the cornerstone projects of the International Year of Astronomy 2009 was organized: "100 hours of Astronomy" -ob-servations with small telescopes in the period of 5 -9 April 2009 -more than 5000 people were happy to observe the Sun, Moon, Venus and other celestial objects; "The Galileoscope"; "Galilean Nights" -encourages everybody to go out to the streets and observe the cosmos; "Dark Skies Awareness" -Measuring of the light pollution level above the region of Stara Zagora; "Astronomy and World Heritage" -archaeoastronomical research of megalithic mon-uments and sanctuaries -examples of ancient observatories for observations of solar extreme rises, sets and meridional culminations; history of the first modern astronomical observatory in Bulgaria; "Galileo Teacher Training Program" -Teaching the teachers. At the beginning of every school year teacher-training course is conducted on astronomy and astrophysics. This year they will actively use telescopes to observe the sky with students; "Universe Awareness" -a lot of games and observations, modeling, exhibitions and parties are organized. "From Earth to the Universe" Exhibitions of astronomical photographs from space and ground based telescopes. Astronomy Olympiads -scientific teaching is improved when the students engaged in doing real science on real data. Fifteen years we participate in the International Astronomy Olympiad and our students win medals. Observarion of solar eclipses is an example of educa-tion in science research environment. We were happy to observe the longest for the last 2000 years total solar eclipse on July 22, 2009, in TianHuangPing, China, at 900m above the sea level. Immediately after the end of this unique phenomenon, images of the eclipsed Sun were sent in Bulgaria. Cooperations -we have good international and national cooperations with a lot of Institutes, Universities, organizations and mass media -radio, TV, magazines, news-papers Information and press conferences about the events have been regularly made available for journalists. With the experience we gained from the IHY and IYA initiatives, being a host of a SID Monitor, we focus on the new International Space Weather Initiative (ISWI) aimed to continue the study of universal processes in the solar system and to contribute to understanding the impacts of Space Weather on Earth and the near-Earth environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26703923','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26703923"><span>An economic evaluation of a self-management programme of activity, coping and education for patients with chronic obstructive pulmonary disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dritsaki, Melina; Johnson-Warrington, Vicki; Mitchell, Katy; Singh, Sally; Rees, Karen</p> <p>2016-02-01</p> <p>The aim was to undertake a cost-utility analysis of a self-management programme of activity, coping and education (SPACE) for chronic obstructive pulmonary disease (COPD). The analysis was conducted alongside a six-month randomized controlled trial in 30 primary care settings. The economic analysis used data from 184 patients with confirmed diagnosis of COPD, forced expiratory volume in one second/forced vital capacity ratio <0.7 and with grade 2-5 on the Medical Research Council dyspnoea scale. Participants received either a self-management programme consisting of an education manual (SPACE for COPD) and consultation or usual care. Six-month costs were estimated from the National Health Service and Personal Social Services perspective and quality-adjusted life years (QALYs) were calculated based on patient responses at baseline and six months.The mean difference in costs between usual care and SPACE FOR COPD programme was -£27.18 (95% confidence interval (CI); -£122.59 to £68.25) while mean difference in QALYs was -0.10 (95% CI; -0.17 to -0.02). The results suggest that the intervention is more costly and more effective than usual care. The probability of the intervention being cost-effective was 97% at a threshold of £20,000/QALY gained. We conclude that the SPACE FOR COPD programme is cost-effective compared to usual care. © The Author(s) 2015.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28083398','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28083398"><span>Leadership as a Health Research Policy Intervention: An Evaluation of the NIHR Leadership Programme (Phase 2).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marjanovic, Sonja; Cochrane, Gavin; Manville, Catriona; Harte, Emma; Chataway, Joanna; Jones, Molly Morgan</p> <p>2016-01-29</p> <p>In early 2012, the National Institute for Health Research (NIHR) leadership programme was re-commissioned for a further three years following an evaluation by RAND Europe. During this new phase of the programme, we conducted a real-time evaluation, the aim of which was to allow for reflection on and adjustment of the programme on an on-going basis as events unfold. This approach also allowed for participants on the programme to contribute to and positively engage in the evaluation. The study aimed to understand the outputs and impacts from the programme, and to test the underlying assumptions behind the NIHR Leadership Programme as a science policy intervention. Evidence on outputs and impacts of the programme were collected around the motivations and expectations of participants, programme design and individual-, institutional- and system-level impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002iaf..confE.886B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002iaf..confE.886B"><span>Small Satellites and the Nigerian National Space Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borroffice, Robert; Chizea, Francis; Sun, Wei; Sweeting, Martin, , Sir</p> <p>2002-01-01</p> <p>Space technology and access to space have been elusive to most developing countries over the last half of the 21st century, which is attributed to very low par capital income and the lack of awareness of policy/decision makers about the role of space technology in national development. Space technology was seen as very expensive and prestigious, meant only for the major industrialized countries, while the developing countries should focus on building their national economy and providing food, shelter and other social amenities for their ever-growing populations. In the last decade, the trend has changed with many developing countries embracing spaced technology as one of the major ways of achieving sustainable development. The present trend towards the use of small satellites in meeting national needs has aided this transition because, apart from the small size, they are cheaper to build and to launch, with shorter development time, lower complexity, improved effectiveness and reduced operating costs. This in turn has made them more affordable and has opened up new avenues for the acquisition of satellite technology. The collaborative work between National Space Research and Development Agency of Nigeria (NASRDA) and Surrey Satellite and Technology Limited (SSTL) is a programme aimed at building two small satellites as a way of kick- starting the national space programme. The first project, NigeriaSAT-1, is an enhanced microsatellite carrying Earth observation payloads able to provide 32 metre GSD 3 band multispectral images with a 600km swath width. NigeriaSAT-1 is one of six microsatellites forming the Disaster Monitoring Constellation (DMC) alongside microsatellites contributed by Algeria, China, Turkey, Thailand and UK. Through participation in this international constellation, Nigeria will be able to receive images with a daily revisit worldwide. The EO images generated by NigeriaSAT-1 and the partner microsatellites will be used for providing rapid coverage of natural and man-made disasters but will also be used for monitoring rapidly changing and dynamic aspect of agriculture, the environment, pipeline oil spillages and other national remote sensing requirements. Commercial exploitation of this unique 24hr revisit EO data is planned to offset the government investment. The second national project is NigeriaSAT-2, which is a geostationary communications minisatellite that has been selected specifically to address the lack of communications infrastructure in Nigeria. Both NigeriaSAT-1 and NigeriaSAT-2 projects are being carried out in co-operation with the Surrey Space Centre (UK), combined with a detailed space know-how transfer and training to build up an indigenous Nigeria capability in space technology, EO and communications. While the acquisition and development space technology is the prime focus of the national space programme, an application center, education center and various space research centers are being formed to draw the maximum benefit of space activities for Nigeria. The paper will present the experience of Nigeria in examining the cost/benefit of an affordable space programme based upon small satellites with real applications that will benefit the people of the country. The Nigerian space policy and programme and its first two small satellite projects (NigeriaSAT-1/DMC and NigeriaSAT-2/GEMINI) will also be presented. This paper focuses on how a developing country can take advantage of a cheap and efficient means of gaining access to space and using space technology in achieving its socio-economic development plans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=european+AND+union&pg=7&id=ED538881','ERIC'); return false;" href="https://eric.ed.gov/?q=european+AND+union&pg=7&id=ED538881"><span>The Citizen's Effect: 25 Features about the Europe for Citizens Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Reding, Viviane</p> <p>2012-01-01</p> <p>Public forums and shared spaces in which citizens can debate and deliberate have always constituted essential elements of a democratic society. Today, the Europe for Citizens Programme serves to create a modern European agora. Launched in 2007, the programme supports initiatives that bring people together in international and intercultural…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19499827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19499827"><span>The fully integrated biomedical engineering programme at Eindhoven University of Technology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Slaaf, D W; van Genderen, M H P</p> <p>2009-05-01</p> <p>The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9058D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9058D"><span>Enhancing data exploitation through DTN-based data transmission protocols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daglis, Ioannis A.; Tsaoussidis, Vassilis; Rontogiannis, Athanasios; Balasis, Georgios; Keramitsoglou, Iphigenia; Paronis, Dimitrios; Sykioti, Olga; Tsinganos, Antonios</p> <p>2014-05-01</p> <p>Data distribution and data access are major issues in space sciences and geosciences as they strongly influence the degree of data exploitation. Processing and analysis of large volumes of Earth observation and space/planetary data face two major impediments: limited access capabilities due to narrow connectivity windows between spacecraft and ground receiving stations and lack of sufficient communication and dissemination mechanisms between space data receiving centres and the end-user community. Real-time data assimilation that would be critical in a number of forecasting capabilities is particularly affected by such limitations. The FP7-Space project "Space-Data Routers" (SDR) has the aim of allowing space agencies, academic institutes and research centres to disseminate/share space data generated by single or multiple missions, in an efficient, secure and automated manner. The approach of SDR relies on space internetworking - and in particular on Delay-Tolerant Networking (DTN), which marks the new era in space communications, unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The project includes the definition of limitations imposed by typical space mission scenarios in which the National Observatory of Athens is currently involved, including space and planetary exploration, as well as satellite-supported geoscience applications. In this paper, we present the mission scenarios, the SDR-application and the evaluation of the associated impact from the space-data router enhancements. The work leading to this paper has received funding from the European Union's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement no. 263330 for the SDR (Space-Data Routers for Exploiting Space Data) collaborative research project. This paper reflects only the authors' views and the Union is not liable for any use that may be made of the information contained therein.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001eso..pres...16.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001eso..pres...16."><span>Life in the Universe - Is there anybody out there?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2001-07-01</p> <p>The Universe is indescribably huge. Can it be possible that Humanity is the only form of intelligent life which exists in all this immensity? Are we really alone ? Throughout history there have been sightings of creatures from elsewhere. Science fiction novels and films with flying saucers and bizarre looking aliens are part of our general culture. Perhaps the Earth is really only an experiment designed by mice and soon we will all be destroyed to make way for a new interstellar highway ! The possibility that there is life in the Universe has always excited the general public and scientists are equally enthusiastic. Physicists, biologists, chemists, cosmologists, astronomers are researching all over Europe to try to answer this age-old question : Is there life in the Universe ? Our current understanding What is our understanding at the beginning of the 21st century? Is there any scientific evidence for other forms of life? How can you define life? What signs are they looking for? What would the reaction be if other forms of life were discovered? The European Organisation for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , in cooperation with the European Association for Astronomy Education (EAAE) have organised a competition to find out what the young people in Europe think. The European Molecular Biology Laboratory (EMBL) and the European Synchrotron Radiation Facility (ESRF) are also associated with the programme. The "Life in the Universe" programme ESO PR Video Clip 05/01 [192x144 pix MPEG-version] ESO PR Video Clip 05/01 (13300 frames/8:52 min) [MPEG Video+Audio; 192x144 pix; 12.1Mb] [RealMedia; streaming; 56kps] ESO Video Clip 05/01 is a trailer for the Europe-wide "Life in the Universe" programme. It touches upon some of the main issues and includes statements by members of the Experts' Panel. The "Life in the Universe" programme is being mounted in collaboration with the research directorate of the European Commission for the "European Week of Science and Technology" in November 2001. Competitions are already underway in 23 European countries [2] to find the best projects from school students between 14 and 18. The projects can be scientific or a piece of art, a theatrical performance, poetry or even a musical performance. The only restriction is that the final work must be based on scientific evidence. Two winning teams from each country will be invited to a final event at CERN's headquarters, in Geneva on 8-11 November, 2001 to present their projects to a panel of International Experts at a special three day event devoted to understanding the possibility of other life forms existing in our Universe. This final event will be broadcast all over the world via the Internet. The website The home base of the 'Life in the Universe" project is a vibrant web space http://www.lifeinuniverse.org where details of the programme can be found. It is still under development but already has a wealth of information and links to the national websites, where all entries are posted. Is there other life in the Universe? We do not know - but the search is on! To find out what is happening for "Life in the Universe" in each country, contact the National Steering Committees ! Notes [1] This is a joint Press Release by the European Organization for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO). These European intergovernmental research organisations organised the highly successful Physics On Stage programme during the European Week of Science and Technology in 2000. [2] The 23 countries are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. CERN , the European Organization for Nuclear Research , has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have observer status. The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, cooperation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Portugal, Sweden and Switzerland. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO La Silla Observatory (Chile) is one of the largest and best-equipped in the world. Of ESO's Very Large Telescope Array (VLT) at Cerro Paranal (Chile), the four 8.2-m telescopes, ANTU, KUEYEN, MELIPAL and YEPUN are already in operation; the VLT Interferometer (VLTI) follows next.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=development+AND+socio-economic+AND+development+AND+programmes&pg=5&id=ED533439','ERIC'); return false;" href="https://eric.ed.gov/?q=development+AND+socio-economic+AND+development+AND+programmes&pg=5&id=ED533439"><span>Are Students More Engaged When Schools Offer Extracurricular Activities? PISA in Focus. No. 18</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>OECD Publishing (NJ1), 2012</p> <p>2012-01-01</p> <p>Are students more engaged and do they perform better in science if their school encourages them to work on science projects, participate in science fairs, belong to a science-related club or go on science-related field trips--in addition to teaching them the mandatory science curriculum? To find out, PISA (Programme for International Student…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=physical+AND+research+AND+topic&id=EJ1175220','ERIC'); return false;" href="https://eric.ed.gov/?q=physical+AND+research+AND+topic&id=EJ1175220"><span>Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kelani, Raphael R.; Gado, Issaou</p> <p>2018-01-01</p> <p>Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1044207.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1044207.pdf"><span>Post Graduate Programme in Dietetics & Food Service Management (MSCDFSM) Programme of IGNOU: Access through the Lucknow Regional Centre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dorothy, J. S.; Kumar, Ashwini</p> <p>2014-01-01</p> <p>Indira Gandhi National Open University (IGNOU) which was established initially as a Single mode Distance Teaching Institution (DTI) in the year 1985 opened its campus to face-to-face education in the year 2008 and thus now is a Dual mode Distance Teaching Institution (DTI). The Post Graduate Programme (Master of Science) in Dietetics and Food…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Biostatistics&id=EJ923978','ERIC'); return false;" href="https://eric.ed.gov/?q=Biostatistics&id=EJ923978"><span>Teaching Science and Technology via Online Distance Learning: The Experience of Teaching Biostatistics in an Online Master of Public Health Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gemmell, Isla; Sandars, John; Taylor, Stewart; Reed, Katie</p> <p>2011-01-01</p> <p>This paper describes the development and teaching of a biostatistics module within a fully online distance learning Master of Public Health (MPH) programme at the University of Manchester. The MPH programme caters for students from over 40 countries worldwide and all materials are delivered via the Blackboard virtual learning environment. In this…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=technical+AND+report+AND+computer&id=ED574108','ERIC'); return false;" href="https://eric.ed.gov/?q=technical+AND+report+AND+computer&id=ED574108"><span>Digital Reading in PISA 2012 and ICT Uses: How Do VET and General Education Students Perform? JRC Science for Policy Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dinis da Costa, Patrícia; Araújo, Luísa</p> <p>2016-01-01</p> <p>The analyses presented in this report indicate that in several Member States (MS) 15-year-old students in vocational-oriented programmes (VET) perform better in digital reading than in print reading in PISA 2012. When differentiated by programme of study--VET versus general education programmes--VET students perform better in digital than in print…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NIMPA.742...47U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NIMPA.742...47U"><span>The INTErnational Gamma Ray Astrophysics Laboratory: INTEGRAL Highlights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ubertini, Pietro; Bazzano, Angela</p> <p>2014-04-01</p> <p>The INTEGRAL Space Observatory was selected as the second Medium size mission (M2) of the ESAs Horizon 2000 vision programme. INTEGRAL is the first high angular and spectral resolution hard X-ray and soft γ-ray observatory with a wide band spectral response ranging from 3 keV up to 10 MeV energy band. This capability is supplemented by an unprecedented sensitivity enhanced by the 3 days orbit allowing long and uninterrupted observations over very wide field of view (up to ~ 1000 squared degrees to zero response) and sub-ms time resolution. Part of the observatory success is due to its capability to link the high energy sky with the lower energy band. The complementarity and synergy with pointing soft X-ray missions such as XMM-Newton and CHANDRA and more recently with NuSTAR is a strategic feature to link the "thermal" and the "non-thermal" Universe observed at higher energies by space missions such as Fermi and AGILE and ground based TeV observatories sensitive to extremely high energies. INTEGRAL was launched on 17 October 2002 from the Baikonur Cosmodrome (Kazakistan) aboard a Proton rocket as part of the Russian contribution to the mission, and has successfully spent almost 11 years in orbit. In view of its successful science outcome the ESA Space Programme Committee haw recently approved its scientific operation till the end of 2016. To date the spacecraft, ground segment and scientific payload are in excellent state-of-health, and INTEGRAL is continuing its scientific operations, originally planned for a 5-year technical design and scientific nominal operation plan. This paper summarizes the current INTEGRAL scientific achievements and future prospects, with particular regard to the high energy domain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001prme.book.....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001prme.book.....C"><span>Project Mercury: NASA's first manned space programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Catchpole, John</p> <p></p> <p>Project Mercury will offer a developmental resume of the first American manned spaceflight programme and its associated infrastructure, including accounts of space launch vehicles. The book highlights the differences in Redstone/Atlas technology, drawing similar comparisons between ballistic capsules and alternative types of spacecraft. The book also covers astronaut selection and training, as well as tracking systems, flight control, basic principles of spaceflight and detailed accounts of individual flights.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ASPC..281....3M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ASPC..281....3M"><span>AstroGrid: the UK's Virtual Observatory Initiative</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mann, Robert G.; Astrogrid Consortium; Lawrence, Andy; Davenhall, Clive; Mann, Bob; McMahon, Richard; Irwin, Mike; Walton, Nic; Rixon, Guy; Watson, Mike; Osborne, Julian; Page, Clive; Allan, Peter; Giaretta, David; Perry, Chris; Pike, Dave; Sherman, John; Murtagh, Fionn; Harra, Louise; Bentley, Bob; Mason, Keith; Garrington, Simon</p> <p></p> <p>AstroGrid is the UK's Virtual Observatory (VO) initiative. It brings together the principal astronomical data centres in the UK, and has been funded to the tune of ˜pounds 5M over the next three years, via PPARC, as part of the UK e--science programme. Its twin goals are the provision of the infrastructure and tools for the federation and exploitation of large astronomical (X-ray to radio), solar and space plasma physics datasets, and the delivery of federations of current datasets for its user communities to exploit using those tools. Whilst AstroGrid's work will be centred on existing and future (e.g. VISTA) UK datasets, it will seek solutions to generic VO problems and will contribute to the developing international virtual observatory framework: AstroGrid is a member of the EU-funded Astrophysical Virtual Observatory project, has close links to a second EU Grid initiative, the European Grid of Solar Observations (EGSO), and will seek an active role in the development of the common standards on which the international virtual observatory will rely. In this paper we shall primarily describe the concrete plans for AstroGrid's one-year Phase A study, which will centre on: (i) the definition of detailed science requirements through community consultation; (ii) the undertaking of a ``functionality market survey" to test the utility of existing technologies for the VO; and (iii) a pilot programme of database federations, each addressing different aspects of the general database federation problem. Further information on AstroGrid can be found at AstroGrid .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8443E..28R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8443E..28R"><span>Status of the ESA L1 mission candidate ATHENA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rando, N.; Martin, D.; Lumb, D.; Verhoeve, P.; Oosterbroek, T.; Bavdaz, M.; Fransen, S.; Linder, M.; Peyrou-Lauga, R.; Voirin, T.; Braghin, M.; Mangunsong, S.; van Pelt, M.; Wille, E.</p> <p>2012-09-01</p> <p>ATHENA (Advanced Telescope for High Energy Astrophysics) was an L class mission candidate within the science programme Cosmic Vision 2015-2025 of the European Space Agency, with a planned launch by 2022. ATHENA was conceived as an ESA-led project, open to the possibility of focused contributions from JAXA and NASA. By allowing astrophysical observations between 100 eV and 10 keV, it would represent the new generation X-ray observatory, following the XMM-Newton, Astro-H and Chandra heritage. The main scientific objectives of ATHENA include the study of large scale structures, the evolution of black holes, strong gravity effects, neutron star structure as well as investigations into dark matter. The ATHENA mission concept would be based on focal length of 12m achieved via a rigid metering tube and a twoaperture, x-ray telescope. Two identical x-ray mirrors would illuminate fixed focal plane instruments: a cryogenic imaging spectrometer (XMS) and a wide field imager (WFI). The S/C is designed to be fully compatible with Ariane 5 ECA. The observatory would operate at SE-L2, with a nominal lifetime of 5 yr. This paper provides a summary of the reformulation activities, completed in December 2011. An overview of the spacecraft design and of the payload is provided, including both telescope and instruments. Following the ESA Science Programme Committee decision on the L1 mission in May 2012, ATHENA was not selected to enter Definition Phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005eso..pres...28.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005eso..pres...28."><span>Setting the Stage for Science in Schools - EIROforum presents the very best of European science teaching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2005-11-01</p> <p>EIROforum presents the very best of European science teaching How can you weigh the Earth with a straw, a paperclip and a piece of thread? Why don't we really know what we see? How can a juggling act explain mathematics? These are but a few of the on-stage activities that will be shown at the EIROforum [1] Science on Stage Festival, to be held from 21 to 25 November at CERN in Geneva (Switzerland). With support from the European Commission, this international festival brings together around 500 science educators from 29 European countries to show how fascinating and entertaining science can be. "Science is fun! This is what this week-long event will show by presenting innovative methods of teaching science and demonstrations", says Helen Wilson from the European Space Agency and co-ordinator of the event. "At the festival, teachers have the chance to view things from a new perspective, to be entertained and enchanted by science", says Rolf Landua, Head of Education at CERN and Chairman of the event. "As well as taking to the stage, they set up stalls in fair-like surroundings to share their most successful teaching tricks." Workshops on themes as varied as "flying on stage", "the theatre of science", or "stem cell research" and "gamma-ray bursts", will give the attendees - teachers and other science educators - the chance to discuss and come up with solutions to the problem of growing disinterest for science in Europe. "A key element of the Science on Stage concept is to give teachers an up-to-date 'insider's view' of what is happening in big science, to tell them about new, highly diverse and interesting career opportunities for their pupils, and to create a European atmosphere where bright young people can meet and interact", says Colin Carlile, Director General of the Institut Laue-Langevin and current chairman of the EIROforum. At the end of the festival, the European Science Teaching Awards will be presented. The names of the winners will be made public on the Science on Stage web site at 12:00 CET on Friday 25 November. In addition, highlights of the Festival will feature in a new "Science in School" journal, to be launched by EIROforum in 2006. The new journal is dedicated to best teaching materials and practices in Europe. The festival is the final event of a two-year-long programme of events that has taken place in virtually every European country and from which delegates have been selected for their outstanding projects promoting science. The event continues the vastly successful "Physics on Stage" festivals organised by EIROforum organisations in 2000, 2002 and 2003. Journalists are cordially invited to take part in this unique European event. The detailed programme and practical details are available on the Science on Stage web site at http://www.cern.ch/sos</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25657263','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25657263"><span>The impact of an arts-based programme on the affective and cognitive components of empathic development.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zazulak, Joyce; Halgren, Camilla; Tan, Megan; Grierson, Lawrence E M</p> <p>2015-06-01</p> <p>Medical education research demonstrates that empathic behaviour is amenable to positive change when targeted through educational programmes. This study evaluates the impact of an arts-based intervention designed to nurture learner empathy through the provision of facilitated visual literacy activities. Health Sciences students (N=19) were assigned to two learning groups: a group that participated in a visual literacy programme at the McMaster Museum of Art and a control group that participated in the normal Health Sciences curriculum. All participants completed an inter-reactivity index, which measures empathy on affective and cognitive levels, prior to and following the programme. Those individuals assigned to the visual literacy programme also completed open-ended questions concerning the programme's impact on their empathic development. The index scores were subjected to independent within-group, between-test analyses. There was no significant impact of the programme on the participants' overall empathic response. However, sub-component analyses revealed that the programme had a significant positive effect on cognitive aspects of empathy. This finding was substantiated by the narrative reports. The study concludes that the affective focus of humanities-based education needs to be enhanced and recommends that learners are educated on the different components that comprise the overall empathic response. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24565371','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24565371"><span>Information visualisation for science and policy: engaging users and avoiding bias.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McInerny, Greg J; Chen, Min; Freeman, Robin; Gavaghan, David; Meyer, Miriah; Rowland, Francis; Spiegelhalter, David J; Stefaner, Moritz; Tessarolo, Geizi; Hortal, Joaquin</p> <p>2014-03-01</p> <p>Visualisations and graphics are fundamental to studying complex subject matter. However, beyond acknowledging this value, scientists and science-policy programmes rarely consider how visualisations can enable discovery, create engaging and robust reporting, or support online resources. Producing accessible and unbiased visualisations from complicated, uncertain data requires expertise and knowledge from science, policy, computing, and design. However, visualisation is rarely found in our scientific training, organisations, or collaborations. As new policy programmes develop [e.g., the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES)], we need information visualisation to permeate increasingly both the work of scientists and science policy. The alternative is increased potential for missed discoveries, miscommunications, and, at worst, creating a bias towards the research that is easiest to display. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJSEd..39.1326A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJSEd..39.1326A"><span>The impact of inquiry-based learning on the critical thinking dispositions of pre-service science teachers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arsal, Zeki</p> <p>2017-07-01</p> <p>In the study, the impact of inquiry-based learning on pre-service teachers' critical thinking dispositions was investigated. The sample of the study comprised of 56 pre-service teachers in the science education teacher education programme at the public university in the north of Turkey. In the study, quasi-experimental design with an experimental and a control group were applied to find out the impact of inquiry-based learning on the critical thinking dispositions of the pre-service teachers in the teacher education programme. The results showed that the pre-service teachers in the experimental group did not show statistically significant greater progress in terms of critical thinking dispositions than those in the control group. Teacher educators who are responsible for pedagogical courses in the teacher education programme should consider that the inquiry-based learning could not be effective method to improve pre-service teachers' critical thinking dispositions. The results are discussed in relation to potential impact on science teacher education and implications for future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8042531','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8042531"><span>Issues of health care under weightlessness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sekiguchi, C</p> <p>1994-01-01</p> <p>This review will address issues of effects of space flights on the body. Cardiovascular deconditioning often induce symptoms like orthostatic intolerance after flight, and during flight there will be space motion sickness during the first few days with headache, malaise, nausea and eventually vomiting. These symptoms disappear and do not interfere with the performance of the astronauts after several days. During long-term flights, effects will be muscle atrophy and calcium loss from the skeleton. Radiation effects will be a significant issue, increasing with the length of the space flight. Also during long-term flights, psychological problems will become of increasing importance. Astronaut health care will be discussed related to Space Shuttle missions and Space Station missions. Furthermore, countermeasures for long-term space flights (up to 6 months) will be outlined. The NASA health care programme is reviewed, and the frequency of illnesses and injuries encountered in the NASA programme is discussed. There will be a need for setting up an international health care programme in view of the upcoming international cooperation in the Space Station era. It is emphasized that the Space Station is an international platform. Therefore, the health care team will be composed of international personnel, mainly from NASA with participation of Europe, Canada, Russia, and Japan. Specialized medical doctors will form the team and support the crew members from the ground. Some issues, such as medical licensing and responsibility, remain to be solved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMED54A..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMED54A..03S"><span>Science Education and Public Outreach in Asia - experiences in ACCENT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schuepbach, E.</p> <p>2006-12-01</p> <p>ACCENT is the European Network of Excellence in Atmospheric Composition Change (www.accent- network.org). Its Task Training and Education aims at disseminating ACCENT results to a variety of target groups, including emerging countries. Until now, fellowships have been offered for early-career scientists to participate in European science training events. A teacher training workshop has concentrated on cross- cultural aspects of PhD supervision. The involvement of new Associated Partners from Asia has triggered reflections on science education and outreach to politicians and the public in this part of the world. Joint educational and outreach programmes and products are currently developed with China and Mongolia for training activities scheduled in autumn 2006 and autumn 2007. First experiences in joint science education programmes for early-career scientists will be presented, and the challenges associated with communicating science to non-scientists in Asia will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999Sc%26Ed...8..287J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999Sc%26Ed...8..287J"><span>History and Philosophy of Science through Models: The Case of Chemical Kinetics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Justi, Rosária; Gilbert, John K.</p> <p></p> <p>The case for a greater role for the history and philosophy of science in science education is reviewed. It is argued that such a role can only be realised if it is based on both a credible analytical approach to the history and philosophy of science and if the evolution of a sufficient number of major themes in science is known in suitable detail. Adopting Lakatos' Theory of Scientific Research Programmes as the analytical approach, it is proposed that the development, use, and replacement, of specific models forms the core of such programmes.Chemical kinetics was selected as an exemplar major topic in chemistry. Eight models which have played a central role in the evolution of the study of chemical kinetics were identified by an analysis of the literature. The implications that these models have for the teaching and learning of chemistry today are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.3906C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.3906C"><span>ESA Parabolic Flight, Drop Tower and Centrifuge Opportunities for University Students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Callens, Natacha; Ventura-Traveset, Javier; Zornoza Garcia-Andrade, Eduardo; Gomez-Calero, Carlos; van Loon, Jack J. W. A.; Pletser, Vladimir; Kufner, Ewald; Krause, Jutta; Lindner, Robert; Gai, Frederic; Eigenbrod, Christian</p> <p></p> <p>The European Space Agency (ESA) Education Office was established in 1998 with the purpose of motivating young people to study science, engineering and technology subjects and to ensure a qualified workforce for ESA and the European space sector in the future. To this end the ESA Education Office is supporting several hands-on activities including small student satellites and student experiments on sounding rockets, high altitude balloons as well as microgravity and hypergravity platforms. This paper is intended to introduce three new ESA Education Office hands-on activities called "Fly Your Thesis!", "Drop Your Thesis!" and "Spin Your Thesis!". These activities give re-spectively access to aircraft parabolic flight, drop tower and centrifuge campaigns to European students. These educational programmes offer university students the unique opportunity to design, build, and eventually perform, in microgravity or hypergravity, a scientific or techno-logical experiment which is linked to their syllabus. During the "Fly Your Thesis!" campaigns, the students accompany their experiments onboard the A300 Zero-G aircraft, operated by the company Novespace, based in Bordeaux, France, for a series of three flights of 30 parabolas each, with each parabola providing about 20s of microgravity [1]. "Drop Your Thesis!" campaigns are held in the ZARM Drop Tower, in Bremen, Germany. The installation delivers 4.74s of microgravity in dropping mode and 9.3s in the catapulting mode [2]. Research topics such as fluid physics, fundamental physics, combustion, biology, material sciences, heat transfer, astrophysics, chemistry or biochemistry can greatly benefit from using microgravity platforms. "Spin Your Thesis!" campaigns take place in the Large Diameter Centrifuge (LDC) facility, at ESTEC, Noordwijk, in the Netherlands. This facility offers an acceleration from 1 to 20 times Earth's gravity [3]. The use of hypergravity allows completing the scientific picture of how gravity has an impact on a system over the whole acceleration spectrum, but can address as well specifically problems which require these high g-levels. A wide range of hypergravity exper-iments can be performed in the LDC facility, including biological, biochemical, microbiological, opto-physical, physical, material and fluid sciences, geology or plasma physics. ESA Education Office financially supports the cost of the campaigns, part of the hardware development, as well as necessary travel and accommodation of the student selected teams. An ELGRA (European Low Gravity Research Association) mentor, i.e. a scientist specialized in gravity-related research, support each student team throughout these education programmes. [1] Pletser V., Gharib T., Gai F., Mora C., Rosier P. "The 50 parabolic flight campaigns of the European Space Agency to conduct short duration microgravity research experimentation", Paper IAC-09-A2.5.1, 60th International Astronautical federation Congress, Daejeon, Korea, October 2009. [2] von Kampen P., Kaczmarczik U., Rath H.J. The new Drop Tower catapult system", Acta Astronautica, 59, 1-5, 278-283, 2006. [3] van Loon J. W. A. , Krause J., Cunha H., Goncalves J., Almeida H., Schiller P. "The Large Diameter Centrifuge, LDC, for life and physical sciences and technology", Proc. of the 'Life in Space for Life on Earth Symposium', Angers, France, 22-27 June 2008. (ESA SP-663, December 2008)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JSEdT..22..858F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JSEdT..22..858F"><span>Forging School-Scientist Partnerships: A Case of Easier Said than Done?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falloon, Garry</p> <p>2013-12-01</p> <p>Since the early 1980s, a number of initiatives have been undertaken worldwide which have involved scientists and teachers working together in projects designed to support the science learning of students. Many of these have attempted to establish school-scientist partnerships. In these, scientists, teachers, and students formed teams engaged in mutually beneficial science-based activities founded on principles such as equal recognition and input, and shared vision, responsibility and risk. This article uses two partnership programmes run by a New Zealand Science Research Institute, to illustrate the challenges faced by scientists and teachers as they attempted to forge meaningful and effective partnerships. It argues that achieving the theorised position of a shared partnership space at the intersection of the worlds of scientists and teachers is problematic, and that scientists must instead be prepared to penetrate deeply into the world of the classroom when undertaking any such interactions. Findings indicate epistemological differences, curriculum and school systems and issues, and teacher efficacy and science knowledge significantly affect the process of partnership formation. Furthermore, it is argued that a re-thinking of partnerships is needed to reflect present economic and education environments, which are very different to those in which they were originally conceived nearly 30 years ago. It suggests that technology has an important role to play in future partnership interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.G21B1022B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.G21B1022B"><span>Sentinel-3 for Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benveniste, J.; Regner, P.; Desnos, Y. L.</p> <p>2015-12-01</p> <p>The Scientific Exploitation of Operational Mission (SEOM) programme element (http://seom.esa.int/) is part of the ESA's Fourth Earth Observation Envelope Programme (2013-2017). The prime objective is to federate, support and expand the international research community that the ERS, ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM is enabling the science community to address new scientific research that are opened by free and open access to data from operational EO missions. The Programme is based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings such as the Sentinel-3 for Science Workshop held last June in Venice, Italy (see http://seom.esa.int/S3forScience2015). The 2015 SEOM work plan includes the launch of new R&D studies for scientific exploitation of the Sentinels, the development of open-source multi-mission scientific toolboxes, the organization of advanced international training courses, summer schools and educational materials, as well as activities for promoting the scientific use of EO data, also via the organization of Workshops. This paper will report the recommendations from the International Scientific Community concerning the Sentinel-3 Scientific Exploitation, as expressed in Venice, keeping in mind that Sentinel-3 is an operational mission to provide operational services (see http://www.copernicus.eu).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=engineering+AND+careers&pg=5&id=EJ1134456','ERIC'); return false;" href="https://eric.ed.gov/?q=engineering+AND+careers&pg=5&id=EJ1134456"><span>The Association between Science Summer Camps and Career Interest in Science and Engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kong, Xiaoqing; Dabney, Katherine P.; Tai, Robert H.</p> <p>2014-01-01</p> <p>This study addresses the association between middle-school students' reported participation in science summer programmes and their reported expectation of a career in science and engineering. Data were collected on 1,580 students from eight middle schools in five states, applying an accelerated longitudinal design. Two consecutive cohorts were…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Science+AND+technology+AND+children&pg=6&id=EJ1168277','ERIC'); return false;" href="https://eric.ed.gov/?q=Science+AND+technology+AND+children&pg=6&id=EJ1168277"><span>An Investigation of Singapore Preschool Children's Emerging Concepts of Floating and Sinking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Teo, Tang Wee; Yan, Yaw Kai; Ong, Woei Ling Monica</p> <p>2017-01-01</p> <p>Despite Singapore's excellent science achievements in international benchmark tests such as the Trends in International Mathematics and Science Study (TIMSS) and Programme for International Student Assessment (PISA), little is known about Singaporean children's (aged 4-8) emerging science conceptions as formal science schooling begins at Grade 3…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28938126','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28938126"><span>The need for theory evaluation in global citizenship programmes: The case of the GCSA programme.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goodier, Sarah; Field, Carren; Goodman, Suki</p> <p>2018-02-01</p> <p>Many education programmes lack a documented programme theory. This is a problem for programme planners and evaluators as the ability to measure programme success is grounded in the plausibility of the programme's underlying causal logic. Where the programme theory has not been documented, conducting a theory evaluation offers a foundational evaluation step as it gives an indication of whether the theory behind a programme is sound. This paper presents a case of a theory evaluation of a Global Citizenship programme at a top-ranking university in South Africa, subsequently called the GCSA Programme. This evaluation highlights the need for documented programme theory in global citizenship-type programmes for future programme development. An articulated programme theory produced for the GCSA Programme, analysed against the available social science literature, indicated it is comparable to other such programmes in terms of its overarching framework. What the research found is that most other global citizenship programmes do not have an articulated programme theory. These programmes also do not explicitly link their specific activities to their intended outcomes, making demonstrating impact impossible. In conclusion, we argue that taking a theory-based approach can strengthen and enable outcome evaluations in global citizenship programmes. Copyright © 2017. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170004873&hterms=ji&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2528ji%2529','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170004873&hterms=ji&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2528ji%2529"><span>Turbulence Heating ObserveR: - Satellite Mission Proposal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vaivads, A.; Retino, A.; Soucek, J.; Khotyaintsev, Yu V.; Valentini, F.; Escoubet, C. P.; Alexandrova, O.; Andre, M.; Bale, S. D.; Balikhin, M.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170004873'); toggleEditAbsImage('author_20170004873_show'); toggleEditAbsImage('author_20170004873_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170004873_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170004873_hide"></p> <p>2016-01-01</p> <p>The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earths magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space magnetosheath, shock, foreshock and pristine solar wind featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4). THOR has been selected by European Space Agency (ESA) for the study phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050171032','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050171032"><span>Low-Complexity, Digital Encoder/Modulator Developed for High-Data-Rate Satellite B-ISDN Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1996-01-01</p> <p>The Space Electronics Division at the NASA Lewis Research Center is developing advanced electronic technologies for the space communications and remote sensing systems of tomorrow. As part of the continuing effort to advance the state-of-the-art in satellite communications and remote sensing systems, Lewis developed a low-cost, modular, programmable, and reconfigurable all-digital encoder-modulator (DEM) for medium- to high-data-rate radiofrequency communication links. The DEM is particularly well suited to high-data-rate downlinks to ground terminals or direct data downlinks from near-Earth science platforms. It can support data rates up to 250 megabits per second (Mbps) and several modulation schemes, including the traditional binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK) modes, as well as higher order schemes such as 8 phase-shift keying (8PSK) and 16 quadrature amplitude modulation (16QAM). The DEM architecture also can precompensate for channel disturbances and alleviate amplitude degradations caused by nonlinear transponder characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28698320','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28698320"><span>A Self-Management Programme of Activity Coping and Education - SPACE for COPD(C) - in primary care: The protocol for a pragmatic trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bourne, Claire LA; Kanabar, Pratiksha; Mitchell, Katy; Schreder, Sally; Houchen-Wolloff, Linzy; Bankart, M John G; Apps, Lindsay; Hewitt, Stacey; Harvey-Dunstan, Theresa; Singh, Sally J</p> <p>2017-07-10</p> <p>National guidance for chronic obstructive pulmonary disease (COPD) suggests that self-management support be provided for patients. Our institution has developed a standardised, manual-based, supported self-management programme: Self-Management Programme of Activity Coping and Education (SPACE for COPD(C)). SPACE was previously piloted on a 1-2-1 basis, delivered by researchers, to individuals with COPD. Discussions with stakeholders highlighted considerable interest in delivering the SPACE for COPD(C) intervention as a group-based self-management programme facilitated by healthcare professionals (HCPs) in primary care settings. The study aims are to explore the feasibility, acceptability and efficacy for the intervention to be delivered and supported by HCPs and to examine whether group-based delivery of SPACE for COPD(C), with sustained support, improves patient outcomes following the SPACE for COPD(C) intervention. A prospective, multi-site, single-blinded randomised controlled trial (RCT) will be conducted, with follow-up at 6 and 9 months. Participants will be randomly assigned to either the control group (usual care) or intervention group (a six-session, group-based SPACE for COPD(C)self-management programme delivered over 5 months). The primary outcome is change in COPD assessment test at 6 months.A discussion session will be conducted with HCPs who deliver the intervention to discuss and gain insight into any potential facilitators/barriers to implementing the intervention in practice. Furthermore, we will conduct semi-structured focus groups with intervention participants to understand feasibility and acceptability. All qualitative data will be analysed thematically. The project has received a favourable opinion from South Hampshire B Research Ethics Committee, REC reference: 14/SC/1169 and full R&D approval from the University Hospitals of Leicester NHS Trust: 152408.Study results will be disseminated through appropriate peer-reviewed journals, national and international respiratory/physiotherapy conferences, via the Collaboration and Leadership in Applied Health Research and Care and through social media. ISRCTN17942821; pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28173929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28173929"><span>Postflight reconditioning for European Astronauts - A case report of recovery after six months in space.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Petersen, Nora; Lambrecht, Gunda; Scott, Jonathan; Hirsch, Natalie; Stokes, Maria; Mester, Joachim</p> <p>2017-01-01</p> <p>Postflight reconditioning of astronauts is understudied. Despite a rigorous, daily inflight exercise countermeasures programme during six months in microgravity (μG) on-board the International Space Station (ISS), physiological impairments occur and postflight reconditioning is still required on return to Earth. Such postflight programmes are implemented by space agency reconditioning specialists. Case Description and Assessments: A 38 year old male European Space Agency (ESA) crewmember's pre- and postflight (at six and 21 days after landing) physical performance from a six-month mission to ISS are described. muscle strength (squat and bench press 1 Repetition Maximum) and power (vertical jump), core muscle endurance and hip flexibility (Sit and Reach, Thomas Test). In-flight, the astronaut undertook a rigorous daily (2-h) exercise programme. The 21 day postflight reconditioning exercise concept focused on motor control and functional training, and was delivered in close co-ordination by the ESA physiotherapist and exercise specialist to provide the crewmember with comprehensive reconditioning support. Despite an intensive inflight exercise programme for this highly motivated crewmember, postflight performance showed impairments at R+6 for most parameters, all of which recovered by R+21 except muscular power (jump tests). Regardless of intense inflight exercise countermeasures and excellent compliance to postflight reconditioning, postflight performance showed impairments at R+6 for most parameters. Complex powerful performance tasks took longer to return to preflight values. Research is needed to develop optimal inflight and postflight exercise programmes to overcome the negative effects of microgravity and return the astronaut to preflight status as rapidly as possible. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA357895','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA357895"><span>JPRS Report, Science & Technology. USSR: Science & Technology Policy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-10-23</p> <p>Soviet Programmers Form Joint Venture with Olivetti; Scientist Debate Reoccupation of Chernobyl Radiation Zones; Effect of Cost Accounting on Scientific Research; Lithuanian State Prizes for S&T Awarded; and others.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070035982&hterms=programmable&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dprogrammable','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070035982&hterms=programmable&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dprogrammable"><span>Initial Single Event Effects Testing of the Xilinx Virtex-4 Field Programmable Gate Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, Gregory R.; Swift, Gary M.; Carmichael, C.; Tseng, C.</p> <p>2007-01-01</p> <p>We present initial results for the thin epitaxial Xilinx Virtex-4 Fie ld Programmable Gate Array (FPGA), and compare to previous results ob tained for the Virtex-II and Virtex-II Pro. The data presented was a cquired through a consortium based effort with the common goal of pr oviding the space community with data and mitigation methods for the use of Xilinx FPGAs in space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.U33A0794E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.U33A0794E"><span>Earth Sciences' Capacity Building In Developing Countries through International Programmes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eder, W.</p> <p>2007-12-01</p> <p>Within the framework of "traditional" programmes, like the joint UNESCO-IUGS "International Geoscience Programme" (IGCP), the "International Continental Scientific Drilling Program" (ICDP), the "Integrated Ocean Drilling Program" (IODP) or the "International Lithosphere Programme" (ILP) numerous opportunities are provided to strengthen postgraduate geo-scientific education of representatives from developing countries. Recently established new initiatives, such as the "International Year of Planet Earth" (IYPE) or UNESCO's Global Network of Geoparks complement these in addition as important components to UNESCO's 'Education for All' programme, notably the youth, as well as to the United Nations Decade of Education for Sustainable Development (2005 - 2014). The "International Year of Planet Earth" is a joint initiative of the International Union of Geological Sciences (IUGS) and UNESCO. The central aims and ambitions of the Year, proclaimed for 2008 by the UN General Assembly, are to demonstrate the great potential of the Earth sciences in building a safer, healthier and wealthier society, and to encourage more widespread and effective application of this potential by targeting politicians and other decision-makers, educational systems, and the general public. Promotion of international collaboration, as well as capacity building and training of students of developing countries in all fields of Earth Sciences seem to be the most appropriate way to meet also the challenges of the IYPE. Another opportunity to improve the international recognition of Earth Scinces, also in developing countries, is the use of Geoparks as a promotional tool for education and popularization of Earth Sciences. Geoparks, notably those included in the European and/or Global Geoparks Networks, provide an international platform of cooperation and exchange between experts and practitioners in geological heritage matters, and are as such excellent instruments in highlighting Earth sciences. The general goal of Geoparks to integrate the preservation of geological heritage into a strategy for regional sustainable socio-economic and cultural development serves ideally the overall objective of the "International Year of Planet Earth" with its subtitle "Earth Sciences for Society". International geo-related cooperation projects, run under the umbrella of international NGOs (like IUGS, IUGG, IGU, IUSS and others) are often supported financially by international and national funding agencies. Out of the broad international spectrum, some German projects devoted to developing countries - summer schools, training and capacity building courses in Earth Sciences, funded by the DFG (German Research Foundation), DAAD (German Academic Exchange Service), InWent (Capacity Building International, Germany) and others - are selected as examples in improving the geo-research capacity and education of developing countries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002eso..pres...24.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002eso..pres...24."><span>Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2002-12-01</p> <p>Imagine you are an astronomer with instant, fingertip access to all existing observations of a given object and the opportunity to sift through them at will. In just a few moments, you can have information on all kinds about objects out of catalogues all over the world, including observations taken at different times. Over the next two years this scenario will become reality as Europe's Astrophysical Virtual Observatory (AVO) develops. Established only a year ago (cf. ESO PR 26/01), the AVO already offers astronomers a unique, prototype research tool that will lead the way to many outstanding new discoveries. Journalists are invited to a live demonstration of the capabilities of this exciting new initiative in astronomy. The demonstration will take place at the Jodrell Bank Observatory in Manchester, in the United Kingdom, on 20 January 2003, starting at 11:00. Sophisticated AVO tools will help scientists find the most distant supernovae - objects that reveal the cosmological makeup of our Universe. The tools are also helping astronomers measure the rate of birth of stars in extremely red and distant galaxies. Journalists will also have the opportunity to discuss the project with leading astronomers from across Europe. The new AVO website has been launched today, explaining the progress being made in this European Commission-funded project: URL: http://www.euro-vo.org/ To register your intention to attend the AVO First Light Demonstration, please provide your name and affiliation by January 13, 2003, to: Ian Morison, Jodrell Bank Observatory (full contact details below). Information on getting to the event is included on the webpage above. Programme for the AVO First Light Demonstration 11:00 Welcome, Phil Diamond (University of Manchester/Jodrell Bank Observatory) 11:05 Short introduction to Virtual Observatories, Piero Benvenuti (ESA/ST-ECF) 11:15 Q&A 11:20 Short introduction to the Astrophysical Virtual Observatory, Peter Quinn (ESO) 11:30 Q&A 11:35 Screening of Video News Release 11:40 Demonstration of the AVO prototype, Nicholas Walton (University of Cambridge) 12:00 Q&A, including interview possibilities with the scientists 12:30-13:45 Buffet lunch, including individual hands-on demos 14:00 Science Demo (also open to interested journalists) For more information about Virtual Observatories and the AVO, see the website or the explanation below. Notes to editors The AVO involves several partner organisations led by the European Southern Observatory (ESO). The other partner organisations are the European Space Agency (ESA), AstroGrid (funded by PPARC as part of the UK's E-Science programme), the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS), the University Louis Pasteur in Strasbourg, France, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris, France, and the Jodrell Bank Observatory of the Victoria University of Manchester, United Kingdom. Note [1]: This is a joint Press Release issued by the European Southern Observatory (ESO), the Hubble European Space Agency Information Centre, AstroGrid, CDS, TERAPIX/CNRS and the University of Manchester. Science Contacts Peter J. Quinn European Southern Observatory (ESO) Garching, Germany Tel: +49-89-3200 -6509 email: pjq@eso.org Phil Diamond University of Manchester/Jodrell Bank Observatory United Kingdom Tel: +44-147-757-26-25 (0147 in the United Kingdom) email: pdiamond@jb.man.ac.uk Press contacts Ian Morison University of Manchester/Jodrell Bank Observatory United Kingdom Tel: +44-147-757-26-10 (0147 in the United Kingdom) E-mail: email: im@jb.man.ac.uk Lars Lindberg Christensen Hubble European Space Agency Information Centre Garching, Germany Tel: +49-89-3200-6306 (089 in Germany) Cellular (24 hr): +49-173-3872-621 (0173 in Germany) email: lars@eso.org Richard West (ESO EPR Dept.) ESO EPR Dept. Garching, Germany Phone: +49-89-3200-6276 email: rwest@eso.org Background information What is a Virtual Observatory? - A short introduction The Virtual Observatory is an international astronomical community-based initiative. It aims to allow global electronic access to the available astronomical data archives of space and ground-based observatories, sky survey databases. It also aims to enable data analysis techniques through a coordinating entity that will provide common standards, wide-network bandwidth, and state-of-the-art analysis tools. It is now possible to have powerful and expensive new observing facilities at wavelengths from the radio to the X-ray and gamma-ray regions. Together with advanced instrumentation techniques, a vast new array of astronomical data sets will soon be forthcoming at all wavelengths. These very large databases must be archived and made accessible in a systematic and uniform manner to realise the full potential of the new observing facilities. The Virtual Observatory aims to provide the framework for global access to the various data archives by facilitating the standardisation of archiving and data-mining protocols. The AVO will also take advantage of state-of-the-art advances in data-handling software in astronomy and in other fields. The Virtual Observatory initiative is currently aiming at a global collaboration of the astronomical communities in Europe, North and South America, Asia, and Australia under the auspices of the recently formed International Virtual Observatory Alliance. The Astrophysical Virtual Observatory - An Introduction The breathtaking capabilities and ultrahigh efficiency of new ground and space observatories have led to a 'data explosion' calling for innovative ways to process, explore, and exploit these data. Researchers must now turn to the GRID paradigm of distributed computing and resources to solve complex, front-line research problems. To implement this new IT paradigm, you have to join existing astronomical data centres and archives into an interoperating and single unit. This new astronomical data resource will form a Virtual Observatory (VO) so that astronomers can explore the digital Universe in the new archives across the entire spectrum. Similarly to how a real observatory consists of telescopes, each with a collection of unique astronomical instruments, the VO consists of a collection of data centres each with unique collections of astronomical data, software systems, and processing capabilities. The Astrophysical Virtual Observatory Project (AVO) will conduct a research and demonstration programme on the scientific requirements and technologies necessary to build a VO for European astronomy. The AVO has been jointly funded by the European Commission (under FP5 - Fifth Framework Programme) with six European organisations participating in a three year Phase-A work programme, valued at 5 million Euro. The partner organisations are the European Southern Observatory (ESO) in Munich, Germany, the European Space Agency (ESA), AstroGrid (funded by PPARC as part of the UK's E-Science programme), the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS), the University Louis Pasteur in Strasbourg, France, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris, France, and the Jodrell Bank Observatory of the Victoria University of Manchester, United Kingdom. The Phase A program will focus its effort in the following areas: * A detailed description of the science requirements for the AVO will be constructed, following the experience gained in a smaller-scale science demonstration program called ASTROVIRTEL (Accessing Astronomical Archives as Virtual Telescopes). * The difficult issue of data and archive interoperability will be addressed by new standards definitions for astronomical data and trial programmes of "joins" between specific target archives within the project team. * The necessary GRID and database technologies will be assessed and tested for use within a full AVO implementation. The AVO project is currently working in conjunction with other international VO efforts in the United States and Asia-Pacific region. This is part of an International Virtual Observatory Alliance to define essential new data standards so that the VO concept can have a global dimension. The AVO partners will join with all astronomical data centres in Europe to put forward an FP6 IST (Sixth Framework Programme - Information Society Technologies Programme) Integrated Project proposal to make a European VO fully operational by the end of 2007.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1140550.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1140550.pdf"><span>An Investigation of Pre-Service Science Teachers' Level of Efficacy in the Undergraduate Science Teacher Education Program and Pedagogical Formation Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Çetin, Oguz</p> <p>2017-01-01</p> <p>The purpose of this research is to comparatively investigate the efficacy levels of pre-service science (Science, Biology, Physics, and Chemistry) teachers enrolled at the Undergraduate Program of Science Teacher Education and Pedagogical Formation Program. A total of 275 pre-service teachers who were studying in different programmes in the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Science&pg=6&id=EJ1159826','ERIC'); return false;" href="https://eric.ed.gov/?q=Science&pg=6&id=EJ1159826"><span>An Exploratory Study of the Relationship between Learners' Attitudes towards Learning Science and Characteristics of an Afterschool Science Club</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Agunbiade, Esther; Ngcoza, Kenneth; Jawahar, Kavish; Sewry, Joyce</p> <p>2017-01-01</p> <p>The Khanya Maths and Science Club (KMSC) is an afterschool science/maths enrichment programme for learners in Grades 7-12 supported by postgraduate students and academic staff volunteers. This research seeks to explore the relationship between participating learners' attitude toward learning science and the characteristics of this afterschool…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=importance+AND+communication+AND+skills&pg=6&id=EJ1029933','ERIC'); return false;" href="https://eric.ed.gov/?q=importance+AND+communication+AND+skills&pg=6&id=EJ1029933"><span>Perceptions of Science Graduating Students on Their Learning Gains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Varsavsky, Cristina; Matthews, Kelly E.; Hodgson, Yvonne</p> <p>2014-01-01</p> <p>In this study, the Science Student Skills Inventory was used to gain understanding of student perceptions about their science skills set developed throughout their programme (scientific content knowledge, communication, scientific writing, teamwork, quantitative skills, and ethical thinking). The study involved 400 responses from undergraduate…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3686092','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3686092"><span>The changing role and legitimate boundaries of epidemiology: community-based prevention programmes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tuomilehto, J; Puska, P</p> <p>1987-01-01</p> <p>Epidemiology is the basic science of public health. It combines medical and social sciences, both of which are developing with new inventions. Therefore, the role of epidemiology and its boundaries are also changing over time. An important role of epidemiology is to develop and implement community-based control programmes for major diseases in the community. Such programmes are essential for large scale public health policy. It is necessary that epidemiological research can as freely as possible test new methods of disease prevention and health promotion. The first community-based control programme for cardiovascular diseases, the North Karelia Project is reviewed against this background. At present, it is still possible to define the boundaries of epidemiology geographically and culturally, but in the future, however, it will become more difficult. There is no doubt that epidemiology will remain as the basic science of public health but the scope of public health problems are growing much wider. These include the prevention of the final epidemic--the destruction of our planet by nuclear bombs. In the control of the existing epidemics and in the prevention of new ones the boundaries of epidemiology cannot stay rigid but they must be changing as new facts about the emerging public health problems are identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4971192','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4971192"><span>DNA barcoding in diverse educational settings: five case studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk</p> <p>2016-01-01</p> <p>Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5–18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481792</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27481792','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27481792"><span>DNA barcoding in diverse educational settings: five case studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Henter, Heather J; Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk</p> <p>2016-09-05</p> <p>Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5-18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3215171','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3215171"><span>Public health research systems in the European union</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2011-01-01</p> <p>Background Strengthening health research is an important objective for international health organisations, but there has been less attention to support for health research in Europe. We describe the public-health (population and organisational level) research systems in the 27 European Union countries. Methods We developed a typology for describing health research structures based on funding streams and strategies. We drew data from internet sources and asked country informants to review these for consistency and completeness. The structures were described as organograms and narratives in country profiles for each of the 27 EU member states. National public-health research structures included public and independent funding organisations, 'mixed' institutions (which receive funds, and both use and allocate them) and provider institutions. Results Most health research is funded through ministries of science or science councils (and sometimes foundations), while parliaments and regions may also contribute. National institutes of public health are usually funded by ministries of health. Many national research organisations both determine research programmes and undertake health research, but there is a move towards public-health sciences within the universities, and a transition from internal grants to competitive funding. Of 27 national research strategies, 17 referred to health and 11 to public health themes. Although all countries had strategies for public health itself, we found little coherence in public-health research programmes. The European Commission has country contact points for both EU research and health programmes, but they do not coordinate with national health-research programmes. Conclusions Public-health research is broadly distributed across programmes in EU countries. Better understanding of research structures, programmes and results would improve recognition for public health in Europe, and contribute to practice. EU ministries of health should give greater attention to national public-health research strategies and programmes, and the European Union and the World Health Organisation can provide coordination and support. PMID:21970897</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1111552C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1111552C"><span>GENESI-DR - A single access point to Earth Science data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cossu, R.; Goncalves, P.; Pacini, F.</p> <p>2009-04-01</p> <p>The amount of information being generated about our planet is increasing at an exponential rate, but it must be easily accessible in order to apply it to the global needs relating to the state of the Earth. Currently, information about the state of the Earth, relevant services, analysis results, applications and tools are accessible in a very scattered and uncoordinated way, often through individual initiatives from Earth Observation mission operators, scientific institutes dealing with ground measurements, service companies, data catalogues, etc. A dedicated infrastructure providing transparent access to all this will support Earth Science communities by allowing them to easily and quickly derive objective information and share knowledge based on all environmentally sensitive domains. The use of high-speed networks (GÉANT) and the experimentation of new technologies, like BitTorrent, will also contribute to better services for the Earth Science communities. GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories), an ESA-led, European Commission (EC)-funded two-year project, is taking the lead in providing reliable, easy, long-term access to Earth Science data via the Internet. This project will allow scientists from different Earth Science disciplines located across Europe to locate, access, combine and integrate historical and fresh Earth-related data from space, airborne and in-situ sensors archived in large distributed repositories. GENESI-DR builds a federated collection of heterogeneous digital Earth Science repositories to establish a dedicated infrastructure providing transparent access to all this and allowing Earth Science communities to easily and quickly derive objective information and share knowledge based on all environmentally sensitive domains. The federated digital repositories, seen as services and data providers, will share access to their resources (catalogue functions, data access, processing services etc.) and will adhere to a common set of standards / policies / interfaces. The end-users will be provided with a virtual collection of digital Earth Science data, irrespectively of their location in the various single federated repositories. GENESI-DR objectives have lead to the identification of the basic GENESI-DR infrastructure requirements: • Capability, for Earth Science users, to discover data from different European Earth Science Digital Repositories through the same interface in a transparent and homogeneous way; • Easiness and speed of access to large volumes of coherently maintained distributed data in an effective and timely way; • Capability, for DR owners, to easily make available their data to a significantly increased audience with no need to duplicate them in a different storage system. Data discovery is based on a Central Discovery Service, which allows users and applications to easily query information about data collections and products existing in heterogeneous catalogues, at federated DR sites. This service can be accessed by users via web interface, the GENESI-DR Web Portal, or by external applications via open standardized interfaces exposed by the system. The Central Discovery Service identifies the DRs providing products complying with the user search criteria and returns the corresponding access points to the requester. By taking into consideration different and efficient data transfer technologies such as HTTPS, GridFTP and BitTorrent, the infrastructure provides easiness and speed of access. Conversely, for data publishing GENESI-DR provides several mechanisms to assist DR owners in producing a metadata catalogues. In order to reach its objectives, the GENESI-DR e-Infrastructure will be validated against user needs for accessing and sharing Earth Science data. Initially, four specific applications in the land, atmosphere and marine domains have been selected, including: • Near real time orthorectification for agricultural crops monitoring • Urban area mapping in support of emergency response • Data assimilation in GlobModel, addressing major environmental and health issues in Europe, with a particular focus on air quality • SeaDataNet to aid environmental assessments and to forecast the physical state of the oceans in near real time. Other applications will complement this during the second half of the project. GENESI-DR also aims to develop common approaches to preserve the historical archives and the ability to access the derived user information as both software and hardware transformations occur. Ensuring access to Earth Science data for future generations is of utmost importance because it allows for the continuity of knowledge generation improvement. For instance, scientists accessing today's climate change data in 50 years will be able to better understand and detect trends in global warming and apply this knowledge to ongoing natural phenomena. GENESI-DR will work towards harmonising operations and applying approved standards, policies and interfaces at key Earth Science data repositories. To help with this undertaking, GENESI-DR will establish links with the relevant organisations and programmes such as space agencies, institutional environmental programmes, international Earth Science programmes and standardisation bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002iaf..confE.261R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002iaf..confE.261R"><span>The ESA TTP and Recent Spin-off Successes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raitt, D.; Brisson, P.</p> <p>2002-01-01</p> <p>In the framework of its research and development activities, the European Space Agency (ESA) spends some 250m each year and, recognizing the enormous potential of the know-how developed within its R&D activities, set up a Technology Transfer Programme (TTP) some twelve years ago. Over the years, the Programme has achieved some remarkable results with 120 successful transfers of space technologies to the non-space sector; over 120m received by companies making the technologies available; some 15 new companies established as a direct result of exploiting technologies; nearly 2500 jobs created or saved in Europe; and a portfolio of some 300 (out of over 600) active space technologies available for transfer and licencing. Some of the more recent technologies which have been successfully transferred to the non-space sector include the Mamagoose baby safety pyjamas; a spectrographic system being used to compare colours in fabrics and textiles; Earth observation technology employed to assess remotely how much agrochemicals are being used by farmers; and the Dutch solar car, Nuna, which, using European space technologies, finished first in the 2001 World Solar Challenge breaking all records. The paper will give a brief overview of the ESA Technology Transfer Programme and describe some of its recent successful technology transfers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20481374','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20481374"><span>A journey through the skill of healing at the Historical Museum of the "Hospital Nacional de Clínicas de Córdoba - Argentina".</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cremades, Norma Acerbi</p> <p>2009-01-01</p> <p>The Museum of History "Hospital Nacional de Clínicas", from the National University of Cordoba, República Argentina, it's charged with the knowledge continuity of the Health Science, in time and space. Its guiding motto says: "I'll be a shield to stop the wind that wants to erase the imprint of men that shaped the history of the School of Medical Sciences by their work." To accomplish the tasks, general and particular objectives were settled. The Museum has a Library divided in three sections: Classical, Contemporary and Virtual. It counts with a specialized Information and Documentation Centre. Courses about different topics are given as well as the course of History of Medicine for Grade and post grade careers, completing with humanistic contents, the students education exclusively scientific and technical. For high school and Bachelor students there is a program called: "Education - Apprenticeship strategies at the Museum". These strategies are arranged to fit the programmes and levels of formal education for educational institutions. The heritage of the Museum consists of more than a thousand apparatus and tools that served the research and instruction at the different professorships of the School of Medical Sciences. Many of them obsolete they allow us to understand the evolution of science and technique, within the broad field of Health Science, since the creation of the School of Medical Sciences in 1877.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=operation+AND+management+AND+issues&pg=3&id=EJ1012068','ERIC'); return false;" href="https://eric.ed.gov/?q=operation+AND+management+AND+issues&pg=3&id=EJ1012068"><span>The Micro-Politics of Micro-Leadership: Exploring the Role of Programme Leader in English Universities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Murphy, Mark; Curtis, Will</p> <p>2013-01-01</p> <p>This study is based on interviews with 25 programme leaders at two universities in England. Programme leadership is ubiquitous and essential to effective university operations, yet there is surprisingly little research on the role. It is an ambiguous and complex form of leadership, existing as it does in the space between standard academic and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=social+AND+psychology&pg=6&id=EJ1148392','ERIC'); return false;" href="https://eric.ed.gov/?q=social+AND+psychology&pg=6&id=EJ1148392"><span>The Social Space of Educational Strategies: Exploring Patterns of Enrolment, Efficiency and Completion among Swedish Students in Undergraduate Programmes with Professional Qualifications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carlhed, Carina</p> <p>2017-01-01</p> <p>The aim of the study was to analyse enrolment patterns, and study efficiency and completion among students in programmes with professional qualifications, using microdata from Statistics Sweden. The programmes were Architecture, Medicine, Nursing, Law, Social work, Psychology, andEngineering (year 2001-2002, n = 15,918). Using the concepts from…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=nordic&pg=5&id=EJ1042818','ERIC'); return false;" href="https://eric.ed.gov/?q=nordic&pg=5&id=EJ1042818"><span>"Please, Give Me Space": Findings and Implications from an Evaluation of the GLOMUS Intercultural Music Camp, Ghana 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hebert, David G.; Saether, Eva</p> <p>2014-01-01</p> <p>Folk music programmes have been a major feature of higher education music departments across the Nordic region for several decades. Still, programmes that offer the opportunity to deeply study non-European music (other than jazz) are very rare in most of Europe, and programmes in music "education" that offer such opportunities at…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28771631','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28771631"><span>"Know your audience": A hospital community engagement programme in a non-profit paediatric hospital in Cambodia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pol, Sreymom; Fox-Lewis, Shivani; Cheah, Phaik Yeong; Turner, Claudia</p> <p>2017-01-01</p> <p>The purpose of this evaluation is to explore the impact of the new hospital community engagement programme (comprised of a Young Persons Advisory Group and a Science Café) on community members and other stakeholders, with regard to their attitudes, skills and degree of engagement in a paediatric hospital in Cambodia. Data collection included feedback questionnaires and reflections produced after each YPAG and Science Café event. Further questionnaires and reflective interviews were conducted to gather the views of key stakeholders. Data were analysed by thematic content analysis and numerical data were expressed using descriptive statistics. The vast majority of participants expressed their enjoyment and satisfaction of the hospital community engagement programme. Delivering the programme in the right manner for the target audiences, by prioritising their needs was key to this. Participants valued the programmes in terms of the knowledge delivered around good health practices, the skills developed such as confidence and responsibility for their health, and the provision of opportunities to voice their opinions. All stakeholders recognised the importance of the programme in improving the quality of the healthcare service provided at the hospital. In order to have a successful hospital community engagement programme, understanding the target audience is essential. The engagement programme must be delivered in the right way to meet the needs of community members, including right communication, right setting, right people and right timing. This will ultimately result in a meaningful programme that is able to empower community members, potentially resulting in lasting change in healthcare practices. In conclusion, the gap between hospitals and the community could narrow, allowing everyone to interact and learn from each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5542539','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5542539"><span>“Know your audience”: A hospital community engagement programme in a non-profit paediatric hospital in Cambodia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fox-Lewis, Shivani; Cheah, Phaik Yeong; Turner, Claudia</p> <p>2017-01-01</p> <p>Objective The purpose of this evaluation is to explore the impact of the new hospital community engagement programme (comprised of a Young Persons Advisory Group and a Science Café) on community members and other stakeholders, with regard to their attitudes, skills and degree of engagement in a paediatric hospital in Cambodia. Design Data collection included feedback questionnaires and reflections produced after each YPAG and Science Café event. Further questionnaires and reflective interviews were conducted to gather the views of key stakeholders. Data were analysed by thematic content analysis and numerical data were expressed using descriptive statistics. Results The vast majority of participants expressed their enjoyment and satisfaction of the hospital community engagement programme. Delivering the programme in the right manner for the target audiences, by prioritising their needs was key to this. Participants valued the programmes in terms of the knowledge delivered around good health practices, the skills developed such as confidence and responsibility for their health, and the provision of opportunities to voice their opinions. All stakeholders recognised the importance of the programme in improving the quality of the healthcare service provided at the hospital. Conclusions In order to have a successful hospital community engagement programme, understanding the target audience is essential. The engagement programme must be delivered in the right way to meet the needs of community members, including right communication, right setting, right people and right timing. This will ultimately result in a meaningful programme that is able to empower community members, potentially resulting in lasting change in healthcare practices. In conclusion, the gap between hospitals and the community could narrow, allowing everyone to interact and learn from each other. PMID:28771631</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=science+AND+chemistry&pg=6&id=ED502834','ERIC'); return false;" href="https://eric.ed.gov/?q=science+AND+chemistry&pg=6&id=ED502834"><span>Teaching Triple Science: GCSE Chemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Learning and Skills Network (NJ3), 2007</p> <p>2007-01-01</p> <p>The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Chemistry. It…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=%22history+of+science%22&pg=5&id=EJ1039988','ERIC'); return false;" href="https://eric.ed.gov/?q=%22history+of+science%22&pg=5&id=EJ1039988"><span>Documenting Collections: Cornerstones for More History of Science in Museums</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lourenço, Marta C.; Gessner, Samuel</p> <p>2014-01-01</p> <p>Historians of science have recently become increasingly involved with collections and scientific instruments. This creates opportunities for a more significant role of history in museums of science, as well as more meaningful and contextualized exhibitions and educational programmes. However, complementing the mainstream focus on universal…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Nigerian+AND+concept&pg=7&id=EJ380814','ERIC'); return false;" href="https://eric.ed.gov/?q=Nigerian+AND+concept&pg=7&id=EJ380814"><span>Scientific Literacy in Nigeria: The Role of Science Education Programmes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Olorundare, Solomon A.</p> <p>1988-01-01</p> <p>Delineates a concept of scientific literacy as it relates to the Nigerian situation. Examines the relevance and implications of scientific literacy to the educational system and national security. Suggests how scientific literacy can be encouraged through science programs, especially in elementary science education. (YP)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23394233','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23394233"><span>Promotion of science among youngsters: chemistry outreach initiatives at EPFL.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moser, Farnaz</p> <p>2012-01-01</p> <p>At EPFL, a strategy for organising scientific outreach activities has been developed and a programme comprising various measures and actions elaborated to promote science and technology among youngsters, especially young girls. As part of this programme, workshops and chemistry camps are developed and carried out for children and youngsters aged from 7 to 16 years old. These workshops are adapted to the age of the participants and allow them to discover chemistry in a fascinating way and become familiar with this field, understand how useful it is to society and learn about the professions it opens up. Some of the workshops take place at EPFL and others are organised in schools in the French-speaking cantons of Switzerland during the touring campaign of a bus named 'Les sciences, ça m'intéresse !' ('Sciences Interest Me!').</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19697158','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19697158"><span>UNESCO's activities in ethics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>ten Have, Henk A M J</p> <p>2010-03-01</p> <p>UNESCO is an intergovernmental organization with 193 Member States. It is concerned with a broad range of issues regarding education, science and culture. It is the only UN organisation with a mandate in science. Since 1993 it is addressing ethics of science and technology, with special emphasis on bioethics. One major objective of the ethics programme is the development of international normative standards. This is particularly important since many Member States only have a limited infrastructure in bioethics, lacking expertise, educational programs, bioethics committees and legal frameworks. UNESCO has recently adopted the Universal Declaration on Bioethics and Human Rights. The focus of current activities is now on implementation of this Declaration. Three activities are discussed that aim at improving and reinforcing the ethics infrastructure in relation to science and technology: the Global Ethics Observatory, the Ethics Education Programme and the Assisting Bioethics Committees project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24373009','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24373009"><span>Plant biology in space: recent accomplishments and recommendations for future research.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruyters, G; Braun, M</p> <p>2014-01-01</p> <p>Gravity has shaped the evolution of life since its origin. However, experiments in the absence of this overriding force, necessary to precisely analyse its role, e.g. for growth, development, and orientation of plants and single cells, only became possible with the advent of spaceflight. Consequently, this research has been supported especially by space agencies around the world for decades, mainly for two reasons: first, to enable fundamental research on gravity perception and transduction during growth and development of plants; and second, to successfully grow plants under microgravity conditions with the goal of establishing a bioregenerative life support system providing oxygen and food for astronauts in long-term exploratory missions. For the second time, the International Space Life Sciences Working Group (ISLSWG), comprised of space agencies with substantial life sciences programmes in the world, organised a workshop on plant biology research in space. The present contribution summarises the outcome of this workshop. In the first part, an analysis is undertaken, if and how the recommendations of the first workshop held in Bad Honnef, Germany, in 1996 have been implemented. A chapter summarising major scientific breakthroughs obtained in the last 15 years from plant research in space concludes this first part. In the second part, recommendations for future research in plant biology in space are put together that have been elaborated in the various discussion sessions during the workshop, as well as provided in written statements from the session chairs. The present paper clearly shows that plant biology in space has contributed significantly to progress in plant gravity perception, transduction and responses - processes also relevant for general plant biology, including agricultural aspects. In addition, the interplay between light and gravity effects has increasingly received attention. It also became evident that plants will play a major role as components of bioregenerative life support and energy systems that are necessary to complement physico-chemical systems in upcoming long-term exploratory missions. In order to achieve major progress in the future, however, standardised experimental conditions and more advanced analytical tools, such as state-of-the-art onboard analysis, are required. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10566E..2AV','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10566E..2AV"><span>Programmable spectrometer using MOEMs devices for space applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viard, Thierry; Buisset, Christophe; Rejeaunier, Xavier; Zamkotsian, Frédéric; Venancio, Luis M.</p> <p>2017-11-01</p> <p>A new class of spectrometer can be designed using programmable components such as MOEMS which enable to tune the beam in spectral width and central wavelength. It becomes possible to propose for space applications a spectrometer with programmable resolution and adjustable spectral bandwidth. The proposed way to tune the output beam is to use the diffraction effect with the so-called PMDG (Programmable Micro Diffraction Gratings ) diffractive MEMS. In that case, small moving structures can form programmable gratings, diffracting or not the incoming light. In the proposed concept, the MOEMS is placed in the focal plane of a first diffracting stage (using a grating for instance). With such implementation, the MOEMS component can be used to select some wavelengths (for instance by reflecting them) and to switch-off the others (for instance by diffracting them). A second diffracting stage is used to recombine the beam composed by all the selected wavelengths. It becomes then possible to change and adjust the filter in λ and Δλ. This type of implementation is very interesting for space applications (Astronomy, Earth observation, planetary observation). Firstly because it becomes possible to tune the filtering function quasi instantaneously. And secondly because the focal plane dimension can be reduced to a single detector (for application without field of view) or to a linear detector instead of a 2D matrix detector (for application with field of view) thanks to a sequential acquisition of the signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...592A...1P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...592A...1P"><span>The XXL Survey. I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pierre, M.; Pacaud, F.; Adami, C.; Alis, S.; Altieri, B.; Baran, N.; Benoist, C.; Birkinshaw, M.; Bongiorno, A.; Bremer, M. N.; Brusa, M.; Butler, A.; Ciliegi, P.; Chiappetti, L.; Clerc, N.; Corasaniti, P. S.; Coupon, J.; De Breuck, C.; Democles, J.; Desai, S.; Delhaize, J.; Devriendt, J.; Dubois, Y.; Eckert, D.; Elyiv, A.; Ettori, S.; Evrard, A.; Faccioli, L.; Farahi, A.; Ferrari, C.; Finet, F.; Fotopoulou, S.; Fourmanoit, N.; Gandhi, P.; Gastaldello, F.; Gastaud, R.; Georgantopoulos, I.; Giles, P.; Guennou, L.; Guglielmo, V.; Horellou, C.; Husband, K.; Huynh, M.; Iovino, A.; Kilbinger, M.; Koulouridis, E.; Lavoie, S.; Le Brun, A. M. C.; Le Fevre, J. P.; Lidman, C.; Lieu, M.; Lin, C. A.; Mantz, A.; Maughan, B. J.; Maurogordato, S.; McCarthy, I. G.; McGee, S.; Melin, J. B.; Melnyk, O.; Menanteau, F.; Novak, M.; Paltani, S.; Plionis, M.; Poggianti, B. M.; Pomarede, D.; Pompei, E.; Ponman, T. J.; Ramos-Ceja, M. E.; Ranalli, P.; Rapetti, D.; Raychaudury, S.; Reiprich, T. H.; Rottgering, H.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Santos, J.; Sauvageot, J. L.; Schimd, C.; Sereno, M.; Smith, G. P.; Smolčić, V.; Snowden, S.; Spergel, D.; Stanford, S.; Surdej, J.; Valageas, P.; Valotti, A.; Valtchanov, I.; Vignali, C.; Willis, J.; Ziparo, F.</p> <p>2016-06-01</p> <p>Context. The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalised. Aims: We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg2 each at a point-source sensitivity of ~5 × 10-15 erg s-1 cm-2 in the [0.5-2] keV band (completeness limit). The survey's main goals are to provide constraints on the dark energy equation of state from the space-time distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programmes. Methods: We describe the 542 XMM observations along with the associated multi-λ and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis. Results: The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-λ associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses. Conclusions: The XXL multi-λ data set will have a unique lasting legacy value for cosmological and extragalactic studies and will serve as a calibration resource for future dark energy studies with clusters and other X-ray selected sources. With the present article, we release the XMM XXL photon and smoothed images along with the corresponding exposure maps. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme 089.A-0666 and LP191.A-0268.The XMM XXL observation list (Full Table B.1) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A1</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=teaching+AND+Science+AND+primary&pg=6&id=EJ968638','ERIC'); return false;" href="https://eric.ed.gov/?q=teaching+AND+Science+AND+primary&pg=6&id=EJ968638"><span>Resilience of Science Teaching Philosophies and Practice in Early Career Primary Teaching Graduates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bartholomew, Rex; Anderson, Dayle; Moeed, Azra</p> <p>2012-01-01</p> <p>There has been recent concern over the variable quality of science teaching in New Zealand primary schools. One reason suggested has been the relatively low levels of science education components in initial teacher education (ITE) programmes. This paper follows a cohort of recent teacher graduates from a science education course in their ITE…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=teaching+AND+Science+AND+primary&pg=3&id=EJ1031744','ERIC'); return false;" href="https://eric.ed.gov/?q=teaching+AND+Science+AND+primary&pg=3&id=EJ1031744"><span>An Innovative Model of Professional Development to Enhance the Teaching and Learning of Primary Science in Irish Schools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Smith, Greg</p> <p>2014-01-01</p> <p>This study investigates the influence of a two-year professional development programme on primary teachers' attitudes towards primary science, their confidence and competence in teaching science, and pupils' attitudes towards school science. Unlike the traditional "one-size-fits all" model of professional development, the model developed…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=physical+AND+science&pg=7&id=EJ1037147','ERIC'); return false;" href="https://eric.ed.gov/?q=physical+AND+science&pg=7&id=EJ1037147"><span>The Pedagogical Orientations of South African Physical Sciences Teachers towards Inquiry or Direct Instructional Approaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ramnarain, Umesh; Schuster, David</p> <p>2014-01-01</p> <p>In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=data+AND+science&pg=3&id=EJ1083205','ERIC'); return false;" href="https://eric.ed.gov/?q=data+AND+science&pg=3&id=EJ1083205"><span>Statistical Techniques Utilized in Analyzing PISA and TIMSS Data in Science Education from 1996 to 2013: A Methodological Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Liou, Pey-Yan; Hung, Yi-Chen</p> <p>2015-01-01</p> <p>We conducted a methodological review of articles using the Programme for International Student Assessment (PISA) or Trends in International Mathematics and Science Study (TIMSS) data published by the SSCI-indexed science education journals, such as the "International Journal of Science and Mathematics Education," the "International…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1084176.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1084176.pdf"><span>Science Practical Work Instructional Technologies and Open Distance Learning in Science Teacher Training: A Case Study in Zimbabwe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bhukuvhani, Crispen; Mupa, Mathew; Mhishi, Misheck; Dziva, Daimond</p> <p>2012-01-01</p> <p>The practical work component offers unique challenges for university science courses. This is even more pertinent in an Open and Distance Learning (ODL) environment like the Bindura University of Science Education's Virtual and Open Distance Learning (VODL) programme. Effective ODL education should be flexible enough to accommodate science…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45420','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45420"><span>Merging perspectives in the catchment sciences: the US-Japan Joint Seminar on catchment hydrology and forest biogeochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Kevin J. McGuire; Stephen D. Sebestyen; Nobuhito Ohte; Emily M. Elliott; Takashi Gomi; Mark B. Green; Brian L. McGlynn; Naoko Tokuchi</p> <p>2014-01-01</p> <p>Japan has strong research programmes in the catchment sciences that overlap with interests in the US catchment science community, particularly in experimental and field-based research. Historically, however, there has been limited interaction between these two hydrologic science communities because of differences in language, culture, and research approaches. These...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSM.U21B..01I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSM.U21B..01I"><span>Ninety Years of International Cooperation in Geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ismail-Zadeh, A.; Beer, T.</p> <p>2009-05-01</p> <p>Because applicable physical, chemical, and mathematical studies of the Earth system must be both interdisciplinary and international, the International Union of Geodesy and Geophysics (IUGG) was formed in 1919 as an non-governmental, non-profit organization dedicated to advancing, promoting, and communicating knowledge of the Earth system, its space environment, and the dynamical processes causing change. The Union brings together eight International Associations that address different disciplines of Earth sciences. Through these Associations, IUGG promotes and enables studies in the geosciences by providing a framework for collaborative research and information exchange, by organizing international scientific assemblies worldwide, and via research publications. Resolutions passed by assemblies of IUGG and its International Associations set geophysical standards and promote issues of science policy on which national members agree. IUGG has initiated and/or vigorously supported collaborative international efforts that have led to highly productive worldwide interdisciplinary research programs, such as the International Geophysical Year and subsequent International Years (IPY, IYPE, eGY, and IHY), International Lithosphere Programme, World Climate Research Programme, Geosphere-Biosphere Programme, and Integrated Research on Risk Disaster. IUGG is inherently involved in the projects and programs related to climate change, global warming, and related environmental impacts. One major contribution has been the creation, through the International Council for Science (ICSU), of the World Data Centers and the Federation of Astronomical and Geophysical Data Analysis Services. These are being transformed to the ICSU World Data System, from which the data gathered during the major programs and data products will be available to researchers everywhere. IUGG cooperates with UNESCO, WMO, and some other U.N. and non-governmental organizations in the study of natural catastrophes, climate dynamics, and in geodetic, hydrological, meteorological, oceanographic, seismological, and volcanological research. IUGG also places particular emphasis on the scientific problems of economically less-developed countries by sponsoring activities relevant to their scientific needs (e.g. Geosciences in Africa, Water Resources, Health and Well-Being etc.) The American Geophysical Union was established as the U.S. National Committee for IUGG in 1919 and today has become a distinguished union of individual geoscientists around the world. Several regional geoscience societies also evolved during the last several decades, most prominent being the European Geosciences Union and the Asia Oceania Geosciences Society. These, and some other national and regional geophysical societies, together with IUGG play a strong part in the international cooperation and promotion of geophysical sciences. At the same time the "geosciences" space is getting crowded, and there is a lot of overlap. International linkages between IUGG, AGU, EGU and other geophysical societies as well as their linkage with International Scientific Unions, that comprise the GeoUnions, are going to become more and more important. Working together is going to be more fruitful than territorial disputes. But what mechanisms can be used to encourage relationships between the international, national and regional geophysical and geoscientific bodies? We will discuss some possibilities on how to come together, to develop and to implement joint programs, research meeting, open forums, and policy statements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28140703','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28140703"><span>A longitudinal online interprofessional education experience involving family nurse practitioner students and pharmacy students.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Collins, Andrea; Broeseker, Amy; Cunningham, Jill; Cortes, Cyndi; Beall, Jennifer; Bigham, Amy; Chang, Jongwha</p> <p>2017-03-01</p> <p>Interprofessional education (IPE) continues to gain traction worldwide. Challenges integrating IPE into health profession programmes include finding convenient times, meeting spaces, and level-appropriate assignments for each profession. This article describes the implementation of a 21-month prospective cohort study pilot programme for the Master of Science in nursing family nurse practitioner (FNP) and doctor of pharmacy (PharmD) students at a private university in the United States. This IPE experience utilised a blended approach for the learning activities; these students had initial and final sessions where they met face-to-face, with asynchronous online activities between these two sessions. The online assignments, discussions, and quizzes during the pilot programme involved topics such as antimicrobial stewardship, hormone replacement therapy, human papilloma virus vaccination, prenatal counselling, emergency contraception, and effects of the Affordable Care Act on practice. The results suggested that the FNP students held more favourable attitudes about online IPE and that the PharmD students reported having a clearer understanding of their own roles and those of the other participating healthcare students. However, the students also reported wanting more face-to-face interaction during their online IPE experience. Implications from this study suggest that effective online IPE can be supported by ensuring educational parity between students regarding the various topics discussed and a consistent approach of the required involvement for all student groups is needed. In addition, given the students desire for more face-to-face interaction, it may be beneficial to offer online IPE activities for a shorter time period. It is anticipated that this study may inform other programmes that are exploring innovative approaches to provide IPE to promote effective collaboration in patient care.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919660A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919660A"><span>ESA Earth Observation missions at the service of geoscience</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aschbacher, Josef</p> <p>2017-04-01</p> <p>The intervention will present ESA's Earth Observation programmes and their relevance to geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and boundary conditions. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific endeavours. Meteorological satellites help to predict the weather and feature the most mature application of Earth observation. Over the last four decades satellites have been radically improving the accuracy of weather forecasts by providing unique and indispensable input data to numerical computation models. In addition, Essential Climate Variables (ECV) are constantly monitored within ESA's Climate Change Initiative in order to create a long-term record of key geophysical parameters. All of these activities can only be carried out in international cooperation. Accordingly, ESA maintains long-standing partnerships with other space agencies and relevant institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges as well as to requirements resulting from political priorities, such as the United Nations' Sustainable Development Goals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997RScEd..27...51W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997RScEd..27...51W"><span>An in-depth study of a teacher engaged in an innovative primary science trial professional development project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watters, James J.; Ginns, Ian S.</p> <p>1997-03-01</p> <p>The implementation of effective science programmes in primary schools is of continuing interest and concern for professional developers. As part of the Australian Academy of science's approach to creating an awareness of Primary Investigations, a project team trialed a series of satellite television broadcasts of lessons related to two units of the curriculum for Year 3 and 4 children in 48 participating schools. The professional development project entitled Simply Science, included a focused component for the respective classroom teachers, which was also conducted by satellite. This paper reports the involvement of a Year 4 teacher in the project and describes her professional growth. Already an experienced and confident teacher, no quantitative changes in science teaching self efficacy were detected. However, her pedagogical content knowledge and confidence to teach science in the concept areas of matter and energy were enhanced. Changes in the teacher's views about the co-operative learning strategies espoused by Primary Investigations were also evident. Implications for the design of professional development programmes for primary science teachers are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJSEd..33....7B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJSEd..33....7B"><span>Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bybee, Rodger; McCrae, Barry</p> <p>2011-01-01</p> <p>International assessments provide important knowledge about science education and help inform decisions about policies, programmes, and practices in participating countries. In 2006, science was the primary domain for the Programme for International Student Assessment (PISA), supported by the Organisation for Economic Cooperation and Development (OECD) and conducted by the Australian Council for Educational Research (ACER). Compared to the school curriculum orientation of Trends in International Math and Science Study (TIMSS), PISA provides a perspective that emphasises the application of knowledge to science and technology-related life situations. The orientation of PISA includes both knowledge and attitudes as these contribute to students' competencies that are central to scientific literacy. In addition to students' knowledge and competencies, the 2006 PISA survey gathered data on students' interest in science, support for scientific enquiry, and responsibility towards resources and environments. The survey used both a non-contextualised student questionnaire and contextualised questions. The latter is an innovative approach which embedded attitudinal questions at the conclusion of about two-thirds of the test units. The results presented in this article make connections between students' attitudes and interests in science and scientific literacy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910018749','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910018749"><span>NASA-HBCU Space Science and Engineering Research Forum Proceedings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)</p> <p>1989-01-01</p> <p>The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999NIMPA.424..113V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999NIMPA.424..113V"><span>Neutron radiography in Indian space programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viswanathan, K.</p> <p>1999-11-01</p> <p>Pyrotechnic devices are indispensable in any space programme to perform such critical operations as ignition, stage separation, solar panel deployment, etc. The nature of design and configuration of different types of pyrotechnic devices, and the type of materials that are put in their construction make the inspection of them with thermal neutrons more favourable than any other non destructive testing methods. Although many types of neutron sources are available for use, generally the radiographic quality/exposure duration and cost of source run in opposite directions even after four decades of research and development. But in the area of space activity, by suitably combining the X-ray and neutron radiographic requirements, the inspection of the components can be made economically viable. This is demonstrated in the Indian space programme by establishing a 15 MeV linear accelerator based neutron generator facility to inspect medium to giant solid propellant boosters by X-ray inspection and all types of critical pyro and some electronic components by neutron radiography. Since the beam contains unacceptable gamma, transfer imaging technique has been evolved and the various parameters have been optimised to get a good quality image.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24175684','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24175684"><span>Antecedents and consequences of situational interest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Linnenbrink-Garcia, Lisa; Patall, Erika A; Messersmith, Emily E</p> <p>2013-12-01</p> <p>There is a growing body of research on situational interest (SI). Yet, we still know relatively little about how SI is supported in the classroom and the academic benefits of SI. The current study investigated (1) contextual antecedents of SI; (2) potential benefits of SI for academic outcomes; and (3) SI as a mediator of classroom practices to academic outcomes. Participants were 126 male and female adolescents (mean age = 14.6 years) who took part in a science course during a 3-week residential summer programme for talented adolescents. Participants completed self-report measures prior to the start of the summer programme and at the end of the programme. Summer programme instructors completed ratings of students' engagement during the programme. Multiple regression analyses were conducted to investigate the three study aims. After controlling for initial individual interest, perceived choice, instructor approachability, and course connections to real life were statistically significant predictors of SI during the summer programme, with varying associations observed based on the form of SI (triggered, maintained-feeling, and maintained-value). SI was positively related to individual interest and perceived competence in science at the end of the programme as well as teacher-rated engagement; SI also mediated the associations of classroom practices with these outcomes. Results suggest that classroom practices shape SI. In turn, SI supports motivation and engagement. Moreover, differentiated antecedents and outcomes of the three sub-components of SI were identified, highlighting the utility of this three-component approach for studying SI. © 2012 The British Psychological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=bats&pg=5&id=EJ986423','ERIC'); return false;" href="https://eric.ed.gov/?q=bats&pg=5&id=EJ986423"><span>The Clubbers' Guide: "Be Inspired, Inspire Others"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carter, Liz</p> <p>2012-01-01</p> <p>"Be inspired, inspire others" is this author's school motto and also something she aims to achieve by running the Science Club at The Warwick School in Redhill, Surrey, UK, an 11-16 specialist technology comprehensive. The Science Club is part of an extensive science, technology, engineering, and mathematics (STEM) programme that has…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=tissue+AND+engineering&pg=2&id=ED263013','ERIC'); return false;" href="https://eric.ed.gov/?q=tissue+AND+engineering&pg=2&id=ED263013"><span>Agriculture and Biology Teaching. Science and Technology Education Document Series 11.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rao, A. N.; Pritchard, Alan J.</p> <p></p> <p>The six-chapter document is part of Unesco's Science and Technology Education Programme to encourage an international exchange of ideas and information on science and technology education. Chapters discuss: (1) development of agriculture (beginning and modern); (2) agroecosystems (land utilization, soils, food production, irrigation, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED530664.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED530664.pdf"><span>Science Education and Teachers' Training: Research in Partnership</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pilo, Miranda; Gavio, Brigitte; Grosso, Daniele; Mantero, Alfonso</p> <p>2012-01-01</p> <p>International researchers put to evidence a worrying decrease in science disciplines' role in many countries, especially in the European Community and a poor quality in scientific competences, as issues of TIMMS (trends in international mathematics and science study) and PISA (programme for international student assessment) have proved, together…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=engineering&pg=3&id=EJ1158976','ERIC'); return false;" href="https://eric.ed.gov/?q=engineering&pg=3&id=EJ1158976"><span>Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chabalengula, Vivien M.; Mumba, Frackson</p> <p>2017-01-01</p> <p>The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=human+AND+questions+AND+computer+AND+science&pg=5&id=ED502833','ERIC'); return false;" href="https://eric.ed.gov/?q=human+AND+questions+AND+computer+AND+science&pg=5&id=ED502833"><span>Teaching Triple Science: GCSE Biology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Learning and Skills Network (NJ3), 2007</p> <p>2007-01-01</p> <p>The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Biology. It highlights…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=arikan&pg=2&id=EJ1052318','ERIC'); return false;" href="https://eric.ed.gov/?q=arikan&pg=2&id=EJ1052318"><span>Turkish Students' Science Performance and Related Factors in PISA 2006 and 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Topçu, Mustafa Sami; Arikan, Serkan; Erbilgin, Evrim</p> <p>2015-01-01</p> <p>The OECD's Programme for International Student Assessment (PISA) enables participating countries to monitor 15-year old students' progress in reading, mathematics, and science literacy. The present study investigates persistent factors that contribute to science performance of Turkish students in PISA 2006 and PISA 2009. Additionally, the study…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=computer+AND+industry&pg=6&id=EJ989944','ERIC'); return false;" href="https://eric.ed.gov/?q=computer+AND+industry&pg=6&id=EJ989944"><span>A Curriculum Framework for Geographical Information Science (GISc) Training at South African Universities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>du Plessis, H.; van Niekerk, A.</p> <p>2012-01-01</p> <p>Geographical information science (GISc) is one of the fastest growing industries worldwide. Being a relatively new discipline, universities often provide training as part of geography, surveying, town planning, environmental and computer science programmes. This complicates professional accreditation assessments as the content, outcomes, extent…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ESASP.732E..29R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ESASP.732E..29R"><span>SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David</p> <p>2015-09-01</p> <p>The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AcAau..49..489A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AcAau..49..489A"><span>Reflections on human presence in space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnould, Jacques</p> <p>2001-08-01</p> <p>Humankind's exploration of Space has until now been understood as analagous to that of planet Earth: sending out crews to far-off, unknown lands in the hope of finding supplies of food, water or energy along with shelter and living-space. But Space is turning out to be much less hospitable than our earthly milieu in terms of resources as well as energy costs. It seems appropriate to ask what level of adaptation is needed for humans to travel and live in the cosmos, and to assess if the next logical step should necessarily be a programme of conquest analagous to that of the Moon — for example, towards Mars. Should we not rather be making more use of Earth's immediate neighbourhood, namely the sphere of a million of kilometres we call "Greater Earth"? In the same way, it is appropriate to ask questions about the conception of human beings which will from now on sustain the conquest of Space. The astronaut of the last forty years is the direct heir of the explorers of Ancient and Modern times; now, through the influence of science and technology, humanity has been put "into motion" not only geographically, but also in its most essential foundations: culture, psychology, philosophy. If the development of telepresence technology now gives us the ability to talk about a "Greater Human Being", it is chiefly through freedom of choice for oneself, for humanity and even for Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20138668','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20138668"><span>An extraterrestrial sandwich: The perils of food in space.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Levi, Jane</p> <p>2010-03-01</p> <p>Food was and is an essential component in human space exploration. If it had not proved possible to eat and digest in space, none of the long-term space missions of the last four decades would have been achievable. Every country that has sent an astronaut on a mission has used its national foods as a means of stating both their presence and their identity to their colleagues in the programme and their citizens at home: in space, as on earth, food has provided a means of asserting national culture. From the earliest missions, the US and USSR's differing attitudes to the programme have been reflected in the food provided and the respective administrations' approaches to feeding in space. The contrast between the US focus on space travel and the USSR's focus on space living is highlighted through their attitudes to the often vexed question of what astronauts and cosmonauts should be permitted to eat, illustrated by the corned-beef sandwich incident of 1965. 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJSEd..37.2987K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJSEd..37.2987K"><span>Teachers' Understanding and Operationalisation of `Science Capital'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>King, Heather; Nomikou, Effrosyni; Archer, Louise; Regan, Elaine</p> <p>2015-12-01</p> <p>Across the globe, governments, industry and educationalists are in agreement that more needs to be done to increase and broaden participation in post-16 science. Schools, as well as teachers, are seen as key in this effort. Previous research has found that engagement with science, inclination to study science and understanding of the value of science strongly relates to a student's science capital. This paper reports on findings from the pilot year of a one-year professional development (PD) programme designed to work with secondary-school teachers to build students' science capital. The PD programme introduced teachers to the nature and importance of science capital and thereafter supported them to develop ways of implementing science capital-building pedagogy in their practice. The data comprise interviews with the participating teachers (n = 10), observations of classroom practices and analyses of the teachers' accounts of their practice. Our findings suggest that teachers found the concept of science capital to be compelling and to resonate with their own intuitive understandings and experiences. However, the ways in which the concept was operationalised in terms of the implementation of pedagogical practices varied. The difficulties inherent in the operationalisation are examined and recommendations for future work with teachers around the concept of science capital are developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyW...30l..11A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyW...30l..11A"><span>UK to train 100 PhD students in data science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, Michael</p> <p>2017-12-01</p> <p>A new PhD programme to develop techniques to handle the vast amounts of data being generated by experiments and facilities has been launched by the UK's Science and Technology Facilities Council (STFC).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=CRC&pg=5&id=EJ829967','ERIC'); return false;" href="https://eric.ed.gov/?q=CRC&pg=5&id=EJ829967"><span>Graduate Attribute Development and Employment Outcomes: Tracking PhD Graduates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Manathunga, Catherine; Pitt, Rachael; Critchley, Christa</p> <p>2009-01-01</p> <p>The provision of diversified research training is regarded as one of the most significant contributions made by the Australian Cooperative Research Centres (CRC) programme [Howard Partners 2003, Evaluation of the cooperative research centres programme, Department of Education, Science and Training, Canberra, ACT]. Yet, a systematic evaluation of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=programmable&id=EJ982785','ERIC'); return false;" href="https://eric.ed.gov/?q=programmable&id=EJ982785"><span>Introducing Programmable Logic to Undergraduate Engineering Students in a Digital Electronics Course</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Todorovich, E.; Marone, J. A.; Vazquez, M.</p> <p>2012-01-01</p> <p>Due to significant technological advances and industry requirements, many universities have introduced programmable logic and hardware description languages into undergraduate engineering curricula. This has led to a number of logistical and didactical challenges, in particular for computer science students. In this paper, the integration of some…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=stephen+AND+king&pg=6&id=EJ1011942','ERIC'); return false;" href="https://eric.ed.gov/?q=stephen+AND+king&pg=6&id=EJ1011942"><span>Academic Success in Context-Based Chemistry: Demonstrating Fluid Transitions between Concepts and Context</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>King, Donna Therese; Ritchie, Stephen M.</p> <p>2013-01-01</p> <p>Curriculum developers and researchers have promoted context-based programmes to arrest waning student interest and participation in the enabling sciences at high school and university. Context-based programmes aim for student connections between scientific discourse and real-world contexts to elevate curricular relevance without diminishing…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=competition+AND+engineering+AND+field&pg=5&id=EJ743298','ERIC'); return false;" href="https://eric.ed.gov/?q=competition+AND+engineering+AND+field&pg=5&id=EJ743298"><span>Collaborations, Courses, and Competitions: Developing Entrepreneurship Programmes at UCL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chapman, David; Skinner, Jeff</p> <p>2006-01-01</p> <p>Purpose: This paper aims to detail a range of collaborative programmes developed by University College London (UCL) and the London Business School (LBS). These schemes have been developed to exploit synergies between the two institutions with the aim of promoting entrepreneurship within the fields of science and technology.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Training+AND+Earth&pg=2&id=EJ965741','ERIC'); return false;" href="https://eric.ed.gov/?q=Training+AND+Earth&pg=2&id=EJ965741"><span>Postgraduate Educational Practice in Australian Geography: Change and Stasis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Fincher, Ruth</p> <p>2012-01-01</p> <p>Within Australia most Departments of Geography have been merged with programmes in Environmental Studies or Earth Sciences, and have been cast as multidisciplinary contributors to the increasingly vocational concerns of universities. One outcome is that named Geography programmes for postgraduates are not growing in institutional prominence in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5666252','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5666252"><span>Engaging rural Australian communities in National Science Week helps increase visibility for women researchers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Desselle, Mathilde R.</p> <p>2017-01-01</p> <p>During a week-long celebration of science, run under the federally supported National Science Week umbrella, the Catch a Rising Star: women in Queensland research (CaRS) programme flew scientists who identify as women to nine regional and remote communities in the Australian State of Queensland. The aim of the project was twofold: first, to bring science to remote and regional communities in a large, economically diverse state; and second, to determine whether media and public engagement provides career advancement opportunities for women scientists. This paper focuses on the latter goal. The data show: (i) a substantial majority (greater than 80%) of researchers thought the training and experience provided by the programme would help develop her career as a research scientist in the future, (ii) the majority (65%) thought the programme would help relate her research to end users, industry partners or stakeholders in the future, and (iii) analytics can help create a compelling narrative around engagement metrics and help to quantify influence. During the week-long project, scientists reached 600 000 impressions on one social media platform (Twitter) using a program hashtag. The breadth and depth of the project outcomes indicate funding bodies and employers could use similar data as an informative source of metrics to support hiring and promotion decisions. Although this project focused on researchers who identify as women, the lessons learned are applicable to researchers representing a diverse range of backgrounds. Future surveys will help determine whether the CaRS programme provided long-term career advantages to participating scientists and communities. PMID:29134069</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED354015.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED354015.pdf"><span>Le programme de sciences de la nature. Avis a la ministre de l'enseignement superieur et de la science (The Natural Sciences Program. Advisory to the Minister of Higher Education and Science).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Conseil des Colleges, Quebec (Quebec).</p> <p></p> <p>A series of recommendations developed by the Council of Colleges of the Colleges of General and Professional Education (CEGEP) in Quebec (Canada) are presented in this report to the Ministry of Higher Education and Science for redesigning the CEGEP's natural sciences curriculum. The proposed reforms are designed to meet legislative requirements…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSM.U22A..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSM.U22A..02D"><span>International Geo-Years: Cooperation Between Planet Earth and Electronic Years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Mulder, E.</p> <p>2005-05-01</p> <p>Momentum is growing behind an ambitious international multidisciplinary Earth science initiative. The International Year of Planet Earth project was conceived by the International Union of Geological Sciences (IUGS) finding UNESCO's Earth Sciences Division ready as co-initiator. It now enjoys the backing of all relevant IUGS's sister unions in ICSU, including IUGG, and through a Declaration adopted at the International Geological Congress (2004) of the global geoscience community. It has now won the full political backing of 14 nations, together representing half of the world population. The aim of the Year, encapsulated in its subtitle Earth sciences for Society, is to build awareness of the relationship between humankind and Planet Earth, and to demonstrate that geoscientists are key players in creating a balanced, sustainable future for both. 2007 or 2008 is aimed for the officially endorsed UN-year, but the whole project will begin one year ahead and run through to at least one year after the UN-year. The International Year includes a Science and an Outreach Programme, both of equal financial size. The eight Themes (Groundwater, Hazards, Health, Climate, Resources, Deep Earth, Ocean, and Megacities) in the Science Programme were selected for their societal impact, their potential for outreach, as well as their multidisciplinary nature and high scientific potential. Applications for more Themes (on `Soil' and on `Life') are being considered. Brochures with key questions and invitations for scientists to submit project proposals are being printed for each Theme and can be downloaded from www.esfs.org. The same bottom-up mode is applied for the Outreach Programme which will operate as a funding body, receiving bids for financial support - for anything from web-based educational resources to commissioning works of art that will help reinforce to the general public the central message of the Year. There are many potential interfaces and links between this initiative and the eGY, ranging from data and information handling in the Science Themes, virtual observatories, to participation in the Outreach Programme (nicknamed `The Greatest Show on Earth'). Examples on such cooperation with eGY and with other Geo-Year initiatives (International Heliophysical Year and International Polar Year) will be discussed in the presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2257614S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2257614S"><span>Universe Awareness: a global educational programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sankatsing Nava, Tibisay; Russo, Pedro</p> <p>2015-08-01</p> <p>Universe Awareness (UNAWE) is a global astronomy education programme that uses the beauty and grandeur of the Universe to encourage young children, particularly those from an underprivileged background, to have an interest in science and technology and foster their sense of global citizenship from an early age.UNAWE’s activities consist of four main components:- Coordinating an international network comprised of more than 1000 astronomers, teachers and educators in more than 60 countries- Developing and distributing educational resources such as the inflatable UNAWE Earthball, the Universe-in-a Box educational kit and Space Scoop, the astronomy news service for children.- Providing training activities for teachers and other educators of young children around the world- Providing resources for the evaluation of educational activitiesBetween 2011 and 2013, the European branch of UNAWE, EU-UNAWE, was funded by the European Commission to implement a project in 5 EU countries and South Africa. This project has been concluded successfully. The global project of Universe Awareness coordinated by Leiden University has continued to grow since, with an expanding international network, new educational resources and teacher trainings and an International Workshop in collaboration with ESA in October 2015, among other activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22395066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22395066"><span>IAEA activities related to radiation biology and health effects of radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wondergem, Jan; Rosenblatt, Eduardo</p> <p>2012-03-01</p> <p>The IAEA is involved in capacity building with regard to the radiobiological sciences in its member states through its technical cooperation programme. Research projects/programmes are normally carried out within the framework of coordinated research projects (CRPs). Under this programme, two CRPs have been approved which are relevant to nuclear/radiation accidents: (1) stem cell therapeutics to modify radiation-induced damage to normal tissue, and (2) strengthening biological dosimetry in IAEA member states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JNuM..417..463R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JNuM..417..463R"><span>Review on the EFDA programme on tungsten materials technology and science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rieth, M.; Boutard, J. L.; Dudarev, S. L.; Ahlgren, T.; Antusch, S.; Baluc, N.; Barthe, M.-F.; Becquart, C. S.; Ciupinski, L.; Correia, J. B.; Domain, C.; Fikar, J.; Fortuna, E.; Fu, C.-C.; Gaganidze, E.; Galán, T. L.; García-Rosales, C.; Gludovatz, B.; Greuner, H.; Heinola, K.; Holstein, N.; Juslin, N.; Koch, F.; Krauss, W.; Kurzydlowski, K. J.; Linke, J.; Linsmeier, Ch.; Luzginova, N.; Maier, H.; Martínez, M. S.; Missiaen, J. M.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Norajitra, P.; Opschoor, J.; Pintsuk, G.; Pippan, R.; Ritz, G.; Romaner, L.; Rupp, D.; Schäublin, R.; Schlosser, J.; Uytdenhouwen, I.; van der Laan, J. G.; Veleva, L.; Ventelon, L.; Wahlberg, S.; Willaime, F.; Wurster, S.; Yar, M. A.</p> <p>2011-10-01</p> <p>All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5612387','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5612387"><span>Strengthening medical education in haematology and blood transfusion: postgraduate programmes in Tanzania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Makani, Julie; Lyimo, Magdalena; Magesa, Pius; Roberts, David J.</p> <p>2017-01-01</p> <p>Summary Haematology and blood transfusion, as a clinical and laboratory discipline, has a far-reaching impact on healthcare both through direct patient care as well as provision of laboratory and transfusion services. Improvement of haematology and blood transfusion may therefore be significant in achieving advances in health in Africa. In 2005, Tanzania had one of the lowest distributions of doctors in the world, estimated at 2·3 doctors per 100 000 of population, with only one haematologist, a medical doctor with postgraduate medical education in haematology and blood transfusion. Here, we describe the establishment and impact of a postgraduate programme centred on Master of Medicine and Master of Science programmes to build the capacity of postgraduate training in haematology and blood transfusion. The programme was delivered through Muhimbili University of Health and Allied Sciences (MUHAS) with partnership from visiting medical and laboratory staff from the UK and complemented by short-term visits of trainees from Tanzania to Haematology Departments in the UK. The programme had a significant impact on the development of human resources in haematology and blood transfusion, successfully training 17 specialists with a significant influence on delivery of health services and research. This experience shows how a self-sustaining, specialist medical education programme can be developed at low cost within Lower and Middle Income Countries (LMICs) to rapidly enhance delivery of capacity to provide specialist services. PMID:28369755</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28369755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28369755"><span>Strengthening medical education in haematology and blood transfusion: postgraduate programmes in Tanzania.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Makani, Julie; Lyimo, Magdalena; Magesa, Pius; Roberts, David J</p> <p>2017-06-01</p> <p>Haematology and blood transfusion, as a clinical and laboratory discipline, has a far-reaching impact on healthcare both through direct patient care as well as provision of laboratory and transfusion services. Improvement of haematology and blood transfusion may therefore be significant in achieving advances in health in Africa. In 2005, Tanzania had one of the lowest distributions of doctors in the world, estimated at 2·3 doctors per 100 000 of population, with only one haematologist, a medical doctor with postgraduate medical education in haematology and blood transfusion. Here, we describe the establishment and impact of a postgraduate programme centred on Master of Medicine and Master of Science programmes to build the capacity of postgraduate training in haematology and blood transfusion. The programme was delivered through Muhimbili University of Health and Allied Sciences (MUHAS) with partnership from visiting medical and laboratory staff from the UK and complemented by short-term visits of trainees from Tanzania to Haematology Departments in the UK. The programme had a significant impact on the development of human resources in haematology and blood transfusion, successfully training 17 specialists with a significant influence on delivery of health services and research. This experience shows how a self-sustaining, specialist medical education programme can be developed at low cost within Lower and Middle Income Countries (LMICs) to rapidly enhance delivery of capacity to provide specialist services. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CSSE....9..755H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CSSE....9..755H"><span>A journey of negotiation and belonging: understanding students' transitions to science and engineering in higher education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holmegaard, Henriette Tolstrup; Madsen, Lene Møller; Ulriksen, Lars</p> <p>2014-09-01</p> <p>The paper presents results from a longitudinal study of students' decisions to enrol on a higher education science programme and their experiences of it. The aim is to give insights into students' transition process and negotiation of identity. This is done by following a cohort of 38 students in a series of qualitative interviews during a 3-year period starting as they were about to finish upper secondary school. We find that the students' choice of study is an ongoing process of meaning-making, which continues when the students enter higher education and continuously work on their identities to gain a sense of belonging to their science or engineering programme. The use of a narrative methodology provides understanding of choice of study as involving changes in future perspectives and in the interpretation of past experiences. Further, we gain access into how this meaning-making process over time reflects the students' negotiations in terms of belonging to higher education and their coping strategies when their expectations of their new programme interact with their first-year experiences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.8821R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.8821R"><span>An innovative approach to undergraduate climate change education: Sustainability in the workplace</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, Z. P.</p> <p>2009-04-01</p> <p>Climate change and climate science are a core component of environment-related degree programmes, but there are many programmes, for example business studies, that have clear linkages to climate change and sustainability issues which often have no or limited coverage of the subject. Although an in-depth coverage of climate science is not directly applicable to all programmes of study, the subject of climate change is of great relevance to all of society. Graduates from the higher education system are often viewed as society's ‘future leaders', hence it can be argued that it is important that all graduates are conversant in the issues of climate change and strategies for moving towards a sustainable future. Rather than an in depth understanding of climate science it may be more important that a wider range of students are educated in strategies for positive action. One aspect of climate change education that may be missing, including in programmes where climate change is a core topic, is practical strategies, skills and knowledge for reducing our impact on the climate system. This presentation outlines an innovative approach to undergraduate climate change education which focuses on the strategies for moving towards sustainability, but which is supported by climate science understanding taught within this context. Students gain knowledge and understanding of the motivations and strategies for businesses to improve their environmental performance, and develop skills in identifying areas of environmental improvement and recommending actions for change. These skills will allow students to drive positive change in their future careers. Such courses are relevant to students of all disciplines and can give the opportunity to students for whom climate change education is not a core part of their programme, to gain greater understanding of the issues and an awareness of practical changes that can be made at all levels to move towards a more sustainable society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PASA...34...38V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PASA...34...38V"><span>Enabling Near Real-Time Remote Search for Fast Transient Events with Lossy Data Compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vohl, Dany; Pritchard, Tyler; Andreoni, Igor; Cooke, Jeffrey; Meade, Bernard</p> <p>2017-09-01</p> <p>We present a systematic evaluation of JPEG2000 (ISO/IEC 15444) as a transport data format to enable rapid remote searches for fast transient events as part of the Deeper Wider Faster programme. Deeper Wider Faster programme uses 20 telescopes from radio to gamma rays to perform simultaneous and rapid-response follow-up searches for fast transient events on millisecond-to-hours timescales. Deeper Wider Faster programme search demands have a set of constraints that is becoming common amongst large collaborations. Here, we focus on the rapid optical data component of Deeper Wider Faster programme led by the Dark Energy Camera at Cerro Tololo Inter-American Observatory. Each Dark Energy Camera image has 70 total coupled-charged devices saved as a 1.2 gigabyte FITS file. Near real-time data processing and fast transient candidate identifications-in minutes for rapid follow-up triggers on other telescopes-requires computational power exceeding what is currently available on-site at Cerro Tololo Inter-American Observatory. In this context, data files need to be transmitted rapidly to a foreign location for supercomputing post-processing, source finding, visualisation and analysis. This step in the search process poses a major bottleneck, and reducing the data size helps accommodate faster data transmission. To maximise our gain in transfer time and still achieve our science goals, we opt for lossy data compression-keeping in mind that raw data is archived and can be evaluated at a later time. We evaluate how lossy JPEG2000 compression affects the process of finding transients, and find only a negligible effect for compression ratios up to 25:1. We also find a linear relation between compression ratio and the mean estimated data transmission speed-up factor. Adding highly customised compression and decompression steps to the science pipeline considerably reduces the transmission time-validating its introduction to the Deeper Wider Faster programme science pipeline and enabling science that was otherwise too difficult with current technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA11A1948B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA11A1948B"><span>Integrated Research on Disaster Risk - A Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beer, T.</p> <p>2016-12-01</p> <p>Integrated Research on Disaster Risk, generally known as IRDR, is a decade-long research programme co-sponsored by the International Council for Science (ICSU), the International Social Science Council (ISSC), and the United Nations International Strategy for Disaster Reduction (UNISDR). It is a global, multi-disciplinary approach to dealing with the challenges brought by natural disasters, mitigating their impacts, and improving related policy-making mechanisms. The home page is at: http://www.irdrinternational.org/The research programme was named Integrated Research on Disaster Risk to indicate that it is addressing the challenge of natural and human-induced environmental hazards. In November 2008 and May 2009 respectively, both the ISSC and the UNISDR agreed to join the ICSU in co-sponsoring the IRDR programme. Although the approaches in the sciences vary, the IRDR programme approaches the issues of natural and human-induced hazards and disasters from several perspectives: from the hazards to the disasters, and from the human exposures and vulnerabilities back to the hazards. This coordinated and multi-dimensional approach takes the IRDR programme beyond approaches that have traditionally been undertaken To meet its research objectives the IRDR established four core projects, comprising working groups of experts from diverse disciplines, to formulate new methods in addressing the shortcomings of current disaster risk research. Assessment of Integrated Research on Disaster Risk (AIRDR) Disaster Loss Data (DATA) Forensic Investigations of Disasters (FORIN) Risk Interpretation and Action (RIA) Dr Tom Beer was a member of both the scoping and planning groups and was a member of the committee to undertake a mid-term review of IRDR with the terms of reference being to examine and to report by November 2016. 1. Strategic planning and implementation 2. Governance 3. Secretariat, funding and operations 4. Stakeholders and partnerships 5. Communication, visibility and influence 6. Future development His talk will give an overview of the history and science of IRDR and some of the outcomes of the mid-term review.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.3714E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.3714E"><span>Making space more interesting to elementary students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edlund, J.</p> <p></p> <p>When in life do we take the big decision of deciding which path in our career we are going to take? Is this decision made from our experiences in school or is it taken before? Do our family or our friends hopes and dreams for us have any impact on our decision? These are questions that are useful for understanding why some people choose to work with science and why other has chosen another career. In my work to help the university to recruit new student to their master of science in space engineering programme, I have been visiting an elementary school and talked about different topics in space science. The pupils were very interested but when I did a survey of their dream jobs and future career I saw that most of them have hopes of a career that are based on their present talent and not on what education they are going to have. 11 out of 17 students that did this survey wanted to be some kind of artist or soccer professional. Only 4 of them had chosen a career that there are educations for. I do not think this is the situation only for this school, I think this situation is common for children I this age. Since the chance of being a pro in any sport is a really hard thing, probably the most of them have to give up their dream and chose a more realistic approach to their future career. This leaves us with a majority of the students that have not yet had their path chosen and hopefully with help of teachers and special lectures we can make science more attractive to them. This sound like an easy problem, since most of the students finds space really interesting. But there are some problems. The teachers do not have the kind of education, especially in elementary school that is needed for the kids to get proper answer to their questions. The solution is not easy. Should the teachers take more courses in physics and chemistry or should it be their responsibility to search for facts when these kinds of questions appear? I found that in some cases the student have better knowledge then the teachers. The best approach would be to invite specialists to different schools to teach the pupils in their special areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5276H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5276H"><span>ESPACE - a geodetic Master's program for the education of Satellite Application Engineers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hedman, K.; Kirschner, S.; Seitz, F.</p> <p>2012-04-01</p> <p>In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are involved in ESPACE. This paper will first give the background and objectives of ESPACE with focus on its specific position in geodetic education programmes. Second, we will introduce the interdisciplinary study program and explain the involvement of external teaching staff. Further we will give an up-to-date description of current students and ESPACE alumni. The job market and international demand for satellite application engineers will be shown especially with focus to geodetic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.1446M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.1446M"><span>Back to the future: the role of the ISS and future space stations in planetary exploration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muller, Christian; Moreau, Didier</p> <p>2010-05-01</p> <p>Space stations as stepping stones to planets appear already in the1954 Disney-von Braun anticipation TV show but the first study with a specific planetary scientific objective was the ANTEUS project of 1978. This station was an evolution of SPACELAB hardware and was designed to analyse Mars samples with better equipment than the laboratory of the VIKING landers. It would have played the role of the reception facility present in the current studies of Mars sample return, after analysis, the "safe" samples would have been returned to earth by the space shuttle. This study was followed by the flights of SPACELAB and MIR. Finally after 35 years of development, the International Space Station reaches its final configuration in 2010. Recent developments of the international agreement between the space agencies indicate a life extending to 2025, it is already part of the exploration programme as its crews prepare the long cruise flights and missions to the exploration targets. It is now time to envisage also the use of this stable 350 tons spacecraft for planetary and space sciences. Planetary telescopes are an obvious application; the present SOLAR payload on COLUMBUS is an opportunity to use the target pointing capabilities from the ISS. The current exposure facilities are also preparing future planetary protection procedures. Other applications have already been previously considered as experimental collision and impact studies in both space vacuum and microgravity. Future space stations at the Lagrange points could simultaneously combine unique observation platforms with an actual intermediate stepping stone to Mars.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED583072.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED583072.pdf"><span>Evaluating Primary School Student's Deep Learning Approach to Science Lessons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ilkörücü Göçmençelebi, Sirin; Özkan, Muhlis; Bayram, Nuran</p> <p>2012-01-01</p> <p>This study examines the variables which help direct students to a deep learning approach to science lessons, with the aim of guiding programmers and teachers in primary education. The sample was composed of a total of 164 primary school students. The Learning Approaches to Science Scale developed by Ünal (2005) for Science and Technology lessons…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=hatch&id=EJ1047442','ERIC'); return false;" href="https://eric.ed.gov/?q=hatch&id=EJ1047442"><span>An Exploratory Examination of Islamic Values in Science Education: Islamization of Science Teaching and Learning via Constructivism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Taskin, Özgür</p> <p>2014-01-01</p> <p>This exploratory study outlines the perceptions of four Muslim graduate students regarding Islam and its influence on their approach to the teaching and learning of science. All of the four interviewees were enrolled in science related programmes at a Midwestern US university. The interview responses were evaluated both within the frame of the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJMES..48..864I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJMES..48..864I"><span>Pre-service science teachers' perceptions of mathematics courses in a science teacher education programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Incikabi, Lutfi; Serin, Mehmet Koray</p> <p>2017-08-01</p> <p>Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and their expectations regarding the difficulty level of mathematics courses in science-teaching education programmes. Second, the study investigates changes and the reasons behind the changes in their interest regarding mathematics after completing these courses. Third, the current study seeks to reveal undergraduate science teachers' opinions regarding the contribution of undergraduate mathematics courses to their professional development. Being qualitative in nature, this study was a case study. According to the results, almost all of the students considered that undergraduate mathematics courses were 'difficult' because of the complex and intensive content of the courses and their poor background mathematical knowledge. Moreover, the majority of science undergraduates mentioned that mathematics would contribute to their professional development as a science teacher. On the other hand, they declared a negative change in their attitude towards mathematics after completing the mathematics courses due to continuous failure at mathematics and their teachers' lack of knowledge in terms of teaching mathematics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24484517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24484517"><span>Implant dentistry in postgraduate university education. Present conditions, potential, limitations and future trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mattheos, N; Wismeijer, D; Shapira, L</p> <p>2014-03-01</p> <p>In recent years, opportunities for postgraduate university education in implant dentistry have increased significantly, with an increase in both the number but also the complexity of available postgraduate programmes. However, there appears to be a lack of standards directing the learning outcomes of such programmes. A scientific literature search was conducted for publications reporting on university programmes within implant dentistry, including description of programmes and evaluation of learning outcomes. A separate Internet search was conducted to collect information on existing university programmes as presented on university websites. Implant dentistry has reached a critical mass of an independent, multidisciplinary and vibrant domain of science, which combines knowledge and discovery from many clinical and basic sciences. Many university programmes conclude with a master's or equivalent degree, but there appears to be a great diversity with regard to duration and learning objectives, as well as targeted skills and competences. The importance of implant dentistry has also increased within established specialist training programmes. There was little indication, however, that the comprehensive aspects of implant dentistry are present in all specialist training programmes where implants are being covered. Although universities should maintain the options of designing academic programmes as they best see fit, it is imperative for them to introduce some form of transparent and comparable criteria, which will allow the profession and the public to relate the degree and academic credentials to the actual skills and competences of the degree holder. With regard to established specialist training programmes, the interdisciplinary and comprehensive nature of implant dentistry needs to be emphasised, covering both surgical and restorative aspects. Finally, implant dentistry is not, at present, a dental specialty. The profession has not reached a consensus as to whether the introduction of a new recognised specialist field is either necessary or desired. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3364B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3364B"><span>France 2017 welcomes the 11th International Earth Science Olympiad</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berenguer, Jean Luc</p> <p>2017-04-01</p> <p>The International Earth Science Olympiad (IESO) is the latest of the great scientific olympics. It offers high-school students from all around the world the possibility of participating in a competition in a different country every year. About 30 countries took part in the last edition of IESO in Japan. France has participated in this event for the past four years with a certain amount of success, with many students winning medals. In 2017, the IESO will take place in France for the first time in the technopole of Sophia- Antipolis, under the watchful eyes and responsibility of the " Université Côte d'Azur ". The IESO typically lasts for about a week. Each country sends a maximum of four student participants, accompanied by two mentors. Guest students and observers may also form part of the national team. Outer space, atmosphere, hydrosphere, geosphere… The Olympiad programme highlights the cross-curricular dimensions of geoscience, mainly in English. The candidates participate in a written test in every focus area of the programme as well as in several practical tests. A last activity brings candidates of different nationalities together for team fieldwork, followed by an oral presentation of their findings. The IESO is the perfect opportunity for young people to discover the culture of the host country. With this in mind, the agenda includes trips to cultural or natural sites of interest, and festive events. The participants would also get a flavour of their peers' cultures. The spirit of this competition is to promote discussion and exchange to find collective solutions to the planet's problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P54D..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P54D..02R"><span>The Noble Gas Abundances in the Coma of Comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rubin, M.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; Briois, C.; Combi, M. R.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Hansen, K. C.; Jäckel, A.; Kopp, E.; Korth, A.; Mall, U.; Marty, B.; Mousis, O.; Owen, T.; Reme, H.; Schuhmann, M.; Schroeder, I. R. H. G.; Semon, T.; Tzou, C. Y.; Waite, J. H., Jr.; Wurz, P.</p> <p>2017-12-01</p> <p>The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA), the mass spectrometer suite on board the European Space Agency's Rosetta mission, was dedicated to the measurement of the volatiles in the coma of comet 67P/Churyumov-Gerasimenko (67P) [1]. Among many other species, ROSINA DFMS, the Double Focusing Mass Spectrometer, detected and quantified the three noble gases argon, krypton, and xenon including their major isotopes [2,3]. Noble gases provide important clues to the physical and chemical conditions during and possibly even before and after the comet's formation in the early solar system. Furthermore, measurements of the isotope ratios provide constraints on the amount of cometary material brought to Earth and its early atmosphere. In this presentation, we will report on the measured coma densities and derived nucleus bulk abundances of these three noble gases and investigate correlations with other volatiles. Furthermore, we will discuss the measured isotope ratios and the implications of these results. AcknowledgementsUoB was funded by the State of Bern, the Swiss National Science Foundation and by the European Space Agency PRODEX Programme. Work at MPS was funded by the Max-Planck Gesellschaft and BMWI (contract 50QP1302), at Southwest Research institute by Jet Propulsion Laboratory (subcontract #1496541 and JPL subcontract to JWH NAS703001TONMO710889), at the University of Michigan by NASA (contract JPL-1266313). This work has been supported through the A*MIDEX project from the French National Research Agency (ANR) (n° ANR-11-IDEX- 0001-02) and by CNES grants at IRAP, LATMOS, LPC2E, LAM, CRPG, by the European Research Council (grant no. 267255 to B. Marty) and at BIRA-IASB by the Belgian Science Policy Office via PRODEX/ROSINA PEA C4000107705. References[1] Balsiger, H., et al., Rosina - Rosetta orbiter spectrometer for ion and neutral analysis. Space Science Reviews. 128, 745-801, 2007. [2] Balsiger, H., et al., Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko. Sci Adv. 1, e1500377, 2015. [3] Marty B., et al., Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere, Science, 356, 1069 - 1072, 2017.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA499773','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA499773"><span>Review of National Work Programme on the Long Term Effects of Sustained High G on the Cervical Spine (Analyse du programme de travail national : les effets long terme sur la colonne cervicale d’un nombre de G lev et prolong )</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-12-01</p> <p>Prof. Karin Harms-Ringdahl, PhD, RPT Karolinska Institutet Department of Neurobiology, Care Sciences, and Society Division of Physiotherapy 23100...Äng Karolinska Institutet Department of Neurobiology, Care Sciences, and Society Division of Physiotherapy Alfred Nobels Allé 23100 SE-14183...report is in preparation. The RAF has an ongoing project (from August 2006 to September 2007) determining the need for physiotherapy for aircrew on the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.134B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.134B"><span>The United Nations Human Space Technology Initiative</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balogh, Werner; Miyoshi, Takanori</p> <p>2016-07-01</p> <p>The United Nations Office for Outer Space Affairs (OOSA) launched the Human Space Technology Initiative (HSTI) in 2010 within the United Nations Programme on Space Applications, based on relevant recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III). The activities of HSTI are characterized by the following "Three Pillars": International Cooperation, Outreach, and Capacity-building. For International Cooperation, OOSA and the Japan Aerospace Exploration Agency (JAXA) jointly launched a new programme entitled "KiboCUBE". KiboCUBE aims to provide educational or research institutions located in developing countries with opportunities to deploy cube satellites of their own design and manufacture from Japanese Experiment Module "Kibo" on-board the International Space Station (ISS). The Announcement of Opportunity was released on 8 September 2015 and the selected institution is to be announced by 1 August 2016. OOSA is also collaborating with WHO and with the COPUOS Expert Group on Space and Global Health to promote space technologies and ground- and space-based research activities that can contribute to improving global health. For Outreach, OOSA and the government of Costa Rica are jointly organising the United Nations/Costa Rica Workshop on Human Space Technology from 7 to 11 March 2016. Participants will exchange information on achievements in human space programmes and discuss how to promote international cooperation by further facilitating the participation of developing countries in human space exploration-related activities. Also, it will address the role of space industries in human space exploration and its related activities, considering that they have become significant stakeholders in this field. For Capacity-building, OOSA has been carrying out two activities: the Zero-Gravity Instrument Project (ZGIP) and the Drop Tower Experiment Series (DropTES). In ZGIP, OOSA has annually distributed clinostats (microgravity simulation instruments) worldwide. ZGIP has been providing students and teachers with the opportunity to study gravitational effects on samples such as plant seeds in a simulated microgravity condition. Currently, second and third cycles are on-going. DropTES is a fellowship programme, in which OOSA and the Centre of Applied Space Technology and Microgravity (ZARM) jointly provide one student team annually with the opportunity to conduct their own microgravity experiment at the Bremen Drop Tower, Germany. In 2015, in the DropTES second cycle, Universidad Católica Boliviana "San Pablo" was given the fellowship. DropTES has been extended to the third cycle for 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=pre+AND+experimental+AND+design+AND+methodology&pg=6&id=EJ946218','ERIC'); return false;" href="https://eric.ed.gov/?q=pre+AND+experimental+AND+design+AND+methodology&pg=6&id=EJ946218"><span>E-Laboratory Design and Implementation for Enhanced Science, Technology and Engineering Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Morton, William; Uhomoibhi, James</p> <p>2011-01-01</p> <p>Purpose: This paper aims to report on the design and implementation of an e-laboratory for enhanced science, technology and engineering education studies. Design/methodology/approach: The paper assesses a computer-based e-laboratory, designed for new entrants to science, technology and engineering programmes of study in further and higher…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ISS&pg=3&id=EJ911819','ERIC'); return false;" href="https://eric.ed.gov/?q=ISS&pg=3&id=EJ911819"><span>5 for Sydney</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Berry, Bryan</p> <p>2010-01-01</p> <p>ASE has a long history of sending students to the International Science School (ISS), having been doing so since 1968. The ISS is a free science education programme run biennially by the Science Foundation for Physics at the University of Sydney. ASE's role is to select the students and organise funding to enable the students and escorts to…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=definition+AND+accounting&pg=2&id=EJ1026593','ERIC'); return false;" href="https://eric.ed.gov/?q=definition+AND+accounting&pg=2&id=EJ1026593"><span>Conceptualizing the Science Curriculum: 40 Years of Developing Assessment Frameworks in Three Large-Scale Assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kind, Per Morten</p> <p>2013-01-01</p> <p>The paper analyzes conceptualizations in the science frameworks in three large-scale assessments, Trends in Mathematics and Science Study (TIMSS), Programme for International Student Assessment (PISA), and National Assessment of Educational Progress (NAEP). The assessments have a shared history, but have developed different conceptualizations. The…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Science+AND+Australia&pg=4&id=EJ1030038','ERIC'); return false;" href="https://eric.ed.gov/?q=Science+AND+Australia&pg=4&id=EJ1030038"><span>Science Engagement and Literacy: A Retrospective Analysis for Students in Canada and Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Woods-McConney, Amanda; Oliver, Mary Colette; McConney, Andrew; Schibeci, Renato; Maor, Dorit</p> <p>2014-01-01</p> <p>Given international concerns about students' pursuit (or more correctly, non-pursuit) of courses and careers in science, technology, engineering and mathematics, this study is about achieving a better understanding of factors related to high school students' engagement in science. The study builds on previous secondary analyses of Programme for…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=technologies+AND+environmental&pg=3&id=EJ1018541','ERIC'); return false;" href="https://eric.ed.gov/?q=technologies+AND+environmental&pg=3&id=EJ1018541"><span>Relationship between Pre-School Preservice Teachers' Environmental Literacy and Science and Technology Literacy Self Efficacy Beliefs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Surmeli, Hikmet</p> <p>2013-01-01</p> <p>This study examined the relationship between preschool teachers' environmental literacy and their science and technology self efficacy beliefs. 120 preschool teachers from teacher education programme at one university participated in this study. Data were collected by using Environmental Literacy Scale and Science and Technology Literacy Self…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=study+AND+skills&pg=6&id=EJ1118857','ERIC'); return false;" href="https://eric.ed.gov/?q=study+AND+skills&pg=6&id=EJ1118857"><span>Student Perceptions of Communication Skills in Undergraduate Science at an Australian Research-Intensive University</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mercer-Mapstone, Lucy D.; Matthews, Kelly E.</p> <p>2017-01-01</p> <p>Higher education institutions globally are acknowledging the need to teach communication skills. This study used the Science Student Skills Inventory to gain insight into how science students perceive the development of communication skills across the degree programme. Responses were obtained from 635 undergraduate students enrolled in a Bachelor…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=sikora&id=EJ994187','ERIC'); return false;" href="https://eric.ed.gov/?q=sikora&id=EJ994187"><span>Intergenerational Transfers of Preferences for Science Careers in Comparative Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sikora, Joanna; Pokropek, Artur</p> <p>2012-01-01</p> <p>Using data from 24 countries, which participated in the 2006 Programme for International Student Assessment (PISA), we examine the relationship between parental science employment and students' career expectations. In contrast to prior PISA-based studies, we find that the link between parental employment and adolescent plans to work in science is…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E3495V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E3495V"><span>Space ecoliteracy- five informal education models for community empowerment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venkataramaiah, Jagannatha; Jagannath, Sahana; J, Spandana; J, Sadhana; Jagannath, Shobha</p> <p></p> <p>Space ecoliteracy is a historical necessity and vital aspect of space age.Space Situational Awareness has taught lessons for mankind to look inward while stretching beyond cradle in human endeavours. Quality of life for every one on the only home of mankind-TERRA shall be a feasibility only after realizing Space ecoliteracy amongst all stakeholders in space quest. Objectives of Informal Environmental Education(UNESCO/UNEP/IEEP,1977) mandates awareness, attitude, knowledge, skill and participation at Individual and Community domains. Application of Space Technology at both Telecommunications and Remote Sensing domain have started making the fact that mankind has a challenge to learn and affirm earthmanship. Community empowerment focus after Earth Summit 1992 mandate of Sustainable Development has demonstrated a deluge of best practices in Agriculture,Urban, Industries and service sectors all over the globe. Further, deployment of Space technologies have proved the immense potential only after pre-empting the participatory approach at individual and community levels.Indian Space Programme with its 44th year of space service to national development has demonstrated self reliance in space technology for human development. Space technology for the most underdeveloped is a success story both in communication and information tools for quality of life. In this presentation Five Space Ecoliteracy models designed and validated since 1985 till date on informal environmental education namely 1) Ecological Environmental Studies by Students-EESS (1988): cited as one of the 20 best eco -education models by Earth Day Network,2)Community Eco Literacy Campaign-CEL,(2000): cited as a partner under Clean Up the World Campaign,UN, 3) Space Eco Literacy(2011)-an informa 8 week space eco literacy training reported at 39th COSPAR 12 assembly and 4) Space Eco Literacy by Practice(2014)- interface with formal education at institutions and 5) Space Ecoliteracy Mission as a space out reach in Popular Science are listed. Five models methodologies, design criterion and working details along with the net benefits to the community are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED563450.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED563450.pdf"><span>Rational Emotive Behavior Based on Academic Procrastination Prevention: Training Programme of Effectiveness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Düsmez, Ihsan; Barut, Yasar</p> <p>2016-01-01</p> <p>The research is an experimental study which has experimental and control groups, and based on pre-test, post-test, monitoring test model. Research group consists of second and third grade students of Primary School Education and Psychological Counseling undergraduate programmes in Giresun University Faculty of Educational Sciences. The research…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=worldview+AND+2&pg=7&id=EJ737446','ERIC'); return false;" href="https://eric.ed.gov/?q=worldview+AND+2&pg=7&id=EJ737446"><span>The Impact of Motivational "World-View" on Engagement in a Cognitive Acceleration Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>McLellan, Ros</p> <p>2006-01-01</p> <p>Cognitive Acceleration through Science Education (CASE) is an intervention programme conducted during Years 7 and 8 in the United Kingdom (aged 11-13 years), which has reported remarkable success in enhancing cognitive development and in raising academic achievement. Critics, however, have questioned whether a purely cognitive mechanism can…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Benefits+AND+technology+AND+lifelong+AND+learning+AND+education&pg=6&id=EJ940466','ERIC'); return false;" href="https://eric.ed.gov/?q=Benefits+AND+technology+AND+lifelong+AND+learning+AND+education&pg=6&id=EJ940466"><span>Electronic Mentoring as an Example for the Use of Information and Communications Technology in Engineering Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mueller, Sigrid</p> <p>2004-01-01</p> <p>Electronic mentoring programmes at colleges and universities and especially in engineering and science are a relatively new phenomenon. Electronic mentoring has been developed based on the possibilities unique to information and communications technology. The common feature of electronic mentoring programmes is the independence from geography and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Knowledge+AND+space&pg=7&id=EJ1151978','ERIC'); return false;" href="https://eric.ed.gov/?q=Knowledge+AND+space&pg=7&id=EJ1151978"><span>Multigenerational Learning for Expanding the Educational Involvement of Bilinguals Experiencing Academic Difficulties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Martínez-Álvarez, Patricia</p> <p>2017-01-01</p> <p>Focusing on two bilingual children experiencing learning difficulties, I explore the scientific representations these students generate in an afterschool programme where they have opportunities to exercise agency. In the programme, children use a digital camera to document science in their lives and engage in conversations about the products they…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=public+AND+administration&pg=2&id=EJ1103894','ERIC'); return false;" href="https://eric.ed.gov/?q=public+AND+administration&pg=2&id=EJ1103894"><span>Illiberal or Simply Unorthodox? Public Administration Education in Hungary: A Comparative Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hajnal, Gyorgy</p> <p>2016-01-01</p> <p>Over the past decades, Public Administration (PA) education programmes in Europe shifted their focus from a predominantly law-oriented approach to a more multidisciplinary, social science and managerial one. This paper deals with the tenacity of traditional, law-oriented PA education programmes that can be found in a limited, but not…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=perl&id=EJ818881','ERIC'); return false;" href="https://eric.ed.gov/?q=perl&id=EJ818881"><span>A Rationale for Mixed Methods (Integrative) Research Programmes in Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Niaz, Mansoor</p> <p>2008-01-01</p> <p>Recent research shows that research programmes (quantitative, qualitative and mixed) in education are not displaced (as suggested by Kuhn) but rather lead to integration. The objective of this study is to present a rationale for mixed methods (integrative) research programs based on contemporary philosophy of science (Lakatos, Giere, Cartwright,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=data+AND+mining+AND+techniques&pg=2&id=EJ1083522','ERIC'); return false;" href="https://eric.ed.gov/?q=data+AND+mining+AND+techniques&pg=2&id=EJ1083522"><span>AMOEBA: Designing for Collaboration in Computer Science Classrooms through Live Learning Analytics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Berland, Matthew; Davis, Don; Smith, Carmen Petrick</p> <p>2015-01-01</p> <p>AMOEBA is a unique tool to support teachers' orchestration of collaboration among novice programmers in a non-traditional programming environment. The AMOEBA tool was designed and utilized to facilitate collaboration in a classroom setting in real time among novice middle school and high school programmers utilizing the IPRO programming…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=entrepreneurship+AND+intention&pg=4&id=EJ901090','ERIC'); return false;" href="https://eric.ed.gov/?q=entrepreneurship+AND+intention&pg=4&id=EJ901090"><span>Moving beyond Traditional Measures of Entrepreneurial Intentions in a Study among Life-Sciences Students in the Netherlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lans, Thomas; Gulikers, Judith; Batterink, Maarten</p> <p>2010-01-01</p> <p>The rationale behind this study is that entrepreneurship education programmes (EEP) in post-compulsory education mainly address entrepreneurial intentions, instead of actual entrepreneurial behaviour, and that students, compared to practicing entrepreneurs, might have a wide range of entrepreneurial intentions when entering such a programme. The…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=entrepreneurship+AND+intention&pg=5&id=EJ756466','ERIC'); return false;" href="https://eric.ed.gov/?q=entrepreneurship+AND+intention&pg=5&id=EJ756466"><span>Entrepreneurship for Bioscience Researchers: A Case Study of an Entrepreneurship Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Heinonen, Jarna; Poikkijoki, Sari-Anne; Vento-Vierikko, Irma</p> <p>2007-01-01</p> <p>Entrepreneurship is reaching new areas in which the concept of business is more or less unfamiliar and remote. This study focuses on a specific entrepreneurship education programme in the fields of chemistry, physics, information technology and bioinformatics, life sciences and medicine development. The aim is to gain a deeper understanding of the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=definition+AND+science&pg=5&id=EJ1107277','ERIC'); return false;" href="https://eric.ed.gov/?q=definition+AND+science&pg=5&id=EJ1107277"><span>Programme Implementation in Social and Emotional Learning: Basic Issues and Research Findings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Durlak, Joseph A.</p> <p>2016-01-01</p> <p>This paper discusses the fundamental importance of achieving quality implementation when assessing the impact of social and emotional learning interventions. Recent findings in implementation science are reviewed that include a definition of implementation, its relation to programme outcomes, current research on the factors that affect…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=plagiarism+AND+academic&id=EJ1095234','ERIC'); return false;" href="https://eric.ed.gov/?q=plagiarism+AND+academic&id=EJ1095234"><span>Addressing Plagiarism in Online Programmes at a Health Sciences University: A Case Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ewing, Helen; Anast, Ade; Roehling, Tamara</p> <p>2016-01-01</p> <p>Plagiarism continues to be a concern for all educational institutions. To build a solid foundation for high academic standards and best practices at a graduate university, aspects of plagiarism were reviewed to develop better management processes for reducing plagiarism. Specifically, the prevalence of plagiarism and software programmes for…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=rational+AND+behaviour+AND+changes&id=EJ941117','ERIC'); return false;" href="https://eric.ed.gov/?q=rational+AND+behaviour+AND+changes&id=EJ941117"><span>A Causal Modelling Approach to the Development of Theory-Based Behaviour Change Programmes for Trial Evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hardeman, Wendy; Sutton, Stephen; Griffin, Simon; Johnston, Marie; White, Anthony; Wareham, Nicholas J.; Kinmonth, Ann Louise</p> <p>2005-01-01</p> <p>Theory-based intervention programmes to support health-related behaviour change aim to increase health impact and improve understanding of mechanisms of behaviour change. However, the science of intervention development remains at an early stage. We present a causal modelling approach to developing complex interventions for evaluation in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUSM.U33A..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUSM.U33A..03D"><span>International Year of Planet Earth Cooperating with Other Years in 2007-2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Mulder, E. F.</p> <p>2006-05-01</p> <p>After its inception in 2001, the International Year of Planet Earth was proclaimed for 2008 by the UN General Assembly in December 2005. The UN Year will be in the core of a triennium, starting in January 2007 and closing by the end of 2009. Through UN proclamation, it has gained the political support by 191 UN nations. The International Year of Planet Earth was initiated by the International Union of Geological Sciences (IUGS) finding UNESCO's Earth Sciences Division ready as co-initiator. It enjoys the backing of all relevant IUGS's sister unions in ICSU, including IUGG, IGU, IUSS, ISPRS and INQUA among its 12 Founding Partners and AGI, AAPG and AIPG as major USA based international geoscientific organizations. Moreover, the initiative is supported by 26 more geoscientific and other relevant bodies. The aim of the Year, encapsulated in its subtitle Earth sciences for Society, is to build awareness of the relationship between humankind and Planet Earth, and to demonstrate that geoscientists are key players in creating a balanced, sustainable future for both. In this respect it aims to convince politicians to apply the wealth of geodata and information in day-to-day policy making. The International Year includes a Science and an Outreach Programme, both of equal financial size. The ten Science Themes (Groundwater, Hazards, Health, Climate, Resources, Deep Earth, Ocean, Megacities, Soils, and Life) in the Science Programme were selected for their societal impact, their potential for outreach, as well as their multidisciplinary nature and high scientific potential. Brochures with key questions and invitations for scientists to submit project proposals have been printed for each Theme and can be downloaded from www.yearofplanetearth.org. The same bottom-up mode is applied for the Outreach Programme which will operate as a funding body, receiving bids for financial support - for anything from web-based educational resources to commissioning works of art that will help reinforce to the general public the central message of the Year. There are good potential interfaces and links between this initiative and the other science years (eGY, IPY and IHY) running in the same time interval, both in terms of cooperation in outreach and in science programmes. Some of these will be highlighted during the presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EJEE...42..844H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EJEE...42..844H"><span>An outcome-based assessment process for accrediting computing programmes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harmanani, Haidar M.</p> <p>2017-11-01</p> <p>The calls for accountability in higher education have made outcome-based assessment a key accreditation component. Accreditation remains a well-regarded seal of approval on college quality, and requires the programme to set clear, appropriate, and measurable goals and courses to attain them. Furthermore, programmes must demonstrate that responsibilities associated with the goals are being carried out. Assessment leaders face various challenges including process design and implementation, faculty buy-in, and resources availability. This paper presents an outcome-based assessment approach that facilitates faculty participation while simplifying the assessment and reporting processes through effective and meaningful visualisation. The proposed approach has been implemented and used for the successful ABET accreditation of a computer science programme, and can be easily adapted to any higher education programme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001IAUGA..24..266S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001IAUGA..24..266S"><span>Is astronomical research appropriate for developing countries?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snowden, Michael S.</p> <p></p> <p>An unproductive 45-cm astronomical telescope, given by JICA (Japan) to Sri Lanka, raises general questions as to the reasons for unproductive pure science in developing countries. Before installation, site, maintenance, and scientific objectives were discussed. The facility was launched with a conference organised by the UN Office for Outer Space Affairs. Unfortunately, no research or significant education has resulted after four years. The annual operating cost is U.S. $5000 per year, including salary for a trainee, maintenance, and a modest promotional programme. Comparison with a similar installation in Auckland suggests lack of funding or technical competence do not explain the failure in Sri Lanka. The facility in New Zealand, on the roof of Auckland University's Physics Department, has a slightly smaller budget but has led to modest but useful research and teaching. Lack of financial backing and expertise are often blamed for weak science in developing countries, but examination shows most of these countries have adequately skilled people, and plenty of resources for religion and military. General lack of motivation for science appears to be the principal reason. This lack of interest and highly inefficient bureaucracies are common to scientifically unproductive countries. They mostly lack the cultural and philosophical base of the European Renaissance that motivate the pursuit of modern science, an activity that violates human preferences. There are excellent facilities (ESO, SAAO, Cerro Tololo, and GONG) in some of these same countries, when administered from the West.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ASPC..434..139O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ASPC..434..139O"><span>The Herschel Data Processing System — HIPE and Pipelines — Up and Running Since the Start of the Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ott, S.</p> <p>2010-12-01</p> <p>The Herschel Space Observatory is the fourth cornerstone mission in the ESA science programme and performs photometry and spectroscopy in the 55 - 672 micron range. The development of the Herschel Data Processing System started in 2002 to support the data analysis for Instrument Level Tests. The Herschel Data Processing System was used for the pre-flight characterisation of the instruments, and during various ground segment test campaigns. Following the successful launch of Herschel 14th of May 2009 the Herschel Data Processing System demonstrated its maturity when the first PACS preview observation of M51 was processed within 30 minutes of reception of the first science data after launch. Also the first HIFI observations on DR21 were successfully reduced to high quality spectra, followed by SPIRE observations on M66 and M74. A fast turn-around cycle between data retrieval and the production of science-ready products was demonstrated during the Herschel Science Demonstration Phase Initial Results Workshop held 7 months after launch, which is a clear proof that the system has reached a good level of maturity. We will summarise the scope, the management and development methodology of the Herschel Data Processing system, present some key software elements and give an overview about the current status and future development milestones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130009814','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130009814"><span>RUSHMAPS: Real-Time Uploadable Spherical Harmonic Moment Analysis for Particle Spectrometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Figueroa-Vinas, Adolfo</p> <p>2013-01-01</p> <p>RUSHMAPS is a new onboard data reduction scheme that gives real-time access to key science parameters (e.g. moments) of a class of heliophysics science and/or solar system exploration investigation that includes plasma particle spectrometers (PPS), but requires moments reporting (density, bulk-velocity, temperature, pressure, etc.) of higher-level quality, and tolerates a lowpass (variable quality) spectral representation of the corresponding particle velocity distributions, such that telemetry use is minimized. The proposed methodology trades access to the full-resolution velocity distribution data, saving on telemetry, for real-time access to both the moments and an adjustable-quality (increasing quality increases volume) spectral representation of distribution functions. Traditional onboard data storage and downlink bandwidth constraints severely limit PPS system functionality and drive cost, which, as a consequence, drives a limited data collection and lower angular energy and time resolution. This prototypical system exploit, using high-performance processing technology at GSFC (Goddard Space Flight Center), uses a SpaceCube and/or Maestro-type platform for processing. These processing platforms are currently being used on the International Space Station as a technology demonstration, and work is currently ongoing in a new onboard computation system for the Earth Science missions, but they have never been implemented in heliospheric science or solar system exploration missions. Preliminary analysis confirms that the targeted processor platforms possess the processing resources required for realtime application of these algorithms to the spectrometer data. SpaceCube platforms demonstrate that the target architecture possesses the sort of compact, low-mass/power, radiation-tolerant characteristics needed for flight. These high-performing hybrid systems embed unprecedented amounts of onboard processing power in the CPU (central processing unit), FPGAs (field programmable gate arrays), and DSP (digital signal processing) elements. The fundamental computational algorithm de constructs 3D velocity distributions in terms of spherical harmonic spectral coefficients (which are analogous to a Fourier sine-cosine decomposition), but uses instead spherical harmonics Legendre polynomial orthogonal functions as a basis for the expansion, portraying each 2D angular distribution at every energy or, geometrically, spherical speed-shell swept by the particle spectrometer. Optionally, these spherical harmonic spectral coefficients may be telemetered to the ground. These will provide a smoothed description of the velocity distribution function whose quality will depend on the number of coefficients determined. Successfully implemented on the GSFC-developed processor, the capability to integrate the proposed methodology with both heritage and anticipated future plasma particle spectrometer designs is demonstrated (with sufficiently detailed design analysis to advance TRL) to show specific science relevancy with future HSD (Heliophysics Science Division) solar-interplanetary, planetary missions, sounding rockets and/or CubeSat missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title48-vol6/pdf/CFR-2013-title48-vol6-sec1852-228-78.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title48-vol6/pdf/CFR-2013-title48-vol6-sec1852-228-78.pdf"><span>48 CFR 1852.228-78 - Cross-waiver of liability for science or space exploration activities unrelated to the...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title48-vol6/pdf/CFR-2014-title48-vol6-sec1852-228-78.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title48-vol6/pdf/CFR-2014-title48-vol6-sec1852-228-78.pdf"><span>48 CFR 1852.228-78 - Cross-waiver of liability for science or space exploration activities unrelated to the...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJSEd..37.3093K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJSEd..37.3093K"><span>Accommodating those Most at Risk. Responding to a Mismatch in Programme Selection Criteria and Foundation Biology Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirby, Nicola F.; Dempster, Edith R.</p> <p>2015-12-01</p> <p>In South Africa, foundation programmes are a well-established alternative access route to tertiary science study for educationally disadvantaged students. Student access to, and performance in, one such foundation programme has been researched by the authors seeking opportunities to improve student retention. The biology module in particular has been recognised to place students at risk of failing the foundation programme, thereby reducing throughput into mainstream science programmes. This study uses decision tree analysis to provide a detailed description of foundation biology student performance so that points of weakness and opportunities for remedial action may be pinpointed. While students' alternative-entry selection scores have previously been found to most effectively account for performance in the programme as a whole, no similar positive relationship was identified for any subgroup of students in the foundation biology module. Conversely, academic language proficiency in the medium of instruction (English), formerly found to play no role in overall student performance, was revealed as primary in explaining achievement in foundation biology, most adversely affecting students rendered particularly vulnerable by an additional academic and/or socio-economic disadvantage. A pass in the stand-alone foundation academic literacy module did not necessarily correspond to a pass in biology. Compromised by educational disadvantage, compounded by a mismatch in programme selection criteria and inadequate academic literacy support, discipline-specific, fundamental literacy development in the biology curriculum is proposed to enable students towards epistemic access in the module. Pending this intervention, formal access to mainstream study is unlikely for the foundation students most at risk of failure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26272511','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26272511"><span>Perceived learned skills and professional development of graduates from a master in dental public health programme.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aslam, S; Delgado-Angulo, E K; Bernabé, E</p> <p>2017-02-01</p> <p>Assessing the impact of a training programme is important for quality assurance and further development. It also can helps with accountability and marketing purposes. This study evaluated the impact of King's College London (KCL) Master of Science programme in Dental Public Health in terms of graduates' perceived learned skills and professional development. An online questionnaire was sent to individuals who completed successfully the KCL Master of Science programme in Dental Public Health and had a valid email address. Participants provided information on demographic characteristics, perceived learned skills (intellectual, practical and generic) and professional development (type of organisation, position in the organisation and functions performed at work before and after the programme). Learned skills' scores were compared by demographic factors in multiple linear regression models, and the distribution of responses on career development was compared using nonparametric tests for paired groups. Although all scores on learned skills were on the favourable side of the Likert scale, graduates reported higher scores for practical skills, followed by intellectual and generic skills. No differences in scores were found by sex, age, nationality or time since graduation. In terms of career development, there were significantly higher proportions of graduates working in higher education institutions and taking leadership/managerial roles in organisations as well as greater number and variety of functions at work after than before the programme. This online survey shows that the programme has had a positive impact on graduates in terms of perceived learned skills and professional development. © 2015 The Authors. European Journal of Dental Education Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=technology+AND+children&pg=2&id=EJ1181689','ERIC'); return false;" href="https://eric.ed.gov/?q=technology+AND+children&pg=2&id=EJ1181689"><span>Inquiry-Based Learning Put to the Test: Medium-Term Effects of a Science and Technology for Children Programme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mellander, Erik; Svärdh, Joakim</p> <p>2018-01-01</p> <p>We evaluate the effects of participation in the Swedish version of the Science and Technology for Children Program on content and process skills in sciences, in grade 9. The Swedish version, called Natural Sciences and Technology for All (NTA), is predominantly employed in grades 1-6. Our outcome measures are scores and grades on nationwide…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=women+AND+labour&pg=6&id=EJ960075','ERIC'); return false;" href="https://eric.ed.gov/?q=women+AND+labour&pg=6&id=EJ960075"><span>Early Careers of Recent U.S. Social Science PhDs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Morrison, Emory; Rudd, Elizabeth; Nerad, Maresi</p> <p>2011-01-01</p> <p>In this article, we analyse findings of the largest, most comprehensive survey of the career paths of social science PhD graduates to date, "Social Science PhDs--Five+Years Out (SS5)". "SS5" surveyed more than 3,000 graduates of U.S. PhD programmes in six social science fields six to ten years after earning their PhD. The…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=strawberrys&pg=2&id=EJ912587','ERIC'); return false;" href="https://eric.ed.gov/?q=strawberrys&pg=2&id=EJ912587"><span>Buns, Scissors and Strawberry Laces--A Model of Science Education?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Walsh, Ed; Edwards, Rebecca</p> <p>2009-01-01</p> <p>Models are included in the science National Curriculum because modelling is a key tool for scientists and an integral part of how science works. Modelling is explicitly referred to in the Programmes of Study for Science at Key Stage 3 and 4 (age 11-16) and in Assessing Pupil's Progress (APP). Pupils need to learn how to use models because they are…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>