Science.gov

Sample records for space science reviews

  1. Review on space weather in Latin America. 1. The beginning from space science research

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo

    2016-11-01

    The present work is the first of a three-part review on space weather in Latin America. It comprises the evolution of several Latin American institutions investing in space science since the 1960s, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this review is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues.

  2. Biological and Physical Space Research Laboratory 2002 Science Review

    NASA Technical Reports Server (NTRS)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  3. Synopsis of the Review on Space Weather in Latin America: Space Science, Research Networks and Space Weather Center

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, Americo

    2016-07-01

    The present work is a synopsis of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to

  4. Space science

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A fact sheet on the NASA space science program is presented. Some of the subjects considered include the following: (1) the Orbiting Astronomical Observatory, (2) the Orbiting Solar Observatory, (3) the Small Astronomy Satellite, (4) lunar programs, (5) planetary programs using the Mariner, Pioneer 10, and Viking space probes, and (6) the Scout, Thor-Delta, and Atlas-Centaur launch vehicles. For each program there is a description of the effort, the schedule, management, program officials, and funding aspects in outline form.

  5. Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches

    ERIC Educational Resources Information Center

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-01-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…

  6. Research review, 1 January - 31 December 1972. [in space sciences and applications

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Space science projects are reported individually for the period January 1, 1972 through December 31, 1972. The articles, representing both theoretical and experimental study approaches, present highlights of the research, along with graphical diagrams of important results. Subjects range from laboratory astrophysics to balloon-borne infrared astronomy, from lunar studies to stellar evolution, and from planetary atmospheric investigations to climatology. Applications of research for the same period are also reviewed, along with their attendant results.

  7. Science on Space Station

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1987-01-01

    Plans for space science activities on the International Space Station are reviewed from a NASA perspective. The present Station reference configuration is based on a dual-keel core unit (one habitation module and three laboratory modules supplied by NASA, ESA, and Japan) and provides for five attached systems (with up to four payloads each to be exposed to space) and several free-flying platforms (both polar orbiters and coorbiters). Particular attention is given to the space science aspects of the primary Station objectives defined by NASA (servicing and repair, platforms, pressurized modules, and attached payloads). Also discussed are the work of the Task Force on Scientific Uses of Space Station, the need for operational flexibility, the value of a continuous manned presence for experimental science, and the skills needed from the Station crew.

  8. Proposal Auto-Categorizer and Manager for Time Allocation Review at Space Telescope Science Institute

    NASA Astrophysics Data System (ADS)

    Porter, Sophia; Strolger, Louis-Gregory; Lagerstrom, Jill; Weissman, Sarah

    2016-01-01

    The Space Telescope Science Institute annually receives more than one thousand formal proposals for Hubble Space Telescope time, exceeding the available time with the observatory by a factor of over four. With JWST, the proposal pressure will only increase, straining our ability to provide rigorous peer review of each proposal's scientific merit. Significant hurdles in this process include the proper categorization of proposals, to ensure Time Allocation Committees (TACs) have the required and desired expertise to fairly and appropriately judge each proposal, and the selection of reviewers themselves, to establish diverse and well-qualified TACs. The Panel Auto-Categorizer and Manager (PACMan; a naive Bayesian classifier) was developed to automatically sort new proposals into their appropriate science categories and, similarly, to appoint panel reviewers with the best qualifications to serve on the corresponding TACs. We will provide an overview of PACMan and present the results of its testing on five previous cycles of proposals. PACMan will be implemented in upcoming cycles to support and eventually replace the process for constructing the time allocation reviews.

  9. Astrophysics and Space Science

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Brinks, Elias; Khanna, Ramon

    2015-08-01

    Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science, and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis, and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will not longer be considered.The journal also publishes topical collections consisting of invited reviews and original research papers selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers.Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.Astrophysics and Space Science has an Impact Factor of 2.4 and features short editorial turnaround times as well as short publication times after acceptance, and colour printing free of charge. Published by Springer the journal has a very wide online dissemination and can be accessed by researchers at a very large number of institutes worldwide.

  10. Learning in Earth and space science: a review of conceptual change instructional approaches

    NASA Astrophysics Data System (ADS)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-03-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the general characteristics of the research, the conceptual change instructional approaches that were used, and the methods employed to evaluate the effectiveness of these approaches. The findings of this review support four assertions about the existing research: (1) astronomical phenomena have received greater attention than geological phenomena; (2) most studies have viewed conceptual change from a cognitive perspective only; (3) data about conceptual change were generated pre- and post-intervention only; and (4) the interventions reviewed presented limited opportunities to involve students in the construction and manipulation of multiple representations of the phenomenon being investigated. Based upon these assertions, the authors recommend that new research in the Earth and space science disciplines challenges traditional notions of conceptual change by exploring the role of affective variables on learning, focuses on the learning of geological phenomena through the construction of multiple representations, and employs qualitative data collection throughout the implementation of an instructional approach.

  11. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  12. Space shuttle and life sciences

    NASA Technical Reports Server (NTRS)

    Mason, J. A.

    1977-01-01

    During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.

  13. Space Science Curricula

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Johnson High School, Huntsville, Alabama started an international magnet program in 1987. One of the courses in the curriculum was in space science. They appealed to Marshall Space Flight Center (MSFC) when they couldn't find a suitable textbook, nor locate other classes in space science to provide a guideline. MSFC agreed to help and placed the school under an official 'Adopt-A-School' program. MSFC's chief scientist and others at the space center helped prepare a very comprehensive space science program. Examples of the subjects covered include problems of space travel, materials processing in space, technology utilization, robotics, space colonization, etc. MSFC followed up by working with Johnson High to determine if the curriculum is generally usable and workable. If it is, MSFC may make it available to other schools. MSFC not only developed the space science curriculum; they continue to support the program by sponsoring hands- on activities and tours of space research facilities.

  14. The meaning of space science

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The development of aerospace sciences through the first decade of NASA's existence was reviewed. Those scientific investigations made possible or significantly aided by rockets, satellites, and space probes are discussed along with the resulting space techniques that developed by way of those investigations.

  15. Managing the space sciences

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  16. Space Science Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The 2003 Space Science Enterprise Strategy represents the efforts of hundreds of scientists, staff, and educators, as well as collaboration with the other NASA Enterprises. It reveals the progress we have made, our plans for the near future, and our opportunity to support the Agency's Mission to "explore the universe and search for life." Space science has made spectacular advances in the recent past, from the first baby pictures of the universe to the discovery of water ice on Mars. Each new discovery impels us to ask new questions or regard old ones in new ways. How did the universe begin? How did life arise? Are we alone? These questions continue to inspire all of us to keep exploring and searching. And, as we get closer to answers, we will continue to share our findings with the science community, educators, and the public as broadly and as rapidly as possible. In this Strategy, you will find science objectives that define NASA's quest for discovery. You will also find the framework of programs, such as flight missions and ground-based research, that will enable us to achieve these objectives. This Strategy is founded on recommendations from the community, as well as lessons learned from past programs, and maps the stepping-stones to the future of space science.

  17. Experiences in Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This publication contains descriptions of space science activities that can be conducted with simple equipment. There are activities suitable for both elementary and secondary school children. Activities are placed under the headings: Astronomy, Atmosphere, Universal Gravitation, Aerodynamics, Guidance and Propulsion, Tracking and Communications,…

  18. Space Science Network Northwest

    NASA Astrophysics Data System (ADS)

    Lutz, J.

    2002-12-01

    Space Science Network Northwest (S2N2) is a new NASA Office of Space Science Education Broker/Facilitator that serves the states of Alaska, Hawaii, Idaho, Montana, Oregon, Washington and Wyoming. The headquarters of S2N2 is at the University of Washington in Seattle and the Director is Julie Lutz (206-543-0214; nasaerc@u.washington.edu). Each state has an S2N2 representative. Their contact information can be found on the Web site (www.s2n2.org) or by contacting Julie Lutz. The purpose of S2N2 is to form and nurture partnerships between space scientists and others (K-12 teachers, schools and districts, museums, planetariums, libraries, organizations such as Girl Scouts, amateur astronomy clubs, etc.). S2N2 can help space scientists come up with appropriate activities and partners for education and public outreach proposals and projects. S2N2 also provides information and advice about education materials and programs that are available from all of the Office of Space Science missions and scientific forums (Solar System Exploration, Structure and Evolution of the Universe, Sun-Earth Connection, Astronomical Search for Origins).

  19. Education in space science

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  20. Space Station Science Supported by Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Curreri, Peter A.; Smith, Tommy R.

    2003-01-01

    The science program at Marshall Space Flight Center will be reviewed in the context of the overall NASA science program. An overview will be given on how Marshall science supports the International Space Station research program. The Microgravity research capabilities at Marshall's Biological and Physical Space Research Laboratory will be reviewed. The environment in orbit provides a unique opportunity to study Materials Science and Biotechnology in the absence of sedimentation and convection. There are a number of peer-selected investigations that have been selected to fly on the Space Station that have been conceived and are led by Marshall civil service and contractor scientists. In addition to Microgravity research the Station will enable research in New Initiative Research Areas that focus on enabling humans to live, work, and explore the solar system safely. The specific scientific instruments that have been developed for Materials Science and Biotechnology Research on the International Space Station will be discussed.

  1. Space Science in Action: Space Exploration [Videotape].

    ERIC Educational Resources Information Center

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  2. Enabling Space Science and Exploration

    NASA Technical Reports Server (NTRS)

    Weber, William J.

    2006-01-01

    This viewgraph presentation on enabling space science and exploration covers the following topics: 1) Today s Deep Space Network; 2) Next Generation Deep Space Network; 3) Needed technologies; 4) Mission IT and networking; and 5) Multi-mission operations.

  3. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  4. Elementary Science Literature Review

    ERIC Educational Resources Information Center

    Gustafson, Brenda; MacDonald, Dougal; d'Entremont, Yvette

    2007-01-01

    This report presents a literature review of elementary science and design technology education research. The review is intended to provide direction to the elementary science working groups charged with the responsibility to revise the "Alberta Elementary Science Program" (1996) by reflecting current ideas reported in research literature. The…

  5. A review of planetary and space science projects presented at iCubeSat, the Interplanetary CubeSat Workshop

    NASA Astrophysics Data System (ADS)

    Johnson, Michael

    2015-04-01

    iCubeSat, the Interplanetary CubeSat Workshop, is an annual technical workshop for researchers working on an exciting new standardised platform and opportunity for planetary and space scientists. The first workshop was held in 2012 at MIT, 2013 at Cornell, 2014 at Caltech with the 2015 workshop scheduled to take place on the 26-27th May 2015 at Imperial College London. Mission concepts and flight projects presented since 2012 have included orbiters and landers targeting asteroids, the moon, Mars, Venus, Saturn and their satellites to perform science traditionally reserved for flagship missions at a fraction of their cost. Some of the first missions proposed are currently being readied for flight in Europe, taking advantage of multiple ride share launch opportunities and technology providers. A review of these and other interplanetary CubeSat projects will be presented, covering details of their science objectives, instrument capabilities, technology, team composition, budget, funding sources, and the other programattic elements required to implement this potentially revolutionary new class of mission.

  6. Third National Aeronautics and Space Administration Weather and climate program science review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1977-01-01

    Research results of developing experimental and prototype operational systems, sensors, and space facilities for monitoring, and understanding the atmosphere are reported. Major aspects include: (1) detection, monitoring, and prediction of severe storms; (2) improvement of global forecasting; and (3) monitoring and prediction of climate change.

  7. Space Science and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Space Science a t Marshall Space Flight Center is diverse and very interesting. It ranges from high energy astrophysics to astrobiology, from solar physics to space weather to dusty plasmas. I will present some of the more interesting investigations regarding auroral physics, what it takes to build a space camera, and laboratory investigations of dust. There will be time for questions and answers at the conclusion.

  8. Space Sciences and Idealism

    NASA Astrophysics Data System (ADS)

    Popov, M.

    Erwin Schrodinger suggested that " Scientific knowledge forms part of the idealistic background of human life", which exalted man from a nude and savage state to true humanity [Science and Humanism, Cambridge, 1961, p9]. Modern space sciences an space exploration are a brilliant demonstration of the validity of Schrodinger's thesis on Idealism. Moreover, Schrodingers thesis could be considered also as a basic principle for the New Educational Space Philosophical Project "TIMAEUS"."TIMAEUS" is not only an attempt to to start a new dialogue between Science, the Humanities and Religion; but also it is an origin of the cultural innovations of our so strange of globilisation. TIMAEUS, thus, can reveal Idealism as something more fundamental , more refined, more developed than is now accepted by the scientific community and the piblic. TIMAEUS has a significant cultural agenda, connected with the high orbital performance of the synthetic arts, combining a knowledge of the truly spiritual as well as the universal. In particular, classical ballet as a synthetic art can be a new and powerful perfector and re-creator of the real human, real idealistic, real complex culture in orbit. As is well known, Carlo Blasis, the most important dance theorist of the 19t h .century, made probably the first attempts to use the scientific ideas of Leonardo da Vinci and Isaac Newton for the understanding of the gravitational nature of balance and allegro in ballet. In particular Blasis's idea of the limited use of the legs in classical dance realised by the gifted pupils of Enrico Cecchetti - M.Fokine, A.Pavlova and V.Nijinsky, with thinkable purity and elegance of style. V.Nijinsky in his remarkable animation of the dance of two dimensional creatures of a Euclidean flat world (L'Apres Midi d'un Faune,1912) discovered that true classical dance has some gravitational limits. For example, Nijinsky's Faunes and Nymphs mut use running on the heels (In accordance with "Partitura" 1916); they

  9. Subcommittee reviews space council reports

    NASA Astrophysics Data System (ADS)

    The House Science Subcommittee on Space began the 103rd Congress with several hearings to review U.S. space policy. The hearings, held February 2 and 4, with a third scheduled for February 17, consider a series of reports released by the National Space Council under former Vice-President Quayle. The hearing room was full with new members of the subcommittee, many of whom are from districts deeply affected by the aerospace industry.On February 2, the subcommittee reviewed recommendations from the report, “A Post Cold War Assessment of U.S. Space Policy.” This report examined the historical context of all the U.S. space programs: civil, military, intelligence, and commercial and proposed policies for their future based on the changed global circumstances. As chair of the task force that produced the report, Laurel Wilkening, provost of the University of Washington, Seattle, summarized its main points.

  10. Cooperative Program In Space Science

    NASA Technical Reports Server (NTRS)

    Black, David

    2003-01-01

    The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  11. USSR Space Life Sciences Digest

    NASA Technical Reports Server (NTRS)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  12. USSR space life sciences digest

    SciTech Connect

    Lewis, C.S.; Donnelly, K.L.

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  13. Space science experimentation automation and support

    NASA Technical Reports Server (NTRS)

    Frainier, Richard J.; Groleau, Nicolas; Shapiro, Jeff C.

    1994-01-01

    This paper outlines recent work done at the NASA Ames Artificial Intelligence Research Laboratory on automation and support of science experiments on the US Space Shuttle in low earth orbit. Three approaches to increasing the science return of these experiments using emerging automation technologies are described: remote control (telescience), science advisors for astronaut operators, and fully autonomous experiments. The capabilities and limitations of these approaches are reviewed.

  14. History of British Space Science

    NASA Astrophysics Data System (ADS)

    Massie, Harrie; Robins, M. O.

    2009-12-01

    1. The scientific background; 2. The technical background; 3. The initiation of the Skylark rocket programme; 4. Post IGY developments; 5. The Ariel programme; 6. The European Space Research Organisation; 7. Commonwealth co-operation in space research; 8. Smaller rockets for scientific purposes - Skua and Petrel; 9. Attitude controlled Skylark rockets; 10. The Trend Committee and the Science Research Council; 11. The transformation of ESRO into ESA; 12. The Space Science Committee for Europe; 13. Scientific studies by British space scientists I; 14. Scientific studies by British space scientists II; 15. The contribution from British space scientists to astronomy; 16. Concluding remarks; Appendices; Annexes.

  15. Public Attitudes Towards Space Science

    NASA Astrophysics Data System (ADS)

    Smith, Howard A.

    2003-01-01

    Astronomy and space science, including their associated basic research activities, enjoy broad popular backing. People generally support them, and say that they follow their results with interest. This article summarizes some of the detailed results of public surveys in the United States, focusing on popular opinions and attitudes, and the somewhat paradoxical finding that despite being interested and supportive, people are often ignorant about the basic facts. I explore some of the reasons for the popularity of space science, and suggest ways of justifying space science research in the broader context of science research. I argue that vigorous and innovative education and outreach programs are important, and can be made even more effective.

  16. Science operations with Space Telescope

    NASA Astrophysics Data System (ADS)

    Giacconi, R.

    1982-08-01

    The operation, instrumentation, and expected contributions of the Space Telescope are discussed. Space Telescope capabilities are described. The organization and nature of the Space Telescope Science Institute are outlined, including the allocation of observing time and the data rights and data access policies of the institute.

  17. USSR Space Life Sciences Digest, issue 13

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  18. Space station freedom life sciences activities

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1994-01-01

    Life sciences activities being planned for Space Station Freedom (SSF) as of Fall 1992 are discussed. Planning for these activities is ongoing. Therefore, this description should be viewed as indicative of the prevailing ideas at one particular time in the SSF development cycle. The proposed contributions of the Canadian Space Agency (CSN) the European Space Agency (ESA), Japan, and the United States are all discussed in detail. In each case, the life sciences goals, and the way in which each partner proposes to achieve their goals, are reviewed.

  19. Astronomy, space science and geopolitics

    NASA Astrophysics Data System (ADS)

    Courvoisier, Thierry J.-L.

    2011-06-01

    Astronomy has played a major part in the development of civilisations, not only through conceptual developments, but most importantly through the very practical gains obtained through the observation of Sun, Moon planets and stars. Space sciences, including astronomy, have also played a major rôle in the development of modern societies, as an engine for most subsequent space technology developments. Present trends tend to decrease the rôle of science in space development. This trend should be reversed to give modern ``societies'' their independence in space-related matters that permeate the lives of all inhabitants of the Earth.

  20. Cooperative research in space sciences

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This grant covered the period from July 1989 through September 30, 1995. The research covered a number of topics in the general area of space science. Specific research topics included: (1) Solar astronomy - largely in support of the Ulysses project; (2) Space Science - largely in support of instrumentation for several NASA satellite projects; (3) Cometary astronomy; and (4) Planetary Astronomy - largely supporting the NASA Infrared Heterodyne instrument.

  1. Space science plans for the shuttle era.

    NASA Technical Reports Server (NTRS)

    Naugle, J. E.; Johnson, R. W.

    1972-01-01

    Review of the current thinking on the space science, exploration, and application plans and policies that are to take advantage of the widened capabilities to be provided by the shuttle and the sortie mode of the shuttle. Present planning activities and plans for the next year are discussed.

  2. Space Station medical sciences concepts

    NASA Technical Reports Server (NTRS)

    Mason, J. A. (Editor); Johnson, P. C., Jr. (Editor)

    1984-01-01

    Current life sciences concepts relating to Space Station are presented including the following: research, extravehicular activity, biobehavioral considerations, medical care, maintenance of dental health, maintaining health through physical conditioning and countermeasures, protection from radiation, atmospheric contamination control, atmospheric composition, noise pollution, food supply and service, clothing and furnishings, and educational program possibilities. Information on the current status of Soviet Space Stations is contained.

  3. Space science payloads for Shuttle

    NASA Technical Reports Server (NTRS)

    French, J. R.

    1982-01-01

    This paper presents a sampling of space science missions currently planned or under study at the Jet Propulsion Laboratory. Early use of the Shuttle for launching planetary exploration missions will not differ very much in principle from expendable launch vehicles. Future concepts which make use of the unique characteristics of the Shuttle in conjunction with other new technology open some truly fascinating prospects. Shuttle has other roles in space science as well, both for deep space and earth-directed observations. A variety of payload concepts, ranging from highly conventional to 'far-out', are under study. Increasing experience with Shuttle operations will broaden the spectrum of possibilities.

  4. Prospects for space science

    NASA Astrophysics Data System (ADS)

    Sagan, Carl

    The use of the space environment for astronomy and the study of the earth is examined. Particular attention is given to the exploration of the electromagnetic spectrum and the solar system. It is argued that it is necessary to complete the proposed missions to rendezvous with a comet and to send an entry probe into the atmosphere of Titan. The need for the development of a Space Station is discussed, and the benefits of manned versus unmanned missions are considered. The political, social, and economic benefits of a joint U.S./Soviet manned mission to Mars are also discussed.

  5. Space Bioreactor Science Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Editor)

    1987-01-01

    The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.

  6. Essays in Space Science

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven (Editor); Cline, Thomas L. (Editor); Ormes, Jonathan F. (Editor)

    1987-01-01

    The papers presented cover a broad segment of space research and are an acknowledgement of the personal involvement of Frank McDonald in many of these efforts. The totality of the papers were chosen so as to sample the scientific areas influenced by him in a significant manner. Three broad areas are covered: particles and fields of the solar system; cosmic ray astrophysics; and gamma ray, X-ray, and infrared astronomics.

  7. Skylab's Astronomy and Space Sciences

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A. (Editor)

    1979-01-01

    The capabilities of Skylab for multidisciplinary investigations are reviewed. Experiments and results are discussed for observations of stars and galaxies, energetic particles, interplanetary dust, Comet Kohoutek, the earth's atmosphere, and the nature and effects of space environments on man.

  8. Science & technology review

    SciTech Connect

    1995-08-01

    This document is the August, 1995 issue of the Science and Technology review, a Lawrence Berkeley Laboratory publication. It contains two major articles, one on Scanning Tunneling Microscopy - as applied to materials engineering studies, and one on risk assessment, in this case looking primarily at a health care problem. Separate articles will be indexed from this journal to the energy database.

  9. Space life sciences strategic plan

    NASA Astrophysics Data System (ADS)

    Nicogossian, Arnauld E.

    1992-05-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  10. Space life sciences strategic plan

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  11. Space Science and Interdisciplinary Education

    NASA Astrophysics Data System (ADS)

    Foing, B. H.

    The contribution of space science to an education cursus can be conceived as a series of educational modules (each including text books for teacher and pupil, exercises, CD-roms, observations or study projects, kits for hands-on projects, and Internet products from space agencies) covering different age groups (elementary 7-10, middle 10-14, high school 15-17). These modules should not be limited to the science teacher area, but must pervade in all topics of education the same way as space is part of everyday life. Space agencies can contribute to this by supporting a pilot group of teachers on sabbatical residence to develop these modules. These teachers should cover different European languages (e.g. English, French, German, other languages), different educational systems experience, and different backgrounds (Language/arts, science, history, technology). These modules could be developed in one year, in partnership with education ministers, publishers, for validation and production. They should be distributed and inserted in curricula via education authorities and networks of teachers. We list some examples of space (science) modules to be developed, in different teachers courses for a total of about 20 hours courses/yr, with basic modules for age group (7-10 yr) and Advanced Modules for (10-15 yr).

  12. Materials science experiments in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  13. Social Sciences and Space Exploration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The relationship between technology and society is a subject of continuing interest, because technological change and its effects confront and challenge society. College students are especially interested in technological change, knowing that they must cope with the pervasive and escalating effect of wide-ranging technological change. The space shuttle represents a technological change. The book's role is to serve as a resource for college faculty and students who are or will be interested in the social science implications of space technology. The book is designed to provide introductory material on a variety of space social topics to help faculty and students pursue teaching, learning, and research. Space technologies, perspectives on individual disciplines (economics, history, international law, philosophy, political science, psychology, and sociology) and interdiscipline approaches are presented.

  14. USSR Space Life Sciences Digest, issue 14

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  15. Impact of space on science

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1993-01-01

    The advent of the capability to conduct space-based measurements has revolutionized the study of the Earth, the planetary system and the astrophysical universe. The resultant knowledge has yielded insights into the management of our planet's resources and provides intellectual enrichment for our civilization. New investigation techniques hold promise for extending the scope of space science to address topics in fundamental physics such as gravitational waves and certain aspects of Einstein's Theory of General Relativity.

  16. Science in Afterschool Literature Review

    ERIC Educational Resources Information Center

    Falkenberg, Karen; McClure, Patricia; McComb, Errin M.

    2006-01-01

    In considering science in afterschool, research was reviewed and is presented in this document on how students learn science; how science is assessed, particularly inquiry science; recommended practices for afterschool science; and current afterschool science programs. Databases such as ERIC, Wilson Web, and PsychINFO were searched using…

  17. USSR Space Life Sciences Digest, issue 29

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  18. Space science instrumentation

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.

    1989-03-01

    This grant was intended to be used for the purchase of high quality laboratory and data analysis instrumentation for the pursuit of space plasma physics research. Two of the first purchases were a 6250 BPI magnetic tape drive and a large, fast disk drive. These improved the satellite data analysis capability greatly and reduced the system backup time. With the big disk drive it became possible to dump entire magnetic tapes to disk for faster, more efficient processing. Several microcomputers improve both personnel computing as well as general connectivity within the group and on campus in general. Other microcomputers function in the laboratory setting by acting as hosts for several instrument interfaces for communication with satellite and balloon payloads as well as laboratory VLF signal processing equipment. Perhaps the single most expensive item purchased was an analog tape drive for reading and writing 16 in. analog magnetic tapes. This analog tape drive is used for the direct processing of FM and directly recorded telemetry data from the balloon and rocket payloads.

  19. Science on a space elevator

    SciTech Connect

    Laubscher, B. E.; Jorgensen, A. M.

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. If the SE's promise of low cost access can be realized, everything becomes economically more feasible to accomplish in space. In this paper we describe in-situ science stations mounted on a science-dedicated space elevator tether. The concept presented here involves a carbon nanotube ribbon that is constructed by an existing space elevator and then science sensors are stationed along the ribbon at differing altitudes. The finished ribbon can be moved across the earth to the position at which its scientific measurements are to be taken. The ability to station scientific, in-situ instrumentation at different altitudes for round-the-clock observations is a unique capability of the SE. The environments that the science packages sense range from the troposphere out beyond the magnetopause of the magnetosphere on the solar side of the earth. Therefore, the very end of the SE can sense the solar wind. The measurements at various points along its length include temperature, pressure, density, sampling, chemical analyses, wind speed, turbulence, free oxygen, electromagnetic radiation, cosmic rays, energetic particles and plasmas in the earth's magnetosphere and the solar wind. There exist some altitudes that are difficult to access with aircraft or balloons or rockets and so remain relatively unexplored. The space elevator solves these problems and opens these regions up to in-situ measurements. Without the need for propulsion, the SE provides a more benign and pristine environment for atmospheric measurements than available with powered aircraft. Moreover, replacing and upgrading instrumentation is expected to be very cost effective with the SE. Moving and stationing the science SE affords the opportunity to sense multiple regions of the atmosphere. The SE's geosynchronous, orbital motion through the magnetosphere, albeit nominally with Earth's magnetic field, will trace a plane through that region

  20. Space life sciences: A status report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  1. Space Science Lab at PARI

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Blake, M.; Clavier, D.; Whitworth, C.; Cline, J. D.

    2006-12-01

    Native American, Hispanic, African American, and other underrepresented high school students in rural Western North Carolina have unprecedented opportunity as researchers in the Space Science Lab to conduct visible and radio observations of the Sun. The program involves 90 students over a three year period. The students conduct their own research and also interact with scientists around the world. The primary goal is to reach students who otherwise would not have this opportunity and motivate them to develop the critical thinking skills necessary for objective scientific inquiry. Students develop skills in electronics, computer sciences, astronomy, physics and earth sciences. Equally important is the hope that the students will become interested in pursuing careers in research or other science-related areas. The program objectives are aligned with the North Carolina Standard Course of Study for grades 9-12 in the areas of Earth/Environmental Science, Physical Science and Physics. The first group of 27 students spent a week in the Space Science Lab located on the campus of the Pisgah Astronomical Research Institute (PARI) during the Summer 2006. Students constructed their own JOVE radio telescopes that they took home to continue their observations. They share their results during four follow-up sessions throughout the school year. The students also have Internet access to radio telescopes and solar monitoring equipment at PARI. We expect their enthusiasm for science will increase by experiencing research investigations that are fun and relevant to their understanding of the world around them. We gratefully acknowledge support from the Burroughs Wellcome Fund Student Science Enrichment Program.

  2. Basic space science in Africa: The Nigerian experience

    NASA Astrophysics Data System (ADS)

    Okeke, P. N.; Onuora, L. I.

    1995-01-01

    The present status of basic space science research in African countries is reviewed. The efforts being made to develop space science research at the University of Nigeria are discussed, as well as the proposed international collaboration on solar seismology. Such international collaborations appear to be the only way forward for African countries. It is emphasized that policy makers in African countries need to be made aware of the importance of space science and its various technological spin offs.

  3. What's in School Science Review?

    ERIC Educational Resources Information Center

    Skinner, Nigel

    2003-01-01

    This article reviews three issues (306, 307 and 308) of "School Science Review" (SSR), the ASE journal for science education 11-19. It aims to highlight ideas and developments that are of relevance to the teaching and learning of science in both secondary and primary phases. Each of the issues being reviewed includes articles that focus on a…

  4. USSR Space Life Sciences Digest, issue 2

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  5. USSR Space Life Sciences Digest, issue 3

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  6. USSR Space Life Sciences Digest, issue 11

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  7. Space human factors discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive areas of behavior, performance, and human factors. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, defines critical questions in the subdiscipline areas, and identifies technological priorities. It covers the significant research areas critical to NASA's programmatic requirements for the Extended Duration Orbiter, Space Station Freedom, and Exploration mission science activities. These science activities include ground-based and flight; basic, applied and operational; and animal and human research and development. This document contains a general plan that will be used by both NASA Headquarters program offices and the field centers to review and plan basic, applied, and operational research and development activities, both intramural and extramural, in this area.

  8. Basic space sciences in Africa

    NASA Astrophysics Data System (ADS)

    Abiodun, Adigun Ade; Odingo, Richard S.

    Through space applications, a number of social and economic programmes in education, communications, agro-climatology, weather forecasting and remote sensing are being realized within the African continent. Regional and international organizations and agencies such as the African Remote Sensing Council, the Pan-African Telecommunication Union and the United Nations system have been instrumental in making Africa conscious of the impact and implications of space science and technology on its peoples. The above notwithstanding, discernible interests in space research, to date, in Africa, have been limited to the work on the solar system and on interplanetary matters including satellite tracking, and to the joint African-Indian proposal for the establishment of an International Institute for Space Sciences and Electronics (INISSE) and the construction, in Kenya, of a Giant Equatorial Radio Telescope (GERT). During this ``Transport and Communications Decade in Africa,'' Africa's basic space research efforts would need to initially focus on the appropriateness, modification and adaptation of existing technologies for African conditions with a view to providing economic, reliable and functional services for the continent. These should include elements of electronics, communications, structural and tooling industries, and upper-atmosphere research. The experience of and collaborative work with India, Brazil and Argentina, as well as the roles of African scientists, are examined.

  9. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences

    NASA Astrophysics Data System (ADS)

    Gohardani, Omid; Elola, Maialen Chapartegui; Elizetxea, Cristina

    2014-10-01

    Carbon nanotubes have instigated the interest of many different scientific fields since their authenticated introduction, more than two decades ago. Particularly in aerospace applications, the potential implementations of these advanced materials have been predicted to have a large impact on future aircraft and space vehicles, mainly due to their distinct features, which include superior mechanical, thermal and electrical properties. This article provides the very first consolidated review of the imminent prospects of utilizing carbon nanotubes and nanoparticles in aerospace sciences, based on their recent implementations and predicted future applications. Explicitly, expected carbon nanotube employment in aeronautics and astronautics are identified for commercial aircraft, military aircraft, rotorcraft, unmanned aerial vehicles, satellites, and space launch vehicles. Attention is devoted to future utilization of carbon nanotubes, which may comprise hydrogen storage encapsulation, composite material implementation, lightning protection for aircraft, aircraft icing mitigation, reduced weight of airframes/satellites, and alleviation of challenges related to future space launch. This study further sheds light onto recent actualized implementations of carbon nanotubes in aerospace applications, as well as current and prospective challenges related to their usage in aerospace sciences, encompassing health and safety hazards, large scale manufacturing, achievement of optimum properties, recycling, and environmental impacts.

  10. USSR space life sciences digest, issue 27

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 30 journal papers or book chapters published in Russian and of 2 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, botany, cardiovascular and respiratory systems, endocrinology, enzymology, exobiology, habitability and environmental effects, hematology, immunology, metabolism, musculoskeletal system, neurophysiology, radiobiology, and space medicine. A Soviet book review of a British handbook of aviation medicine and a description of the work of the division on aviation and space medicine of the Moscow Physiological Society are also included.

  11. USSR Space Life Sciences Digest, issue 19

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  12. Basic space science education in Nigeria

    NASA Astrophysics Data System (ADS)

    Onuora, L. I.; Ubachukwu, A. A.; Asogwa, M. O.

    1995-01-01

    The role of basic space science in the present curriculum for primary and secondary schools is discussed as well as the future development of Space Science Education at all levels (Primary, Secondary, and Tertiary). The importance of educating teachers in basic space science is emphasized. Provision of Planetariums in the country could go a long way to help in the education process as well as in popularizing space science.

  13. USSR Space Life Sciences Digest, issue 4

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  14. Beyond the atmosphere: Early years of space science

    NASA Technical Reports Server (NTRS)

    Newell, H. E.

    1980-01-01

    From the rocket measurements of the upper atmosphere and Sun that began in 1946, space science gradually emerged as a new field of scientific activity. The course of the United State space program is viewed in an historical context. Major emphasis is on NASA and its programs. The funding, staffing, organization, and priorities of the space program were reviewed.

  15. Science on the International Space Station: Stepping Stones for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    This viewgraph presentation reviews the state of science research on the International Space Station (ISS). The shuttle and other missions that have delivered science research facilities to the ISS are shown. The different research facilities provided by both NASA and partner organizations available for use and future facilities are reviewed. The science that has been already completed is discussed. The research facilitates the Vision for Space Exploration, in Human Life Sciences, Biological Sciences, Materials Science, Fluids Science, Combustion Science, and all other sciences. The ISS Focus for NASA involves: Astronaut health and countermeasure, development to protect crews from the space environment during long duration voyages, Testing research and technology developments for future exploration missions, Developing and validating operational procedures for long-duration space missions. The ISS Medical Project (ISSMP) address both space systems and human systems. ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions. Including complete programmatic review with medical operations (space medicine/flight surgeons) to identify: (1) evidence base on risks (2) gap analysis.

  16. Science and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy

    2011-01-01

    Have you ever wondered about the science goals of various deep space missions? Or why scientists want such seemingly complicated spacecraft and operations scenarios? With a focus on outer planets) this talk will cover the scientific goals and results of several recent and future missions) how scientists approach a requirements flow down) and how the disparate needs of mission engineers and scientists can come together for mission success. It will also touch on several up and coming technologies and how they will change mission architectures in the future.

  17. Gravitational wave science from space

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.

    2016-05-01

    The rich millihertz gravitational wave band can only be accessed with a space- based detector. The technology for such a detector will be demonstrated by the LISA Pathfinder satellite that is due to launch this year and ESA has selected gravitational wave detection from space as the science theme to be addressed by the L3 large mission to be launched around 2034. In this article we will discuss the sources that such an instrument will observe, and how the numbers of events and precision of parameter determination are affected by modifications to the, as yet not finalised, mission design. We will also describe some of the exciting scientific applications of these observations, to astrophysics, fundamental physics and cosmology.

  18. USSR Space Life Sciences Digest, issue 9

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  19. Space Research, Education, and Related Activities in the Space Sciences

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Universities Space Research Association received an award of Cooperative Agreement #NCC5-356 on September 29, 1998. The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  20. Space Research, Education, and Related Activities In the Space Sciences

    NASA Technical Reports Server (NTRS)

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  1. Space Research, Education, and Related Activities in the Space Sciences

    NASA Technical Reports Server (NTRS)

    Black, David; Marshall, Frank (Technical Monitor)

    2002-01-01

    The Universities Space Research Association received an award of Cooperative Agreement NCC5-356 on September 29, 1998. The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  2. USSR Space Life Sciences Digest, issue 15

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 15th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 59 papers published in Russian language periodicals or presented at conferences and of two new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is a review of a conference devoted to the physiology of extreme states. The abstracts included in this issue have been identified as relevant to 29 areas of space biology and medicine. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, enzymology, equipment and instrumentation, exobiology, genetics, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception. personnel selection, psychology, radiobiology, reproductive biology, and space biology and medicine.

  3. USSR Space Life Sciences Digest, issue 16

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  4. USSR Space Life Sciences Digest, Issue 18

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  5. Review of the Draft 2014 Science Mission Directorate Science Plan

    NASA Technical Reports Server (NTRS)

    2013-01-01

    At the request of NASA's Science Mission Directorate (SMD), the National Research Council's (NRC's) Space Studies Board (SSB) initiated a study to review a draft of the SMD's 2014 Science Plan. The request for this review was made at a time when NASA is engaged in the final stages of a comprehensive, agency-wide effort to develop a new strategic plan and at a time when NASA's budget is under considerable stress. SMD's Science Plan serves to provide more detail on its four traditional science disciplines-astronomy and astrophysics, solar and space physics (also called heliophysics), planetary science, and Earth remote sensing and related activities-than is possible in the agency-wide Strategic Plan. In conducting its review of the draft Science Plan, the Committee on the Assessment of the NASA Science Mission Directorate 2014 Science Plan was charged to comment on the following specific areas: (1) Responsiveness to the NRC's guidance on key science issues and opportunities in recent NRC reports; (2) Attention to interdisciplinary aspects and overall scientific balance; (3) Identification and exposition of important opportunities for partnerships as well as education and public outreach; (4) Integration of technology development with the science program; (5) Clarity on how the plan aligns with SMD's strategic planning process; (6) General readability and clarity of presentation; and (7) Other relevant issues as determined by the committee. The main body of the report provides detailed findings and recommendations relating to the draft Science Plan. The highest-level, crosscutting issues are summarized here, and more detail is available in the main body of the report.

  6. Launch vouchers for space science research

    NASA Technical Reports Server (NTRS)

    Macauley, Molly K.

    1989-01-01

    Consideration is given to the proposed use of space transportation vouchers for space science payloads. The vouchers would be financially backed by the government, and would be issued to researches for redemption on any mode of space transportation. The possible impact of vouchers on the pace of space science and developments in space transportation are examined, focusing on the costs and benefits of vouchers and strategies for designing a voucher program.

  7. Space Station Live: Space Station Science

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot speaks with Assistant ISS Program Scientist Kirt Costello about the various science experiments and research currently being conducted aboard the International ...

  8. Collaboration technology and space science

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Brown, R. L.; Haines, R. F.

    1990-01-01

    A summary of available collaboration technologies and their applications to space science is presented as well as investigations into remote coaching paradigms and the role of a specific collaboration tool for distributed task coordination in supporting such teleoperations. The applicability and effectiveness of different communication media and tools in supporting remote coaching are investigated. One investigation concerns a distributed check-list, a computer-based tool that allows a group of people, e.g., onboard crew, ground based investigator, and mission control, to synchronize their actions while providing full flexibility for the flight crew to set the pace and remain on their operational schedule. This autonomy is shown to contribute to morale and productivity.

  9. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  10. Towards Introducing Space Science in Uganda

    NASA Astrophysics Data System (ADS)

    Anguma, S.; Ayikoru, J.

    This paper discusses the strategies and importance of introducing space science in Uganda. It proposes that Mbarara University, as a new university focusing on science and technology, would be ideally situated to spearhead the introduction of space science in Uganda. It is our expectation that this will have a spin-off effect to other higher institutions of learning and that consequently space science will become fully incorporated into the national teaching curriculum for all schools in Uganda. Based on the fact that the Government has a deliberate policy of popularizing science and technology to accelerate national economic development, the introduction of space science in the school system is to be enhanced by these efforts. We have charted the way forward for space science in Uganda and outlined the conceptual framework illustrating the spin-off effect into the education system.

  11. Some Teaching Topics from Space Science

    ERIC Educational Resources Information Center

    Balding, G. M.

    1972-01-01

    Short notes on a variety of science topics provide information derived from space sciences that can be used to add interest and up-to-date data to science lessons. Topics are arranged alphabetically from Alpha particles to X-rays, and include some from each of the physical, earth, and biological sciences. (AL)

  12. Technology transfer and space science missions

    NASA Technical Reports Server (NTRS)

    Acuna, Mario

    1992-01-01

    Viewgraphs on technology transfer and space science missions are provided. Topics covered include: project scientist role within NASA; role of universities in technology transfer; role of government laboratories in research; and technology issues associated with science.

  13. Hubble Space Telescope Data and Citizen Science

    NASA Astrophysics Data System (ADS)

    Christian, Carol A.

    2015-08-01

    The general public is enthusiastic about astronomy and in particular the research and associated imagery produced by the Hubble Space Telescope (HST). The HST Education and Outreach program (EPO) offers myriad resources for education and also engagement by the public in the research endeavor (hubblesite.org). One facet of this landscape is the opportunity to participate in Citizen Science projects. There are many flavors of citizen science and those discussed here are focussed on producing research results through the collaboration and activity of volunteer members of the public who conduct tasks that only can be accomplished through human endeavor. This paper touches upon several projects based on HST data and reviews a few others that are derived from the archives at STScI covering several different astrophysics areas.

  14. The Space Review

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Dan; Hatfield, Skip

    2011-01-01

    Human space flight in the US and other space-faring countries is faced with a twin challenge that is likely to persist for many years: flat or declining budgets along with an expectation of continuing, significant achievements. A partial solution may involve increased participation by multiple commercial competitors with the promise - albeit yet to be fully demonstrated - of much-reduced costs. That said, most commercial goals are concentrated on low-Earth orbit (LEO) for the time being, leaving human trips beyond Earth orbit (BED) as governmental initiatives. The past decade, beginning with the 1999/2000 Decadal Planning Team (DPT)/NASA Exploration Team (NExT) human space flight studies for the White House Office of Management and Budget (http://history.nasa.gov/DPT/DPT.htm), can arguably be described as a Golden Age of engineering design, strategic planning, technology capability prioritization, and development programs on the International Space Station (ISS). However, cynics have criticized the same period as little more than PowerPoint presentations, and unfocused technology investments with only limited progress toward a goal of human space flight beyond the immediate vicinity of the Earth. We disagree with the cynics. Experience with the ISS on increasingly sophisticated capabilities have prepared international partners to deploy a major "stepping stone" for human space flight: a habitation system in free space beyond low-Earth orbit. Such an achievement would be a major milestone in human space flight and, very likely, an essential demonstration site for subsequent, very ambitious exploration missions such as to Mars. Developing critical capabilities for human voyages beyond LEO, such as Earth-Moon libration points, offers, as just one example, easy return to Earth within days (see, e.g., Farquhar 1971 (Aeronautics & Astronautics, July, p. 59ff), Thronson, Lester, and Talay 2011 (http://www.thespacereview.com/article/1756/1), and Lester 2012 (http

  15. USSR Space Life Sciences Digest, issue 21

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph

    1989-01-01

    This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.

  16. The Information Science Experiment System - The computer for science experiments in space

    NASA Technical Reports Server (NTRS)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  17. Space life sciences: Programs and projects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  18. Space Science Division cumulative bibliography: 1989-1994

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1995-01-01

    The Space Science Division at NASA's Ames Research Center is dedicated to research in astrophysics, exobiology, and planetary science. These research programs are structured around the study of origins and evolution of stars, planets, planetary atmospheres, and life, and address some of the most fundamental questions pursued by science; questions that examine the origin of life and of our place in the universe. This bibliography is the accumulation of peer-reviewed publications authored by Division scientists for the years 1989 through 1994. The list includes 777 papers published in over 5 dozen scientific journals representing the high productivity and interdisciplinary nature of the Space Science Division.

  19. Space Life Sciences Research and Education Program

    NASA Technical Reports Server (NTRS)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  20. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb's capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, active galactic nuclei, stellar populations, exoplanet characterization and Solar System objects. In this paper, we review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research. The James Webb Space Telescope was designed to meet science objectives in four themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life. More recently, it has become clear that Webb will also make major contributions to studies of dark energy, dark matter

  1. Spacelab 3 Mission Science Review

    NASA Technical Reports Server (NTRS)

    Fichtl, George H. (Editor); Theon, John S. (Editor); Hill, Charles K. (Editor); Vaughan, Otha H. (Editor)

    1987-01-01

    Papers and abstracts of the presentations made at the symposium are given as the scientific report for the Spacelab 3 mission. Spacelab 3, the second flight of the National Aeronautics and Space Administration's (NASA) orbital laboratory, signified a new era of research in space. The primary objective of the mission was to conduct applications, science, and technology experiments requiring the low-gravity environment of Earth orbit and stable vehicle attitude over an extended period (e.g., 6 days) with emphasis on materials processing. The mission was launched on April 29, 1985, aboard the Space Shuttle Challenger which landed a week later on May 6. The multidisciplinary payload included 15 investigations in five scientific fields: material science, fluid dynamics, life sciences, astrophysics, and atmospheric science.

  2. Teaching for Conceptual Change in Space Science

    ERIC Educational Resources Information Center

    Brunsell, Eric; Marcks, Jason

    2007-01-01

    Nearly 20 years after the release of The Harvard-Smithsonian Center for Astrophysics' video, "A Private Universe", much research has been done in relation to students' understanding of space-science concepts and how to effectively change these ideas. However, student difficulties with basic space-science concepts still persist. This article will…

  3. Life sciences utilization of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambers, Lawrence P.

    1992-01-01

    Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.

  4. Life sciences space biology project planning

    NASA Technical Reports Server (NTRS)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  5. Space Science Projects. LC Science Tracer Bullet. TB 06-3

    ERIC Educational Resources Information Center

    Shaw, Loretta, Comp.

    2006-01-01

    Space science, or the space sciences, are fields of science that are concerned with the study or utilization of outer space. There are several major fields of space science including astronomy, exobiology, space transport, and space exploration and colonization. In addition, space sciences impact or are related to many other fields, from the…

  6. Launch vouchers for space science research

    NASA Technical Reports Server (NTRS)

    Macauley, Molly K.

    1989-01-01

    Recent national space policy proposes the use of space transportation vouchers to increase opportunities for space-based science research and to support the U.S. space transportation industry. Vouchers issued and financially backed by the government would be given to researchers for redemption on any mode of space transportation. This paper examines the economic costs and benefits of vouchers; incentive-based strategies for effective program design; and areas where the voucher scheme is weak. It is concluded that, under plausible assumptions, vouchers may well be a cost-effective way to achieve near-term space transportation for space research payloads.

  7. Planning for life sciences research in space

    NASA Technical Reports Server (NTRS)

    Mallory, K. M., Jr.; Deutsch, S.

    1976-01-01

    Invitations to participate in planning the NASA Life Sciences Program in Space were mailed to members of the Life Sciences community at large during April 1975. The invitation is related to current planning for Life Sciences research in space during the 1980's, taking into account a use of the Space Shuttle, Spacelab, and the unmanned Biological Experiments Scientific Satellite (BESS). A response form to be completed and returned to NASA by the scientists included questions requesting suggestions on topics-for-research, laboratory equipment, and test specimens. A description of the invitation results is presented, taking into account general response, respondent specialties, laboratory equipment, test specimens, and research objectives. Attention is also given to an Announcement of Opportunities (AO) for the Space Transportation System. The AO was issued by the Office of Space Science in March 1976.

  8. Space science and applications: Strategic plan 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Office of Space Science and Applications (OSSA) 1991 Strategic Plan reflects a transitional year in which we respond to changes and focus on carrying out a vital space science program and strengthening our research base to reap the benefits of current and future missions. The Plan is built on interrelated, complementary strategies for the core space science program, for Mission to Planet Earth, and for Mission from Planet Earth. Each strategy has its own unique themes and mission priorities, but they share a common set of principles and a common goal - leadership through the achievement of excellence. Discussed here is the National Space Policy; an overview of OSSA activities, goals, and objectives; and the implications of the OSSA space science and applications strategy.

  9. The Higher Education Clearinghouse for Space Sciences

    NASA Astrophysics Data System (ADS)

    Cobabe-Ammann, E. A.; Shipp, S. S.; Dalton, H.

    2011-12-01

    The Higher Education Clearinghouse (HECl) is a searchable database of undergraduate classroom materials for faculty teaching planetary sciences and solar and space physics at both the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, HECl was designed for easy submission of classroom assets - from homeworks and computer interactives to laboratories and demonstrations. All materials are peer-reviewed before posting, and authors adhere to the Creative Commons Attribution (CC BY). HECl materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities (e.g., Connexions). In addition to classroom materials, HECl provides news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education.

  10. OSSA Space Station Freedom science utilization plans

    NASA Technical Reports Server (NTRS)

    Cressy, Philip J.

    1992-01-01

    Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.

  11. USSR Space Life Sciences Digest, issue 8

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  12. The International Space Life Sciences Working Group.

    PubMed

    Vernikos, J; Ahlf, P R

    1998-07-01

    The International Space Life Sciences Working Group (ISLSWG) is made up of representatives from five space agencies: the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), the Canadian Space Agency (CSA), the Centre National d'Etudes Spatiale (CNES), the Deutsches Zentrum fur Luft- und Raumfahrt (DLR, formerly the Deutsche Agentur fur Raumfahrtangelegenheiten or DARA), and the National Space Development Agency of Japan (NASDA). The group met for the first time in 1989, and since that time has developed a Strategic Plan and has taken concrete steps to implement this plan. The result is a closely coordinated international program of Space Life Sciences which will enable optimal utilization of space flight opportunities.

  13. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  14. Space Station and the life sciences

    NASA Technical Reports Server (NTRS)

    White, R. J.; Leonard, J. I.; Cramer, D. B.; Bishop, W. P.

    1983-01-01

    Previous fundamental research in space life sciences is examined, and consideration is devoted to studies relevant to Space Station activities. Microgravity causes weight loss, hemoconcentration, and orthostatic intolerance when astronauts returns to earth. Losses in bone density, bone calcium, and muscle nitrogen have also been observed, together with cardiovascular deconditioning, fluid-electrolyte metabolism alteration, and space sickness. Experiments have been performed with plants, bacteria, fungi, protozoa, tissue cultures, invertebrate species, and with nonhuman vertebrates, showing little effect on simple cell functions. The Spacelab first flight will feature seven life science experiments and the second flight, two. Further studies will be performed on later flights. Continued life science studies to optimize human performance in space are necessary for the efficient operation of a Space Station and the assembly of large space structures, particularly in interaction with automated machinery.

  15. Space science in the United States

    NASA Technical Reports Server (NTRS)

    Alexander, Joseph K.; Mcdonald, Frank B.

    1988-01-01

    Despite the hiatus in spacecraft launches after the Space Shuttle Challenger accident in 1986, the U.S. space program continues to generate research data on the basis of the productive operation of 18 scientific spacecraft. Attention is presently given to NASA's planned missions for the 1990s in such fields as astronomy and astrophysics (the Hubble Space Telescope, the Extreme UV Explorer), solar system exploration (the Magellan Venus orbiter, the Galileo Jupiter orbiter), space physics (the Tethered Satellite System, the Combined Release and Radiation Effects Satellite), earth science (the Upper Atmospheric Research Satellite), and microgravity sciences (the International Microgravity Observatory).

  16. Accommodating life sciences on the Space Station

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  17. Science off the Sphere: Space Soundwaves

    NASA Video Gallery

    International Space Station Expedition 30 astronaut Don Pettit demonstrates water oscillations on a speaker in microgravity, and ZZ Top rocks the boat 250 miles above Earth for "Science off the Sph...

  18. Center for Aeronautics and Space Information Sciences

    NASA Technical Reports Server (NTRS)

    Flynn, Michael J.

    1992-01-01

    This report summarizes the research done during 1991/92 under the Center for Aeronautics and Space Information Science (CASIS) program. The topics covered are computer architecture, networking, and neural nets.

  19. USSR Space Life Sciences Digest, issue 20

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    Abstracts of research in the areas of biological rhythms, body fluids, botany, endrocrinology, enzymology, exobiology, genetics, human performance, immunology, life support systems, mathematical modeling, and numerous other topics related to space and life sciences are given.

  20. Pointing requirements for space station science

    NASA Technical Reports Server (NTRS)

    Paddack, S. J.

    1983-01-01

    It appears that man's next evolutionary step in spaceflight will involve his permanent presence in space with a station in earth orbit. For the purpose of discussing pointing requirements for science and applications studies, a space station with certain characteristics is considered, taking into account a low earth orbit station. It is assumed that the space station will be a system with a permanently manned core facility for conducting science, applications, and technical activities in space. Certain problems can best be solved by utilizing platforms or associated free flying spacecraft which would be part of the space station system, but not part of the space station core. Four classes of pointing requirements are defined, including those which can be satisfied by directly using the space station core, two classes which can be satisfied by gimbal systems, and finally a class which can be satisfied by making use of associated free flying spacecraft or platforms.

  1. International Space Station External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  2. Earth Orbital Science, Space in the Seventies.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is part of the "Space in the Seventies" series and reviews the National Aeronautics and Space Administration's (NASA) earth orbital scientific research programs in progress and those to be pursued in the coming decade. Research in space physics is described in Part One in these areas: interplanetary monitoring platforms, small…

  3. Current and future challenges in space weather science

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    The main objective of the space weather science is to provide a scientific basis for reliable space weather forecasting. The importance of space weather forecasting is increasing as our society is becoming more and more dependent on advanced technologies that may be affected by adverse space weather conditions. Space weather forecasting is still a difficult task and requires specific observational inputs that are reviewed in this presentation, with an emphasis on solar and interplanetary weather. A list of key observations that are essential for real-time operational space weather forecasting is established. Further on, the use of observational data to produce reliable predictions requires development of empirical and statistical methods, as well as physical models. Scientific basis of space weather forecasting is briefly described. Several important problems are emphasized, and possible ways of improving our predictive capabilities are discussed, including possible novel space observations to be made in future.

  4. Space Life Sciences Social Innovation

    NASA Technical Reports Server (NTRS)

    Llewellyn, Alicia

    2009-01-01

    This slide presentation reviews some of the problems in the world, that NASA is working to solve. It reviews some of the problems that NASA has solved in the past, and is working to solve now. Particularly of interest are some of the problems related to medical delivery in rural and remote areas.

  5. User interfaces in space science instrumentation

    NASA Astrophysics Data System (ADS)

    McCalden, Alec John

    This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.

  6. System Science approach to Space Weather forecast

    NASA Astrophysics Data System (ADS)

    Balikhin, Michael A.

    There are many dynamical systems in nature that are so complex that mathematical models of their behaviour can not be deduced from first principles with the present level of our knowledge. Obvious examples are organic cell, human brain, etc often attract system scientists. A example that is closer to space physics is the terrestrial magnetosphere. The system approach has been developed to understand such complex objects from the observation of their dynamics. The systems approach employs advanced data analysis methodologies to identify patterns in the overall system behaviour and provides information regarding the linear and nonlinear processes involved in the dynamics of the system. This, in combination with the knowledge deduced from the first principles, creates the opportunity to find mathematical relationships that govern the evolution of a particular physical system. Advances and problems of systems science applications to provide a reliable forecasts of space weather phenomena such as geomagnetic storms, substorms and radiation belts particle fluxes are reviewed and compared with the physics based models.

  7. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  8. USSR Space Life Sciences Digest, Issue 26

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Frey, Mary Ann (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 35 journal papers or book chapters published in Russian and of 8 Soviet books. In addition, the proceedings of an Intercosmos conference on space biology and medicine are summarized.

  9. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  10. Space Telescope Science Institute (STScI)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Located on the Johns Hopkins University Homewood campus, Baltimore, Maryland. The institute is responsible to NASA's GODDARD SPACE FLIGHT CENTER for the scientific operations of the Hubble Space Telescope (HST). It was established by NASA, following a recommendation by the National Academy of Sciences, and is operated by ASSOCIATION OF UNIVERSITIES FOR RESEARCH IN ASTRONOMY (AURA) under contract ...

  11. NASA Space Sciences Strategic Planning

    NASA Technical Reports Server (NTRS)

    Crane, Philippe

    2004-01-01

    The purpose of strategic planning roadmap is to:Fulfill the strategic planning requirements; Provide a guide to the science community in presenting research requests to NASA; Inform and inspire; Focus investments in technology and research for future missions; and Provide the scientific and technical justification for augmentation requests.

  12. (abstract) Space Science with Commercial Funding

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The world-wide recession, and other factors, have led to reduced or flat budgets in real terms for space agencies around the world. Consequently space science projects and proposals have been under pressure and seemingly will continue to be pressured for some years into the future. A new concept for space science funding is underway at JPL. A partnership has been arranged with a commercial, for-profit, company that proposes to implement a (bandwidth-on-demand) information and telephone system through a network of low earth orbiting satellites (LEO). This network will consist of almost 1000 satellites operating in polar orbit at Ka-band. JPL has negotiated an agreement with this company that each satellite will also carry one or more science instruments for astrophysics, astronomy, and for earth observations. This paper discussed the details of the arrangement and the financial arrangements. It describes the technical parameters, such as the 60 GHz wideband inter-satellite links and the frequency, time, and position control, on which the science is based, and it also discusses the complementarity of this commercially funded space science with conventional space science.

  13. Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  14. Space life sciences strategic plan, 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  15. Science & Technology Review March 2005

    SciTech Connect

    Henson, V E

    2005-01-25

    This issue of Science and Technology Review has the following articles: (1) Enhanced National Security through International Research Collaborations--Commentary by Stephen G. Cochran; (2) Building Networks of Trust through Collaborative Science--Livermore scientists are leading collaborative science and technology projects with colleagues from Central and South Asia and the Middle East; (3) Tracing the Steps in Nuclear Material Trafficking--The Laboratory.s nuclear science expertise is helping to thwart the illicit trafficking of nuclear material; (4) Looking at Earth in Action--Geophysicists at Livermore are using laboratory experiments to examine such issues as how best to store nuclear wastes and how to mitigate the effects of greenhouse gases; and (5) Gamma-Ray Bursts Shower the Universe with Metals--Computer models indicate that gamma-ray bursts from dying stars may be important sources of elements such as iron, zinc, titanium, and copper.

  16. Four educational programs in Space Life Sciences.

    PubMed

    Luttges, M W; Stodieck, L S; Klaus, D M

    1994-01-01

    Four different educational programs impacting Space Life Sciences are described: the NASA/USRA Advanced Design Program, the NASA Specialized Center of Research and Training (NSCORT) Program, the Centers for the Commercial Development of Space (CCDS) Program, and the NASA Graduate Research Fellow Program. Each program makes somewhat different demands on the students engaged in them. Each program, at the University of Colorado, involves Space Life Sciences training. While the Graduate Student Research Fellow and NSCORT Programs are discipline oriented, the Advanced Design and CCDS Programs are focused on design, technologies and applications. Clearly, the "training paradigms" differ for these educational endeavors. But, these paradigms can be made to mutually facilitate enthusiasm and motivation. Discipline-oriented academic programs, ideally, must be flexible enough to accommodate the emergent cross-disciplinary needs of Space Life Sciences students. Models for such flexibility and resultant student performance levels are discussed based upon actual academic and professional records. PMID:11537954

  17. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  18. Usability in space science instrumentation

    NASA Astrophysics Data System (ADS)

    Bastien, J.; Scapin, D.

    2009-12-01

    The scientists who will eventually use data from a space instrument may not be the most important people to consider during the development programme, argues Alec McCalden. Better results could come from treating instrument usability as a design parameter from the start.

  19. Space Science for the People.

    ERIC Educational Resources Information Center

    Overbye, Dennis

    1982-01-01

    Traces the development of a project in which students at Utah State University have designed 12 experiments which will be contained in a trashcan-sized canister and placed inside the space shuttle "Columbia" during its fourth test flight. Describes some experiments and how they will operate. (DC)

  20. Educational Outreach: The Space Science Road Show

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.

    2002-01-01

    The poster presented will give an overview of a study towards a "Space Road Show". The topic of this show is space science. The target group is adolescents, aged 12 to 15, at Dutch high schools. The show and its accompanying experiments would be supported with suitable educational material. Science teachers at schools can decide for themselves if they want to use this material in advance, afterwards or not at all. The aims of this outreach effort are: to motivate students for space science and engineering, to help them understand the importance of (space) research, to give them a positive feeling about the possibilities offered by space and in the process give them useful knowledge on space basics. The show revolves around three main themes: applications, science and society. First the students will get some historical background on the importance of space/astronomy to civilization. Secondly they will learn more about novel uses of space. On the one hand they will learn of "Views on Earth" involving technologies like Remote Sensing (or Spying), Communication, Broadcasting, GPS and Telemedicine. On the other hand they will experience "Views on Space" illustrated by past, present and future space research missions, like the space exploration missions (Cassini/Huygens, Mars Express and Rosetta) and the astronomy missions (Soho and XMM). Meanwhile, the students will learn more about the technology of launchers and satellites needed to accomplish these space missions. Throughout the show and especially towards the end attention will be paid to the third theme "Why go to space"? Other reasons for people to get into space will be explored. An important question in this is the commercial (manned) exploration of space. Thus, the questions of benefit of space to society are integrated in the entire show. It raises some fundamental questions about the effects of space travel on our environment, poverty and other moral issues. The show attempts to connect scientific with

  1. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI

  2. Science & Technology Review June 2007

    SciTech Connect

    Chinn, D J

    2007-04-30

    Lawrence Livermore National Laboratory is operated by the University of California for the Department of Energy's National Nuclear Security Administration. At Livermore, we focus science and technology on ensuring our nation's security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published 10 times a year to communicate, to a broad audience, the Laboratory's scientific and technological accomplishments in fulfilling its primary missions. The publication's goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  3. USSR Space Life Sciences Digest, issue 12

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1987-01-01

    This issue contains 42 papers recently published in Russian language periodicals and bound collections of four Soviet monographs. Also included is a review of a recent Soviet congress on space gastroenterology.

  4. Improving science literacy and education through space life sciences.

    PubMed

    MacLeish, M Y; Moreno, N P; Tharp, B Z; Denton, J J; Jessup, G; Clipper, M C

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families.

  5. NASA Space Sciences Symposium-1977

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The primary objective of the symposium was to motivate American Indians and other minority youths and women to select science and engineering as viable career choices, thereby making them available to the technical work force. Other objectives were: (1) to determine how aerospace technology careers and aerospace activities can be made more relevant to minorities and women; (2) to provide an opportunity for key NASA officials to interact with teachers and counselors of the participating schools; (3) to stimulate a greater interest among American Indian organizations and students in NASA's research and development programs; (4) to help NASA's efforts in the recruiting of minorities and women into its work force; and (5) to provide opportunities for minority aerospace scientists and engineers to interact with the minority community, particularly with youths at the junior high school and high school levels.

  6. European Space Science Scales New Heights

    NASA Astrophysics Data System (ADS)

    1995-06-01

    been approved by all ESA's Member States. Outside Europe, the stability and solidity of Horizon 2000 have made ESA an extremely credible and reliable partner, arousing ever greater interest in international - including transatlantic - co-operation. Given that the first results look positive, it makes sense to think about continuing the work done to date. Which is why this year, half-way through Horizon 2000, it is time to look ahead to the next twenty-year period and embark on the follow-up programme which will lead to further missions being carried out between 2006 and 2016. At ESA Council meeting to be held in October in Toulouse, European ministers responsible for space will therefore have to take a decision on a "Horizon 2000 PLUS " programme designed to ensure successful European space science over a further ten-year period. The proposal being put forward by ESA's directorate of scientific programmes involves setting up three large-scale missions: * a mission to explore Mercury, the least known of the inner solar planets, 60iln of whose surface has yet to be mapped * an interferometry observatory designed to map the sky a hundred times more accurately than the Hipparcos satellite * a gravitational observatory able to pick up the space time waves emitted by the universe at the precise moment of the Big Bang. In parallel four medium-size missions - their content still to be defined - would be carried out. As with its forerunner, Horizon 2000 PLUS has been defined on the basis of proposals submitted by the scientific community following open competition. In all, I10 mission concepts were proposed by a total of 2500 scientists. These were then examined by peer-review groups, involving 75 scientists in all who announced their final choice on I October 1994. The agency is proposing to start preparing for Horizon 2000 PLUS on the basis of level funding up to the year 2000. This means that ESA would undertake to conduct preliminary Horizon 2000 PLUS technological studies

  7. Science Research Facilities - Versatility for Space Station

    NASA Technical Reports Server (NTRS)

    Giannovario, J. A.; Schelkopf, J. D.; Massey, K.; Solly, M.

    1986-01-01

    The Space Station Science Lab Module (SLM) and its interfaces are designed to minimize complexity and maximize user accommodations. The facilities provided encompass life sciences research, the control of external payloads, the servicing of customer equipment, and general scientific investigations. The SLM will have the unprecedented ability to diagnose, service, and replace equipment while in orbit. In addition, the SLM will have significant operational advantages over previous spacecraft in terms of available volume, power, and crew interaction possibilities.

  8. Wisconsin Earth and Space Science Education

    NASA Technical Reports Server (NTRS)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  9. Role of theory in space science

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The goal of theory is to understand how the fundamental laws of physics laws of physics and chemistry give rise to the features of the universe. It is recommended that NASA establish independent theoretical research programs in planetary sciences and in astrophysics similar to the solar-system plasma-physics theory program, which is characterized by stable, long-term support for theorists in university departments, NASA centers, and other organizations engaged in research in topics relevant to present and future space-derived data. It is recommended that NASA keep these programs under review to full benefit from the resulting research and to assure opportunities for inflow of new ideas and investigators. Also, provisions should be made by NASA for the computing needs of the theorists in the programs. Finally, it is recommended that NASA involve knowledgeable theorists in mission planning activities at all levels, from the formulation of long-term scientific strategies through the planning and operation of specific missions.

  10. USSR Space Life Sciences Digest, issue 1

    NASA Technical Reports Server (NTRS)

    Hooke, L. R.; Radtke, M.; Rowe, J. E.

    1985-01-01

    The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology.

  11. Advanced science and applications space platform

    NASA Technical Reports Server (NTRS)

    White, J.; Runge, F. C.

    1981-01-01

    Requirements for and descriptions of the mission equipment, subsystems, configuration, utilities, and interfaces for an Advanced Science and Applications Space Platform (ASASP) are developed using large space structure technology. Structural requirements and attitude control system concepts are emphasized. To support the development of ASASP requirements, a mission was described that would satisfy the requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. Platform subsystems are defined which support the payload requirements and a physical platform concept is developed. Structural system requirements which include utilities accommodation, interface requirements, and platform strength and stiffness requirements are developed. An attitude control system concept is also described. The resultant ASASP is analyzed and technological developments deemed necessary in the area of large space systems are recommended.

  12. Space Station accommodation engineering for Life Sciences Research Facilities

    NASA Technical Reports Server (NTRS)

    Hilchey, J.; Gustan, E.; Rudiger, C. E.

    1984-01-01

    Exploratory studies conducted by NASA Marshall Space Flight Center and several contractors in connection with defining the design requirements, parameters, and tradeoffs of the Life Sciences Research Facilities for nonhuman test subjects aboard the Space Station are reviewed. The major system discriminators which determine the size of the accommodation system are identified, along with a number of mission options. Moreover, characteristics of several vivarium concepts are summarized, focusing on the cost, size, variable-g capability, and the number of specimens accommodated. Finally, the objectives of the phase B studies of the Space Station Laboratory, which are planned for FY85, are described.

  13. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2006-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have three instruments: The Near-Infrared Camera, and the Near-Infrared multi-object Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. I review the status and capabilities of the observatory and instruments in the context of the major scientific goals.

  14. A Science Strategy for Space Physics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report by the Committee on Solar and Space Physics and the Committee on Solar-Terrestrial Research recommends the major directions for scientific research in space physics for the coming decade. As a field of science, space physics has passed through the stage of simply looking to see what is out beyond Earth's atmosphere. It has become a 'hard' science, focusing on understanding the fundamental interactions between charged particles, electromagnetic fields, and gases in the natural laboratory consisting of the galaxy, the Sun, the heliosphere, and planetary magnetospheres, ionospheres, and upper atmospheres. The motivation for space physics research goes far beyond basic physics and intellectual curiosity, however, because long-term variations in the brightness of the Sun virtually affect the habitability of the Earth, while sudden rearrangements of magnetic fields above the solar surface can have profound effects on the delicate balance of the forces that shape our environment in space and on the human technology that is sensitive to that balance. The several subfields of space physics share the following objectives: to understand the fundamental laws or processes of nature as they apply to space plasmas and rarefied gases both on the microscale and in the larger complex systems that constitute the domain of space physics; to understand the links between changes in the Sun and the resulting effects at the Earth, with the eventual goal of predicting the significant effects on the terrestrial environment; and to continue the exploration and description of the plasmas and rarefied gases in the solar system.

  15. Life sciences issues affecting space exploration.

    PubMed

    White, R J; Leonard, J I; Leveton, L; Gaiser, K; Teeter, R

    1990-12-01

    The U.S. space program is undertaking a serious examination of new initiatives in human space exploration involving permanent colonies on the Moon and an outpost on Mars. Life scientists have major responsibilities to the crew, to assure their health, productivity, and safety throughout the mission and the postflight rehabilitation period; to the mission, to provide a productive working environment; and to the scientific community, to advance knowledge and understanding of human adaptation to the space environment. Critical areas essential to the support of human exploration include protection from the radiation hazards of the space environment, reduced gravity countermeasures, artificial gravity, medical care, life support systems, and behavior, performance, and human factors in an extraterrestrial environment. Developing solutions to these concerns is at the heart of the NASA Life Sciences ground-based and flight research programs. Facilities analogous to planetary outposts are being considered in Antarctica and other remote settings. Closed ecological life support systems will be tested on Earth and Space Station. For short-duration simulations and tests, the Space Shuttle and Spacelab will be used. Space Station Freedom will provide the essential scientific and technological research in areas that require long exposures to reduced gravity conditions. In preparation for Mars missions, research on the Moon will be vital. As the challenges of sustaining humans on space are resolved, advances in fundamental science, medicine and technology will follow.

  16. Life sciences issues affecting space exploration.

    PubMed

    White, R J; Leonard, J I; Leveton, L; Gaiser, K; Teeter, R

    1990-12-01

    The U.S. space program is undertaking a serious examination of new initiatives in human space exploration involving permanent colonies on the Moon and an outpost on Mars. Life scientists have major responsibilities to the crew, to assure their health, productivity, and safety throughout the mission and the postflight rehabilitation period; to the mission, to provide a productive working environment; and to the scientific community, to advance knowledge and understanding of human adaptation to the space environment. Critical areas essential to the support of human exploration include protection from the radiation hazards of the space environment, reduced gravity countermeasures, artificial gravity, medical care, life support systems, and behavior, performance, and human factors in an extraterrestrial environment. Developing solutions to these concerns is at the heart of the NASA Life Sciences ground-based and flight research programs. Facilities analogous to planetary outposts are being considered in Antarctica and other remote settings. Closed ecological life support systems will be tested on Earth and Space Station. For short-duration simulations and tests, the Space Shuttle and Spacelab will be used. Space Station Freedom will provide the essential scientific and technological research in areas that require long exposures to reduced gravity conditions. In preparation for Mars missions, research on the Moon will be vital. As the challenges of sustaining humans on space are resolved, advances in fundamental science, medicine and technology will follow. PMID:11541483

  17. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  18. Space Science K-6; Elementary Science Unit No. 1.

    ERIC Educational Resources Information Center

    Bethlehem Area Schools, PA.

    This curriculum guide, part of a series of science units, provides for differentiation of emphasis of subject areas at different grade levels. It is intended that the unit will be studied in depth by grades 1, 4, and 6. Kindergarten, grades 2 and 3 will study the unit in less detail. "Our Wonderful Sun" is studied in Kindergarten, "Earth in Space"…

  19. The Nexus of Space Science and Human Space Exploration (Invited)

    NASA Astrophysics Data System (ADS)

    Burns, J. O.

    2013-12-01

    The NLSI Lunar University Network for Astrophysical Research (LUNAR) consortium is pursuing research to advance the space sciences and to strengthen the bond between science and human exploration of the Moon. Our science is derived from the three recent NRC Decadal Surveys in astrophysics, heliophysics, and planetary science. Four research themes were developed that are uniquely facilitated by human exploration: Heliophysics and Space Radiation, Lunar Laser Ranging, Low Radio Frequency Astrophysics and Cosmology, and Exploration Science. In this talk, we describe some of the fundamental problems which our team is investigating including the acceleration of high energy particles in the heliosphere that are potentially harmful for humans and spacecraft beyond low Earth orbit, the nature of gravity beyond Einstein's Relativity and the cores of airless bodies using laser ranging, and the origins of the first stars and galaxies in the Universe using low frequency radio telescopes on the radio-quiet lunar farside. In addressing these issues, we are developing technologies that are likely to have a dual purpose, serving both exploration and science. Our team has proposed compelling science for a 'waypoint' mission involving human telerobotics at the Earth-Moon L2 Lagrange point. Astronauts aboard the Orion Crew Vehicle will operate lunar farside surface assets for the first time which also serves as an important proving ground for future exploration missions in deep space. The science objectives include returning rock samples from the ancient South Pole-Aitken basin and deployment of a low frequency radio telescope for cosmological observations of the early Universe's Cosmic Dawn. We will describe the first recently-completed simulation of a human waypoint mission where astronauts aboard the International Space Station interactively controlled a high fidelity planetary rover at an outdoor analog testbed at NASA/Ames to deploy a prototype radio antenna. LUNAR is funded by

  20. USSR Space Life Sciences Digest, issue 28

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  1. USSR Space Life Sciences Digest, issue 31

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the thirty first issue of NASA's Space Life Sciences Digest. It contains abstracts of 55 journal papers or book chapters published in Russian and of 5 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, biological rhythms, cardiovascular and respiratory systems, endocrinology, enzymology, genetics, group dynamics, habitability and environmental effects, hematology, life support systems, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and space biology and medicine.

  2. USSR Space Life Sciences Digest, issue 30

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the thirtieth issue of NASA's Space Life Sciences Digest. It contains abstracts of 47 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, biospheric research, cardiovascular and respiratory systems, endocrinology, equipment and instrumentation, gastrointestinal system, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, psychology, radiobiology, and space biology and medicine.

  3. Supercomputer networking for space science applications

    NASA Technical Reports Server (NTRS)

    Edelson, B. I.

    1992-01-01

    The initial design of a supercomputer network topology including the design of the communications nodes along with the communications interface hardware and software is covered. Several space science applications that are proposed experiments by GSFC and JPL for a supercomputer network using the NASA ACTS satellite are also reported.

  4. Hubble Space Telescope Briefing: HST Science Overview

    NASA Astrophysics Data System (ADS)

    1994-01-01

    This NASA Kennedy Space Center video release presents a broad overview of the science that is now possible as a result of the servicing of the Hubble Space Telescope (HST). Dr. Ed Weiler (HST Program Scientist, NASA Headquarters), Dr. Dave Leckrone (HST, Senior Project Scientist, Goddard Space Flight Center (GSFC)), Dr. John Trauger (Wide Field Planetary Camera 2 (WFPC2) Principal Investigator, Jet Propulsion Lab. (JPL)), Dr. Chris Burrows (WFPC2 Co-Investigator, Space Telescope Science Inst.(STSci)-European Space Agency (ESA), Jim Crocker ((Corrective Optics Space Telescope Axial Replacement) COSTAR Team Leader, STSci), Dr. Holland Ford (COSTAR Project Scientist, Johns Hopkins Univ., STSci), and Dr. Duccio Machetto (European Space Agency (ESA)) give brief presentations, which feature images of stars and galaxies taken from the ground, from WFPC1 (prior to the servicing mission), and from WFPC2 (after the servicing mission). The main theme of the discussions center around the spherical aberration that was found in the images prior to servicing and the corrected images seen without the aberration following servicing. A question and answer period rounds out the press conference, with questions posed from scientific journalists at GSFC and other NASA centers.

  5. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    NASA Technical Reports Server (NTRS)

    Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).

  6. USSR Space Life Sciences Digest, issue 7

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1986-01-01

    This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.

  7. Space Science is Alive with Art

    NASA Astrophysics Data System (ADS)

    Pell, Sarah Jane; Vermeulen, Angelo

    2013-02-01

    The history of human space flight and analogue and ground-based space science is alive with art. Artists, scientists and engineers working together build upon diverse frameworks of understanding, but also share tools and processes of investigation. By jointly stepping into new worlds and territories - with common purpose and mutual respect for curiosity - there emerge opportunities for encounters that offer an alternative viewpoint on things. Artists can introduce a meta perspective (taking a step back and inquiring into the practice of research), a historical, conceptual or aesthetic view, all of which can invite those who are researchers, engineers and inventors toward new insight and discovery. Scientist’s methods of inquiry and their particular ways of dealing with natural phenomena and technology can also be a great source of inspiration for artists. Often with technical curiosity, artists can also contribute to concrete R&D just as science can directly impact art and inform aesthetics. So combined, the different philosophies, the experiments and the field work can lead to collaborative outcomes that are positively contributing to research, exploration and advancement. Artist and biologist Angelo Vermeulen has been working together with the European Space Agency (ESA) MELiSSA research program since 2009. In response to the ESA invitation to reflect on the development of future space habitats, Vermeulen set up SEAD (Space Ecologies Art & Design), a platform for artistic research on the transfer of terrestrial ecosystems to space to facilitate space settlement. Artist and diver Sarah Jane Pell has been working with the underwater technology and biotechnology community since 2003. She joined NASA’s Luna Gaia team and the League of New World Explorers analogue space subsea habitat exploration mission Atlantica in 2006. Current and future work by these, and similar partnerships, illustrates a dynamic culture of fieldwork, lab protocols/studio practice, research

  8. Clementine, Deep Space Program Science Experiment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Clementine, also called the Deep Space Program Science Experiment, is a joint Department of Defense (DoD)/National Aeronautics and Space Administration (NASA) mission with the dual goal of testing small spacecraft, subsystems, and sensors in the deep space environment and also providing a nominal science return. The Clementine mission will provide technical demonstrations of innovative lightweight spacecraft components and sensors, will be launced on a spacecraft developed within 2 years of program start, and will point a way for new planetary mission options under consideration by NASA. This booklet gives the background of the Clementine mission (including the agencies involved), the mission objectives, the mission scenario, the instruments that the mission will carry, and how the data will be analyzed and made accessible.

  9. Improving Early Career Science Teachers' Ability to Teach Space Science

    NASA Astrophysics Data System (ADS)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  10. FASAC Technical Assessment Report: Soviet Space Science Research

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Henry, Richard C.; Klein, Harold P.; Masursky, Harold; Paulikas, George A.; Scaf, Frederick L.; Soffen, Gerald A.; Terzian, Yervant

    1986-01-01

    This report is the work of a panel of eight US scientists who surveyed and assessed Soviet research in the spare sciences. All of the panelists were very familiar with Soviet research through their knowledge of the published scientific literature and personal contacts with Soviet and other foreign colleagues. In addition, all of the panelists reviewed considerable additional open literature--scientific, and popular, including news releases. The specific disciplines of Soviet space science research examined in detail for the report were: solar-terrestrial research, lunar and planetary research, space astronomy and astrophysics, and, life sciences. The Soviet Union has in the past carried out an ambitious program in lunar exploration and, more recently, in studies of the inner planets, Mars and especially Venus. The Soviets have provided scientific data about the latter planet which has been crucial for studies of the planet's evolution. Future programs envision an encounter with Halley's Comet, in March 1986, and missions to Mars and asteroids. The Soviet programs in the life sciences and solar-terrestrial research have been long-lasting and systematically pursued. Much of the ground-based and space-based research in these two disciplines appears to be motivated by the requirement to establish long-term human habitation in near-Earth space. The Soviet contributions to new discoveries and understanding in observational space astronomy and astrophysics have been few. This is in significant contrast to the very excellent theoretical work contributed by Soviet scientists in this discipline.

  11. The Space Science Enterprise Strategic Plan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    It is a pleasure to present our new Space Science Strategic Plan. It represents contributions by hundreds of members of the space science community, including researchers, technologists, and educators, working with staff at NASA, over a period of nearly two years. Our time is an exciting one for space science. Dramatic advances in cosmology, planetary research, and solar-terrestrial science form a backdrop for this ambitious plan. Our program boldly addresses the most fundamental questions that science can ask: (1) how the universe began and is changing, (2) what are the past and future of humanity, and (3) whether we are alone. In taking up these questions, researchers and the general public--for we are all seekers in this quest--will draw upon all areas of science and the technical arts. Our Plan outlines how we will communicate our findings to interested young people and adults. The program that you will read about in this Plan includes forefront research and technology development on the ground as well as development and operation of the most complex spacecraft conceived. The proposed flight program is a balanced portfolio of small missions and larger spacecraft. Our goal is to obtain the best science at the lowest cost, taking advantage of the most advanced technology that can meet our standards for expected mission success. In driving hard to achieve this goal, we experienced some very disappointing failures in 1999. But NASA, as a research and development agency, makes progress by learning also from mistakes, and we have learned from these.

  12. Science& Technology Review November 2003

    SciTech Connect

    McMahon, D

    2003-11-01

    This issue of Science & Technology Review covers the following topics: (1) We Will Always Need Basic Science--Commentary by Tomas Diaz de la Rubia; (2) When Semiconductors Go Nano--experiments and computer simulations reveal some surprising behavior of semiconductors at the nanoscale; (3) Retinal Prosthesis Provides Hope for Restoring Sight--A microelectrode array is being developed for a retinal prosthesis; (4) Maglev on the Development Track for Urban Transportation--Inductrack, a Livermore concept to levitate train cars using permanent magnets, will be demonstrated on a 120-meter-long test track; and (5) Power Plant on a Chip Moves Closer to Reality--Laboratory-designed fuel processor gives power boost to dime-size fuel cell.

  13. Science& Technology Review May 2003

    SciTech Connect

    McMahon, D H

    2003-05-01

    This May 2003 issue of ''Science and Technology Review'' covers the following articles: (1) ''Another Weapon in the Battle against Proliferation''; (2) ''Chemical Weapons Can't Evade This Lab'', Livermore's Forensic Science Center is certified to analyze samples collected during inspections conducted to monitor the Chemical Weapons Convention. (3) ''Bird's-Eye View Clarifies Research on the Ground'' Geobotanical remote sensing has applications in homeland security and energy resource development and provides new insights into complex ecologic systems. (4) ''Age Does Make a Difference'' Age-dating techniques and ultrasensitive technologies provide a comprehensive map of California's groundwater and indicate where it is most vulnerable to contaminants. (5) ''Reducing Aerodynamic Drag'' Simulations and experiments reveal ways to make heavy trucks more aerodynamic and fuel efficient.

  14. Overview of Space Science and Information Research Opportunities at NASA

    NASA Technical Reports Server (NTRS)

    Green, James L.

    2000-01-01

    It is not possible to review all the opportunities that NASA provides to support the Space Science Enterprise, in the short amount of time allotted for this presentation. Therefore, only a few key programs will be discussed. The programs that I will discuss will concentrate on research opportunities for faculty, graduate and postdoctoral candidates in Space Science research and information technologies at NASA. One of the most important programs for research opportunities is the NASA Research Announcement or NRA. NASA Headquarters issues NRA's on a regular basis and these cover space science and computer science activities relating to NASA missions and programs. In the Space Sciences, the most important NRA is called the "Research Opportunities in Space Science or the ROSS NRA. The ROSS NRA is composed of multiple announcements in the areas of structure and evolution of the Universe, Solar System exploration, Sun-Earth connections, and applied information systems. Another important opportunity is the Graduate Student Research Program (GSRP). The GSRP is designed to cultivate research ties between a NASA Center and the academic community through the award of fellowships to promising students in science and engineering. This program is unique since it matches the student's area of research interest with existing work being carried out at NASA. This program is for U.S. citizens who are full-time graduate students. Students who are successful have made the match between their research and the NASA employee who will act as their NASA Advisor/ Mentor. In this program, the student's research is primarily accomplished under the supervision of his faculty advisor with periodic or frequent interactions with the NASA Mentor. These interactions typically involve travel to the sponsoring NASA Center on a regular basis. The one-year fellowships are renewable for up to three years and over $20,000 per year. These and other important opportunities will be discussed.

  15. Science & Technology Review October 2007

    SciTech Connect

    Chinn, D J

    2007-08-21

    Livermore researchers won five R&D 100 awards in R&D Magazine's annual competition for the top 100 industrial innovations worldwide. This issue of Science & Technology Review highlights the award-winning technologies: noninvasive pneumothorax detector, microelectromechanical system-based adaptive optics scanning laser ophthalmoscope, large-area imager, hyper library of linear solvers, and continuous-phase-plate optics system manufactured using magnetorheological finishing. Since 1978, Laboratory researchers have received 118 R&D 100 awards. The R&D 100 logo (on the cover and p 1) is reprinted courtesy of R&D Magazine.

  16. Federated Space-Time Query for Earth Science Data Using OpenSearch Conventions

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris; Beaumont, Bruce; Duerr, Ruth; Hua, Hook

    2009-01-01

    This slide presentation reviews a Space-time query system that has been developed to assist the user in finding Earth science data that fulfills the researchers needs. It reviews the reasons why finding Earth science data can be so difficult, and explains the workings of the Space-Time Query with OpenSearch and how this system can assist researchers in finding the required data, It also reviews the developments with client server systems.

  17. The James Webb Space Telescope: Capabilities for Exoplanet Science

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2011-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 micron to 28 micron. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, stellar and planetary system formation, and the formation and evolution of planetary systems. We will review the design of JWST, and discuss the current status of the project, with emphasis on recent progress in the construction of the observatory. We also review the capabilities of the observatory for observations of exosolar planets and debris disks by means of coronagraphic imaging, and high contrast imaging and spectroscopy. This discussion will focus on the optical and thermal performance of the observatory, and will include the current predictions for the performance of the observatory, with special reference to the demands of exoplanet science observations.

  18. Improving science literacy and education through space life sciences

    NASA Technical Reports Server (NTRS)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  19. European Space Science gets new Programme Director

    NASA Astrophysics Data System (ADS)

    2000-10-01

    Prof. Southwood, born on 30 June 1945, holds a BA in Mathematics and a Ph.D in Physics from Imperial College, London. He has spent most of his career at Imperial College, apart from two periods at UCLA (University of California, Los Angeles), as Postdoctoral Fellow and later as Visiting Professor. In 1997 he joined ESA as Earth Observation Future Programme Strategy Manager. He is currently Imperial College Pro Rector responsible for external academic affairs. Prof. Southwood has received five awards/honours and held many chairmanships, including those of the Science Programme Committee and Space Science Advisory Committee at ESA. His role as Principal Investigator for the Cassini Saturn Orbiter Magnetometer is his most recent project. He has been active over the years, both in Europe and in the United States, in public outreach on space science. He has around 200 publications and 100 invited papers to his name. "David Southwood ranks among the most prominent space science experts in Europe", said ESA's Director General, Antonio Rodotà, welcoming Prof. Southwood's appointment, "and I am sure that he, like his predecessor, Prof. Bonnet, will do a first-rate job for the excellent scientific community in our member states".

  20. EarthSpace: The Higher Education Clearinghouse for Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Dalton, H.; Cobabe-Ammann, E. A.; Shipp, S. S.

    2012-12-01

    EarthSpace is a searchable database of undergraduate classroom materials designed specifically for faculty teaching planetary sciences, Earth sciences, astrophysics, and solar and space physics at the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, EarthSpace was designed for easy submission of classroom assets, from homework and computer interactives to laboratory exercises, lectures, and demonstrations. The site capabilities are being expanded to allow assignment of a unique Digital Object Identifier (DOI) to submitted materials, which will provide material developers a way to identify their submitted materials as publications on their CVs. EarthSpace materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities (e.g., Connexions), providing a wider distribution of the resources. In addition to classroom materials, EarthSpace provides the latest news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education. This information is emailed monthly in a newsletter to faculty members via the community mailing list, HENews. HENews is a place for the higher education community to share and receive news and information about higher education, teaching, and Earth and space science. EarthSpace also has an RSS feed to notify members when items are added. EarthSpace is a community-driven effort; higher education faculty members contribute and review materials and thus influence the content provided on the site. All materials are peer-reviewed before posting, and authors adhere to the Creative Commons Attribution (CC BY 3.0). You are invited to visit EarthSpace to search for teaching resources, submit your materials, or volunteer to review submitted resources in your discipline with a frequency designed to fit your schedule.

  1. Science Policy Reviews, Volume 5 Number 1.

    ERIC Educational Resources Information Center

    Simons, Eugene M.

    Presented in this quarterly publication are reviews, highlights, and 391 annotated bibliographic references from current and international literature in the area of science and public policy. The term "science" is used here to denote both engineering and technology as well as science. The literature reviewed includes books, reports, and periodical…

  2. Science Policy Reviews, Volume 4 Number 4.

    ERIC Educational Resources Information Center

    Simons, Eugene M., Ed.

    Presented in this quarterly publication are reviews, highlights, and 402 annotated bibliographic references from current and international literature in the area of science and public policy. The term "science" is used here to denote both engineering and technology as well as science. The literature reviewed includes books, reports, and periodical…

  3. Students build glovebox at Space Science Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  4. Science, Policy, and Peer Review

    NASA Astrophysics Data System (ADS)

    Kennedy, D.

    2006-12-01

    These are intense times at the convergence between science and public policy. Because issues like climate change, stem cell research and environmental protection are being contested in choppy political water, political interests are being deployed to challenge science and researchers, and also to generate pseudo- scientific claims made in the interest of particular policy ends. In a number of cases reported in Science, administration officials have silenced their own employees, or withheld data selectively from draft reports. Added to that challenge to integrity, there is a new statutory environment that adds some complexity of its own. Beginning with the Data Quality Act, more familiarly the "Shelby Amendment," research results with significant economic impacts through regulation are now available through the Freedom of Information Act. Its successor, the Data Quality Act -- which opens a route of challenge to information released by government or gathered by others and used in advice or regulation has exposed scientists not only to having their primary data reanalyzed for the purposes of others, but to charges of research misconduct. These influences have made journal peer review more challenging in several ways, and I will outline some case examples.

  5. Fuel Cells for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2003-01-01

    Fuel cell technology has been receiving more attention recently as a possible alternative to the internal combustion engine for our automobile. Improvements in fuel cell designs as well as improvements in lightweight high-pressure gas storage tank technology make fuel cell technology worth a look to see if fuel cells can play a more expanded role in space missions. This study looks at the specific weight density and specific volume density of potential fuel cell systems as an alternative to primary and secondary batteries that have traditionally been used for space missions. This preliminary study indicates that fuel cell systems have the potential for energy densities of greater than 500 W-hr/kg, greater than 500W/kg and greater than 400 W-hr/liter, greater than 200 W/liter. This level of performance makes fuel cells attractive as high-power density, high-energy density sources for space science probes, planetary rovers and other payloads. The power requirements for these space missions are, in general, much lower than the power levels where fuel cells have been used in the past. Adaptation of fuel cells for space science missions will require down-sizing the fuel cell stack and making the fuel cell operate without significant amounts of ancillary equipment.

  6. USSR Space Life Sciences Digest, issue 32

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Rowe, Joseph (Editor)

    1992-01-01

    This is the thirty-second issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 34 journal or conference papers published in Russian and of 4 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, cardiovascular and respiratory systems, developmental biology, exobiology, habitability and environmental effects, human performance, hematology, mathematical models, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, and reproductive system.

  7. Telemetric Sensors for the Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris J.; Madou, Marc; Jeutter, Dean C.; Singh, Avtar; Connolly, John P. (Technical Monitor)

    1996-01-01

    Telemetric sensors for monitoring physiological changes in animal models in space are being developed by NASA's Sensors 2000! program. The sensors measure a variety of physiological measurands, including temperature, biopotentials, pressure, flow, acceleration, and chemical levels, and transmit these signals from the animals to a remote receiver via a wireless link. Thus physiologic information can be obtained continuously and automatically without animal handling, tethers, or percutaneous leads. We report here on NASA's development and testing of advanced wireless sensor systems for space life sciences research.

  8. Capabilities of the James Webb Space Telescope for Exoplanet Science

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2009-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 m to 28 m. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit photometry and spectroscopy, and direct coronagraphic imaging.

  9. Life sciences research in space: The requirement for animal models

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  10. Space Campers Speak With Station Science Communication Coordinator

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, International Space Station Science Communication Coordinator Liz Warren participates in a Digital Learning Network (DLN) event with ...

  11. Science & Technology Review April 2007

    SciTech Connect

    Radousky, H B

    2007-02-27

    This month's issue has the following articles: (1) Shaking the Foundations of Solar-System Science--Commentary by William H. Goldstein; (2) Stardust Results Challenge Astronomical Convention--The first samples retrieved from a comet are a treasure trove of surprises to Laboratory researchers; (3) Fire in the Hole--Underground coal gasification may help to meet future energy supply challenges with a production process from the past; (4) Big Physics in Small Spaces--A newly developed computer model successfully simulates particle-laden fluids flowing through complex microfluidic systems; (5) A New Block on the Periodic Table--Livermore and Russian scientists add a new block to the periodic table with the creation of element 118; and (6) A Search for Patterns and Connections--Throughout his career, Edward Teller searched for mathematical solutions to explain the physical world.

  12. The spaces in between: science, ocean, empire.

    PubMed

    Reidy, Michael S; Rozwadowski, Helen M

    2014-06-01

    Historians of science have richly documented the interconnections between science and empire in the nineteenth century. These studies primarily begin with Britain, Europe, or the United States at the center and have focused almost entirely on lands far off in the periphery--India or Australia, for instance. The spaces in between have received scant attention. Because use of the ocean in this period was infused with the doctrine of the freedom of the seas, the ocean was constructed as a space amenable to control by any nation that could master its surface and use its resources effectively. Oceans transformed in the mid-nineteenth century from highway to destination, becoming--among other things--the focus of sustained scientific interest for the first time in history. Use of the sea rested on reliable knowledge of the ocean. Particularly significant were the graphical representations of knowledge that could be passed from scientists to publishers to captains or other agents of empire. This process also motivated early government patronage of science and crystallized scientists' rising authority in society. The advance of science, the creation of empire, and the construction of the ocean were mutually sustaining.

  13. Sign Language in Astronomy and Space Sciences

    NASA Astrophysics Data System (ADS)

    Cova, J.; Movilio, V.; Gómez, Y.; Gutiérrez, F.; García, R.; Moreno, H.; González, F.; Díaz, J.; Villarroel, C.; Abreu, E.; Aparicio, D.; Cárdenas, J.; Casneiro, L.; Castillo, N.; Contreras, D.; La Verde, N.; Maita, M.; Martínez, A.; Villahermosa, J.; Quintero, A.

    2009-05-01

    Teaching science to school children with hearing deficiency and impairment can be a rewarding and valuable experience for both teacher and student, and necessary to society as a whole in order to reduce the discriminative policies in the formal educational system. The one most important obstacle to the teaching of science to students with hearing deficiency and impairments is the lack of vocabulary in sign language to express the precise concepts encountered in scientific endeavor. In a collaborative project between Centro de Investigaciones de Astronomía ``Francisco J. Duarte'' (CIDA), Universidad Pedagógica Experimental Libertador-Instituto Pedagógico de Maturín (UPEL-IPM) and Unidad Educativa Especial Bolivariana de Maturín (UEEBM) initiated in 2006, we have attempted to fill this gap by developing signs for astronomy and space sciences terminology. During two three-day workshops carried out at CIDA in Mérida in July 2006 and UPEL-IPM in Maturín in March 2007 a total of 112 concepts of astronomy and space sciences were coined in sign language using an interactive method which we describe in the text. The immediate goal of the project is to incorporate these terms into Venezuelan Sign Language (LSV).

  14. Making Space Science and Exploration Accessible

    NASA Astrophysics Data System (ADS)

    Runyon, C. J.; Guimond, K. A.; Hurd, D.; Heinrich, G.

    There are currently 28 million hard of hearing and deaf Americans, approximately 10 to 11 million blind and visually impaired people in North America, and more than 50 million Americans with disabilities, approximately half of whom are students. The majority of students with disabilities in the US are required to achieve the same academic levels as their non-impaired peers. Unfortunately, there are few specialized materials to help these exceptional students in the formal and informal settings. To assist educators in meeting their goals and engage the students, we are working with NASA product developers, scientists and education and outreach personnel in concert with teachers from exceptional classrooms to identify the types of materials they need and which mediums work best for the different student capabilities. Our goal is to make the wonders of space science and exploration accessible to all. As such, over the last four years we have been hosting interactive workshops, observing classroom settings, talking and working with professional educators, product developers, museum and science center personnel and parents to synthesize the most effective media and method for presenting earth and space science materials to audiences with exceptional needs. We will present a list of suggested best practices and example activities that can help engage and encourage a person with special needs to study the sciences, technology, engineering, and mathematics.

  15. Space-based Science Operations Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Welch, Clara L.; Redman, Sandra

    2004-01-01

    Grid technology is the up and coming technology that is enabling widely disparate services to be offered to users that is very economical, easy to use and not available on a wide basis. Under the Grid concept disparate organizations generally defined as "virtual organizations" can share services i.e. sharing discipline specific computer applications, required to accomplish the specific scientific and engineering organizational goals and objectives. Grids are emerging as the new technology of the future. Grid technology has been enabled by the evolution of increasingly high speed networking. Without the evolution of high speed networking Grid technology would not have emerged. NASA/Marshall Space Flight Center's (MSFC) Flight Projects Directorate, Ground Systems Department is developing a Space-based Science Operations Grid prototype to provide to scientists and engineers the tools necessary to operate space-based science payloads/experiments and for scientists to conduct public and educational outreach. In addition Grid technology can provide new services not currently available to users. These services include mission voice and video, application sharing, telemetry management and display, payload and experiment commanding, data mining, high order data processing, discipline specific application sharing and data storage, all from a single grid portal. The Prototype will provide most of these services in a first step demonstration of integrated Grid and space-based science operations technologies. It will initially be based on the International Space Station science operational services located at the Payload Operations Integration Center at MSFC, but can be applied to many NASA projects including free flying satellites and future projects. The Prototype will use the Internet2 Abilene Research and Education Network that is currently a 10 Gb backbone network to reach the University of Alabama at Huntsville and several other, as yet unidentified, Space Station based

  16. The National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview is presented of the services offered by the National Space Science Data Center (NSSDC). The NSSDC was established by the National Aeronautics and Space Administration (NASA) over 20 years ago to be the long-term archive for data from its space missions. NSSDC's goal is to provide the research community with data and attendant services in the most efficient, economical, and useful manner possible now and in the future. The organization is dedicated to getting the most scientific value out of NASA's initial investment in its missions. Each service available to scientists through the world is discussed. Also a contact person is identified for each service in case more information in needed.

  17. USSR Space Life Sciences Digest, issue 6

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.

  18. USSR Space Life Sciences Digest, issue 25

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  19. USSR Space Life Sciences Digest, Issue 10

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Garshnek, Victoria; Rowe, Joseph E.

    1987-01-01

    The USSR Space Life Sciences Digest contains abstracts of 37 papers recently published in Russian language periodicals and bound collections and of five new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include the translation of a book chapter concerning use of biological rhythms as a basis for cosmonaut selection, excerpts from the diary of a participant in a long-term isolation experiment, and a picture and description of the Mir space station. The abstracts included in this issue were identified as relevant to 25 areas of aerospace medicine and space biology. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculosketal system, neurophysiology, nutrition, personnel selection, psychology, and radiobiology.

  20. Office of Space Science: Integrated technology strategy

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley T., Jr.; Reck, Gregory M.

    1994-01-01

    This document outlines the strategy by which the Office of Space Science, in collaboration with the Office of Advanced Concepts and Technology and the Office of Space Communications, will meet the challenge of the national technology thrust. The document: highlights the legislative framework within which OSS must operate; evaluates the relationship between OSS and its principal stakeholders; outlines a vision of a successful OSS integrated technology strategy; establishes four goals in support of this vision; provides an assessment of how OSS is currently positioned to respond to the goals; formulates strategic objectives to meet the goals; introduces policies for implementing the strategy; and identifies metrics for measuring success. The OSS Integrated Technology Strategy establishes the framework through which OSS will satisfy stakeholder expectations by teaming with partners in NASA and industry to develop the critical technologies required to: enhance space exploration, expand our knowledge of the universe, and ensure continued national scientific, technical and economic leadership.

  1. Improving NASA's technology for space science

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The continued advance of the nation's space program is directly dependent upon the development and use of new technology. Technology is the foundation for every aspect of space missions and ground operations. The improvements in technology that will enable future advances are not only in device and system performance, but also in permitting missions to be carried out more rapidly and at lower cost. Although more can be done with current technology, NASA's recent call for new and innovative approaches should not be answered by employing only today's technologies; new technologies with revolutionary potential should be sought. The study reported here was performed to identify means to enhance the development of technologies for the space sciences and applications.

  2. Space life sciences perspectives for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1992-01-01

    It is now generally acknowledged that the life science discipline will be the primary beneficiary of Space Station Freedom. The unique facility will permit advances in understanding the consequences of long duration exposure to weightlessness and evaluation of the effectiveness of countermeasures. It will also provide an unprecedented opportunity for basic gravitational biology, on plants and animals as well as human subjects. The major advantages of SSF are the long duration exposure and the availability of sufficient crew to serve as subjects and operators. In order to fully benefit from the SSF, life sciences will need both sufficient crew time and communication abilities. Unlike many physical science experiments, the life science investigations are largely exploratory, and frequently bring unexpected results and opportunities for study of newly discovered phenomena. They are typically crew-time intensive, and require a high degree of specialized training to be able to react in real time to various unexpected problems or potentially exciting findings. Because of the long duration tours and the large number of experiments, it will be more difficult than with Spacelab to maintain astronaut proficiency on all experiments. This places more of a burden on adequate communication and data links to the ground, and suggests the use of AI expert system technology to assist in astronaut management of the experiment. Typical life science experiments, including those flown on Spacelab Life Sciences 1, will be described from the point of view of the demands on the astronaut. A new expert system, 'PI in a Box,' will be introduced for SLS-2, and its applicability to other SSF experiments discussed. (This paper consists on an abstract and ten viewgraphs.)

  3. Science & Technology Review November 2002

    SciTech Connect

    Budil, K

    2002-09-25

    This months issue of Science and Technology Review has the following articles: (1) High-Tech Help for Fighting Wildfires--Commentary by Leland W. Younker; (2) This Model Can Take the Heat--A physics-based simulation program to combat wildfires combines the capabilities and resources of Lawrence Livermore and Los Alamos national laboratories. (3) The Best and the Brightest Come to Livermore--The Lawrence Fellowship Program attracts the most sought-after postdoctoral researchers to the Laboratory. (4) A view to Kill--Livermore sensors are aimed at the ''kill'' vehicle when it intercepts an incoming ballistic missile. (5) 50th Anniversary Highlight--Biological Research Evolves at Livermore--Livermore's biological research program keeps pace with emerging national issues, from studying the effects of ionizing radiation to detecting agents of biological warfare.

  4. Science& Technology Review September 2003

    SciTech Connect

    McMahon, D

    2003-09-01

    This September 2003 issue of ''Science and Technology Review'' covers the following articles: (1) ''The National Ignition Facility Is Born''; (2) ''The National Ignition Facility Comes to Life'' Over the last 15 years, thousands of Livermore engineers, scientists, and technicians as well as hundreds of industrial partners have worked to bring the National Ignition Facility into being. (3) ''Tracking the Activity of Bacteria Underground'' Using real-time polymerase chain reaction and liquid chromatography/tandem mass spectrometry, researchers at Livermore are gaining knowledge on how bacteria work underground to break down compounds of environmental concern. (4) ''When Every Second Counts--Pathogen Identification in Less Than a Minute'' Livermore has developed a system that can quickly identify airborne pathogens such as anthrax. (5) ''Portable Radiation Detector Provides Laboratory-Scale Precision in the Field'' A team of Livermore physicists and engineers has developed a handheld, mechanically cooled germanium detector designed to identify radioisotopes.

  5. Science& Technology Review October 2002

    SciTech Connect

    Budil, K S

    2002-10-01

    The October 2002 issue of Science and Technology Review has the following articles: (1) Applied Science Is a Hallmark of This Laboratory--Commentary by Hal Graboske. (2) Sending Up Signals for Genetic Variation--In situ rolling circle amplification promises to advance the detection and treatment of cancer and other diseases. (3) SiMM Is Anything But Simple--Modules of silicon microchannels and microlenses result in the smallest, most powerful, and least expensive laser diode pumps ever. (4) World's Most Powerful Solid-State Laser--A new design allows tremendous scaling up of solid-state laser power. (5) Stepping Up to Extreme Lithography--The next generation of computer chips can now be produced on a commercial scale. (6) Relief for Acute and Chronic Pain--New technology turns an ancient pain management method into a modern medical tool. (7)50th Anniversary Highlight--14 Energy and Environment: Understanding Our World--The Laboratory's energy and environmental research is an important adjunct to its core national security mission.

  6. Life In Space: An Introduction To Space Life Sciences And The International Space Station

    NASA Astrophysics Data System (ADS)

    Fong, Kevin

    2001-11-01

    The impact of the space environment upon living organisms is profound. Its effects range from alterations in sub-cellular processes to changes in the structure and function of whole organ systems. As the number of astronaut and cosmonaut crews flown in space has grown, so to has our understanding of the effects of the space environment upon biological systems. There are many parallels between the physiology of space flight and terrestrial disease processes, and the response of astronaut crews themselves to long-duration space deployment is therefore of central interest. In the next 15 years the International Space Station (ISS) will serve as a permanently manned dedicated life and physical sciences platform for the further investigation of these phenomena. The European Space Agency's Columbus module will hold the bulk of the ISS life science capability and, in combination with NASA's Human Research Facility (HRF) will accommodate the rack mounted experimental apparatus. The programme of experimentation will include efforts in fundamental biology, human physiology, behavioural science and space biomedical research. In the four decades since Yuri Gagarin first orbited the Earth, space life science has emerged as a field of study in its own right. The ISS takes us into the next era of human space exploration, and it is hoped that its programme of research will yield new insights, novel therapeutic interventions, and improved biotechnology for terrestrial application.

  7. New Space at Airbus Defence & Space to facilitate science missions

    NASA Astrophysics Data System (ADS)

    Boithias, Helene; Benchetrit, Thierry

    2016-10-01

    In addition to Airbus legacy activities, where Airbus satellites usually enable challenging science missions such as Venus Express, Mars Express, Rosetta with an historic landing on a comet, Bepi Colombo mission to Mercury and JUICE to orbit around Jupiter moon Ganymede, Swarm studying the Earth magnetic field, Goce to measure the Earth gravitational field and Cryosat to monitor the Earth polar ice, Airbus is now developing a new approach to facilitate next generation missions.After more than 25 years of collaboration with the scientists on space missions, Airbus has demonstrated its capacity to implement highly demanding missions implying a deep understanding of the science mission requirements and their intrinsic constraints such as- a very fierce competition between the scientific communities,- the pursuit of high maturity for the science instrument in order to be selected,- the very strict institutional budget limiting the number of operational missions.As a matter of fact, the combination of these constraints may lead to the cancellation of valuable missions.Based on that and inspired by the New Space trend, Airbus is developing an highly accessible concept called HYPE.The objective of HYPE is to make access to Space much more simple, affordable and efficient.With a standardized approach, the scientist books only the capacities he needs among the resources available on-board, as the HYPE satellites can host a large range of payloads from 1kg up to 60kg.At prices significantly more affordable than those of comparable dedicated satellite, HYPE is by far a very cost-efficient way of bringing science missions to life.After the launch, the scientist enjoys a plug-and-play access to two-way communications with his instrument through a secure high-speed portal available online 24/7.Everything else is taken care of by Airbus: launch services and the associated risk, reliable power supply, setting up and operating the communication channels, respect of space law

  8. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  9. Planetary Space Sciences and Data Management

    NASA Astrophysics Data System (ADS)

    Stein, Thomas

    The quality of planetary data archives is governed largely by data producers and data archivists. Because each group possesses a nearly unique domain knowledge, it is important for these groups to interact in early mission planning phases, and to continue collaboration through the data acquisition phase and beyond. When communication between the groups is limited, the value of the science data can suffer. This abstract discusses ways in which early and regular interaction between the Planetary Data System and data producers is beneficial. NASA's Planetary Data System (PDS)—-a federation of discipline and support nodes—-provides expertise to guide and assist missions, programs, and individuals to organize and document digital data that can be used to support NASA's goals in planetary science and Solar System exploration. Then, PDS makes these data accessible to users in the scientific community, and ensures the long-term preservation and usability of the data. Data archiving requirements for NASA planetary missions are written into mission announce-ments of opportunity. PDS provides a pre-proposal briefing on data archiving requirements to potential proposers, and the proposal data archiving section is reviewed by PDS. After a mission is selected, one PDS node is designated the "lead node", i.e., the primary PDS group that interacts with mission personnel. At this point, data archiving working groups are formed, and project data management and archive plans are developed to define data to be archived. Additional documents are created that detail data product and archive volume structure. Archive documents and sample data are peer-reviewed by the science community prior to data acquisition. During the active data acquisition phase, raw and processed data products, labels (metadata) and documentation are produced by the mission science team. Preliminary and quick-look data often are made accessible via project and PDS web pages. Data products submitted for

  10. Physical sciences research plans for the International Space Station

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  11. Experiences of the GDR in space sciences and technology

    NASA Astrophysics Data System (ADS)

    Stiller, H.; Knuth, R.; Bormann, P.

    Following a historical review of the first activities of GDR scientists in the fields of space research, especially on astronomical and geodetical satellite-observations and in atmospheric and magnetospheric research, the growing scientific and increasingly efficient technological and economic benefits of the cooperation of the Academy of sciences and other scientific and technological institutions of the GDR within the Intercosmos-programme are described. Especially, the experiences in connection with remote sensing, of the cooperation with countries as Cuba and the Peoples Republic of Vietnam and of the common USSR - GDR manned spaceflight are discussed under the viewpoint of the mutual interests of developing and developed countries in the fields of space science and technology.

  12. USSR Space Life Sciences Digest, volume 1, no. 3

    NASA Technical Reports Server (NTRS)

    Wallace, P. M.

    1980-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.

  13. USSR Space Life Sciences Digest, volume 1, no. 4

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1980-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology, and life sciences and technology.

  14. USSR Space Life Sciences Digest, volume 2, no.1

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1981-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.

  15. USSR Space Life Sciences Digest, volume 2, no. 2

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1981-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences and technology.

  16. Caveat Lector: Reviewing Popular Social Science.

    ERIC Educational Resources Information Center

    Hixson, Vivian Scott

    1981-01-01

    Discusses problems with reviews and criticisms of popular social science books: the quality and background of reviewers, the difficulty of distinguishing between fact and opinion, and the scarcity of competent reviewers. Analyzes reviews of Robert Ardrey's "African Genesis" and "The Territorial Imperative," Konrad Lorenz's "On Aggression," and…

  17. Space Science for the 21st Century: The Space Science Enterprise Strategic Plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Throughout its history, the U.S. Space Science technologies program has been enormously productive. Its accomplishments have rewritten the textbooks. But now, the economic environment has changed dramatically. The Nation's scientific and technological goals are being reexamined and redefined.And the social contract between the scientific community and the Federal Government is being rewritten. There is an expectation that the American public should receive more direct benefits from its investment in science and technology. This Strategic Plan reflects this new paradigm. It presents a carefully selected set of new scientific initiatives that build on past accomplishments to continue NASA's excellence in Space Science. At the same time, it responds to fiscal constraints by defining a new approach to planning, developing, and operating Space Science missions. In particular, investments in new technologies will permit major scientific advances to be made with smaller, more focused, and less costly missions. With the introduction of advanced technologies, smaller does not have to mean less capable. The focus on new technologies also provides and opportunity for the Space Science program to enhance its direct contribution to the country's economic base. At the same time, the program can build on public interest to strengthen its contributions to education and scientific literacy. With this plan we are taking the first steps toward shaping the Space Science program of the 21st century. In doing so, we face major challenges. It will be a very different program than might have been envisioned even a few years ago. But it will be a program that remains at the forefront of science, technology, and education. We intend to continue rewriting the textbooks.

  18. Mathematical Model of the Public Understanding of Space Science

    NASA Astrophysics Data System (ADS)

    Prisniakov, V.; Prisniakova, L.

    science. The boundary sectioning area of effective and unefficient modes of training and education of the population of country in space spirit is determined. The mathematical model of quality of process of education concern to an outer space exploration is reviewed separately. The coefficient of quality of education in an estimation of space event is submitted as relation Δ I' to mismatch of the universal standard of behavior with the information, which is going to the external spectator, about the applicable reacting of the considered individual Δ I''. The obtained outcomes allow to control a learning process and education of the society spirit of adherence to space ideals of mankind.

  19. Advanced Biotelemetry Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1994-01-01

    The Sensors 2000! Program at NASA-Ames Research Center is developing an Advanced Biotelemetry System (ABTS) for Space Life Sciences applications. This modular suite of instrumentation is planned to be used in operational spaceflight missions, ground-based research and development experiments, and collaborative, technology transfer and commercialization activities. The measured signals will be transmitted via radio-frequency (RF), electromagnetic or optical carriers and direct-connected leads to a remote ABTS receiver and data acquisition system for data display, storage, and transmission to Earth. Intermediate monitoring and display systems may be hand held or portable, and will allow for personalized acquisition and control of medical and physiological data.

  20. Microgravity Science Glovebox (MSG) Space Sciences's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jordan, Lee P.

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.

  1. Edible Earth and Space Science Activities

    NASA Astrophysics Data System (ADS)

    Lubowich, D.; Shupla, C.

    2014-07-01

    In this workshop we describe using Earth and Space Science demonstrations with edible ingredients to increase student interest. We show how to use chocolate, candy, cookies, popcorn, bagels, pastries, Pringles, marshmallows, whipped cream, and Starburst candy for activities such as: plate tectonics, the interior structure of the Earth and Mars, radioactivity/radioactive dating of rocks and stars, formation of the planets, lunar phases, convection, comets, black holes, curvature of space, dark energy, and the expansion of the Universe. In addition to creating an experience that will help students remember specific concepts, edible activities can be used as a formative assessment, providing students with the opportunity to create something that demonstrates their understanding of the model. The students often eat the demonstrations. These demonstrations are an effective teaching tool for all ages, and can be adapted for cultural, culinary, and ethnic differences among the students.

  2. Science and Technology Review June 2002

    SciTech Connect

    Budil, K.

    2002-06-01

    This Science and Technology Review has the following stories: (1) Fighting Bioterrorism, Fighting Cancer; (2) A Two-Pronged Attack on Bioterrorism--synthetic two-legged molecules will be excellent detectors of biowarfare agents and cancer cells; (3) Adaptive Optics Sharpen the View from Earth--astronomers are obtaining images with unprecedented resolution, thanks to telescopes equipped with adaptive optics developed at Livermore; (4) Experiments Re-create X Rays from Comets--Experiments using the Laboratory's electron beam ion trap and an x-ray spectrometer designed by the National Aeronautics and Space Administration are shedding light on how comets emit x rays as they pass the Sun; (5) Chemistry--50 Years of exploring the Material World--from isotopic analysis to atomic-level simulations of material behavior, Livermore's chemists and materials scientists apply their expertise to fulfill the Laboratory's mission.

  3. Informing the public on space sciences in Hungary

    NASA Astrophysics Data System (ADS)

    Almar, I.

    With an experience of almost 50 years in the dissemination of information to the Hungarian public on space related results and events the author summarizes some personal conclusions concerning the most effective methods and most frequent difficulties of this kind of activity. A special emphasis is laid on the requirement to use the language of the country (in our case Hungarian) to facilitate public understanding - how to find proper Hungarian expressions to frequently used scientific and space terms. A reference is made to the 16 language Multilingual Space Dictionary of the International Academy of Sciences (the author is guest editor of the Dictionary) distributed free of charge on the previous World Space Congress. Another important factor is the role of non-governmental societies in the teaching of space science to the public; some initiatives of the Hungarian Astronautical Society are reviewed which proved to be successful in the last four decades. Finally the recent problems and opportunities for outreach programs appearing with the wide-spread public use of the Internet are discussed.

  4. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  5. Space Launch System for Exploration and Science

    NASA Astrophysics Data System (ADS)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  6. The New Millenium Program: Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space

  7. Science& Technology Review October 2003

    SciTech Connect

    McMahon, D H

    2003-10-01

    The October 2003 issue of Science & Technology Review consists of the following articles: (1) Award-Winning Technologies from Collaborative Efforts--Commentary by Hal Graboske; (2) BASIS Counters Airborne Bioterrorism--The Biological Aerosol Sentry and Information System is the first integrated biodefense system; (3) In the Chips for the Coming Decade--A new system is the first full-field lithography tool for use at extreme ultraviolet wavelengths; (4) Smoothing the Way to Print the Next Generation of Computer Chips--With ion-beam thin-film planarization, the reticles and projection optics made for extreme ultraviolet lithography are nearly defect-free; (5) Eyes Can See Clearly Now--The MEMS-based adaptive optics phoropter improves the process of measuring and correcting eyesight aberrations; (6) This Switch Takes the Heat--A thermally compensated Q-switch reduces the light leakage on high-average-power lasers; (7) Laser Process Forms Thick, Curved Metal Parts--A new process shapes parts to exact specifications, improving their resistance to fatigue and corrosion cracking; and (8) Characterizing Tiny Objects without Damaging Them--Livermore researchers are developing nondestructive techniques to probe the Lilliputian world of mesoscale objects.

  8. Space life sciences: closed ecological systems: earth and space applications.

    PubMed

    2005-01-01

    This issue contains peer-reviewed papers from a workshop on Closed Ecological Systems: Earth and Space Applications at the 35th COSPAR General Assembly in Paris, France, convened in July 2004. The contributions reflected the wide range of international work in the field, especially Europe, Russia, Japan, and the United States. The papers are arranged according to four main themes: 1) Methods of evaluation and theory of closed ecological systems; 2) Reports from recent experiments in closed ecological system facilities; 3) Bioregenerative technologies to advance degree of closure and cycling; and 4) Laboratory studies of small closed ecological systems.

  9. Science with the Space Infrared Telescope Facility

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2003-01-01

    The Space Infrared Telescope Facility (SIRTF), the fourth and final member of NASA's series of Great Observatories, is scheduled to launch on April 15,2003. Together with the Hubbie Space Telescope, the Compton Gamma ray Telescope, and the Chandra X-Ray Telescope this series of observatories offers observational capabilities across the electromagnetic spectrum from the infrared to high-energy gamma rays. SIRTF is based on three focal plane instruments - an infrared spectrograph and two infrared imagers - coupled to a superfluid-helium cooled telescope to achieve unprecedented sensitivity from 3 to 180 microns. Although SIRTF is a powerful general-purpose infrared observatory, its design was based on the capability to address four broad science themes: (1) understanding the structure and composition of the early universe, (2) understanding the nature of brown dwarfs and super-planets, (3) probing protostellar, protoplanetary, and planetary debris disk systems, and (4) understanding the origin and structure of ultraluminous infrared galaxies and active galactic nuclei. This talk will address the design and capabilities of the SIRTF observatory, provide an overview of some of the initial science investigations planned by the SIRTF Guaranteed Time Observers, and give a brief overview of the General Observer proposal process.

  10. Microgravity Science in Space Flight Gloveboxes

    NASA Technical Reports Server (NTRS)

    Baugher, Charles; Bennett, Nancy; Cockrell, David; Jex, David; Musick, Barry; Poe, James; Roark, Walter

    1998-01-01

    Microgravity science studies the influences of gravity on phenomena in fluids, materials processes, combustion, and human cell growth in the low acceleration environment of space flight. During the last decade, the accomplishment of the flight research in the field has evolved into an effective cooperation between the flight crew in the Shuttle and the ground-based investigator using real-time communication via voice and video links. This team structure has led to interactive operations in which the crew performs the experimentation while guided, as necessary, by the science investigator who formulated the investigation and who will subsequently interpret and analyze the data. One of the primary challenges to implementing this interactive research has been the necessity of structuring a means of handling fluids, gases, and hazardous materials in a manned laboratory that exhibits the novelty of weightlessness. Developing clever means of designing experiments in closed vessels is part of the solution- but the space flight requirement for one and two failure-tolerant containment systems leads to serious complications in the physical handling of sample materials. In response to the conflict between the clear advantage of human operation and judgment, versus the necessity to isolate the experiment from the crewmember and the spacecraft environment, the Microgravity Research Program has initiated a series of Gloveboxes in the various manned experiment carriers. These units provide a sealed containment vessel whose interior is under a negative pressure with respect to the ambient environment but is accessible to a crewmember through the glove ports.

  11. Science Observations of Deep Space One

    NASA Technical Reports Server (NTRS)

    Nelson, Robert M.; Baganal, Fran; Boice, Daniel C.; Britt, Daniel T.; Brown, Robert H.; Buratti, Bonnie J.; Creary, Frank; Ip, Wing-Huan; Meier, Roland; Oberst, Juergen

    1999-01-01

    During the Deep Space One (DS1) primary mission, the spacecraft will fly by asteroid 1992 KD and possibly comet Borrelly. There are two technologies being validated on DS1 that will provide science observations of these targets, the Miniature Integrated Camera Spectrometer (MICAS) and the Plasma Experiment for Planetary Exploration (PEPE). MICAS encompasses a camera, an ultraviolet imaging spectrometer and an infrared imaging spectrometer. PEPE combines an ion and electron analyzer designed to determine the three-dimensional distribution of plasma over its field of view. MICAS includes two visible wavelength imaging channels, an ultraviolet imaging spectrometer, and an infrared imaging spectrometer all of which share a single 10-cm diameter telescope. Two types of visible wavelength detectors, both operating between about 500 and 1000 nm are used: a CCD with 13-microrad pixels and an 18-microrad-per-pixel, metal-on-silicon active pixel sensor (APS). Unlike the CCD the APS includes the timing and control electronics on the chip along with the detector. The UV spectrometer spans 80 to 185 nm with 0.64-nm spectral resolution and 316-microrad pixels. The IR spectrometer covers the range from 1200 to 2400 nm with 6.6-nm resolution and 54-microrad pixels PEPE includes a very low-power, low-mass micro-calorimeter to help understand plasma-surface interactions and a plasma analyzer to identify de individual molecules and atoms in the immediate vicinity of the spacecraft that have been eroded off the surface of asteroid 1992 KD. It employs common apertures with separate electrostatic energy analyzers. It measures electron and ion energies spanning a range of 3 eV to 30 keV, with a resolution of five percent. and measures ion mass from one to 135 atomic mass units with 5 percent resolution. It electrostatically sweeps its field of view both in elevation and azimuth. Both MICAS and PEPE represent a new direction for the evolution of science instruments for interplanetary

  12. Scope and Sequence. Life Sciences, Physical Sciences, Earth and Space Sciences. A Summer Curriculum Development Project.

    ERIC Educational Resources Information Center

    Cortland-Madison Board of Cooperative Educational Services, Cortland, NY.

    Presented is a booklet containing scope and sequence charts for kindergarten and grades 1 to 6 science units. Overviews and lists of major concepts for units in the life, physical, and earth/space sciences are provided in tables for each grade level. Also presented are seven complete units, one for each grade level. Following a table of contents,…

  13. A Science Cloud: OneSpaceNet

    NASA Astrophysics Data System (ADS)

    Morikawa, Y.; Murata, K. T.; Watari, S.; Kato, H.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Shimojo, S.

    2010-12-01

    Main methodologies of Solar-Terrestrial Physics (STP) so far are theoretical, experimental and observational, and computer simulation approaches. Recently "informatics" is expected as a new (fourth) approach to the STP studies. Informatics is a methodology to analyze large-scale data (observation data and computer simulation data) to obtain new findings using a variety of data processing techniques. At NICT (National Institute of Information and Communications Technology, Japan) we are now developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment specialized for science works, which connects many researchers with high-speed network (JGN: Japan Gigabit Network). The JGN is a wide-area back-born network operated by NICT; it provides 10G network and many access points (AP) over Japan. The OneSpaceNet also provides with rich computer resources for research studies, such as super-computers, large-scale data storage area, licensed applications, visualization devices (like tiled display wall: TDW), database/DBMS, cluster computers (4-8 nodes) for data processing and communication devices. What is amazing in use of the science cloud is that a user simply prepares a terminal (low-cost PC). Once connecting the PC to JGN2plus, the user can make full use of the rich resources of the science cloud. Using communication devices, such as video-conference system, streaming and reflector servers, and media-players, the users on the OneSpaceNet can make research communications as if they belong to a same (one) laboratory: they are members of a virtual laboratory. The specification of the computer resources on the OneSpaceNet is as follows: The size of data storage we have developed so far is almost 1PB. The number of the data files managed on the cloud storage is getting larger and now more than 40,000,000. What is notable is that the disks forming the large-scale storage are distributed to 5 data centers over Japan (but the storage

  14. Devices development and techniques research for space life sciences

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  15. Parametric cost estimation for space science missions

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Thompson, Bruce E.

    2008-07-01

    Cost estimation for space science missions is critically important in budgeting for successful missions. The process requires consideration of a number of parameters, where many of the values are only known to a limited accuracy. The results of cost estimation are not perfect, but must be calculated and compared with the estimates that the government uses for budgeting purposes. Uncertainties in the input parameters result from evolving requirements for missions that are typically the "first of a kind" with "state-of-the-art" instruments and new spacecraft and payload technologies that make it difficult to base estimates on the cost histories of previous missions. Even the cost of heritage avionics is uncertain due to parts obsolescence and the resulting redesign work. Through experience and use of industry best practices developed in participation with the Aerospace Industries Association (AIA), Northrop Grumman has developed a parametric modeling approach that can provide a reasonably accurate cost range and most probable cost for future space missions. During the initial mission phases, the approach uses mass- and powerbased cost estimating relationships (CER)'s developed with historical data from previous missions. In later mission phases, when the mission requirements are better defined, these estimates are updated with vendor's bids and "bottoms- up", "grass-roots" material and labor cost estimates based on detailed schedules and assigned tasks. In this paper we describe how we develop our CER's for parametric cost estimation and how they can be applied to estimate the costs for future space science missions like those presented to the Astronomy & Astrophysics Decadal Survey Study Committees.

  16. 2015 Space Radiation Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    big data” study must be used with caution. The general scientific issues of reproducibility, details of experimental methods and data analysis from preclinical and basic research laboratories have been raised broadly over the last few years (not specific to this work) and indicate that caution must be applied in the ways these data are used. This pertains to preclinical data and also to phase 3 clinical trials in radiation oncology and medical oncology. Of course, appropriate use and analysis of these “big-data” sets also offer the potential of pinpointing limitations and extracting remaining useful information. Emphasis should be placed on the latter possibility. A key target is risk reduction from radiation exposure. Progress of the entire space program, now moving towards the Mars mission, requires timely answers to key components of human risk, which are known to be complex. Periodic review of progress should be conducted with additional resources directed into achieving critical milestones. Turning the long red bars to yellow and green (or for some risks such as CNS possibly to grey) must be high priority. That such progress will require new science and not engineering means that it should be viewed in a knowledge-based light. The technology-based aspects of engineering issues are certainly as important, however, science and knowledge-based problems are solved in a different way than engineering. Timelines for engineering are more predictable, while for science, progress can be methodical with occasional major incremental findings that can rapidly change the rate of progress. As opportunities for rapid incremental changes arise, periodic enhancement of investment is strongly recommended to enable such new knowledge to be quickly and efficiently exploited. Collaborations and linkages with National Institute of Allergy and Infectious Diseases (NIAID), the Biomedical Advanced Research and Development Authority (BARDA) and the Department of Defense (DoD) are in place

  17. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitiess Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instrument(s) and the start of the integration and test phase.

  18. Current Developments in Basic Space Science in Nigeria

    NASA Astrophysics Data System (ADS)

    Okeke, P. N.

    Astronomy is important to developing African countries. In this paper, a brief review of the situation of astronomical research in Africa before 1991 is given. During that period only South Africa and Egypt were carrying out observational research in astronomy. In other African countries astronomy research was in its infancy, except the University of Nigeria Space Research Centre (UNNSRC) in theoretical areas. A summary of the important recommendations for Africa at the United Nations/ European Space Agency (UN/ESA) series of workshops on basic space science were itemized to help identify those which have now been accomplished. Additionally, UNNSRC has now embarked on further observational programmes through the establishment of strong collaborative ventures with two observatories in South Africa, the Hartesbeesthoek Radio Astronomical Observatory (Hart RAO) and the South African Astronomical Observatory (SAAO). UNNSRC has also made permanent arrangements with HartRAO, SAAO, and the Jodrell Bank for collaborations in data analysis. A new interest in astronomy appears to have awakened in Nigeria with three more universities joining this area of basic space science. It is recommended that the time has come for all African countries to contribute towards a common facility such as the Southern African Large Telescope (SALT). The efforts of UN/ESA which resulted in tremendous achievements are commended.

  19. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    NASA Astrophysics Data System (ADS)

    Pyle, E. J.

    2013-12-01

    The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims

  20. NASA Space Science Day Events-Engaging Students in Science

    NASA Technical Reports Server (NTRS)

    Foxworth, S.; Mosie, A.; Allen, J.; Kent, J.; Green, A.

    2015-01-01

    The NASA Space Science Day Event follows the same format of planning and execution at all host universities and colleges. These institutions realized the importance of such an event and sought funding to continue hosting NSSD events. In 2014, NASA Johnson Space Center ARES team has supported the following universities and colleges that have hosted a NSSD event; the University of Texas at Brownsville, San Jacinto College, Georgia Tech University and Huston-Tillotson University. Other universities and colleges are continuing to conduct their own NSSD events. NASA Space Science Day Events are supported through continued funding through NASA Discovery Program. Community Night begins with a NASA speaker and Astromaterials display. The entire community surrounding the host university or college is invited to the Community Night. This year at the Huston-Tillotson (HTU) NSSD, we had Dr. Laurie Carrillo, a NASA Engineer, speak to the public and students. She answered questions, shared her experiences and career path. The speaker sets a tone of adventure and discovery for the NSSD event. After the speaker, the public is able to view Lunar and Meteorite samples and ask questions from the ARES team. The students and teachers from nearby schools attended the NSSD Event the following day. Students are able to see the university or college campus and the university or college mentors are available for questions. Students rotate through hour long Science Technology Engineering and Mathematics (STEM) sessions and a display area. These activities are from the Discovery Program activities that tie in directly with k- 12 instruction. The sessions highlight the STEM in exploration and discovery. The Lunar and Meteorite display is again available for students to view and ask questions. In the display area, there are also other interactive displays. Angela Green, from San Jacinto College, brought the Starlab for students to watch a planetarium exhibit for the NSSD at Huston

  1. A Review of Forensic Science Management Literature.

    PubMed

    Houck, M M; McAndrew, W P; Porter, M; Davies, B

    2015-01-01

    The science in forensic science has received increased scrutiny in recent years, but interest in how forensic science is managed is a relatively new line of research. This paper summarizes the literature in forensic science management generally from 2009 to 2013, with some recent additions, to provide an overview of the growth of topics, results, and improvements in the management of forensic services in the public and private sectors. This review covers only the last three years or so and a version of this paper was originally produced for the 2013 Interpol Forensic Science Managers Symposium and is available at interpol.int.

  2. Space Sciences Laboratory Publications and Presentations

    NASA Astrophysics Data System (ADS)

    Summers, F. G.

    1998-07-01

    This document lists the significant publications and presentations of the Space Sciences Laboratory during the period January 1 - December 31, 1997. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an Appendix (arranged by page number) listing preprints issued by the Laboratory during this reporting period. Some of the preprints have not been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature.

  3. French language space science educational outreach

    NASA Astrophysics Data System (ADS)

    Schofield, I.; Masongsong, E. V.; Connors, M. G.

    2015-12-01

    Athabasca University's AUTUMNX ground-based magnetometer array to measure and report geomagnetic conditions in eastern Canada is located in the heart of French speaking Canada. Through the course of the project, we have had the privilege to partner with schools, universities, astronomy clubs and government agencies across Quebec, all of which operate primarily in French. To acknowledge and serve the needs of our research partners, we have endeavored to produce educational and outreach (EPO) material adapted for francophone audiences with the help of UCLA's department of Earth, Planetary and Space Sciences (EPSS). Not only will this provide greater understanding and appreciation of the geospace environment unique to Quebec and surrounding regions, it strengthens our ties with our francophone, first nations (native Americans) and Inuit partners, trailblazing new paths of research collaboration and inspiring future generations of researchers.

  4. Space Science Laboratory Publications and Presentations

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Compiler)

    1993-01-01

    This document lists the significant publications and presentations of the Space Science Laboratory during the period January 1 - December 31, 1992. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an Appendix (arranged by report number) listing preprints issued by the Laboratory during this reporting period. Some of the preprints have not been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publications in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. The organizational code of the cognizant SSL branch or office is given at the end of each entry.

  5. Space Sciences Laboratory Publications and Presentations

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Compiler)

    1995-01-01

    This document lists the significant publications and presentations of the Space Sciences Laboratory during the period Jan. 1 - Dec. 31, 1994. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an appendix (arranged by report number) listing preprints issued by the laboratory during this reporting period. Some of the preprints have not been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in referenced professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publications in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature. The organizational code of the cognizant SSL branch or office is given at the end of each entry.

  6. Space Sciences Laboratory Publications and Presentations

    NASA Technical Reports Server (NTRS)

    Summers, F. G. (Compiler)

    1998-01-01

    This document lists the significant publications and presentations of the Space Sciences Laboratory during the period January 1 - December 31, 1997. Entries in the main part of the document are categorized according to NASA Reports (arranged by report number), Open Literature, and Presentations (arranged alphabetically by title). Also included for completeness is an Appendix (arranged by page number) listing preprints issued by the Laboratory during this reporting period. Some of the preprints have not been published; those already published are so indicated. Most of the articles listed under Open Literature have appeared in refereed professional journals, books, monographs, or conference proceedings. Although many published abstracts are eventually expanded into full papers for publication in scientific and technical journals, they are often sufficiently comprehensive to include the significant results of the research reported. Therefore, published abstracts are listed separately in a subsection under Open Literature.

  7. Embedding Nature of Science in Teaching about Astronomy and Space

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2012-01-01

    Science teachers need an adequate understanding of nature of science (NOS) and the ability to embed NOS in their teaching. This collective case study aims to explore in-service science teachers' conceptions of NOS and the embeddedness of NOS in their teaching about astronomy and space. Three science teachers participated in this study. All…

  8. Review on space weather in Latin America. 3. Development of space weather forecasting centers

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo

    2016-11-01

    The present work is the third of a three-part review of space weather in Latin America, specifically observing its evolution in three countries (Argentina, Brazil and Mexico). This work presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reasons/opportunities that lead to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings, ​watches and alerts.

  9. Review on space weather in Latin America. 2. The research networks ready for space weather

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo

    2016-11-01

    The present work is the second of a three-part review of space weather in Latin America, specifically observing its evolution in three countries (Argentina, Brazil and Mexico). This work comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue watches, warnings and alerts.

  10. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  11. Sensor Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Somps, Chris J.; Hines, John W.; Connolly, John P. (Technical Monitor)

    1995-01-01

    Sensors 2000! (S2K!) is a NASA Ames Research Center engineering initiative designed to provide biosensor and bio-instrumentation systems technology expertise to NASA's life sciences spaceflight programs. S2K! covers the full spectrum of sensor technology applications, ranging from spaceflight hardware design and fabrication to advanced technology development, transfer and commercialization. S2K! is currently developing sensor systems for space biomedical applications on BION (a Russian biosatellite focused on Rhesus Monkey physiology) and NEUROLAB (a Space Shuttle flight devoted to neuroscience). It's Advanced Technology Development-Biosensors (ATD-B) project focuses efforts in five principle areas: biotelemetry Systems, chemical and biological sensors, physiological sensors, advanced instrumentation architectures, and data and information management. Technologies already developed and tested included, application-specific sensors, preamplifier hybrids, modular programmable signal conditioners, power conditioning and distribution systems, and a fully implantable dual channel biotelemeter. Systems currently under development include a portable receiver system compatible with an off-the-shelf analog biotelemeter, a 4 channel digital biotelemetry system which monitors pH, a multichannel, g-processor based PCM biotelemetry system, and hand-held personal monitoring systems. S2K! technology easily lends itself to telescience and telemedicine applications as a front-end measurement and data acquisition device, suitable for obtaining and configuring physiological information, and processing that information under control from a remote location.

  12. A Space and Atmospheric Visualization Science System

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Blanchard, P.; Mankofsky, A.; Goodrich, C.; Kamins, D.; Kulkarni, R.; Mcnabb, D.; Moroh, M.

    1994-01-01

    SAVS (a Space and Atmospheric Visualization Science system) is an integrated system with user-friendly functionality that employs a 'push-button' software environment that mimics the logical scientific processes in data acquisition, reduction, analysis, and visualization. All of this is accomplished without requiring a detailed understanding of the methods, networks, and modules that link the tools and effectively execute the functions. This report describes SAVS and its components, followed by several applications based on generic research interests in interplanetary and magnetospheric physics (IMP/ISTP), active experiments in space (CRRES), and mission planning focused on the earth's thermospheric, ionospheric, and mesospheric domains (TIMED). The final chapters provide a user-oriented description of interface functionalities, hands-on operations, and customized modules, with details of the primary modules presented in the appendices. The overall intent of the report is to reflect the accomplishments of the three-year development effort and to introduce potential users to the power and utility of the integrated data acquisition, analysis, and visualization system.

  13. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2010-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope launched to the second Earth-Sun Lagrange point in 2014. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA.

  14. Book review of "Encyclopedia of soil science"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book review describes "Encyclopedia of soil science" edited by Chesworth et al. (2008), an update of the 1979 version of "The encyclopedia of soil science" edited by Fairbridge and Finkl. It is compared with Hillel et al. (2004) second edition of "Encyclopedia of soils in the environment" and w...

  15. Indian Space Science and Exploration Missions

    NASA Astrophysics Data System (ADS)

    Chakravarty, S. C.

    In earlier years, Indian scientists carried out studies of ionosphere and cosmic rays phenomena primarily using ground based radio techniques and balloon borne detectors. With the advent of the space era, parallel efforts in the indigenous design and development of different sounding rockets for electrojet and x-ray astronomy related research, satellite launch vehicles and satellites were undertaken. While these developments are primarily oriented to realise the application goals in the fields of satellite communication, broadcasting, weather forecasting, remote survey of resources such as agricultural and forest cover, water reserves, land-use pattern etc., recent space science research opportunities were provided on board ISRO's SROSS-C2 (Retarding Potential Analyser, RPA & Gamma Ray Burst Experiment, GRB), IRS-P3 (Indian X-ray Astronomy Experiment, IXAE) and GSAT-2 (Solar X-ray Spectrometers, SOXS & Coherent Radio Beacon Experiment, CRABEX) satellites. These scientific experiments are providing important results to the understanding of ionospheric thermal structure (RPA), ionisation irregularities (RPA) & diffraction tomography (CRABEX), detailed characterisation of gamma ray bursts (GRB), phenomena of x-ray emitting stellar objects and solar x-ray variability (IXAE). Owing to very rewarding scientific outcome of IXAE in observing numerous x-ray emitting stellar objects such as pulsars, neutron stars, black hole binaries etc. and based on interest of the astronomy community, ISRO has formulated a plan to launch a dedicated Astronomy satellite (called ASTROSAT) with a unique feature of enabling simultaneous multi-wavelength observations of stellar objects covering optical, EUV, UV, soft and hard x-ray wavelengths. ASTROSAT carrying a compendium of 4 different x-ray and two UV imaging telescope payloads is planned to be launched using ISRO's Polar Satellite Launch Vehicle (PSLV). The orbit of ASTROSAT is preferred to be ˜ 20 at an altitude of 600-700 km with a

  16. Space Station Freedom science utilization: 2000 and beyond

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Office of Space Science and Applications (OSSA) Goals are: (1) to advance scientific knowledge of the Earth, the Solar System, and the Universe; (2) to understand the effects of the space environment on biological and physical processes; and (3) to expand the human presence beyond the Earth into the Solar System. The topics covered are presented in view graph form and include the following: (1) a strategic plan; (2) evolving U.S. space science capabilities; (3) life science goals; (4) OSSA Space Station Payload Traffic Model May 1991; and (5) microgravity science and applications goals.

  17. UAH/NASA Workshop on Space Science Platform

    NASA Technical Reports Server (NTRS)

    Wu, S. T. (Editor); Morgan, S. (Editor)

    1978-01-01

    The scientific user requirements for a space science platform were defined. The potential user benefits, technological implications and cost of space platforms were examined. Cost effectiveness of the platforms' capabilities were also examined.

  18. Quantum Opportunities and Challenges for Fundamental Sciences in Space

    NASA Technical Reports Server (NTRS)

    Yu, Nan

    2012-01-01

    Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.

  19. Sscience & technology review; Science Technology Review

    SciTech Connect

    1996-07-01

    This review is published ten times a year to communicate, to a broad audience, Lawrence Livermore National Laboratory`s scientific and technological accomplishments, particularly in the Laboratory`s core mission areas - global security, energy and the environment, and bioscience and biotechnology. This review for the month of July 1996 discusses: Frontiers of research in advanced computations, The multibeam Fabry-Perot velocimeter: Efficient measurement of high velocities, High-tech tools for the American textile industry, and Rock mechanics: can the Tuff take the stress.

  20. The Space Science Decadal Surveys:Lessons Learned and Best Practices

    NASA Astrophysics Data System (ADS)

    Boland, S. W.

    2015-12-01

    This presentation highlights key findings from the 2015 National Research Council report The Space Science Decadal Surveys: Lessons Learned and Best Practices. The authoring committee reviewed the history of space science decadal surveys including the most recent decadal surveys and midterm assessments in Earth science, heliophysics, astrophysics, and planetary science. Lessons learned and best practices were identified to guide future survey participants through several key aspects of the decadal survey process including development of the statement of task, survey organization and execution, report preparation, survey implementation, and stewardship.

  1. Space Science Projects. LC Science Tracer Bullet No. TB-89-3.

    ERIC Educational Resources Information Center

    Carter, Constance, Comp.

    This publication aims to assist elementary and secondary school students and teachers in planning, preparing and executing projects in the space sciences. Sources in other areas of science and on science fairs themselves are listed in "Science Fair Projects" (LC Science Tracer Bullet 88-4). This compilation is not intended to be a comprehensive…

  2. EDITORIAL: From reciprocal space to real space in surface science From reciprocal space to real space in surface science

    NASA Astrophysics Data System (ADS)

    Bartels, Ludwig; Ernst, Karl-Heinz

    2012-09-01

    This issue is dedicated to Karl-Heinz Rieder on the occasion of his 70th birthday. It contains contributions written by his former students and colleagues from all over the world. Experimental techniques based on free electrons, such as photoelectron spectroscopy, electron microscopy and low energy electron diffraction (LEED), were foundational to surface science. While the first revealed the band structures of materials, the second provided nanometer scale imagery and the latter elucidated the atomic scale periodicity of surfaces. All required an (ultra-)high vacuum, and LEED illustrated impressively that adsorbates, such as carbon monoxide, hydrogen or oxygen, can markedly and periodically restructure surfaces from their bulk termination, even at pressures ten orders of magnitude or more below atmospheric. Yet these techniques were not generally able to reveal atomic scale surface defects, nor could they faithfully show adsorption of light atoms such as hydrogen. Although a complete atom, helium can also be regarded as a wave with a de Broglie wavelength that allows the study of surface atomic periodicities at a delicateness and sensitivity exceeding that of electrons-based techniques. In combination, these and other techniques generated insight into the periodicity of surfaces and their vibrational properties, yet were limited to simple and periodic surface setups. All that changed with the advent of scanning tunneling microscopy (STM) roughly 30 years ago, allowing real space access to surface defects and individual adsorbates. Applied at low temperatures, not only can STM establish a height profile of surfaces, but can also perform spectroscopy and serve as an actuator capable of rearranging individual species at atomic scale resolution. The direct and intuitive manner in which STM provided access as a spectator and as an actor to the atomic scale was foundational to today's surface science and to the development of the concepts of nanoscience in general. The

  3. Space science Education:Challenges and Prospects in Africa

    NASA Astrophysics Data System (ADS)

    Latinwo, O.

    Space Science is a multidisciplinary subject the study of which is crucial to the survival and well being of humans In view of the significance of space science and its contribution to the present day global development this paper outlines many of the challenges of space science education in developing countries of Africa with a reference to Nigeria The way space science is typically being introduced and taught in pre-collegiate level is reconsidered if we are to provide those students who have chosen to study this science with a rich and rewarding experience Moreover one of the highlighted practical initiatives i e well planned and appropriate educational program to correct misconceptions stimulate interest and foster understanding among pre-collegiate students Reference is moreover made to the Basic Space Science outreach which commenced in 1995 in central Nigeria as one of the first pilot projects launched

  4. Science and engineering for space - Technologies from Space 88

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Wetzel, John P.

    1990-01-01

    This paper highlights technology development for space exploration. It draws on the proceedings of Space 88, Engineering, Construction, and Operations in Space, which includes 125 papers providing in-depth discussions of space policy, extraterrestrial basing, space stations and orbiting structures. In the space station and orbiting structures (orbital facilities) section, papers discuss the engineering, construction, and operations of orbiting space systems. Papers in the extraterrestrial basing section deal with the engineering, construction, and operations challenges faced in development of bases and operations on extraterrestrial bodies. The special interest (interacting disciplines) section provides a discussion of challenges facing us in meeting needs for space power, life support, human factors, astronomy, education, and management.

  5. The James Webb Space Telescope: Extending the Science

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The science objectives of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and black holes within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks. to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and to investigate the potential for life in those systems. These four science themes were used to establish the design requirements for the observatory and instrumentation. Since Webb's capabilities are unique, those science themes will remain relevant through launch and operations and goals contained within these themes will continue to guide the design and implementation choices for the mission. More recently, it has also become clear that Webb will make major contributions to other areas of research, including dark energy, dark matter, exoplanet characterization and Solar System objects. In this paper, I review the original four science themes and discuss how the scientific output of Webb will extend to these new areas of research.

  6. Science Policy Reviews, Volume 5 Number 4.

    ERIC Educational Resources Information Center

    Simons, Eugene M., Ed.

    Presented in this final issue of a quarterly publication are reviews, highlights, and 391 annotated bibliographic references from current and international literature in the area of science and public policy. The literature reviewed includes books, reports, and periodical articles and focuses on matters of broad public policy. In addition to the…

  7. Understanding Models in Earth and Space Science.

    ERIC Educational Resources Information Center

    Gilbert, Steven W.; Ireton, Shirley Watt

    The National Science Education Standards (NSES) emphasize the use of models in science instruction by making it one of the five unifying concepts of science, applicable to all grade levels. The NSES recommend that models be a focus of instruction--helping students understand the use of evidence in science, make and test predictions, use logic, and…

  8. Subcommittee on science reviews NSF

    NASA Astrophysics Data System (ADS)

    Jones, Richard M.

    With most attention focused on the appropriations legislation funding the National Science Foundation next year, less notice has been given to the agency's reauthorization legislation. During the last few months, the House Subcommittee on Science has held two hearings on this legislation to solicit views about the agency.Nine witnesses testified at a May 20 hearing. They were asked to address six questions, including some dealing with the balance between curiosity-driven research and strategic research, and between research and education activities. Views were also solicited on the modernization of academic research facilities, inadequately funded fields, international involvement in NSF-supported research, and academic block grants.

  9. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.6m) cold (50K) telescope in orbit around the second Earth-Sun Lagrange point. It is the successor to the Hubble and Spitzer Space Telescopes, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will conclude the talk with a description of recent technical progress in the construction of the observatory.

  10. Review of the Space Applications program, 1974

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The purpose of this review is to provide the participants in the National Aeronautics and Space Administration/National Academy of Engineers' Summer Study in Applications a concise overview of the NASA Applications Program as it stands in 1974. The review covers the accomplishments of the various discipline-oriented programs that make up the total Applications Program, discusses the program plan for the 1975 to 1980 period, and examines the anticipated spaceflight capabilities of the 1980's. NASA has requested the National Academy of Engineers to conduct through its Space Applications Board a comprehensive study of the future Space Applications Program encompassing the following: (1) the Applications Program in general, with particular emphasis on practical approaches, including assessment of the socio-economic benefits and (2) how the broad comprehensive program envisioned above influences, or is influenced by, the shuttle system, the principal space transport system of the 1980's.

  11. Scientific involvement in Skylab by the Space Sciences Laboratory of the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Winkler, C. E. (Editor)

    1973-01-01

    The involvement of the Marshall Space Flight Center's Space Sciences Laboratory in the Skylab program from the early feasibility studies through the analysis and publication of flight scientific and technical results is described. This includes mission operations support, the Apollo telescope mount, materials science/manufacturing in space, optical contamination, environmental and thermal criteria, and several corollary measurements and experiments.

  12. Science with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2006-01-01

    The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dustenshrouded protostars, to the genesis of planetary systems. Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these for science themes, JWST will be a large (6.5m) cold (50K) telescope with four instruments, capable of imaging and spectroscopy from 0.6 to 27 microns wavelength.

  13. Earth & Space Science PhDs, Class of 2001.

    ERIC Educational Resources Information Center

    Claudy, Nicholas; Henly, Megan; Migdalski, Chet

    This study documents the employment patterns and demographic characteristics of recent PhDs in earth and space science. It summarizes the latest annual survey of recent earth and space science PhDs conducted by the American Geological Institute, the American Geophysical Union, and the Statistical Research Center of the American Institute of…

  14. Science and Technology Review December 2000

    SciTech Connect

    de Pruneda, J.H.

    2000-12-01

    This issue contains the following articles: (1) ''Computational Know-How Advances Materials Science''. (2) ''Following Materials over Time and Space'' Large-scale simulations, performed over an enormous range of length and time scales, enable researchers to advance their understanding of material behavior. (3) ''The Art of Systems Science'' Systems scientists practice the multidisciplinary art of gathering information and constructing the systems models needed for informed decision making. (4) ''A Solution for Carbon Dioxide Overload''. (5) ''Preparing for Strong Earthquakes''.

  15. The prospects of enhanced space science training in kenya

    NASA Astrophysics Data System (ADS)

    Aseno, J. O.; Obel, J. D.

    To a limited extent, space exploration has been conducted in Kenya for almost the last two decades through a joint project (San Marco Project) between the Government of Kenya and the Government of Italy. Other space science activities in the country include remote sensing, space communications, meteorology and the use o f navigation and positioning satellite systems. To sustain space science activities in Kenya will require specialized training in the various disciplines of space sciences. Currently, there are no well coordinated training programmes in the country. Consequently, there is an urgent need for a well planned and a well coordinated space science training programme. This could be achieved through international co-operation and joint ventures between Kenya and space science institutions/organizations worldwide. The paper justifies the need for training in space science in Kenya and discusses socio-economic as well as environmental gains which would be realized due to increased space science activities arising from such training. Some of these gains would include participation in the launching and tracking, and control of satellite, managing and running a space centre or satellite launching and tracking station, decoding and synthesizing data from satellites and disseminating such data for public and scientific uses. The paper further offers suggestions on how the training requirements cited above could be achieved. It also highlights the level of expertise in space science disciplines and provides specific recommendations on the types of personnel that need to be trained. In addition, various forms and levels of training required to strengthen the role of space science in socio-economic development in Kenya, are discussed.

  16. Outreach Education Modules on Space Sciences in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  17. Spacelab-1: an early space station for science and technology.

    PubMed

    Knott, K; Feuerbacher, B; Chappell, C R

    1982-01-01

    The first flight of Spacelab is primarily a system verification and test flight, but it will also carry a payload of scientific and technological experiments to demonstrate the capability of performing multidisciplinary research in space. The payload covers the disciplines atmospheric physics, plasma physics, solar observations, astronomy, Earth observations, and material and life sciences. In this paper we will give for all represented disciplines short discription of their scientific objectives and experimental techniques. Particular emphasis is placed on how different disciplines utilize features characteristic for manned space stations, such as weight and power capabilities the availability of a human operator, the microgravity environment, the possibility to return samples or recordings and the recoverability of hardware together with a reflight capability. These advantages will be reviewed against the background of the relatively short mission duration, safety requirements and environmental influences caused by the presence of men in space. We will identify a research scenario for which Spacelab offers distinct advantages compared to conventional free-flying satellites, one which might also be pursued from larger space stations in the future.

  18. Small to intermediate satellites for future space science missions

    NASA Astrophysics Data System (ADS)

    De Sanctis, Carmine E.

    1993-09-01

    Spacecraft capable of carrying modest to intermediate size science payloads into Earth orbit at relatively low cost are being investigated by the Marshall Space Flight Center at the request of the Astrophysics and Space Physics Division of OSSA. Intermediate-class space science missions, such as the Lunar Ultraviolet Transit Experiment (LUTE), Inner Magnetosphere Imager (IMI), the Solar Ultraviolet Radiation and Correlative Emissions (SOURCE) experiment, and the Long Duration Exposure Facility (LDEF-II) are expected to have a progressively larger role in NASA's space science program into the next century. These and other space science missions have been examined to define the systems, subsystems, and interface requirements needed to accomplish their stated objectives. This paper discusses the science objectives, technical requirements and major issues posed by IMI, LUTE, SOURCE, and LDEF-II and will address MSFC's new ways of doing business.

  19. A Read-Aloud for Science in Space.

    ERIC Educational Resources Information Center

    Richardson, Judy S.; Smith, Nancy C.

    1997-01-01

    Describes a lesson for ninth-grade science students based on a read-aloud selection about science in space taken from "Lift Off! An Astronauts Dream" by R. Mike Mullane. Discusses specific science and language arts activities related to the selection. (SR)

  20. The International Space Life Sciences Strategic Planning Working Group

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  1. EDITORIAL: From reciprocal space to real space in surface science From reciprocal space to real space in surface science

    NASA Astrophysics Data System (ADS)

    Bartels, Ludwig; Ernst, Karl-Heinz

    2012-09-01

    This issue is dedicated to Karl-Heinz Rieder on the occasion of his 70th birthday. It contains contributions written by his former students and colleagues from all over the world. Experimental techniques based on free electrons, such as photoelectron spectroscopy, electron microscopy and low energy electron diffraction (LEED), were foundational to surface science. While the first revealed the band structures of materials, the second provided nanometer scale imagery and the latter elucidated the atomic scale periodicity of surfaces. All required an (ultra-)high vacuum, and LEED illustrated impressively that adsorbates, such as carbon monoxide, hydrogen or oxygen, can markedly and periodically restructure surfaces from their bulk termination, even at pressures ten orders of magnitude or more below atmospheric. Yet these techniques were not generally able to reveal atomic scale surface defects, nor could they faithfully show adsorption of light atoms such as hydrogen. Although a complete atom, helium can also be regarded as a wave with a de Broglie wavelength that allows the study of surface atomic periodicities at a delicateness and sensitivity exceeding that of electrons-based techniques. In combination, these and other techniques generated insight into the periodicity of surfaces and their vibrational properties, yet were limited to simple and periodic surface setups. All that changed with the advent of scanning tunneling microscopy (STM) roughly 30 years ago, allowing real space access to surface defects and individual adsorbates. Applied at low temperatures, not only can STM establish a height profile of surfaces, but can also perform spectroscopy and serve as an actuator capable of rearranging individual species at atomic scale resolution. The direct and intuitive manner in which STM provided access as a spectator and as an actor to the atomic scale was foundational to today's surface science and to the development of the concepts of nanoscience in general. The

  2. Drama and Learning Science: An Empty Space?

    ERIC Educational Resources Information Center

    Braund, Martin

    2015-01-01

    Constructivist teaching methods such as using drama have been promoted as productive ways of learning, especially in science. Specifically, role plays, using given roles or simulated and improvised enactments, are claimed to improve learning of concepts, understanding the nature of science and appreciation of science's relationship with…

  3. A review of Catherine Milne's book, The Invention of Science

    NASA Astrophysics Data System (ADS)

    Gilmer, Penny J.

    2011-12-01

    Catherine Milne's book, The Invention of Science, recounts the history of science (mainly Eurocentric) from cross-cultural, historical and philosophical worldviews. Scientists, science educators, and teachers would find this an interesting book, not only for themselves but also for those with whom they interact. Most accounts are of the great men in science with some to women in science, including reference to the exclusion of women from science. Milne provides thought-provoking activities to use in the classroom, like asking students to write the processes that occur when sugar dissolves in hot tea, with students including the three components of causal explanation. She also encourages teachers to use narratives to help students learn the context of discovery in science. In a comparison of analogical, deductive, inductive and abductive reasoning, she encourages teachers to pay attention to dialogical arguments. Book review author predicts that Milne's book will fit well with the nation's next generation science standards, still in development form. Milne succeeded in her goal "to combine aspects of the philosophy and history; not just to focus on specific scientific ideas but to provide a hint of the complex relationship between place and history, space and time, in the development of Eurocentric science."

  4. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  5. von Braun and Buckbee View Demonstration at Space Science Center

    NASA Technical Reports Server (NTRS)

    1960-01-01

    Edward O. Buckbee, the first Director of the Alabama Space Science Center (left), and Dr. Wernher von Braun (right) view a demonstration of a simulated spacecraft which uses an actual hybrid rocket engine for liftoff, hover, and landing. The display was presented to the Alabama Space Science Center, later renamed the U.S. Space and Rocket Center, by United Technology Center, a division of United Aircraft.

  6. Life Sciences Centrifuge Facility review

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1994-01-01

    The Centrifuge Facility Project at ARC was reviewed by a code U team to determine appropriateness adequacy for the ISSA. This report represents the findings of one consultant to this team and concentrates on scientific and technical risks. This report supports continuation of the project to the next phase of development.

  7. Space Science Reference Guide, 2nd Edition

    NASA Technical Reports Server (NTRS)

    Dotson, Renee (Editor)

    2003-01-01

    This Edition contains the following reports: GRACE: Gravity Recovery and Climate Experiment; Impact Craters in the Solar System; 1997 Apparition of Comet Hale-Bopp Historical Comet Observations; Baby Stars in Orion Solve Solar System Mystery; The Center of the Galaxy; The First Rock in the Solar System; Fun Times with Cosmic Rays; The Gamma-Ray Burst Next Door; The Genesis Mission: An Overview; The Genesis Solar Wind Sample Return Mission; How to Build a Supermassive Black Hole; Journey to the Center of a Neutron Star; Kepler's Laws of Planetary Motion; The Kuiper Belt and Oort Cloud ; Mapping the Baby Universe; More Hidden Black Hole Dangers; A Polarized Universe; Presolar Grains of Star Dust: Astronomy Studied with Microscopes; Ring Around the Black Hole; Searching Antarctic Ice for Meteorites; The Sun; Astrobiology: The Search for Life in the Universe; Europa and Titan: Oceans in the Outer Solar System?; Rules for Identifying Ancient Life; Inspire ; Remote Sensing; What is the Electromagnetic Spectrum? What is Infrared? How was the Infrared Discovered?; Brief History of Gyroscopes ; Genesis Discovery Mission: Science Canister Processing at JSC; Genesis Solar-Wind Sample Return Mission: The Materials ; ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land; Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite Measuring Temperature Reading; The Optical Telescope ; Space Instruments General Considerations; Damage by Impact: The Case at Meteor Crater, Arizona; Mercury Unveiled; New Data, New Ideas, and Lively Debate about Mercury; Origin of the Earth and Moon; Space Weather: The Invisible Foe; Uranus, Neptune, and the Mountains of the Moon; Dirty Ice on Mars; For a Cup of Water on Mars; Life on Mars?; The Martian Interior; Meteorites from Mars, Rocks from Canada; Organic Compounds in Martian Meteorites May be Terrestrial

  8. Science & Technology Review November 2006

    SciTech Connect

    Radousky, H

    2006-09-29

    This months issue has the following articles: (1) Expanded Supercomputing Maximizes Scientific Discovery--Commentary by Dona Crawford; (2) Thunder's Power Delivers Breakthrough Science--Livermore's Thunder supercomputer allows researchers to model systems at scales never before possible. (3) Extracting Key Content from Images--A new system called the Image Content Engine is helping analysts find significant but hard-to-recognize details in overhead images. (4) Got Oxygen?--Oxygen, especially oxygen metabolism, was key to evolution, and a Livermore project helps find out why. (5) A Shocking New Form of Laserlike Light--According to research at Livermore, smashing a crystal with a shock wave can result in coherent light.

  9. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  10. USSR Space Life Sciences Digest, volume 2, no. 4

    NASA Technical Reports Server (NTRS)

    Lewis, C. S.; Donnelly, K.

    1981-01-01

    Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided.

  11. USSR Space Life Sciences Digest, volume 2, no. 3

    NASA Technical Reports Server (NTRS)

    Lewis, C. S.

    1981-01-01

    Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided.

  12. Science & Technology Review May 2006

    SciTech Connect

    Aufderheide III, M B

    2006-04-03

    This month's issue has the following articles: (1) Science and Technology Help the Nation Counter Terrorism--Commentary by Raymond J. Juzaitis; (2) Imagers Provide Eyes to See Gamma Rays--Gamma-ray imagers provide increased radiation detection capabilities and enhance the nation's arsenal for homeland security; (3) Protecting the Nation's Livestock--Foot-and-mouth disease could devastate America's livestock; a new assay provides a rapid means to detect it; (4) Measures for Measures--Laboratory physicists combine emissivity and reflectivity to achieve highly accurate temperature measurements of metal foils; and (5) Looping through the Lamb Shift--Livermore scientists measured a small perturbation in the spectra of highly ionized uranium--the first measurement of the two-loop Lamb shift in a bound state.

  13. Science & Technology Review June 2009

    SciTech Connect

    Bearinger, J P

    2009-06-05

    This month's issue has the following articles: (1) A Safer and Even More Effective TATB - Commentary by Bruce T. Goodwin; (2) Dissolving Molecules to Improve Their Performance - Computer scientists and chemists have teamed to develop a green method for recycling a valuable high explosive that is no longer manufactured; (3) Exceptional People Producing Great Science - Postdoctoral researchers lend their expertise to projects that support the Laboratory's missions; (4) Revealing the Identities and Functions of Microbes - A new imaging technique illuminates bacterial metabolic pathways and complex relationships; and (5) A Laser Look inside Planets - Laser-driven ramp compression may one day reveal the interior structure of Earth-like planets in other solar systems.

  14. Science & Technology Review June 2010

    SciTech Connect

    Blobaum, K J

    2010-04-28

    This month's issue has the following articles: (1) A Leader in High-Pressure Science--Commentary by William H. Goldstein; (2) Diamonds Put the Pressure on Materials--New experimental capabilities are helping Livermore scientists better understand how extreme pressure affects a material's structure; (3) Exploring the Unusual Behavior of Granular Materials--Livermore scientists are developing new techniques for predicting the response of granular materials under pressure; (4) A 1-Ton Device in a Briefcase--A new briefcase-sized tool for nuclear magnetic resonance is designed for onsite analysis of suspected chemical weapons; and (5) Targets Designed for Ignition--A series of experiments at the National Ignition Facility is helping scientists finalize the ignition target design.

  15. Science & Technology Review March 2009

    SciTech Connect

    Bearinger, J P

    2009-01-22

    This month's issue has the following articles: (1) Seismic Science and Nonproliferation--Commentary by William H. Goldstein; (2) Sleuthing Seismic Signals--Supercomputer simulations improve the accuracy of models used to distinguish nuclear explosions from earthquakes and pinpoint their location; (3) Wind and the Grid--The Laboratory lends technical expertise to government and industry to more effectively integrate wind energy into the nation's electrical infrastructure; (4) Searching for Tiny Signals from Dark Matter--Powerful amplifiers may for the first time allow researchers to detect axions, hypothesized particles that may constitute 'dark matter', and (5) A Better Method for Self-Decontamination--A prototype decontamination system could one day allow military personnel and civilians to better treat themselves for exposure to toxic chemicals.

  16. Science & Technology Review March 2007

    SciTech Connect

    Radousky, H B

    2007-02-05

    This month's issue has the following articles: (1) Partnering to Enhance Americans Health--Commentary by Tomas Diaz de la Rubia; (2) Advancing the Frontiers in Cancer Research--Researchers at the University of California Davis Cancer Center and Lawrence Livermore are teaming up to fight cancer; (3) On the Leading Edge of Atmospheric Predictions--Continual research and development at the National Atmospheric Release Advisory Center help mitigate the consequences of toxic airborne hazards; (4) Climate and Agriculture: Change Begets Change--A Livermore researcher is using computer models to explore how a warmer climate may affect crop yields in California; (5) New Routes to High Temperatures and Pressures--With functionally graded density impactors composed of thin metal and polyethylene films, researchers can explore new areas of experimental physics; and (6) From Sound Waves to Stars: Teller's Contributions to Shock Physics--Edward Teller's interest in shock physics led to significant developments in both basic and applied science.

  17. Science & Technology Review September 2009

    SciTech Connect

    Bearinger, J P

    2009-07-24

    This month's issue has the following articles: (1) Remembering the Laboratory's First Director - Commentary by Harold Brown; (2) Herbert F. York (1921-2009): A Life of Firsts, an Ambassador for Peace - The Laboratory's first director, who died on May 19, 2009, used his expertise in science and technology to advance arms control and prevent nuclear war; (3) Searching for Life in Extreme Environments - DNA will help researchers discover new marine species and prepare to search for life on other planets; (4) Energy Goes with the Flow - Lawrence Livermore is one of the few organizations that distills the big picture about energy resources and use into a concise diagram; and (5) The Radiant Side of Sound - An experimental method that converts sound waves into light may lead to new technologies for scientific and industrial applications.

  18. Science & Technology Review September 2002

    SciTech Connect

    Budil, K

    2002-09-01

    This month's issue has the following articles: (1) Livermore--Poised for the Future, Commentary by Michael R. Anastasio; (2) A Hitchhiker's Guide to Early Earth--Experiments examine the possibility that the building blocks of life arrived on Earth as hitchhikers on comets; (3) A New World of Maps--More than pretty pictures, maps prepared with the tools of geographic information sciences allow researchers to find new relationships among spatial information; (4) Solid-Oxide Fuel Cells Stack Up to Efficient, Clean Power--The goal of Livermore's research in solid-oxide fuel cells is electric power generated cleanly and efficiently at an affordable cost; and (5) Empowering Light, Historic Accomplishments in Laser Research--During the past 40 plus years, the laser program at Livermore has played a seminal role in taking high-energy lasers from concept to reality.

  19. Future superconductivity applications in space - A review

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar; Ignatiev, Alex

    1988-01-01

    High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.

  20. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  1. Game Changing: NASA's Space Launch System and Science Mission Design

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2013-01-01

    NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  2. Science & Technology Review April 2005

    SciTech Connect

    Henson, V E

    2005-03-04

    This months issue has the following articles: (1) Addressing National Security Needs Benefits Energy and Environment--Commentary by Jane C. S. Long; (2) Monitoring Earth's Subsurface from Space--Livermore scientists are using radar images and simulations Livermore scientists are using radar images and simulations to detect subsurface changes on Earth of less than 1 centimeter; (3) Faculty on Sabbatical Find a Good Home at Livermore--Since 2000, more than 20 faculty members from around the world have come to the Laboratory as sabbatical scholars; (4) Finding Genes by Leaps and Bounds--Livermore biologists use computational analysis and laboratory frogs to identify functional elements of the human genome; and (5) Into the Wide Blue Yonder with BlueGene/L--BlueGene/L is the world's fastest supercomputer, and it embodies an entirely new class of highly scalable platform.

  3. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  4. Regional centres for space science and technology education (affiliated to the united nations): education curricula

    NASA Astrophysics Data System (ADS)

    Haubold, H.

    Since 1988, the United Nations, through the Programme on Space Applications, is supporting the establishment and operation of regional Centres for Space Science and Technology Education in Africa, Asia and the Pacific, Latin America and the Caribbean, and Western Asia. Simultaneously, education curricula have been developed for remote sensing, satellite communications, satellite meteorology, and space science. The paper reviews briefly these developments and highlights the most recent updated education curricula in the four disciplines that will be made available in 2002, in the six official languages of the United Nations, for implementation at the regional Centres and beyond. WWW: http://www.oosa.unvienna.org/SAP/centres/centres.htm

  5. ISS External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  6. Life sciences research on the space station: An introduction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Space Station will provide an orbiting, low gravity, permanently manned facility for scientific research, starting in the 1990s. The facilities for life sciences research are being designed to allow scientific investigators to perform research in Space Medicine and Space Biology, to study the consequences of long-term exposure to space conditions, and to allow for the permanent presence of humans in space. This research, using humans, animals, and plants, will provide an understanding of the effects of the space environment on the basic processes of life. In addition, facilities are being planned for remote observations to study biologically important elements and compounds in space and on other planets (exobiology), and Earth observations to study global ecology. The life sciences community is encouraged to plan for participation in scientific research that will be made possible by the Space Station research facility.

  7. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  8. Science & Technology Review October 2005

    SciTech Connect

    Aufderheide III, M B

    2005-08-22

    This month's issue has the following articles: (1) Important Missions, Great Science, and Innovative Technology--Commentary by Cherry A. Murray; (2) NanoFoil{reg_sign} Solders with Less Heat--Soldering and brazing to join an array of materials are now Soldering and brazing to join an array of materials are now possible without furnaces, torches, or lead; (3) Detecting Radiation on the Move--An award-winning technology can detect even small amounts An award-winning technology can detect even small amounts of radioactive material in transit; (4) Identifying Airborne Pathogens in Time to Respond--A mass spectrometer identifies airborne spores in less than A mass spectrometer identifies airborne spores in less than a minute with no false positives; (5) Picture Perfect with VisIt--The Livermore-developed software tool VisIt helps scientists The Livermore-developed software tool VisIt helps scientists visualize and analyze large data sets; (6) Revealing the Mysteries of Water--Scientists are using Livermore's Thunder supercomputer and new algorithms to understand the phases of water; and (7) Lightweight Target Generates Bright, Energetic X Rays--Livermore scientists are producing aerogel targets for use in inertial Livermore scientists are producing aerogel targets for use in inertial confinement fusion experiments and radiation-effects testing.

  9. National Space Science Data Center Information Model

    NASA Astrophysics Data System (ADS)

    Bell, E. V.; McCaslin, P.; Grayzeck, E.; McLaughlin, S. A.; Kodis, J. M.; Morgan, T. H.; Williams, D. R.; Russell, J. L.

    2013-12-01

    The National Space Science Data Center (NSSDC) was established by NASA in 1964 to provide for the preservation and dissemination of scientific data from NASA missions. It has evolved to support distributed, active archives that were established in the Planetary, Astrophysics, and Heliophysics disciplines through a series of Memoranda of Understanding. The disciplines took over responsibility for working with new projects to acquire and distribute data for community researchers while the NSSDC remained vital as a deep archive. Since 2000, NSSDC has been using the Archive Information Package to preserve data over the long term. As part of its effort to streamline the ingest of data into the deep archive, the NSSDC developed and implemented a data model of desired and required metadata in XML. This process, in use for roughly five years now, has been successfully used to support the identification and ingest of data into the NSSDC archive, most notably those data from the Planetary Data System (PDS) submitted under PDS3. A series of software packages (X-ware) were developed to handle the submission of data from the PDS nodes utilizing a volume structure. An XML submission manifest is generated at the PDS provider site prior to delivery to NSSDC. The manifest ensures the fidelity of PDS data delivered to NSSDC. Preservation metadata is captured in an XML object when NSSDC archives the data. With the recent adoption by the PDS of the XML-based PDS4 data model, there is an opportunity for the NSSDC to provide additional services to the PDS such as the preservation, tracking, and restoration of individual products (e.g., a specific data file or document), which was unfeasible in the previous PDS3 system. The NSSDC is modifying and further streamlining its data ingest process to take advantage of the PDS4 model, an important consideration given the ever-increasing amount of data being generated and archived by orbiting missions at the Moon and Mars, other active projects

  10. SSR: What's in "School Science Review" for "PSR" Readers?

    ERIC Educational Resources Information Center

    Lakin, Liz

    2004-01-01

    This article summarises ideas and developments in teaching and learning in science of relevance to "Primary Science Review" ("PSR") readers from three recent issues (309, 310, and 311) of "School Science Review" ("SSR"), the ASE journal for science education 11-19. The themes running through these are: ICT, the implications for science education…

  11. An Open and Holistic Approach for Geo and Space Sciences

    NASA Astrophysics Data System (ADS)

    Ritschel, Bernd; Seelus, Christoph; Neher, Günther; Toshihiko, Iyemori; Yatagai, Akiyo; Koyama, Yukinobu; Murayama, Yasuhiro; King, Todd; Hughes, Steve; Fung, Shing; Galkin, Ivan; Hapgood, Mike; Belehaki, Anna

    2016-04-01

    references in preparation of the publishing process. In addition, references to well documented earth and space science data are available via an increasing amount of data publications. This approach serves both, the institutional geo and space data centers which increase their awareness and importance, but also the scientists, which will find the right and already DOI-referenced data in the appropriate data journals. The Open Data and Open Archive approach finally merges in the concept of Open Science. Open Science emphasizes an open sharing of knowledge of all kind, based on a transparent multi-disciplinary and cross-domain scientific work. But Open Science is not just an idea, it also stands for a variety of projects which following the rules of Open Science, such as open methodology, open source, open data, open access, open peer review and open educational resources. Open Science also demands a new culture of scientific collaboration based on social media, and the use of shared cloud technology for data storage and computing. But, we should not forget, the WWW is not a one way road. As more data, methods and software for science research become freely available at the Internet, as more chances for a commercial or even destructive use of scientific data are opened. Already now, the giant search engine provider, such as Google or Microsoft and others are collecting, storing and analyzing all data which is available at the net. The usage of Deep Learning for the detection of semantical coherence of data for e.g. the creation of personalized on time and on location predictions using neuronal networks and artificial intelligence methods should not be reserved for them but also used within Open Science for the creation of new scientific knowledge. Open Science does not mean just to dump our scientific data, information and knowledge into the Web. Far from it, we are still responsible for a sustainable handling of our data for the benefit of humankind. The usage of the

  12. Precipitation from Space: Advancing Earth System Science

    NASA Technical Reports Server (NTRS)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  13. Education and Outreach on Space Sciences and Technologies in Taiwan

    NASA Astrophysics Data System (ADS)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  14. Family and Consumer Sciences Curriculum Review Report.

    ERIC Educational Resources Information Center

    North Allegheny School District, Pittsburgh, PA.

    This document describes a review of the North Allegheny (Pennsylvania) School District's Family and Consumer Sciences curriculum in order to develop a program that will meet students' needs to integrate family, work, and citizenship. Through intensive research, site visits to other school districts around the country, survey data, resource…

  15. PREFACE: International Symposium on Physical Sciences in Space

    NASA Astrophysics Data System (ADS)

    Meyer, Andreas; Egry, Ivan

    2011-12-01

    ISPS is the major international scientific forum for researchers in physics utilizing the space environment, in particular microgravity. It is intended to inspire and encourage cross-cutting discussions between different scientific communities working in the same environment. Contributions discussing results of experiments carried out on drop towers, parabolic aircraft flights, sounding rockets, unmanned recoverable capsules and, last but not least, the International Space Station ISS, are the backbone of this conference series, complemented by preparatory ground-based work, both experimentally and theoretically. The first International Symposium on Physical Sciences in Space (ISPS) sponsored by the International Microgravity Strategic Planning Group (IMSPG) took place in 2000 in Sorrento, Italy. IMSPG seeks to coordinate the planning of space for research in physical sciences by space agencies worldwide. AEB (Brazil), ASI (Italy), CNES (France), CSA (Canada), DLR (Germany), ESA (Europe), JAXA (Japan), NASA (USA), NSAU (Ukraine) and RSA (Russia) are members, and CNSA (China) and ISRO (India) are also invited to join IMSPG meetings. ISPS-4 was the fourth symposium in that series, following ISPS-2 organized by CSA in 2004 in Toronto, Canada, and ISPS-3 organized in 2007 by JAXA in Nara, Japan. ISPS-4 was jointly organized by ESA and DLR on behalf of the IMSPG and was held in Bonn from 11-15 July 2011. 230 participants from 17 different countries attended ISPS-4. Recent microgravity experiments were presented, analysed, and set in context to results from Earth bound experiments in 16 plenary and 68 topical talks. Lively discussions continued during two dedicated poster sessions and at the exhibition booths of space industry and research centers with new flight hardware on display. The oral presentations at ISPS4 were selected exclusively on the basis of scientific merit, as evidenced through the submitted abstracts. The selection was performed by the International

  16. Giving Children Space: A Phenomenological Exploration of Student Experiences in Space Science Inquiry

    ERIC Educational Resources Information Center

    Horne, Christopher R.

    2011-01-01

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived…

  17. Louisiana, A Leader in Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Totten, I. M.

    2002-05-01

    Earth and Space Science is too often viewed as a peripheral science compared to chemistry, biology, and physics. It is typically found integrated with geography, ecology, and general science in various stages of the curriculum, and is rarely considered holistically or as a discrete discipline. The status of earth and space science is also commonly reflected in the inadequate preparation of teachers and in the lack of government recognition of the value of earth science education. Louisiana is a state that does not follow the typical trend. It is a leader in earth and space science education with its cadre of programs that impact teacher preparation, state testing programs, curriculum development and technology initiatives. The state science framework introduces earth science in middle school. Grades 5-7 have an integrated science curriculum that includes an earth science component. Grade 8 has either an earth science or an integrated science course depending upon the availability of certified teachers in the district. Earth science is also included in Louisiana's high school science curriculum. It satisfies one science credit required for graduation. The Louisiana Educational Assessment Program (LEAP 21) and the Graduation Exit Exam (GEE 21) compose Louisiana's new criterion-referenced testing program. The content standards measured by the LEAP 21/GEE 21science tests include earth and space science. The LEAP 21 is administered at grades 4 and 8, and the GEE 21 at grades 10 and 11. Students have to pass the GEE 21 to graduate from high school. Therefore, all students graduating from a Louisiana high school will have been exposed to earth science concepts multiple times throughout their K-12 schooling. Louisiana also has an array of programs that provide statewide curriculum and student resources and professional development that impact earth and space science education. The Making Connections Project provides web-site resources and lesson plans that have been

  18. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    PubMed Central

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692

  19. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    PubMed

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024.

  20. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    PubMed

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692

  1. The Los Alamos Space Science Outreach (LASSO) Program

    NASA Astrophysics Data System (ADS)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  2. Space Physics & Aeronomy: Space Science Decadal Surveys Available

    NASA Astrophysics Data System (ADS)

    Smith, David

    The final, edited texts of two recent advisory committee reports are now available upon request from the National Research Council's Space Studies Board. The reports, New Frontiers in the Solar System: An Integrated Exploration Strategy, the report of the Solar System Exploration Survey (Michael J. S. Belton, Belton Space Exploration Initiatives, chair) and The Sun to the Earth-and Beyond: A Decadal Research Strategy in Solar and Space Physics, the report of the Solar and Space Physics Survey (Louis J. Lanzerotti, Lucent Technologies, chair) are available in a variety of media as follows: New Frontiers in the Solar System: Currently available as a book, a CD-ROM, or online at http://books.nap.edu/html/newfrontiers/0309084954.pdf. We are also taking advanced orders for copies of New Frontiers in Solar System Exploration, a 32-page, full-color booklet describing for a popular audience the principal mission recommendations of the Solar System Exploration Survey.

  3. The James Webb Space Telescope: Solar System Science

    NASA Astrophysics Data System (ADS)

    Hines, Dean C.; Hammel, H. B.; Lunine, J. I.; Milam, S. N.; Kalirai, J. S.; Sonneborn, G.

    2013-01-01

    The James Webb Space Telescope (JWST) is poised to revolutionize many areas of astrophysical research including Solar System Science. Scheduled for launch in 2018, JWST is ~100 times more powerful than the Hubble and Spitzer observatories. It has greater sensitivity, higher spatial resolution in the infrared, and significantly higher spectral resolution in the mid infrared. Imaging and spectroscopy (both long-slit and integral-field) will be available across the entire 0.6 - 28.5 micron wavelength range. Herein, we discuss the capabilities of the four science instruments with a focus on Solar System Science, including instrument modes that enable observations over the huge range of brightness presented by objects within the Solar System. The telescope is being built by Northrop Grumman Aerospace Systems for NASA, ESA, and CSA. JWST development is led by NASA's Goddard Space Flight Center. The Space Telescope Science Institute (STScI) is the Science and Operations Center (S&OC) for JWST.

  4. Project LAUNCH -- Bringing Space into Math and Science Classrooms

    NASA Astrophysics Data System (ADS)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-03-01

    Project LAUNCH is a teacher professional development program that has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University and the Florida Space Research Institute.

  5. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  6. The Deep Space Network: An instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1981-01-01

    Doppler and ranging data routinely generated at the Deep Space Stations of the California Institute of Technology-Jet Propulsion Laboratory Deep Space Network serve as an excellent source of radio science information. Important radio science experiments based on Deep Space Network generated radio metric data have included confirmation of Einstein's Theory of Relativity, measurement of the masses and gravitational harmonics of the planets out to Saturn, and measurement of electron density distribution and turbulence in the solar corona. In response to an increased level of radio science requirements, the Deep Space Network chose in 1976 to implement a new radio science system, which was completed in late 1978. Key features include (1) highly phase stable open loop receivers, (2) reduction of recorded data bandwidth through use of programmed local oscillators, and (3) real time digitization and recording on computer compatible tape.

  7. A Science Information Infrastructure for Access to Earth and Space Science Data through the Nation's Science Museums

    NASA Technical Reports Server (NTRS)

    Murray, S.

    1999-01-01

    In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.

  8. Materials science and engineering in space

    NASA Technical Reports Server (NTRS)

    Zoller, L. K.

    1980-01-01

    The influences of gravitational forces on processes used in the preparation of materials employed in earth-based applications are addressed and the benefits which may be derived from the microgravity environment of space in improving on such constraints are considered. Attention is given to the fact that Materials Processing in Space is directed toward the utilization of the unique space environment as a tool to establish a scientific characterization of materials processes for technological exploitation in the public benefit. In the context of enhancement to earth-based technology or implementation of space-based processes for specialized, low volume, high value materials, the thrust of the Materials Processing in Space program is surveyed.

  9. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At

  10. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200

  11. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  12. Distribution of Cost Growth in Robotic Space Science Missions

    NASA Technical Reports Server (NTRS)

    Swan, Christopher

    2007-01-01

    Cost growth characterization is a critical factor for effective cost risk analysis and project planning. This study analyzed low level budget changes in Jet Propulsion Laboratory-managed space science missions, which occurred during the development of the project. The data was then curve fit, according to cost distribution categories, to provide a reference set of distribution parameters with sufficient granularity to effectively model cost growth in robotic space science missions.

  13. Enabling Science and Deep Space Exploration through Space Launch System (LSL) Secondary Payload Opportunities

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). By reaching this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. NASA is making investments to expand science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and

  14. Summary of the Science performed onboard the International Space Station during Increments 12 and 13

    NASA Technical Reports Server (NTRS)

    Jules, Kenol

    2007-01-01

    By September of 2007, continuous human presence on the International Space Station will reach a milestone of eighty months. The many astronauts and cosmonauts, who live onboard the station during the last fourteen Increments over that time span, spend their time building the station as well as performing science on a daily basis. Over those eighty months, the U.S astronauts crew members logged over 2954 hours of research time. Far more research time has been accumulated by experiments controlled by investigators on the ground. The U.S astronauts conducted over one hundred and twenty six (126) science investigations. From these hundred and twenty six science investigations, many were operated across multiple Increments. The crew also installed, activated and operated nine (9) science racks that supported six science disciplines ranging from material sciences to life science. By the end of Increment 14, a total of 5083 kg of research rack mass were ferried to the station as well as 5021 kg of research mass. The objectives of this paper are three-fold. (1) To briefly review the science conducted on the International Space Station during the previous eleven Increments; (2) to discuss in detail the science investigations that were conducted on the station during Increments 12 and 13. The discussion will focus mainly on the primary objectives of each investigation and their associated hypotheses that were investigated during these two Increments. Also, some preliminary science results will be discussed for each of the investigation as science results availability permit. (3) The paper will briefly touch on what the science complement planning was and what was actually accomplished due to real time science implementation and challenges during these two Increments in question to illustrate the challenges of daily science activity while the science platform is under construction. Finally, the paper will briefly discuss the science research complements for the other two

  15. 2014 Space Radiation Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2014 Space Radiation Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Radiation Program Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 21, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated Research Plan for the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure (Degen Risk). The SRP also received a status update on the Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), the Risk of Acute Radiation Syndromes Due to Solar Particle Events (ARS Risk), and the Risk of Radiation Carcinogenesis (Cancer Risk). The SRP thought the teleconference was very informative and that the Space Radiation Program Element did a great job of outlining where the Element is with respect to our state of knowledge on the risks of carcinogenesis, central nervous system effects, and the risk of cardiovascular disease and other degenerative tissue effects from exposure to space radiation. The SRP was impressed with the quality of research that is being conducted and the progress the Space Radiation Program Element has made in the past year. While much work has been done, the SRP had a few remaining questions regarding the broad applicability of these findings to a manned deep space mission (in terms of cognitive function, the paradigms were still hippocampal based and also using Alzheimer disease models). The SRP believes that NASA should consider developing an approach to follow astronauts long-term (beyond retirement) for potential side-effects/risks of space exposure that may be unknown. Radiation toxicities often occur decades after exposure, and potential consequences would be missed if intensified exams stop after retirement of the astronauts. In addition, while cancer is one

  16. Human Research Program Space Radiation Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Woloschak, Gayle; Steinberg-Wright, S.; Coleman, Norman; Grdina, David; Hill, Colin; Iliakis, George; Metting, Noelle; Meyers, Christina

    2010-01-01

    The Space Radiation Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on December 9-11, 2009 to discuss the areas of current and future research targeted by the Space Radiation Program Element (SRPE) of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Space Radiation SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the demands placed on the HRP. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the SRP charge. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on December 11, 2009. The SRP noted that current SRPE strategy is properly science-based and views this as the best assurance of the likelihood that answers to the questions posed as gaps in knowledge can be found, that the uncertainty in risk estimates can be reduced, and that a solid, cost-effective approach to risk reduction solutions is being developed. The current approach of the SRPE, based on the use of carefully focused research solicitations, requiring thorough peer-review and approaches demonstrated to be on the path to answering the NASA strategic questions, addressed to a broad extramural community of qualified scientists, optimally positioned to take advantage of serendipitous discoveries and to leverage scientific advances made elsewhere, is sound and appropriate. The SRP viewed with concern statements by HRP implying that the only science legitimately deserving support should be "applied" or, in some instances that the very term "research" might be

  17. Earth and Space Science. A Guide for Secondary Teachers.

    ERIC Educational Resources Information Center

    Bolles, William H.; And Others

    Designed for use in Pennsylvania secondary school science classes, this guide is intended to provide fundamental information in each of the various disciplines of the earth sciences. Some of the material contained in the guide is intended as background material for teachers. Five units are presented: The Earth, The Oceans, The Space Environment,…

  18. Using Space as a Context for Teaching Science

    ERIC Educational Resources Information Center

    Smith, Mark

    2012-01-01

    This article describes how the Science Department at Shoeburyness High School in Essex introduced a space-themed year 8 (ages 12-13) science course to increase student engagement and motivation. As well as discussing the rationale for such curriculum change, it describes the processes of planning and resourcing the course, and the barriers that…

  19. Transforming Community Access to Space Science Models

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Heese, Michael; Kunetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti

    2012-01-01

    Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.

  20. Science & Technology Review October/November 2015

    SciTech Connect

    Orme, C.; Meissner, C.; Kotta, P. A.

    2015-11-05

    At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  1. Science and Technology Review, November 1998

    SciTech Connect

    Eimerl, D.

    1998-11-01

    Lawrence Livermore National Laboratory is operated by the University of California for the Department of Energy. At Livermore, we focus science and technology on assuring our nationÕs security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published 10 times a year to communicate, to a broad audience, the LaboratoryÕs scientific and technological accomplishments in fulfilling its primary missions. The publicationÕs goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  2. Science and Technology Review, December 1998

    SciTech Connect

    Eimerl, D.

    1998-12-01

    Lawrence Livermore National Laboratory is operated by the University of California for the Department of Energy. At Livermore, we focus science and technology on assuring our nationÕs security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published 10 times a year to communicate, to a broad audience, the LaboratoryÕs scientific and technological accomplishments in fulfilling its primary missions. The publicationÕs goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

  3. Hubble 2007: Science Year in Review

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This book epitomizes Hubbles continuing years of glorious accomplishments, presenting a sample of the activities, operations and observations, and scientific findings from 2007. Here is our observatory. Here are a few of our talented people. Here is what we have done. NASA plans a final servicing mission to Hubble in 2008. Two powerful new instruments are to be installed, and repairs made. After the astronauts do their wonderful work, Hubble will be more capable than at any time since launch. The science community eagerly anticipates the new opportunities for research offered by a refurbished observatory. While we do not know exactly what new science stories will appear in future editions of this book, we are certain that the frontiers of science will continue to be pushed outward by the forces of human curiosity and cleverness, channeled by the Hubble Space Telescope.

  4. Science off the Sphere: Space Balloonacy

    NASA Video Gallery

    In his off duty time, NASA Astronaut Don Pettit cools down with some microgravity water balloon experiments aboard the International Space Station. Through a partnership between NASA and the Americ...

  5. Earth benefits from space life sciences

    NASA Technical Reports Server (NTRS)

    Garshnek, V.; Nicogossian, A. E.; Griffiths, L.

    1990-01-01

    Contributions of space exploration which are widely recognized are those dealing with the impact of space technology on public health and medical services in both urban and remote rural areas. Telecommunications, image enhancement, 3-dimensional image reconstructions, miniaturization, automation, and data analysis, have transformed the delivery of medical care and have brought about a new impetus to the field of biomedicine. Many areas of medical care and biological research have been affected. These include technological breakthroughs in such areas as: (1) diagnosis, treatment, and prevention of cardiovascular diseases, (2) new approaches to the understanding of osteoporosis, (3) early detection of genetic birth defects, (4) emergency medical care, and (5) treatment of chronic metabolic disorders. These are but a few examples where technology originally developed to support space medicine or space research has been applied to solving medical and health care delivery problems on Earth.

  6. Earth benefits from space life sciences

    NASA Astrophysics Data System (ADS)

    Garshnek, V.; Nicogossian, A. E.; Griffiths, L.

    Contributions of space exploration which are widely recognized are those dealing with the impact of space technology on public health and medical services in both urban and remote rural areas. Telecommunications, image enhancement, 3-dimensional image reconstructions, miniaturization, automation, and data analysis, have transformed the delivery of medical care and have brought about a new impetus to the field of biomedicine. Many areas of medical care and biological research have been affected. These include technological breakthroughs in such areas as: (1) diagnosis, treatment, and prevention of cardiovascular diseases, (2) new approaches to the understanding of osteoporosis, (3) early detection of genetic birth defects, (4) emergency medical care, and (5) treatment of chronic metabolic disorders. These are but a few examples where technology originally developed to support space medicine or space research has been applied to solving medical and health care delivery problems on Earth.

  7. Science on the International Space Station

    NASA Video Gallery

    For over ten years, humans have been living on the space station 24 hours a day, seven days a week AND have performed over 600 experiments! Check out just a few of these extraordinary experiments a...

  8. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  9. The Revolution in Earth and Space Science Education.

    ERIC Educational Resources Information Center

    Barstow, Daniel; Geary, Ed; Yazijian, Harvey

    2002-01-01

    Explains the changing nature of earth and space science education such as using inquiry-based teaching, how technology allows students to use satellite images in inquiry-based investigations, the consideration of earth and space as a whole system rather than a sequence of topics, and increased student participation in learning opportunities. (YDS)

  10. Space: The Final Frontier in the Learning of Science?

    ERIC Educational Resources Information Center

    Milne, Catherine

    2014-01-01

    In "Space", relations, and the learning of science", Wolff-Michael Roth and Pei-Ling Hsu use ethnomethodology to explore high school interns learning shopwork and shoptalk in a research lab that is located in a world class facility for water quality analysis. Using interaction analysis they identify how spaces, like a research…

  11. Toys in Space: Exploring Science with the Astronauts.

    ERIC Educational Resources Information Center

    Sumners, Carolyn

    The purpose of the Toys in Space project was to create new ways for children to discover the joy and excitement of science and technology in the world around us. This book describes how familiar toys behave in the space environment where the downward pull of gravity is absent, and clearly documents those principles of physics that explain why the…

  12. Medical operations and life sciences activities on space station

    NASA Technical Reports Server (NTRS)

    Johnson, P. C. (Editor); Mason, J. A. (Editor)

    1982-01-01

    Space station health maintenance facilities, habitability, personnel, and research in the medical sciences and in biology are discussed. It is assumed that the space station structure will consist of several modules, each being consistent with Orbiter payload bay limits in size, weight, and center of gravity.

  13. Global Cooperation in the Science of Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Space Weather Initiative (ISWI). The ISWI program is a continuation of the successful International Heliophysical Year (IHY) program. These programs have brought scientists together to tackle the scientific issues behind space weather. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and ISWI activities that promote space weather science via complementary approaches in international scientific collaborations. capacity building. and public outreach.

  14. Successfully Transitioning Science Research to Space Weather Applications

    NASA Technical Reports Server (NTRS)

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  15. Space Science in Action: Earth [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording explains the factors that allow life to flourish on Earth, including our position within the solar system, the water cycle, and the composition of the planet. A hands-on activity demonstrates the earth's water cycle. Contents include a teacher's guide designed to help science teachers in grades 5-8 by providing a brief…

  16. Space, Relations, and the Learning of Science

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael; Hsu, Pei-Ling

    2014-01-01

    In the literature on the situated and distributed nature of cognition, the coordination of spatial organization and the structure of human practices and relations is accepted as a fact. To date, science educators have yet to build on such research. Drawing on an ethnographic study of high school students during an internship in a scientific…

  17. Gravitational biology and space life sciences: current status and implications for the Indian space programme.

    PubMed

    Dayanandan, P

    2011-12-01

    This paper is an introduction to gravitational and space life sciences and a summary of key achievements in the field. Current global research is focused on understanding the effects of gravity/microgravity onmicrobes, cells, plants, animals and humans. It is now established that many plants and animals can progress through several generations in microgravity. Astrobiology is emerging as an exciting field promoting research in biospherics and fabrication of controlled environmental life support systems. India is one of the 14-nation International Space Exploration Coordination Group (2007) that hopes that someday humans may live and work on other planets within the Solar System. The vision statement of the Indian Space Research Organization (ISRO) includes planetary exploration and human spaceflight. While a leader in several fields of space science, India is yet to initiate serious research in gravitational and life sciences. Suggestions are made here for establishing a full-fledged Indian space life sciences programme.

  18. Gravitational biology and space life sciences: current status and implications for the Indian space programme.

    PubMed

    Dayanandan, P

    2011-12-01

    This paper is an introduction to gravitational and space life sciences and a summary of key achievements in the field. Current global research is focused on understanding the effects of gravity/microgravity onmicrobes, cells, plants, animals and humans. It is now established that many plants and animals can progress through several generations in microgravity. Astrobiology is emerging as an exciting field promoting research in biospherics and fabrication of controlled environmental life support systems. India is one of the 14-nation International Space Exploration Coordination Group (2007) that hopes that someday humans may live and work on other planets within the Solar System. The vision statement of the Indian Space Research Organization (ISRO) includes planetary exploration and human spaceflight. While a leader in several fields of space science, India is yet to initiate serious research in gravitational and life sciences. Suggestions are made here for establishing a full-fledged Indian space life sciences programme. PMID:22116289

  19. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  20. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  1. In-Space Propulsion for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Bishop-Behel, Karen; Johnson, Les

    2004-01-01

    This paper presents viewgraphs on the development of In-Space Propulsion Technologies for Science and Exploration. The topics include: 1) In-Space Propulsion Technology Program Overview; 2) In-Space Propulsion Technology Project Status; 3) Solar Electric Propulsion; 4) Next Generation Electric Propulsion; 5) Aerocapture Technology Alternatives; 6) Aerocapture; 7) Advanced Thermal Protection Systems Developed and Being Tested; 8) Solar Sails; 9) Advanced Chemical Propulsion; 10) Momentum Exchange Tethers; and 11) Momentum-exchange/electrodynamic reboost (MXER) Tether Basic Operation.

  2. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  3. Nanoparticles applied to plant science: a review.

    PubMed

    Arruda, Sandra Cristina Capaldi; Silva, Alisson Luiz Diniz; Galazzi, Rodrigo Moretto; Azevedo, Ricardo Antunes; Arruda, Marco Aurélio Zezzi

    2015-01-01

    The present review addresses certain important aspects regarding nanoparticles and the environment, with an emphasis on plant science. The production and characterization of nanoparticles is the focus of this review, providing an idea of the range and the consolidation of these aspects in the literature, with modifications on the routes of synthesis and the application of the analytical techniques for characterization of the nanoparticles (NPs). Additionally, aspects related to the interaction between the NPs and plants, their toxicities, and the phytoremediation process, among others, are also discussed. Future trends are also presented, supplying evidence for certain possibilities regarding new research involving nanoparticles and plants.

  4. Materials Science Standard Rack on Interntional Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Line drawing depicts the location of one of three racks that will make up the Materials Science Research Facility in the U.S. Destiny laboratory module to be attached to the International Space Station (ISS). Other positions will be occupied by a variety of racks supporting research in combustion, fluids, biotechnology, and human physiology, and racks to support lab and station opertions. The Materials Science Research Facility is managed by NASA's Marshall Space Flight Center. Photo credit: NASA/Marshall Space Flight Center

  5. Technology for a NASA Space-Based Science Operations Grid

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Redman, Sandra H.

    2003-01-01

    This viewgraph representation presents an overview of a proposal to develop a space-based operations grid in support of space-based science experiments. The development of such a grid would provide a dynamic, secure and scalable architecture based on standards and next-generation reusable software and would enable greater science collaboration and productivity through the use of shared resources and distributed computing. The authors propose developing this concept for use on payload experiments carried aboard the International Space Station. Topics covered include: grid definitions, portals, grid development and coordination, grid technology and potential uses of such a grid.

  6. The International Space Station: A National Science Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2011-01-01

    After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.

  7. Planning and Processing Space Science Observations Using NASA's SPICE System

    NASA Technical Reports Server (NTRS)

    Acton, Charles H.

    2000-01-01

    The Navigation and Ancillary Information Facility (NAIF) team, acting under the directions of NASA's Office of Space Science, has built a data system-named SPICE, to assist scientists in planning and interpreting scientific observations from space-borne instruments. The principal objective of this data system is that it will provide geometric and other ancillary data used to plan space science missions and subsequently recover the full value of science instrument data returned from these missions, including correlation of individual instrument data sets with data from other instruments on the same or other spacecraft. SPICE is also used to support a host of mission engineering functions, such as telecommunications system analysis and operation of NASA's Deep Space Network antennas. This paper describes the SPICE system, including where and how it is used. It also touches on possibilities for further development and invites participation it this endeavor.

  8. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  9. Space Science in Action: Astronomy [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording teaches students about constellations, star movement, and how scientists have studied celestial bodies throughout history from Ptolemy to Copernicus to the work of the Hubble Space Telescope. An interview with Kathy Thornton, one of the astronauts who repaired the Hubble while in orbit, is featured. A hands-on activity…

  10. Life science research on the Space Station

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The requirements for studying the mechanisms of response and adaptation to the microgravity environment are examined. The necessary facilities, equipments, and technologies for the use of animals in space research are discussed. The application of a centrifuge to the analysis of the effects of microgravity on physiological adaptation is described.

  11. Game changing: NASA's space launch system and science mission design

    NASA Astrophysics Data System (ADS)

    Creech, S. D.

    NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher characteristic energy (C3) energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as “ monolithic” telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  12. Space, relations, and the learning of science

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael; Hsu, Pei-Ling

    2014-03-01

    In the literature on the situated and distributed nature of cognition, the coordination of spatial organization and the structure of human practices and relations is accepted as a fact. To date, science educators have yet to build on such research. Drawing on an ethnographic study of high school students during an internship in a scientific research laboratory, which we understand as a "perspicuous setting" and a "smart setting," in which otherwise invisible dimensions of human practices become evident, we analyze the relationship between spatial configurations of the setting and the nature and temporal organization of knowing and learning in science. Our analyses show that spatial aspects of the laboratory projectively organize how participants act and can serve as resources to help the novices to participate in difficult and unfamiliar tasks. First, existing spatial relations projectively organize the language involving interns and lab members. In particular, spatial relations projectively organize where and when pedagogical language should happen; and there are specific discursive mechanisms that produce cohesion in language across different places in the laboratory. Second, the spatial arrangements projectively organize the temporal dimensions of action. These findings allow science educators to think explicitly about organizing "smart contexts" that help learners participate in and learn complex scientific laboratory practices.

  13. Space Sciences Education Program of Moscow State University

    NASA Astrophysics Data System (ADS)

    Krasotkin, S.; Radchenko, V.; Zhuravlev, V.

    2007-12-01

    The main purpose of the space sciences education program developed in Moscow State University is to incorporate modern space research in the university and high education and popularize basics of space physics. The First Russian University Satellite "Universitetskiy-Tatyana" launched on January 20, 2005 formed a basis for development of a new approach to the space-physics education. The onboard scientific complex, as well as the mission control and information-receiving center, was designed and developed in Moscow State University. The scientific program of the mission includes measurements of space radiation in various energy ranges, and UV luminosity and lightening from the Earth. Educational materials are concentrated to upper high school, junior and senior university levels. There was developed a special computerized hands-on exercises based on the experimental quasi-realtime data obtained from "Universitetskiy-Tatyana" satellite and other internet resources. Students specialized in space physics from several Russian universities are involved in scientific work based on various scientific data. Moscow State University is now extending its space science education program by creation the electronic textbooks on remote sensing, space factors and materials study, satellite design and development, etc. "Space schools" for university teachers and students were held in 2004 - 2007. The main objective of these schools was to attract interest to space research. The mutual idea of these schools was to join forces of Moscow State University scientists, university teachers and students. For modern university world, it is very important to understand what skills future space scientists and space industry employees must be equipped with. The space sciences educational activity of Moscow State University is a non-profit project and is open for all interested parties.

  14. ESA is now a major player in global space science

    NASA Astrophysics Data System (ADS)

    1997-07-01

    longer than ISO's. Planck Surveyor was recently selected as a medium-scale project, to chart the cosmic microwave background carefully enough to trace the origin of the galaxies. ESA is now examining the option of combining these two missions in a single spacecraft, for launching in 2005. Prominent among other enticing possibilities is Mars Express, a high-level, low-cost mission that could set off for the Red Planet in 2003. It would give Europe an important stake in the exploration of Mars, by remote sensing from an orbiter and by experiments in landers. The latter can exploit ESA=s experience in preparing for the Huygens mission to Titan. Some of the Mars experiments should be readily adaptable from instruments prepared for other missions. -4- ESA is also considering SMART missions, using small satellites to test key technologies. Solar-electric propulsion, long seen as a much-needed advance in spacecraft engines, could take a small spacecraft to the Moon and then onwards to an asteroid. A second candidate for a SMART mission would develop Adrag free@ technologies for testing Einstein=s theory of gravity. Other possibilities under review include participation in a replacement for the Hubble Space Telescope, and opportunities for science associated with the International Space Station. In addition, three major projects have been selected by Europe=s space scientists as long-term goals. A spacecraft to orbit the hot planet Mercury, barely explored till now, will shed new light on the history of the Solar System. An astronomical interferometric mission using two or more telescopes in combination will observe the stars and galaxies more accurately by visible or infrared light. And a novel kind of astronomy is promised by an ambitious gravitational-wave mission to detect radiation predicted by Einstein's theory of gravity, which supposedly stretches and squeezes space itself. In short, ESA is delivering superb space science and, if future funding allows, has exciting ideas

  15. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy. PMID:25362364

  16. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  17. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  18. Invited Review Article: Advanced light microscopy for biological space research

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  19. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  20. The future of space science in the 21st century

    NASA Astrophysics Data System (ADS)

    Bonnet, R. M.

    2001-06-01

    Space Science helped the start of the open space race after the launch of Sputnik-1 in 1957. Conversely, the use of space vehicles during the cold war allowed the scientists to conduct many observations and make discoveries which have dramatically changed our views of our own Solar System and of the Universe. What will be the future of this activity in the next century, with the disappearance of the cold war justification and in the context of shrinking budgets? Is there a future for space exploration? For what benefit and how will space science programmes be conducted? Who will be the main players? Are there limits to our ability to explore? The pioneers of space research in the post-Sputnik-1 era, like J-L. Steinberg, had both an easier and a more difficult time than space scientists of today. Nevertheless, space science will only survive in the next century if it succeeds in reaching the deep interest and motivation of society at large.

  1. Earth benefits from space life sciences

    NASA Technical Reports Server (NTRS)

    Garshnek, V.; Nicogossian, A. E.; Griffiths, L.

    1988-01-01

    The applications to medicine of various results from space exploration are examined. Improvements have been made in the management of cardiovascular disease, in particular the use of the ultrasonic scanner to image arteries in three dimensions, the use of excimer lasers to disrupt arterial plaques in coronary blood vessels, and the use of advanced electrodes for cardiac monitoring. A bone stiffness analyzer has helped to diagnose osteoporosis and aid in its treatment. An automated light microscope system is used for chromosome analysis, and an X-ray image intensifier called Lixiscope is used in emergency medical care. An advanced portable defibrillator has been developed for the heart, and an insulin delivery system has been derived from space microminiaturization techniques.

  2. Undergraduate space science program at Alabama A&M University

    NASA Astrophysics Data System (ADS)

    Lal, R.; Tan, A.; Lyatsky, W.

    A new undergraduate Physics Program with Space Science as the major concentration area has been initiated at Alabama A&M University (AAMU) in 2001. This program is funded by NASAÆs OSS and OEOP Offices under the NRA 00-OSS-02 Minority University Education and Research Partnership Initiative in Space Science-2000. The partner institutions are NASA Marshall Space Flight Center (MSFC) and Goddard Space Flight Center (GSFC), Lawrence Livermore National Laboratory (LLNL) and The University of Alabama in Huntsville (UAH). A primary objective of this Program is to train undergraduate and graduate minority (principally African-American) students in the extremely underrepresented areas of Space Science and to prepare them for eventual teaching and/or research careers in this increasingly important field. The best way to achieve this is to recruit students early from high school, and not wait until they have already selected their specialty in college. Also, a student with a BS degree in Physics with specialization in Space Science will have a decisive advantage in pursuing graduate studies in Space Science than the others. The BS degree requires a student to take 30 credit hours of Physics courses and an additional 18 hours in the chosen area of concentration. Several basic traditional courses in Lower Atmosphere, Aeronomy, the Solar System and Orbital Mechanics have been developed. Additional courses in Plasma Physics, Solar Physics and Astronomy will be taught by NASA-MSFC scientists and UAH faculty. A parallel objective is to expose the student to research experience early in their ca- reers. Each student is required to complete a one semester Undergraduate Research Opportunity Project (UROP) on a relevant topic from Space Science. The students will be guided in research by AAMU and UAH faculty and MSFC scientists. Each student will be required to write a term paper and make an oral presentation before a committee of advisors. This experience will enhance the Space

  3. Earth System and Space Science Curriculum for High Schools

    NASA Astrophysics Data System (ADS)

    Leck, J. P.

    2005-12-01

    Earth System and Space Science emphasizes the dynamic interrelationships between the atmosphere, the geosphere, the hydrosphere, the biosphere and the earth-universe system. There is a strong emphasis on internet-based and technology activities, and laboratory activities. Science skills and processes learned in this course prepare for continued development of scientific inquiry in other science disciplines. A partnership with the Goddard Space Flight Center and collaboration with Anne Arundel County Public Schools provides enhanced richness to the learning activities. Earth and Space scientists from NASA GSFC gave their expertise in the development of ESSS. Their suggestions were the foundation for the development of this curriculum. Earth System and Space Science is a course, which develops student knowledge and understanding of the Earth System and its place in the universe. This course seeks to empower students to understand their dynamic local and global environments and the Earth as part of a complex system. The student will learn the science content necessary to make wise personal and social decisions related to quality of life, and the management of the Earth's finite resources, environments, and hazards. During much of the recent past, scientists have been concerned with examining individual physical, chemical, and biological processes or groups of processes in the atmosphere, hydrosphere, lithosphere, and biosphere. Recently, however, there has been a movement in Earth Science to take a planetary or "system" approach to investigating our planet. Satellite images show planet Earth as one entity without boundaries. There are concerns with environmental issues on regional, global, and even planetary scales. In Earth/Space Systems Science, Earth is viewed as a complex evolving planet that is characterized by continually interacting change over a wide scale of time and space.

  4. Reviews.

    ERIC Educational Resources Information Center

    Science Teacher, 1989

    1989-01-01

    Reviews a software planetarium package called "Sky Travel." Includes two audiovisuals: "Conquest of Space" and "Windows on Science: Earth Science"; and four books: "Small Energy Sources: Choices that Work,""Stonehenge Complete,""Uneasy Careers and Intimate Lives: Women in Science 1789-1979," and "The Rise of Urbanization and the Decline of…

  5. Earth observations from space: Outlook for the geological sciences

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Lowman, P. D., Jr.

    1973-01-01

    Remote sensing from space platforms is discussed as another tool available to geologists. The results of Nimbus observations, the ERTS program, and Skylab EREP are reviewed, and a multidisciplinary approach is recommended for meeting the challenges of remote sensing.

  6. Space Science in the Twenty-First Century: Imperatives for the Decades 1995 to 2015. Overview

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The opportunities for space science in the period from 1995 to 2015 are discussed. A perspective on progress in the six disciplines (the planet Earth; planetary and lunar exploration; solar system space physics; astronomy and astrophysics; fundamental physics and chemistry; and life sciences) of space science are reviewed. The prospectives for major achievements by 1995 from missions already underway or awaiting new starts are included. A set of long range goals for these disciplines are presented for the first two decades of the twenty-first century. Broad themes for future scientific pursuits are presented and some examples of high-priority missions for the turn of the century are highlighted. A few recommendations are cited for each discipline to suggest how these themes might be developed.

  7. U.S. Materials Science on the International Space Station: Status and Plans

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  8. Strategic Science to Address Current and Future Space Weather Needs

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Schwadron, N.; Antiochos, S. K.; Bhattacharjee, A.; Bisi, M. M.; Gopalswamy, N.; Kamalabadi, F.; Pulkkinen, A. A.; Tobiska, W. K.; Weimer, D. R.; Withers, P.

    2014-12-01

    NASA's Living With a Star (LWS) program has contributed a wealth of scientific knowledge that is relevant to space weather and user needs. A targeted approach to science questions has resulted in leveraging new scientific knowledge to improve not only our understanding of the Heliophysics domain, but also to develop predictive capabilities in key areas of LWS science. This fascinating interplay between science and applications promises to benefit both domains. Scientists providing feedback to the LWS program are now discussing an evolution of the targeted approach that explicitly considers how new science improves, or enables, predictive capability directly. Long-term program goals are termed "Strategic Science Areas" (SSAs) that address predictive capabilities in six specific areas: geomagnetically induced currents, satellite drag, solar energetic particles, ionospheric total electron content, radio frequency scintillation induced by the ionosphere, and the radiation environment. SSAs are organized around user needs and the impacts of space weather on society. Scientists involved in the LWS program identify targeted areas of research that reference (or bear upon) societal needs. Such targeted science leads to new discoveries and is one of the valid forms of exploration. In this talk we describe the benefits of targeted science, and how addressing societal impacts in an appropriate way maintains the strong science focus of LWS, while also leading to its broader impacts.

  9. Space Resources for Teachers, Space Science, A Guide Outlining Understandings, Fundamental Concepts, and Activities.

    ERIC Educational Resources Information Center

    Thompson, Malcolm

    This instructional and resource guide is designed so that it may be used in the secondary school or in the first two years of college to present a series of units in space science, or to supplement existing science and mathematics courses. The guide consists of six units: (1) measurement, distance, and size in astronomy, (2) atoms, spectra, and…

  10. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  11. The 1994 Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1994-01-01

    This document is the proceedings from the fourth annual 'Space and Earth Science Data Compression Workshop,' which was held on April 2, 1994, at the University of Utah in Salt Lake City, Utah. This workshop was held in cooperation with the 1994 Data Compression Conference, which was held at Snowbird, Utah, March 29-31 1994. The Workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. It consisted of 13 papers presented in 4 sessions. The papers focus on data compression research that is integrated into, or has the potential to be integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientist's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  12. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  13. The Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1993-01-01

    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  14. Visualization Techniques in Space and Atmospheric Sciences

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P. (Editor); Bredekamp, Joseph H. (Editor)

    1995-01-01

    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility.

  15. Progress report on nuclear propulsion for space exploration and science

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  16. Innovative Space Sciences Education Programs for Young People

    NASA Astrophysics Data System (ADS)

    Inbar, T.

    2002-01-01

    The future of the world is greatly depends on space. Through space sciences education programs with the main focus is on young people, the society, as a whole will gain in the years to come. The Weizmann Institute of Science is the leading scientific research center in Israel. After the need for science education programs for young students was recognized, the institute established its Youth Activities Section, which serves as the institute's outreach for the general population of school children nation-wide. The youth activities section holds courses, seminars, science camps etc. for almost 40 years. As an instructor in the youth activities section since 1990, my focus is space sciences programs, such as rocketry courses, planetarium demonstrations, astronomical observations and special events - all in the creed of bringing the space science to everyone, in a enjoyable, innovative and creative way. Two of the courses conducted combines' scientific knowledge, hands-on experience and a glimpse into the work of space programs: the rocketry courses offered a unique chance of design, build and fly actual rockets, to height of about 800 meters. The students conduct research on the rockets, such as aerial photography, environmental measurements and aerodynamic research - using student built wind tunnel. The space engineering course extend the high frontier of the students into space: the objective of a two year course is to design, build an launch an experiments package to space, using one of NASA's GAS programs. These courses, combined with special guest lectures by Weizmann institute's senior researchers, tours to facilities like satellite control center, clean rooms, the aeronautical industry, give the students a chance to meet with "the real world" of space sciences applications and industry, and this - in turn - will have payback effect on the society as a whole in years to come. The activities of space sciences education include two portable planetariums, 4

  17. Space Sciences Education and Outreach Project of Moscow State University

    NASA Astrophysics Data System (ADS)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  18. United Nations/European Space Agency Workshops on Basic Space Science

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-02-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica and Colombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  19. United Nations/European Space Agency Workshops on Basic Space Science

    NASA Technical Reports Server (NTRS)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-01-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  20. Space Science in the Kindergarten Classroom and Beyond

    NASA Astrophysics Data System (ADS)

    Bonett, D.

    2000-12-01

    With the advent of probes to our closest planet Mars and the multi-national construction of Earth's first International Space Station, it is not presumptive to introduce 5 year old school children to the space sciences. K. E. Little Elementary School is located in the community of Bacliff, Texas. It is the largest elementary school (950 students) in the Dickinson Independent School District. K. E. Little is a Title 1 school with a multi-ethnic student population. It's close proximity to the Johnson Space Center and the Lunar and Planetary Institute provide ample instructional support and material. Last fall, two kindergarten classes received space science instruction. Both were class sizes of 19 with one class predominantly children of Vietnamese immigrants. Our goal was to create curiosity and awareness through a year-long integrated space science program of instruction. Accurate information of the space sciences was conveyed through sources i.e. books and videos, as well as conventional song, movement, and artistic expression. Videotaping and photographs replaced traditional anecdotal records. Samples of student work were compiled for classroom and school display. This year, two fifth grade classes will receive space science instruction using the Jason Project XII curriculum. Students will engage in a year-long exploration of the Hawaiian Islands. Information will be conveyed via internet and live video presentations as well as traditional sources i.e. books and videos, as well as song, movement, and artistic expression. Comparison of volcanic activity in Hawaii to volcanoes on other planets will be one of several interplanetary correlations. Samples of student work will be compiled for classroom, school, and community display.

  1. Space science in the 1990's and beyond

    NASA Astrophysics Data System (ADS)

    Huntress, Wesley T., Jr.; Kicza, Mary E.; Feeley, T. Jens

    NASA's Office of Space Sciences is changing its approach to our missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at our role in the Federal Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires far less resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs.

  2. Telescience testbedding for life science missions on the Space Station

    NASA Technical Reports Server (NTRS)

    Rasmussen, D.; Mian, A.; Bosley, J.

    1988-01-01

    'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.

  3. Space science in the 1990's and beyond

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley T., Jr.; Kicza, Mary E.; Feeley, T. Jens

    1994-01-01

    NASA's Office of Space Sciences is changing its approach to our missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at our role in the Federal Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires far less resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs.

  4. Vital phase of space science. [solar terrestrial interactions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1994-01-01

    Space science began with the indirect phase where the activity in space was inferred from such terrestrial phenomena as geomagnetic storms, ionospheric variations, and fluctuations in the cosmic ray intensity. The direct phase was initiated with spaceflight placing instruments directly in space and permitting the direct observation of UV and X rays, as well as precision observations of solar luminosity variations. The evidence from these many direct studies, together with the historical record of terrestrial conditions, shows that the variations of the luminosity of the Sun affect the terrestrial atmosphere at all levels, with devastating changes in climate tracking the major changes in the activity level and luminosity of the Sun. The quantification and understanding of this vital connection should be the first priority of space science and geophysics, from oceans and atmosphere through the ionosphere, magnetosphere, and all the way to the convective zone of the Sun. It becomes the vital phase of space science, focused on the basic science of the changing habitability of Earth.

  5. Results of the life sciences DSOs conducted aboard the space shuttle 1981-1986

    NASA Technical Reports Server (NTRS)

    Bungo, Michael W.; Bagian, Tandi M.; Bowman, Mark A.; Levitan, Barry M.

    1987-01-01

    Results are presented for a number of life sciences investigations sponsored by the Space Biomedical Research Institute at the NASA Lyndon B. Johnson Space Center and conducted as Detailed Supplementary Objectives (DSOs) on Space Shuttle flights between 1981 and 1986. An introduction and a description of the DSO program are followed by summary reports on the investigations. Reports are grouped into the following disciplines: Biochemistry and Pharmacology, Cardiovascular Effects and Fluid Shifts, Equipment Testing and Experiment Verification, Microbiology, Space Motion Sickness, and Vision. In the appendix, the status of every medical/life science DSO is presented in graphical form, which enables the flight history, the number of subjects tested, and the experiment results to be reviewed at a glance.

  6. Strawman payload data for science and applications space platforms

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The need for a free flying science and applications space platform to host compatible long duration experiment groupings in Earth orbit is discussed. Experiment level information on strawman payload models is presented which serves to identify and quantify the requirements for the space platform system. A description data base on the strawman payload model is presented along with experiment level and group level summaries. Payloads identified in the strawman model include the disciplines of resources observations and environmental observations.

  7. National Space Science Data Center (NSSDC) Data Listing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Satellite and nonsatellite data available from the National Space Science Data Center are listed. The Satellite Data listing includes the spacecraft name, launch date, and an alphabetical list of experiments. The Non-Satellite Data listing contains ground based data, models, computer routines, and composite spacecraft data. The data set name, data form code, quantity of data, and the time space covered are included in the data sets of both listings where appropriate. Geodetic tracking data sets are also included.

  8. Challenges for Transitioning Science Research to Space Weather Applications

    NASA Technical Reports Server (NTRS)

    Spann, James

    2013-01-01

    Effectively transitioning science knowledge to useful applications relevant to space weather has become important. The effort to transition scientific knowledge to a useful application is not a research nor is it operations, but an activity that connects two. Successful transitioning must be an intentional effort with a clear goal and measureable outcome. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  9. Digest of Russian Space Life Sciences, issue 33

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1993-01-01

    This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.

  10. Space science education for postgraduate students in Minoufiyia University, Egypt

    NASA Astrophysics Data System (ADS)

    Mosalam Shaltout, M. A.

    In 1986 the author with his colleagues in the Physics Department, Faculty of Science, Minoufiyia University, Minoufiyia, Egypt created a new branch in the physics department, to award the M.Sc. and Ph.D. degree in Atmospheric physics. Courses in solar, solar-terrestrial, and atmospheric physics were necessary for M.Sc. and Ph.D. students, because they not studded it before in the undergraduate level. Till now, seven students obtained on M.Sc. degree, and two students obtained on Ph.D. from the Physics Department of Minoufiya University in Solar, Solar-Terrestrial, and Space Physics, and there are one Ph.D and two M.Sc. under the awarding. This current extend to other six Egyptian Universities (Cairo, Ain Shams, Helwan, Alexandria, Mansoura, and Minua), where five students obtained on Ph.D degree, and thirteen students obtained on M.Sc. in Solar, Solar-terrestrial, and Space Physics from the six universities under the supervision of the author. In April 2002 the author succeeded to obtain on the agreement of the Minoufiyia University Council by construction Space Research Center, as a first center for space research in the Egyptian Universities (20 Universities), as a part from the Desert Environment Research Institute for temporal time, then after the growth, it will be independent center. Beside the research work in space science and technology, the center have the validity to award Diploma, M.Sc and Ph.D. in space science for postgraduate students. There are different courses in space science and technology for each level of the three degrees. According to the program of the European Mediterranean Countries (TEMPS III) for developing the higher education level, the center constructed a project for developing space science and technology education in the center in collaboration with European Universities and Space Research Centers. This paper explain in detail the experience in Space Science Education in Minoufiya University, and how expand it to the other

  11. Lessons from Communicating Space Science Over the Web

    NASA Technical Reports Server (NTRS)

    Dooling, David, Jr.; Triese, D.

    2000-01-01

    The Science Directorate at NASA's Marshall Space Flight Center uses the web in an aggressive manner to expand communications beyond the traditional "public affairs" or "media relations" routines. The key to success has been developing a balanced process that A) involves laboratory personnel and the NASA center community through a weekly Science Communications Roundtable, B) vests ownership and development of the product (i.e., the story) in the scientist a writer resident in the laboratory, and C) seeks taps the talents of the outside communications community through the Research/Roadmap Communications activity. The process is flexible and responsive, allowing Science@NASA to provide daily coverage for events, such as two materials science missions managed by NASA/Marshall. In addition to developing materials for the web, Science@NASA has conducted extensive research to determine what subjects people seek on the web, and the best methods to position stories so they will be found and read.

  12. Hubble 2006: Science Year in Review

    NASA Technical Reports Server (NTRS)

    Brown, R.

    2007-01-01

    The 10 science articles selected for this years annual science report exemplify the range of Hubble research from the Solar System, across our Milky Way, and on to distant galaxies. The objects of study include a new feature on Jupiter, binaries in the Kuiper Belt, Cepheid variable stars, the Orion Nebula, distant transiting planets, lensing galaxies, active galactic nuclei, red-and-dead galaxies, and galactic outflows and jets. Each narrative strives to construct the readers understanding of the topics and issues, and to place the latest research in historical, as well as scientific, context. These essays reveal trends in the practice of astronomy. More powerful computers are permitting astronomers to study ever larger data sets, enabling the discovery of subtle effects and rare objects. (Two investigations created mosaic images that are among the largest produced to date.) Multiwavelength data sets from ground-based telescopes, as well as other great observatories Spitzer and Chandraare increasingly important for holistic interpretations of Hubble results. This yearbook also presents profiles of 12 individuals who work with Hubble, or Hubble data, on a daily basis. They are representative of the many students, scientists, engineers, and other professions who are proudly associated with Hubble. Their stories collectively communicate the excitement and reward of careers related to space science and technology.

  13. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  14. Artistic Research on Freedom in Space and Science

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.; Schelfhout, Ronald; Gelfand, Dmitry; Van der Heide, Edwin; Preusterink, Jolanda; Domnitch, Evelina

    ArtScience ESTEC: Space science in the arts. Since the earliest scientific preparations for extra-terrestrial travel at the beginning of the 20th century, the exploration of outer space has become a quintessential framework of the human condition and its creative manifestations. Although the artistic pursuit of space science is still in its infancy, an accelerated evolution is currently underway. Perspective: With the current state of the planet and the development of technology, humankind has the ability to look from a greater distance to the damage that has been done. This offers potential in the form of early detection and prevention of disasters. Meanwhile our aim seems to be directed away from the earth into the universe. In the Space science in the arts project I tried to encapsulate these two viewpoints that tend to avoid each other. We are still earthbound and that is our basis. A tree cannot grow tall without strong roots. Space, a promise of freedom. Line of thought: Space sounds like freedom but to actually send people out there they have to be strapped tightly on top of a giant missile to reach a habitat of interconnecting tubes with very little space. It is impossible to escape protocol with- out risking your life and the lives of astronauts have been fixed years in advance. This is the human predicament which does not apply to the telescopes and other devices used to reach far into the universe. Providing information instantly the various forms of light allow us to travel without moving. Description of the installation: The research on freedom in space and science led to the development of an installation that reflects the dualistic aspect which clings to the exploration of the universe. The installation is a model on multiple scales. You can look at the material or the feeling it evokes as well as at the constantly changing projections. The image is light. Inside this glass circle there is a broken dome placed over a dark and reflective surface on

  15. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  16. Hungarian space research 1981-1985: Lectures and review articles

    NASA Technical Reports Server (NTRS)

    Benko, G. (Editor)

    1986-01-01

    This monograph presents an overview of Hungarian space research from 1981 to 1985. Topics discussed in the original report include the development of space research centers, the flight of the first Hungarian astronaut, Hungarian participation in international space programs such as the Vega/Halley's Comet mission and the BEALUCA materials science experiment, advances in astronomical research, and activities of the Cosmic Geodetic Observatory. Other topics discussed incude space biomedical studies, meteorological applications of space research, satellite communications, and satellite power supply systems.

  17. The Pisgah Astronomical Research Institute Space Science Lab

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Whitworth, C.

    2010-01-01

    High school students in rural Western North Carolina conduct planetary science research monitoring the Earth's Moon for impacts by meteors. NASA has a program dedicated to monitoring the Moon as part of the NASA Vision for Space Exploration and future human missions to the Moon. The primary goal is to reach students who otherwise would not have this opportunity and motivate them to develop the critical thinking skills necessary for objective scientific inquiry. Students develop skills in electronics, computer sciences, astronomy, optics, physics and earth sciences. Equally important is the hope that the students will become interested in pursuing careers in research or other science-related areas. The program involves 30 students per year over a three year period. We are in the first year of the program. The students work with PARI scientists and science educators, alumni SSL scholars, and retiree volunteers from the community whose careers span science, technology, engineering, and math. Students spend a week at PARI where they learn to use the PARI 0.4-m optical telescope for lunar observations, and build their own telescope. The Space Science Lab students learn to analyze the data searching for lunar impacts. Additionally, students bring their newly constructed telescopes home so they can continue their observations as part of continuing school-related projects. We have monthly follow-up sessions throughout the school year, and a website where students upload their most recent lunar images. The Space Science Lab is based at the PARI, the former NASA east coast tracking station near Brevard, NC.

  18. Space Culture: Innovative Cultural Approaches To Public Engagement With Astronomy, Space Science And Astronautics

    NASA Astrophysics Data System (ADS)

    Malina, Roger F.

    2012-01-01

    In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds

  19. The United Nations Basic Space Science Initiative for IHY 2007

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Davila, J. M.; Thompson, B. J.; Haubold, H.

    2006-08-01

    The United Nations, in cooperation with national and international space-related agencies and organizations, has been organizing annual workshops since 1990 on basic space science, particularly for the benefit of scientists and engineers from developing nations. The United Nations Office for Outer Space Affairs, through the IHY Secretariat and the United Nations Basic Space Science Initiative (UNBSSI) will assist scientists and engineers from all over the world in participating in the International Heliophysical Year (IHY) 2007. A major thrust of the IHY/UNBSSI program is to deploy arrays of small, inexpensive instruments such as magnetometers, radio telescopes, GPS receivers, all-sky cameras, etc. around the world to provide global measurements of ionospheric and heliospheric phenomena. The small instrument program is envisioned as a partnership between instrument providers, and instrument hosts in developing countries. The lead scientist will provide the instruments (or fabrication plans for instruments) in the array; the host country will provide manpower, facilities, and operational support to obtain data with the instrument typically at a local university. Funds are not available through the IHY to build the instruments; these must be obtained through the normal proposal channels. However all instrument operational support for local scientists, facilities, data acquisition, etc will be provided by the host nation. It is our hope that the IHY/UNBSSI program can facilitate the deployment of several of these networks world wide. Existing data bases and relevant software tools that can will be identified to promote space science activities in developing countries. Extensive data on space science have been accumulated by a number of space missions. Similarly, long-term data bases are available from ground based observations. These data can be utilized in ways different from originally intended for understanding the heliophysical processes. This paper provides an

  20. Inspiring the Next Generation in Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hayes, Judith

    2010-01-01

    Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.

  1. Future prospects for space life sciences from a NASA perspective.

    PubMed

    White, R J; Lujan, B F

    1989-08-01

    As the U.S. Space Program lifted off the ground again on September 29, 1988, along with it came the return of scientific possibilities for the U.S. space science community. The end of that mission, STS-26, marked a new beginning for NASA. The success of STS-26 was critical to the dreams and careers of many people. Many of those dreams had been put on hold and, in fact, were fading as the U.S. watched the rest of the world move ahead rapidly with attempts to gain access to the limited and precious laboratory of space.

  2. Experiments in Planetary and Related Sciences and the Space Station

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald (Editor); Williams, Richard J. (Editor)

    1987-01-01

    Numerous workshops were held to provide a forum for discussing the full range of possible experiments, their science rationale, and the requirements on the Space Station, should such experiments eventually be flown. During the workshops, subgroups met to discuss areas of common interest. Summaries of each group and abstracts of contributed papers as they developed from a workshop on September 15 to 16, 1986, are included. Topics addressed include: planetary impact experimentation; physics of windblown particles; particle formation and interaction; experimental cosmochemistry in the space station; and an overview of the program to place advanced automation and robotics on the space station.

  3. The James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Sullivan, Pamela C.; Boyce, Leslye A.; Glazer, Stuart D.; Johnson, Eric L.; McCloskey, John C.; Voyton, Mark F.

    2004-01-01

    The Integrated Science Instrument Module of the James Webb Space Telescope is described from a systems perspective with emphasis on unique and advanced technology aspects. The major subsystems of this flight element are described including: structure, thermal, command and data handling, and software.

  4. International ties. [international cooperation in the space sciences

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A historical overview of NASA's participation in international activities in space science is given. The Ariel, Alouette, Isis, and San Marco satellite programs are addressed along with sounding rocket and ground based projects. Relations and cooperation with the Soviet Union are also discussed.

  5. NASA IDEAS to Improve Instruction in Astronomy and Space Science

    NASA Astrophysics Data System (ADS)

    Malphrus, B.; Kidwell, K.

    1999-12-01

    The IDEAS to Improve Instructional Competencies in Astronomy and Space Science project is intended to develop and/or enhance teacher competencies in astronomy and space sciences of teacher participants (Grades 5-12) in Kentucky. The project is being implemented through a two-week summer workshop, a series of five follow-up meetings, and an academic year research project. The resources of Kentucky's only Radio Astronomy Observatory- the Morehead Radio Telescope (MRT), Goldstone Apple Valley Radio Telescope (GAVRT) (via remote observing using the Internet), and the Kentucky Department of Education regional service centers are combined to provide a unique educational experience. The project is designed to improve science teacher's instructional methodologies by providing pedagogical assistance, content training, involving the teachers and their students in research in radio astronomy, providing access to the facilities of the Morehead Astrophysical Observatory, and by working closely with a NASA-JOVE research astronomer. Participating teachers will ultimately produce curriculum units and research projects, the results of which will be published on the WWW. A major goal of this project is to share with teachers and ultimately students the excitement and importance of scientific research. The project represents a partnership of five agencies, each matching the commitment both financially and/or personnel. This project is funded by the NASA IDEAS initiative administered by the Space Telescope Science Institute and the National Air and Space Administration (NASA).

  6. Space Requirements for Science Instruction Grades 9-12.

    ERIC Educational Resources Information Center

    Engelhardt, David Frederic

    Key issues in the design of science facilities used by grades nine through twelve are presented and analyzed in this extended discussion. Four basic determinants of educational specifications are given as--(1) gross activities and sub-group organization, (2) number of students in the space, (3) services required, and (4) location in relation to…

  7. Opportunities and questions for the fundamental biological sciences in space

    NASA Technical Reports Server (NTRS)

    Sharp, Joseph C.; Vernikos, Joan

    1992-01-01

    The nature of biological issues which can be addressed during long-term space missions is briefly discussed. These issues include structure, from cell to organ to organism; function, the regulation of systems such as immunology, neural sciences, and behavior; and reproduction and development.

  8. Designing Learning Spaces for Interprofessional Education in the Anatomical Sciences

    ERIC Educational Resources Information Center

    Cleveland, Benjamin; Kvan, Thomas

    2015-01-01

    This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which…

  9. Science Made Fun: This Class Is Practically out in Space.

    ERIC Educational Resources Information Center

    Silberstein, Otmar; Brooke, Lawrence

    1994-01-01

    In the sixth-grade science program at Peterson Middle School in Sunnyvale, California, grants and donated labor and materials were used to build a simulated space center. One of the capsules is devoted to growing vegetables hydroponically. Eighth-grade students serve as teaching assistants in the program, and biology and chemistry enrollments are…

  10. Connecting Science and Literacy in the Classroom: Using Space and Earth Science to Support Language Arts

    NASA Astrophysics Data System (ADS)

    Wessen, A. S.; Cobabe-Ammann, E. A.

    2009-12-01

    The connections between science and literacy in the classroom have received increasing attention over the last two decades, as more and more evidence demonstrates that science provides an exciting vehicle in which to engage students on the path to literacy improvement. Combining literacy with science allows students to creatively explore the world or universe, and it. Combining science and literacy improves both reading and science scores, and increases students’ interest in science. At a time when over 40% of students beyond the 5th grade are reading two or more levels below grade level and are struggling with their current materials, finding ways to excite and engage them in the reading process is key. Literacy programs incorporating unique space science content can help prepare children for standardized language arts tests. It also engages our nation’s youngest learners and their teachers with the science, math, and technology of exploration in a language arts format. This session focuses on programs and products that bring the excitement of earth and space science into the literacy classroom, with a focus on research-based approached to combining science and language arts. Reading, Writing and Rings! Grades 1-2

  11. Space Science Education by Mathematica Demonstrations: Interactive Design of Moving Space Probe Elements Mechanics by Foldable and Extendable Structures for Space Applications

    NASA Astrophysics Data System (ADS)

    Kabai, S.; Bérczi, Sz.

    2010-03-01

    By the interactive Mathematica Demonstrations of the Wolfram Research several mechanics for space probe operation and motion simulations were studied as space robotics and science educational program.

  12. Exploring the living universe: A strategy for space life sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  13. MECSAT: Stimulating Minority Undergraduate Interest in Space Science and Space Exploration

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Austin, S. A.; Vaughn, G. A.; Brathwaite, K. A.; Amoa, K.; Flowers, J. M.

    2004-12-01

    MECSAT is a scientific balloon project to stimulate student interest in Space Science and exploration. The project is based in an urban, minority-serving undergraduate institution and participating students are Computer Science, Physics/Space Science, Environmental Science and Mathematics majors. The project provides a hands-on end-to-end microscale view of NASA missions including instrument selection and/or construction, flight simulation and dynamics, tracking and communications, recovery, data validation and analysis, and project management. Initial student experiments included a Geiger counter (cosmic rays), dust/particle collector, ozonesonde, weather data loggers, flight computer and communications equipment. Student experiments are components of existing curriculum including courses in Space Science, Remote Sensing, Networks and Data Communications, and Scientific Computing. Student response to the project has been overwhelmingly enthusiastic and anecdotal evidence shows a significantly increased interest in NASA science among the participating students. MECSAT is partially supported by the following NASA programs: MUCERPI, MUSPIN and the New York State Space Grant Consortium.

  14. Heliophysics Science and the Moon: Potential Solar and Space Physics Science for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This report addresses both these features new science enabled by NASAs exploration initiative and enabling science that is critical to ensuring a safe return to the Moon and onward to Mars. The areas of interest are structured into four main themes: Theme 1: Heliophysics Science of the Moon Studies of the Moons unique magnetodynamic plasma environment. Theme 2: Space Weather, Safeguarding the Journey Studies aimed at developing a predictive capability for space weather hazards. Theme 3: The Moon as a Historical Record Studies of the variation of the lunar regolith to uncover the history of the Sun, solar system, local interstellar medium, galaxy, and universe. Theme 4: The Moon as a Heliophysics Science Platform Using the unique environment of the lunar surface as a platform to provide observations beneficial to advancing heliophysics science.

  15. Integrated Science Assessment for Lead (Second External Review Draft)

    EPA Science Inventory

    EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Lead (Pb) has been made available for independent peer review and public review. This draft ISA represents a concise synthesis and evaluation of the most policy-relevant science...

  16. Integrated Science Assessment for Lead (First External Review Draft)

    EPA Science Inventory

    EPA has announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Lead (Pb) has been made available for independent peer review and public review. This draft ISA represents a concise synthesis and evaluation of the most policy-relevant science ...

  17. Integrated Science Assessment for Lead (Third External Review Draft)

    EPA Science Inventory

    EPA has announced that the Third External Review Draft of the Integrated Science Assessment (ISA) for Lead (Pb) has been made available for independent peer review and public review. This draft ISA represents a concise synthesis and evaluation of the most policy-relevant science ...

  18. Internet-Based Science Learning: A Review of Journal Publications

    ERIC Educational Resources Information Center

    Lee, Silvia Wen-Yu; Tsai, Chin-Chung; Wu, Ying-Tien; Tsai, Meng-Jung; Liu, Tzu-Chien; Hwang, Fu-Kwun; Lai, Chih-Hung; Liang, Jyh-Chong; Wu, Huang-Ching; Chang, Chun-Yen

    2011-01-01

    Internet-based science learning has been advocated by many science educators for more than a decade. This review examines relevant research on this topic. Sixty-five papers are included in the review. The review consists of the following two major categories: (1) the role of demographics and learners' characteristics in Internet-based science…

  19. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  20. SIM PlanetQuest: Science with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen (Editor); Turyshev, Slava (Editor)

    2004-01-01

    SIM - the Space Interferometry Mission - will perform precision optical astrometry on objects as faint as R magnitude 20. It will be the first space-based astrometric interferometer, operating in the optical band with a 10-m baseline. The Project is managed by the Jet Propulsion Laboratory, California Institute of Technology, in close collaboration with two industry partners, Lockheed Martin Missiles and Space, and TRW Inc., Space and Electronics Group. Launch of SIM is currently planned for 2009. In its wide-angle astrometric mode, SIM will yield 4 microarcsecond absolute position and parallax measurements. Astrometric planet searches will be done in a narrow-angle mode, with an accuracy of 4 microarcseconds or better in a single measurement. As a pointed rather than a survey instrument, SIM will maintain.its astrometric accuracy down to the faintest, magnitudes, opening up the opportunity for astrometry of active galactic nuclei to better than 10 pas. SIM will define a new astrometric reference frame, using a grid of approximately 1500 stars with positions accurate to 4 microarcseconds. The SIM Science Team comprises the Principal Investigators of ten Key Projects, and five Mission Scientists contributing their expertise to specific areas of the mission. Their science programs cover a wide range of topics in Galactic and extragalactic astronomy. They include: searches for low-mass planets - including analogs to our own solar system - tlie formation and dynamics of our Galaxy, calibration of the cosmic distance scale, and fundamental stellar astrophysics. All of the science observing on SIM is competitively awarded; the Science Team programs total about 40% of the total available, and the remainder will be assigned via future NASA competitions. This report is a compilation of science summaries by members of the Science Team, and it illustrates the wealth of scientific problems that microarcsecond-precision astrometry can contribute to. More information on SIM

  1. Space science public outreach at Louisiana State University

    NASA Astrophysics Data System (ADS)

    Guzik, T. G.; Babin, E.; Cooney, W.; Giammanco, J.; Hartman, D.; McNeil, R.; Slovak, M.; Stacy, J. G.

    2004-01-01

    Over the last seven years the Astronomy/Astrophysics group in the Department of Physics and Astronomy of Louisiana State University has developed an extensive Space Science education and public outreach program. This program includes partners from state and parish government, the local community, museums and school districts and has directly led to the development of the Highland Road Park Observatory, in-service teacher training program, content standards aligned classroom material and new technology for the classroom. In addition, a new planetarium/space theater opening soon in downtown Baton Rouge, Louisiana will provide our group with new space science education and public outreach opportunities. In this paper, we will discuss details about some of our individual projects.

  2. The James Webb Space Telescope: Science and Mission Status

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2011-01-01

    The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA for launch later this decade. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe and peer through dusty clouds to see star and planet formation at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at 2 microns. The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5- year prime science mission, with consumables for 10 years of science operations.

  3. Science and applications on the space station: A strategic vision

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The central themes relating to science and applications on the Space Station for fiscal year 1989 are discussed. Materials science research is proposed in a wide variety of subfields including protein crystal growth, metallurgy, and properties of fluids. Also proposed are the U.S. Polar Platform, an Extended Duration Crew Operations Project, and a long-range Space Biology Research Project to investigate plant and animal physiology, gravitational biology, life support systems, and exobiology. The exterior of the Space Station will provide attachment points for payloads to study subjects such as the earth and its environment, the sun, other bodies in the solar system, and cosmic objects. Examples of such attached payloads are given. They include a plasma interaction monitoring system, observation of solar features and properties, studies of particle radiation from the sun, cosmic dust collection and analysis, surveys of various cosmic and solar rays, measurements of rainfall and wind and the study of global changes on earth.

  4. The Virtual Space Telescope: A New Class of Science Missions

    NASA Technical Reports Server (NTRS)

    Shah, Neerav; Calhoun, Philip

    2016-01-01

    Many science investigations proposed by GSFC require two spacecraft alignment across a long distance to form a virtual space telescope. Forming a Virtual Space telescope requires advances in Guidance, Navigation, and Control (GNC) enabling the distribution of monolithic telescopes across multiple space platforms. The capability to align multiple spacecraft to an intertial target is at a low maturity state and we present a roadmap to advance the system-level capability to be flight ready in preparation of various science applications. An engineering proof of concept, called the CANYVAL-X CubeSat MIssion is presented. CANYVAL-X's advancement will decrease risk for a potential starshade mission that would fly with WFIRST.

  5. Basic space science for the benefit of developing countries. Proceedings. Conference, Lagos (Nigeria), 18 - 22 Oct 1993.

    NASA Astrophysics Data System (ADS)

    The following topics were dealt with: international cooperation in basic space science, education for space science, atmospheric science, planetary science, the Sun, binary stars, ground-based and space-based astronomical observations, and astrophysics and cosmology.

  6. Implications of the Next Generation Science Standards for Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  7. Enhanced science capability on the International Space Station

    NASA Astrophysics Data System (ADS)

    Felice, Ronald R.; Kienlen, Mike

    2002-12-01

    It is inevitable that the International Space Station (ISS) will play a significant role in the conduct of science in space. However, in order to provide this service to a wide and broad community and to perform it cost effectively, alternative concepts must be considered to complement NASA"s Institutional capability. Currently science payload forward and return data services must compete for higher priority ISS infrastructure support requirements. Furthermore, initial astronaut crews will be limited to a single shift. Much of their time and activities will be required to meet their physical needs (exercise, recreation, etc.), station maintenance, and station operations, leaving precious little time to actively conduct science payload operations. ISS construction plans include the provisioning of several truss mounted, space-hardened pallets, both zenith and nadir facing. The ISS pallets will provide a platform to conduct both earth and space sciences. Additionally, the same pallets can be used for life and material sciences, as astronauts could place and retrieve sealed canisters for long-term micro-gravity exposure. Thus the pallets provide great potential for enhancing ISS science return. This significant addition to ISS payload capacity has the potential to exacerbate priorities and service contention factors within the exiting institution. In order to have it all, i.e., more science and less contention, the pallets must be data smart and operate autonomously so that NASA institutional services are not additionally taxed. Specifically, the "Enhanced Science Capability on the International Space Station" concept involves placing data handling and spread spectrum X-band communications capabilities directly on ISS pallets. Spread spectrum techniques are considered as a means of discriminating between different pallets as well as to eliminate RFI. The data and RF systems, similar to that of "free flyers", include a fully functional command and data handling system

  8. Status of space science and technology - An Australian perspective

    NASA Astrophysics Data System (ADS)

    Carver, J. H.

    The ``Tyranny of Distance'' has had a profound influence on Australian history and reaction to it has been an important factor in determining national scientific and technological goals. Because of its size and geographical remoteness, Australia is one of the countries to have gained substantially from the applications of space technology particularly in the fields of communications, meteorology and remote sensing. Australia is the fifth largest investor in INTELSAT which carries a major fraction of the nation's overseas telecommunications. A domestic satellite system, AUSSAT, is being acquired to improve telecommunications within the country. Australia is heavily dependent on satellite data for routine meteorological forecasting. Data from the Australian Landsat Station are in strong demand, particularly for mineral exploration. In the field of space science, Australia is collaborating with Canada and the United States in feasibility studies for STARLAB, a free-flying UV-optical one metre telescope proposed for launch by the US Space Shuttle beginning in 1989. These scientific and technological programs in which Australia is participating are all dependent upon the space programs of other nations and in describing the status of space science and technology from an Australian perspective some comments will be made on particular aspects of the space programs of the United States and Japan.

  9. 50 years of space science (Jean Dominique Cassini Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Bonnet, Roger-Maurice

    2013-04-01

    The launch of Sputnik-1 triggered my fascination for space at the age of 20. The past 50 years have allowed me to study the Sun with sounding rockets and satellites, revealing the complexity of our star, contributing to the understanding of its physics, and offering surprising manifestations of its behavior and of its effects on Earth. Building instruments for space astronomy, managing teams of space scientists and engineers, led me to become the science director of the European space agency between 1983 and 2001 where I formulated and managed the Horizon 2000 program, which led Europe to occupy the front row of world space science. The Jean Dominique Cassini Medal Lecture offers me an opportunity, to describe the most spectacular achievements of this long-term plan and to outline some basic principles for reaching success, including the essential role of international cooperation with shared partnership. The Lecture also identifies key problems and controversial issues that space astronomy and exploration will face in the 21st century.

  10. The space telescope: A study of NASA, science, technology, and politics

    NASA Technical Reports Server (NTRS)

    Smith, Robert William

    1989-01-01

    Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.

  11. Systematic reviews of research in science education: rigour or rigidity?

    NASA Astrophysics Data System (ADS)

    Bennett, Judith; Lubben, Fred; Hogarth, Sylvia; Campbell, Bob

    2005-04-01

    This paper explores the role of systematic reviews of research literature and considers what they have to offer research in science education. The origins of systematic reviews are described, together with the reasons why they are currently attracting considerable attention in the research literature. An overview is presented of the key features of systematic review methods, illustrating with examples from two systematic reviews undertaken in science education -- one on aspects of small-group work in science lessons, and the other on the effects on pupils of context-based and Science-Technology-Society approaches. Issues raised by systematic reviews in terms of characterizing research studies and making judgements about their quality are then discussed. Finally, systematic reviews are compared with more traditional narrative reviews to identify ways in which they can contribute to the undertaking of research studies in a science education.

  12. Project LAUNCH: Bringing Space into Math and Science Classrooms

    NASA Technical Reports Server (NTRS)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  13. Van Allen Probes Science Gateway and Space Weather Data Processing

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2014-12-01

    The Van Allen Probes Science Gateway acts as a centralized interface to the instrument Science Operation Centers (SOCs), provides mission planning tools, and hosts a number of science related activities such as the mission bibliography. Most importantly, the Gateway acts as the primary site for processing and delivering the VAP Space Weather data to users. Over the past year, the web-site has been completely redesigned with the focus on easier navigation and improvements of the existing tools such as the orbit plotter, position calculator and magnetic footprint tool. In addition, a new data plotting facility has been added. Based on HTML5, which allows users to interactively plot Van Allen Probes summary and space weather data. The user can tailor the tool to display exactly the plot they wish to see and then share this with other users via either a URL or by QR code. Various types of plots can be created, including simple time series, data plotted as a function of orbital location, and time versus L-Shell. We discuss the new Van Allen Probes Science Gateway and the Space Weather Data Pipeline.

  14. Dorm Room Labs for Introductory Space Science Courses

    NASA Astrophysics Data System (ADS)

    Moldwin, M.

    2011-12-01

    Many large lecture introductory space science courses do not have a lab component. At UCLA and the University of Michigan (UM), I have developed a set of Dorm Room Labs that students conduct as homework (or dormwork) to explore more deeply concepts covered in an Introduction to Space Weather course. The concepts are relevant for any general physics or space science course. Using qualitative research methods, I have found that these dorm room experiments have meaningful impact on enabling students to develop conceptual understanding of several important science and space physics topics. These include the structure of dipole magnetic fields, conducting a simple experiment controlling for a single variable at a time, understanding how sunspots help measure the rotation rate of the Sun, and the role of spectroscopy in determining the composition of the Sun. Both UCLA and UM offer faculty teaching mini-grants of about $500 per course that enables the purchase of Dorm Room Lab kits for classes of well over 100 students. The motivation, description of several dorm room kits, and results from non-rigorous qualitative research will be presented.

  15. Developing basic space science world wide: progress report

    NASA Astrophysics Data System (ADS)

    Haubold, Hans J.; Wamsteker, Willem

    2004-01-01

    The UN/ESA Workshops on Basic Space Science is a long-term effort for the development of astronomy and regional and international cooperation in this field on a world wide basis, particularly in developing nations. The first four workshops in this series (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, and Egypt 1994) addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia, respectively. One major recommendation that emanated from the first four workshops was that small astronomical facilities should be established in developing nations for research and education programmes at the university level and that such facilities should be networked. Subsequently, material for teaching and observing programmes for small optical telescopes were developed or recommended and astronomical telescope facilities have been inaugurated at UN/ESA Workshops on Basic Space Science in Sri Lanka (1995), Honduras (1997), and Jordan (1999). UN/ESA Workshops on Basic Space Science in Germany (1996), France (2000), Mauritius (2001), and Argentina (2002) emphasized the particular importance of astrophysical data systems and the virtual observatory concept for the development of astronomy on a world wide basis. Since 1996, the workshops are contributing to the development of the World Space Observatory (WSO/UV) concept. Achievements of the series of workshops are briefly summarized in this report.

  16. Life-sciences research opportunities in commercial suborbital space flight

    NASA Astrophysics Data System (ADS)

    Shelhamer, Mark

    2014-11-01

    Commercial suborbital space flights will reach altitudes above 100 km, with 3-5 min of weightlessness bracketed by high-g launch and landing phases. The proposed frequency of these flights, and the large passenger population, present interesting opportunities for researchers in the life sciences. The characteristics of suborbital flight are between those of parabolic and orbital flights, opening up new scientific possibilities and easing the burden for obtaining access to 0g. There are several areas where these flights might be used for research in the life sciences: (1) operational research: preparation for “real” space flight, such as rehearsal of medical procedures, (2) applied research-to answer questions relevant to long-term space flight; (3) passenger health and safety-effects on passengers, relevant to screening and training; (4) basic research in physiological mechanisms-to address issues of fundamental science. We describe possible projects in each of these categories. One in particular spans several areas. Based on the anticipated suborbital flight profiles, observations from parabolic flight, and the wide range of fitness and experience levels of suborbital passengers, sensorimotor disturbances such as motion sickness and disorientation are major concerns. Protocols for pre-flight adaptation of sensorimotor responses might help to alleviate some of these problems, based on results from research in the initial flights. This would improve the passenger experience and add to the knowledge base relevant to space flight more generally.

  17. Space: the final frontier in the learning of science?

    NASA Astrophysics Data System (ADS)

    Milne, Catherine

    2014-03-01

    In Space, relations, and the learning of science, Wolff-Michael Roth and Pei-Ling Hsu use ethnomethodology to explore high school interns learning shopwork and shoptalk in a research lab that is located in a world class facility for water quality analysis. Using interaction analysis they identify how spaces, like a research laboratory, can be structured as smart spaces to create a workflow (learning flow) so that shoptalk and shopwork can projectively organize the actions of interns even in new and unfamiliar settings. Using these findings they explore implications for the design of curriculum and learning spaces more broadly. The Forum papers of Erica Blatt and Cassie Quigley complement this analysis. Blatt expands the discussion on space as an active component of learning with an examination of teaching settings, beyond laboratory spaces, as active participants of education. Quigley examines smart spaces as authentic learning spaces while acknowledging how internship experiences all empirical elements of authentic learning including open-ended inquiry and empowerment. In this paper I synthesize these ideas and propose that a narrative structure might better support workflow, student agency and democratic decision making.

  18. NASA's astrophysics archives at the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  19. Sharing Ideas: Making Earth and Space Science Accessible

    NASA Astrophysics Data System (ADS)

    Runyon, C. J.; Guimond, K.; Atkinson, C.

    2005-12-01

    There are nearly six million K-12 students with some form of disability in the U.S. and the majority of them are required to achieve the same academic levels as their non-impaired peers. Historically, students with disabilities have experienced difficulties in fully accessing and participating in middle school and high school science programs. With the passage of the No Child Left Behind (NCLB) Act and increasing focus on reading and math performance, many students with exceptional needs are now being taught science by mainstream science teachers, who have little to no training on how to work with students with exceptional needs. For the past 5 years, SERCH has engaged in organizing and hosting a series of Exceptional Space Science Materials for Exceptional Students Workshops (ENWS) focused on educating students with special needs about the space sciences. Each workshop has focused on a different aspect of formal and informal education and working with the various special needs. In all of these workshops, participants experience what a person or student with special needs might encounter when working through educational activities or exhibits by experiencing it first-hand. In addition to making many of NASA's education materials accessible for all learners, a top-ten list of "best practices" has been compiled by the professional educators as a result of our working together for five years and their formal and informal educational experiences.

  20. Second Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2014-01-01

    The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.

  1. Operational considerations for the Space Station Life Science Glovebox

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  2. National Aeronautics and Space Administration Science and Engineering Apprentice Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration's Science and Engineering Apprentice Program for high school students is one of NASA's many efforts toward a goal of scientific literacy. It embraces science, mathematics, and technology as keys to purposeful and sustained progress and security for our nation and its people. It serves as a model for helping reform education by striving to address mechanisms to influence the knowledge, skills, and attitudes of our students. It focuses on what to do today to meet the challenges of tomorrow.

  3. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  4. Space Weather Research at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  5. The Space Science Lab: High School Student Solar Research Experience

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Whitworth, C.; Harris, B.; David, C.

    2007-12-01

    Native American, Hispanic, African American, and other underrepresented high school students in rural Western North Carolina have the unprecedented opportunity as researchers in the Space Science Lab to conduct visible and radio observations of the Sun. The program involves 90 students over a three year period. The primary goal is to reach students who otherwise would not have this opportunity, and motivate them to develop the critical thinking skills necessary for objective scientific inquiry. Students develop skills in electronics, computer sciences, astronomy, physics and earth sciences. Equally important is the hope that the students will become interested in pursuing careers in research or other science-related areas. We expect their enthusiasm for science will increase by experiencing research investigations that are fun and relevant to their understanding of the world around them. The students conduct their own research, and also interact with scientists around the world. A total of 54 students have spent a week at the Space Science Lab located on the campus of the Pisgah Astronomical Research Institute (PARI) during the Summers of 2006 and 2007. Students construct their own JOVE radio telescopes that they bring home to continue their observations during the academic year. They share their results during four follow-up sessions throughout the school year. The students also have Internet access to radio telescopes and solar monitoring equipment at PARI. We report on results from student evaluations from the first year in 2006 and current session student experiences. We gratefully acknowledge support from the Burroughs Wellcome Fund - Student Science Enrichment Program

  6. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed

  7. Solar and Space Physics: A Science for a Technological Society

    NASA Technical Reports Server (NTRS)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  8. Preliminary Concepts for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cobb, S.D.; Szofran, F. R.; Schaefer, D. A.

    1999-01-01

    The Materials Science Research Facility (MSRF) is designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF consists of modular autonomous Materials Science Research Racks (MSRR's). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on Utilization Flight 3. Each MSRR is a stand-alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, or multi-user generic processing apparatus Each MSRR will support a wide variety of scientific investigations.

  9. Linking Space Weather Science and Decision Making (Invited)

    NASA Astrophysics Data System (ADS)

    Fisher, G. M.

    2009-12-01

    Linking scientific knowledge to decision making is a challenge for both the science and policy communities. In particular, in the field of space weather, there are unique challenges such as decision makers may not know that space has weather that poses risks to our technologically-dependent economy. Additionally, in an era of limited funds for scientific research, hazards posed by other natural disasters such as flooding and earthquakes are by contrast well known to policy makers, further making the importance of space weather research and monitoring a tough sell. Today, with industries and individuals more dependent on the Global Positioning System, wireless technology, and satellites than ever before, any disruption or inaccuracy can result in severe economic impacts. Therefore, it is highly important to understand how space weather science can most benefit society. The key to connecting research to decision making is to ensure that the information is salient, credible, and legitimate. To achieve this, scientists need to understand the decision makers' perspectives, including their language and culture, and recognize that their needs may evolve. This presentation will take a closer look at the steps required to make space weather research, models, and forecasts useful to decision makers and ultimately, benefit society.

  10. Structural Safety of a Hubble Space Telescope Science Instrument

    NASA Technical Reports Server (NTRS)

    Lou, M. C.; Brent, D. N.

    1993-01-01

    This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.

  11. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  12. Life sciences biomedical research planning for Space Station

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  13. Center of Excellence in Space Data and Information Sciences

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1996 through June 30, 1997. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry,and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix D (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  14. Center of Excellence in Space Data and Information Sciences

    NASA Technical Reports Server (NTRS)

    Yesha, Yelena

    1999-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1998 through June 30, 1999. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix F (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  15. Center of Excellence in Space Data and Information Sciences

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1997 through June 30, 1998. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix E (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  16. The Space Science Suitcase - Instruments for Exploring Space Weather From the Classroom

    NASA Astrophysics Data System (ADS)

    Olafsson, K.; Ostgaard, N.

    2008-12-01

    The aurora and other phenomena in near Earth space are becoming a considerable part of the science curriculum in upper secondary school (high school - age 16 to 19) in Norway. Introducing scientific methods to the young students is an important task of the education, but experimental science experience is to a great extent restricted to simple laboratory exercises under controlled conditions; observations of uncontrollable natural phenomena are generally left to academic scientists and researchers. The Space Physics Group and The Science Education and Outreach Group at The Department of Physics and Technology, University of Bergen, have constructed a "Space Science Suitcase" with a set of simple versions of instruments for monitoring solar and geophysical activity in near Earth space. The contents of the suitcase are: Two solar telescopes, commercial SLR digital camera with a fisheye lens for photographing the aurora, tri-axial magnetometer, Geiger counter, two spectroscopes, GPS-receiver, a laptop for collecting the pictures and measurements, and a manual with suggestions for some relevant experiments. The suitcase is lent to physics classes in upper secondary schools for 3-4 weeks at each school, allowing the students to do their own quantitative observations of sunspots, magnetic disturbances, optical aurora, background radiation etc. Comparison of these observations with online observations from ground based observatories and satellites is an integrated part of the project. The purpose of the experiment is to promote scientific literacy, bring excitement about space phenomena into the classroom, and, finally, to recruit enthusiastic students to university studies in physic and geophysics in general, and space science in particular.

  17. MIT-KSC space life sciences telescience testbed

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A Telescience Life Sciences Testbed is being developed. The first phase of this effort consisted of defining the experiments to be performed, investigating the various possible means of communication between KSC and MIT, and developing software and hardware support. The experiments chosen were two vestibular sled experiments: a study of ocular torsion produced by Y axis linear acceleration, based on the Spacelab D-1 072 Vestibular Experiment performed pre- and post-flight at KSC; and an optokinetic nystagmus (OKN)/linear acceleration interaction experiment. These two experiments were meant to simulate actual experiments that might be performed on the Space Station and to be representative of space life sciences experiments in general in their use of crew time and communications resources.

  18. The Supernova Club: Bringing Space Science to Urban Youths

    NASA Astrophysics Data System (ADS)

    Sakimoto, P. J.; Pettit, R.; Balsara, D.; Garnavich, P.

    2008-06-01

    The Supernova Club is an experiment aimed at bringing space science to youths, almost all African Americans, from the most severely disadvantaged areas of the South Bend, Indiana, region. It leverages the National Youth Sports Program (NYSP) that, in Summer 2007, brought 100 children, ages 10-16 and living at or below the poverty level, to the Notre Dame campus for a 4-week non-residential summer program. Six contact hours of space science instruction were added to the core curriculum of nutrition, physical fitness, and academic study. At summer's end, 13 high interest/high potential youths were selected to form ``The Supernova Club''-a year-round, after-school, weekly follow-up program.

  19. Exploring the living universe: A strategy for space life sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The knowledge obtained by space life sciences will play a pivotal role as humankind reaches out to explore the solar system. Information is needed concerning the existence of life beyond the Earth, the potential interactions between planets and living organisms, and the possibilities for humans to inhabit space safely and productively. Programs in the involved disciplines are an integral part of NASA's current and future missions. To realize their objectives, the development and operation of diverse ground and flight facilities and clost coordination with numerous scientific and governmental organizations in the U.S. and abroad are required. The status and goals of the life sciences programs are examined. Ways and means for attaining these goals are suggested.

  20. Teaching Planetary Sciences in the Master on Space Science and Technology

    NASA Astrophysics Data System (ADS)

    del Río-Gaztelurrutia, T.; Sánchez-Lavega, A.; Hueso, R.; Pérez-Hoyos, S.

    2012-09-01

    The master on Space Science and Technology, taught now for three academic years in the Faculty or Engineering in Bilbao, UPV-EHU, Spain, is open both to students who aim to work in space industry and to students who intend to pursue an academic career in Solar System Astrophysics. A wide number of electives are offered in order to address the different needs of students. In this poster we describe the path offered to students who intend to follow an academic career in Planetary Sciences.

  1. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Frazier, Natalie C.; Johnson, Jimmie; Aicher, Winfried

    2011-01-01

    The Materials Science Research Rack (MSRR) allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly logging more than 550 hours of operating time. Materials science is an integral part of development of new materials for everyday life here on Earth. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility containing two furnace inserts in which Sample Cartridge Assemblies (SCAs), each containing one material sample, can be processed up to temperatures of 1400C. Once an SCA is installed by a Crew Member, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. Initially, 12 SCAs were processed in the first furnace insert for a team of European and US investigators. The processed samples have been returned to Earth for evaluation and comparison of their properties to samples similarly processed on the ground. A preliminary examination of the samples indicates that the majority of the desired science objectives have been successfully met leading to significant improvements in the understanding of alloy solidification processes. The second furnace insert will be installed in the facility in January 2011 for processing the remaining SCA currently on orbit. Six SCAs are planned for launch summer 2011, and additional batches are

  2. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  3. High Altitude Balloons as a Platform for Space Radiation Belt Science

    NASA Astrophysics Data System (ADS)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  4. A Deep Space Network Portable Radio Science Receiver

    NASA Technical Reports Server (NTRS)

    Jongeling, Andre P.; Sigman, Elliott H.; Chandra, Kumar; Trinh, Joseph T.; Navarro, Robert; Rogstad, Stephen P.; Goodhart, Charles E.; Proctor, Robert C.; Finley, Susan G.; White, Leslie A.

    2009-01-01

    The Radio Science Receiver (RSR) is an open-loop receiver installed in NASA s Deep Space Network (DSN), which digitally filters and records intermediate-frequency (IF) analog signals. The RSR is an important tool for the Cassini Project, which uses it to measure perturbations of the radio-frequency wave as it travels between the spacecraft and the ground stations, allowing highly detailed study of the composition of the rings, atmosphere, and surface of Saturn and its satellites.

  5. Exploring science and technology through the Herschel space observatory

    NASA Astrophysics Data System (ADS)

    Minier, V.; Rouzé, M.

    2015-03-01

    Because modern astronomy associates the quest of our origins and high-tech instruments, communicating and teaching astronomy explore both science and technology. We report here on our work in communicating astronomy to the public through Web sites (www.herschel.fr), movies on Dailymotion (www.dailymotion.com/AstrophysiqueTV) and new ITC tools that describe interactively the technological dimension of a space mission for astrophysics.

  6. Astronauts in Outer Space Teaching Students Science: Comparing Chinese and American Implementations of Space-to-Earth Virtual Classrooms

    ERIC Educational Resources Information Center

    An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.

    2016-01-01

    The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…

  7. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  8. Citizen Science and Citizen Space Exploration: Potentials for Professional Collaboration

    NASA Astrophysics Data System (ADS)

    Wright, E.

    2012-12-01

    Citizens in Space is a project of the United States Rocket Academy, with the goal of promoting citizen science and citizen space exploration. This goal is enabled by the new reusable suborbital spacecraft now under development by multiple companies in the US. For the first phase of this project, we have acquired a contract for 10 flights on the Lynx suborbital spacecraft, which is under construction by XCOR Aerospace in Mojave, CA. This represents, to the best of our knowledge, the largest single bulk purchase of suborbital flights to date. Citizens in Space has published an open call for experiments to fly on these missions, which we expect will begin in late 2013 or early 2014. We will be selecting approx. 100 small experiments and 10 citizen astronauts to fly as payload operators. Although our primary goal is to encourage citizen science, these flight opportunities are also open to professional researchers who have payloads that meet our criteria. We believe that the best citizen-science projects are collaborations between professional and citizen scientists. We will discuss various ways in which professional scientists can collaborate with citizen scientists to take advantage of the flight opportunities provided by our program. We will discuss the capabilities of the Lynx vehicle, the 1u- and 2u-CubeSat form factor we are using for our payloads, and general considerations for payload integration. As an example of the payloads we can accommodate, we will discuss a NASA-inspired experiment to collect particles from the upper atmosphere.;

  9. Solar System Science with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Norwood, J.; Chanover, N.; Hines, D. C.; Stansberry, J.; Lunine, J. I.; Tiscareno, M. S.; Milam, S. N.; Sonneborn, G.; Brown, M.

    2013-10-01

    The James Webb Space Telescope (JWST) will succeed the Hubble Space Telescope as NASA’s premier space-based platform for observational astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art imaging, spectroscopic, and coronagraphic instruments. These instruments, along with the telescope’s moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail (see companion presentation by Sonneborn et al.). This poster features highlights for planetary science applications, extracted from a white paper in preparation. We present a number of hypothetical solar system observations as a means of demonstrating potential planetary science observing scenarios; the list of applications discussed here is far from comprehensive. The goal of this poster and the subsequent white paper is to stimulate discussion and encourage participation in JWST planning among members of the planetary science community, and to encourage feedback to the JWST Project on any desired observing capabilities, data products, and analysis procedures that would enhance the use of JWST for solar system studies. The upcoming white paper updates and supersedes the solar system white paper published by the JWST Project in 2010 (Lunine et al., 2010), and is based in part on JWST events held at the 2012 DPS, the 2013 LPSC meeting, and this DPS (JWST Town Hall, Thursday, 10 October 2013, 12-1 pm).

  10. Expanding Remote Science Operations Capabilities Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig A.; Dyer, Steven V.; Gibbs, Richard E., III; Cech, John G.

    2004-01-01

    EXPRESS Racks have been supporting payload science operations onboard the International Space Station (ISS) since April of 2001. EXPRESS is an acronym that stands for "EXpedite the PRocessing of Experiments to Space Station." This name reflects NASA's focus to simplify the process of manifesting experiments and maximizing scientific research capabilities by providing a robust, remotely operated payload support platform. The EXPRESS Rack System was developed by NASA's Marshall Space Flight Center (MSFC) and built by The Boeing Company in Huntsville, Alabama. Eight EXPRESS racks were built and five are currently onboard the ISS supporting science operations. The design and development of the EXPRESS Rack System is a long story that has been documented in previous publications. This paper briefly describes the facilities used to develop and verify flight software, test operational capabilities. It then traces the advancements made in the operational capabilities of the EXPRESS Racks from the time they were launched on STS-100 through the present. The paper concludes with a description of potential enhancements that will make the EXPRESS racks one of the most advanced and capable remote science platforms ever developed.

  11. International Space Station Research and Facilities for Life Sciences

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  12. Designing learning spaces for interprofessional education in the anatomical sciences.

    PubMed

    Cleveland, Benjamin; Kvan, Thomas

    2015-01-01

    This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences.

  13. Towards a Cooperation Between the Arts, Space Science Research and the European Space Agency

    NASA Astrophysics Data System (ADS)

    Imhof, Anna Barbara; Waldvogel, Christian; Kotler, J. Michelle; Pell, Sarah Jane; Peljhan, Marko

    2013-02-01

    The arts offer alternative insights into reality — which is explored by science in general, and broadened by the activities conducted by the European Space Agency (ESA) and other space agencies. Similar to the way the members of ESA are ambassadors for spaceflight and science, artists and cultural professionals are ambassadors for human expression, experimentation, and exploration. In June 2011, the ESA Topical Team Arts & Sciences (ETTAS), held a three-day workshop at the European Astronaut Centre in Cologne, Germany. During this workshop, topics and ideas were discussed to develop cooperations between the arts, sciences and ESA to foster and expand the human and cultural aspects of space exploration, and at the same time offer a means of communication, which would aim to reach audiences beyond the scope of traditional space related channels. The preliminary findings and consensus of the team was that establishing and sustaining a transdisciplinary professional community consisting of ESA representatives, scientists and artists would fuel knowledge transfer, and mutual inspiration.

  14. Developing Nontraditional Partnerships to Disseminate the Space Science Story (Invited)

    NASA Astrophysics Data System (ADS)

    Galindo, C.; Allen, J. S.; Garcia, J.; Martinez, D.

    2010-12-01

    NASA Space Science Days (NSSD) was established in 2004 to bring the story of the Mars Exploration Rovers (MER) to a community far removed from areas NASA traditionally served. The original NSSD invited 400 5th and 8th graders from the Texas Rio Grande Valley area to the University of Texas Brownsville (UTB) campus to participate in a one day Saturday event filled with information about MER with related hands on activities. Currently the yearly NSSD at UTB has grown to over 700 5th and 8th grade participants who are mentored by NASA trained university students. The NSSD program has expanded to other universities and community colleges and will soon include universities from throughout the U.S. A collaboration between three major institutions: 1) NASA Johnson Space Center (JSC) Astromaterials Research and Exploration Science Directorate (ARES); 2) The Society of Hispanic Professional Engineers/Advancing Hispanic Excellence in Technology Engineering, Math, and Science, (SHPE/AHETEMS); and 3) The University of Texas at Brownsville (UTB) has been established to enable the dissemination of NASA Space Science related education materials throughout the U.S. Already in its 8th year, UTB developed and tested a NSSD model that has successfully engaged students throughout South Texas Rio Grande Valley in space science activities. With this newly formed collaboration of NASA JSC, SHPE/AHETEMS, and UTB the expansion of the NSSD model will allow trained SHPE students and professionals to conduct events throughout SHPE’s established nation-wide delivery systems. Each year a new NSSD site will be established through an application process solicited from SHPE student and professional chapters. Once a chapter is awarded to conduct a NSSD, upper-level high school and university students will travel to NASA-JSC for a two day workshop where students learn about the current year’s science theme and are trained to present hands-on activities related to the theme. In each NSSD

  15. Great Explorations in Math and Science[R] (GEMS[R]) Space Science. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "Great Explorations in Math and Science[R] (GEMS[R]) Space Science" is an instructional sequence for grades 3-5 that covers fundamental concepts, including planetary sizes and distance, the Earth's shape and movement, gravity, and moon phases and eclipses. Part of the "GEMS"[R] core curriculum, "GEMS[R] Space Science" uses the solar system as the…

  16. Using Case Studies as a Tool for Teaching Science Policy within the Atmospheric and Space Sciences

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Hooke, W.

    2006-12-01

    Earth system science is a field where policy, societal, & economic aspects are becoming increasingly important as our society becomes more dependent on activities and technologies that affect and are affected by the Earth system. It is important that present and future scientists are prepared to fully participate in the challenging opportunities that lie ahead, including communicating to policy makers, making public policy decisions, & communicating science to the public. One way of providing a better foundation is to integrate policy and science at universities. Therefore, the American Meteorological Society Policy Program (APP) is developing materials for university science policy curricula and the AMS Summer Policy Colloquium. In providing policy education activities and promoting policy research, the APP hopes to encourage more people to enter the field of science policy, contribute to and enhance the current policy dialogue, and create a clearinghouse for science policy case studies. Case studies are an excellent method to study policy issues in the atmospheric and space sciences for the following reasons: issues are too complex to be handled by any single factor (economic, social, or political science); purpose is to identify and analyze the impacts rather than test theoretical hypotheses; problems involve large number of participants (government at various levels, industries, and researchers); and study requires giving alternatives and consequence analysis for policy makers. Lessons learned will be presented on implementation of science policy case studies at the AMS Summer Policy Colloquium and George Mason University.

  17. [Parapharyngeal space tumors. Presentation of three cases and literature review].

    PubMed

    Almela Cortés, R; Aldasoro Martín, J; Gozalbo Navarro, J M

    2003-01-01

    Tumors originating in the parapharyngeal space are rare. Eighty percent of the parapharyngeal space neoplasms are benign, and 20% are malignant. The most frequent tumours of this localization are those of salivary origin followed by neurogenic tumor and in third place the paragangliomas. This paper presents three representative cases of parapharyngeal space neoplasms. The literature is reviewed.

  18. A Critical Review: Connecting Nature of Science and Argumentation

    ERIC Educational Resources Information Center

    Soysal, Y.

    2015-01-01

    The purpose of this critical review is to examine studies incorporating interconnectedness between Nature of Science (NOS) and Argumentation. This in-depth critical review seeks to illuminate insights and direction of the linkage between these two eminent research fields in science education. It involves a computerized, web-based search to provide…

  19. Library Science Literature, 1965/1969; A Selective Review.

    ERIC Educational Resources Information Center

    Musiker, Reuben

    This selective review of the library science literature of the five-year period 1965-1969 aims to provide library science teachers and libraries with a checklist of material pinpointing the more significant works in each major area. The selection has been limited to 150 works from various parts of the world in order to keep the review within…

  20. Education Curricula of the Regional Centres for Space Science and Technology Education (affiliated to the United Nations)

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    Since 1988, the United Nations, through the Programme on Space Applications, is supporting the establishment and operation of regional Centres for Space Science and Technology Education in Africa, Asia and the Pacific, Latin America and the Caribbean, and Western Asia. Simultaneously, education curricula have been developed for remote sensing and geographic information system, satellite communications, satellite meteorology and global climate, and space and atmospheric science. The paper reviews briefly these developments and highlights the most recent updated education curricula in the four disciplines that are made available in 2002, in the six official languages of the United Nations, for implementation at the regional Centres and beyond.