Sample records for space sciences space

  1. Space Science Projects. LC Science Tracer Bullet. TB 06-3

    ERIC Educational Resources Information Center

    Shaw, Loretta, Comp.

    2006-01-01

    Space science, or the space sciences, are fields of science that are concerned with the study or utilization of outer space. There are several major fields of space science including astronomy, exobiology, space transport, and space exploration and colonization. In addition, space sciences impact or are related to many other fields, from the…

  2. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    NASA Technical Reports Server (NTRS)

    Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).

  3. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  4. 48 CFR 1852.228-78 - Cross-waiver of liability for science or space exploration activities unrelated to the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...

  5. 48 CFR 1852.228-78 - Cross-waiver of liability for science or space exploration activities unrelated to the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for science or space exploration activities unrelated to the International Space Station. 1852.228-78... Cross-waiver of liability for science or space exploration activities unrelated to the International... Liability for Science or Space Exploration Activities Unrelated to the International Space Station (OCT 2012...

  6. 48 CFR 1828.371 - Clauses incorporating cross-waivers of liability for International Space Station activities and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...

  7. 48 CFR 1828.371 - Clauses incorporating cross-waivers of liability for International Space Station activities and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cross-waivers of liability for International Space Station activities and Science or Space Exploration... Station activities and Science or Space Exploration activities unrelated to the International Space Station. (a) In contracts covering International Space Station activities, or Science or Space Exploration...

  8. Space life sciences: A status report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  9. 14 CFR 1266.104 - Cross-waiver of liability for launch agreements for science or space exploration activities...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...

  10. 14 CFR 1266.104 - Cross-waiver of liability for launch agreements for science or space exploration activities...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...

  11. 14 CFR 1266.104 - Cross-waiver of liability for launch agreements for science or space exploration activities...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... agreements for science or space exploration activities unrelated to the International Space Station. 1266.104... LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space exploration... cross-waiver of liability between the parties to agreements for NASA's science or space exploration...

  12. ESA's space science programme

    NASA Astrophysics Data System (ADS)

    Volonte, S.

    2018-04-01

    The Space Science Programme of ESA encompasses three broad areas of investigation, namely solar system science (the Sun, the planets and space plasmas), fundamental physics and space astronomy and astrophysics.

  13. Space Science Curricula

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Johnson High School, Huntsville, Alabama started an international magnet program in 1987. One of the courses in the curriculum was in space science. They appealed to Marshall Space Flight Center (MSFC) when they couldn't find a suitable textbook, nor locate other classes in space science to provide a guideline. MSFC agreed to help and placed the school under an official 'Adopt-A-School' program. MSFC's chief scientist and others at the space center helped prepare a very comprehensive space science program. Examples of the subjects covered include problems of space travel, materials processing in space, technology utilization, robotics, space colonization, etc. MSFC followed up by working with Johnson High to determine if the curriculum is generally usable and workable. If it is, MSFC may make it available to other schools. MSFC not only developed the space science curriculum; they continue to support the program by sponsoring hands- on activities and tours of space research facilities.

  14. The Brain in Space: A Teacher's Guide with Activities for Neuroscience.

    ERIC Educational Resources Information Center

    MacLeish, Marlene Y.; McLean, Bernice R.

    This educators guide discusses the brain and contains activities on neuroscience. Activities include: (1) "The Space Life Sciences"; (2) "Space Neuroscience: A Special Area within the Space Life Sciences"; (3) "Space Life Sciences Research"; (4) "Neurolab: A Special Space Mission to Study the Nervous System"; (5) "The Nervous System"; (6)…

  15. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  16. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.

  17. Solar-Terrestrial and Astronomical Research Network (STAR-Network) - A Meaningful Practice of New Cyberinfrastructure on Space Science

    NASA Astrophysics Data System (ADS)

    Hu, X.; Zou, Z.

    2017-12-01

    For the next decades, comprehensive big data application environment is the dominant direction of cyberinfrastructure development on space science. To make the concept of such BIG cyberinfrastructure (e.g. Digital Space) a reality, these aspects of capability should be focused on and integrated, which includes science data system, digital space engine, big data application (tools and models) and the IT infrastructure. In the past few years, CAS Chinese Space Science Data Center (CSSDC) has made a helpful attempt in this direction. A cloud-enabled virtual research platform on space science, called Solar-Terrestrial and Astronomical Research Network (STAR-Network), has been developed to serve the full lifecycle of space science missions and research activities. It integrated a wide range of disciplinary and interdisciplinary resources, to provide science-problem-oriented data retrieval and query service, collaborative mission demonstration service, mission operation supporting service, space weather computing and Analysis service and other self-help service. This platform is supported by persistent infrastructure, including cloud storage, cloud computing, supercomputing and so on. Different variety of resource are interconnected: the science data can be displayed on the browser by visualization tools, the data analysis tools and physical models can be drived by the applicable science data, the computing results can be saved on the cloud, for example. So far, STAR-Network has served a series of space science mission in China, involving Strategic Pioneer Program on Space Science (this program has invested some space science satellite as DAMPE, HXMT, QUESS, and more satellite will be launched around 2020) and Meridian Space Weather Monitor Project. Scientists have obtained some new findings by using the science data from these missions with STAR-Network's contribution. We are confident that STAR-Network is an exciting practice of new cyberinfrastructure architecture on space science.

  18. NASA Central Operation of Resources for Educators (CORE): Educational Materials Catalog

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This catalog contains order information for video cassettes with topics such as: aeronautics, earth science, weather, space exploration/satellites, life sciences, energy, living in space, manned spaceflight, social sciences, space art, space sciences, technology education and utilization, and mathematics/physics.

  19. Space Research, Education, and Related Activities in the Space Sciences

    NASA Technical Reports Server (NTRS)

    Black, David; Marshall, Frank (Technical Monitor)

    2002-01-01

    The Universities Space Research Association received an award of Cooperative Agreement NCC5-356 on September 29, 1998. The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  20. Space Research, Education, and Related Activities In the Space Sciences

    NASA Technical Reports Server (NTRS)

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  1. Space Research, Education, and Related Activities in the Space Sciences

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Universities Space Research Association received an award of Cooperative Agreement #NCC5-356 on September 29, 1998. The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  2. 14 CFR § 1266.104 - Cross-waiver of liability for launch agreements for science or space exploration activities...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... agreements for science or space exploration activities unrelated to the International Space Station. § 1266...-WAIVER OF LIABILITY § 1266.104 Cross-waiver of liability for launch agreements for science or space... implement a cross-waiver of liability between the parties to agreements for NASA's science or space...

  3. Space Life Sciences Research and Education Program

    NASA Technical Reports Server (NTRS)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  4. Managing the space sciences

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  5. USSR Space Life Sciences Digest, volume 2, no.1

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1981-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.

  6. USSR Space Life Sciences Digest, volume 1, no. 3

    NASA Technical Reports Server (NTRS)

    Wallace, P. M.

    1980-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences technology.

  7. The Henry Cecil Ranson McBay Chair in Space Science

    NASA Technical Reports Server (NTRS)

    Bota, Kofi B.; King, James, Jr.

    1999-01-01

    The goals and objectives of the Henry Cecil Ransom McBay Chair in Space Sciences were to: (1) provide leadership in developing and expanding Space Science curriculum; (2) contribute to the research and education endeavors of NASA's Mission to Planet Earth program; (3) expand opportunities for education and hands-on research in Space and Earth Sciences; (4) enhance scientific and technological literacy at all educational levels and to increase awareness of opportunities in the Space Sciences; and (5) develop a pipeline, starting with high school, of African American students who will develop into a cadre of well-trained scientists with interest in Space Science Research and Development.

  8. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  9. Space Sciences Focus Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Geoffrey D.

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  10. USSR Space Life Sciences Digest, volume 1, no. 4

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1980-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology, and life sciences and technology.

  11. USSR Space Life Sciences Digest, volume 2, no. 2

    NASA Technical Reports Server (NTRS)

    Paulson, L. D.

    1981-01-01

    An overview of the developments and direction of the USSR Space Life Sciences Program is given. Highlights of launches, program development, and mission planning are given. Results of ground-based research and space flight studies are summarized. Topics covered include: space medicine and physiology; space biology; and life sciences and technology.

  12. Strategic implementation plan

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Life Science Division of the NASA Office of Space Science and Applications (OSSA) describes its plans for assuring the health, safety, and productivity of astronauts in space, and its plans for acquiring further fundamental scientific knowledge concerning space life sciences. This strategic implementation plan details OSSA's goals, objectives, and planned initiatives. The following areas of interest are identified: operational medicine; biomedical research; space biology; exobiology; biospheric research; controlled ecological life support; flight programs and advance technology development; the life sciences educational program; and earth benefits from space life sciences.

  13. Fundamental plant biology enabled by the space shuttle.

    PubMed

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  14. Center for Space and Earth Science

    Science.gov Websites

    Search Site submit Los Alamos National LaboratoryCenter for Space and Earth Science Part of the Partnerships NSEC » CSES Center for Space and Earth Science High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and Earth systems Contact Director Reiner Friedel (505

  15. Science on the International Space Station: Stepping Stones for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    This viewgraph presentation reviews the state of science research on the International Space Station (ISS). The shuttle and other missions that have delivered science research facilities to the ISS are shown. The different research facilities provided by both NASA and partner organizations available for use and future facilities are reviewed. The science that has been already completed is discussed. The research facilitates the Vision for Space Exploration, in Human Life Sciences, Biological Sciences, Materials Science, Fluids Science, Combustion Science, and all other sciences. The ISS Focus for NASA involves: Astronaut health and countermeasure, development to protect crews from the space environment during long duration voyages, Testing research and technology developments for future exploration missions, Developing and validating operational procedures for long-duration space missions. The ISS Medical Project (ISSMP) address both space systems and human systems. ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions. Including complete programmatic review with medical operations (space medicine/flight surgeons) to identify: (1) evidence base on risks (2) gap analysis.

  16. Telerobotic Tending of Space Based Plant Growth Chamber

    NASA Technical Reports Server (NTRS)

    Backes, P. G.; Long, M. K.; Das, H.

    1994-01-01

    The kinematic design of a telerobotic mechanism for tending a plant growth space science experiment chamber is described. Ground based control of tending mechanisms internal to space science experiments will allow ground based principal investigators to interact directly with their space science experiments.

  17. KENNEDY SPACE CENTER, FLA. - Officials of the NASA-Kennedy Space Center and the state of Florida pose for a group portrait at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab at the new lab. From left are Capt. Winston Scott, executive director of the Florida Space Authority; Dr. Robert J. Ferl, director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida; Charlie Quincy, chief of the Biological Sciences Office, Kennedy Space Center; Jose Perez-Morales, NASA Project Manager for the Space Life Sciences Lab; Jim Kennedy, director of the Kennedy Space Center; The Honorable Toni Jennings, lieutenant governor of the state of Florida; Frank T. Brogan, president of the Florida Atlantic University; and Dr. Samuel Durrance, executive director of the Florida Space Research Institute. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Officials of the NASA-Kennedy Space Center and the state of Florida pose for a group portrait at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab at the new lab. From left are Capt. Winston Scott, executive director of the Florida Space Authority; Dr. Robert J. Ferl, director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida; Charlie Quincy, chief of the Biological Sciences Office, Kennedy Space Center; Jose Perez-Morales, NASA Project Manager for the Space Life Sciences Lab; Jim Kennedy, director of the Kennedy Space Center; The Honorable Toni Jennings, lieutenant governor of the state of Florida; Frank T. Brogan, president of the Florida Atlantic University; and Dr. Samuel Durrance, executive director of the Florida Space Research Institute. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  18. Life sciences - On the critical path for missions of exploration

    NASA Technical Reports Server (NTRS)

    Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen

    1988-01-01

    Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.

  19. Cooperative Program In Space Science

    NASA Technical Reports Server (NTRS)

    Black, David

    2003-01-01

    The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.

  20. Outreach Education Modules on Space Sciences in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  1. Astronauts in Outer Space Teaching Students Science: Comparing Chinese and American Implementations of Space-to-Earth Virtual Classrooms

    ERIC Educational Resources Information Center

    An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.

    2016-01-01

    The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…

  2. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  3. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  4. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  5. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  6. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  7. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  8. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  9. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  10. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  11. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  12. 2017 Space Station Science in Pictures

    NASA Image and Video Library

    2018-01-02

    From molecular biology to fluid physics, life sciences and robotics, 2017 was a robust year for research aboard Earth’s only microgravity laboratory. The International Space Station hosts more than 300 experiments during a given Expedition, each working to further space exploration and/or benefit life back on Earth. Here’s a look back at just some of the science that happened on the orbiting laboratory. HD Download: https://archive.org/details/jsc2017m001167_2017_Space_Station_Science_in_Pictures _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  13. Space Science at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  14. Aeronautics and space report of the President

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes the activities and accomplishments of all agencies of the United States in the fields of aeronautics and space science during FY 1994. Activity summaries are presented for the following areas: space launch activities, space science, space flight and space technology, space communications, aeronuatics, and studies of the planet Earth. Several appendices providing data on U.S. launch activities, the Federal budget for space and aeronautics, remote sensing capabilities, and space policy are included.

  15. Space shuttle and life sciences

    NASA Technical Reports Server (NTRS)

    Mason, J. A.

    1977-01-01

    During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.

  16. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    From left, Pete Hasbrook, associate program scientist, International Space Station Program at NASA's Johnson Space Center in Houston; Craig Kundrot, director, NASA's Space Life and Physical Science Research and Applications; Marie Lewis, moderator, Kennedy Space Center; and Patrick O'Neill, Marketing and Communications Manager, Center for the Advancement of Science in Space, speak to members of the media in the Kennedy Space Center Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.

  17. Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction

    NASA Astrophysics Data System (ADS)

    Pottinger, James E.

    With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space science courses are different than typical online courses in that they need to incorporate an inquiry-based component to ensure students fully understand the course concepts and science principles in the Earth and Space sciences. Studies have addressed the barriers in other inquiry-based online science courses, including biology, physics, and chemistry. This holistic, multiple-case qualitative study investigated perceived barriers and strategies to effective online Earth and Space science instruction through in-depth interviews with six experienced post-secondary online science instructors. Data from this study was analyzed using a thematic analysis approach and revealed four common themes when teaching online Earth and Space science. A positive perception and philosophy of online teaching is essential, the instructor-student interaction is dynamic, course structure and design modification will occur, and online lab activities must make science operational and relevant. The findings in this study demonstrated that online Earth and Space science instructors need institutional support in the form of a strong faculty development program and support staff in order to be as effective as possible. From this study, instructors realize that the instructor-student relationship and course structure is paramount, especially when teaching online science with labs. A final understanding from this study was that online Earth and Space science lab activities must incorporate the use and application of scientific skills and knowledge. Recommendations for future research include (a) qualitative research conducted in specific areas within the Earth and Space sciences to determine if similar conclusions may be reached, (b) conduct a quantitative study looking at the available online technologies and their effectiveness in each area, and (c) utilize students that took online Earth and Space science classes and compare their perception of effectiveness to the instructor's perception of effectiveness in the online Earth and Space science classroom.

  18. Life sciences interests in Mars missions

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Griffiths, Lynn D.

    1989-01-01

    NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.

  19. Model Requirements

    NASA Technical Reports Server (NTRS)

    Barth, Janet

    2004-01-01

    Contents include the following: 1. Scientific Research: Space science. Earth science. Aeronautics and space. Transportation. Human exploration of space. 2. Navigation. 3. Telecommunications. 4. Defense. 5. Space Environment Monitoring.and 6. Terrestrial Weather Monitoring.

  20. Implementation of small group discussion as a teaching method in earth and space science subject

    NASA Astrophysics Data System (ADS)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  1. SpaceX CRS-13 What's on Board Science Briefing

    NASA Image and Video Library

    2017-12-11

    During the SpaceX CRS-13 "What's On Board?" Science Briefing inside the Kennedy Space Center Press Site Auditorium, members of social media learned about the science headed to the International Space Station aboard the Dragon spacecraft. The briefing focused on several research projects including Biorasis Glucose Biosensor; Launchpad Medical; Space Debris Sensor; Total & Spectral solar Irradiance Sensor (TSIS); Fiber Optic Payload (Made in Space); Rodent Research 6; and Plant Gravity Perception. The Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 13th Commercial Resupply Services mission to the space station.

  2. Kennedy Space Center Launch and Landing Support

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer

    2010-01-01

    The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.

  3. Scientific involvement in Skylab by the Space Sciences Laboratory of the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Winkler, C. E. (Editor)

    1973-01-01

    The involvement of the Marshall Space Flight Center's Space Sciences Laboratory in the Skylab program from the early feasibility studies through the analysis and publication of flight scientific and technical results is described. This includes mission operations support, the Apollo telescope mount, materials science/manufacturing in space, optical contamination, environmental and thermal criteria, and several corollary measurements and experiments.

  4. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  5. The Classroom Space Project.

    ERIC Educational Resources Information Center

    Verbickas, Sarah

    2002-01-01

    Introduces the Classroom Space project aimed at revitalizing science education at Key Stages 3 and 4 by using exciting examples from Space Science and Astronomy to illustrate key science concepts. (Author/YDS)

  6. Education and Outreach on Space Sciences and Technologies in Taiwan

    NASA Astrophysics Data System (ADS)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  7. Hubble Space Telescope

    NASA Image and Video Library

    2017-12-08

    The Hubble Space Telescope in a picture snapped by a Servicing Mission 4 crewmember just after the Space Shuttle Atlantis captured Hubble with its robotic arm on May 13, 2009, beginning the mission to upgrade and repair the telescope. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  8. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    During the SpaceX CRS-14 "What's On Board?" Science Briefing inside the Kennedy Space Center Press Site Auditorium, members of the media learned about the research headed to the International Space Station aboard the Dragon spacecraft. The briefing focused on several science projects including the Metabolic Tracking experiment; Atmosphere-Space Interactions Monitor (ASIM); Multi-purpose Variable-g Platform (MVP), and Veggie PONDS Validation. The Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 14th Commercial Resupply Services mission to the space station.

  9. Space Studies Board, 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This 1994 report of the Space Studies Board of the National Research Council summarizes the charter and organization of the board, activities and membership, major and short reports, and congressional testimony. A cumulative bibliography of the Space Studies (formerly Space Science) Board and its committees is provided. An appendix contains reports of the panel to review Earth Observing System Data and Information System (EOSDIS) plans. Major reports cover scientific opportunities in the human exploration of space, the dichotomy between funding and effectiveness in space physics, an integrated strategy for the planetary sciences for the years 1995-2010, and Office of Naval Research (ONR) research opportunities in upper atmospheric sciences. Short reports cover utilization of the space station, life and microgravity sciences and the space station program, Space Infrared Telescope Facility and the Stratospheric Observatory for Infrared Astronomy, and the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe.

  10. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    PubMed Central

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692

  11. Space Studies Board Annual Report 2012

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The Space Studies Board (SSB) was established in 1958 to serve as the focus of the interests and responsibilities in space research for the National Academies. The SSB provides an independent, authoritative forum for information and advice on all aspects of space science and applications, and it serves as the focal point within the National Academies for activities on space research. It oversees advisory studies and program assessments, facilitates international research coordination, and promotes communications on space science and science policy between the research community, the federal government, and the interested public. The SSB also serves as the U.S. National Committee for the International Council for Science Committee on Space Research (COSPAR). The present volume reviews the organization, activities, and reports of the SSB for the year 2012.

  12. Space science and applications: Strategic plan 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Office of Space Science and Applications (OSSA) 1991 Strategic Plan reflects a transitional year in which we respond to changes and focus on carrying out a vital space science program and strengthening our research base to reap the benefits of current and future missions. The Plan is built on interrelated, complementary strategies for the core space science program, for Mission to Planet Earth, and for Mission from Planet Earth. Each strategy has its own unique themes and mission priorities, but they share a common set of principles and a common goal - leadership through the achievement of excellence. Discussed here is the National Space Policy; an overview of OSSA activities, goals, and objectives; and the implications of the OSSA space science and applications strategy.

  13. A spacefaring nation - Perspectives on American space history and policy

    NASA Technical Reports Server (NTRS)

    Collins, Martin J. (Editor); Fries, Sylvia D. (Editor)

    1991-01-01

    The present volume on perspectives on American space history and policy discusses decision-making, space science and scientific communities, postwar aeronautical research in the federal laboratory, and civilian and military remote sensing and reconnaissance. Attention is given to the interpenetration of science, technology, and politics; space 'sociology'; and space technology and planetary science from 1950 to 1985. Other topics addressed include the aeronautics infrastructure as it applies to aeronautics history, the Lewis Research Center and its transition to space, the relationship between NASA and the users of earth resources data, and methodology for researching a classified system for space reconnaissance.

  14. Research and Technology annual report FY-1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Space transportation systems are summarized: space shuttle enhancement, a space operations center, the space platform, and geostationary activites are discussed. Aeronautics and space technology are summarized: experiments, energy systems, propulsion technology, synthetic aperture radar, large space systems, and shuttle-launched vehicles are discussed. Space sciences are summarized: lunar, planetary, and life sciences are discussed. Space and terrestrial applications are summarized. The AgRISTARS program, forest and wildland resource, and Texas LANDSAT applications are discussed.

  15. Information sciences and human factors overview

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.

    1988-01-01

    An overview of program objectives of the Information Sciences and Human Factors Division of NASA's Office of Aeronautics and Space Technology is given in viewgraph form. Information is given on the organizational structure, goals, the research and technology base, telerobotics, systems autonomy in space operations, space sensors, humans in space, space communications, space data systems, transportation vehicle guidance and control, spacecraft control, and major program directions in space.

  16. United Nations/European Space Agency Workshops on Basic Space Science

    NASA Technical Reports Server (NTRS)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-01-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  17. Teaching Heliophysics Science to Undergraduates in an Engineering Context

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Sweeney, D. G.; Ruohoniemi, J.

    2013-12-01

    In recent years, space research at Virginia Tech has experienced rapid growth since the initiation of the Center for Space Science and Engineering Research (Space@VT) during the summer of 2007. The Space@VT center resides in the College of Engineering and currently comprises approximately 30-40 faculty and students. Space@VT research encompasses a wide spectrum of science and engineering activities including: magnetosphere-ionosphere data analysis; ground- and space-based instrument development; spacecraft design and environmental interactions; and numerical space plasma simulations. In this presentation, we describe how Space@VT research is being integrated into the Virginia Tech undergraduate engineering curriculum via classroom instruction and hands-on group project work. In particular, we describe our experiences teaching a new sophomore course titled 'Exploration of the Space Environment' which covers a broad range of scientific, engineering, and societal aspects associated with the exploration and technological exploitation of space. Topics covered include: science of the space environment; space weather hazards and societal impacts; elementary orbital mechanics and rocket propulsion; spacecraft engineering subsystems; and applications of space-based technologies. We also describe a high-altitude weather balloon project which has been offered as a 'hands-on' option for fulfilling the course project requirements of the course.

  18. OSSA Space Station Freedom science utilization plans

    NASA Astrophysics Data System (ADS)

    Cressy, Philip J.

    Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.

  19. OSSA Space Station Freedom science utilization plans

    NASA Technical Reports Server (NTRS)

    Cressy, Philip J.

    1992-01-01

    Long duration exposure to an essentially zero-gravity environment is a phenomenon exclusive to the Space Station Freedom that cannot be duplicated on Earth. The Freedom Station will offer periods of time on orbit extending to weeks and months rather than hours or days, allowing for in-depth space based research and analysis to a degree never before achieved. OSSA remains committed to exploiting the unique capabilities provided by the Space Station as well as other space-based facilities to study the nature of physical, chemical, and biological processes in a low-gravity environment and to apply these studies to advance science and applications in such fields as biomedical research, plant and animal physiology, exobiology, biotechnology, materials science, fluid physics, and combustion science. The OSSA focus is on progressive science investigations, many requiring hands-on scientist involvement using sophisticated experiment hardware. OSSA science utilization planning for the Freedom Station is firmly established. For this presentation, this planning is discussed in three general areas: OSSA goals and overall approach, the current and on-going program, and plans for space station utilization. In the first area, OSSA addresses its overall approach to space science research, its commitment to transition to Space Station Freedom, and its top-level strategy for the utilization of Freedom. The current and on-going program is next discussed, focusing on the various Spacelab series of missions which are providing the stepping-stones to Space Station Freedom. Selected science results from SLS-1 and USML-1 are cited which underline the value of properly outfitted laboratories in space in which crew-intensive experiment interactions are possible. The presentation is concluded with a discussion of top-level goals and strategies for utilizing the Freedom Station by OSSA's Life Sciences Division and its Microgravity Science and Applications Division.

  20. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  1. Space Science in Action: Space Exploration [Videotape].

    ERIC Educational Resources Information Center

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  2. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  3. History of nutrition in space flight: overview

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  4. History of nutrition in space flight: overview.

    PubMed

    Lane, Helen W; Feeback, Daniel L

    2002-10-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  5. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  6. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  7. The CAS-NAS forum for new leaders in space science

    NASA Astrophysics Data System (ADS)

    Smith, David H.

    The space science community is thoroughly international, with numerous nations now capable of launching scientific payloads into space either independently or in concert with others. As such, it is important for national space-science advisory groups to engage with like-minded groups in other spacefaring nations. The Space Studies Board of the US National Academy of Sciences' (NAS') National Research Council has provided scientific and technical advice to NASA for more than 50 years. Over this period, the Board has developed important multilateral and bilateral partnerships with space scientists around the world. The primary multilateral partner is COSPAR, for which the Board serves as the US national committee. The Board's primary bilateral relationship is with the European Science Foundation’s European Space Science Committee. Burgeoning Chinese space activities have resulted in several attempts in the past decade to open a dialogue between the Board and space scientists in China. On each occasion, the external political environment was not conducive to success. The most recent efforts to engage the Chinese space researchers began in 2011 and have proved particularly successful. Although NASA is currently prohibited from engaging in bilateral activities with China, the Board has established a fruitful dialogue with its counterpart in the Chinese Academy of Sciences (CAS). A joint NAS-CAS activity, the Forum for New Leaders in Space Science, has been established to provide opportunities for a highly select group of young space scientists from China and the United States to discuss their research activities in an intimate and collegial environment at meetings to be held in both nations. The presentation will describe the current state of US-China space relations, discuss the goals of the joint NAS-CAS undertaking and report on the activities at the May, 2014, Forum in Beijing and the planning for the November, 2014, Forum in Irvine, California.

  8. Earth Science and Applications attached payloads on Space Station

    NASA Technical Reports Server (NTRS)

    Wicks, Thomas G.; Arnold, Ralph R.

    1990-01-01

    This paper describes the Office of Space Science and Applications' process for Attached Payloads on Space Station Freedom from development through on-orbit operations. Its primary objectives are to detail the sequential steps of the attached payload methodology by tracing in particular the selected Earth Science and Applications' payloads through this flow and relate the integral role of Marshall Space Flight Center's Science Utilization Management function of integration and operations.

  9. The International Space Life Sciences Strategic Planning Working Group

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  10. Life in space

    NASA Technical Reports Server (NTRS)

    West, John B.

    1992-01-01

    The scope of space life sciences and current research on the physiology of man in space are reviewed by examining Spacelab SLS-1. Milestones of space life sciences are discussed, with emphasis on the Skylab facility, the Space Shuttle program, and the Soviet Mir space station. Attention is given to the topic of the origins of life as it relates to space life sciences. The discovery of amino acids in meteorites and the question of whether the earth was seeded with life from space are discussed. A brief overview of efforts in the search for extraterrestrial intelligence is presented. Consideration is also given to the effects of gravity on cells, the effects of radiation, plant biology, CELSS, and the effects of gravity on humans.

  11. Space-to-Ground: Some Serious Science: 02/08/2018

    NASA Image and Video Library

    2018-02-08

    With a breather between spacewalks, it was time for some serious science on the International Space Station. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  12. Achievements and Challenges in the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf

    2017-11-01

    In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.

  13. Space Studies Board Annual Report 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The following summaries of major reports are presented: (1) 'Scientific Opportunities in the Human Exploration of Space;' (2) 'A Space Physics Paradox;' (3) 'An Integrated Strategy for the Planetary Sciences;' and (4) 'ONR (Office of Naval Research) Research Opportunities in Upper Atmospheric Sciences.' Short reports on the following topics are also presented: life and microgravity sciences and the Space Station Program, the Space Infrared Telescope Facility and the Stratospheric Observatory for infrared astronomy, the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe, and the utilization of the Space Station.

  14. Space Science: Past, Present and Future. Report Prepared by the Subcommittee on Space Science and Applications. Transmitted to the Committee on Science and Technology, House of Representatives, Ninety-Ninth Congress, Second Session, Serial O.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    Congressional hearings held on October 8-10, 1985, were meant to characterize the attributes of past successes of the United States' efforts in the space sciences, and to project the direction of future research in that area. This report prepared by the subcommittee on space science and application includes recommendations of expert panels on…

  15. Science Fiction and the Big Questions

    NASA Astrophysics Data System (ADS)

    O'Keefe, M.

    Advocates of space science promote investment in science education and the development of new technologies necessary for space travel. Success in these areas requires an increase of interest and support among the general public. What role can entertainment media play in inspiring the public ­ especially young people ­ to support the development of space science? Such inspiration is badly needed. Science education and funding in the United States are in a state of crisis. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. This paper draws on interviews with professionals in science, technology, engineering and mathematics (STEM) fields, as well as students interested in those fields. The interviewees were asked about their lifelong media-viewing habits. Analysis of these interviews, along with examples from popular culture, suggests that science fiction can be a valuable tool for space advocates. Specifically, the aspects of character, story, and special effects can provide viewers with inspiration and a sense of wonder regarding space science and the prospect of long-term human space exploration.

  16. KSC-03PD-3145

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Officials of the NASA-Kennedy Space Center and the state of Florida pose for a group portrait at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab at the new lab. From left are Capt. Winston Scott, executive director of the Florida Space Authority; Dr. Robert J. Ferl, director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida; Charlie Quincy, chief of the Biological Sciences Office, Kennedy Space Center; Jose Perez-Morales, NASA Project Manager for the Space Life Sciences Lab; Jim Kennedy, director of the Kennedy Space Center; The Honorable Toni Jennings, lieutenant governor of the state of Florida; Frank T. Brogan, president of the Florida Atlantic University; and Dr. Samuel Durrance, executive director of the Florida Space Research Institute. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  17. Space Station and the life sciences

    NASA Technical Reports Server (NTRS)

    White, R. J.; Leonard, J. I.; Cramer, D. B.; Bishop, W. P.

    1983-01-01

    Previous fundamental research in space life sciences is examined, and consideration is devoted to studies relevant to Space Station activities. Microgravity causes weight loss, hemoconcentration, and orthostatic intolerance when astronauts returns to earth. Losses in bone density, bone calcium, and muscle nitrogen have also been observed, together with cardiovascular deconditioning, fluid-electrolyte metabolism alteration, and space sickness. Experiments have been performed with plants, bacteria, fungi, protozoa, tissue cultures, invertebrate species, and with nonhuman vertebrates, showing little effect on simple cell functions. The Spacelab first flight will feature seven life science experiments and the second flight, two. Further studies will be performed on later flights. Continued life science studies to optimize human performance in space are necessary for the efficient operation of a Space Station and the assembly of large space structures, particularly in interaction with automated machinery.

  18. An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education

    NASA Astrophysics Data System (ADS)

    Lulla, Kamlesh

    2012-07-01

    This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

  19. Without Gravity: Designing Science Equipment for the International Space Station and Beyond

    NASA Technical Reports Server (NTRS)

    Sato, Kevin Y.

    2016-01-01

    This presentation discusses space biology research, the space flight factors needed to design hardware to conduct biological science in microgravity, and examples of NASA and commercial hardware that enable space biology study.

  20. The space shuttle payload planning working groups: Executive summaries

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of a space shuttle payload planning group session are presented. The purpose of the workshop is: (1) to provide guidance for the design and development of the space shuttle and the spacelab and (2) to plan a space science and applications program for the 1980 time period. Individual groups were organized to cover the various space sciences, applications, technologies, and life sciences. Summaries of the reports submitted by the working groups are provided.

  1. Space Station life sciences guidelines for nonhuman experiment accommodation

    NASA Technical Reports Server (NTRS)

    Arno, R.; Hilchey, J.

    1985-01-01

    Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.

  2. Sally Ride Women in Science Panel

    NASA Image and Video Library

    2013-05-17

    Panel discussion participants, from left, Linda Billings, research professor, Media and Public Affairs, The George Washington University, Ellen Ochoa, director, NASA Johnson Space Center, Tom Costello, NBC News and moderator for the event, Margaret Weitekamp, space history curator, National Air and Space Museum, Dan Vergano, science writer for USA Today, and Rene McCormick, director of standards and quality, National Math and Science Initiative, are seen during a program titled "Sally Ride: How Her Historic Space Mission Opened Doors for Women in Science" held on Friday, May 17, 2013 at the National Air and Space Museum in Washington. Photo Credit: (NASA/Bill Ingalls)

  3. Space science curriculum design and research at NC A&T state university

    NASA Astrophysics Data System (ADS)

    Kebede, Abebe; Nair, Jyoti; Smith, Galen

    2007-12-01

    Recently, North Carolina Agricultural and Technical State University (NCAT) won one of the largest awards from NASA to develop curriculum and research capability in space science in partnership with NASA centres, National Institute of Aerospace, the North Carolina Space Grant, the American Astronomical Society and a number of institutions affiliated with NASA. The plan is to develop curricula and research platforms that prepare science, technology, engineering and mathematics (STEM) students to be employed by NASA. The research programme initially focuses on the study of space and atmospheric physics, and the development of a general capability in atmospheric/space science.

  4. Great Explorations in Math and Science[R] (GEMS[R]) Space Science. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "Great Explorations in Math and Science[R] (GEMS[R]) Space Science" is an instructional sequence for grades 3-5 that covers fundamental concepts, including planetary sizes and distance, the Earth's shape and movement, gravity, and moon phases and eclipses. Part of the "GEMS"[R] core curriculum, "GEMS[R] Space Science"…

  5. Science in Orbit

    NASA Technical Reports Server (NTRS)

    Weber, Mary Ellen

    2005-01-01

    This talk presents the excitement of doing science in space. It reviews some of the effects of the physical adaptations that the body undergoes to the lower gravity of space. It also discusses the role of the scientist in the space environment. It also discusses the potential uses of space development, particularly with the use of the space station.

  6. USSR Space Life Sciences Digest

    NASA Technical Reports Server (NTRS)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  7. KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  8. Understanding space science under the northern lights

    NASA Astrophysics Data System (ADS)

    Koskinen, H.

    What is space science? The answers to this question can be very variable indeed. In fact, space research is a field where science, technology, and applications are so closely tied together that it is often difficult to recognize the central role of science. However, as paradoxical as it may sound, it appears that the less-educated public often appreciates the value of space science better than highly educated policy makers and bureaucrats who tend to evaluate the importance of space activities in terms of economic and societal benefits only. In a country like Finland located below the zone, where auroras are visible during the long dark winter nights, the space is perhaps closer to the public than in countries where the visible objects are the Moon, planets and stars somewhere far away. This positive fact has been very useful, for example, in popularization of such an abstract concept as space weather. In Finland it is possible to see space weather and this rises the curiosity about the processes behind this magnificent phenomenon. Of course, also in Finland the beautiful SOHO images of the Sun and the Hubble Space Telescope pictures of the remote universe attract the attention of the large public. We also have an excellent vehicle in increasing the public understanding in the society of Finnish amateur astronomers Ursa. It is an organization for anyone interested in practically everything from visual phenomena in the air to the remote galaxies and the Big Bang. Ursa publishes a high-quality monthly magazine in Finnish and runs local amateur clubs. Last year its 80th birthday exhibition was one of the best-visited public events in Helsinki. It clearly gave a strong evidence of wide public interest in space in general and in space science in particular. Only curious people can grasp the beauty and importance of the underlying science. Thus, we should focus our public space science education and outreach primarily on waking up the curiosity of the public instead of providing ready answers from above.

  9. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  10. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  11. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  12. KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  13. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  14. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  15. Bringing Space Science into the Kindergarten Classroom

    NASA Technical Reports Server (NTRS)

    Bonett, D. M.; Little, K. E.

    2000-01-01

    With the advent of probes to Mars and the construction of the ISS, it is not presumptuous to introduce 5-year-olds to space science. A variety of projects have been implemented to integrate space science into the kindergarten curriculum.

  16. Giving Children Space: A Phenomenological Exploration of Student Experiences in Space Science Inquiry

    ERIC Educational Resources Information Center

    Horne, Christopher R.

    2011-01-01

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived…

  17. An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Cade, W. B., III

    2016-12-01

    Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.

  18. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    PubMed

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    NASA Astrophysics Data System (ADS)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  20. Research and technology at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1983 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Explorations, Life Sciences, and Earth Sciences and Applications research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  1. Chinese Space Program for Heliophysics

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Gan, Weiqun; Wang, Chi; Liu, Weining; Yan, Yihua; Liu, Yong; Sun, Lilin; Liu, Ying

    As one of the major field of space science, heliophysics research in China has not only long history but also strong research forces. Many space missions have been proposed by the community but with few got support. Since 2006, Chinese Academy of Science has organized a long term strategic study in space science. In 2011, the space science program has been kicked off with several new missions being selected for Phase A study. In this presentation, first a brief review on past programs, such as Double Star, Chang’e, and an introduction on the space science strategic study are given. Under the guidance of this strategic study or roadmap, a few missions have been proposed or re-proposed with new element, such as DSO, KUAFU, MIT, SPORT and ASO-S. Brief introductions of these programs and their current status will be given.

  2. Outer Space Place: Exploring Space at the Maryland Science Center

    NASA Astrophysics Data System (ADS)

    Jan, M. W.; Mendez, F.

    1999-05-01

    The Maryland Science Center has been the state's premier vehicle for informal science education for over 20 years. Every day thousands of school children, families, and out-of-state visitors come for fun and come away with ideas, exciting experiences, and an appetite for more information about science. Opened on April 15, 1999, Outer Space Place (OSP) consolidates the Science Center's space exhibits and activities, both new and refurbished. In this paper, we describe OSP, which features SpaceLink, the Crosby Ramsey Memorial Observatory, the Davis Planetarium, Earth Orbit Gallery, and the Hubble Space Telescope National Visitor Center and provides hands-on educational experiences for kids of all ages. We illustrate how astronomers contribute to and educators benefit from OSP. We conclude with concrete suggestions for astronomers and educators who wish to enhance astronomy education in their local areas.

  3. Barred Spiral Galaxy

    NASA Image and Video Library

    2017-12-08

    Barred Spiral Galaxy NGC 1300 Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: P. Knezek (WIYN) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  4. Space Life Sciences Lab

    NASA Image and Video Library

    2003-10-09

    The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is a state-of-the-art facility built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor is the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  5. Saturn's Rings in Ultraviolet Light

    NASA Image and Video Library

    2017-12-08

    Saturn's Rings in Ultraviolet Light Credit: NASA and E. Karkoschka (University of Arizona) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  6. KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  7. KENNEDY SPACE CENTER, FLA. - Capt. Winston Scott, executive director of the Florida Space Authority, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Capt. Winston Scott, executive director of the Florida Space Authority, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  8. Aeronautics and Space Report of the President: Fiscal Year 1996 Activities

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.

  9. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  10. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  11. Communicating Science; a collaborative approach through Art, Dance, Music and Science

    NASA Astrophysics Data System (ADS)

    Smart, Sarah-Jane; Mortimer, Hugh

    2016-04-01

    A collaborative approach to communicating our amazing science. RAL Space at the Rutherford Appleton Lab, has initiated a unique collaboration with a team of award-winning performing artists with the aim of making space science research engaging and accessible to a wide audience. The collaboration has two distinct but connected strands one of which is the development of a contemporary dance work inspired by solar science and including images and data from the Space Physics Division of STFC RAL Space. The work has been commissioned by Sadler's Wells, one of the world's leading dance venues. It will be created by choreographer Alexander Whitley, video artist Tal Rosner and composers Ella Spira and Joel Cadbury and toured throughout the UK and internationally by the Alexander Whitley Dance Company (AWDC). The work will come about through collaboration with the work of the scientists of RAL Space and in particular the SOHO, CDS and STEREO missions, taking a particular interest in space weather. Choreographer Alexander Whitley and composers Ella Spira and Joel Cadbury will take their inspiration from the images and data that are produced by the solar science within RAL Space. Video artist Tal Rosner will use these spectacular images to create an atmospheric backdrop to accompany the work, bringing the beauty and wonder of space exploration to new audiences. Funding for the creation and touring of the work will be sought from Arts Council England, the British Council, partner organisations, trusts and foundations and private donors.The world premiere of the work will take place at Sadler's Wells in June 2017. It will then tour throughout the UK and internationally to theatres, science conferences and outreach venues with the aim of bringing the work of STFC RAL Space and the science behind solar science and space weather to new audiences. An education programme will combine concepts of choreography and space science aimed at young people in year 5 Key Stage 2 and be developed by a Creative Learning specialist with input from RAL Space scientists and engineers, the RAL Space communication and outreach group and Alexander Whitley Dance Company. The programme will be piloted in selected East London schools and then, following evaluation, be rolled out to several schools across the UK.

  12. International Cooperation of Space Science and Application in Chinese Manned Space Program

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Guo, Jiong; Yang, Yang

    Early in China Manned Space Program, lots of space science and application projects have been carried out by utilizing the SZ series manned spaceships and the TG-1 spacelab, and remarkable achievements have been attained with the efforts of international partners. Around 2020, China is going to build its space station and carry out space science and application research of larger scale. Along with the scientific utilization plan for Chinese space station, experiment facilities are considered especially for international scientific cooperation, and preparations on international cooperation projects management are made as well. This paper briefs the international scientific cooperation history and achievement in the previous missions of China Manned Space Program. The general resources and facilities that will support potential cooperation projects are then presented. Finally, the international cooperation modes and approaches for utilizing Chinese Space Station are discussed.

  13. Life sciences research on the space station: An introduction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Space Station will provide an orbiting, low gravity, permanently manned facility for scientific research, starting in the 1990s. The facilities for life sciences research are being designed to allow scientific investigators to perform research in Space Medicine and Space Biology, to study the consequences of long-term exposure to space conditions, and to allow for the permanent presence of humans in space. This research, using humans, animals, and plants, will provide an understanding of the effects of the space environment on the basic processes of life. In addition, facilities are being planned for remote observations to study biologically important elements and compounds in space and on other planets (exobiology), and Earth observations to study global ecology. The life sciences community is encouraged to plan for participation in scientific research that will be made possible by the Space Station research facility.

  14. KSC-98pc1694

    NASA Image and Video Library

    1998-11-13

    KENNEDY SPACE CENTER, FLA. -- NASA's "Super Guppy" aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre-launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS-98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000

  15. Life sciences utilization of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambers, Lawrence P.

    1992-01-01

    Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.

  16. Opportunities for research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.

    1992-01-01

    NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences program: to ensure the health, safety, and productivity of humans in space and to acquire fundamental knowledge of biological processes. Space-based research has already shown that people and plants respond the same way to the microgravity environment: they lose structure. However, the mechanisms by which they respond are different, and researchers do not yet know much about these mechanisms. Life science research accommodations on Freedom will include facilities for experiments designed to address this and other questions, in fields such as gravitational biology, space physiology, and biomedical monitoring and countermeasures research.

  17. Space station needs, attributes and architectural options study. Volume 2: Mission analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space environment studies, astrophysics, Earth environment, life sciences, and material sciences are discussed. Commercial communication, materials processing, and Earth observation missions are addressed. Technology development, space operations, scenarios of operational capability, mission requirements, and benefits analysis results for space-produced gallium arsenide crystals, direct broadcasting satellite systems, and a high inclination space station are covered.

  18. Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)

  19. Advances in Planetary Protection at the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.

    2018-02-01

    Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.

  20. Science operations with Space Telescope

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1982-01-01

    The operation, instrumentation, and expected contributions of the Space Telescope are discussed. Space Telescope capabilities are described. The organization and nature of the Space Telescope Science Institute are outlined, including the allocation of observing time and the data rights and data access policies of the institute.

  1. 14 CFR 1203.902 - Membership.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Committee membership: (a) Associate Administrator for: (1) Aero-Space Technology. (2) Space Science. (3) Space Flight. (4) External Relations. (5) Life and Microgravity Sciences and Applications. (b) Associate...

  2. 14 CFR 1203.902 - Membership.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Committee membership: (a) Associate Administrator for: (1) Aero-Space Technology. (2) Space Science. (3) Space Flight. (4) External Relations. (5) Life and Microgravity Sciences and Applications. (b) Associate...

  3. 14 CFR 1203.902 - Membership.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Committee membership: (a) Associate Administrator for: (1) Aero-Space Technology. (2) Space Science. (3) Space Flight. (4) External Relations. (5) Life and Microgravity Sciences and Applications. (b) Associate...

  4. 14 CFR 1203.902 - Membership.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Committee membership: (a) Associate Administrator for: (1) Aero-Space Technology. (2) Space Science. (3) Space Flight. (4) External Relations. (5) Life and Microgravity Sciences and Applications. (b) Associate...

  5. My Space- a collaboration between Arts & Science to create a suite of informal interactive public engagement initiatives.

    NASA Astrophysics Data System (ADS)

    Shaw, Niamh, , Dr.; McSweeney, Clair; Smith, Niall, , Dr.; O'Neill, Stephanie; Foley, Cathy; Crawley, Joanna; Phelan, Ronan; Colley, Dan; Henderson, Clare; Conroy, Lorraine

    2015-04-01

    A suite of informal interactive public engagement initiatives, entitled 'MySpace' was created, to promote the importance of Earth science and Space exploration, to ignite curiosity and discover new and engaging platforms for science in the Arts & in STEM Education, and to increase awareness of careers in Ireland's Space and Earth Science industries. Site visits to research centres in Ireland & abroad, interviews with scientists, engineers, and former astronauts were conducted over a 6 month period. A suite of performance pieces emerged from this development phase, based on Dr. Shaw's personal documented journey and the dissemination of her research. These included: 1. 'To Space'- A live multimedia theatre performance aimed at the general public & young adult. Initially presented as a 'Work In Progress' event at The Festival of Curiosity, the full theatre show 'To Space' premiered at Science Gallery, Dublin as part of Tiger Dublin Fringe Arts Festival. Response to the piece was very strong, indicated by audience response, box office sales and theatre reviews in national press and online. A national and international tour is in place for 2015. To Space was performed a total of 10 times and was seen by 680 audiences. 2. An adapted piece for 13-17 year old students -'ToSpace for Secondary Schools'- to increase awareness of Ireland's involvement in Space Exploration & to encourage school leavers to dream big. This show toured nationally as part of World Space week and Science week events in conjunction with ESERO Ireland, CIT Blackrock Castle Observatory, Cork, Armagh Planetarium & Dunsink Observatory. It was performed 12 times and was seen by 570 students. 3. 'My Place in Space', created for families from the very old (60 +) to the very young (3yrs +), this highly interactive workshop highlighted the appeal of science through the wonders of our planet and its place in Space. Presented at Festival of Curiosity, the Mallow Science Fair and at Science week 2014, this workshop was performed 8 times with 420 participants in total. An additional suite of 6 short career videos was created, using interviews from a number of Irish individuals and companies involved in the Space & Earth science industry, to promote STEM careers and Ireland's involvement in Space. The creation of 'My Space' has shown that positioning science within story and placing the human at the centre of the narrative is a highly effective public engagement tool in igniting curiosity across many audience types. The nurturing and investment of artists working within these new cross-disciplinary relationships and the establishment of similar initiatives in other research centres warrants further investigation.

  6. Educational program using four-dimensional presentation of space data and space-borne data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, Akinori; Yoshida, Daiki; Odagi, Yoko; Takahashi, Midori; Tsugawa, Takuya; Kumano, Yoshisuke

    We developed an educational program of space science data and science data observed from the space using a digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system. The educational program using Dagik Earth has been carried out in classrooms of schools, science museums, and research institutes to show the scientific data of the earth and planets in an intuitive way. We are developing the hardware system, data contents, and education manuals in cooperation with teachers, museum staffs and scientists. The size of the globe used in this system is from 15cm to 2m in diameter. It is selected according to the environment of the presentation. The contents cover the space science, such as aurora and geomagnetic field, the earth science, such as global clouds and earthquakes, and planetary science. Several model class plans are ready to be used in high school and junior high school. In public outreach programs of universities, research institutes, and scientific meetings, special programs have been carried out. We are establishing a community to use and develop this program for the space science education.

  7. Citizen Science as a Tool for Scientific Research and Societal Benefit at NASA

    NASA Technical Reports Server (NTRS)

    Kaminski, Amy

    2018-01-01

    NASA's strategic goals include advancing knowledge and opportunity in space and improving life on Earth. We support these goals through extensive programs in space and Earth science research accomplished via space-based missions and research funding. NASA's "system" is configured to conduct science using (1) in-house personnel and (2) grants, contracts, and agreements with external entities (academia, industry, international space agencies.

  8. Center of Excellence in Space Data and Information Science, Year 9

    NASA Technical Reports Server (NTRS)

    Yesha, Yelena

    1997-01-01

    This report summarizes the range of computer science related activities undertaken by CESDIS(Center of Excellence in Space Data and Information Sciences) for NASA in the twelve months from July 1, 1996 through June 30, 1997. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists.

  9. Using the Deep Space Atomic Clock for Navigation and Science.

    PubMed

    Ely, Todd A; Burt, Eric A; Prestage, John D; Seubert, Jill M; Tjoelker, Robert L

    2018-06-01

    Routine use of one-way radiometric tracking for deep space navigation and radio science is not possible today because spacecraft frequency and time references that use state-of-the-art ultrastable oscillators introduce errors from their intrinsic drift and instability on timescales past 100 s. The Deep Space Atomic Clock (DSAC), currently under development as a NASA Technology Demonstration Mission, is an advanced prototype of a space-flight suitable, mercury-ion atomic clock that can provide an unprecedented frequency and time stability in a space-qualified clock. Indeed, the ground-based results of the DSAC space demonstration unit have already achieved an Allan deviation of at one day; space performance on this order will enable the use of one-way radiometric signals for deep space navigation and radio science.

  10. The Information Science Experiment System - The computer for science experiments in space

    NASA Technical Reports Server (NTRS)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  11. Innovative Space Sciences Education Programs for Young People

    NASA Astrophysics Data System (ADS)

    Inbar, T.

    2002-01-01

    The future of the world is greatly depends on space. Through space sciences education programs with the main focus is on young people, the society, as a whole will gain in the years to come. The Weizmann Institute of Science is the leading scientific research center in Israel. After the need for science education programs for young students was recognized, the institute established its Youth Activities Section, which serves as the institute's outreach for the general population of school children nation-wide. The youth activities section holds courses, seminars, science camps etc. for almost 40 years. As an instructor in the youth activities section since 1990, my focus is space sciences programs, such as rocketry courses, planetarium demonstrations, astronomical observations and special events - all in the creed of bringing the space science to everyone, in a enjoyable, innovative and creative way. Two of the courses conducted combines' scientific knowledge, hands-on experience and a glimpse into the work of space programs: the rocketry courses offered a unique chance of design, build and fly actual rockets, to height of about 800 meters. The students conduct research on the rockets, such as aerial photography, environmental measurements and aerodynamic research - using student built wind tunnel. The space engineering course extend the high frontier of the students into space: the objective of a two year course is to design, build an launch an experiments package to space, using one of NASA's GAS programs. These courses, combined with special guest lectures by Weizmann institute's senior researchers, tours to facilities like satellite control center, clean rooms, the aeronautical industry, give the students a chance to meet with "the real world" of space sciences applications and industry, and this - in turn - will have payback effect on the society as a whole in years to come. The activities of space sciences education include two portable planetariums, 4 telescopes and special "mobile science" project, which travel to hundreds of school annually, and bring to them mini exhibitions, scientific activities and lectures. Special events are held when something unique happened: in the last years we have had the Galileo special event when the spacecraft arrived at Jupiter; SL-9 event; Mars Pathfinder special event; Mir re- entry event - to name a few. For 11 years, on July 20 we have the Apollo memorial lecture, and a meteors observation night on August 11. The 12 years of experience I have in teaching space sciences subjects to k-12 students, university students and adults, combines with three years as a director of interactive science museum, allowed me to implement my vision of promoting the general knowledge about space and to move a little more in the direction of creating a space oriented, open and globally interacted society in Israel.

  12. 14 CFR § 1203.902 - Membership.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Committee membership: (a) Associate Administrator for: (1) Aero-Space Technology. (2) Space Science. (3) Space Flight. (4) External Relations. (5) Life and Microgravity Sciences and Applications. (b) Associate...

  13. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    ERIC Educational Resources Information Center

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  14. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  15. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    NASA Astrophysics Data System (ADS)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  16. USSR Space Life Sciences Digest, volume 2, no. 3

    NASA Technical Reports Server (NTRS)

    Lewis, C. S.

    1981-01-01

    Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided.

  17. USSR Space Life Sciences Digest, volume 2, no. 4

    NASA Technical Reports Server (NTRS)

    Lewis, C. S.; Donnelly, K.

    1981-01-01

    Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided.

  18. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  19. KSC-03PD-3141

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Center Director Jim Kennedy presents a NASA Public Service Award to Douglas Britt of the Dynamac Corp. at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Britt received the award for his many years of exceptional service to NASA in managing the Life Sciences contracts at the Kennedy Space Center and his contributions to conceptualization and collaborations that helped make the Space Life Sciences Lab possible. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  20. KSC-03PD-3140

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Center Director Jim Kennedy presents a NASA Public Service Award to Douglas Britt of the Dynamac Corp. at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Britt received the award for his many years of exceptional service to NASA in managing the Life Sciences contracts at the Kennedy Space Center and his contributions to conceptualization and collaborations that helped make the Space Life Sciences Lab possible. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  1. Collaborating with Space-related Research Institutes, Government Agencies and an Artistic team to create a series of Space-themed public events in Ireland in 2014

    NASA Astrophysics Data System (ADS)

    Shaw, N.; McSweeney, C.; Smyth, N.; O'Neill, S.; Foley, C.; Phelan, R.; Crawley, J.; Henderson, C.; Cullinan, M.; Baxter, S.; Colley, D.; Macaulay, C. J.; Conroy, L.

    2015-10-01

    A suite of informal interactive public engagement initiatives was created, to promote the importance of Space exploration, to ignite curiosity and discover new and engaging platforms for science in the Arts & in STEM Education, and to increase awareness of careers in Ireland's Space science industries. These included: (1)'To Space'- A live multimedia theatre performance aimed at the general public & young adult, (2) an adaptation of 'To Space' for 13- 17 year old students entitled 'ToSpace for School leavers' and (3) 'My Place in Space', created for families. Blending humour, warmth and humanity and positioning science within story is a highly effective public engagement tool in igniting curiosity across many audience types. The nurturing and investment of artists working within these new cross-disciplinary relationships should be encouraged and supported to further broaden and develop new methodology in public engagement of the planetary sciences.

  2. Accommodating life sciences on the Space Station

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1997-01-14

    The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.

  4. Inventing a Space Mission: The Story of the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Minier, Vincent; Bonnet, Roger-Maurice; Bontems, Vincent; de Graauw, Thijs; Griffin, Matt; Helmich, Frank; Pilbratt, Göran; Volonte, Sergio

    This book describes prominent technological achievements within a very successful space science mission: the Herschel space observatory. Focusing on the various processes of innovation it offers an analysis and discussion of the social, technological and scientific context of the mission that paved the way to its development. It addresses the key question raised by these processes in our modern society, i.e.: how knowledge management of innovation set the conditions for inventing the future? In that respect the book is based on a transdisciplinary analysis of the programmatic complexity of Herschel, with inputs from space scientists, managers, philosophers, and engineers. This book is addressed to decision makers, not only in space science, but also in other industries and sciences using or building large machines. It is also addressed to space engineers and scientists as well as students in science and management.

  5. Southeast Regional Clearinghouse(SERCH)Mini-grants:Big Impacts on Future Explorers

    NASA Astrophysics Data System (ADS)

    Runyon, C.; Guimond, K.

    2004-12-01

    SERCH is one of seven regional Broker/Facilitator programs funded by NASA's Space Science Mission Directorate. Our purpose is to promote space science awareness and to enhance interest in science, math, and technology through the use of NASA's mission data, information, and educational products. We work closely with educators and NASA-funded scientists in 14 states (AL, AR, DC, FL, GA, KY, LA, MD, MS, NC, PR, SC/VI, TN, and VA) throughout the southeastern U.S. to share what NASA is doing in space science. Every year SERCH dedicates money from its budget to support education/outreach initiatives that increase the awareness and understanding of the four major scientific themes, or forums from NASA's space science program: 1) Sun-Earth Connection, 2) Solar System Exploration, 3) Structure and Evolution of the Universe, and 4) Astronomical Search for Origins and Planetary Systems. SERCH is particularly interested in proposals for education/outreach efforts that establish strong and lasting partnerships between the space science and education communities and that support the NASA's education mission. We encourage innovative, inter-disciplinary teams involving both scientists and educators to apply. These peer-reviewed grants are awarded for a period of one year in amounts usually ranging from 5,000 to 10,000. Three examples of highly successful previous grant awards include: 1) Teaching Astronomy and Space Science in Kentucky (KY): Designed to improve knowledge of science core concepts and teaching skills in astronomy and space science and increased expertise in achieving current Kentucky academic expectations; 2) Development of Multi-media Space Science Education/Tutorial Modules (MD): The objective is the production of three "turn-key" internet-based multi-media student tutorial modules to enable the mostly part-time professors/instructors teaching introductory astronomy in community colleges to add exciting and cutting-edge topics to their existing astronomy courses; and 3) Space Science the Special Way (SSS Way) (VA): This conference focused on solutions to the challenges faced when accommodating inclusive earth/space science instruction to students from the following special needs groups: blind and visually impaired, deaf and hard of hearing and the learning disabled.

  6. Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computer-generated drawing shows the relative scale and working space for the Microgravity Science Glovebox (MSG) being developed by NASA and the European Space Agency for science experiments aboard the International Space Station (ISS). The person at the glovebox repesents a 95th percentile American male. The MSG will be deployed first to the Destiny laboratory module and later will be moved to ESA's Columbus Attached Payload Module. Each module will be filled with International Standard Payload Racks (green) attached to standoff fittings (yellow) that hold the racks in position. Destiny is six racks in length. The MSG is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)

  7. Nanosatellites for quantum science and technology

    NASA Astrophysics Data System (ADS)

    Oi, Daniel K. L.; Ling, Alex; Grieve, James A.; Jennewein, Thomas; Dinkelaker, Aline N.; Krutzik, Markus

    2017-01-01

    Bringing quantum science and technology to the space frontier offers exciting prospects for both fundamental physics and applications such as long-range secure communication and space-borne quantum probes for inertial sensing with enhanced accuracy and sensitivity. But despite important terrestrial pathfinding precursors on common microgravity platforms and promising proposals to exploit the significant advantages of space quantum missions, large-scale quantum test beds in space are yet to be realised due to the high costs and lead times of traditional 'Big Space' satellite development. But the 'small space' revolution, spearheaded by the rise of nanosatellites such as CubeSats, is an opportunity to greatly accelerate the progress of quantum space missions by providing easy and affordable access to space and encouraging agile development. We review space quantum science and technology, CubeSats and their rapidly developing capabilities and how they can be used to advance quantum satellite systems.

  8. President Signs NASA Transition Authorization Act on This Week @NASA – March 24, 2017

    NASA Image and Video Library

    2017-03-24

    On March 21, President Trump signed the National Aeronautics and Space Administration Transition Authorization Act of 2017. The bipartisan legislation reaffirms Congress’ commitment to the agency and directs it to pursue a balanced portfolio for space exploration and space science, including continued development of the Space Launch System, Orion, Commercial Crew Program; space and planetary science missions, such as the James Webb Space Telescope, Wide-Field Infrared Survey Telescope, and Europa mission; and ongoing operations of the International Space Station and Commercial Resupply Services Program. In a statement, acting NASA Administrator Robert Lightfoot, who attended the signing, along with two astronauts and members of Congress, thanked the president and Congress for supporting the agency and its mission. Also, Spacewalk Outside the Space Station, SpaceX’s Dragon Returns Safely to Earth, Jeff Williams Visits Washington Area, Advanced Woven Thermal Protection, and Lunar and Planetary Science Conference.

  9. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    NASA Astrophysics Data System (ADS)

    Morrow, Cherilynn A.

    1993-11-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  10. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    NASA Technical Reports Server (NTRS)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  11. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  12. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  13. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  14. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  15. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  16. NASA CONNECT(TradeMark): Space Suit Science in the Classroom

    NASA Technical Reports Server (NTRS)

    Williams, William B.; Giersch, Chris; Bensen, William E.; Holland, Susan M.

    2003-01-01

    NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.

  17. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  18. Space life sciences: Programs and projects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  19. Space Science Education: An Experimental Study. Report of the Study Commission on Space Science Education.

    ERIC Educational Resources Information Center

    Vick, Raymond

    The implications of space science terminology and concepts for elementary science teaching are explored. Twenty-two concepts were identified which elementary and junior high school teachers were invited to introduce in their teaching. Booklets explaining the concepts were distributed together with report forms for teacher feedback. The numbers of…

  20. Requirements and specifications of the space telescope for scientific operations

    NASA Technical Reports Server (NTRS)

    West, D. K.

    1976-01-01

    Requirements for the scientific operations of the Space Telescope and the Science Institute are used to develop operational interfaces between user scientists and the NASA ground system. General data systems are defined for observatory scheduling, daily science planning, and science data management. Hardware, software, manpower, and space are specified for several science institute locations and support options.

  1. Science in orbit: The shuttle and spacelab experience, 1981-1986

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Significant achievements across all scientific disciplines and missions for the first six years of Shuttle flights are presented. Topics covered include science on the Space Shuttle and Spacelab, living and working in space, studying materials and processes in microgravity, observing the sun and earth, space plasma physics, atmospheric science, astronony and astrophysics, and testing new technology in space. Future research aboard the Shuttle/Spacelab is also briefly mentioned.

  2. Study of Solar Energetic Particles (SEPs) Using Largely Separated Spacecraft

    DTIC Science & Technology

    2016-12-31

    jinhye@khu.ac.kr - Institution : Department of Astronomy and Space Science, Kyung Hee University - Mailing Address : Department of Astronomy and Space...31-204-8122 Yong-Jae Moon (Co-PIs): - e-mail address : moonyj@khu.ac.kr - Institution : Department of Astronomy and Space Science, Kyung Hee...University - Mailing Address : Department of Astronomy and Space Science, Kyung Hee University 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do

  3. Space medicine research publications: 1987-1988

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A list of publications of investigators supported by the Biomedical Research and Clinical Programs of the Life Sciences Division, Office of Space Science and Applications is given. Included are publications entered into the Life Sciences Bibliographic Database by the George Washington University as of 31 December 1988. Principal Investigators whose research tasks resulted in publication are identified by asterisk. Publications are organized into the following subject areas: space physiology and countermeasures (cardiopulmonary, musculoskeletal, neuroscience, and regulatory physiology), space human factors, environmental health, radiation health, clinical medicine, and general space medicine.

  4. Explorers Program Management

    NASA Technical Reports Server (NTRS)

    Volpe, Frank; Comberiate, Anthony B. (Technical Monitor)

    2001-01-01

    The mission of the Explorer Program is to provide frequent flight opportunities for world-class scientific investigations from space within the following space science themes: 1) Astronomical Search for Origins and Planetary Systems; 2) Structure and Evolution of the Universe; and 3) The Sun-Earth Connection. America's space exploration started with Explorer 1 which was launched February 1, 1958 and discovered the Van Allen Radiation Belts. Over 75 Explorer missions have flown. The program seeks to enhance public awareness of, and appreciation for, space science and to incorporate. educational and public outreach activities as integral parts of space science investigations.

  5. SpaceX CRS-10 What's on Board Science Briefing

    NASA Image and Video Library

    2017-02-17

    During the SpaceX CRS-10 "What's On Board?" Science Briefing inside the Press Site Auditorium, members of social media learned about the science aboard the Dragon spacecraft. The briefing focused on growth of crystals in microgravity planned for the International Space Station following the arrival of a Dragon spacecraft. The Dragon is scheduled to be launched from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.

  6. KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media show their appreciation for the speakers at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media show their appreciation for the speakers at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  7. Explorations in Education and Public Outreach in Space Sciences - a Wisconsin Experience

    NASA Astrophysics Data System (ADS)

    Limaye, S. S.; Pertzborn, R. A.

    1999-09-01

    To better serve the Education and Public Outreach needs of federally funded space science research programs at the University of Wisconsin, an Office of Space Science Education has recently been established on the University of Wisconsin-Madison campus. This office also acts as the campus focus for the Wisconsin Space Grant Consortium, and has undertaken a broad spectrum of interdisciplinary space science programs in the past several years. These activities range from a public exhibition focusing on current space exploration in conjunction with the DPS '98 meeting in Madison, WI that attracted over 5,000 students and teachers from across the state, to organizing state-of-the-art HDTV presentations on earth remote sensing topics at a Milwaukee science museum. Programs for students have included development and support of a six week solar system exploration program in the Milwaukee Public Schools for at-risk students, a two week college access program for minority middle school students, the NASA/QEM/SHARP Plus program for minority high school students, and a web based journal for middle school science projects (SPARK). Teacher professional development efforts include summer workshops for academic credit, year-round classroom support for pilot school programs, and support for development of standards-based curriculum in both space science and earth remote sensing topics. Public outreach activities have included evening family activities and public lectures at the Space Place, an off-campus outreach center, and an ask-a-scientist web based program. These efforts continue to affirm the need for effective outreach programs for diverse and multigenerational communities. In spite of the growing recognition at both the state and federal level for an improved level of literacy in the space-related sciences, sustainable support, program opportunities and logistical implementation continue to pose significant challenges. We gratefully acknowledge the support we have received from NASA, NOAA, the Division for Planetary Sciences of the AAS (space exploration exhibition), the University of Wisconsin System and the Eisenhower Professional Development Program.

  8. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    NASA Technical Reports Server (NTRS)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  9. (abstract) Space Science with Commercial Funding

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The world-wide recession, and other factors, have led to reduced or flat budgets in real terms for space agencies around the world. Consequently space science projects and proposals have been under pressure and seemingly will continue to be pressured for some years into the future. A new concept for space science funding is underway at JPL. A partnership has been arranged with a commercial, for-profit, company that proposes to implement a (bandwidth-on-demand) information and telephone system through a network of low earth orbiting satellites (LEO). This network will consist of almost 1000 satellites operating in polar orbit at Ka-band. JPL has negotiated an agreement with this company that each satellite will also carry one or more science instruments for astrophysics, astronomy, and for earth observations. This paper discussed the details of the arrangement and the financial arrangements. It describes the technical parameters, such as the 60 GHz wideband inter-satellite links and the frequency, time, and position control, on which the science is based, and it also discusses the complementarity of this commercially funded space science with conventional space science.

  10. Space Sciences Education and Outreach Project of Moscow State University

    NASA Astrophysics Data System (ADS)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space sciences educational activity of Moscow State University is a non-profit project and is open for all interested parties. “Space schools” for university teachers and students were held in the autumn of 2004 and 2005. The main objective of those schools was to attract interest in space research. Tutors and students who took part in these schools had never before been involved in the space sciences. The idea behind these schools was to join forces: Moscow State University scientists gave space science lectures, students from different universities (Ulianovsk, Samara, Kostroma and other Russian universities) performed the work (prepared educational material) and their university teachers managed the students. After participating in these schools, both students and teachers started to study space science related topics emphasizing the success of these schools. It is important for the educational community to understand what skills future space scientists and space industry employees must be equipped with. In the next years, emphasis is to be placed on space science education at all educational levels and better communication should be practiced between universities and industry.

  11. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  12. KSC-97PC863

    NASA Image and Video Library

    1997-05-25

    KENNEDY SPACE CENTER, FLA. - Members of the STS-84 crew pause at Patrick Air force Base just prior to their departure for Johnson Space Center in Houston, Texas. They are (from left) Mission Specialist Jean-Francois Clervoy; returning astronaut and Mir 23 crew member Jerry M. Linenger; Mission Commander Charles J. Precourt; Mission Specialist Edward Tsang Lu; and Mission Specialist Elena V. Kondakova. The seven-member crew returned aboard the Space Shuttle Orbiter Atlantis May 24 on KSC's Runway 33 after the completion of a successful nine-day mission. STS-84 was the sixth docking of the Space Shuttle with the Russian Space Station MIr. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced Linenger, who had been on the Russian space station since Jan. 15. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale's stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences.

  13. Second interim briefing (D3). Evolutionary Science and Applications Space Platform. Characterization of concepts, tasks A and B

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The objectives were to define, evaluate, and select concepts for evolving a space station in conjunction with the Space Platform for NASA science, Applications, Technology and DOD; and a permanently manned presence in space early, with a maximum of existing technology.

  14. Quantum Opportunities and Challenges for Fundamental Sciences in Space

    NASA Technical Reports Server (NTRS)

    Yu, Nan

    2012-01-01

    Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.

  15. Multidimensional Space-Time Methodology for Development of Planetary and Space Sciences, S-T Data Management and S-T Computational Tomography

    NASA Astrophysics Data System (ADS)

    Andonov, Zdravko

    This R&D represent innovative multidimensional 6D-N(6n)D Space-Time (S-T) Methodology, 6D-6nD Coordinate Systems, 6D Equations, new 6D strategy and technology for development of Planetary Space Sciences, S-T Data Management and S-T Computational To-mography. . . The Methodology is actual for brain new RS Microwaves' Satellites and Compu-tational Tomography Systems development, aimed to defense sustainable Earth, Moon, & Sun System evolution. Especially, extremely important are innovations for monitoring and protec-tion of strategic threelateral system H-OH-H2O Hydrogen, Hydroxyl and Water), correspond-ing to RS VHRS (Very High Resolution Systems) of 1.420-1.657-22.089GHz microwaves. . . One of the Greatest Paradox and Challenge of World Science is the "transformation" of J. L. Lagrange 4D Space-Time (S-T) System to H. Minkovski 4D S-T System (O-X,Y,Z,icT) for Einstein's "Theory of Relativity". As a global result: -In contemporary Advanced Space Sciences there is not real adequate 4D-6D Space-Time Coordinate System and 6D Advanced Cosmos Strategy & Methodology for Multidimensional and Multitemporal Space-Time Data Management and Tomography. . . That's one of the top actual S-T Problems. Simple and optimal nD S-T Methodology discovery is extremely important for all Universities' Space Sci-ences' Education Programs, for advances in space research and especially -for all young Space Scientists R&D!... The top ten 21-Century Challenges ahead of Planetary and Space Sciences, Space Data Management and Computational Space Tomography, important for successfully de-velopment of Young Scientist Generations, are following: 1. R&D of W. R. Hamilton General Idea for transformation all Space Sciences to Time Sciences, beginning with 6D Eukonal for 6D anisotropic mediums & velocities. Development of IERS Earth & Space Systems (VLBI; LLR; GPS; SLR; DORIS Etc.) for Planetary-Space Data Management & Computational Planetary & Space Tomography. 2. R&D of S. W. Hawking Paradigm for 2D Complex Time and Quan-tum Wave Cosmology Paradigm for Decision of the Main Problem of Contemporary Physics. 3. R&D of Einstein-Minkowski Geodesies' Paradigm in the 4D-Space-Time Continuum to 6D-6nD Space-Time Continuum Paradigms and 6D S-T Equations. . . 4. R&D of Erwin Schrüdinger 4D S-T Universe' Evolutional Equation; It's David Bohm 4D generalization for anisotropic mediums and innovative 6D -for instantaneously quantum measurement -Bohm-Schrüdinger 6D S-T Universe' Evolutional Equation. 5. R&D of brain new 6D Planning of S-T Experi-ments, brain new 6D Space Technicks and Space Technology Generalizations, especially for 6D RS VHRS Research, Monitoring and 6D Computational Tomography. 6. R&D of "6D Euler-Poisson Equations" and "6D Kolmogorov Turbulence Theory" for GeoDynamics and for Space Dynamics as evolution of Gauss-Riemann Paradigms. 7. R&D of N. Boneff NASA RD for Asteroid "Eros" & Space Science' Laws Evolution. 8. R&D of H. Poincare Paradigm for Nature and Cosmos as 6D Group of Transferences. 9. R&D of K. Popoff N-Body General Problem & General Thermodynamic S-T Theory as Einstein-Prigogine-Landau' Paradigms Development. ü 10. R&D of 1st GUT since 1958 by N. S. Kalitzin (Kalitzin N. S., 1958: Uber eine einheitliche Feldtheorie. ZAHeidelberg-ARI, WZHUmnR-B., 7 (2), 207-215) and "Multitemporal Theory of Relativity" -With special applications to Photon Rockets and all Space-Time R&D. GENERAL CONCLUSION: Multidimensional Space-Time Methodology is advance in space research, corresponding to the IAF-IAA-COSPAR Innovative Strategy and R&D Programs -UNEP, UNDP, GEOSS, GMES, Etc.

  16. Spacelab

    NASA Image and Video Library

    1992-01-01

    The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. In this photograph, Commander Ronald J. Grabe works with the Mental Workload and Performance Evaluation Experiment (MWPE) in the IML-1 module. This experiment was designed as a result of difficulty experienced by crewmembers working at a computer station on a previous Space Shuttle mission. The problem was due to the workstation's design being based on Earthbound conditions with the operator in a typical one-G standing position. Information gained from this experiment was used to design workstations for future Spacelab missions and the International Space Station. Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).

  17. KENNEDY SPACE CENTER, FLA. - Frank T. Brogan, president of the Florida Atlantic University, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Frank T. Brogan, president of the Florida Atlantic University, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  18. KSC-2012-5686

    NASA Image and Video Library

    2012-10-06

    CAPE CANAVERAL, Fla. -- News and social media representatives participate in a space station and mission science briefing in NASA Kennedy Space Center's Press Site auditorium in Florida. On the dais from left are Michael Curie, NASA Public Affairs, Julie Robinson, program scientist for International Space Station at NASA's Johnson Space Center, Timothy Yeatman, interim chief scientist at the Center for the Advancement of Science in Space, Sheila Nielsen-Preiss, cell biologist at Montana State University, and Scott Smith, NASA nutritionist at NASA's Johnson Space Center. The briefing provided media with an overview of the experiments and payloads scheduled for launch on NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Space Exploration Technologies Corp., or SpaceX, built both the mission's Falcon 9 rocket and Dragon capsule. Launch is scheduled for 8:35 p.m. EDT on Oct. 7 from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  19. Cold Stowage: An ISS Project

    NASA Technical Reports Server (NTRS)

    Hartley, Garen

    2018-01-01

    NASA's vision for humans pursuing deep space flight involves the collection of science in low earth orbit aboard the International Space Station (ISS). As a service to the science community, Johnson Space Center (JSC) has developed hardware and processes to preserve collected science on the ISS and transfer it safely back to the Principal Investigators. This hardware includes an array of freezers, refrigerators, and incubators. The Cold Stowage team is part of the International Space Station (ISS) program. JSC manages the operation, support and integration tasks provided by Jacobs Technology and the University of Alabama Birmingham (UAB). Cold Stowage provides controlled environments to meet temperature requirements during ascent, on-orbit operations and return, in relation to International Space Station Payload Science.

  20. Nex-Gen Space Observatory

    NASA Image and Video Library

    2011-10-26

    NASA, space science industry and government officials are seen in front of a full-size model of NASA's James Webb Space Telescope at the Maryland Science Center in Baltimore, Wednesday, Oct. 26, 2011. From left, back row are: Dr. John Grunsfeld, former astronaut and Deputy Director, Space Telescope Science Institute (STScI), Baltimore; Jeffrey Grant, VP and General Manager of the Space Systems Division, Northrop Grumman; Van Reiner, President and CEO of the Maryland Science Center, Baltimore and Adam Reiss, recipient of the 2011 Nobel Prize in Physics and professor of astronomy and physics at Johns Hopkins University. In the front row are NASA Deputy Administrator Lori Garver, left, and U.S. Senator Barbara Mikulski (D-Md.). Photo Credit: (NASA/Carla Cioffi)

  1. Space Station transition through Spacelab

    NASA Technical Reports Server (NTRS)

    Craft, Harry G., Jr.; Wicks, Thomas G.

    1990-01-01

    It is appropriate that NASA's Office of Space Science and Application's science management structures and processes that have proven successful on Spacelab be applied and extrapolated to Space Station utilization, wherever practical. Spacelab has many similarities and complementary aspects to Space Station Freedom. An understanding of the similarities and differences between Spacelab and Space Station is necessary in order to understand how to transition from Spacelab to Space Station. These relationships are discussed herein as well as issues which must be dealt with and approaches for transition and evolution from Spacelab to Space Station.

  2. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    Craig Kundrot, director, NASA's Space Life and Physical Science Research and Applications, speaks to members of the media in the Kennedy Space Center Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.

  3. Parental Engagement: Beyond Parental Involvement in Science Education

    NASA Astrophysics Data System (ADS)

    St. Louis, Kathleen

    This study critically analyzes parents' complex stories of engagement in school and science education. The purpose is not to essentialize parental involvement, but rather to understand the processes of parental involvement and push forward the current discourse on the engagement of low-income minority and immigrant parents in schools and specifically science education. Employing critical grounded theory methods over a four-year span, this study had three areas of focus. First, voices of marginalized parents in the context of various spaces within the school system are examined. Using a qualitative approach, informal, formal, and research spaces were explored along with how minority parents express voice in these various spaces. Findings indicate parents drew on capital to express voice differently in different spaces, essentially authoring new spaces or the type of engagement in existing spaces. Second, the values and beliefs of traditionally marginalized people, the Discourse of mainstream society, and how they can inform a third, more transformative space for parental engagement in science are considered. The voices of low-income, marginalized parents around science and parental engagement (i.e., first space) are contrasted with the tenets of major national science policy documents (i.e., second space). Findings indicate a disparity between the pathways of engagement for low-income parents and policymakers who shape science education. Third, methodological questions of responsibility and assumption in qualitative research are explored. The author's complex struggle to make sense of her positionality, responsibilities, and assumptions as a researcher is chronicled. Findings focused on insider/outsider issues and implications for culturally sensitive research are discussed. Finally, the implications for policy, teaching, and research are discussed.

  4. Teaching for Conceptual Change in Space Science

    ERIC Educational Resources Information Center

    Brunsell, Eric; Marcks, Jason

    2007-01-01

    Nearly 20 years after the release of The Harvard-Smithsonian Center for Astrophysics' video, "A Private Universe", much research has been done in relation to students' understanding of space-science concepts and how to effectively change these ideas. However, student difficulties with basic space-science concepts still persist. This article will…

  5. 77 FR 38093 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-046] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory.... to 2:30 p.m., local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100E...

  6. Microgravity

    NASA Image and Video Library

    1997-03-11

    The Microgravity Science Glovebox (MSG) is being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  7. ISS External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  8. International Space Station External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  9. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  10. Space medicine research publications: 1984-1986

    NASA Technical Reports Server (NTRS)

    Wallace, Janice S.

    1988-01-01

    A list is given of the publications of investigators supported by the Biomedical Research and Clinical Medicine Programs of the Space Medicine and Biology Branch, Life Sciences Division, Office of Space Science and Applications. It includes publications entered into the Life Sciences Bibliographic Database by the George Washington University as of December 31, 1986. Publications are organized into the following subject areas: Clinical Medicine, Space Human Factors, Musculoskeletal, Radiation and Environmental Health, Regulatory Physiology, Neuroscience, and Cardiopulmonary.

  11. Examination of the Transfer of Astronomy and Space Sciences Knowledge to Daily Life

    ERIC Educational Resources Information Center

    Emrahoglu, Nuri

    2017-01-01

    In this study, it was aimed to determine the levels of the ability of science teaching fourth grade students to transfer their knowledge of astronomy and space sciences to daily life within the scope of the Astronomy and Space Sciences lesson. For this purpose, the research method was designed as the mixed method including both the quantitative…

  12. Microgravity Science Glovebox - Glove

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  13. Microgravity Science Glovebox - Interior Reach

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the interior reach in the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  14. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  15. UAH/NASA Workshop on Space Science Platform

    NASA Technical Reports Server (NTRS)

    Wu, S. T. (Editor); Morgan, S. (Editor)

    1978-01-01

    The scientific user requirements for a space science platform were defined. The potential user benefits, technological implications and cost of space platforms were examined. Cost effectiveness of the platforms' capabilities were also examined.

  16. CCMC: bringing space weather awareness to the next generation

    NASA Astrophysics Data System (ADS)

    Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.

    2017-12-01

    Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper atmosphere, for near real-time and historical space weather events.

  17. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  18. Space life sciences pilot user development program for the midwest region

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The use of space for research by the life science community was promoted through a series of informal one-day seminars with personal follow-up as circumstances dictated. The programs were planned to: (1) describe the space shuttle vehicle and some of its intended uses; (2) discuss problems of manned space flight; (3) stimulate ideas for biological research in space; (4) discuss costs and potential for industrial and; government sponsorship; and (5) show the researcher or corporate planner how to become an active participant in life sciences research in space. An outline of seminar topics is included along with a description of the seminar organization and lists of participants and materials used.

  19. Fire Prevention, Detection and Suppression

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2004-01-01

    In mid-1999, the Space and Life Sciences Directorate at Johnson Space Center was challenged to develop a new paradigm for NASA human life sciences: space medicine, space biomedical research and countermeasures, advanced human support technology. A new thrust - Bioastronautics - was formulated with a budget augmentation request. The objective are: expanded extramural community participation through the National Space Biomedical Research Institute, initiated the detailed planning and implementation of Bioastronautics, an integrated approach to ensure healthy and safe human space travel, assist in the solution of earth-based problems.

  20. Soviet Space Programs: 1976-80 (With Supplementary Data through 1983). Manned Space Programs and Space Life Sciences. Part 2. Prepared at the Request of Hon. Bob Packwood, Chairman, Committee on Commerce, Science, and Transportation, United States Senate, Ninety-Eighth Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.

    This report, the second of a three-part study of Soviet space programs, examines their manned space programs and reviews their quest for a permanently manned presence in space. Also included is information concerning the physiological and psychological findings related to the extended duration of Soviet manned flights and an executive summary.…

  1. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  2. The NASA Space Radiation Health Program

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Sulzman, F. M.

    1994-01-01

    The NASA Space Radiation Health Program is a part of the Life Sciences Division in the Office of Space Science and Applications (OSSA). The goal of the Space Radiation Health Program is development of scientific bases for assuring adequate radiation protection in space. A proposed research program will determine long-term health risks from exposure to cosmic rays and other radiation. Ground-based animal models will be used to predict risk of exposures at varying levels from various sources and the safe levels for manned space flight.

  3. Current status and future direction of NASA's Space Life Sciences Program

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.

  4. KENNEDY SPACE CENTER, FLA. - Visitors stop at the Orbital Sciences booth during Space Congress Week, held April 29-May 2, 2003, in Cape Canaveral, Fla. The Space Congress is an international conference that gathers attendees from the scientific community, the space industry workforce, educators and local supporting industries. This year's event commemorated the 40th anniversary of the Kennedy Space Center and the Centennial of Flight. The theme for the Space Congress was "Linking the Past to the Future: A Celebration of Space."

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - Visitors stop at the Orbital Sciences booth during Space Congress Week, held April 29-May 2, 2003, in Cape Canaveral, Fla. The Space Congress is an international conference that gathers attendees from the scientific community, the space industry workforce, educators and local supporting industries. This year's event commemorated the 40th anniversary of the Kennedy Space Center and the Centennial of Flight. The theme for the Space Congress was "Linking the Past to the Future: A Celebration of Space."

  5. NASA’s Universe of Learning: Providing a Direct Connection to NASA Science for Learners of all Ages with ViewSpace

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Rhue, Timothy; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Godfrey, John; Lee, Janice C.; Manning, Colleen

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. As one example, NASA’s Universe of Learning program is uniquely able to provide informal learning venues with a direct connection to the science of NASA astrophysics via the ViewSpace platform. ViewSpace is a modular multimedia exhibit where people explore the latest discoveries in our quest to understand the universe. Hours of awe-inspiring video content connect users’ lives with an understanding of our planet and the wonders of the universe. This experience is rooted in informal learning, astronomy, and earth science. Scientists and educators are intimately involved in the production of ViewSpace material. ViewSpace engages visitors of varying backgrounds and experience at museums, science centers, planetariums, and libraries across the United States. In addition to creating content, the Universe of Learning team is updating the ViewSpace platform to provide for additional functionality, including the introduction of digital interactives to make ViewSpace a multi-modal learning experience. During this presentation we will share the ViewSpace platform, explain how Subject Matter Experts are critical in creating content for ViewSpace, and how we are addressing audience needs and using evaluation to support a dedicated user base across the country.

  6. An overview of Korean astronaut’s space experiments

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, Y. K.; Yi, S. Y.; Kim, K. S.; Kang, S. W.; Choi, G. H.; Sim, E. S.

    2010-10-01

    The paper presents an overview of the scientific space experiments in the Korean Astronaut Program (KAP) that were conducted on the International Space Station (ISS), beginning with launch of the Soyuz TMA-12 spacecraft with the first Korean astronaut and two Russian astronauts on April 8, 2008 and returning to Earth on April 19, 2008. During the 10 days aboard the ISS, the Korean astronaut successfully completed thirteen scientific experiments in biology, life science, material science, earth science, and system engineering, five educational space experiments, and three kinds of international collaboration experiments. These experiments were the first Korean manned space experiments and these missions were the first steps toward the manned space exploration by Korea. In this paper, we briefly discuss the descriptions, conduct, and results of the space experiments and discuss future plans. In addition, the lessons learned with respect to the performing of these manned space experiments on the ISS are presented.

  7. Lonchakov holds Space Science P/L Kristallizator Module-1 experiment hardware in the SM during Joint Operations

    NASA Image and Video Library

    2008-10-15

    ISS017-E-018411 (15 Oct. 2008) --- Russian Federal Space Agency cosmonaut Yury Lonchakov, Expedition 18 flight engineer, looks over a procedures checklist while holding Space Science P/L Crystallizer Module-1 experiment hardware in the Zvezda Service Module of the International Space Station.

  8. Future space experiments on cosmic rays and radiation on Russian segments of ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, Mikhail; Galper, Arkady; Stozhov, Yurii

    1999-01-22

    The report presents a survey of the Russian space program in the field of radiation and cosmic ray studies. The experimental projects were developed by scientists of different Russian Institutes and are intended for implementation on the future ISS. All the projects mentioned in this report have undergone various expertise stages in the Space Council of the Russian Science Academy ('Cosmic Ray Physics' section); the International Science-Technology Center of the Rocket-Space Corporation 'Energia' ('Astrophysics and radiation Measurements' section); Committee on Science-Technical Co-operation of the Russian Space Agency.

  9. Modeling & Simulation Education for the Acquisition and T&E Workforce: FY07 Deliverable Package

    DTIC Science & Technology

    2007-12-01

    oceanography, meteorology, and near- earth space science) to represent how systems interact with and are influenced by their environment. E12.1 E12.2 E12.3 E12.4...fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems interact with and...description: Describe the fundamentals of terrestrial science (geology, oceanography, meteorology, and near- earth space science) to represent how systems

  10. Research and technology of the Lyndon Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1988 are highlighted. This year, reports are grouped in sections Space System Technology, Solar System Sciences, Space Transportation Technology, and Medical Sciences. Summary sections describing the role of Johnson Space Center in each program are followed by descriptions of significant tasks. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  11. Life sciences space biology project planning

    NASA Technical Reports Server (NTRS)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  12. 76 FR 16841 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-025)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... [[Page 16842

  13. The Office of Space Science and Applications strategic plan, 1990: A strategy for leadership in space through excellence in space science and applications

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A strategic plan for the U.S. space science and applications program during the next 5 to 10 years was developed and published in 1988. Based on the strategies developed by the advisory committees of both the National Academy of Science and NASA, the plan balances major, moderate, and small mission initiatives, the utilization of the Space Station Freedom, and the requirements for a vital research base. The Office of Space Science and Applications (OSSA) strategic plan is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy will yield a viable program; and check the strategy for consistency within resource constraints. The OSSA plan is revised annually. This OSSA 1990 Strategic Plan refines the 1989 Plan and represents OSSA's initial plan for fulfilling its responsibilities in two major national initiatives. The Plan is now built on interrelated, complementary strategies for the core space science and applications program, for the U.S. Global Change Research Program, and for the Space Exploration Initiative. The challenge is to make sure that the current level of activity is sustained through the end of this century and into the next. The 1990 Plan presents OSSA's strategy to do this.

  14. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  15. Microgravity Science Glovebox - Working Volume

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Interior lights give the Microgravity Science Glovebox (MSG) the appearance of a high-tech juke box. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  16. Microgravity Science Glovebox - Labels

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Labels are overlaid on a photo (0003837) of the Microgravity Science Glovebox (MSG). The MSG is being developed by the European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  17. Innovation: Key to the future

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA Marshall Space Flight Center Annual Report is presented. A description of research and development projects is included. Topics covered include: space science; space systems; transportation systems; astronomy and astrophysics; earth sciences; solar terrestrial physics; microgravity science; diagnostic and inspection system; information, electronic, and optical systems; materials and manufacturing; propulsion; and structures and dynamics.

  18. Earth-Space Science Activity Syllabus for Elementary and Junior High School Teachers of Science.

    ERIC Educational Resources Information Center

    Maier, Jack; And Others

    This syllabus is a collection of earth-space science laboratory activities and demonstrations intended for use at the elementary and junior high school levels. The activities are grouped into eight subject sections: Astronomy, Light, Magnetism, Electricity, Geology, Weather, Sound, and Space. Each section begins with brief background information,…

  19. Space Science Educational Media Resources, A Guide for Junior High School Teachers.

    ERIC Educational Resources Information Center

    McIntyre, Kenneth M.

    This guide, developed by a panel of teacher consultants, is a correlation of educational media resources with the "North Carolina Curricular Bulletin for Eighth Grade Earth and Space Science" and the state adopted textbook, pModern Earth Science." The three major divisions are (1) the Earth in Space (Astronomy), (2) Space…

  20. Microgravity

    NASA Image and Video Library

    2001-05-31

    The Microgravity Science Glovebox is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)

  1. Earth & Space Science PhDs, Class of 2001.

    ERIC Educational Resources Information Center

    Claudy, Nicholas; Henly, Megan; Migdalski, Chet

    This study documents the employment patterns and demographic characteristics of recent PhDs in earth and space science. It summarizes the latest annual survey of recent earth and space science PhDs conducted by the American Geological Institute, the American Geophysical Union, and the Statistical Research Center of the American Institute of…

  2. An outline of the review on space weather in Latin America: space science, research networks and space weather center

    NASA Astrophysics Data System (ADS)

    De Nardin, C. M.; Dasso, S.; Gonzalez-Esparza, A.

    2016-12-01

    The present work is an outline of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings and alerts.

  3. Synopsis of the Review on Space Weather in Latin America: Space Science, Research Networks and Space Weather Center

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, Americo

    2016-07-01

    The present work is a synopsis of a three-part review on space weather in Latin America. The first paper (part 1) comprises the evolution of several Latin American institutions investing in space science since the 1960's, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this part 1 is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues. The second paper (part 2) comprises a summary of scientific challenges in space weather research that are considered to be open scientific questions and how they are being addressed in terms of instrumentation by the international community, including the Latin American groups. We also provide an inventory of the networks and collaborations being constructed in Latin America, including details on the data processing, capabilities and a basic description of the resulting variables. These instrumental networks currently used for space science research are gradually being incorporated into the space weather monitoring data pipelines as their data provides key variables for monitoring and forecasting space weather, which allow these centers to monitor space weather and issue warnings and alerts. The third paper (part 3) presents the decision process for the spinning off of space weather prediction centers from space science groups with our interpretation of the reason/opportunities that leads to this. Lastly, the constraints for the progress in space weather monitoring, research, and forecast are listed with recommendations to overcome them, which we believe will lead to the access of key variables for the monitoring and forecasting space weather, which will allow these centers to better monitor space weather and issue warnings and alerts.

  4. User interfaces in space science instrumentation

    NASA Astrophysics Data System (ADS)

    McCalden, Alec John

    This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.

  5. KSC-04PD-0003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  6. KSC-04PD-0007

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  7. KSC-04PD-0002

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  8. KSC-04PD-0001

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  9. Review on space weather in Latin America. 1. The beginning from space science research

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dasso, Sergio; Gonzalez-Esparza, J. Americo

    2016-11-01

    The present work is the first of a three-part review on space weather in Latin America. It comprises the evolution of several Latin American institutions investing in space science since the 1960s, focusing on the solar-terrestrial interactions, which today is commonly called space weather. Despite recognizing advances in space research in all of Latin America, this review is restricted to the development observed in three countries in particular (Argentina, Brazil and Mexico), due to the fact that these countries have recently developed operational centers for monitoring space weather. The review starts with a brief summary of the first groups to start working with space science in Latin America. This first part of the review closes with the current status and the research interests of these groups, which are described in relation to the most significant works and challenges of the next decade in order to aid in the solving of space weather open issues.

  10. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  11. The U.S. Laboratory module arrives at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's 'Super Guppy' aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre- launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS- 98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000.

  12. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  13. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  14. 76 FR 7235 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [11-013] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  15. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Ken Shields, director of Operations for Center for the Advancement of Science in Space/ISS National Lab, left, and Pete Hasbrook, associate program scientist for the International Space Station Program, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  16. The Forgetful Professor and the Space Biology Adventure

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Jones, Wanda; Munoz, Angela; Santora, Joshua

    2014-01-01

    This video was created as one of the products of the 2013 ISS Faculty Fellows Summer Program. Our High School science teacher faculty fellows developed this video as an elementary/middle school education component. The video shows a forgetful professor who is trying to remember something, and along the journey she learns more about the space station, space station related plant science, and the Kennedy Space Center. She learns about the Veggie hardware, LED lighting for plant growth, the rotating garden concept, and generally about space exploration and the space station. Lastly she learns about the space shuttle Atlantis.

  17. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    Patrick O'Neill, Marketing and Communications Manager, Center for the Advancement of Science in Space, speaks to members of the media in the Kennedy Space Center Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.

  18. Aerospace century XXI: Space sciences, applications, and commercial developments; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgenthaler, G.W.; Koster, J.N.

    1987-01-01

    Papers are presented on rocket UV observations of Comet Halley, a space system for microgravity research, transitioning from Spacelab to Space Station science, and assemblers and future space hardware. Also considered are spatial and temporal scales of atmospheric disturbances, Doppler radar for prediction and warning, data management for the Columbus program, communications satellites of the future, and commercial launch vehicles. Other topics include space geodesy and earthquake predictions, inverted cellular radio satellite systems, material processing in space, and potential for earth observations from the manned Space Station.

  19. Key Challenges for Life Science Payloads on the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Anthony, J. H.; Niederwieser, T.; Zea, L.; Stodieck, L.

    2018-02-01

    Compared to ISS, Deep Space Gateway life science payloads will be challenged by deep space radiation and non-continuous habitation. The impacts of these two differences on payload requirements, design, and operations are discussed.

  20. Space medicine research publications: 1983-1984

    NASA Technical Reports Server (NTRS)

    Solberg, J. L.; Pleasant, L. G.

    1984-01-01

    A list of publications supported by the Space Medicine Program, Office of Space Science and Applications is given. Included are publications entered into the Life Sciences Bibliographic Database by The George Washington University as of October 1, 1984.

  1. KSC-2014-2062

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing, from the left, are Mike Curie of NASA Public Affairs, Camille Alleyne, assistant program scientist in the NASA ISS Program Science Office, and Michael Roberts, senior research pathway manager with the Center for the Advancement of Science in Space CASIS. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  2. KSC-2014-2066

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing, from the left, are Camille Alleyne, assistant program scientist in the NASA ISS Program Science Office, and Michael Roberts, senior research pathway manager with the Center for the Advancement of Science in Space CASIS. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  3. USSR Space Life Sciences Digest, issue 13

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  4. Jaasc Cooperation League for Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Watanabe, Jun-Ichi; JAASC Committee

    The JAASC Japanese Astronomy Aeronautical Science Space Science cooperation league has been established in 2000 among the related institutes for education and public outreach. The participating institutes are National Astronomical Observatory of Japan Institute of Space and Astronautical Science National Space Development Agency of Japan National Aerospace Laboratory of Japan Young Astronomers Club Japan Science and Technology Corporation and Japan Space Forum. These institutes started several joint efforts such as making web site for beginners in general public or educational materials for junior high school. This is a challenging trial for Japanese institutes to cooperate beyond the barrier of the

  5. Global Cooperation in the Science of Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Space Weather Initiative (ISWI). The ISWI program is a continuation of the successful International Heliophysical Year (IHY) program. These programs have brought scientists together to tackle the scientific issues behind space weather. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and ISWI activities that promote space weather science via complementary approaches in international scientific collaborations. capacity building. and public outreach.

  6. On the use of Space Station Freedom in support of the SEI - Life science research

    NASA Technical Reports Server (NTRS)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  7. Beyond the atmosphere: Early years of space science

    NASA Technical Reports Server (NTRS)

    Newell, H. E.

    1980-01-01

    From the rocket measurements of the upper atmosphere and Sun that began in 1946, space science gradually emerged as a new field of scientific activity. The course of the United State space program is viewed in an historical context. Major emphasis is on NASA and its programs. The funding, staffing, organization, and priorities of the space program were reviewed.

  8. Space Biology in the 21st century

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W.; Krauss, Robert W.

    1990-01-01

    Space Biology is poised to make significant contributions to science in the next century. A carefully crafted, but largely ground-based, program in the United States has evolved major questions that require answers through experiments in space. Science, scientists, and the new long-term spacecrafts designed by NASA will be available for the first time to mount a serious Space Biology effort. The scientific challenge is of such importance that success will provide countless benefits to biologically dependent areas such as medicine, food, and commerce in the decades ahead. The international community is rapidly expanding its role in this field. The United States should generate the resources that will allow progress in Space Biology to match the recognized progress made in aeronautics and the other space sciences.

  9. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  10. Educational Outreach: The Space Science Road Show

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.

    2002-01-01

    The poster presented will give an overview of a study towards a "Space Road Show". The topic of this show is space science. The target group is adolescents, aged 12 to 15, at Dutch high schools. The show and its accompanying experiments would be supported with suitable educational material. Science teachers at schools can decide for themselves if they want to use this material in advance, afterwards or not at all. The aims of this outreach effort are: to motivate students for space science and engineering, to help them understand the importance of (space) research, to give them a positive feeling about the possibilities offered by space and in the process give them useful knowledge on space basics. The show revolves around three main themes: applications, science and society. First the students will get some historical background on the importance of space/astronomy to civilization. Secondly they will learn more about novel uses of space. On the one hand they will learn of "Views on Earth" involving technologies like Remote Sensing (or Spying), Communication, Broadcasting, GPS and Telemedicine. On the other hand they will experience "Views on Space" illustrated by past, present and future space research missions, like the space exploration missions (Cassini/Huygens, Mars Express and Rosetta) and the astronomy missions (Soho and XMM). Meanwhile, the students will learn more about the technology of launchers and satellites needed to accomplish these space missions. Throughout the show and especially towards the end attention will be paid to the third theme "Why go to space"? Other reasons for people to get into space will be explored. An important question in this is the commercial (manned) exploration of space. Thus, the questions of benefit of space to society are integrated in the entire show. It raises some fundamental questions about the effects of space travel on our environment, poverty and other moral issues. The show attempts to connect scientific with community thought. The difficulty with a show this elaborate and intricate is communicating on a level understandable for teenagers, whilst not treating them like children. Professional space scientists know how easy it is to lose oneself in technical specifics. This would, of course, only confuse young people. The author would like to discuss the ideas for this show with a knowledgeable audience and hopefully get some (constructive) feedback.

  11. Space station freedom life sciences activities

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1994-01-01

    Life sciences activities being planned for Space Station Freedom (SSF) as of Fall 1992 are discussed. Planning for these activities is ongoing. Therefore, this description should be viewed as indicative of the prevailing ideas at one particular time in the SSF development cycle. The proposed contributions of the Canadian Space Agency (CSN) the European Space Agency (ESA), Japan, and the United States are all discussed in detail. In each case, the life sciences goals, and the way in which each partner proposes to achieve their goals, are reviewed.

  12. THOR contribution to space weather science

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Opgenoorth, H. J.; Retino, A.; Khotyaintsev, Y. V.; Soucek, J.; Valentini, F.; Escoubet, C. P.; Chen, C. H. K.; Vainio, R. O.; Fazakerley, A. N.; Lavraud, B.; Narita, Y.; Marcucci, M. F.; Kucharek, H.; Bale, S. D.; Moore, T. E.; Kistler, L. M.; Samara, M.

    2016-12-01

    Turbulence Heating ObserveR - THOR is a mission proposal to study energy dissipation and particle acceleration in turbulent space plasma. THOR will focus on turbulent plasma in pristine solar wind, bow shock and magnetosheath. The orbit of THOR is tuned to spend long times in those regions allowing THOR to obtain high resolution data sets that can be used also for space weather science. Here we will discuss the space weather science questions that can be addressed and significantly advanced using THOR. Link to THOR: http://thor.irfu.se.

  13. Life science research objectives and representative experiments for the space station

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  14. An overview on the Space Weather in Latin America: from Space Research to Space Weather and its Forecast

    NASA Astrophysics Data System (ADS)

    De Nardin, C. M.; Gonzalez-Esparza, A.; Dasso, S.

    2015-12-01

    We present an overview on the Space Weather in Latin America, highlighting the main findings from our review the recent advances in the space science investigations in Latin America focusing in the solar-terrestrial interactions, modernly named space weather, which leaded to the creation of forecast centers. Despite recognizing advances in the space research over the whole Latin America, this review is restricted to the evolution observed in three countries (Argentina, Brazil and Mexico) only, due to the fact that these countries have recently developed operational center for monitoring the space weather. The work starts with briefly mentioning the first groups that started the space science in Latin America. The current status and research interest of such groups are then described together with the most referenced works and the challenges for the next decade to solve space weather puzzles. A small inventory of the networks and collaborations being built is also described. Finally, the decision process for spinning off the space weather prediction centers from the space science groups is reported with an interpretation of the reason/opportunities that lead to it. Lastly, the constraints for the progress in the space weather monitoring, research, and forecast are listed with recommendations to overcome them.

  15. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  16. Highlights of Science Launching on SpaceX CRS-15

    NASA Image and Video Library

    2018-06-24

    A new batch of science is headed to the International Space Station aboard the SpaceX Dragon on the company’s 15th mission for commercial resupply services. Among the research being delivered is science that studies the use of artificial intelligence for crew support, plant water use all over the planet, gut health in space, more efficient drug development and the formation of inorganic structures without the influence of Earth’s gravity. The International Space Station is a convergence of science, technology and human innovation that demonstrates new technologies and enables research not possible on Earth. The space station has been occupied continuously since November 2000. In that time, more than 230 people and a variety of international and commercial spacecraft have visited the orbiting laboratory. The space station remains the springboard to NASA's next great leap in exploration, including future human missions to the Moon and eventually to Mars. Highlighted investigations shown: Mobile Companion/CIMON: https://go.nasa.gov/2JCgPRf ECOSTRESS: https://go.nasa.gov/2sT87DV Angiex Cancer Therapy: https://go.nasa.gov/2LA1Cgc Rodent Research-7: https://go.nasa.gov/2JlVQlC Chemical Gardens: https://go.nasa.gov/2JDCYie Follow updates on the science conducted aboard the space station on Twitter: https://twitter.com/iss_research For more information on how you can conduct your research in microgravity, visit https://go.nasa.gov/2q84LJj HD Download: https://archive.org/details/jsc2018m000428_Highlights_of_Science_Launching_on_SpaceX_CRS-15

  17. 75 FR 50783 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-088)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  18. 76 FR 75914 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-117)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  19. 75 FR 36445 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-069)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  20. 76 FR 64387 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-098] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  1. 76 FR 62456 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-089] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  2. 78 FR 64024 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-122)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  3. 77 FR 4837 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-007)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  4. 76 FR 10626 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-019)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  5. 78 FR 15378 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-022)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  6. 78 FR 56246 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-113] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  7. 77 FR 53919 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-071] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  8. 75 FR 80851 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-169)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  9. 77 FR 22807 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-029] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  10. Microgravity Science Glovebox - Interior Lamps

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  11. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  12. How Far a Star. A Supplement in Space Oriented Concepts for Science and Mathematics Curricula for Intermediate Grades.

    ERIC Educational Resources Information Center

    Maben, Jerrold William

    Space science-oriented concepts and suggested activities are presented for intermediate grade teachers of science and mathematics in a book designed to help bring applications of space-oriented mathematics into the classroom. Concepts and activities are considered in these areas: methods of keeping time (historically); measurement as related to…

  13. The Structure-Agency Dialectic in Contested Science Spaces: "Do Earthworms Eat Apples?"

    ERIC Educational Resources Information Center

    Kane, Justine M.

    2015-01-01

    Focusing on a group of African American third graders who attend a high-poverty urban school, I explore the structure-agency dialectic within contested spaces situated in a dialogically oriented science classroom. Contested spaces entail the moments in which the students challenge each other's and their teacher's science ideas and, in the process,…

  14. Microgravity

    NASA Image and Video Library

    1997-03-11

    This photo shows the interior reach in the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  15. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At full capacity, the NSSTC tops 200,000 square feet (18,580 square meters) and houses approximately 550 employees.

  16. The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200,000 square feet (18,580 square meters) and house approximately 550 employees.

  17. The Blueprint for Change: A National Strategy to Enhance Access to Earth and Space Science Education Resources

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Barstow, D.

    2001-12-01

    Enhancing access to high quality science education resources for teachers, students, and the general public is a high priority for the earth and space science education communities. However, to significantly increase access to these resources and promote their effective use will require a coordinated effort between content developers, publishers, professional developers, policy makers, and users in both formal and informal education settings. Federal agencies, academic institutions, professional societies, informal science centers, the Digital Library for Earth System Education, and other National SMETE Digital Library Projects are anticipated to play key roles in this effort. As a first step to developing a coordinated, national strategy for developing and delivering high quality earth and space science education resources to students, teachers, and the general public, 65 science educators, scientists, teachers, administrators, policy makers, and business leaders met this June in Snowmass, Colorado to create "Earth and Space Science Education 2010: A Blueprint for Change". The Blueprint is a strategy document that will be used to guide Earth and space science education reform efforts in grades K-12 during the next decade. The Blueprint contains specific goals, recommendations, and strategies for coordinating action in the areas of: Teacher Preparation and Professional Development, Curriculum and Materials, Equity and Diversity, Assessment and Evaluation, Public Policy and Systemic Reform, Public and Informal Education, Partnerships and Collaborations, and Technology. If you develop, disseminate, or use exemplary earth and space science education resources, we invite you to review the Blueprint for Change, share it with your colleagues and local science educators, and join as we work to revolutionize earth and space science education in grades K-12.

  18. The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.

    2018-02-01

    Life science research on the Deep Space Gateway platform is an important precursor for long term human exploration of deep space. Ideas for utilizing flight hardware and well characterized model organisms will be discussed.

  19. Science and Exploration Deep Space Gateway Workshop

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2017-01-01

    We propose a workshop whose outcome is a publically disseminated product that articulates SMD investigations and HEOMD Life Science research, including international collaborations, that are made possible by the new opportunities in space that result from the Deep Space Gateway.

  20. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These accomplishments exemplify the Center's varied and highly productive research efforts for 1990. The activities addressed are under the directories of: (1) aerospace systems which contains aircraft technology, full-scale aerodynamics research, information sciences, aerospace human factors research, and flight systems and simulation research divisions; (2) Dryden flight research facility which contains research engineering division; (3) aerophysics which contains aerodynamics, fluid dynamics, and thermosciences divisions; and (4) space research which contains advanced life support, space projects, earth system science, life science, and space science divisions, and search for extraterrestrial intelligence and space life sciences payloads offices.

  1. Activities of the Space Studies Board of the National Research Council

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This 1993 annual report of the Space Studies Board of the National Research Council chronicles the activities of the board during a year filled with questioning and change in the country's civil space program. The brief accounts contained herein of the activities of the board and of its committees, together with summaries of two major reports and the complete texts of three letter reports, sketch out major space research issues that faced the nation's space scientists and engineers during the year, including scientific prerequisites for the human exploration of space, improving NASA's technology for space science, the space station and prerequisites for the human exploration program, several issues in the space life sciences, and the Advanced X-ray Astrophysics Facility.

  2. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Ken Shields, director of Operations for Center for the Advancement of Science in Space/ISS National Lab, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  3. SpaceX CRS-11 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-05-31

    Ken Shields, director of Operations for the Center for the Advancement of Science in Space (CASIS)/ISS National Lab, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.

  4. Research and technology, Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1984 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  5. Soviet Space Programs: 1976-80 (with Supplementary Data through 1983). Unmanned Space Activities. Part 3. Prepared at the Request of Hon. John C. Danforth, Chairman, Committee on Commerce, Science and Transportation, United States Senate, Ninety-Ninth Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.

    This report, the third and final part of a three-part study of Soviet space programs, provides a comprehensive survey of the Soviet space science programs and the Soviet military space programs, including its long history of anti-satellite activity. Chapter 1 is an overview of the unmanned space programs (1957-83). Chapter 2 reports on significant…

  6. Research and technology of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1987 are highlighted. Included are research projects funded by the Office of Aeronautics and Space Technology, Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications, and advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  7. Nasa Program Plan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

  8. hs-2007-16-e-full_jpg

    NASA Image and Video Library

    2010-03-01

    Carina Nebula Details: The Caterpillar Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  9. Orbital ATK CRS-7 "What's on Board" Science Briefing

    NASA Image and Video Library

    2017-04-17

    NASA Social participants attend a "What's on Board" science, research and technology briefing at NASA's Kennedy Space Center in Florida, for Orbital ATK's seventh commercial resupply services mission, CRS-7, to the International Space Station. Participants discussed some of the science launching to the space station, including the Advanced Plant Habitat, 3-D cell tools, and CubeSats set to deploy from space. Orbital ATK's Cygnus pressurized cargo module is set to launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18. Liftoff is scheduled for 11:11 a.m. EDT.

  10. Orbital ATK CRS-7 "What's on Board" Science Briefing

    NASA Image and Video Library

    2017-04-17

    Tara Ruttley, left, associate program scientist with NASA's Johnson Space Center in Houston, and Dr. Mike Roberts, with the Center for the Advancement of Science in Space (CASIS), speak to NASA Social participants during a "What's on Board" science briefing at the agency's Kennedy Space Center in Florida. The briefing is for Orbital ATK's seventh commercial resupply services mission, CRS-7, to the International Space Station. Orbital ATK's Cygnus pressurized cargo module is set to launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18. Liftoff is scheduled for 11:11 a.m. EDT.

  11. Aerial Views of KSC

    NASA Image and Video Library

    2003-07-23

    The Space Experiment Research and Processing Laboratory (SERPL) is a major new research facility under construction at the International Space Research Park located on KSC. Being developed as a partnership between KSC and the State of Florida, it will serve as the primary gateway to the International Space Station for science experiments and as a world-class home to ground-based investigations in fundamental and applied biological science. NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  12. Hubble Space Telescope and James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced ground breaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  13. Space Medicine

    NASA Technical Reports Server (NTRS)

    Pool, Sam L.

    2000-01-01

    The National Academy of Sciences Committee on Space Biology and Medicine points out that space medicine is unique among space sciences, because in addition to addressing questions of fundamental scientific interest, it must address clinical or human health and safety issues as well. Efforts to identify how microgravity affects human physiology began in earnest by the United States in 1960 with the establishment of the National Aeronautics and Space Administration (NASA's) Life Sciences program. Before the first human space missions, prediction about the physiological effects of microgravity in space ranged from extremely severe to none at all. The understanding that has developed from our experiences in space to date allows us to be guardedly optimistic about the ultimate accommodations of humans to space flight. Only by our travels into the microgravity environment of space have we begun to unravel the mysteries associated with gravity's role in shaping human physiology. Space medicine is still at its very earliest stages. Development of this field has been slow for several reasons, including the limited number of space flights, the small number of research subjects, and the competition within the life sciences community and other disciplines for flight opportunities. The physiological changes incurred during space flight may have a dramatic effect on the course of an injury or illness. These physiological changes present an exciting challenge for the field of space medicine: how to best preserve human health and safety while simultaneously deciphering the effects of microgravity on human performance. As the United States considers the future of humans in long-term space travel, it is essential that the many mysteries as to how microgravity affects human systems be addressed with vigor. Based on the current state of our knowledge, the justification is excellent indeed compelling- for NASA to develop a sophisticated capability in space medicine. Teams of physicians and scientists should be actively engaged in fundamental and applied research designed to ensure that it is safe for humans to routinely and repeatedly stay and work in the microgravity environment of space.

  14. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.

  16. 75 FR 2892 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-001)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  17. 75 FR 12310 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-026)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  18. Panel discussion: Roles of space program in the Asia Pacific region

    NASA Astrophysics Data System (ADS)

    Nomura, Tamiya

    1992-03-01

    A panel discussion on the subject 'Roles played by space development in Asia Pacific region' was held chaired by Space Activities Commission member and attended by the representatives of the participating countries, special attendance and observers. Opinions were expressed by each representative on three subjects, that is, social effects and benefits obtained by remote sensing data, observation data desired to augment the effect, and expectation for developed countries in space development. President of NASDA (National Space Development Agency of Japan) expressed his intension to promote international cooperation for the Japanese Earth Resources Satellite-1 (JERS-1) verification program, utilization augmentation of Japanese earth observing satellites and human resource training and education. Deputy Director-General for Science and Technology Agency (STA) outlined ASCA (Association for Science Cooperation in Asia) seminar and STA fellowship in relation to human resource development. Chairman of the Japan International Space Year (ISY) Association cited the necessity of closer and extensive communication networks free from the existing commercial communication. Deputy-Minister for Posts and Telecommunications outlined the PARTNERS project (Post-operational utilization of the Engineering Test Satellite-5 (ETS-5)) for international cooperation in space activities in Asia Pacific region. President of the Institute of Space and Astronautical Science (ISAS) outlined Japan's present status of and international cooperation in space science.

  19. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  20. Space Station

    NASA Image and Video Library

    1981-12-01

    During 1980 and the first half of 1981, the Marshall Space Flight Center conducted studies concerned with a relatively low-cost, near-term, manned space platform to satisfy current user needs, yet capable of evolutionary growth to meet future needs. The Science and Application Manned Space Platform (SAMSP) studies were to serve as a test bed for developing scientific and operational capabilities required by later, more advanced manned platforms while accomplishing early science and operations. This concept illustrates a manned space platform.

  1. KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Michelle Crouch talk in a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Michelle Crouch talk in a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  2. KENNEDY SPACE CENTER, FLA. - Dynamac employees Debbie Wells, Michelle Crouch and Larry Burns are silhouetted as they talk inside a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees Debbie Wells, Michelle Crouch and Larry Burns are silhouetted as they talk inside a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  3. Spacelab

    NASA Image and Video Library

    1992-01-01

    The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), The French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. This photograph shows Astronaut Norman Thagard performing the fluid experiment at the Fluid Experiment System (FES) facility inside the laboratory module. The FES facility had sophisticated optical systems for imaging fluid flows during materials processing, such as experiments to grow crystals from solution and solidify metal-modeling salts. A special laser diagnostic technique recorded the experiments, holograms were made for post-flight analysis, and video was used to view the samples in space and on the ground. Managed by the Marshall Space Flight Center (MSFC), the IML-1 mission was launched on January 22, 1992 aboard the Shuttle Orbiter Discovery (STS-42).

  4. KENNEDY SPACE CENTER, FLA. - Ivan Rodriguez, with Bionetics, and Michelle Crouch and Larry Burns, with Dynamac, carry boxes of equipment into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Ivan Rodriguez, with Bionetics, and Michelle Crouch and Larry Burns, with Dynamac, carry boxes of equipment into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  5. KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  6. KSC-03PP-0149

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, who represents the Israel Space Agency, chats with the Closeout Crew in the White Room before entering Columbia. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Ramon is the first Israeli astronaut to fly in the Shuttle. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.

  7. KSC-03pp0149

    NASA Image and Video Library

    2003-01-16

    KENNEDY SPACE CENTER, FLA. -- STS-107 Payload Specialist Ilan Ramon, who represents the Israel Space Agency, chats with the Closeout Crew in the White Room before entering Columbia. The environmentally controlled chamber is mated to Space Shuttle Columbia for entry into the Shuttle. Ramon is the first Israeli astronaut to fly in the Shuttle. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. The payload on Space Shuttle Columbia includes FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) and the SHI Research Double Module (SHI/RDM), known as SPACEHAB. Experiments on the module range from material sciences to life sciences. Liftoff is scheduled for 10:39 a.m. EST.

  8. The International Space Station: A National Science Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2011-01-01

    After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.

  9. World Space Week: Linking Space and Humanity

    NASA Astrophysics Data System (ADS)

    Stone, D.

    2002-01-01

    World Space Week, October 4-10 annually, is an international celebration of the contribution that space science and technology makes to the betterment of the human condition. Since its official declaration in 1999 by the United Nation, World Space Week has rapidly grown to include over 40 nations. The dates of World Space Week commemorate key milestones in space. October 4, 1957 was the launch date of Sputnik I, the first artificial Earth satellite. The Outer Space Treaty took effect on October 10, 1967. During World Space Week, participants such as government agencies, companies, science museums, teachers, and individuals organize public events, school activities, and Web-based programs related to space. So many synchronized events attract media coverage which reaches a global audience about space. In this way, World Space Week truly links space and humanity. The global organization of World Space Week is discussed as well as the results to date. The benefits of participation and opportunities to do so also identified.

  10. 75 FR 61778 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-118)] NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...

  11. Science in a Box: An Educator Guide with NASA Glovebox Activities in Science, Math, and Technology.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Education Dept.

    The Space Shuttle and International Space Station provide a unique microgravity environment for research that is a critical part of the National Aeronautics and Space Administration's (NASA) mission to improve the quality of life on Earth and enable the health and safety of space explorers for long duration missions beyond our solar system. This…

  12. Raising the Awareness of Children on Global Issues

    NASA Astrophysics Data System (ADS)

    Korczynska, Audrey

    2016-08-01

    Space Awareness uses the excitement and challenges of space to interest young people into science and technology and develop their sense of European and global citizenship. Latest news and key advancements of the European space initiatives greatly contribute to it, showing the applications that space sciences have in the everyday life and how understanding the Universe can help understanding our own planet.

  13. Resource Handbook--Space Beyond the Earth. A Supplement to Basic Curriculum Guide--Science, Grades K-6.

    ERIC Educational Resources Information Center

    Starr, John W., 3rd., Ed.

    GRADES OR AGES: Grades K-6. SUBJECT MATTER: Science; space. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into four units: 1) the sun, earth, and moon; 2) stars and planets; 3) exploring space; 4) man's existence in space. Each unit includes initiatory and developmental activities. There are also sections on evaluation, vocabulary,…

  14. The next frontier: stem cells and the Center for the Advancement of Science in Space.

    PubMed

    Ratliff, Duane

    2013-12-01

    The Center for the Advancement of Science in Space (CASIS) manages the International Space Station U.S. National Laboratory, supporting space-based research that seeks to improve life on Earth. The National Laboratory is now open for use by the broad scientific community--and CASIS is the gateway to this powerful in-orbit research platform.

  15. Spacelab

    NASA Image and Video Library

    1992-01-01

    Astronaut David C. Hilmers conducts the Microgravity Vestibular Investigations (MVI) sitting in its rotator chair inside the IML-1 science module. When environmental conditions change so that the body receives new stimuli, the nervous system responds by interpreting the incoming sensory information differently. In space, the free-fall environment of an orbiting spacecraft requires that the body adapts to the virtual absence of gravity. Early in flights, crewmembers may feel disoriented or experience space motion sickness. MVI examined the effects of orbital flight on the human orientation system to obtain a better understanding of the mechanisms of adaptation to weightlessness. By provoking interactions among the vestibular, visual, and proprioceptive systems and then measuring the perceptual and sensorimotor reactions, scientists can study changes that are integral to the adaptive process. The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).

  16. Space Discovery.

    ERIC Educational Resources Information Center

    Blackman, Joan

    1998-01-01

    Describes one teacher's experience taking Space Discovery courses that were sponsored by the United States Space Foundation (USSF). These courses examine the history of space science, theory of orbits and rocketry, the effects of living in outer space on humans, and space weather. (DDR)

  17. Candidates for office 2004-2006

    NASA Astrophysics Data System (ADS)

    Timothy L. Killeen. AGU member since 1981. Director of the National Center for Atmospheric Research (NCAR); Senior Scientist, High Altitude Observatory; Adjunct Professor, University of Michigan. Major areas of interest include space physics and aeronomy remote sensing, and interdisciplinary science education. B.S., Physics and Astronomy (first class honors), 1972, University College London; Ph.D., Atomic and Molecular Physics, 1975, University College London. University of Michigan: Researcher and Professor of Atmospheric, Oceanic, and Space Sciences, 1978-2000 Director of the Space Physics Research Laboratory 1993-1998 Associate Vice-President for Research, 1997-2000. Visiting senior scientist at NASA Goddard Space Flight Center, 1992. Program Committee, American Association for the Advancement of Science; Council Member, American Meteorological Society; Editor-in-Chief, Journal of Atmospheric and Solar-Terrestrial Physics; Chair, Jerome K.Weisner National Policy Symposium on the Integration of Research and Education, 1999. Authored over 140 publications, 57 in AGU journals. Significant publications include: Interaction of low energy positrons with gaseous atoms and molecules, Atomic Physics, 4, 1975; Energetics and dynamics of the thermosphere, Reviews of Geophysics, 1987; The upper mesosphere and lower thermosphere, AGU Geophysical Monograph, 1995, Excellence in Teaching and Research awards, College of Engineering, University of Michigan; recipient of two NASA Achievement Awards; former chair, NASA Space Physics Subcommittee; former chair, National Science Foundation (NSF) Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) program; former member, NSF Advisory Committee for Geosciences, and chair of NSF's Atmospheric Sciences Subcommittee, 1999-2002 member, NASA Earth Science Enterprise Advisory Committee; member of various National Academy of Science/National Research Council Committees; cochair, American Association for the Advancement of Science National Meeting, 2003. AGU service includes: term as associate editor of Journal of Geophysical Research-Space Physics; chair, Panel on International Space Station; Global Climate Change Panel; Federal Budget Review Committee; member of AGU Program, Public Information, Awards, and Public Affairs committees; Chapman Conference Convener and Monograph editor; Section Secretary and Program Chair, Space and Planetary Relations Section; President of Space Physics and Aeronomy Section; AGU Council Member.

  18. Space life sciences strategic plan

    NASA Astrophysics Data System (ADS)

    Nicogossian, Arnauld E.

    1992-05-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  19. Space life sciences strategic plan

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  20. Progress and Setbacks in K-12 Earth and Space Science Education During the Past Decade

    NASA Astrophysics Data System (ADS)

    Geary, E.; Hoffman, M.; Stevermer, A.; Barstow, D.

    2005-12-01

    Since publication of the National Science Education Standards in 1996, key Earth and space science concepts have been incorporated into the science education standards in virtually every state. However, the degree to which Earth and space science standards have been implemented in actual classroom curriculum and state science assessments varies greatly from state to state. In a similar vein, the No Child Left Behind legislation calls for a highly qualified teacher in every classroom: in Idaho over 96 percent of high school teachers are certified to teach Earth science, while in Illinois, less than 42 percent of teachers are certified. Furthermore, in some states, like New York, approximately 20 percent of high school students will take introductory Earth science each year, while in other states, like Texas, less than 1 percent of high school students will take introductory Earth science each year. Why do we have this high degree of variability with respect to the teaching and learning of Earth science across the United States? The answer is complex, as there are many institutional, attitudinal, budgetary, and policy factors affecting the teaching of Earth and space sciences. This presentation will summarize data on the current status of Earth and space science education in the United States, discuss where progress has been made and where setbacks have occurred during the past decade, and provide some suggestions and ideas for improving access to high quality Earth and space science education courses, curricula, assessments, and teachers at the state and local level.

  1. Suited for spacewalking: Teacher's guide with activities for physical and life science

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L.; Manning, Cheryl A.; Rosenberg, Carla B.

    1994-01-01

    Space walking has captured the imagination of generations of children and adults since science-fiction authors first placed their characters on the Moon. This publication is an activity guide for teachers interested in using the intense interest many children have in space exploration as a launching point for exciting hands-on learning opportunities. The guide begins with brief discussions of the space environment, the history of space walking, the Space Shuttle spacesuit, and working in space. These are followed by a series of activities that enable children to explore the space environment as well as the science and technology behind the functions of spacesuits. The activities are not rated for specific grade levels because they can be adapted for students of many ages. The chart on curriculum application at the back of the book is designed to help teachers incorporate activities into various subject areas.

  2. SpaceX CRS-10 "What's On Board" Science Briefing

    NASA Image and Video Library

    2017-02-17

    Tara Ruttley, NASA associate scientist for the International Space Station Program, left, and Patrick O'Nell, Marketing and Communications manager for the Center for the Advancement of Science in Space (CASIS), speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.

  3. A Science Information Infrastructure for Access to Earth and Space Science Data through the Nation's Science Museums

    NASA Technical Reports Server (NTRS)

    Murray, S.

    1999-01-01

    In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.

  4. Space biology class as part of science education programs for high schools in Japan.

    PubMed

    Kamada, Motoshi; Takaoki, Muneo

    2004-11-01

    Declining incentives and scholastic abilities in science class has been concerned in Japan. The Ministry of Education, Culture, Sports, Science and Technology encourages schools to cooperate with research institutions to raise student's interest in natural sciences. The Science Partnership Program (SPP) and the Super Science High-School (SSH) are among such efforts. Our short SPP course consists of an introductory lecture on space biology in general and a brief laboratory practice on plant gravitropism. Space biology class is popular to students, despite of the absence of flight experiments. We suppose that students are delighted when they find that their own knowledge is not a mere theory, but has very practical applications. Space biology is suitable in science class, since it synthesizes mathematics, physics, chemistry and many other subjects that students might think uninteresting.

  5. KSC-2014-2065

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing is Michael Roberts, senior research pathway manager with the Center for the Advancement of Science in Space CASIS. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  6. The Summer School Alpbach

    NASA Astrophysics Data System (ADS)

    Gitsch, Michaela; Manoharan, Periasamy K.

    2015-02-01

    Sixty young, highly qualified European science and engineering students converge annually for stimulating 10 days of work in the Austrian Alps. Four teams are formed, each of which designs a space mission, which are then judged by a jury of experts. Students learn how to approach the design of a satellite mission and explore new and startling ideas supported by experts. The Summer School Alpbach enjoys more than 30 years of tradition in providing in-depth teaching on different topics of space science and space technology, featuring lectures and concentrated working sessions on mission studies in self-organised working groups. The Summer School is organised by the Austrian Research Promotion Agency (FFG) and co-sponsored by the European Space Agency (ESA), the International Space Science Institute (ISSI), and the national space authorities of its member and cooperating states.

  7. Light Echo

    NASA Image and Video Library

    2017-12-08

    "Light Echo" Illuminates Dust Around Supergiant Star V838 Monocerotis (V838 Mon) Credit: NASA and The Hubble Heritage Team (AURA/STScI) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  8. DSMS science operations concept

    NASA Technical Reports Server (NTRS)

    Connally, M. J.; Kuiper, T. B.

    2001-01-01

    The Deep Space Mission System (DSMS) Science Operations Concept describes the vision for enabling the use of the DSMS, particularly the Deep Space Network (DSN) for direct science observations in the areas of radio astronomy, planetary radar, radio science and VLBI.

  9. 77 FR 67027 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12- 091] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the [[Page 67028

  10. Microgravity

    NASA Image and Video Library

    1997-03-11

    This photo shows one of three arrays of air filters inside the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  11. Microgravity

    NASA Image and Video Library

    1997-03-11

    Interior lights give the Microgravity Science Glovebox (MSG) the appearance of a high-tech juke box. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  12. Microgravity

    NASA Image and Video Library

    1997-03-11

    This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  13. Microgravity

    NASA Image and Video Library

    1997-03-11

    This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  14. International Space Station: K-5 Hands-on Science and Math Lesson Plans.

    ERIC Educational Resources Information Center

    Boeing Co., Huntsville, AL.

    The Space Station is already capturing the imaginations of American students, encouraging them to pursue careers in the sciences. The idea of living and working in space continues to spark this renewed interest. The material in this guide was developed to provide hands-on experiences in science and math in the context of an International Space…

  15. USE OF SPACE TECHNOLOGY IN FEDERALLY FUNDED LAND PROCESSES RESEARCH IN THE UNITED STATES.

    USGS Publications Warehouse

    Thorley, G.A.; McArdle, R.

    1986-01-01

    A review of the use of space technology in federally funded earth science research in the US was carried out in 1985 by the President's Office of Science and Technology Policy. Five departments and three independent agencies, representing the primary earth science research agencies in the Federal government, participated in the review. The review by the subcommittee indicated that, while there is considerable overlap in the legislated missions of the earth science agencies, most of the space-related land processes research is complementary. Summaries are provided of the current and projected uses of space technology in land processes activities within the eight Federal organizations.

  16. Microgravity Science Glovebox (MSG) Space Sciences's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jordan, Lee P.

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.

  17. Space radiation health program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.

  18. KSC-2014-2061

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing, from the left, are Mike Curie of NASA Public Affairs, Camille Alleyne, assistant program scientist in the NASA ISS Program Science Office, and Michael Roberts, senior research pathway manager with the Center for the Advancement of Science in Space CASIS. Andy Petro of the agency's Space Technology Mission Directorate participated in the briefing by telephone from NASA Headquarters in Washington D.C. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  19. Space Research Institute (IKI) Exhibition as an Educational Project

    NASA Astrophysics Data System (ADS)

    Sadovski, Andrei; Antonenko, Elena

    2016-07-01

    The Exhibition "Space Science: Part and Future" in Space Research Institute (IKI) was opened in 2007 in commemoration of the 50th anniversary of the first man-made satellite launch. It covers the latest and the most important findings in space research, shows instruments which are used in space exploration, and presents past, current, and future Russian science missions. Prototypes of space instruments developed by Russian specialists and mockups of spacecraft and spaceships flown to space are displayed, together with information posters, describing space missions, their purposes and results. The Exhibition takes a great part in school space education. Its stuff actively works with schoolchildren, undergraduate students and also makes a great contribution in popularization of space researches. Moreover the possibility to learn about scientific space researches first-hand is priceless. We describe the main parts of the Exhibition and forms of it work and also describe the collaboration with other museums and educational organizations.

  20. KSC-2012-5684

    NASA Image and Video Library

    2012-10-06

    CAPE CANAVERAL, Fla. -- Scott Smith, NASA nutritionist at NASA's Johnson Space Center, explains one method of urine collection on the space station during a mission science briefing in Kennedy Space Center's Press Site auditorium in Florida. The briefing provided media with an overview of the experiments and payloads scheduled for launch on NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Space Exploration Technologies Corp., or SpaceX, built both the mission's Falcon 9 rocket and Dragon capsule. Launch is scheduled for 8:35 p.m. EDT on Oct. 7 from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  1. KSC-04PD-0008

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  2. KSC-04PD-0005

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install new equipment for gas chromatography and mass spectrometry in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  3. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  4. Use of social media and online tools for participative space education and citizen science in India: Perspectives of future space leaders

    NASA Astrophysics Data System (ADS)

    Khan, Aafaque; Sridhar, Apoorva

    2012-07-01

    The previous decade saw the emergence of internet in the new avatar popularly known as Web 2.0. After its inception, Internet (also known as Web 1.0) remained centralized and propriety controlled; the information was displayed in form of static pages and users could only browse through these pages connected via URLs (Unique Resource Locator), links and search engines. Web 2.0, on the other hand, has features and tools that allow users to engage in dialogue, interact and contribute to the content on the World Wide Web. As a Result, Social Media has become the most widely accepted medium of interactive and participative dialogue around the world. Social Media is not just limited to Social Networking; it extends from podcasts, webcasts, blogs, micro-blogs, wikis, forums to crowd sourcing, cloud storage, cloud computing and Voice over Internet Protocol. World over, there is a rising trend of using Social Media for Space Education and Outreach. Governments, Space Agencies, Universities, Industry and Organizations have realized the power of Social Media to communicate advancement of space science and technology, updates on space missions and their findings to the common man as well as to the researchers, scientists and experts around the world. In this paper, the authors intend to discuss, the perspectives, of young students and professionals in the space industry on various present and future possibilities of using Social Media in space outreach and citizen science, especially in India and other developing countries. The authors share a vision for developing Social Media platforms to communicate space science and technology, along innovative ideas on participative citizen science projects for various space based applications such as earth observation and space science. Opinions of various young students and professionals in the space industry from different parts of the world are collected and reflected through a comprehensive survey. Besides, a detailed study and review with various examples of present existing projects such as Open NASA, Zooniverse, SETI, Google Earth etc. Support these perspectives. Further, the authors put light on how developing countries can benefit from Space outreach and citizen science through Social Media to connect with the society. The paper concludes with various innovative ideas that are derived from the survey and discussions with these prospective space leaders, along with the insights of the authors on future strategies for such approaches in India and other developing nations. Demographically, youth provides the largest user-base to the Social Media and these young future space leaders are expert at using Social Media in their daily life. Thus, it is important that their collective and shared opinion is presented to the present policymakers and leaders of space agencies and industry.

  5. KSC-97PC853

    NASA Image and Video Library

    1997-05-24

    STS-84 crew members give a "thumbs up" to press representatives and other onlookers on KSC’s Runway 33 after landing of the successful nine-day mission. From left, are Mission Specialist Jean-Francois Clervoy of the European Space Agency, Pilot Eileen Marie Collins, Commander Charles J. Precourt, Mission Specialist Elene V. Kondakova of the Russian Space Agency, and Mission Specialist Carlos I. Noriega. Not shown are Mission Specialist Edward Tsang Lu and returning astronaut and Mir 23 crew member Jerry M. Linenger. STS-84 was the sixth docking of the Space Shuttle with the Russian Space Station Mir. The Space Shuttle orbiter Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced Linenger, who has been on the Russian space station since Jan. 15. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  6. The science of space-time

    NASA Astrophysics Data System (ADS)

    Raine, D. J.; Heller, M.

    Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics; Copernican kinematics; Newtonian dynamics; the space-time of classical dynamics; classical space-time in the presence of gravity; the space-time of special relativity; the space-time of general relativity; solutions and problems in general relativity; Mach's principle and the dynamics of space-time; theories of inertial mass; the integral formation of general relativity; and the frontiers of relativity (e.g., unified field theories and quantum gravity).

  7. A perspective about the total solar eclipse observation from future space settlements and a review of Indonesian space researches

    NASA Astrophysics Data System (ADS)

    Sastradipradja, D.; Dwivany, F. M.; Swandjaja, L.

    2016-11-01

    Viewing astronomy objects from space is superior to that from Earth due to the absence of terrestrial atmospheric disturbances. Since decades ago, there has been an idea of building gigantic spaceships to live in, i.e., low earth orbit (LEO) settlement. In the context of solar eclipse, the presuming space settlements will accommodate future solar eclipse chasers (amateur or professional astronomers) to observe solar eclipse from space. Not only for scientific purpose, human personal observation from space is also needed for getting aesthetical mental impression. Furthermore, since space science indirectly aids solar eclipse observation, we will discuss the related history and development of Indonesian space experiments. Space science is an essential knowledge to be mastered by all nations.

  8. SpaceX CRS-13 "What's on Board?" Mission Science Briefing

    NASA Image and Video Library

    2017-12-11

    Cheryl Warner of NASA Communications, left, Kirt Costello, deputy chief scientist for the International Space Station Program at NASA’s Johnson Space Center in Houston, center, and Patrick O'Neill, Marketing and Communications manager at the Center of Advancement of Science in Space (CASIS), speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 11:46 a.m. EST, on Dec. 12, 2017. The SpaceX Falcon 9 rocket will launch the company's 13th Commercial Resupply Services mission to the space station.

  9. INFINITY at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  10. Space life sciences strategic plan, 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  11. INFINITY at NASA Stennis Space Center

    NASA Image and Video Library

    2010-11-17

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  12. Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  13. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  14. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  15. A Spacelab Expert System for Remote Engineering and Science

    NASA Technical Reports Server (NTRS)

    Groleau, Nick; Colombano, Silvano; Friedland, Peter (Technical Monitor)

    1994-01-01

    NASA's space science program is based on strictly pre-planned activities. This approach does not always result in the best science. We describe an existing computer system that enables space science to be conducted in a more reactive manner through advanced automation techniques that have recently been used in SLS-2 October 1993 space shuttle flight. Advanced computing techniques, usually developed in the field of Artificial Intelligence, allow large portions of the scientific investigator's knowledge to be "packaged" in a portable computer to present advice to the astronaut operator. We strongly believe that this technology has wide applicability to other forms of remote science/engineering. In this brief article, we present the technology of remote science/engineering assistance as implemented for the SLS-2 space shuttle flight. We begin with a logical overview of the system (paying particular attention to the implementation details relevant to the use of the embedded knowledge for system reasoning), then describe its use and success in space, and conclude with ideas about possible earth uses of the technology in the life and medical sciences.

  16. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  17. Space Station Freedom Utilization Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

  18. USSR Space Life Sciences Digest, issue 1

    NASA Technical Reports Server (NTRS)

    Hooke, L. R.; Radtke, M.; Rowe, J. E.

    1985-01-01

    The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology.

  19. A study of the potential impacts of space utilization

    NASA Technical Reports Server (NTRS)

    Cheston, T. S.; Chafer, C. M.; Chafer, S. B.; Webb, D. C.; Stadd, C. A.

    1979-01-01

    Because the demand for comprehensive impact analysis of space technologies will increase with the use of space shuttles, the academic social sciences/humanities community was surveyed in order to determine their interests in space utilization, to develop a list of current and planned courses, and to generate a preliminary matrix of relevant social sciences. The academic scope/focus of a proposed social science space-related journal was identified including the disciplines which should be represented in the editorial board/reviewer system. The time and funding necessary to develop a self-sustaining journal were assessed. Cost income, general organizational structure, marking/distribution and funding sources were analyzed. Recommendations based on the survey are included.

  20. Introduction to Orbital Sciences Corporation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A general overview of the Orbital Sciences Corporation (OSC) is presented. The following topics are covered: (1) manpower, facilities, and financial growth; (2) organization and management team; (3) the Space Data Division organization; (4) the Chandler facility; (5) Space Data-Products and Services; (6) space transportation systems; (7) spacecraft and space support systems; (8) turn-key suborbital launch services and support systems; and (9) OSC suborbital booster performance.

  1. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  2. Autonomous Science Operations Technologies for Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.

    2018-02-01

    Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.

  3. Research and technology: 1986 annual report of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1986 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  4. Successfully Transitioning Science Research to Space Weather Applications

    NASA Technical Reports Server (NTRS)

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  5. Research and technology: 1985 annual report of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1985 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  6. NASA Johnson Space Center Biomedical Research Resources

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.

    1999-01-01

    Johnson Space Center (JSC) medical sciences laboratories constitute a national resource for support of medical operations and life sciences research enabling a human presence in space. They play a critical role in evaluating, defining, and mitigation the untoward effect of human adaption to space flight. Over the years they have developed the unique facilities and expertise required to perform: biomedical sample analysis and physiological performance tests supporting medical evaluations of space flight crew members and scientific investigations of the operationally relevant medical, physiological, cellular, and biochemical issues associated with human space flight. A general overview of these laboratories is presented in viewgraph form.

  7. A Summary of NRC Findings and Recommendations on International Collaboration in Space Exploration

    NASA Astrophysics Data System (ADS)

    Moloney, Michael; Smith, David H.; Graham, Sandra

    Collaboration among the world’s space agencies has become an essential tool to achieving shared goals in the exploration of space. In space science international coordination and collaborations have formed the foundation of advances in our knowledge of our universe over the last few decades. In support of the U.S. space science and Earth science programs, NASA has engaged in well over 1000 international activities with many nations. Indeed, international participation in NASA science missions has more often been the norm rather than the exception. Among notable recent examples are the Hubble Space Telescope (with ESA), the Cassini-Huygens Saturn mission (with ESA and Italy), the James Webb Space Telescope (with ESA and Canada) and of course the International Space Station (with Russia, ESA, Japan, and Canada). However, the international character of a space mission is no guarantee of its successful realization. International collaboration can be sidetracked owing to developments in national programs or budgets and the management challenges cannot be understated. In human spaceflight international coordination and collaboration started in earnest with the Apollo-Soyuz program in the 1970s and today it forms the foundation of the successful International Space Station partnership that is likely to continue through into the early 2020s. But what role will international collaboration play in human spaceflight beyond low Earth orbit in the decades ahead? This paper will discuss the findings and recommendations of a number of NRC reports that have considered international collaboration. For instance the 1998 U.S. National Research Council (NRC) / European Science Foundation report “U.S.-European Collaboration in Space Science” found, cooperative programs depend on a clear understanding of how the responsibilities of the mission are to be shared among the partners, a clear management scheme with a well defined interface between the parties, and efficient communication. In successful missions, each partner has had a clearly defined role and a real stake in the success of the mission. A further challenge is how to plan for national programs in an increasingly international context. The community-based space and Earth science decadal surveys—produced by the NRC’s Space Studies Board (SSB)—in astronomy/astrophysics, planetary science, solar and space physics, and Earth science and applications from space, form the foundation for long-term strategic consensus planning by the U.S. research community, NASA, and other government agencies that support space and Earth Science. Each of the recent decadal surveys has discussed the need for improved international cooperative planning and collaboration. In addition, at a November 2012 SSB workshop focused on lessons learned from the most recent round of decadal surveys, the question was asked: how can we best integrate international cooperation globally into the decadal process to ensure the best science can be pursued? On the side of human spaceflight, the NRC’s Committee on Human Spaceflight is due to report out in Spring 2014 and the role of international cooperation in this endeavor will be discussed in their report. This paper will report on various NRC reports dealing with international collaboration and draw out common themes and messages. The paper will also report on ongoing current NRC activities relevant to international collaboration.

  8. The new space and earth science information systems at NASA's archive

    NASA Technical Reports Server (NTRS)

    Green, James L.

    1990-01-01

    The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, ozone TOMS data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered.

  9. The new space and Earth science information systems at NASA's archive

    NASA Technical Reports Server (NTRS)

    Green, James L.

    1990-01-01

    The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, Total Ozone Mapping Spectrometer (TOMS) data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered.

  10. Space-to-Ground: Neuromapping: 03/16/2018

    NASA Image and Video Library

    2018-03-15

    Another science-filled week aboard the space station, and can you see the Great Wall of China from Space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  11. USSR Space Life Sciences Digest, Issue 26

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Frey, Mary Ann (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 35 journal papers or book chapters published in Russian and of 8 Soviet books. In addition, the proceedings of an Intercosmos conference on space biology and medicine are summarized.

  12. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA exhibits line Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  13. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    Heidi Hammel, senior research scientist at the Space Science Institute in Boulder, Colorado discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  14. Measuring the Value of AI in Space Science and Exploration

    NASA Astrophysics Data System (ADS)

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  15. Space Science for the 21st Century: The Space Science Enterprise Strategic Plan

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Throughout its history, the U.S. Space Science technologies program has been enormously productive. Its accomplishments have rewritten the textbooks. But now, the economic environment has changed dramatically. The Nation's scientific and technological goals are being reexamined and redefined.And the social contract between the scientific community and the Federal Government is being rewritten. There is an expectation that the American public should receive more direct benefits from its investment in science and technology. This Strategic Plan reflects this new paradigm. It presents a carefully selected set of new scientific initiatives that build on past accomplishments to continue NASA's excellence in Space Science. At the same time, it responds to fiscal constraints by defining a new approach to planning, developing, and operating Space Science missions. In particular, investments in new technologies will permit major scientific advances to be made with smaller, more focused, and less costly missions. With the introduction of advanced technologies, smaller does not have to mean less capable. The focus on new technologies also provides and opportunity for the Space Science program to enhance its direct contribution to the country's economic base. At the same time, the program can build on public interest to strengthen its contributions to education and scientific literacy. With this plan we are taking the first steps toward shaping the Space Science program of the 21st century. In doing so, we face major challenges. It will be a very different program than might have been envisioned even a few years ago. But it will be a program that remains at the forefront of science, technology, and education. We intend to continue rewriting the textbooks.

  16. Latest Community Coordinated Modeling Center (CCMC) services and innovative tools supporting the space weather research and operational communities.

    NASA Astrophysics Data System (ADS)

    Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).

  17. Microgravity

    NASA Image and Video Library

    1997-03-11

    An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  18. 78 FR 39341 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-070] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This [[Page 39342

  19. 77 FR 68152 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-086)] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee.... Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202) 358-4452, fax...

  20. KSC-03PD-3134

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  1. KSC-03PD-3132

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  2. KSC-03PD-3136

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Capt. Winston Scott, executive director of the Florida Space Authority, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  3. 76 FR 31641 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-050] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  4. 76 FR 58303 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-081)] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  5. 78 FR 77719 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-156] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  6. SpaceX CRS-13 "What's on Board?" Mission Science Briefing

    NASA Image and Video Library

    2017-12-11

    Cheryl Warner of NASA Communications, left, Patrick O'Neill, Marketing and Communications manager at the Center of Advancement of Science in Space (CASIS), center, and Rebecca Regan of Boeing Communications speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 11:46 a.m. EST, on Dec. 12, 2017. The SpaceX Falcon 9 rocket will launch the company's 13th Commercial Resupply Services mission to the space station.

  7. Space Science in the Kindergarten Classroom and Beyond

    NASA Astrophysics Data System (ADS)

    Bonett, D.

    2000-12-01

    With the advent of probes to our closest planet Mars and the multi-national construction of Earth's first International Space Station, it is not presumptive to introduce 5 year old school children to the space sciences. K. E. Little Elementary School is located in the community of Bacliff, Texas. It is the largest elementary school (950 students) in the Dickinson Independent School District. K. E. Little is a Title 1 school with a multi-ethnic student population. It's close proximity to the Johnson Space Center and the Lunar and Planetary Institute provide ample instructional support and material. Last fall, two kindergarten classes received space science instruction. Both were class sizes of 19 with one class predominantly children of Vietnamese immigrants. Our goal was to create curiosity and awareness through a year-long integrated space science program of instruction. Accurate information of the space sciences was conveyed through sources i.e. books and videos, as well as conventional song, movement, and artistic expression. Videotaping and photographs replaced traditional anecdotal records. Samples of student work were compiled for classroom and school display. This year, two fifth grade classes will receive space science instruction using the Jason Project XII curriculum. Students will engage in a year-long exploration of the Hawaiian Islands. Information will be conveyed via internet and live video presentations as well as traditional sources i.e. books and videos, as well as song, movement, and artistic expression. Comparison of volcanic activity in Hawaii to volcanoes on other planets will be one of several interplanetary correlations. Samples of student work will be compiled for classroom, school, and community display.

  8. Spacelab

    NASA Image and Video Library

    1992-01-01

    International Microgravity Laboratory-1 (IML-1) was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. In this photograph, Astronauts Stephen S. Oswald and Norman E. Thagard handle ampoules used in the Mercuric Iodide Crystal Growth (MICG) experiment. Mercury Iodide crystals have practical uses as sensitive x-ray and gamma-ray detectors. In addition to their exceptional electronic properties, these crystals can operate at room temperature rather than at the extremely low temperatures usually required by other materials. Because a bulky cooling system is urnecessary, these crystals could be useful in portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications in diagnosis and therapy, and astronomical observation. Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).

  9. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  10. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. A larger image is available without labels (No. 0101755).

  11. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101830, and TBD).

  12. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  13. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This computer-generated image depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830).

  14. A Network Enabled Platform for Canadian Space Science Data

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Boteler, D. R.; Jayachandran, T. P.; Mann, I. R.; Sofko, G.; Yau, A. W.

    2008-12-01

    The internet is an example of a pervasive disruptive technology that has transformed society on a global scale. The term "cyberinfrastructure" refers to technology underpinning the collaborative aspect of large science projects and is synonymous with terms such as e-Science, intelligent infrastructure, and/or e- infrastructure. In the context of space science, a significant challenge is to exploit the internet and cyberinfrastructure to form effective virtual organizations (VOs) of scientists that have common or agreed- upon objectives. A typical VO is likely to include universities and government agencies specializing in types of instrumentation (ground and/or space based), which in deployment produce large quantities of space data. Such data is most effectively described by metadata, which if defined in a standard way, facilitates discovery and retrieval of data over the internet by intelligent interfaces and cyberinfrastructure. One recent and significant approach is SPASE, which is being developed by NASA as a data-standard for its Virtual Observatories (VxOs) programs. The space science community in Canada has recently formed a VO designed to complement the e-POP microsatellite mission, and new ground-based observatories (GBOs) that collect data over a large fraction of the Canadian land-mass. The VO includes members of the CGSM community (www.cgsm.ca), which is funded operationally by the Canadian Space Agency. It also includes the UCLA VMO team, and scientists in the NASA THEMIS mission. CANARIE (www.canarie.ca), the federal agency responsible for management, design and operation of Canada's research internet, has recently recognized the value of cyberinfrastucture through the creation of a Network-Enabled-Platforms (NEPs) program. An NEP for space science was funded by CANARIE in its first competition. When fully implemented, the Space Science NEP will consist of a front-end portal providing access to CGSM data. It will utilize an adaptation of the SPASE-based registry developed by Ray Walker et. al at UCLA, along with a common set of services and federation of CGSM data. An important aspect of the space science NEP is the development of scientific workflows that allow users to more easily develop data analysis tools that can be stored on their desktop for re-use. The presentation will include a high-level view of the methodology and software architecture to be implemented through the development of the CANARIE NEP for space science.

  15. Medical operations and life sciences activities on space station

    NASA Technical Reports Server (NTRS)

    Johnson, P. C. (Editor); Mason, J. A. (Editor)

    1982-01-01

    Space station health maintenance facilities, habitability, personnel, and research in the medical sciences and in biology are discussed. It is assumed that the space station structure will consist of several modules, each being consistent with Orbiter payload bay limits in size, weight, and center of gravity.

  16. Engineering Education's Contribution to the Space Program.

    ERIC Educational Resources Information Center

    Stever, H. Guyford

    1988-01-01

    States that an expanding future in space requires new technology. Stresses that from engineering education, space requires people with a fundamental knowledge of modern science instruments, all engineering sciences, an appreciation and capability for detail and systems design, and an understanding of costs and competitiveness, machines, materials,…

  17. Space sciences - Keynote address

    NASA Technical Reports Server (NTRS)

    Alexander, Joseph K.

    1990-01-01

    The present status and projected future developments of the NASA Space Science and Applications Program are addressed. Emphasis is given to biochemistry experiments that are planned for the Space Station. Projects for the late 1990s which will study the sun, the earth's magnetosphere, and the geosphere are briefly discussed.

  18. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA exhibits under white tents line Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  19. Matroshka AstroRad Radiation Experiment (MARE) on the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Gaza, R.; Hussein, H.; Murrow, D.; Hopkins, J.; Waterman, G.; Milstein, O.; Berger, T.; Przybyla, B.; Aeckerlein, J.; Marsalek, K.; Matthiae, D.; Rutczynska, A.

    2018-02-01

    The Matroshka AstroRad Radiation Experiment is a science payload on Orion EM-1 flight. A research platform derived from MARE is proposed for the Deep Space Gateway. Feedback is invited on desired Deep Space Gateway design features to maximize its science potential.

  20. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    Signage points the way to NASA exhibits at the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  1. An innovative approach to space education

    NASA Technical Reports Server (NTRS)

    Marton, Christine; Berinstain, Alain B.; Criswick, John

    1994-01-01

    At present, Canada does not have enough scientists to be competitive in the global economy, which is rapidly changing from a reliance on natural resources and industry to information and technology. Space is the final frontier and it is a multidisciplinary endeavor. It requires a knowledge of science and math, as well as non-science areas such as architecture and law. Thus, it can attract a large number of students with a diverse range of interests and career goals. An overview is presented of the space education program designed by Canadian Alumni of the International Space University (CAISU) to encourage students to pursue studies and careers in science and technology and to improve science literacy in Canada.

  2. 1994 Science Information Management and Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1994-01-01

    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on September 26-27, 1994, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival and retrieval of large quantities of data in future Earth and space science missions. It consisted of eleven presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center.

  3. The 1995 Science Information Management and Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1995-01-01

    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on October 26-27, 1995, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival, and retrieval of large quantities of data in future Earth and space science missions. It consisted of fourteen presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The Workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center.

  4. The science of space-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raine, D.J.; Heller, M.

    1981-01-01

    Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in generalmore » relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity (e.g., unified field theories and quantum gravity).« less

  5. Van Allen Probes Mission Space Academy: Educating middle school students about Earth's mysterious radiation belts

    NASA Astrophysics Data System (ADS)

    Butler, L.; Turney, D.; Matiella Novak, A.; Smith, D.; Simon, M.

    2013-12-01

    How's the weather in space? Why on Earth did NASA send two satellites above Earth to study radiation belts and space weather? To learn the answer to questions about NASA's Van Allen Probes mission, 450 students and their teachers from Maryland middle schools attended Space Academy events highlighting the Van Allen Probes mission. Sponsored by the Applied Physics Laboratory (APL) and Discovery Education, the events are held at the APL campus in Laurel, MD. Space Academies take students and teachers on behind-the-scenes exploration of how spacecraft are built, what they are designed to study, and introduces them to the many professionals that work together to create some of NASA's most exciting projects. Moderated by a public relations representative in the format of an official NASA press conference, the daylong event includes a student press conference with students as reporters and mission experts as panelists. Lunch with mission team members gives students a chance to ask more questions. After lunch, students don souvenir clean room suits, enjoy interactive science demonstrations, and tour APL facilities where the Van Allen Probes were built and tested before launch. Students may even have an opportunity to peek inside a clean room to view spacecraft being assembled. Prior to the event, teachers are provided with classroom activities, lesson plans, and videos developed by APL and Discovery Education to help prepare students for the featured mission. The activities are aligned to National Science Education Standards and appropriate for use in the classroom. Following their visit, student journalists are encouraged to write a short article about their field trip; selections are posted on the Space Academy web site. Designed to engage, inspire, and influence attitudes about space science and STEM careers, Space Academies provide an opportunity to attract underserved populations and emphasize that space science is for everyone. Exposing students to a diverse group of scientists and engineers may alleviate some common stereotypes about these careers. When students engage with the scientists and engineers at APL, they see first-hand that successful science and engineering requires a diverse team with multi-disciplinary backgrounds. Activities throughout the day develop student understanding about science and technology, and address the fundamental concepts that fall under the National Science Education Content Standards. Students are immersed in a hands-on experience designed to facilitate understanding of the History and Nature of Science. Throughout the day students interact with people of diverse backgrounds and interests while hearing about the specific ways various individuals and teams of people contribute to the science and technology of the mission, addressing the concepts which fall under the headings of Science as a Human Endeavor, Nature of Science, and History of Science. Getting students outside the classroom to visit APL is an exclusive opportunity; evaluations have indicated that students became interested in learning more about space science and STEM careers after attending a Space Academy event.

  6. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  7. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  8. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door removed. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  9. Microgravity Science Glovebox - Working Volume

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (silver disk) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  10. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  11. Toward a global space exploration program: A stepping stone approach

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.

  12. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI were held in Egypt in 2010 for Western Asia, Nigeria in 2011 for Africa, and Ecuador in 2012 for Latin America and the Caribbean. The International Center for Space Weather Science and Education at Kyushu University, Fukuoka, Japan 9www.serc.kyushu-u.ac.jp/index_e.html), was established through the basic space science initiative in 2012. Similar research and education centres were also established in Nigeria(www.cbssonline.com/aboutus.html) and India (www.cmsintl.org). Activities of basic space science initiative were also coordinated with the Regional Centres for Space Science and Technology Education, affiliated to the United Nations (www.unoosa.org/oosa/en/SAP/centres/index.html). Prospective future directions of the initiative will be discussed in this paper.

  13. From SPICE to Map-Projection, the Planetary Science Archive Approach to Enhance Visibility and Usability of ESA's Space Science Data

    NASA Astrophysics Data System (ADS)

    Besse, S.; Vallat, C.; Geiger, B.; Grieger, B.; Costa, M.; Barbarisi, I.

    2017-06-01

    The Planetary Science Archive (PSA) is the European Space Agency’s (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int.

  14. Some Teaching Topics from Space Science

    ERIC Educational Resources Information Center

    Balding, G. M.

    1972-01-01

    Short notes on a variety of science topics provide information derived from space sciences that can be used to add interest and up-to-date data to science lessons. Topics are arranged alphabetically from Alpha particles to X-rays, and include some from each of the physical, earth, and biological sciences. (AL)

  15. 78 FR 31977 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-061] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee (ASAC). This Committee functions in an advisory capacity to the Director, Earth Science Division. The...

  16. CESDIS

    NASA Technical Reports Server (NTRS)

    1994-01-01

    CESDIS, the Center of Excellence in Space Data and Information Sciences was developed jointly by NASA, Universities Space Research Association (USRA), and the University of Maryland in 1988 to focus on the design of advanced computing techniques and data systems to support NASA Earth and space science research programs. CESDIS is operated by USRA under contract to NASA. The Director, Associate Director, Staff Scientists, and administrative staff are located on-site at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The primary CESDIS mission is to increase the connection between computer science and engineering research programs at colleges and universities and NASA groups working with computer applications in Earth and space science. The 1993-94 CESDIS year included a broad range of computer science research applied to NASA problems. This report provides an overview of these research projects and programs as well as a summary of the various other activities of CESDIS in support of NASA and the university research community, We have had an exciting and challenging year.

  17. Astrosociology and Science Fiction: a Synergy

    NASA Astrophysics Data System (ADS)

    Caroti, Simone

    2010-01-01

    Both astrosociology and science fiction have claimed outer space as their preferred turf. Astrosociology did so in order to study the impact of space on human societies, and to develop a set of protocols that earthbound governments can utilize to prepare us for the next phase of humanity's adventure outside our home planet. Science fiction, on the other hand, found in outer space a fitting environment for dramatizing in a work of fiction the potential outcomes attending the kind of decision astrosociology is trying to foster in actuality. This paper explores the relationship between the two fields, and examines ways in which science fiction can contribute to the creation of an astrosociological consciousness. Particular attention will be given to the most relevant commonality that the two fields share: both astrosociology and science fiction are earthbound disciplines, areas of inquiry created by those who never left earth for those who never left earth. They can potentially function as partners in the endeavor of educating the bulk of humanity on the subject of space flight and space colonization.

  18. International Space Station -- Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)

  19. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.

  20. KENNEDY SPACE CENTER, FLA. - The Honorable Toni Jennings (left), lieutenant governor of the state of Florida, and Frank T. Brogan, president of Florida Atlantic University, receive a briefing on the research that will be conducted in the Space Life Sciences Lab from Dr. Robert J. Ferl (right), director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida. Jennings and Brogan are speaking at a dedication and ribbon-cutting ceremony for the lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - The Honorable Toni Jennings (left), lieutenant governor of the state of Florida, and Frank T. Brogan, president of Florida Atlantic University, receive a briefing on the research that will be conducted in the Space Life Sciences Lab from Dr. Robert J. Ferl (right), director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida. Jennings and Brogan are speaking at a dedication and ribbon-cutting ceremony for the lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  1. Space Weather Products at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.

    2010-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.

  2. Community Coordinated Modeling Center: Paving the Way for Progress in Space Science Research to Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Maddox, M. M.; Mays, M. L.; Mullinix, R.; MacNeice, P. J.; Pulkkinen, A. A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.; Wiegand, C.

    2013-12-01

    Community Coordinated Modeling Center (CCMC) was established at the dawn of the millennium as an essential element on the National Space Weather Program. One of the CCMC goals was to pave the way for progress in space science research to operational space weather forecasting. Over the years the CCMC acquired the unique experience in preparing complex models and model chains for operational environment, in developing and maintaining powerful web-based tools and systems ready to be used by space weather service providers and decision makers as well as in space weather prediction capabilities assessments. The presentation will showcase latest innovative solutions for space weather research, analysis, forecasting and validation and review on-going community-wide initiatives enabled by CCMC applications.

  3. Space station needs, attributes and architectural options study. Volume 7-1: Data book. Science and applications missions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    User requirements for space station use are presented for the following areas: space environments, astrophysics, Earth observations, and life science. Also included are a summary of study tasks and final reports, a topical cross reference, key team members, and acronyms and abbreviations.

  4. Tormenta Espacial: Engaging Spanish Speakers in the Planetarium and K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Salas, F.; Duncan, D.; Traub-Metlay, S.

    2008-06-01

    Reaching out to Spanish speakers is increasingly vital to workforce development and public support of space science projects. Building on a successful partnership with NASA's TIMED mission, LASP and Space Science Institute, Fiske Planetarium has translated its original planetarium show - ``Space Storm'' - into ``Tormenta Espacial.''

  5. Senate Subcommittee on Space, Science, and Competitiveness Heari

    NASA Image and Video Library

    2018-05-16

    Sen. Ted Cruz, R-Texas, chairman of the Senate Subcommittee on Space, Science, and Competitiveness speaks during a hearing titled "Examining the Future of the International Space Station: Administration Perspectives," Wednesday, May 16, 2018 in the Russell Senate Office Building on Capitol Hill in Washington. Photo Credit: (NASA/Joel Kowsky)

  6. Senate Subcommittee on Space, Science, and Competitiveness Heari

    NASA Image and Video Library

    2018-05-16

    NASA Inspector General Paul Martin testifies during a Senate Subcommittee on Space, Science, and Competitiveness hearing titled "Examining the Future of the International Space Station: Administration Perspectives" held on Wednesday, May 16, 2018 in the Russell Senate Office Building on Capitol Hill in Washington. Photo Credit: (NASA/Joel Kowsky)

  7. Senate Subcommittee on Space, Science, and Competitiveness Heari

    NASA Image and Video Library

    2018-05-16

    NASA Inspector General Paul Martin is seen during a Senate Subcommittee on Space, Science, and Competitiveness hearing titled "Examining the Future of the International Space Station: Administration Perspectives" Wednesday, May 16, 2018 in the Russell Senate Office Building on Capitol Hill in Washington. Photo Credit: (NASA/Joel Kowsky)

  8. Seeds: A Celebration of Science.

    ERIC Educational Resources Information Center

    Melton, Bob

    The Space Exposed Experiment Developed for Students (SEEDS) Project offered science classes at the 5-12 and college levels the opportunity to conduct experiments involving tomato seeds that had been space-exposed over long periods of time. SEEDS kits were complete packages obtained from the National Aeronautics and Space Administration (NASA) for…

  9. iss055e043245

    NASA Image and Video Library

    2018-04-30

    iss055e043245 (April 30, 2018) --- NASA astronaut Ricky Arnold transfers frozen biological samples from science freezers aboard the International Space Station to science freezers inside the SpaceX Dragon resupply ship. The research samples were returned to Earth aboard Dragon for retrieval by SpaceX engineers and analysis by NASA scientists.

  10. KSC-97PC840

    NASA Image and Video Library

    1997-05-24

    The Space Shuttle orbiter Atlantis glides in for a landing on Runway 33 at KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. It will be the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and Jean-Francois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  11. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    NASA Technical Reports Server (NTRS)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  12. Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.

  13. Optical Communication on SmallSats - Enabling the Next Era in Space Science (a Keck Institute for Space Studies Workshop)

    NASA Astrophysics Data System (ADS)

    Grefenstette, Brian

    2017-08-01

    Small satellites (<50 kg) have revolutionized the possibilities for inexpensive science from space-borne platforms. A number of scientific CubeSats have been recently launched or are under development, including some bound for interplanetary space. Recent miniaturization of technology for high-precision pointing, high efficiency solar power, high-powered on-board processing, and scientific detectors provide the capability for groundbreaking, focused science from these resource-limited spacecraft. Similar innovations in both radio frequency and optical/laser communications are poised to increase telemetry bandwidth to a gigabit per second (Gb/s) or more. This enhancement can allow real-time, global science measurements and/or ultra-high fidelity (resolution, cadence, etc.) observations from tens or hundreds of Earth-orbiting satellites, or permit high-bandwidth, direct-to-earth communications for (inter)planetary missions. Here we present the results of a recent Keck Institue for Space Science workshop that brought together scientists and engineers from academia and industry to showcase the breakthrough science enabled by optical communications on small satellites for future missions.

  14. Eyes on the Universe: The Legacy of the Hubble Space Telescope and Looking to the Future with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced groundbreaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  15. Social Sciences and Space Exploration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The relationship between technology and society is a subject of continuing interest, because technological change and its effects confront and challenge society. College students are especially interested in technological change, knowing that they must cope with the pervasive and escalating effect of wide-ranging technological change. The space shuttle represents a technological change. The book's role is to serve as a resource for college faculty and students who are or will be interested in the social science implications of space technology. The book is designed to provide introductory material on a variety of space social topics to help faculty and students pursue teaching, learning, and research. Space technologies, perspectives on individual disciplines (economics, history, international law, philosophy, political science, psychology, and sociology) and interdiscipline approaches are presented.

  16. Aerial Views of KSC

    NASA Image and Video Library

    2003-07-23

    The Space Experiment Research and Processing Laboratory (SERPL) is a major new research facility under construction at the International Space Research Park located on KSC. At right is S.R. 3, which leads into the Center from Merritt Island. Being developed as a partnership between KSC and the State of Florida, SERPL will serve as the primary gateway to the International Space Station for science experiments and as a world-class home to ground-based investigations in fundamental and applied biological science. NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  17. Materials science experiments in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  18. Results of the life sciences DSOs conducted aboard the space shuttle 1981-1986

    NASA Technical Reports Server (NTRS)

    Bungo, Michael W.; Bagian, Tandi M.; Bowman, Mark A.; Levitan, Barry M.

    1987-01-01

    Results are presented for a number of life sciences investigations sponsored by the Space Biomedical Research Institute at the NASA Lyndon B. Johnson Space Center and conducted as Detailed Supplementary Objectives (DSOs) on Space Shuttle flights between 1981 and 1986. An introduction and a description of the DSO program are followed by summary reports on the investigations. Reports are grouped into the following disciplines: Biochemistry and Pharmacology, Cardiovascular Effects and Fluid Shifts, Equipment Testing and Experiment Verification, Microbiology, Space Motion Sickness, and Vision. In the appendix, the status of every medical/life science DSO is presented in graphical form, which enables the flight history, the number of subjects tested, and the experiment results to be reviewed at a glance.

  19. International programs - A growing trend

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.

    1990-01-01

    The National Aeronautics and Space Administration has collaborated successfully in space science missions with a multiplicity of partners, including the European Space Agency, Federal Republic of Germany, the Netherlands, United Kingdom, Japan, and the Soviet Union, among others. These collaborations generally arise out of common scientific goals and in the interest of economizing to take advantage of skills and capabilities among the partners. A trend towards increased cooperation in space is expected to continue as the global scientific community works together to plan future space science missions and the missions become more sophisticated.

  20. Wernher von Braun

    NASA Image and Video Library

    1968-07-31

    Ground breaking ceremony for the Alabama Space Science Center, later renamed the U.S. Space and Rocket Center. Shown in this picture, left to right, are Edward O. Buckbee, Space Center Director; Jack Giles, Alabama State Senator of Huntsville; Dr. Wernher on Braun, Marshall Space Flight Center (MSFC) Director; Martin Darity, head of the Alabama Publicity Bureau (representing Governor Albert Brewer); James Allen, former Lieutenant governor, chairman of the Alabama Space Science Exhibit Commission; Major General Charles Eifler, commanding general of the Army Ordnance Missile Command; and Huntsville Mayor Glenrn Hearn. (Courtesy of Huntsville/Madison County Public Library)

  1. Planning and Processing Space Science Observations Using NASA's SPICE System

    NASA Technical Reports Server (NTRS)

    Acton, Charles H.

    2000-01-01

    The Navigation and Ancillary Information Facility (NAIF) team, acting under the directions of NASA's Office of Space Science, has built a data system-named SPICE, to assist scientists in planning and interpreting scientific observations from space-borne instruments. The principal objective of this data system is that it will provide geometric and other ancillary data used to plan space science missions and subsequently recover the full value of science instrument data returned from these missions, including correlation of individual instrument data sets with data from other instruments on the same or other spacecraft. SPICE is also used to support a host of mission engineering functions, such as telecommunications system analysis and operation of NASA's Deep Space Network antennas. This paper describes the SPICE system, including where and how it is used. It also touches on possibilities for further development and invites participation it this endeavor.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  3. Geographic data from space

    USGS Publications Warehouse

    Alexander, Robert H.

    1964-01-01

    Space science has been called “the collection of scientific problems to which space vehicles can make some specific contributions not achievable by ground-based experiments.” Geography, the most spatial of the sciences, has now been marked as one of these “space sciences.” The National Aeronautics and Space Administration (NASA) is sponsoring an investigation to identify the Potential geographic benefits from the nation’s space program. This is part of NASA’s long-range inquiry to determine the kinds of scientific activities which might profitably be carried out on future space missions. Among such future activities which are now being planned by NASA are a series of manned earth orbital missions, many of which would be devoted to research. Experiments in physics, astronomy, geophysics, meteorology, and biology are being discussed for these long-range missions. The question which is being put to geographers is, essentially, what would it mean to geographic research to have an observation satellite (or many such satellites) orbiting the earth, gathering data about earth-surface features and environments?

  4. Manned Space Exploration Can Provide Great Scientific Benefits

    NASA Astrophysics Data System (ADS)

    Singer, S. Fred

    2005-08-01

    An AGU Council statement (NASA: Earth and space sciences at risk, available at http:// www.agu.org/sci_soc/policy/positions/ earthspace_risk.shtml) and an Eos editorial [Barron, 2005], addressing NASA's envisioned manned Moon-Mars initiative, implicitly assume a zero-sum situation between manned and unmanned space programs. They also imply that the NASA initiative will not contribute significantly to science but will ``impact on the current and future health of Earth and space science research.'' I wish to respond to these concerns. It is generally agreed that the International Space Station and shuttle program have limited value and need to be terminated. But one should not assume that funds freed up by elimination of manned programs will accrue to unmanned programs. On the contrary, without a manned component, NASA will probably cease to exist. Congress likely will not continue to fund unmanned planetary exploration over the long term, and Earth and space researchers will then have to compete for support with scientists using non-space techniques.

  5. SpaceX CRS-11 What's On Board Briefing

    NASA Image and Video Library

    2017-05-31

    NASA Television held a “What’s on Board” science mission briefing from Kennedy Space Center's Press Site to discuss some of the science headed to the International Space Station on SpaceX’s eleventh commercial resupply services mission, CRS-11. SpaceX’s Dragon spacecraft will carry almost 6,000 pounds of supplies and payloads including crucial materials to support dozens of the more than 250 science and research investigations that will occur during Expeditions 52 and 53. CRS-11 will lift off atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. Briefing participants were: -Kathryn Hambleton, NASA Communications -Camille Alleyne, Associate Program Scientist, ISS -Ken Shields, Director of Operations, CASIS/ISS National Lab -Keith Gendreau, Principle Investigator, NICER -Jason W. Mitchell, Project Manager, SEXTANT -Jeremy Banik, Principle Investigator, ROSA -Karen Ocorr, Co-investigator, Fruit Fly Lab-02 -Miriam Sargusingh, Project Lead, CSELS -Dr. Chia Soo, Principle Investigator, Systemic Therapy of NELL-1 for Osteoporosis -Paul Galloway, Program Manager, MUSES

  6. Using Spacelab as a precursor of science operations for the Space Station

    NASA Technical Reports Server (NTRS)

    Marmann, R. A.

    1997-01-01

    For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.

  7. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  8. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    Howard Levine, at left, chief scientist in the Utilization and Life Sciences Office at NASA's Kennedy Space Center, and Dave Reid, a project manager with Techshot, discuss continuing research on growing food in space, as the Veggie Passive Orbital Nutrient Delivery System (PONDS) experiment tests a new way to deliver nutrients to plants. PONDS is one of the experiments that will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.

  9. Evolution of the Behavioral Sciences Branch of the Space Medicine and Health Care Systems Office at the Johnson Space Center.

    PubMed

    Fiedler, Edna R; Carpenter, Frank E

    2005-06-01

    This paper presents a brief history of psychology and psychiatry roles in psychological selection and how these roles have evolved into the Behavioral Sciences Branch at the Johnson Space Center USC), Houston, TX. Since the initial selection of the Mercury Seven, the first United States astronauts, psychologists and psychiatrists have been involved in astronaut selection activities. Initially very involved in psychological selection of astronauts, the role of behavioral health specialists waned during the Gemini and Apollo years. With the onset of the NASA/Mir/International Space Station Program, the introduction of payload and mission specialists, and international collaboration, the evolving need for behavioral health expertise became apparent. Medical and psychological selection processes were revisited and the Johnson Space Center developed a separate operational unit focused on behavioral health and performance. This work unit eventually became the Behavioral Sciences branch of the Space Medicine and Health Care Systems Office. Research was allocated across groups at JSC, other NASA space centers, and the National Space Biomedical Research Institute, and was funded by NASA Headquarters. The current NASA focus on human space exploration to the Moon and beyond re-emphasizes the importance of the human-centered approach.

  10. KSC-04PD-0006

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  11. Aeronautics and space report of the President: 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Achievements in the aeronautics and space program by function are summarized. Activities in communications, Earth's resources and environment, space science, space transportation, international activities, and aeronautics are included.

  12. Thermodynamics of de Sitter Black Holes in Massive Gravity

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Bo; Zhang, Si-Xuan; Wu, Yan; Ma, Li; Cao, Shuo

    2018-05-01

    In this paper, by taking de Sitter space-time as a thermodynamic system, we study the effective thermodynamic quantities of de Sitter black holes in massive gravity, and furthermore obtain the effective thermodynamic quantities of the space-time. Our results show that the entropy of this type of space-time takes the same form as that in Reissner-Nordström-de Sitter space-time, which lays a solid foundation for deeply understanding the universal thermodynamic characteristics of de Sitter space-time in the future. Moreover, our analysis indicates that the effective thermodynamic quantities and relevant parameters play a very important role in the investigation of the stability and evolution of de Sitter space-time. Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant Nos. 11605107 and 11503001, the National Natural Science Foundation of China under Grant No. 11475108, Program for the Innovative Talents of Higher Learning Institutions of Shanxi, the Natural Science Foundation of Shanxi Province under Grant No. 201601D102004, the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No. 201601D021022, and the Natural Science Foundation of Datong City under Grant No. 20150110

  13. Health sciences libraries building survey, 1999-2009.

    PubMed

    Ludwig, Logan

    2010-04-01

    A survey was conducted of health sciences libraries to obtain information about newer buildings, additions, remodeling, and renovations. An online survey was developed, and announcements of survey availability posted to three major email discussion lists: Medical Library Association (MLA), Association of Academic Health Sciences Libraries (AAHSL), and MEDLIB-L. Previous discussions of library building projects on email discussion lists, a literature review, personal communications, and the author's consulting experiences identified additional projects. Seventy-eight health sciences library building projects at seventy-three institutions are reported. Twenty-two are newer facilities built within the last ten years; two are space expansions; forty-five are renovation projects; and nine are combinations of new and renovated space. Six institutions report multiple or ongoing renovation projects during the last ten years. The survey results confirm a continuing migration from print-based to digitally based collections and reveal trends in library space design. Some health sciences libraries report loss of space as they move toward creating space for "community" building. Libraries are becoming more proactive in using or retooling space for concentration, collaboration, contemplation, communication, and socialization. All are moving toward a clearer operational vision of the library as the institution's information nexus and not merely as a physical location with print collections.

  14. "Space, the Final Frontier"; Books on Space and Space Exploration.

    ERIC Educational Resources Information Center

    Jordan, Anne Devereaux

    1997-01-01

    Advocates play in a child's life. Describes how science fiction seizes the imaginations of young readers with its tales of the future and of outer space. Talks about various nonfiction books about space. Elaborates a workshop on books about space exploration. Gives 10 questions about stimulating student response. (PA)

  15. Transportation and platforms perspective

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1992-01-01

    The topics covered are presented in viewgraph form and include the following: Office of Aeronautics and Space Technology; space research and technology (R&T); space R&T mission statement; Space R&T program development; R&T strategy; Office of Space Science and Applications (OSSA) technology needs; transportation technology; and space platforms technology.

  16. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Space Station activities and Science or Space Exploration activities unrelated to the International... Exploration activities unrelated to the International Space Station that involve a launch, NASA shall require... or Space Exploration Activities unrelated to the International Space Station, in solicitations and...

  17. 75 FR 8997 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-021)] NASA Advisory Council; Science...: Notice of meeting. SUMMARY: The National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to...

  18. 76 FR 69292 - NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-113] NASA Advisory Council Science..., Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces that the meeting of the Planetary Science Subcommittee of the NASA Advisory Council originally scheduled...

  19. Spacelab

    NASA Image and Video Library

    1994-07-08

    This is a Space Shuttle Columbia (STS-65) onboard photo of the second International Microgravity Laboratory (IML-2) in the cargo bay with Earth in the background. Mission objectives of IML-2 were to conduct science and technology investigations that required the low-gravity environment of space, with emphasis on experiments that studied the effects of microgravity on materials processes and living organisms. Materials science and life sciences are two of the most exciting areas of microgravity research because discoveries in these fields could greatly enhance the quality of life on Earth. If the structure of certain proteins can be determined by examining high-quality protein crystals grown in microgravity, advances can be made to improve the treatment of many human diseases. Electronic materials research in space may help us refine processes and make better products, such as computers, lasers, and other high-tech devices. The 14-nation European Space Agency (ESA), the Canadian Space Agency (SCA), the French National Center for Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DARA/DLR), and the National Space Development Agency of Japan (NASDA) participated in developing hardware and experiments for the IML missions. The missions were managed by NASA's Marshall Space Flight Center. The Orbiter Columbia was launched from the Kennedy Space Center on July 8, 1994 for the IML-2 mission.

  20. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  1. Life Sciences Accomplishments 1994

    NASA Technical Reports Server (NTRS)

    Burnell, Mary Lou (Editor)

    1993-01-01

    The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting proposals for ground-based and flight research for all programs. Areas of particular interest to NASA were defined Proposals due April 29, 1994, will be peer reviewed - externally for scientific merit. This annual NRA process is now the mechanism for recruiting both extramural and intramural investigations. As an overview of LBSAD activities in 1993, this accomplishments document covers each of the major organizational components of the Division and the accomplishments of each. The second section is a review of the Space Life Sciences Research programs Space Biology, Space Physiology and Countermeasures, Radiation Health, Environmental Health, Space Human Factors, Advanced Life Support, and Global Monitoring and Disease Prediction, The third section, Research in Space Flight, describes the substantial contributions of the Spacelab Life Sciences 2 (SLS-2) mission to life sciences research and the significant contributions of the other missions flown in 1993, along with plans for future missions. The Division has greatly expanded and given high priority to its Education and Outreach Programs, which are presented in the fourth section. The fifth and final section, Partners for Space, shows the Divisions Cooperative efforts with other national and international agencies to achieve common goals, along with the accomplishments of joint research and analysis programs.

  2. The Construction (Using Multi-Media Techniques) of Certain Modules of a Programmed Course in Astronomy-Space Sciences for NASA Personnel of The Goddard Space Flight Center, Greenbelt, Maryland.

    ERIC Educational Resources Information Center

    Collagan, Robert B.

    This paper describes the development of a self-instructional multi-media course in astronomy-space sciences for non-technical NASA personnel. The course consists of a variety of programed materials including slides, films, film-loops, filmstrips video-tapes and audio-tapes, on concepts of time, space, and matter in our solar system and galaxy.…

  3. NASA Life Sciences Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  4. Microgravity Science Glovebox Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  5. NASA Development of Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2003-01-01

    Aeroassist technology development is a vital part of the NASA ln-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).

  6. NASA Development of Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2004-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).

  7. Crab Nebula

    NASA Image and Video Library

    2017-12-08

    The Crab Nebula is a supernova remnant, all that remains of a tremendous stellar explosion. Observers in China and Japan recorded the supernova nearly 1,000 years ago, in 1054. Credit: NASA, ESA, J. Hester and A. Loll (Arizona State University) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  8. Carina Nebula Detail

    NASA Image and Video Library

    2017-12-08

    Carina Nebula Details: Great Clouds Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  9. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.

  10. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Here the transparent furnace is extracted for servicing. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD).

  11. Materials Science Research Rack-1 (MSRR-1)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, and TBD). This composite is from a digital still camera; higher resolution is not available.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-01

    This image of the Space Shuttle Orbiter Atlantis, with cargo bay doors open showing Spacelab Module for the Spacelab Life Science and the docking port, was photographed from the Russian Mir Space Station during STS-71 mission. The STS-71 mission performed the first docking with the Russian Mir Space Station to exchange crews. The Mir 19 crew, cosmonauts Anatoly Solovyev and Nikolai Budarin, replaced the Mir 18 crew, cosmonauts Valdamir Dezhurov and Gernady Strekalov, and astronaut Norman Thagard. Astronaut Thagard was launched aboard a Soyuz spacecraft in March 1995 for a three-month stay on the Mir Space Station as part of the Mir 18 crew. The Orbiter Atlantis was modified to carry a docking system compatible with the Mir Space Station. The Orbiter also carried a Spacelab module for the Spacelab Life Science mission in the payload bay in which various life science experiments and data collection took place throughout the 10-day mission.

  13. KSC-03PD-3138

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Dignitaries, invited guests, space center employees, and the media show their appreciation for the speakers at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  14. The NASA Space Grant College and Fellowship Program

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Ward, E. B.; Detroye, D.

    1998-09-01

    National Aeronautics and Space Administration in 1989, the National Space Grant College and Fellowship Program (also known as Space Grant) contributes to the nation's science enterprise by funding research, education, and public service projects through a national network of 52 university-based Space Grant consortia. These consortia administer programs in all 50 states, the District of Columbia, and Puerto Rico. In 1998, the consortia's 703 affiliates include 493 academic institutions and 62 businesses. Other partners include state and local government agencies, other federal agencies, and nonprofit organizations. Space Grant celebrates its tenth year of service in 1999. Since its inception, Space Grant has awarded over 12,000 U.S. citizens with tuition assistance in science, engineering, and related fields of study. Approximately twenty percent of these awards were to students from underrepresented groups and approximately thirty-five percent were to women. The majority of Space Grant student awards include a mentored research experience with university faculty or NASA scientists. Space Grant funds curriculum enhancement and faculty development as well. Space Grant colleges and universities also administer precollege and public service education programs that help to meet the education needs of their states. The Space Grant consortia have leveraged federal funds to more than double the Space Grant budget with matching contributions from state and local sources. Space Grant encourages collaboration among departments, across institutions, and with business and industry. All Space Grant programs emphasize the diversity of human resources, the participation of students in research, and the communication of the benefits of science and technology to the general public.

  15. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  16. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  17. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.

  18. Popularizing Space Education in Indian Context

    NASA Astrophysics Data System (ADS)

    Yalagi, Amrut

    Indians have many mythological stories about many constellations and stars. Hindu months are based on MOON and 27 stars on Zodiac. They are very important for many Indians in ritual, religious functions. By prompting them to identify their birth star, really makes them elevated. Similarly conveying them the importance of star gazing with respect to their day today life makes them to take interest and active participation in Space Activities. Space activities should be driven by public; their requirements; their dreams and imaginations. Their active participation definitely gives valuable inputs to space scientists. Hence, there is a need of involving common man or public mass by appropriate motivation by organising sky gazing sessions, exhibitions, workshops, etc. In this connection, even if the some organisation are able to attract a small percent of qualified engineers/scientists,, enthusiastic students, it would result in the creation of a sizable pool of talent in space sciences,which may well determine the future mankind on this planet. Some simple motivation acts have made the people to take interest in space. we have been using certain methodologies to popularize space science - 1] Conducting theory sessions on basics of star gazing and conveying importance of sky gazing with respect to day-today life. 2] Organising seminars, workshops, lectures and other academic/popular science activities with special reference to space science 3] Projects - a] Cubsat Missions b] Automatic Weather Station Facility c] Model making d] Creating and simulating space models and rover making competitions. The 50 year's of Exploration has left tremendous impact on many society's working towards space education and exploration.

  19. KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  20. Chinese Manned Space Utility Project

    NASA Astrophysics Data System (ADS)

    Gu, Y.

    Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured

Top