Assessment Regarding Impact of Atmospheric Conditions on Space Shuttle Launch Delays
NASA Technical Reports Server (NTRS)
Johnson D. L.; Pearson, S. D.; Vaughan, W. W.; Batts, G. W.
1998-01-01
The atmospheric environment definition has played a key role in the development and operation of the NASA Space Shuttle as it has in other NASA Space Vehicle Programs. The objective of any definition of natural environment design requirements for a space vehicle development is to insure that the vehicle will perform safely and in a timely manner relative to the mission(s) for which the vehicle is being developed. The NASA Space Shuttle has enjoyed the longest tenure of any Space Vehicle from an operational standpoint. As such, it has provided a wealth of information on many engineering aspects of a Space Vehicle plus the influence of the atmosphere on operational endeavors. The atmospheric environment associated with the NASA Space Shuttle launches at the NASA Kennedy Space Center in Florida has been reviewed and studied over the entire NASA Space Shuttle flight history. The results of the analysis of atmospheric environment related launch delays relative to other sources of launch delays has been assessed. This paper will provide a summary of those conditions as well as mission analysis examples focused on atmospheric constraints for launch. Atmospheric conditions associated with NASA Space Shuttle launch delays will be presented to provide a reference as to the type conditions experienced which have mainly caused the delays.
Interactions measurement payload for Shuttle
NASA Technical Reports Server (NTRS)
Guidice, D. A.; Pike, C. P.
1985-01-01
The Interactions Measurement Payload for Shuttle (IMPS) consisted of engineering experiments to determine the effects of the space environment on projected Air Force space systems. Measurements by IMPS on a polar-orbit Shuttle flight will lead to detailed knowledge of the interaction of the low-altitude polar-auroral environment on materials, equipment and technologies to be used in future large, high-power space systems. The results from the IMPS measurements will provide direct input to MIL-STD design guidelines and test standards that properly account for space-environment effects.
Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.
Space Shuttle. The microcapsules in space (MIS) equipment will replace two space shuttle middeck storage lockers. Design changes have been...Mission STS-53 pending final safety certification by NASA. STS-53 is scheduled for launch on October 15, 1992. RA 2; Microencapsulation ; Controlled-release; Space Shuttle; Antibiotics; Drug development.
Planetary/DOD entry technology flight experiments. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The feasibility of using the space shuttle to launch planetary and DoD entry flight experiments was examined. The results of the program are presented in two parts: (1) simulating outer planet environments during an earth entry test, the prediction of Jovian and earth radiative heating dominated environments, mission strategy, booster performance and entry vehicle design, and (2) the DoD entry test needs for the 1980's, the use of the space shuttle to meet these DoD test needs, modifications of test procedures as pertaining to the space shuttle, modifications to the space shuttle to accommodate DoD test missions and the unique capabilities of the space shuttle. The major findings of this program are summarized.
1996-10-01
TITLE: Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle - Follow-On Experiments PRINCIPAL INVESTIGATOR...REPORT DATE 3. REPORT TYPE AND DATES COVERED October 1996 Final (4 May 92 - 3 Jul 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Microencapsulation of...call the Microencapsulation in Space (MIS-B) experiment. The MIS-B experiment flew on Space Shuttle Discovery -- Mission STS-70. Before launch, NASA
2012-02-17
Space Shuttle Payloads: Kennedy Space Center was the hub for the final preparation and launch of the space shuttle and its payloads. The shuttle carried a wide variety of payloads into Earth orbit. Not all payloads were installed in the shuttle's cargo bay. In-cabin payloads were carried in the shuttle's middeck. Cargo bay payloads were typically large payloads which did not require a pressurized environment, such as interplanetary space probes, earth-orbiting satellites, scientific laboratories and International Space Station trusses and components. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
NASA Technical Reports Server (NTRS)
Matty, Christopher M.; Hayley, Elizabeth P.
2009-01-01
Manned space vehicles have a common requirement to remove the Carbon Dioxide (CO2) created by the metabolic processes of the crew. The Space Shuttle and International Space Station (ISS) each have systems in place to allow control and removal of CO2 from the habitable cabin environment. During periods where the Space Shuttle is docked to ISS, known as joint docked operations, the Space Shuttle and ISS share a common atmosphere environment. During this period there is an elevated production of CO2 caused by the combined metabolic activity of the Space Shuttle and ISS crew. This elevated CO2 production, combined with the large effective atmosphere created by the collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe the individual CO2 control plans implemented by the Space Shuttle and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. In addition, the paper will discuss some of the issues and anomalies experienced by both engineering teams.
A search for experiments to exploit the space shuttle environment, volume 2
NASA Technical Reports Server (NTRS)
Fenn, J. B.
1979-01-01
Institutions and laboratories in India, Japan, and Western Europe which were visited during a search for experiments to exploit the space shuttle environment are described. The facilities and current research interests of the various centers are discussed with particular emphasis given to the Indian Space Research Organization.
Simulation of Range Safety for the NASA Space Shuttle
NASA Technical Reports Server (NTRS)
Rabelo, Luis; Sepulveda, Jose; Compton, Jeppie; Turner, Robert
2005-01-01
This paper describes a simulation environment that seamlessly combines a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this simulation environment represent the different systems that must interact in order to determine the Expectation of casualties (E(sub c)) resulting from the toxic effects of the gas dispersion that occurs after a disaster affecting a Space Shuttle within 120 seconds of lift-off. The utilization of the Space Shuttle reliability models, trajectory models, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system are all integrated to create this environment. This simulation environment can help safety managers estimate the population at risk in order to plan evacuation, make sheltering decisions, determine the resources required to provide aid and comfort, and mitigate damages in case of a disaster. This simulation environment may also be modified and used for the landing phase of a space vehicle but will not be discussed in this paper.
NASA Technical Reports Server (NTRS)
Roberts, Barry C.
2004-01-01
Supported Return-to-Flight activities by providing surface climate data from Kennedy Space Center used primarily for ice and dew formation studies, and upper air wind analysis primarily used for ascent loads analyses. The MSFC Environments Group's Terrestrial and Planetary Environments Team documented Space Shuttle day-of-launch support activities by publishing a document in support of SSP Return-to-Flight activities entitled "Space Shuttle Program Flight Operations Support". The team also formalized the Shuttle Natural Environments Technical Panel and chaired the first special session of the SSP Natural Environments Panel meeting at KSC, November 4-7,2003.58 participants from NASA, DOD and other government agencies from across the country attended the meeting.
Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107
NASA Technical Reports Server (NTRS)
Overbey, B. G.; Roberts, B. C.
2005-01-01
During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
Macro Level Simulation Model Of Space Shuttle Processing
NASA Technical Reports Server (NTRS)
2000-01-01
The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.
Propulsion system ignition overpressure for the Space Shuttle
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Jones, J. H.; Guest, S. H.; Struck, H. G.; Rheinfurth, M. H.; Verferaime, V. S.
1981-01-01
Liquid and solid rocket motor propulsion systems create an overpressure wave during ignition, caused by the accelerating gas particles pushing against or displacing the air contained in the launch pad or launch facility and by the afterburning of the fuel-rich gases. This wave behaves as a blast or shock wave characterized by a positive triangular-shaped first pulse and a negative half-sine wave second pulse. The pulse travels up the space vehicle and has the potential of either overloading individual elements or exciting overall vehicle dynamics. The latter effect results from the phasing difference of the wave from one side of the vehicle to the other. This overpressure phasing, or delta P environment, because of its frequency content as well as amplitude, becomes a design driver for certain panels (e.g., thermal shields) and payloads for the Space Shuttle. The history of overpressure effects on the Space Shuttle, the basic overpressure phenomenon, Space Shuttle overpressure environment, scale model overpressure testing, and techniques for suppressing the overpressure environments are considered.
Space Shuttle Solid Rocket Booster Debris Assessment
NASA Technical Reports Server (NTRS)
Kendall, Kristin; Kanner, Howard; Yu, Weiping
2006-01-01
The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.
Space Shuttle Program Legacy Report
NASA Technical Reports Server (NTRS)
Johnson, Scott
2012-01-01
Share lessons learned on Space Shuttle Safety and Mission Assurance (S&MA) culture, processes, and products that can guide future enterprises to improve mission success and minimize the risk of catastrophic failures. Present the chronology of the Johnson Space Center (JSC) S&MA organization over the 40-year history of the Space Shuttle Program (SSP) and identify key factors and environments which contributed to positive and negative performance.
NASA Technical Reports Server (NTRS)
Gary, G. A. (Editor); Clifton, K. S. (Editor)
1976-01-01
The prospects of cometary research from the space shuttle are examined. Topics include: the shuttle as research environment; on-board experiments at zero-gravity and release of gas and dust to simulate cometary phenomena; and cometary observations from space.
Shuttle on-orbit contamination and environmental effects
NASA Technical Reports Server (NTRS)
Leger, L. J.; Jacobs, S.; Ehlers, H. K. F.; Miller, E.
1985-01-01
Ensuring the compatibility of the space shuttle system with payloads and payload measurements is discussed. An extensive set of quantitative requirements and goals was developed and implemented by the space shuttle program management. The performance of the Shuttle system as measured by these requirements and goals was assessed partly through the use of the induced environment contamination monitor on Shuttle flights 2, 3, and 4. Contamination levels are low and generally within the requirements and goals established. Additional data from near-term payloads and already planned contamination measurements will complete the environment definition and allow for the development of contamination avoidance procedures as necessary for any payload.
NASA Technical Reports Server (NTRS)
1973-01-01
Data are presented to support the environmental impact statement on space shuttle actions at Kennedy Space Center. Studies indicate that land use to accommodate space shuttle operations may have the most significant impact. The impacts on air, water and noise quality are predicted to be less on the on-site environment. Considerations of operating modes indicate that long and short term land use will not affect wildlife productivity. The potential for adverse environmental impact is small and such impacts will be local, short in duration, controllable, and environmentally acceptable.
A Summary of Meteorological Parameters During Space Shuttle Pad Exposure Periods
NASA Technical Reports Server (NTRS)
Overbey, Glenn; Roberts, Barry C.
2005-01-01
During the 113 missions of the Space Transportation System (STS), the Space Shuffle fleet has been exposed to the elements on the launch pad for a total of 4195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This paper provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Sources of the surface parameters, including temperature, dew point temperature, relative humidity, wind speed, wind direction, sea level pressure and precipitation are presented. Data is provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
Natural environment support guidelines for Space Shuttle tests and operations
NASA Technical Reports Server (NTRS)
Carter, E. A.; Brown, S. C.
1974-01-01
The present work outlines the general concept as to how natural environment guidelines will be developed for Space Shuttle activities. The following six categories that might need natural environment support are single out: development tests; preliminary operations and prelaunch; launch to orbit; orbital mission and operations; deorbit, entry, and landing; ferry flights. An example of detailed event requirements for decisions to launch is given. Some artist's conceptions of proposed launch complexes at Kennedy Space Center and Vandenberg AFB are shown.
KSC Launch Pad Flame Trench Environment Assessment
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.
2010-01-01
This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.
NASA Technical Reports Server (NTRS)
Koller, A. M., Jr.; Knott, W. M.
1985-01-01
Near field and far field environmental monitoring activities extending from the first launch of the Space Shuttle at the Kennedy Space Center have provided a database from which conclusions can now be drawn for short term, acute effects of launch and, to a lesser degree, long term cumulative effects on the natural environment. Data for the first 15 launches of the Space Shuttle from Kennedy Space Center Pad 39A are analyzed for statistical significance and reduced to graphical presentations of individual and collective disposition isopleths, summarization of observed environmental impacts (e.g., vegetation damage, fish kills), and supporting data from specialized experiments and laboratory analyses. Conclusions are drawn with regard to the near field environment at Pad A, the effects on the lagoonal complex, and the relationships of these data and conclusions to upcoming operations at Complex 39 Pad B where the environment is significantly different. The paper concludes with a subjective evaluation of the likely impacts at Vandenberg Space Launch Complex 6 for the first Shuttle launch next year.
STS-1 mission contamination evaluation approach
NASA Technical Reports Server (NTRS)
Jacobs, S.; Ehlers, H.; Miller, E. R.
1980-01-01
The space transportation system 1 mission will be the first opportunity to assess the induced environment of the orbiter payload bay region. Two tools were developed to aid in this assessment. The shuttle payload contamination evaluation computer program was developed to provide an analytical tool for prediction of the induced molecular contamination environment of the space shuttle orbiter during its onorbit operations. An induced environment contamination monitor was constructed and tested to measure the space shuttle orbiter contamination environment inside the payload bay during ascent and descent and inside and outside the payload bay during the onorbit phase. Measurements are to be performed during the four orbital flight test series. Measurements planned for the first flight are described and predicted environmental data are discussed. The results indicate that the expected data are within the measurement range of the induced environment contamination monitor instruments evaluated, and therefore it is expected that useful contamination environmental data will be available after the first flight.
Shuttle Performance: Lessons Learned, Part 2
NASA Technical Reports Server (NTRS)
Arrington, J. P. (Compiler); Jones, J. J. (Compiler)
1983-01-01
Several areas of Space Shuttle technology were addressed including aerothermal environment, thermal protection, measurement and analysis, Shuttle carrier aerodynamics, entry analysis of the STS-3, and an overview of each section.
NASA Technical Reports Server (NTRS)
Matty, Christopher M.
2010-01-01
Crewed space vehicles have a common requirement to remove the carbon dioxide (CO2) created by the metabolic processes of the crew. The space shuttle [Space Transportation System (STS)] and International Space Station (ISS) each have systems in place that allow control and removal of CO2 from the habitable cabin environment. During periods in which the space shuttle is docked to the ISS, known as "joint docked operations," the space shuttle and ISS share a common atmosphere environment. During this period, an elevated amount of CO2 is produced through the combined metabolic activity of the STS and ISS crews. This elevated CO2 production, together with the large effective atmosphere created by collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe individual CO2 control plans implemented by STS and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. The paper will also discuss some of the issues and anomalies experienced by both engineering teams.
Legacy of Environmental Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Lane, Helen W.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over the last 30 years and represents the longest and largest U.S. human spaceflight program. Risks to crewmembers were included in the research areas of nutrition, microbiology, toxicology, radiation, and sleep quality. To better understand the Shuttle environment, Crew Health Care System was developed. As part of this system, the Environmental Health Subsystem was developed to monitor the atmosphere for gaseous contaminants and microbial contamination levels and to monitor water quality and radiation. This program expended a great deal of effort in studying and mitigating risks related to contaminations due to food, water, air, surfaces, crewmembers, and payloads including those with animals. As the Shuttle had limited stowage space and food selection, the development of nutritional requirements for crewmembers was imperative. As the Shuttle was a reusable vehicle, microbial contamination was of great concern. The development of monitoring instruments that could withstand the space environment took several years and many variations to come up with a suitable instrument. Research with space radiation provided an improved understanding of the various sources of ionizing radiation and the development of monitoring instrumentation for space weather and the human exposure within the orbiter's cabin. Space toxicology matured to include the management of offgassing products that could pollute the crewmembers air quality. The Shuttle Program implemented a 5-level toxicity rating system and developed new monitoring instrumentation to detect toxic compounds. The environment of space caused circadian desynchrony, sleep deficiency, and fatigue leading to much research and major emphasis on countermeasures. Outcomes of the research in these areas were countermeasures, operational protocols, and hardware. Learning Objectives: This symposium will provide an overview of the major environmental lessons learned and the development of countermeasures, monitoring hardware, and procedures.
Space Shuttle Orbiter logistics - Managing in a dynamic environment
NASA Technical Reports Server (NTRS)
Renfroe, Michael B.; Bradshaw, Kimberly
1990-01-01
The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.
Thermal environments for Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Fu, J. H.; Graves, G. R.
1985-01-01
The thermal environment of the Space Shuttle payload bay during the on-orbit phase of the STS flights is presented. The STS Thermal Flight Instrumentation System and various substructures of the Orbiter and the payload are described, as well as the various on-orbit attitudes encountered in the STS flights (the tail to sun, nose to sun, payload bay to sun, etc.). Included are the temperature profiles obtained during the on-orbit STS 1-5 flights (with the payload bay door open), recorded in various substructures of the Orbiter's midsection at different flight attitudes, as well as schematic illustrations of the Space Shuttle system, a typical mission profile, and the Orbiter's substructures.
The flights before the flight - An overview of shuttle astronaut training
NASA Technical Reports Server (NTRS)
Sims, John T.; Sterling, Michael R.
1989-01-01
Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.
Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.
2005-01-01
This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.
Prediction of space shuttle fluctuating pressure environments, including rocket plume effects
NASA Technical Reports Server (NTRS)
Plotkin, K. J.; Robertson, J. E.
1973-01-01
Preliminary estimates of space shuttle fluctuating pressure environments have been made based on prediction techniques developed by Wyle Laboratories. Particular emphasis has been given to the transonic speed regime during launch of a parallel-burn space shuttle configuration. A baseline configuration consisting of a lightweight orbiter and monolithic SRB, together with a typical flight trajectory, have been used as models for the predictions. Critical fluctuating pressure environments are predicted at transonic Mach numbers. Comparisons between predicted environments and wind tunnel test results, in general, showed good agreement. Predicted one-third octave band spectra for the above environments were generally one of three types: (1) attached turbulent boundary layer spectra (typically high frequencies); (2) homogeneous separated flow and shock-free interference flow spectra (typically intermediate frequencies); and (3) shock-oscillation and shock-induced interference flow spectra (typically low frequencies). Predictions of plume induced separated flow environments were made. Only the SRB plumes are important, with fluctuating levels comparable to compression-corner induced separated flow shock oscillation.
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Nguyen, Tri X.
2011-01-01
This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.
Astronaut Curtis Brown works with SAMS on Shuttle Atlantis middeck
1994-11-14
STS066-14-021 (3-14 Nov 1994) --- On the Space Shuttle Atlantis' mid-deck, astronaut Curtis L. Brown, Jr., pilot, works with the Space Acceleration Measurement System (SAMS), which is making its eleventh Shuttle flight. This system supports the Protein Crystal Growth (PCG) experiments onboard by collecting and recording data characterizing the microgravity environment in the Shuttle mid-deck. Brown joined four other NASA astronauts and a European Space Agency (ESA) astronaut for 11-days aboard Atlantis in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
The Space Shuttle Orbiter molecular environment induced by the supplemental flash evaporator system
NASA Technical Reports Server (NTRS)
Ehlers, H. K. F.
1985-01-01
The water vapor environment of the Space Shuttle Orbiter induced by the supplemental flash evaporator during the on-orbit flight phase has been analyzed based on Space II model predictions and orbital flight measurements. Model data of local density, column density, and return flux are presented. Results of return flux measurements with a mass spectrometer during STS-2 and of direct flux measurements during STS-4 are discussed and compared with model predictions.
ERIC Educational Resources Information Center
An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.
2016-01-01
The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…
Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Calle, L. M.
2011-01-01
Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2015-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2014-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
Space shuttle rendezous, radiation and reentry analysis code
NASA Technical Reports Server (NTRS)
Mcglathery, D. M.
1973-01-01
A preliminary space shuttle mission design and analysis tool is reported emphasizing versatility, flexibility, and user interaction through the use of a relatively small computer (IBM-7044). The Space Shuttle Rendezvous, Radiation and Reentry Analysis Code is used to perform mission and space radiation environmental analyses for four typical space shuttle missions. Included also is a version of the proposed Apollo/Soyuz rendezvous and docking test mission. Tangential steering circle to circle low-thrust tug orbit raising and the effects of the trapped radiation environment on trajectory shaping due to solar electric power losses are also features of this mission analysis code. The computational results include a parametric study on single impulse versus double impulse deorbiting for relatively low space shuttle orbits as well as some definitive data on the magnetically trapped protons and electrons encountered on a particular mission.
Space Shuttle wind tunnel testing program
NASA Technical Reports Server (NTRS)
Whitnah, A. M.; Hillje, E. R.
1984-01-01
A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.
NASA Technical Reports Server (NTRS)
Margasayam, Ravi; Voska, Ned (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on the effects of noise of the SSME Space Shuttle Main Engine upon liftoff from Kennedy Space Center. It covers both effects experienced by astronauts within the Shuttles, and effects on the surrounding environment. The presentation then makes recommendations for design methods which take into account vibroacoustics.
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, space shuttle Endeavour's STS-134 Commander Mark Kelly is on hand for the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, space shuttle Endeavour's STS-134 Commander Mark Kelly speaks to the media before the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Martin, Gary L.; Baugher, Charles R.; Delombard, Richard
1990-01-01
In order to define the acceleration requirements for future Shuttle and Space Station Freedom payloads, methods and hardware characterizing accelerations on microgravity experiment carriers are discussed. The different aspects of the acceleration environment and the acceptable disturbance levels are identified. The space acceleration measurement system features an adjustable bandwidth, wide dynamic range, data storage, and ability to be easily reconfigured and is expected to fly on the Spacelab Life Sciences-1. The acceleration characterization and analysis project describes the Shuttle acceleration environment and disturbance mechanisms, and facilitates the implementation of the microgravity research program.
1995-10-20
A Great Blue Heron seems oblivious to the tremendous spectacle of light and sound generated by a Shuttle liftoff, as the Space Shuttle Columbia (STS-73) soars skyward from Launch Pad 39B. Columbia's seven member crew's mission included continuing experimentation in the Marshall managed payloads including the United States Microgravity Laboratory 2 (USML-2) and the keel-mounted accelerometer that characterizes the very low frequency acceleration environment of the orbiter payload bay during space flight, known as the Orbital Acceleration Research Experiment (OARE).
NASA Technical Reports Server (NTRS)
Wennhold, W. F.
1974-01-01
The use of high strength and modulus of advanced filamentary composites to reduce the structural weight of aerospace vehicles was investigated. Application of the technology to space shuttle components was the primary consideration. The mechanical properties for the boron/epoxy, graphite/epoxy, and polyimide data are presented. Structural testing of two compression panel components was conducted in a simulated space shuttle thermal environment. Results of the tests are analyzed.
NASA Technical Reports Server (NTRS)
Rader, W. P.; Barrett, S.; Raratono, J.; Payne, K. R.
1976-01-01
The current predicted acoustic environment for the shuttle orbiter payload bay will produce random vibration environments for payload components and subsystems which potentially will result in design, weight and cost penalties if means of protecting the payloads are not developed. Results are presented of a study to develop, through design and cost effectiveness trade studies, conceptual noise suppression device designs for space shuttle payloads. The impact of noise suppression on environmental levels and associated test costs, and on test philosophy for the various payload classes is considered with the ultimate goal of reducing payload test costs. Conclusions and recommendations are presented.
Concepts for NASA longitudinal health studies
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.; Pool, S. L.; Leach, C. S.; Moseley, E.; Rambaut, P. C.
1983-01-01
Clinical data collected from a 15-year study of the homogenous group of pre-Shuttle astronauts have revealed no significant long-term effects from spaceflight. The current hypothesis suggests that repeated exposures to the space environment in the Shuttle era will similarly have no long-term health effects. However, a much more heterogenous group of astronauts and non-astronaut scientists will fly in Shuttle, and data on this group's adaptation to the space environment and readaptation to earth are currently sparse. In addition, very little information is available concerning the short- and long-term medical consequences of long duration exposure to space and subsequent readaptation to the earth environment. In this paper, retrospective clinical information on astronauts is reviewed and concepts for conducting epidemiological studies examining long-term health effects of spaceflight on humans, including associated occupational risks factors, are presented.
Photometric analysis of a space shuttle water venting
NASA Technical Reports Server (NTRS)
Viereck, R. A.; Murad, E.; Pike, C. P.; Kofsky, I. L.; Trowbridge, C. A.; Rall, D. L. A.; Satayesh, A.; Berk, A.; Elgin, J. B.
1991-01-01
Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment.
Space Shuttle Corrosion Protection Performance
NASA Technical Reports Server (NTRS)
Curtis, Cris E.
2007-01-01
The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.
NASA Technical Reports Server (NTRS)
Friend, Robert B.
1998-01-01
In the modeling of spacecraft dynamics it is important to accurately characterize the environment in which the vehicle operates, including the environments induced by the vehicle itself. On the Space Shuttle these induced environmental factors include reaction control system plume. Knowledge of these environments is necessary for performance of control systems and loads analyses, estimation of disturbances due to thruster firings, and accurate state vector propagation. During the STS-71 mission, while the Orbiter was performing attitude control for the mated Orbiter/Mir stack, it was noted that the autopilot was limit cycling at a rate higher than expected from pre-flight simulations. Investigations during the mission resulted in the conjecture that an unmodelled plume impingement force was acting upon the orbiter elevons. The in-flight investigations were not successful in determining the actual magnitude of the impingement, resulting in several sequential post-flight investigations. Efforts performed to better quantify the vernier reaction control system induced plume impingement environment of the Space Shuttle orbiter are described in this paper, and background detailing circumstances which required the more detailed knowledge of the RCS self impingement forces, as well as a description of the resulting investigations and their results is presented. The investigations described in this paper applied microgravity acceleration data from two shuttle borne microgravity experiments, SAMS and OARE, to the solution of this particular problem. This solution, now used by shuttle analysts and mission planners, results in more accurate propellant consumption and attitude limit cycle estimates in preflight analyses, which are critical for pending International Space Station missions.
Monitoring tropical environments with Space Shuttle photography
NASA Technical Reports Server (NTRS)
Helfert, Michael R.; Lulla, Kamlesh P.
1989-01-01
Orbital photography from the Space Shuttle missions (1981-88) and earlier manned spaceflight programs (1962-1975) allows remote sensing time series to be constructed for observations of environmental change in selected portions of the global tropics. Particular topics and regions include deforestation, soil erosion, supersedimentation in streams, lacustrine, and estuarine environments, and desertification in the greater Amazon, tropical Africa and Madagascar, South and Southeast Asia, and the Indo-Pacific archipelagoes.
Natural environment design requirements for the space tug
NASA Technical Reports Server (NTRS)
West, G. S., Jr.
1973-01-01
The natural environment design requirements for the space tug are presented. Since the Space Tug is carried as cargo to orbital altitudes in the space shuttle bay, orbital environmental impacts and short-period atmospheric density variations are the main concerns. The subjects discussed are: (1) natural environment, (2) neutral environment, (3) charged particles, (4) radiation, and (5) meteoroid hazards.
1992-01-22
This is the Space Shuttle Orbiter Discovery, STS-42 mission, with the First International Microgravity Laboratory (IML-1) module shown in the cargo bay. IML-1, the first in a series of Shuttle flights, was dedicated to study the fundamental materials and life sciences in the microgravity environment inside Spacelab, a laboratory carried aloft by the Shuttle. The mission explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. The IML program gave a team of scientists from around the world access to a unique environment, one that is free from most of Earth's gravity. The 14-nation European Space Agency (ESA), the Canadian Space Agency (SCA), the French National Center for Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DARA/DLR), and the National Space Development Agency of Japan (NASDA) participated in developing hardware and experiments for the IML missions. The missions were managed by NASA's Marshall Space Flight Center. The Orbiter Discovery was launched on January 22, 1992 for the IML-1 mission.
1992-01-22
Onboard Space Shuttle Discovery (STS-42) the seven crewmembers pose for a traditional in-space portrait in the shirt-sleeve environment of the International Microgravity Laboratory (IML-1) science module in the Shuttle's cargo bay. Pictured are (clockwise from top),Commander Ronald J. Grabe, payload commander Norman E. Thagard, payload specialist Roberta L. Bondar; mission specialists William F. Readdy and David C. Hilmers; pilot Stephen S. Oswald and payload specialist Ulf Merbold. The rotating chair, used often in biomedical tests on the eight-day flight, is in center frame.
Space shuttle program: Lightning protection criteria document
NASA Technical Reports Server (NTRS)
1975-01-01
The lightning environment for space shuttle design is defined and requirements that the design must satisfy to insure protection of the vehicle system from direct and indirect effects of lightning are imposed. Specifications, criteria, and guidelines included provide a practical and logical approach to protection problems.
NASA Technical Reports Server (NTRS)
1973-01-01
A description is given of the design, development and testing of high temperature dynamic seals for the gaps between the structure and aerodynamic control surfaces on the space shuttle. These aerodynamic seals are required to prevent high temperature airflow from damaging thermally unprotected structures and components during entry. Two seal concepts evolved a curtain seal for the spanwise elevon cove gap, and a labyrinth seal for the area above the elevon, at the gap between the end of the elevon and the fuselage. On the basis of development testing, both seal concepts were shown to be feasible for controlling internal temperatures to 350 F or less when exposed to a typical space shuttle entry environment. The curtain seal concept demonstrated excellent test results and merits strong consideration for application on the space shuttle orbiter. The labyrinth seal concept, although demonstrating significant temperature reduction characteristics, may or may not be required on the Orbiter, depending on the actual design configuration and flight environment.
Microgravity Environment Description Handbook
NASA Technical Reports Server (NTRS)
DeLombard, Richard; McPherson, Kevin; Hrovat, Kenneth; Moskowitz, Milton; Rogers, Melissa J. B.; Reckart, Timothy
1997-01-01
The Microgravity Measurement and Analysis Project (MMAP) at the NASA Lewis Research Center (LeRC) manages the Space Acceleration Measurement System (SAMS) and the Orbital Acceleration Research Experiment (OARE) instruments to measure the microgravity environment on orbiting space laboratories. These laboratories include the Spacelab payloads on the shuttle, the SPACEHAB module on the shuttle, the middeck area of the shuttle, and Russia's Mir space station. Experiments are performed in these laboratories to investigate scientific principles in the near-absence of gravity. The microgravity environment desired for most experiments would have zero acceleration across all frequency bands or a true weightless condition. This is not possible due to the nature of spaceflight where there are numerous factors which introduce accelerations to the environment. This handbook presents an overview of the major microgravity environment disturbances of these laboratories. These disturbances are characterized by their source (where known), their magnitude, frequency and duration, and their effect on the microgravity environment. Each disturbance is characterized on a single page for ease in understanding the effect of a particular disturbance. The handbook also contains a brief description of each laboratory.
A Review of Microgravity Levels on Ten OARE Shuttle Missions
NASA Technical Reports Server (NTRS)
McPherson, Kevin M.
1998-01-01
The Orbital Acceleration Research Experiment (OARE) is an accelerometer package with nano-g sensitivity and on-orbit bias calibration capabilities. The OARE consists of a three axis miniature electrostatic accelerometer (MESA), a full in-flight bias and scale factor calibration station, and an on-board microprocessor for experiment control and data storage. Originally designed to measure and record the aerodynamic acceleration environment of the NASA Space Shuttles during re-entry, the OARE has been used on ten shuttle missions to measure the quasi-steady acceleration environment (<1 Hz) of the Orbiter while in low-Earth orbit. The effects on the quasi-steady acceleration environment from Orbiter systems, Orbiter attitude, Orbiter altitude, and crew activity are well understood as a result of these ten shuttle missions. This knowledge of the quasi-steady acceleration realm has direct application to understanding the quasi-steady acceleration environment expected for the International Space Station (ISS). This paper will summarize the more salient aspects of this quasi-steady acceleration knowledge base.
Fundamental plant biology enabled by the space shuttle.
Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J
2013-01-01
The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.
1974-01-01
An S-band antenna system and a group of off-the-shelf aircraft antenna were exposed to temperatures simulating shuttle orbital cold soak and entry heating. Radiation pattern and impedance measurements before and after exposure to the thermal environments were used to evaluate the electrical performance. The results of the electrical and thermal testing are given. Test data showed minor changes in electrical performance and established the capability of these antenna to withstand both the low temperatures of space flight and the high temperatures of entry.
Heliospheric Physics and NASA's Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2007-01-01
The Vision for Space Exploration outlines NASA's development of a new generation of human-rated launch vehicles to replace the Space Shuttle and an architecture for exploring the Moon and Mars. The system--developed by the Constellation Program--includes a near term (approx. 2014) capability to provide crew and cargo service to the International Space Station after the Shuttle is retired in 2010 and a human return to the Moon no later than 2020. Constellation vehicles and systems will necessarily be required to operate efficiently, safely, and reliably in the space plasma and radiation environments of low Earth orbit, the Earth's magnetosphere, interplanetary space, and on the lunar surface. This presentation will provide an overview of the characteristics of space radiation and plasma environments relevant to lunar programs including the trans-lunar injection and trans-Earth injection trajectories through the Earth's radiation belts, solar wind surface dose and plasma wake charging environments in near lunar space, energetic solar particle events, and galactic cosmic rays and discusses the design and operational environments being developed for lunar program requirements to assure that systems operate successfully in the space environment.
STS-4 test mission simulates operational flight: President terms success golden spike in space
NASA Technical Reports Server (NTRS)
1982-01-01
The fourth Space Shuttle flight is summarized. STS certification as operational, applications experiments, experiments involving crew, the first Getaway Special, a lightning survey. Shuttle environment measurement, prelaunch rain and hail, loss of solid rocket boosters, and modification of the thermal test program are reviewed.
Shuttle Contamination And Experimentation: DoD Implications
NASA Astrophysics Data System (ADS)
Barnhart, B. J.; Baker, J. C.
1981-07-01
As the DOD makes the transition into the Shuttle era, experimenters are becoming more concerned about the environmental contamination of the Shuttle Orbiter. Their concern is that Shuttle contamination could prevent major planned experiments from obtaining required data, particularly sensitive infrared systems (e.g., Talon Gold, SIRE, STMP). The performance of optical experiments could be limited by the natural background, by light scattering and emissions from particulates and molecules, and by molecular absorption. Deposition and optical surface degradation may prove to be extensive problems, particularly for cryogenic optics. Other experiments such as communications and space environment tests may also be affected by deposition as well as electromagnetic interference. It has been known that the Shuttle's environment could cause contamination problems during water dumps, thruster firings, paint outgassing and other sources. Predictions have been made, but the contamination species and extent of these problems will not be known definitely until space measurements are made. This paper identifies the contamination types, sources, and their possible effect on particular types of space experiments. The paper also discusses NASA's plans for contamination measurements and the Space Test experiments which could contribute to early resolution of the contamination questions.
Shuttle Contamination And Experimentation: DoD Implications
NASA Astrophysics Data System (ADS)
Barnhart, B. J.; Baker, J. C.
1982-02-01
As the DOD makes the transition into the Shuttle era, experimenters are becoming more concerned about the environmental contamination of the Shuttle Orbiter. Their concern is that Shuttle contamination could prevent major planned experiments from obtaining required data, particularly sensitive infrared systems (e.g., Talon Gold, SIRE, STMP). The performance of optical experiments could be limited by the natural background, by light scattering and emissions from particulates and molecules, and by molecular absorption. Deposition and optical surface degradation may prove to be extensive problems, particularly for cryogenic optics. Other experiments such as communications and space environment tests may also be affected by deposition as well as electromagnetic interference. It has been known that the Shuttle's environment could cause contamination problems during water dumps, thruster firings, paint outgassing and other sources. Predictions have been made, but the contamination species and extent of these problems will not be known definitely until space measurements are made. This paper identifies the contamination types, sources, and their possible effect on particular types of space experiments. The paper also discusses NASA's plans for contamination measurements and the Space Test experiments which could contribute to early resolution of the contamination questions.
Experimental evaluation of joint designs for a space-shuttle orbiter ablative leading edge
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Kabana, W. P.
1975-01-01
The thermal performance of two types of ablative leading-edge joints for a space-shuttle orbiter were tested and evaluated. Chordwise joints between ablative leading-edge segments, and spanwise joints between ablative leading-edge segments and reusable surface insulation tiles were exposed to simulated shuttle heating environments. The data show that the thermal performance of models with chordwise joints to be as good as jointless models in simulated ascent-heating and orbital cold-soak environments. The suggestion is made for additional work on the joint seals, and, in particular, on the effects of heat-induced seal-material surface irregularities on the local flow.
Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.
safety tested, and flew hardware we call the Microencapsulation in Space (MIS) experiment. The MIS experiment flew on Space Shuttle Discovery...of the same composition. From our experience, these improved properties should improve the release properties of microencapsulated drugs and...eliminate unwanted residual process aids. Furthermore, it is likely that microencapsulation in space will let us encapsulate drugs that cannot be microencapsulated on the earth
Impact of shuttle environment on prelaunch handling of nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Green, R. S.
1986-01-01
Deployment of the American Satellite Company 1 spacecraft for the Space Shuttle Discovery in August 1985 set a new milestone in nickel-hydrogen battery technology. This communications satellite is equipped with two 35 Ah nickel-hydrogen batteries and it is the first such satellite launched into orbit via the Space Shuttle. The prelaunch activities, combined with the environmental constraints onboard the Shuttle, led to the development of a new battery handling procedure. An outline of the prelaunch activities, with particular attention to battery charging, is presented.
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media and the crew of space shuttle Endeavour's STS-134 mission gather on the Shuttle Landing Facility runway to check out the Alpha Magnetic Spectrometer, or AMS, which arrived aboard an Air Force C-5M aircraft from Europe. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation
NASA Technical Reports Server (NTRS)
Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip
2006-01-01
This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.
SSME - Materials and Methods for Addressing High-Pressure Hydrogen Embrittlement
NASA Technical Reports Server (NTRS)
Matejczk, Daniel; Russell, Dale; Frandsen, Jon; Swanson, Greg
2010-01-01
From the humid, corrosion-friendly atmosphere of KSC, to the extreme heat of ascent, to the cold vacuum of space, the Space Shuttle faced one hostile environment after another. One of those harsh environments the hydrogen environment existed within the shuttle itself. Liquid hydrogen was the fuel that powered the shuttle s complex, powerful, and reusable main engine. Hydrogen provided the high specific impulse the bang per pound of fuel needed to perform the shuttle s heavy lifting duties. Hydrogen, however, was also a potential threat to the very metal of the propulsion system that used it. The diffusion of hydrogen atoms into a metal can make it more brittle and prone to cracking a process called hydrogen embrittlement. This effect can reduce the toughness of carefully selected and prepared materials. A concern that exposure to hydrogen might encourage crack growth was present from the beginning of the Space Shuttle Program, but the rationale for using hydrogen was compelling. This paper outlines the material characterization, anomaly resolution, and path to understanding of hydrogen embrittlement on superalloys through the course of the SSME program. Specific examples of nickel alloy turbine housings and single crystal turbine blades are addressed. The evolution of fracture mechanics analytical methods is also addressed.
Shift changes, updates, and the on-call architecture in space shuttle mission control.
Patterson, E S; Woods, D D
2001-01-01
In domains such as nuclear power, industrial process control, and space shuttle mission control, there is increased interest in reducing personnel during nominal operations. An essential element in maintaining safe operations in high risk environments with this 'on-call' organizational architecture is to understand how to bring called-in practitioners up to speed quickly during escalating situations. Targeted field observations were conducted to investigate what it means to update a supervisory controller on the status of a continuous, anomaly-driven process in a complex, distributed environment. Sixteen shift changes, or handovers, at the NASA Johnson Space Center were observed during the STS-76 Space Shuttle mission. The findings from this observational study highlight the importance of prior knowledge in the updates and demonstrate how missing updates can leave flight controllers vulnerable to being unprepared. Implications for mitigating risk in the transition to 'on-call' architectures are discussed.
Shift changes, updates, and the on-call architecture in space shuttle mission control
NASA Technical Reports Server (NTRS)
Patterson, E. S.; Woods, D. D.
2001-01-01
In domains such as nuclear power, industrial process control, and space shuttle mission control, there is increased interest in reducing personnel during nominal operations. An essential element in maintaining safe operations in high risk environments with this 'on-call' organizational architecture is to understand how to bring called-in practitioners up to speed quickly during escalating situations. Targeted field observations were conducted to investigate what it means to update a supervisory controller on the status of a continuous, anomaly-driven process in a complex, distributed environment. Sixteen shift changes, or handovers, at the NASA Johnson Space Center were observed during the STS-76 Space Shuttle mission. The findings from this observational study highlight the importance of prior knowledge in the updates and demonstrate how missing updates can leave flight controllers vulnerable to being unprepared. Implications for mitigating risk in the transition to 'on-call' architectures are discussed.
Project Shuttle simulation math model coordination catalog, revision 1
NASA Technical Reports Server (NTRS)
1974-01-01
A catalog is presented of subsystem and environment math models used or planned for space shuttle simulations. The purpose is to facilitate sharing of similar math models between shuttle simulations. It provides information on mach model requirements, formulations, schedules, and contact persons for further information.
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, space shuttle Endeavour's STS-134 crew is on hand for the arrival of the Alpha Magnetic Spectrometer, or AMS. From left to right are Mission Specialists Greg Chamitoff, Andrew Feustel, European Space Agency astronaut Roberto Vittori, Mission Specialist Michael Fincke and Pilot Gregory H. Johnson. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1982-01-01
The fourth space shuttle flight is summarized. An onboard electrophoresis experiment is reviewed. Crew physiology, the first getaway special, a lightning survey, shuttle environment measurement, prelaunch weather conditions, loss of solid rocket boosters, modification of thermal test program, and other events are also reviewed.
Space Shuttle processing - A case study in artificial intelligence
NASA Technical Reports Server (NTRS)
Mollikarimi, Cindy; Gargan, Robert; Zweben, Monte
1991-01-01
A scheduling system incorporating AI is described and applied to the automated processing of the Space Shuttle. The unique problem of addressing the temporal, resource, and orbiter-configuration requirements of shuttle processing is described with comparisons to traditional project management for manufacturing processes. The present scheduling system is developed to handle the late inputs and complex programs that characterize shuttle processing by incorporating fixed preemptive scheduling, constraint-based simulated annealing, and the characteristics of an 'anytime' algorithm. The Space-Shuttle processing environment is modeled with 500 activities broken down into 4000 subtasks and with 1600 temporal constraints, 8000 resource constraints, and 3900 state requirements. The algorithm is shown to scale to very large problems and maintain anytime characteristics suggesting that an automated scheduling process is achievable and potentially cost-effective.
STS operations planning - Current status and outlook for the future
NASA Technical Reports Server (NTRS)
Lee, C. M.
1981-01-01
Consideration is given to the status of Space Shuttle operations planning and outlook for the period 1982-94, with some speculations on Shuttle-related space operations early in the next century. Attention is given to the evolution of Shuttle payload capabilities over the next five years. The following list of near-earth environment factors to be exploited by the Space Shuttle is given: (1) easy control of gravity; (2) absence of atmosphere; (3) a comprehensive view of the earth's surface and atmosphere; (4) isolation of hazardous processes from earth biosphere; (5) freely available light, heat and photovoltaic power; (6) an infinite natural reservoir for the disposal of radioactive waste products; and (7) a super-cold heat sink.
Unsupervised classification of Space Acceleration Measurement System (SAMS) data using ART2-A
NASA Technical Reports Server (NTRS)
Smith, A. D.; Sinha, A.
1999-01-01
The Space Acceleration Measurement System (SAMS) has been developed by NASA to monitor the microgravity acceleration environment aboard the space shuttle. The amount of data collected by a SAMS unit during a shuttle mission is in the several gigabytes range. Adaptive Resonance Theory 2-A (ART2-A), an unsupervised neural network, has been used to cluster these data and to develop cause and effect relationships among disturbances and the acceleration environment. Using input patterns formed on the basis of power spectral densities (psd), data collected from two missions, STS-050 and STS-057, have been clustered.
A radiant heating test facility for space shuttle orbiter thermal protection system certification
NASA Technical Reports Server (NTRS)
Sherborne, W. D.; Milhoan, J. D.
1980-01-01
A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.
NASA Technical Reports Server (NTRS)
Rabelo, Lisa; Sepulveda, Jose; Moraga, Reinaldo; Compton, Jeppie; Turner, Robert
2005-01-01
This article describes a decision-making system composed of a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this distributed simulation environment represent the different systems that must collaborate to establish the Expectation of Casualties (E(sub c)) caused by a failed Space Shuttle launch and subsequent explosion (accidental or instructed) of the spacecraft shortly after liftoff. This decision-making tool employs Space Shuttle reliability models, trajectory models, a blast model, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system. Since one of the important features of this proposed simulation environment is to measure blast, toxic, and debris effects, the clear benefits is that it can help safety managers not only estimate the population at risk, but also to help plan evacuations, make sheltering decisions, establish the resources required to provide aid and comfort, and mitigate damages in case of a disaster.
Evaluation philosophy for shuttle launched payloads
NASA Technical Reports Server (NTRS)
Heuser, R. E.
1975-01-01
Some approaches to space-shuttle payload evaluation are examined. Issues considered include subsystem replacement in low-cost modular spacecraft (LCMS), validation of spacelab payloads, the use of standard components in shuttle-era spacecraft, effects of shuttle-induced environments on payloads, and crew safety. The LCMS is described, and goals are discussed for its evaluation program. Concepts regarding how the evaluation should proceed are considered.
The space shuttle payload planning working groups. Volume 2: Atmospheric and space physics
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of the Atmospheric and Space Physics working group of the space shuttle mission planning activity are presented. The principal objectives defined by the group are: (1) to investigate the detailed mechanisms which control the near-space environment of the earth, (2) to perform plasma physics investigations not feasible in ground-based laboratories, and (3) to conduct investigations which are important in understanding planetary and cometary phenomena. The core instrumentation and laboratory configurations for conducting the investigations are defined.
NASA Technical Reports Server (NTRS)
Azbell, Jim A.
2011-01-01
In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.
2006-09-26
KENNEDY SPACE CENTER, FLA. - A ribbon-cutting at NASA's Kennedy Space Center officially reactivated the Operations and Checkout Building's west door as entry to the crew exploration vehicle (CEV) environment. At the podium is Center Director Jim Kennedy, who is discussing KSC's transition from shuttle to CEV in the rest of the decade. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle
NASA Technical Reports Server (NTRS)
1971-01-01
The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.
1989-01-01
Since the United States of America is moving into an age of reusable space vehicles, both electronic and photographic materials will continue to be an integral part of the recording techniques available. Film as a scientifically viable recording technique in astronomy is well documented. There is a real need to expose various types of films to the Shuttle environment. Thus, the main objective was to look at the subtle densitometric changes of canisters of IIaO film that was placed aboard the Space Shuttle 3 (STS-3).
1992-10-22
This is a Space Shuttle Columbia (STS-52) onboard photograph of the United States Microgravity Payload-1 (USMP-1) in the cargo bay. The USMP program is a series of missions developed by NASA to provide scientists with the opportunity to conduct research in the unique microgravity environment of the Space Shuttle's payload bay. The USMP-1 mission was designed for microgravity experiments that do not require the hands-on environment of the Spacelab. Science teams on the ground would remotely command and monitor instruments and analyze data from work stations at NASA's Spacelab Mission Operation Control facility at the Marshall Space Flight Center (MSFC). The USMP-1 payload carried three investigations: two studied basic fluid and metallurgical processes in microgravity, and the third would characterize the microgravity environment onboard the Space Shuttle. The three experiments that made up USMP-1 were the Lambda Point Experiment, the Space Acceleration Measurement System, and the Materials for the Study of Interesting Phenomena of Solidification Earth and in Orbit (MEPHISTO). The three experiments were mounted on two cornected Mission Peculiar Equipment Support Structures (MPESS) mounted in the orbiter's cargo bay. The USMP program was managed by the MSFC and the MPESS was developed by the MSFC.
1984-04-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
Predicting Boundary-Layer Transition on Space-Shuttle Re-Entry
NASA Technical Reports Server (NTRS)
Berry, Scott; Horvath, Tom; Merski, Ron; Liechty, Derek; Greene, Frank; Bibb, Karen; Buck, Greg; Hamilton, Harris; Weilmuenster, Jim; Campbell, Chuck;
2008-01-01
The BLT Prediction Tool ("BLT" signifies "Boundary Layer Transition") is provided as part of the Damage Assessment Team analysis package, which is utilized for analyzing local aerothermodynamics environments of damaged or repaired space-shuttle thermal protection tiles. Such analyses are helpful in deciding whether to repair launch-induced damage before re-entering the terrestrial atmosphere.
Crewmember activity in the shuttle middeck and flight deck
1997-06-20
STS084-356-017 (15-24 May 1997) --- Prior to the Space Shuttle Atlantis' docking with Russia's Mir Space Station, astronaut C. Michael Foale was photographed on the middeck going over checklists. Before the mission was complete, Foale had traded in his current attire for that of his scheduled environs for the next several months onboard Mir.
2008-11-19
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the mast deployment on the SEDA-AP or Space Environment Data Acquisition equipment--Attached Payload. SEDA-AP will measure space environment in ISS orbit and environmental effects on materials and electronic devices to investigate the interaction with and from the environment at the Kibo exposed facility. The payload will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15. Photo credit: NASA/Cory Huston
2008-11-19
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers deploy the mast on the SEDA-AP or Space Environment Data Acquisition equipment--Attached Payload. SEDA-AP will measure space environment in ISS orbit and environmental effects on materials and electronic devices to investigate the interaction with and from the environment at the Kibo exposed facility. The payload will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15. Photo credit: NASA/Cory Huston
2008-11-19
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the mast deployment on the SEDA-AP or Space Environment Data Acquisition equipment--Attached Payload. SEDA-AP will measure space environment in ISS orbit and environmental effects on materials and electronic devices to investigate the interaction with and from the environment at the Kibo exposed facility. The payload will be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15. Photo credit: NASA/Cory Huston
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, space shuttle Endeavour's STS-134 crew members pause for a photo prior to the arrival of the Alpha Magnetic Spectrometer, or AMS. From left to right are Commander Mark Kelly, Mission Specialists Greg Chamitoff, Andrew Feustel European Space Agency astronaut Roberto Vittori, Mission Specialist Michael Fincke and Pilot Gregory H. Johnson. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
Report of the Space Shuttle Management Independent Review Team
NASA Technical Reports Server (NTRS)
1995-01-01
At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.
Report of the Space Shuttle Management Independent Review Team
NASA Astrophysics Data System (ADS)
1995-02-01
At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.
STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research
NASA Technical Reports Server (NTRS)
2002-01-01
Space shuttle mission STS-107, the 28th flight of the space shuttle Columbia and the 113th shuttle mission to date, will give more than 70 international scientists access to both the microgravity environment of space and a set of seven human researchers for 16 uninterrupted days. Columbia's 16-day mission is dedicated to a mixed complement of competitively selected and commercially sponsored research in the space, life and physical sciences. An international crew of seven, including the first Israeli astronaut, will work 24 hours a day in two alternating shifts to carry out experiments in the areas of astronaut health and safety; advanced technology development; and Earth and space sciences. When Columbia is launched from Kennedy Space Center's Launch Pad 39A it will carry a SPACEHAB Research Double Module (RDM) in its payload bay. The RDM is a pressurized environment that is accessible to the crew while in orbit via a tunnel from the shuttle's middeck. Together, the RDM and the middeck will accommodate the majority of the mission's payloads/experiments. STS-107 marks the first flight of the RDM, though SPACEHAB Modules and Cargo Carriers have flown on 17 previous space shuttle missions. Astronaut Rick Husband (Colonel, USAF) will command STS-107 and will be joined on Columbia's flight deck by pilot William 'Willie' McCool (Commander, USN). Columbia will be crewed by Mission Specialist 2 (Flight Engineer) Kalpana Chawla (Ph.D.), Mission Specialist 3 (Payload Commander) Michael Anderson (Lieutenant Colonel, USAF), Mission Specialist 1 David Brown (Captain, USN), Mission Specialist 4 Laurel Clark (Commander, USN) and Payload Specialist 1 Ilan Ramon (Colonel, Israeli Air Force), the first Israeli astronaut. STS-107 marks Husband's second flight into space - he served as pilot during STS-96, a 10-day mission that saw the first shuttle docking with the International Space Station. Husband served as Chief of Safety for the Astronaut Office until his selection to command the STS-107 crew. Anderson and Chawla will also be making their second spaceflights. Anderson first flew on STS-89 in January 1998 (the eighth Shuttle-Mir docking mission) while Chawla flew on STS-87 in November 1997 (the fourth U.S. Microgravity Payload flight). McCool, Brown, Clark and Ramon will be making their first flights into space.
Legacy of the Space Shuttle from an Aerodynamic and Aerothermodynamic Perspective
NASA Technical Reports Server (NTRS)
Martin, Fred W.
2011-01-01
The development of the Space Shuttle Orbiter thermal protection system heating environment is described from a design stand point that began in the early 1970s. The desire for a light weight, reusable heat shield required the development of new technology, relative to previous manned spacecraft, and a systems approach to the design of the vehicle, entry guidance, and thermal protection system. Several unanticipated issues had to be resolved in both the entry and ascent phases of flight, which are discussed at a high level. During the life of the Program, significant improvements in computing power and numerical methods have been applied to Space Shuttle aerodynamic and aerothermodynamic issues, with the Shuttle Program often being the motivation, and or sponsor of the analysis development.
Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection
NASA Technical Reports Server (NTRS)
Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.
2009-01-01
The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.
Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program
NASA Technical Reports Server (NTRS)
Winter, D. L.
1975-01-01
Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.
Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle
NASA Technical Reports Server (NTRS)
Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.
1999-01-01
Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.
Space Shuttle and Launch Pad Lift-Off Debris Transport Analysis: SRB Plume-Driven
NASA Technical Reports Server (NTRS)
West, Jeff; Strutzenberg, Louis; Dougherty, Sam; Radke, Jerry; Liever, Peter
2007-01-01
This paper discusses the Space Shuttle Lift-Off model developed for potential Lift-Off Debris transport. A critical Lift-Off portion of the flight is defined from approximately 1.5 sec after SRB Ignition up to 'Tower Clear', where exhaust plume interactions with the Launch Pad occur. A CFD model containing the Space Shuttle and Launch Pad geometry has been constructed and executed. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the effects of the Space Shuttle plumes, the wind environment, their interactions with the Launch Pad, and their ultimate effect on potential debris during Lift-Off. Emphasis in this paper is on potential debris that might be caught by the SRB plumes.
NASA Technical Reports Server (NTRS)
Crouch, R. K.; Fripp, A. L.; Debnam, W. J.; Clark, I. O.
1981-01-01
Crystals of the intermetallic compound Pb1-xSnxTe will be grown in furnaces on the Space Shuttle. The reasons for conducting this growth in space, the program of investigation to develop the space experiment and the requirements that are placed on the Space Shuttle furnace are discussed. Also included are relevent thermophysical properties of Pb1-xSnxTe to the degree which they are known.
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Bullock, T.; Holland, W. B.; Kross, D. A.; Kiefling, L. A.
1981-01-01
The achievement of an optimized design from the system standpoint under the low cost, high risk constraints of the present day environment was analyzed. Space Shuttle illustrates the requirement for an analysis approach that considers all major disciplines (coupling between structures control, propulsion, thermal, aeroelastic, and performance), simultaneously. The Space Shuttle and certain payloads, Space Telescope and Spacelab, are examined. The requirements for system analysis approaches and criteria, including dynamic modeling requirements, test requirements, control requirements, and the resulting design verification approaches are illustrated. A survey of the problem, potential approaches available as solutions, implications for future systems, and projected technology development areas are addressed.
Characterization of heat transfer in nutrient materials. [space flight feeding
NASA Technical Reports Server (NTRS)
Witte, L. C.
1985-01-01
The processing and storage of foodstuffs in zero-g environments such as in Skylab and the space shuttle were investigated. Particular attention was given to the efficient heating of foodstuffs. The thermophysical properties of various foods were cataloged and critiqued. The low temperature storage of biological samples as well as foodstuffs during shuttle flights was studied. Research and development requirements related to food preparation and storage on the space station are discussed.
NASA Technical Reports Server (NTRS)
Vroman, G. A.
1975-01-01
The capability of shallow-notched, round-bar, tensile specimens for screening critical environments as they affect the material fracture properties of the space shuttle main engine was tested and analyzed. Specimens containing a 0.050-inch-deep circumferential sharp notch were cyclically loaded in a 5000-psi hydrogen environment at temperatures of +70 and -15 F. Replication of test results and a marked change in cyclic life because of temperature variation demonstrated the validity of the specimen type to be utilized for screening tests.
Thin film heat flux sensor for Space Shuttle Main Engine turbine environment
NASA Technical Reports Server (NTRS)
Will, Herbert
1991-01-01
The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.
NASA Technical Reports Server (NTRS)
Daniels, Vernie; Du, Jianping; Crady, Camille; Satterfield, Rick; Putcha, Lakshmi
2007-01-01
The purpose is to assess physical and chemical degradation of select pharmaceutical formulations from the Shuttle and ISS medical kits. Eleven pharmaceuticals dispensed as different dosage forms were selected based on their physical / chemical characteristics and susceptibility to environmental factors such as, temperature, humidity and light sensitivity. When available, ground-controls of the study medications with matching brand and lot numbers were used for comparison. Samples retrieved from flight were stored along with their matching controls in a temperature and humidity controlled environmental chamber. Temperature, humidity, and radiation data from the Shuttle and ISS were retrieved from onboard HOBO U12 Temp/RH Data Loggers, and from passive dosimeters. Physical and chemical analyses of the pharmaceuticals were conducted using validated United States Pharmacopeia (USP) methods. Results indicated degradation of 6 of the 11 formulations returned from space flights. Four formulations, Amoxicillin / Clavulanate, promethazine, sulfamethoxazole / trimethoprim, and ciprofloxacin tablets depicted discoloration after flight. Chemical content analyses using High or Ultra Performance Liquid Chromatography (HPLC / UPLC) methods revealed that dosage forms of Amoxicillin / Clavulanate, promethazine, sulfamethoxazole / trimethoprim, lidocaine, ciprofloxacin and mupirocin contained less than 95% of manufacturer s labeled claim of active drug compound. Shuttle and ISS environments affect stability and shelf life of certain mediations flown on these missions. Data analysis is in progress to examine the effect of specific space flight environmental factors on pharmaceutical stability. The degradation profiles generated from ground studies in analog environments will be useful in establishing predictive shelf-life profiles for medications intended for use during long-term space exploration missions.
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, arrives on the Shuttle Landing Facility runway aboard an Air Force C-5M aircraft from Europe. The state-of-the-art particle physics detector is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, arrives on the Shuttle Landing Facility runway aboard an Air Force C-5M aircraft from Europe. The state-of-the-art particle physics detector is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Goldstein, H. W.; Grenda, R. N.
1977-01-01
The sensors were examined for adaptability to shuttle by reviewing pertinent information regarding sensor characteristics as they related to the shuttle and Multimission Modular Spacecraft environments. This included physical and electrical characteristics, data output and command requirements, attitude and orientation requirements, thermal and safety requirements, and adaptability and modification for space. The sensor requirements and characteristics were compared with the corresponding shuttle and Multimission Modular Spacecraft characteristics and capabilities. On this basis the adaptability and necessary modifications for each sensor were determined. A number of the sensors were examined in more detail and estimated cost for the modifications was provided.
NASA Technical Reports Server (NTRS)
Kreplin, R. W.; Dohne, B.; Feldman, U.; Neupert, W. M.
1984-01-01
An account is given of a Get-Away-Special experiment flown on Space Shuttles 7 and 8 investigating the effect of the space environment on Shumann emulsions. Shumann emulsions, having low gelatin content and no protective gelatin overcoating, are useful detectors of ultraviolet radiation shorter than 2200 angstroms but are extremely sensitive to environmental conditions and handling. The instrument required no interface with the Shuttle. It was turned on by an aneroid switch at an altitude of 50,000 feet. After that, its operation was controlled completely by a CMOS digital controller. Each hour, two temperatures and one voltage were read and stored in a CMOS programmable read only memory. At intervals, valves were opened and closed to expose SO 652 film strips of three sensitivities to the cargo bay environment for various time periods. The design and operation of the instrument package is described.
NASA Technical Reports Server (NTRS)
Orta, D.; Mudgett, P. D.; Ding, L.; Drybread, M.; Schultz, J. R.; Sauer, R. L.
1998-01-01
Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.
NASA Technical Reports Server (NTRS)
1989-01-01
The capability of the Space Transportation System (STS), the Space Shuttle, to support crew tended and free flyer research in low Earth orbit has opened new possibilities for science in space. For the first time, research equipment can be put into orbit routinely, operated in either a shirtsleeve environment or exposed to space, and then returned to the investigator. NASA, operator of the Shuttle, has implemented a variety of programs to ensure that anyone with a worthy research idea can take advantage of this opportunity. Investigators ranging from high school students to renowned space scientists have already used the Shuttle as a platform for making Earth, atmospheric, and astronomical observations; for performing space plasma physics measurements; and for exploring the effects of microgravity on living organisms and physical processes. For investigators considering a flight experiment for the first time, this guide explains what the Shuttle has to offer, how to arrange to fly an experiment, and what to expect once preparations for the flight are under way.
Continual Improvement in Shuttle Logistics
NASA Technical Reports Server (NTRS)
Flowers, Jean; Schafer, Loraine
1995-01-01
It has been said that Continual Improvement (CI) is difficult to apply to service oriented functions, especially in a government agency such as NASA. However, a constrained budget and increasing requirements are a way of life at NASA Kennedy Space Center (KSC), making it a natural environment for the application of CI tools and techniques. This paper describes how KSC, and specifically the Space Shuttle Logistics Project, a key contributor to KSC's mission, has embraced the CI management approach as a means of achieving its strategic goals and objectives. An overview of how the KSC Space Shuttle Logistics Project has structured its CI effort and examples of some of the initiatives are provided.
Modeling of GCR Environment Variations and Interpretation for Human Explorations
NASA Astrophysics Data System (ADS)
Saganti, Premkumar
We currently have wealth of data with several short duration Space Shuttle (STS) flights to the low earth orbit (LEO) and long duration International Space Station (ISS) expeditions as well as Shuttle-Mir missions over the past few solar cycles. Assessment of such radiation risk is very important particularly for the anticipated long-term and deep-space human explorations. Recently, we have developed a database of first 500 + human explorers and their space travel logs from space exploration missions during the past four decades. Many have traveled into space for only few days while others have been in space for several months. We present the time-line distribution of the space travelers log along with the time correlated radiation en-vironment changes in to aid in the radiation risk assessment for human explorations. These model calculated results and assessment of radiation exposure helps in our understanding of radiation risk and biological consequences.
Using the Shuttle In Situ Window and Radiator Data for Meteoroid Measurements
NASA Technical Reports Server (NTRS)
Matney, Mark
2015-01-01
Every time NASA's Space Shuttle flew in orbit, it was exposed to the natural meteoroid and artificial debris environment. NASA Johnson Space Center maintains a database of impact cratering data of 60 Shuttle missions flown since the mid-1990's that were inspected after flight. These represent a total net exposure time to the space environment of 2 years. Impact damage was recorded on the windows and radiators, and in many cases information on the impactor material was determined by later analysis of the crater residue. This information was used to segregate damage caused by natural meteoroids and artificial space debris. The windows represent a total area of 3.565 sq m, and were capable of resolving craters down to about 10 micrometers in size. The radiators represent a total area of 119.26 sq m, and saw damage from objects up to approximately 1 mm in diameter. These data were used extensively in the development of NASA's ORDEM 3.0 Orbital Debris Environment Model, and gives a continuous picture of the orbital debris environment in material type and size ranging from about 10 micrometers to 1 mm. However, the meteoroid data from the Shuttles have never been fully analyzed. For the orbital debris work, special "as flown" files were created that tracked the pointing of the surface elements and their shadowing by structure (such as the ISS during docking). Unfortunately, such files for the meteoroid environment have not yet been created. This talk will introduce these unique impact data and describe how they were used for orbital debris measurements. We will then discuss some simple first-order analyses of the meteoroid data, and point the way for future analyses.
Satoh, Kazuo; Yamazaki, Takashi; Nakayama, Takako; Umeda, Yoshiko; Alshahni, Mohamed Mahdi; Makimura, Miho; Makimura, Koichi
2016-05-01
As a part of a series of studies regarding the microbial biota in manned space environments, fungi were isolated from six pieces of equipment recovered from the Japanese Experimental Module "KIBO" of the International Space Station and from a space shuttle. Thirty-seven strains of fungi were isolated, identified and investigated with regard to morphological phenotypes and antifungal susceptibilities. The variety of fungi isolated in this study was similar to that of several previous reports. The dominant species belonged to the genera Penicillium, Aspergillus and Cladosporium, which are potential causative agents of allergy and opportunistic infections. The morphological phenotypes and antifungal susceptibilities of the strains isolated from space environments were not significantly different from those of reference strains on Earth. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
2006-09-19
S115-E-07273 (9-21 Sept. 2006) --- Astronaut Heidemarie M. Stefanyshyn-Piper, STS-115 mission specialist, works with the Yeast-Group Activation Packs (Yeast-GAP) on the middeck of Space Shuttle Atlantis. Yeast-GAP experiment studies the effects of genetic changes of yeast cells exposed to the space environment. The results will help scientists to understand how cells respond to radiation and microgravity.
2006-09-19
S115-E-07274 (9-21 Sept. 2006) --- Astronaut Heidemarie M. Stefanyshyn-Piper, STS-115 mission specialist, works with the Yeast-Group Activation Packs (Yeast-GAP) on the middeck of Space Shuttle Atlantis. Yeast-GAP experiment studies the effects of genetic changes of yeast cells exposed to the space environment. The results will help scientists to understand how cells respond to radiation and microgravity.
2010-08-26
CAPE CANAVERAL, Fla. -- Prior to the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, European Space Agency Director of Human Spaceflight, Simonetta Di Pippo addresses the media. AMS,a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- Before the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, European Space Agency Director of Human Spaceflight, Simonetta Di Pippo addresses the media. AMS,a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
Assessment of Atmospheric Winds Aloft during NASA Space Shuttle Program Day-of-Launch Operations
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Leach, Richard
2005-01-01
The Natural Environments Branch at the National Aeronautics and Space Administration s Marshall Space Flight Center monitors the winds aloft at Kennedy Space Center in support of the Space Shuttle Program day of launch operations. High resolution wind profiles are derived from radar tracked Jimsphere balloons, which are launched at predetermined times preceding the launch, for evaluation. The spatial (shear) and temporal (persistence) wind characteristics are assessed against a design wind database to ensure wind change does not violate wind change criteria. Evaluations of wind profies are reported to personnel at Johnson Space Center.
Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments
NASA Technical Reports Server (NTRS)
DeBell, L.; Paulsen, A.; Spooner, B.
1992-01-01
Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.
STS-2, -3, -4 Induced Environment Contamination Monitor (ICEM)
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor)
1983-01-01
The second, third, and fourth space transportation system missions are described including the location of the IECM in the payload bay and the shuttle coordinate systems used. Measurement results from the three flights are given for each instrument with comparisons to original goals for preflight environment and induced environment contamination. These results include very low levels of molecular mass accumulation rates, absence of molecular films on optical samples, outgassing species above 50 amu undetectable generally low levels of on-orbit particulates, and decay rates for early mission water dump particulates. Results of exposure of several optical materials and coatings to atomic oxygen are also presented. From these results, it is concluded that the space shuttle met the established induced environment contamination goals.
Atmospheric environment for Space Shuttle (STS-5) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1983-01-01
This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-5 launch time on November 11, 1982, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in he SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-5 vehicle ascent and SRB descent have been constructed. The STS-5 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.
NASA Technical Reports Server (NTRS)
Bungo, M. W.; Johnson, P. C., Jr.
1983-01-01
During the first four flights of the Space Shuttle, cardiovascular data were obtained on each crewmember as part of the operational medicine requirements for crew health and safety. From monitoring blood pressure and electrocardiographic data, it was possible to estimate the degree of deconditioning imposed by exposure to the microgravity environment. For this purpose, a quantitative cardiovascular index of deconditioning (CID) was derived to aid the clinician in his assessment. Isotonic saline was then investigated as a countermeasure against orthostatic intolerance and found to be effective in partially reversing the hemodynamic consequences. It was observed that the space flight environment of reentry might potentially be arrhythmogenic in at least one individual.
1997-01-14
The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.
1984-04-07
This is an onboard photo of the deployment of the Long Duration Exposure Facility (LDEF) from the cargo bay of the Space Shuttle Orbiter Challenger STS-41C mission, April 7, 1984. After a five year stay in space, the LDEF was retrieved during the STS-32 mission by the Space Shuttle Orbiter Columbia in January 1990 and was returned to Earth for close examination and analysis. The LDEF was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids, space debris, radiation particles, atomic oxygen, and solar radiation for an extended period of time. Proving invaluable to the development of both future spacecraft and the International Space Station (ISS), the LDEF carried 57 science and technology experiments, the work of more than 200 investigators, 33 private companies, 21 universities, 7 NASA centers, 9 Department of Defense laboratories, and 8 forein countries.
Space station contamination modeling
NASA Technical Reports Server (NTRS)
Gordon, T. D.
1989-01-01
Current plans for the operation of Space Station Freedom allow the orbit to decay to approximately an altitude of 200 km before reboosting to approximately 450 km. The Space Station will encounter dramatically increasing ambient and induced environmental effects as the orbit decays. Unfortunately, Shuttle docking, which has been of concern as a high contamination period, will likely occur during the time when the station is in the lowest orbit. The combination of ambient and induced environments along with the presence of the docked Shuttle could cause very severe contamination conditions at the lower orbital altitudes prior to Space Station reboost. The purpose here is to determine the effects on the induced external environment of Space Station Freedom with regard to the proposed changes in altitude. The change in the induced environment will be manifest in several parameters. The ambient density buildup in front of ram facing surfaces will change. The source of such contaminants can be outgassing/offgassing surfaces, leakage from the pressurized modules or experiments, purposeful venting, and thruster firings. The third induced environment parameter with altitude dependence is the glow. In order to determine the altitude dependence of the induced environment parameters, researchers used the integrated Spacecraft Environment Model (ISEM) which was developed for Marshall Space Flight Center. The analysis required numerous ISEM runs. The assumptions and limitations for the ISEM runs are described.
2011-03-10
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, media check out the Alpha Magnetic Spectrometer-2 (AMS). AMS is a particle physics detector, designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson
2010-08-26
CAPE CANAVERAL, Fla. -- Prior to the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, Prof. S.C. Lee, AMS Taiwanese Coordinator, speaks to the media. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, Prof. Jean Pierre Vialle, AMS French Coordinator, addresses the media before the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2011-03-10
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, media check out the Alpha Magnetic Spectrometer-2 (AMS). AMS is a particle physics detector, designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson
2011-03-10
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, processing continues for the Alpha Magnetic Spectrometer-2 (AMS). AMS is a particle physics detector, designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson
2010-08-26
CAPE CANAVERAL, Fla. -- Before the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, Professor Maurice Bourquin, AMS Swiss Coordinator, speaks to the media. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, arrives on the Shuttle Landing Facility runway aboard an Air Force C-5M aircraft from Europe. AMS is a state-of-the-art particle physics detector is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, STS-134 Mission Specialist Michael Fincke pauses for a photo before the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
Space vehicle acoustics prediction improvement for payloads. [space shuttle
NASA Technical Reports Server (NTRS)
Dandridge, R. E.
1979-01-01
The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.
Nonwoven Fabric Uses and Prospects in Human Space Flight
NASA Technical Reports Server (NTRS)
Bacon, Jack
2001-01-01
The US space shuttle fleet has been flying for over 20 years. Although the shuttle operates in a unique exterior environment, the interior is intentionally made to be as close to the "normal" human environment as possible. The filtration needs of the shuttle are not substantially different from those of a large mobile home or camper, supporting the needs of a family of seven for up to two weeks. Therefore, most of the materials that are used to filter the air, water, and other fluids on the Shuttle are similar or identical to those employed in other sectors of the transportation industry. The only significantly different feature of the space environment is the unique "three-phase" nature of the air (with suspended liquids and solids ranging in size from aerosol droplets to binoculars). Such suspended debris contributes to the air filtration and waste management problem. Careful flow management and cleanliness practices help to mitigate the effect of debris, and liquid spills are rare, seldom making it to the filters. (It has been common on all spacecraft to look first for lost items on the air intake filters, since all objects ultimately migrate there in the flow. Liquids tend to seep rather than "spill", and so tend to aggregate in a ball near the source.) In addition to the basic fluids of the interior environment (water and water wastes, air, and its constituent supply gasses) the shuttle also has unfiltered fluid systems for Freon, hydrogen, helium, ammonia, hydraulic fluid, and propellants. Only the propellant system, owing to its uncommon chemistry, represents a fluid system that is not typical of household or medical applications. Careful external filtration prior to flight assures the cleanliness in these closed systems.
Evaluation of beryllium for space shuttle components
NASA Technical Reports Server (NTRS)
Trapp, A. E.
1972-01-01
Application of beryllium to specific full-scale space shuttle structural components and assemblies was studied. Material evaluations were conducted to check the mechanical properties of as-received material to gain design information on characteristics needed for the material in the space shuttle environment, and to obtain data needed for evaluating component and panel tests. Four beryllium structural assemblies were analyzed and designed. Selected components of these assemblies, representing areas of critical loading or design/process uncertainty, were designed and tested, and two panel assemblies were fabricated. Trends in cost and weight factors were determined by progressive estimation at key points of preliminary design, final design, and fabrication to aid in a cost/weight evaluation of the use of beryllium.
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, STS-134 Mission Specialist Andrew Feustel looks on as European Space Agency astronaut Roberto Vittori greets the media after the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.
1976-01-01
Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.
Automation of Shuttle Tile Inspection - Engineering methodology for Space Station
NASA Technical Reports Server (NTRS)
Wiskerchen, M. J.; Mollakarimi, C.
1987-01-01
The Space Systems Integration and Operations Research Applications (SIORA) Program was initiated in late 1986 as a cooperative applications research effort between Stanford University, NASA Kennedy Space Center, and Lockheed Space Operations Company. One of the major initial SIORA tasks was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. This effort has adopted a systems engineering approach consisting of an integrated set of rapid prototyping testbeds in which a government/university/industry team of users, technologists, and engineers test and evaluate new concepts and technologies within the operational world of Shuttle. These integrated testbeds include speech recognition and synthesis, laser imaging inspection systems, distributed Ada programming environments, distributed relational database architectures, distributed computer network architectures, multimedia workbenches, and human factors considerations.
Bird Strike Risk for Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Hales, Christy; Czech, Matthew
2017-01-01
Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. This presentation will outline an approach for estimating risk resulting from bird strikes to space launch vehicles. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts all affect the risk due to bird strike. Lessons learned, challenges over lack of data, and significant risk contributors will be discussed.
STS-58 Landing at Edwards with Drag Chute
NASA Technical Reports Server (NTRS)
1993-01-01
A drag chute slows the space shuttle Columbia as it rolls to a perfect landing concluding NASA's longest mission at that time, STS-58, at the Ames-Dryden Flight Research Facility (later redesignated the Dryden Flight Research Center), Edwards, California, with a 8:06 a.m. (PST) touchdown 1 November 1993 on Edward's concrete runway 22. The planned 14 day mission, which began with a launch from Kennedy Space Center, Florida, at 7:53 a.m. (PDT), October 18, was the second spacelab flight dedicated to life sciences research. Seven Columbia crewmembers performed a series of experiments to gain more knowledge on how the human body adapts to the weightless environment of space. Crewmembers on this flight included: John Blaha, commander; Rick Searfoss, pilot; payload commander Rhea Seddon; mission specialists Bill MacArthur, David Wolf, and Shannon Lucid; and payload specialist Martin Fettman. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
NASA Technical Reports Server (NTRS)
1974-01-01
The relative penalties associated with various techniques for providing an onboard cold environment for storage of perishable food items, and for the development of packaging and vehicle stowage parameters were investigated in terms of the overall food system design analysis of space shuttle. The degrees of capability for maintaining both a 40 F to 45 F refrigerated temperature and a 0 F and 20 F frozen environment were assessed for the following cooling techniques: (1) phase change (heat sink) concept; (2) thermoelectric concept; (3) vapor cycle concept; and (4) expendable ammonia concept. The parameters considered in the analysis were weight, volume, and spacecraft power restrictions. Data were also produced for packaging and vehicle stowage parameters which are compatible with vehicle weight and volume specifications. Certain assumptions were made for food packaging sizes based on previously generated space shuttle menus. The results of the study are shown, along with the range of meal choices considered.
Report on final recommendations for IMPS engineering-science payload
NASA Technical Reports Server (NTRS)
Garrett, H. B.
1984-01-01
Six general categories of key scientific and engineering concerns for the interactions measurements payload for shuttle (IMPS) mission are addressed: (1) dielectric charging; (2) material property changes; (3) electromagnetic interference, plasma interactions, and plasma wake effects associated with high-voltage solar arrays and large space structures; (4) radio frequency distortion and nonlinearities due to the enhanced plasma in the shuttle ram/wake; (5) shuttle glow and contamination; and (6) plasma interactions with the space-based radar. Lesser concerns are the interactions associated with EVA; the radiation and SEU effects peculiar to the auroral/polar cap environments; and space debris. The measurements needed to address the concerns associated with the general categories are described and a list of generic investigations capable of making the required measurements, emphasizing the spectrum of measurements necessary to quantize the interactions in the auroral/polar environments are included. A suggested ground-test plan for the IMPS project, a description of proposed follow-on IMPS missions, and a detailed bibliography for each of the interactions discussed are included.
Testing of Laser Components Subjected to Exposure in Space
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.
2010-01-01
Materials International Space Station Experiment (MISSE) missions provide an opportunity for developing space qualifiable materials by studying the response of novel materials when subjected to the synergistic effects of the harsh space environment. MISSE 6 was transported to the international Space Station (ISS) via STS 123 on March 11. 2008. The astronauts successfully attached the passive experiment containers (PEC) to external handrails of the international space station (ISS) and opened up for long term exposure. After more than a year of exposure attached to the station's exterior, the PEC with several hundred material samples returned to the earth with the STS-128 space shuttle crew that was launched on shuttle Discovery from the Kennedy Space Center, Fla., on Aug. 28. Meanwhile, MISSE 7 launch is scheduled to be launched on STS 129 mission. MISSE-7 was launched on Space Shuttle mission STS-129 on Atlantis was launched on November 16, 2009. This paper will briefly review recent efforts on MISSE 6 and MISSE 7 missions at NASA Langley Research Center (LaRC).
NASA Technical Reports Server (NTRS)
1979-01-01
This specification establishes the natural and induced environments to which the power extension package may be exposed during ground operations and space operations with the shuttle system. Space induced environments are applicable at the Orbiter attach point interface location. All probable environments are systematically listed according to each ground and mission phase.
Techniques for determination of impact forces during walking and running in a zero-G environment
NASA Technical Reports Server (NTRS)
Greenisen, Michael; Walton, Marlei; Bishop, Phillip; Squires, William
1992-01-01
One of the deleterious adaptations to the microgravity conditions of space flight is the loss of bone mineral content. This loss appears to be at least partially attributable to the minimal skeletal axial loading concomitant with microgravity. The purpose of this study was to develop and fabricate the instruments and hardware necessary to quantify the vertical impact forces (Fz) imparted to users of the space shuttle passive treadmill during human locomotion in a three-dimensional zero-gravity environment. The shuttle treadmill was instrumented using a Kistler forceplate to measure vertical impact forces. To verify that the instruments and hardware were functional, they were tested both in the one-G environment and aboard the KC-135 reduced gravity aircraft. The magnitude of the impact loads generated in one-G on the shuttle treadmill for walking at 0.9 m/sec and running at 1.6 and 2.2 m/sec were 1.1, 1.7, and 1.7 G, respectively, compared with loads of 0.95, 1.2, and 1.5 G in the zero-G environment.
An active thermal control surfaces experiment. [spacecraft temperature determination
NASA Technical Reports Server (NTRS)
Wilkes, D. R.; Brown, M. J.
1979-01-01
An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.
Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)
NASA Technical Reports Server (NTRS)
Savely, Robert T. (Editor)
1991-01-01
The papers from the symposium are presented. Emphasis is placed on human factors engineering and space environment interactions. The technical areas covered in the human factors section include: satellite monitoring and control, man-computer interfaces, expert systems, AI/robotics interfaces, crew system dynamics, and display devices. The space environment interactions section presents the following topics: space plasma interaction, spacecraft contamination, space debris, and atomic oxygen interaction with materials. Some of the above topics are discussed in relation to the space station and space shuttle.
Harada, K; Sugahara, T; Ohnishi, T; Ozaki, Y; Obiya, Y; Miki, S; Miki, T; Imamura, M; Kobayashi, Y; Watanabe, H; Akashi, M; Furusawa, Y; Mizuma, N; Yamanaka, H; Ohashi, E; Yamaoka, C; Yajima, M; Fukui, M; Nakano, T; Takahashi, S; Amano, T; Sekikawa, K; Yanagawa, K; Nagaoka, S
1998-05-01
We participated in a space experiment, part of the National Space Development Agency of Japan (NASDA) Phase I Space Radiation Environment Measurement Program, conducted during the National Aeronautics and Space Administration (NASA) Shuttle/Mir Mission No. 6 (S/MM-6) project. The aim of our study was to investigate the effects of microgravity on the DNA repair processes of living organisms in the
Fundamentals of Alloy Solidification Applied to Industrial Processes
NASA Technical Reports Server (NTRS)
1984-01-01
Solidification processes and phenomena, segregation, porosity, gravity effects, fluid flow, undercooling, as well as processing of materials in the microgravity environment of space, now available on space shuttle flights were discussed.
Study of structural active cooling and heat sink systems for space shuttle
NASA Technical Reports Server (NTRS)
1972-01-01
This technology investigation was conducted to evaluate the feasibility of a number of thermal protection systems (TPS) concepts which are alternate candidates to the space shuttle baseline TPS. Four independent tasks were performed. Task 1 consisted of an in-depth evaluation of active structural cooling of the space shuttle orbiter. In Task 2, heat sink concepts for the booster were studied to identify and postulate solutions for design problems unique to heat sink TPS. Task 3 consisted of a feasibility demonstration test of a phase change material (PCM) incorporated into a reusable surface insulation (RSI) thermal protection system for the shuttle orbiter. In Task 4 the feasibility of heat pipes for stagnation region cooling was studied for the booster and the orbiter. Designs were developed for the orbiter leading edge and used in trade studies of leading edge concepts. At the time this program was initiated, a 2-stage fully reusable shuttle system was envisioned; therefore, the majority of the tasks were focused on the fully reusable system environments. Subsequently, a number of alternate shuttle system approaches, with potential for reduced shuttle system development funding requirements, were proposed. Where practicable, appropriate shifts in emphasis and task scoping were made to reflect these changes.
Future prospects for space life sciences from a NASA perspective
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A C-band radar antenna stands ready to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An X-band radar antenna is in place to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - A C-band (left) and an X-band radar antenna are positioned to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - A C-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - A C-band radar antenna stands ready to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - An X-band radar antenna is in place to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - An X-band (left) and a C-band radar antenna are prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - An X-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
Ceramics and composites for rocket engines and space structures
NASA Astrophysics Data System (ADS)
Upadhya, Kamleshwar
1992-05-01
The use of ceramic and other nonmetallic composites is considered for engine and structural elements of the National Aerospace Plane (NASP), the Space Shuttle, and space stations. Attention is given to the application of refractory composites with protective coatings for oxidation and hydrogen contamination to the NASP to address the high-temperature environments the vehicle is expected to encounter. Existing applications of metal-matrix composite struts and Gr-Ep cargo-bay doors on the Space Shuttle are reviewed, and the need for more data on the service life and failure modes of the materials is identified.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A C-band (left) and an X-band radar antenna are positioned to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An X-band (left) and a C-band radar antenna are prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A C-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An X-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
STS-62 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).
NASA Technical Reports Server (NTRS)
Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl
2008-01-01
The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.
NASA Technical Reports Server (NTRS)
Eck, M.; Mukunda, M.
1989-01-01
The various analyses described here were aimed at obtaining a more comprehensive understanding and definition of the environments in the vicinity of the Radioisotope Thermal Generator (RTG) during certain Space Transportation System (STS) and Titan IV launch abort accidents. Addressed here are a number of issues covering explosion environments and General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) responses to those environments.
NASA Technical Reports Server (NTRS)
Dannenfelser, Robert, Jr.
1986-01-01
Prompted by the attention focused on the Space Shuttle Program's cost and safety problems and the publicity surrounding the intended U.S. space station, a review is given of the status of efforts being made to use space as a commercial manufacturing environment.
2010-08-26
CAPE CANAVERAL, Fla. -- Prior to the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, Professor Sam Ting, AMS Principal Investigator from the Massachusetts Institute of Technology speaks with the media. AMS is a state-of-the-art particle physics detector is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2011-03-10
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility's conference room at NASA's Kennedy Space Center in Florida, Ken Bollweg, Alpha Magnetic Spectrometer-2 (AMS) deputy project manager, talks to media about the particle physics detector. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson
2010-08-26
CAPE CANAVERAL, Fla. -- Prior to the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, Professor Sam Ting, AMS Principal Investigator from the Massachusetts Institute of Technology speaks to the media. AMS,a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
Space shuttle: Aerodynamic heating tests of the MDAC delta wing orbiter and canard booster
NASA Technical Reports Server (NTRS)
Andresen, T. L.
1972-01-01
Design of an efficient thermal protection system for the space shuttle orbiter and booster is discussed, based on knowledge of the thermal environment to be experienced by the vehicles in all flight phases. The complex configurations of these vehicles limit the level of confidence which can be associated with purely analytical thermal environment predictions. Tests were conducted during April and May 1971 using an orbiter and booster model at a 96-in. hypersonic shock tunnel. Both models were tested separately as well as together. A sufficiently large range in Reynolds number was covered so that laminar, transitional, and turbulent data could be obtained.
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.; Penny, M. M.; Greenwood, T. F.; Fossler, I. H.
1972-01-01
An experimental study of the plume impingement heating on the space shuttle booster afterbody resulting from the space shuttle orbiter engine plumes was conducted. The 1/100-scale model tests consisted of one and two orbiter engine firings on a flat plate, a flat plate with a fin, and a cylinder model. The plume impingement heating rates on these surfaces were measured using thin film heat transfer gages. Results indicate the engine simulation is a reasonable approximation to the two engine configuration, but more tests are needed to verify the plume model of the main engine configuration. For impingment, results show models experienced laminar boundary layer convective heating. Therefore, tests at higher Reynolds numbers are needed to determine impingment heating.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-45
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center (KSC) Photo/Video Analysis, reports from Johnson Space Center, Marshall Space Flight Center, and Rockwell International-Downey are also included to provide an integrated assessment of each Shuttle mission.
Atmospheric environment for Space Shuttle (STS-11) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1984-01-01
Atmospheric conditions observed near Space Shuttle STS-11 launch time on February 3, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles are reported. Wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area are presented. Meteorological tapes, which consist of wind and thermodynamic parameters vesus altitude, for STS-11 vehicle ascent and SRB descent/impact were constructed.
NASA Technical Reports Server (NTRS)
Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.
1994-01-01
The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.
RF environment survey of Space Shuttle related EEE frequency bands
NASA Technical Reports Server (NTRS)
Simpson, J.; Prigel, B.; Postelle, J.
1977-01-01
Radio frequency assignments within the continental United States in frequency bands between 121 MHz abd 65 GHz were surveyed and analyzed in order to determine current utilization of anticipated frequency bands for the shuttle borne electromagnetic environment experiment. Data from both government and nongovernment files were used. Results are presented in both narrative form and in histograms which show the total number of unclassified assignments versus frequency and total assigned power versus frequency.
The Shuttle's Vibration Environment is Compatible with the Oscillating Screen Viscometer
NASA Technical Reports Server (NTRS)
Berg, Robert F.; Moldover, Michael R.
1993-01-01
The oscillating screen viscometer is designed for useful operation in the vibration environment of the Space Shuttle. The following analysis compares recently analyzed on-orbit vibration data against the viscometer's measured vibration sensitivity. During routine crew activities the effect of the resulting vibration on the precision of the viscosity measurement will be tolerable. However, there is a possible problem if the astronauts use unisolated exercise equipment for extended periods of time.
Risk Considerations of Bird Strikes to Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Hales, Christy; Ring, Robert
2016-01-01
Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the Shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a Shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. NASA is currently refining risk assessment estimates for the probability of bird strike to space launch vehicles. This paper presents an approach for analyzing the risks of bird strikes to space launch vehicles and presents an example. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts affect the risk due to bird strike. A summary of significant risk contributors is discussed.
Mission Operations Directorate - Success Legacy of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Azbell, Jim
2010-01-01
In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.
Mission definition study for a VLBI station utilizing the Space Shuttle
NASA Technical Reports Server (NTRS)
Burke, B. F.
1982-01-01
The uses of the Space Shuttle transportation system for orbiting VeryLong-Baseline Interferometry (OVLBI) were examined, both with respect to technical feasibility and its scientific possibilities. The study consisted of a critical look at the adaptability of current technology to an orbiting environment, the suitability of current data reduction facilities for the new technique, and a review of the new science that is made possible by using the Space Shuttle as a moving platform for a VLBI terminal in space. The conclusions are positive in all respects: no technological deficiencies exist that would need remedy, the data processing problem can be handled easily by straightforward adaptations of existing systems, and there is a significant new research frontier to be explored, with the Space Shuttle providing the first step. The VLBI technique utilizes the great frequency stability of modern atomic time standards, the power of integrated circuitry to perform real-time signal conditioning, and the ability of magnetic tape recorders to provide essentially error-free data recording, all of which combine to permit the realization of radio interferometry at arbitrarily large baselines.
2003-05-30
KENNEDY SPACE CENTER, FLA. - The JEM Pressurized Module is seen in the hold of the ship that carried it from Japan. The National Space Development Agency of Japan (NASDA) built the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, Japan’s primary contribution to the space station, to be delivered to KSC. It will enhance the unique research capabilities of the orbiting complex by providing an additional shirt-sleeve environment for astronauts to conduct science experiments. The JEM also includes two logistics modules, an exposed pallet for space environment experiments and a robotic manipulator system that are still under construction in Japan. The various JEM components will be assembled in space over the course of three space shuttle missions.
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lifts the next section of the Alpha Magnetic Spectrometer, or AMS, toward a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lowers the next section of the Alpha Magnetic Spectrometer, or AMS, onto a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lowers a section of the Alpha Magnetic Spectrometer, or AMS, onto a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane moves the next section of the Alpha Magnetic Spectrometer, or AMS, toward a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a crane lifts a section of the Alpha Magnetic Spectrometer, or AMS, toward a tractor-trailer which will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, at the Space Station Processing Facility, where it will be processed for launch. AMS arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, STS-134 Commander Mark Kelly, European Space Agency astronaut Roberto Vittori (left) and Mission Specialist Andrew Feustel get a close look at the Alpha Magnetic Spectrometer, or AMS, inside the C-5M aircraft. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, STS-134 European Space Agency astronaut Roberto Vittori is accompanied by Pilot Gregory H. Johnson and Commander Mark Kelly on the tarmac where the C-5M aircraft is parked after the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
Work continues on Leonardo, the Multi-Purpose Logistics Module, in the Space Station Processing Faci
NASA Technical Reports Server (NTRS)
1999-01-01
Workers in the Space Station Processing Facility work on Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-102, targeted for June 2000. Leonardo shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM), targeted for launch in September 1999, and Destiny, the U.S. Lab module, targeted for mission STS-98 in late April 2000.
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Leach, Richard
2004-01-01
The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload an Alpha Magnetic Spectrometer, or AMS, section from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, is on its way to the Space Station Processing Facility, where it will be processed for launch. AMS arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2010-08-26
CAPE CANAVERAL, Fla. -- Mark Sistilli, AMS Program Manager from NASA Headquarters looks on as Trent Martin, AMS Project Manager from NASA's Johnson Space Center in Houston speaks to the media prior to the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- Mark Sistilli, AMS Program Manager from NASA Headquarters speaks to the media before the arrival of the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, while Trent Martin, AMS Project Manager from NASA's Johnson Space Center in Houston looks on. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
Space Medicine: Shuttle - Space Station Crew Health and Safety Challenges for Exploration
NASA Technical Reports Server (NTRS)
Dervay, Joseph
2010-01-01
This slide presentation combines some views of the shuttle take off, and the shuttle and space station on orbit, and some views of the underwater astronaut training , with a general discussion of Space Medicine. It begins with a discussion of the some of the physiological issues of space flight. These include: Space Motion Sickness (SMS), Cardiovascular, Neurovestibular, Musculoskeletal, and Behavioral/Psycho-social. There is also discussion of the space environment and the issues that are posed including: Radiation, Toxic products and propellants, Habitability, Atmosphere, and Medical events. Included also is a discussion of the systems and crew training. There are also artists views of the Constellation vehicles, the planned lunar base, and extended lunar settlement. There are also slides showing the size of earth in perspective to the other planets, and the sun and the sun in perspective to other stars. There is also a discussion of the in-flight changes that occur in neural feedback that produces postural imbalance and loss of coordination after return.
Payload Processing for Mice Drawer System
NASA Technical Reports Server (NTRS)
Brown, Judy
2007-01-01
Experimental payloads flown to the International Space Station provide us with valuable research conducted in a microgravity environment not attainable on earth. The Mice Drawer System is an experiment designed by Thales Alenia Space Italia to study the effects of microgravity on mice. It is designed to fly to orbit on the Space Shuttle Utilization Logistics Flight 2 in October 2008, remain onboard the International Space Station for approximately 100 days and then return to earth on a following Shuttle flight. The experiment apparatus will be housed inside a Double Payload Carrier. An engineering model of the Double Payload Carrier was sent to Kennedy Space Center for a fit check inside both Shuttles, and the rack that it will be installed in aboard the International Space Station. The Double Payload Carrier showed a good fit quality inside each vehicle, and Thales Alenia Space Italia will now construct the actual flight model and continue to prepare the Mice Drawer System experiment for launch.
Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.
NASA Technical Reports Server (NTRS)
Ransone, P. O.; Morrison, J. D.; Minster, J. E.
1979-01-01
Tiles of space shuttle reusable surface insulation coated with reaction cured glass were subjected to 25 cycles of launch pad exposure and simulated mission heating. The coating could not withstand the environment without cracking. Water absorption after cracking reached as high as 150 weight percent. Exposure of insulation fibers beneath the coating to contaminants dissolved in absorbed water initiated fiber degradation.
Earth observations taken during the STS-103 mission
1999-12-26
STS103-728-035 (19-27 December 1999) --- One of the astronauts aboard the Earth-orbiting Space Shuttle Discovery used a handheld 70mm camera to photograph this scene of the Kennedy Space Center, Florida and its environs. The old launch pads dot the "V" shaped land (Cape Canaveral) along the coast. On Merritt Island the Shuttle launch pads and runway are visible. The large city surrounded by circular lakes to the west of Cape Canaveral is Orlando.
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.
1987-01-01
The results of these studies have implications for the utilization of the IIaO spectroscopic film on the future shuttle and space lab missions. These responses to standard photonic energy sources will have immediate application for the uneven responses of the film photographing a star field in a terrestrial or extraterrestrial environment with associated digital imaging equipment.
NASA Technical Reports Server (NTRS)
1995-01-01
This report summarizes past corrosion issues experienced by the NASA space shuttle orbiter fleet. Design considerations for corrosion prevention and inspection methods are reviewed. Significant corrosion issues involving structures and subsystems are analyzed, including corrective actions taken. Notable successes and failures of corrosion mitigation systems and procedures are discussed. The projected operating environment used for design is contrasted with current conditions in flight and conditions during ground processing.
NASA Technical Reports Server (NTRS)
Fletcher, Lauren E.; Aldridge, Ann M.; Wheelwright, Charles; Maida, James
1997-01-01
Task illumination has a major impact on human performance: What a person can perceive in his environment significantly affects his ability to perform tasks, especially in space's harsh environment. Training for lighting conditions in space has long depended on physical models and simulations to emulate the effect of lighting, but such tests are expensive and time-consuming. To evaluate lighting conditions not easily simulated on Earth, personnel at NASA Johnson Space Center's (JSC) Graphics Research and Analysis Facility (GRAF) have been developing computerized simulations of various illumination conditions using the ray-tracing program, Radiance, developed by Greg Ward at Lawrence Berkeley Laboratory. Because these computer simulations are only as accurate as the data used, accurate information about the reflectance properties of materials and light distributions is needed. JSC's Lighting Environment Test Facility (LETF) personnel gathered material reflectance properties for a large number of paints, metals, and cloths used in the Space Shuttle and Space Station programs, and processed these data into reflectance parameters needed for the computer simulations. They also gathered lamp distribution data for most of the light sources used, and validated the ability to accurately simulate lighting levels by comparing predictions with measurements for several ground-based tests. The result of this study is a database of material reflectance properties for a wide variety of materials, and lighting information for most of the standard light sources used in the Shuttle/Station programs. The combination of the Radiance program and GRAF's graphics capability form a validated computerized lighting simulation capability for NASA.
Payload/orbiter contamination control requirement study
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Rantanen, R. O.; Ress, E. B.
1974-01-01
A study was conducted to determine and quantify the expected particulate and molecular on-orbit contaminant environment for selected space shuttle payloads as a result of major shuttle orbiter contamination sources. Individual payload susceptibilities to contamination are reviewed. The risk of payload degradation is identified and preliminary recommendations are provided concerning the limiting factors which may depend on operational activities associated with the payload/orbiter interface or upon independent payload functional activities. A basic computer model of the space shuttle orbiter which includes a representative payload configuration is developed. The major orbiter contamination sources, locations, and flux characteristics based upon available data have been defined and modeled.
Shuttle waste management system design improvements and flight evaluation
NASA Technical Reports Server (NTRS)
Winkler, H. Eugene; Goodman, Jerry R.; Murray, Robert W.; Mcintosh, Mathew E.
1986-01-01
The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
The application of the probabilistic risk assessment methodology to a Space Shuttle environment, particularly to the potential of losing the Shuttle during nominal operation is addressed. The different related concerns are identified and combined to determine overall program risks. A fault tree model is used to allocate system probabilities to the subsystem level. The loss of the vehicle due to failure to contain energetic gas and debris, to maintain proper propulsion and configuration is analyzed, along with the loss due to Orbiter, external tank failure, and landing failure or error.
The NORSTAR Program: Space shuttle to space station
NASA Technical Reports Server (NTRS)
Fortunato, Ronald C.
1988-01-01
The development of G-325, the first high school student-run space flight project, is updated. An overview is presented of a new international program, which involves students from space station countries who will be utilizing Get Away Special technology to cooperatively develop a prototype experiment for controlling a space station research module environment.
Space Research Results Purify Semiconductor Materials
NASA Technical Reports Server (NTRS)
2010-01-01
While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
2012-01-01
As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions
The BIMDA shuttle flight mission: a low cost microgravity payload.
Holemans, J; Cassanto, J M; Moller, T W; Cassanto, V A; Rose, A; Luttges, M; Morrison, D; Todd, P; Stewart, R; Korszun, R Z; Deardorff, G
1991-01-01
This paper presents the design, operation and experiment protocol of the Bioserve sponsored flights of the ITA Materials Dispersion Apparatus Payload (BIMDA) flown on the Space Shuttle on STS-37. The BIMDA payload represents a joint effort between ITA (Instrumentation Technology Associates, Inc.) and Bioserve Space Technologies, a NASA Center for the Commercial Development of Space, to investigate the methods and commercial potential of biomedical and fluid science applications in the microgravity environment of space. The BIMDA payload, flown in a Refrigerator/Incubator Module (R/IM) in the Orbiter middeck, consists of three different devices designed to mix fluids in space; four Materials Dispersion Apparatus (MDA) Minilabs developed by ITA, six Cell Syringes, and six Bioprocessing Modules both developed by NASA JSC and Bioserve. The BIMDA design and operation reflect user needs for late access prior to launch (<24 h) and early access after landing (<2 h). The environment for the payload is temperature controlled by the R/IM. The astronaut crew operates the payload and documents its operation. The temperature of the payload is recorded automatically during flight. The flight of the BIMDA payload is the first of two development flights of the MDA on the Space Shuttle. Future commercial flights of ITA's Materials Dispersion Apparatus on the Shuttle will be sponsored by NASA's Office of Commercial Programs and will take place over the next three years. Experiments for the BIMDA payload include research into the following areas: protein crystal growth, thin film membrane casting, collagen formation, fibrin clot formation, seed germination, enzymatic catalysis, zeolite crystallization, studies of mixing effects of lymphocyte functions, and solute diffusion and transport.
Shuttle/spacelab contamination environment and effects handbook
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Payton, R. M.; Papazian, H. A.
1986-01-01
This handbook is intended to assist users of the Spacelab/Space Transportation System by providing contamination environments and effects information that may be of value in planning, designing, manufacturing, and operating a space flight experiment. A summary of available molecular and particulate contamination data on the Space Transportation System and its facilities is presented. Contamination models, contamination effects, and protection methods information are also presented. In addition to contamination, the effects of the space environments at STS altitudes on spacecraft materials are included. Extensive references, bibliographies, and contacts are provided.
Space Station Freedom altitude strategy
NASA Technical Reports Server (NTRS)
Mcdonald, Brian M.; Teplitz, Scott B.
1990-01-01
The Space Station Freedom (SSF) altitude strategy provides guidelines and assumptions to determine an altitude profile for Freedom. The process for determining an altitude profile incorporates several factors such as where the Space Shuttle will rendezvous with the SSF, when reboosts must occur, and what atmospheric conditions exist causing decay. The altitude strategy has an influence on all areas of SSF development and mission planning. The altitude strategy directly affects the micro-gravity environment for experiments, propulsion and control system sizing, and Space Shuttle delivery manifests. Indirectly the altitude strategy influences almost every system and operation within the Space Station Program. Evolution of the SSF altitude strategy has been a very dynamic process over the past few years. Each altitude strategy in turn has emphasized a different consideration. Examples include a constant Space Shuttle rendezvous altitude for mission planning simplicity, or constant micro-gravity levels with its inherent emphasis on payloads, or lifetime altitudes to provide a safety buffer to loss of control conditions. Currently a new altitude strategy is in development. This altitude strategy will emphasize Space Shuttle delivery optimization. Since propellant is counted against Space Shuttle payload-to-orbit capacity, lowering the rendezvous altitude will not always increase the net payload-to-orbit, since more propellant would be required for reboost. This altitude strategy will also consider altitude biases to account for Space Shuttle launch slips and an unexpected worsening of atmospheric conditions. Safety concerns will define a lower operational altitude limit, while radiation levels will define upper altitude constraints. The evolution of past and current SSF altitude strategies and the development of a new altitude strategy which focuses on operational issues as opposed to design are discussed.
Japanese Experiment Module arrival
2007-03-29
The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Japanese Experiment Module arrival
2007-03-29
The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
2003-06-06
KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2003-06-04
KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
Shuttle optical environment; Proceedings of the Meeting, Washington, DC, April 23, 24, 1981
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor); Fazio, G. G.
1982-01-01
The numerical modeling, instrumentation, identification, and procedures to characterize and/or control contamination hazards to equipment used on the Shuttle are discussed. On-orbit pollutants include molecular offgassing and outgassing, particulate material, and substances from thrusters, vents, and leaks. Clean-rooms are being implemented in ground assembly and integration facilities. Attention is given to an upgraded SPACE program for numerically modeling contamination pathways and appropriate procedures to protect instrumentation from film and particulate deposition. Finally, attention is given to military cryogenic IR detectors being employed to quantify the Shuttle thermal and solid pollutant environment on-orbit as a prelude to future operational IR sensors.
Maintaining space shuttle safety within an environment of change
NASA Astrophysics Data System (ADS)
Greenfield, Michael A.
1999-09-01
In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle Flight Operations Contractor (SFOC) has been chosen to operate the Shuttle. The Government role will change from direct "oversight" to "insight" gained through understanding and measuring the contractor's processes. This paper describes the program management changes underway and the NASA Safety and Mission Assurance (S&MA) organization's philosophy, role, and methodology for pursuing this new approach. It describes how audit and surveillance will replace direct oversight and how meaningful performance metrics will be implemented.
Effects of Promethazine on Performance During Simulated Shuttle Landings
NASA Technical Reports Server (NTRS)
Harm, D. L.; Putcha, L.; Sekula, B. K.; Berens, K. L.
1999-01-01
Promethazine (PMZ) is the antimotion sickness drug of choice in the U.S. Space Shuttle program; however, virtually nothing is known about the bioavailability and performance effects of this drug in the microgravity environment. PMZ has detrimental side effects on human performance on Earth that could affect Shuttle operations. In a recent ground-based study we examined: 1) the effects of promethazine (PMZ) on Shuttle landing performance using the portable inflight landing operations trainer (PILOT), and 2) saliva and urine samples to determine the pharmacokinetics of PMZ. The PILOT performance data is presented here.
Low frequency vibration isolation technology for microgravity space experiments
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.; Brown, Gerald V.
1989-01-01
The dynamic acceleration environment observed on Space Shuttle flights to date and predicted for the Space Station has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-g environments. Isolation systems capable of providing significant improvements in this environment exist, but have not been demonstrated in flight configurations. This paper presents a summary of the theoretical evaluation for two one degree-of-freedom (DOF) active magnetic isolators and their predicted response to both direct and base excitations, that can be used to isolate acceleration sensitive microgravity space experiments.
1994-03-04
Onboard Space Shuttle Columbia (STS-62) Mission specialist Charles D. (Sam) Gemar works with the Middeck 0-Gravity Dynamics Experiment (MODE). The reusable test facility is designed to study the nonlinear, gravity-dependent behavior of liquids and skewed space structures in the microgravity environment.
G-38, G-39 and G-40: Art in space, a divergent exploration
NASA Technical Reports Server (NTRS)
Mcshane, J. W.
1986-01-01
The results of the Get Away Special (GAS) Arts-Science payload G-38, processed in orbit on board the Space Shuttle Challenger during mission 41-G STS 17, October 5 to 13, l984 are explained. The payload G-38 was created as a unified Arts-Science payload that simultaneously explored the process of vapor deposition in the vacuum and weightlessness of the shuttle environment and created a series of space sculptures utilizing this process. The purpose of the experiment was to test the sputter deposition process in space and to create five subtle spherical sculptures with metallic coatings of gold, silver, platinum and chrome.
Atmospheric environment for Space Shuttle (STS-51D)
NASA Technical Reports Server (NTRS)
Jasper, G. L.; Johnson, D. L.; Hill, C. K.; Batts, G. W.
1985-01-01
A summary of selected atmospheric conditions observed near the space shuttle STS-51D launch time on April 12, 1985, at Kennedy Space Center Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51D vehicle ascent is constructed. The STS-51D ascent atmospheric data tape is compiled by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post-flight performance assessments.
NASA Technical Reports Server (NTRS)
Lampton, Michael; Sasseen, Timothy P.; Wu, Xiaoyi; Bowyer, Stuart
1993-01-01
FAUST is a far ultraviolet (1400-1800 A) photon-counting imaging telescope featuring a wide field of view (7.6 deg) and a high sensitivity to extended emission features. During its flight as part of the ATLAS-1 payload aboard the STS-45 mission in March 1992, 19 deep-space nighttime viewing opportunities were utilized by FAUST. Here we report the observed fluxes and their time and space variations, and identify the signatures of postsunset airglow phenomena and Orbiter Vernier attitude control thruster firing events. We find that the Space Shuttle nighttime environment at 296 km altitude is often sufficiently dark to permit geophysical and astronomical UV observations down to levels on the order of 1000 photons/sq cm sr A sec, or 0.01 Rayleighs/A. We also find evidence for occasional geophysical fluxes of some tens or hundreds of Rayleighs in the upward-looking direction.
2007-12-05
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is revealed on Launch Pad 39A at NASA's Kennedy Space Center after the rotating service structure, or RSS, at left of the pad is rolled back. Rollback was complete at 8:44 p.m. EST. The RSS provides protected access to the orbiter for crew entry and servicing of payloads at the pad. Rollback of the pad's RSS is one of the milestones in preparation for the launch of mission STS-122, scheduled for 4:31 p.m. EST on Dec. 6. Beneath the shuttle is the mobile launcher platform which supports the shuttle until liftoff. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to Node 2 of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-05
KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis is revealed on Launch Pad 39A at NASA's Kennedy Space Center after the rotating service structure, or RSS, at left of the pad is rolled back. Rollback was complete at 8:44 p.m. EST. The RSS provides protected access to the orbiter for crew entry and servicing of payloads at the pad. Rollback of the pad's RSS is one of the milestones in preparation for the launch of mission STS-122, scheduled for 4:31 p.m. EST on Dec. 6. Beneath the shuttle is the mobile launcher platform which supports the shuttle until liftoff. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to Node 2 of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett
Space Shuttle Software Development and Certification
NASA Technical Reports Server (NTRS)
Orr, James K.; Henderson, Johnnie A
2000-01-01
Man-rated software, "software which is in control of systems and environments upon which human life is critically dependent," must be highly reliable. The Space Shuttle Primary Avionics Software System is an excellent example of such a software system. Lessons learn from more than 20 years of effort have identified basic elements that must be present to achieve this high degree of reliability. The elements include rigorous application of appropriate software development processes, use of trusted tools to support those processes, quantitative process management, and defect elimination and prevention. This presentation highlights methods used within the Space Shuttle project and raises questions that must be addressed to provide similar success in a cost effective manner on future long-term projects where key application development tools are COTS rather than internally developed custom application development tools
Acoustic Emission Detection of Impact Damage on Space Shuttle Structures
NASA Technical Reports Server (NTRS)
Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.
2004-01-01
The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.
2011-03-10
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida Professor Sam Ting, Alpha Magnetic Spectrometer-2 (AMS) principal investigator at the Massachusetts Institute of Technology, talks to media about the particle physics detector. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson
2010-09-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians begin the process of attaching an overhead hoist to the Alpha Magnetic Spectrometer (AMS) for its move to a rotation stand to begin processing for flight. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, Professor Sam Ting, AMS Principal Investigator from the Massachusetts Institute of Technology listens intently as Professor Manuel Aguilar, AMS Spanish Coordinator, speaks to the media before the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2011-03-10
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Professor Sam Ting, Alpha Magnetic Spectrometer-2 (AMS) principal investigator at the Massachusetts Institute of Technology, checks out the particle physics detector. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson
2010-09-30
CAPE CANAVERAL, Fla. -- High overhead in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer (AMS) hovers over a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2010-09-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead hoist lowers the Alpha Magnetic Spectrometer (AMS) onto a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2010-09-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians guide the Alpha Magnetic Spectrometer (AMS) onto a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2010-09-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer (AMS) is being prepared for its move to a rotation stand to begin processing for flight. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
Vibration Isolation for Launch of a Space Station Orbital Replacement Unit
NASA Technical Reports Server (NTRS)
Maly, Joseph R.; Sills, Joel W., Jr.; Pendleton, Scott C.; James, George H., III; Mimovich, Mark
2004-01-01
Delivery of Orbital Replacement Units (ORUs) to on-orbit destinations such a the International Space Station (ISS) and the Hubble Space Telescope is an important component of the space program. ORUs are integrated on orbit with space assets to maintain and upgrade functionality. For ORUs comprised of sensitive equipment, the dynamic launch environment drives design and testing requirements, and high frequency random vibrations are generally the cause for failure. Vibration isolation can mitigate the structure-borne vibration environment during launch, and hardware has been developed that can provide a reduced environment for current and future launch environments. Random vibration testing of one ORU to equivalent Space Shuttle launch levels revealed that its qualification and acceptance requirements were exceeded. An isolation system was designed to mitigate the structure-borne launch vibration environment. To protect this ORU, the random vibration levels at 50 Hz must be attenuated by a factor of two and those at higher frequencies even more. Design load factors for Shuttle launch are high, so a metallic load path is needed to maintain strength margins. Isolation system design was performed using a finite element model of the ORU on its carrier with representative disturbance inputs. Iterations on the modelled to an optimized design based on flight proven SoftRide MultiFlex isolators. Component testing has been performed on prototype isolators to validate analytical predictions.
Natural environment support guidelines for space shuttle tests and operations
NASA Technical Reports Server (NTRS)
Carter, E. A.; Brown, S. C.
1974-01-01
All space shuttle events from launch through solid rocket booster recovery and orbiter landing are considered in terms of constraints placed on those operations by the natural environment. Thunderstorm activity is discussed as an example of a possible hazard. The activities most likely to require advanced detection and monitoring techniques are identified as those from deorbit decision to Orbiter landing. The inflexible flight plan will require the transmission of real time wind profile information below 24 km and warnings of thunderstorms or turbulence in the Orbiter flight path. Extensive aerial reconnaissance and communication facilities and procedures to permit immediate transmission of aircraft reports to the mission control authority and to the Orbiter will also be required.
NASA Technical Reports Server (NTRS)
1995-01-01
From 1993 to 1995, in conjunction with other NASA centers, NASA Dryden Flight Research Center, Edwards, California, used a Convair CV-990 airplane as a Landing Systems Research Aircraft (LSRA) to perform Space Shuttle tire tests. The results provided the Space Shuttle Program with data to support its flight rules and enabled it to resurface a grooved runway at Kennedy Space Center that had added unnecessary wear to the Space Shuttle tires. Tests were done using a unique fixture mounted in the center of the CV-990 fuselage, between the main landing gear. Landing gear systems from other aircraft could be attached to the test fixture, which lowered them to the runway surface during actual landings. The LSRA had the ability to reproduce the loads and speeds of the other aircraft, as well as simulate crosswind landing conditions in a safe, controlled environment. The video clip shows a landing on the concrete runway at Edwards, California on August 11, 1995, which concluded the Space Shuttle gear research program. As the Space Shuttle tire was lowered onto the surface, it was destroyed almost instantly. The rim scraped on the concrete, and stopped rolling as it became flat. It heated up and left a flaming trail of hot rubber and aluminum alloy particles. Notice how the fire quickly went out as the test gear was raised, indicating a safer condition than prevailed in a lakebed landing.
Software for Engineering Simulations of a Spacecraft
NASA Technical Reports Server (NTRS)
Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis
2005-01-01
Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.
Postflight balance control recovery in an elderly astronaut: a case report
NASA Technical Reports Server (NTRS)
Paloski, William H.; Black, F. Owen; Metter, E. Jeffrey
2004-01-01
OBJECTIVE: To examine the sensorimotor adaptive response of a 77-year-old man exposed to the gravito-inertial challenges of orbital space flight. STUDY DESIGN: Prospective case study with retrospective comparisons. SETTING: NASA Neurosciences Laboratory (Johnson Space Center) and Baseline Data Collection Facility (Kennedy Space Center). PRIMARY PARTICIPANT: One 77-year-old male shuttle astronaut. INTERVENTION: Insertion into low Earth orbit was used to remove gravitational stimuli and thereby trigger sensorimotor adaptation to the microgravity environment. Graviceptor stimulation was reintroduced at landing, and sensorimotor readaptation to the terrestrial environment was tracked to completion. MAIN OUTCOME MEASURES: Computerized dynamic posturography tests were administered before and after orbital flight to determine the magnitude and time course of recovery. RESULTS: The elderly astronaut exhibited balance control performance decrements on landing day; however, there were no significant differences between his performance and that of younger astronauts tested on the same shuttle mission or on previous shuttle missions of similar duration. CONCLUSIONS: These results demonstrate that the physiological changes attributed to aging do not necessarily impair adaptive sensorimotor control processes.
Space Shuttle Projects Overview to Columbia Air Forces War College
NASA Technical Reports Server (NTRS)
Singer, Jody; McCool, Alex (Technical Monitor)
2000-01-01
This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.
Multianode microchannel array detectors for Space Shuttle imaging applications
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1981-01-01
The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric, photoncounting array detectors that have been developed and qualified specifically for use in space. MAMA detectors with formats as large as 256 x 1024 pixels are now in use or under construction for a variety of imaging and tracking applications. These photo-emissive detectors can be operated in a windowless configuration at extreme ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. The construction and modes-of-operation of the MAMA detectors are briefly described and the scientific objectives of a number of sounding rocket and Space Shuttle instruments utilizing these detectors are outlined. Performance characteristics of the MAMA detectors that are of fundamental importance for operation in the Space Shuttle environment are described and compared with those of the photo-conductive array detectors such as the CCDs and CIDs.
Environmental monitoring of Space Shuttle launches at Kennedy Space Center - The first ten years
NASA Technical Reports Server (NTRS)
Schmalzer, Paul A.; Hall, Carlton R.; Hinkle, C. R.; Duncan, Brean W.; Knott, William M., III; Summerfield, Burton R.
1993-01-01
Space Shuttle launches produce local environmental effects through the generation of a launcher exhaust plume that in turn produces acidic depositions and acute vegetation damage in the near-field environment; fish kills have also been noted in the lagoon or impoundment near each of the launch pads. Repeated launches lead to cumulative changes in plant community composition and structure, and temporary decreases in pH due to acidification increases metal availability in soil microcosms and surface waters. Direct effects on terrestrial fauna include the mortality of birds, mammals, amphibians, and reptiles in the near-field area.
Atmospheric environment for Space Shuttle (STS-3) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.; Batts, G. W.
1982-01-01
Selected atmospheric conditions observed near Space Shuttle STS-3 launch time on March 22, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prlaunch Jimsphere measured vertical wind profiles and the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-3 vehicle ascent and SRB descent were constructed. The STS-3 ascent meteorological data tape is constructed.
Smart active pilot-in-the-loop systems
NASA Astrophysics Data System (ADS)
Thomas, Segun
1995-04-01
Representation of on-orbit microgravity environment in a 1-g environment is a continuing problem in space engineering analysis, procedures development and crew training. A way of adequately depicting weightlessness in the performance of on-orbit tasks is by a realistic (or real-time) computer based representation that provides the look, touch, and feel of on-orbit operation. This paper describes how a facility, the Systems Engineering Simulator at the Johnson Space Center, is utilizing recent advances in computer processing power and multi- processing capability to intelligently represent all systems, sub-systems and environmental elements associated with space flight operations. It first describes the computer hardware and interconnection between processors; the computer software responsible for task scheduling, health monitoring, sub-system and environment representation; control room and crew station. It then describes, the mathematical models that represent the dynamics of contact between the Mir and the Space Shuttle during the upcoming US and Russian Shuttle/Mir space mission. Results are presented comparing the response of the smart, active pilot-in-the-loop system to non-time critical CRAY model. A final example of how these systems are utilized is given in the development that supported the highly successful Hubble Space Telescope repair mission.
Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
1984-01-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module, known as Kibo. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1990-01-01
Highlights of NASA research from 1986 to 1988 are discussed. Topics covered include Space Shuttle flights, understanding the Universe and its origins, understanding the Earth and its environment, air and space transportation, using space to make America more competitive, using space technology an Earth, strengthening America's education in science and technology, the space station, and human exploration of the solar system.
An Analysis of Shuttle Crew Scheduling Violations
NASA Technical Reports Server (NTRS)
Bristol, Douglas
2012-01-01
From the early years of the Space Shuttle program, National Aeronautics and Space Administration (NASA) Shuttle crews have had a timeline of activities to guide them through their time on-orbit. Planners used scheduling constraints to build timelines that ensured the health and safety of the crews. If a constraint could not be met it resulted in a violation. Other agencies of the federal government also have scheduling constraints to ensure the safety of personnel and the public. This project examined the history of Space Shuttle scheduling constraints, constraints from Federal agencies and branches of the military and how these constraints may be used as a guide for future NASA and private spacecraft. This was conducted by reviewing rules and violations with regard to human aerospace scheduling constraints, environmental, political, social and technological factors, operating environment and relevant human factors. This study includes a statistical analysis of Shuttle Extra Vehicular Activity (EVA) related violations to determine if these were a significant producer of constraint violations. It was hypothesized that the number of SCSC violations caused by EVA activities were a significant contributor to the total number of violations for Shuttle/ISS missions. Data was taken from NASA data archives at the Johnson Space Center from Space Shuttle/ISS missions prior to the STS-107 accident. The results of the analysis rejected the null hypothesis and found that EVA violations were a significant contributor to the total number of violations. This analysis could help NASA and commercial space companies understand the main source of constraint violations and allow them to create constraint rules that ensure the safe operation of future human private and exploration missions. Additional studies could be performed to evaluate other variables that could have influenced the scheduling violations that were analyzed.
What Threats to Human Health Does Space Radiation Pose in Orbit
NASA Technical Reports Server (NTRS)
Wu, Honglu; Semones, Eddie; Weyland, Mark; Zapp, Neal; Cucinotta, Francis A.
2011-01-01
The Space Shuttle program spanned more than the entire length of a solar cycle. Investigations aimed towards understanding the health risks of the astronauts from exposures to space radiation involved mostly physical measurements of the dose and the linear energy transfer (LET) spectrum. Measurement of the dose rate on the Shuttle provided invariable new data for different periods of the solar cycle, whereas measurement of the LET spectrum using the tissue equivalent proportional counter (TEPC) produced the most complete mapping of the radiation environment of the low Earth orbits (LEO). Exposures to the Shuttle astronauts were measured by the personal dosimeter worn by the crewmembers. Analysis of over 300 personal dosimeter readings indicated a dependence on the mission duration, the altitude and inclination of the orbit, and the solar cycle, with the crewmembers on the launch and repair of the Hubble telescope receiving the highest doses due to the altitude of the mission. Secondary neutrons inside the Shuttle were determined by recoil protons or with Bonner spheres, and may contribute significantly to the risks of the crewmembers. In addition, the skin dose and the doses received at different organs were compared using a human phantom onboard a Shuttle mission. A number of radiobiology investigations wer e also performed. The biological doses were determined on six astronauts/cosmonauts on long-duration Shuttle/Mir missions and on two crewmembers on a Hubble repair mission by analyzing the damages in the chromosomes of the crewmembers? white blood cells. Several experiments were also conducted to address the question of possible synergistic effects of spaceflight, microgravity in particular, on the repair of radiation-induced DNA damages. The experimental design included exposure of cells before launch, during flight, or after landing. These physical and biological studies were invaluable in predicting the health risks for astronauts on ISS and future exploration missions. Educational Objectives: A group of high school students flew color negative films on tw o Shuttle missions to detect the radiation environment in orbit. This and other experiments onboard of the Shuttle were aimed at educating the general public of the space program.
2010-08-26
CAPE CANAVERAL, Fla. -- Inside the C-5M aircraft that delivered the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, STS-134 Commander Mark Kelly, Mission Specialist Greg Chamitoff, European Space Agency astronaut Roberto Vittori and Mission Specialist Andrew Feustel speak with a member of the C-5M flight crew. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- Inside the C-5M aircraft that delivered the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, STS-134 Mission Specialists Greg Chamitoff and Andrew Feustel take a walk around the AMS still secured in the aircraft's cargo bay. In the background is European Space Agency astronaut Roberto Vittori. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload a section of the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload the next section of the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
ERIC Educational Resources Information Center
Reiss, Fred
1982-01-01
Students in two Camden County high schools planned and built a space shuttle project to send ants into space to examine the effects of weightlessness on a life colony. The experiments, tests, colony design, development of a computer-controlled environment, and production are described. (CM)
Development of advanced materials composites for use as insulations for LH2 tanks
NASA Technical Reports Server (NTRS)
Lemons, C. R.; Salmassy, O. K.
1973-01-01
A study of thread-reinforced polyurethane foam and glass fabric liner, serving as internally bonded insulation for space shuttle LH2 tanks, is reported. Emphasis was placed on an insulation system capable of reentry and multiple reuse in the shuttle environment. The optimized manufacturing parameters associated with each element of the composite are established and the results, showing successful completion of subscale system evaluation tests using the shuttle flight environmental requirements, are given.
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Batts, Wade
1997-01-01
The National Aeronautics and Space Administration (NASA) designated Marshall Space Flight Center (MSFC) the center of excellence for space transportation. The Aerospace Environments and Effects (AEE) team of the Electromagnetics and Aerospace Environments Branch (EL23) in the Systems Analysis and Integration Laboratory at MSFC, supports the center of excellence designation by providing near-Earth space, deep space, planetary, and terrestrial environments expertise to projects as required. The Terrestrial Environment (TE) group within the AEE team maintains an extensive TE data base. Statistics and models derived from this data are applied to the design and development of new aerospace vehicles, as well as performance enhancement of operational vehicles such as the Space Shuttle. The TE is defined as the Earth's atmospheric environment extending from the surface to orbital insertion altitudes (approximately 90 km).
1983-12-01
8217°%. .. o..’% - * 2’ . *. -o- . *o.oo o ,o ;j ’:-’ List of Figures Figure Page 1. System Identification of the Aerothermodynamic Environment of... System (STS) has of fered the engineering community a unique opportunity to flight test a reentry, hypersonic vehicle. The key 4 to the Shuttle’s...of the system (Refs. 7,8,9,10). Although the initial test flights have now been completed, data analysis and expansion of the existing data base
Human interactions in space: results from Shuttle/Mir
NASA Technical Reports Server (NTRS)
Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Kozerenko, O.; Sled, A.; Marmar, C. R.
2001-01-01
Background: Anecdotal reports from space and results from simulation studies on Earth have suggested that space crewmembers may experience decrements in their interpersonal environment over time and may displace tension and dysphoria to mission control personnel. Methods: To evaluate these issues, we studied 5 American astronauts, 8 Russian cosmonauts, and 42 American and 16 Russian mission control personnel who participated in the Shuttle/Mir space program. Subjects completed questions from subscales of the Profile of Mood States, the Group Environment Scale, and the Work Environment Scale on a weekly basis before, during, and after the missions. Results: Among the crewmembers, there was little evidence for significant time effects based on triphasic (U-shaped) or linear models for the 21 subscales tested, although the presence of an initial novelty effect that declined over time was found in three subscales for the astronauts. Compared with work groups on Earth, the crewmembers reported less dysphoria and perceived their crew environment as more constraining, cohesive, and guided by leadership. There was no change in ratings of mood and interpersonal environment before, during, and after the missions. Conclusions: There was little support for the presence of a moderate to strong time effect that influenced the space crews. Crewmembers perceived their work environment differently from people on Earth, and they demonstrated equanimity in mood and group perceptions, both in space and on the ground. Grant numbers: NAS9-19411. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dougherty, Sam; West, Jeff; Droege, Alan; Wilson, Josh; Liever, Peter; Slaby, Matthew
2006-01-01
This paper discusses the Space Shuttle Lift-off CFD model developed for potential Lift-off Debris transport for return-to-flight. The Lift-off portion of the flight is defined as the time starting with tanking of propellants until tower clear, approximately T0+6 seconds, where interactions with the launch pad cease. A CFD model containing the Space Shuttle and launch Pad geometry has been constructed and executed. Simplifications required in the construction of the model are presented and discussed. A body-fitted overset grid of up to 170 million grid points was developed which allowed positioning of the Vehicle relative to the Launch Pad over the first six seconds of Climb-Out. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the interactions of the Space Shuttle plumes, the wind environment, and their interactions with each other and the Launch Pad and their ultimate effect on potential debris during Lift-off.
STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight
NASA Technical Reports Server (NTRS)
1981-01-01
The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.
The Ascent Study - Understanding the Market Environment for the Follow-on to the Space Shuttle
NASA Astrophysics Data System (ADS)
Webber, Derek
2002-01-01
The ASCENT Study - Understanding the Market Environment for the Follow-on to NASA's Marshall Space Flight Center in Huntsville, Alabama, awarded a contract (base plus option amounting to twenty months of analysis) to Futron Corporation in June 2001 to investigate the market environment, and explore the price elasticity attributes, relevant for the introduction of the Second Generation Reusable Launch Vehicle (the follow-on to the Space Shuttle) in the second decade of this century. This work is known as the ASCENT Study (Analysis of Space Concepts Enabled by New Transportation) and data collection covering a total of 42 different sectors took place during 2001. Modeling and forecasting activities for 26 of these markets (all of them international in nature) have been taking place throughout 2002, and the final results of the ASCENT Study, which include 20 year forecasts, are due by the end of January, 2003. This paper describes the markets being analyzed for the ASCENT Study, and includes some preliminary findings in terms of launch vehicle demand during the next 20 years, broken down by mass class and mission type. Amongst these markets are the potential public space travel opportunities. When completed, the final report of the ASCENT Study is expected to represent a significant reference document for all business development, financing and planning activities in the space industry for some time to come. One immediate use will be as a key factor in determining the cargo capability and launch rates to be used for designing the follow-on to the Space Shuttle. The Study will also provide NASA with a quantified indication of the extent to which the lower cost to orbit, made possible by a new class of launch vehicle, will bring into being new markets.
1996-02-23
An STS-75 onboard photo of the Tethered Satellite System-1 Reflight (TSS-1R) atop its extended boom. The TSS-1R was a reflight of TSS-1, which was flown on the Space Shuttle in July/August, 1992. Building on the knowledge gained on the TSS-1 about tether dynamics, the TSS will circle the Earth at an altitude of 296 kilometers (184 miles), placing the tether system well within the rarefield, electrically charged layer of the atmosphere known as the ionosphere. The satellite was plarned to be deployed 20.7 kilometers (12.9 miles) above the Shuttle. The conducting tether, generating high voltage and electrical currents as it moves through the ionosphere cutting magnetic field lines, would allow scientists to examine the electrodynamics of a conducting tether system. In addition, the TSS would increase our understanding of physical processes in the near-Earth space environment, such as plasma waves and currents. The tether on the TSS broke as the Satellite was nearing the full extent of its 12.5 mile deployment from the Shuttle. The TSS was a cooperative development effort by the Italian Space Agency (ASI) and NASA, and was managed by scientists at the Marshall Space Flight Center.
A general-purpose development environment for intelligent computer-aided training systems
NASA Technical Reports Server (NTRS)
Savely, Robert T.
1990-01-01
Space station training will be a major task, requiring the creation of large numbers of simulation-based training systems for crew, flight controllers, and ground-based support personnel. Given the long duration of space station missions and the large number of activities supported by the space station, the extension of space shuttle training methods to space station training may prove to be impractical. The application of artificial intelligence technology to simulation training can provide the ability to deliver individualized training to large numbers of personnel in a distributed workstation environment. The principal objective of this project is the creation of a software development environment which can be used to build intelligent training systems for procedural tasks associated with the operation of the space station. Current NASA Johnson Space Center projects and joint projects with other NASA operational centers will result in specific training systems for existing space shuttle crew, ground support personnel, and flight controller tasks. Concurrently with the creation of these systems, a general-purpose development environment for intelligent computer-aided training systems will be built. Such an environment would permit the rapid production, delivery, and evolution of training systems for space station crew, flight controllers, and other support personnel. The widespread use of such systems will serve to preserve task and training expertise, support the training of many personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences. As a result, significant reductions in training costs can be realized while safety and the probability of mission success can be enhanced.
Expert system verification concerns in an operations environment
NASA Technical Reports Server (NTRS)
Goodwin, Mary Ann; Robertson, Charles C.
1987-01-01
The Space Shuttle community is currently developing a number of knowledge-based tools, primarily expert systems, to support Space Shuttle operations. It is proposed that anticipating and responding to the requirements of the operations environment will contribute to a rapid and smooth transition of expert systems from development to operations, and that the requirements for verification are critical to this transition. The paper identifies the requirements of expert systems to be used for flight planning and support and compares them to those of existing procedural software used for flight planning and support. It then explores software engineering concepts and methodology that can be used to satisfy these requirements, to aid the transition from development to operations and to support the operations environment during the lifetime of expert systems. Many of these are similar to those used for procedural hardware.
Point defect formation in optical materials expos ed to the space environment
NASA Astrophysics Data System (ADS)
Allen, J. L.; Seifert, N.; Yao, Y.; Albridge, R. G.; Barnes, A. V.; Tolk, N. H.; Strauss, A. M.; Linton, Roger C.; Kamenetzky, R. R.; Vaughn, Jason A.
1995-02-01
Point defect formation associated with early stages of optical damage was observed unexpectedly in two, and possibly three, different optical materials subjected to short-duration space exposure. Three calcium fluoride, two lithium fluoride, and three magnesium fluoride samples were flown on Space Shuttle flight STS-46 as part of the Evaluation of Oxygen Interactions with Materials - Third Phase experiment. One each of the calcium and magnesium fluoride samples was held at a fixed temperature of 60 C during the space exposure, while the temperatures of the other samples were allowed to vary with the ambient temperature of the shuttle cargo bay. Pre-flight and post-flight optical absorption measurements were performed on all of the samples. With the possible exception of the magnesium fluoride samples, every sample clearly showed the formation of F-centers in that section of the sample that was exposed to the low earth orbit environment. Solar vacuum ultraviolet radiation is the most probable primary cause of the defect formation; however, the resulting surface metallization may be synergistically altered by the atomic oxygen environment.
Sensitive observations with the Spacelab 2 infrared telescope
NASA Technical Reports Server (NTRS)
Young, E. T.; Rieke, G. H.; Gautier, T. N.; Hoffmann, W. F.; Low, F. J.; Poteet, W.; Fazio, G. G.; Koch, D.; Traub, W. A.; Urban, E. W.
1983-01-01
The small helium-cooled infrared telescope (Spacelab IRT) is a multiband instrument capable of highly sensitive observations from space. The experiment consists of a cryogenically cooled, very well baffled telescope with a ten channel focal plane array. During the Spacelab 2 flight of the Space Shuttle, this instrument will make observations between 5 and 120 micron wavelength that will be background limited by the expected zodiacal emission. Design considerations necessitated by this level of performance are discussed in this paper. In particular, the operation of a very sensitive focal plane array in the space environment is described. The Spacelab IRT will be used to map the extended, low-surface brightness celestial emission. During the seven day length of the mission better than 70 percent sky coverage is expected. The instrument will also be used to measure the infrared contamination environment of the Space Shuttle. This information will be important in the development of the next generation of infrared astronomical instruments. The performance of the Spacelab IRT, in particular its sensitivity to the contamination environment is detailed.
NASA Technical Reports Server (NTRS)
Hoffman, William C., III
1996-01-01
Determining deterioration characteristics of the Space Shuttle crew escape system pyrotechnic components loaded with hexanitrostilbene would enable us to establish a hardware life-limit for these items, so we could better plan our equipment use and, possibly, extend the useful life of the hardware. We subjected components to accelerated-age environments to determine degradation characteristics and established a hardware life-limit based upon observed and calculated trends. We extracted samples using manufacturing lots currently installed in the Space Shuttle crew escape system and from other NASA programs. Hardware included in the study consisted of various forms and ages of mild detonating fuse, linear shaped charge, and flexible confined detonating cord. The hardware types were segregated into 5 groups. One was subjected to detonation velocity testing for a baseline. Two were first subjected to prolonged 155 F heat exposure, and the other two were first subjected to 255 F, before undergoing detonation velocity testing and/or chromatography analysis. Test results showed no measurable changes in performance to allow a prediction of an end of life given the storage and elevated temperature environments the hardware experiences. Given the lack of a definitive performance trend, coupled with previous tests on post-flight Space Shuttle hardware showing no significant changes in chemical purity or detonation velocity, we recommend a safe increase in the useful life of the hardware to 20 years, from the current maximum limits of 10 and 15 years, depending on the hardware.
Mission Operations Directorate - Success Legacy of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Azbell, James A.
2011-01-01
In support of the Space Shuttle Program, as well as NASA s other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD s focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.
NASA Astrophysics Data System (ADS)
Kanas, Nick; Ritsher, Jennifer
2005-05-01
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.
Kanas, Nick; Ritsher, Jennifer
2005-01-01
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station. c2005 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Scott, David W.
2010-01-01
The Mission Operations Laboratory (MOL) at Marshall Space Flight Center (MSFC) is responsible for Engineering Support capability for NASA s Ares rocket development and operations. In pursuit of this, MOL is building the Ares Engineering and Operations Network (AEON), a web-based portal to support and simplify two critical activities: Access and analyze Ares manufacturing, test, and flight performance data, with access to Shuttle data for comparison Establish and maintain collaborative communities within the Ares teams/subteams and with other projects, e.g., Space Shuttle, International Space Station (ISS). AEON seeks to provide a seamless interface to a) locally developed engineering applications and b) a Commercial-Off-The-Shelf (COTS) collaborative environment that includes Web 2.0 capabilities, e.g., blogging, wikis, and social networking. This paper discusses how Web 2.0 might be applied to the typically conservative engineering support arena, based on feedback from Integration, Verification, and Validation (IV&V) testing and on searching for their use in similar environments.
Increasing the usefulness of Shuttle with SPACEHAB
NASA Astrophysics Data System (ADS)
Stone, Barbara A.; Rossi, David A.
1992-08-01
SPACEHAB is a pressurized laboratory, approximately 10 feet long and 13 feet in diameter, which fits in the forward position of the Shuttle payload bay and connects to the crew compartment through the Orbiter airlock. SPACEHAB modules may contain up to 61 standard middeck lockers, providing 1100 cubic feet of pressurized work space. SPACEHAB'S capacity offers crew-tended access to the microgravity environment for experimentation, technology development, and small-scale production. The modules are designed to facilitate the user's ability to quickly and inexpensively develop and integrate a microgravity payload. Payloads are typically integrated into the SPACEHAB module in standard SPACEHAB lockers or SPACEHAB racks. Lockers are designed to offer identical user interfaces as standard Space Shuttle middeck lockers. SPACEHAB racks are interchangeable with Space Station Freedom racks, allowing hardware to be qualified for early station use.
Containerless processing of glass forming melts in space
NASA Technical Reports Server (NTRS)
Day, D. E.; Ray, C. S.
1988-01-01
The near weightlessness of a material in the reduced gravity environment of space offers the opportunity of melting and cooling glass forming compositions without a container. This reduces the heterogeneous nucleation/crystallization which usually occurs at the walls of the container, thereby, extending the range of glass forming compositions. Based primarily on this idea, containerless glass forming experiments, which used a single axis acoustic levitator/furnace (SAAL), were conducted on SPAR rocket flights, 6 and 8, and on Space Shuttle mission, STS-7 and STS-61A. The experiments on the Space Shuttle were designed to include other studies related to melt homogenization and mixing, development of techniques for preparing uncontaminated preflight samples, and simple shaping experiments.
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Stanley Love checks the fit of his helmet for his launch and entry suit before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Love will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Stanley Love dons his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Love will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques
NASA Technical Reports Server (NTRS)
Rahmatsamii, Y.
1988-01-01
Future satellite communication and scientific spacecraft will utilize antennas with dimensions as large as 20 meters. In order to commercially use these large, low sidelobe and multiple beam antennas, a high level of confidence must be established as to their performance in the 0-g and space environment. Furthermore, it will be desirable to demonstrate the applicability of surface compensation techniques for slowly varying surface distortions which could result from thermal effects. An overview of recent advances in performing RF measurements on large antennas is presented with emphasis given to the application of a space based far-field range utilizing the Space Shuttle and the concept of a newly developed nonuniform sampling technique.
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Rex Walheim checks the helmet to his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Walheim will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Rex Walheim checks the helmet to his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Walheim will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Leland Melvin dons his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Melvin will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Leland Melvin tests his gloves for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Melvin will make his first shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
Suited for Spacewalking. Teacher's Guide with Activities for Physical and Life Science. Revised.
ERIC Educational Resources Information Center
Vogt, Gregory L.
This activity guide for teachers interested in using the intense interest many children have in space exploration as a launching point for exciting hands-on learning opportunities begins with brief discussions of the space environment, the history of spacewalking, the Space Shuttle spacesuit, and working in space. These are followed by a series of…
2003-08-12
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility can be seen the U.S. Node 2 (at left) and the Japanese Experiment Module (JEM)’s Pressurized Module (at right). The Italian-built Node 2, the second of three Space Station connecting modules, attaches to the end of the U.S. Lab and will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, later, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Node 2 is the designated payload for mission STS-120. No orbiter or launch date has been determined yet. The Pressurized Module is the first element of the JEM to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Hans Schlegel checks the helmet to his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Schlegel, who represents the European Space Agency, will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-12-03
KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Hans Schlegel dons his launch and entry suit for a final fitting before space shuttle Atlantis' launch scheduled for 4:31 p.m. EST on Dec. 6. Schlegel, who represents the European Space Agency, will make his second shuttle flight. Atlantis will carry the Columbus Lab, Europe’s largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2010-08-26
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-134 Mission Specialists Michael Fincke, Andrew Fuestel, Pilot Gregory C. Johnson, Commander Mark Kelly and Mission Specialist Greg Chamitoff (in blue flight suits) join the Air Force C-5M flight crew that delivered the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility, in a group photo opportunity. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller
Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program
NASA Technical Reports Server (NTRS)
Decker, Ryan; Leach, Richard
2004-01-01
The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.
2011-06-17
CAPE CANAVERAL, Fla. -- Workers attach umbilical hoses that maintain a controlled environment inside the canister carrying the Raffaello multi-purpose logistics module (MPLM). The payload was delivered to Launch Pad 39A at NASA's Kennedy Space Center in Florida for space shuttle Atlantis' STS-135 mission to the International Space Station. The canister is being lifted into the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Dimitri Gerondidakis
Microbiological Lessons Learned from the Space Shuttle
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.
2011-01-01
After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date.
STS-60 Cosmonauts in Weightless Environment Training Facility (WETF) training
1993-01-07
S93-26022 (Feb 1993) --- Russian cosmonaut Sergei Krikalev maneuvers a small life raft during bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Shuttle crew members frequently utilize the 25-ft. deep pool to learn proper procedures to follow in the event of emergency egress from their Space Shuttle via the escape pole system. Krikalev is one of two cosmonauts in training for the STS-60 mission. One of the two will serve as primary payload specialist with the other filling an alternate's role. This pool and the facility in which it is housed are titled the WET-F because they are also used by astronauts rehearsing both mission-specific and contingency extravehicular activities (EVA).
Space shuttle requirements/configuration evolution
NASA Technical Reports Server (NTRS)
Andrews, E. P.
1991-01-01
Space Shuttle chronology; Space Shuttle comparison; Cost comparison; Performance; Program ground rules; Sizing criteria; Crew/passenger provisions; Space Shuttle Main Engine (SSME) characteristics; Space Shuttle program milestones; and Space Shuttle requirements are outlined. This presentation is represented by viewgraphs.
Crewmembers sleeping in sleep restraints
1997-08-29
STS085-327-026 (7 - 19 August 1997) --- Payload specialist Bjarni V. Tryggvason, representing the Canadian Space Agency (CSA), sleeps on the Space Shuttle Discovery's mid-deck floor. Tryggvason elected to not use a pillow, allowing his head to float freely in the Microgravity environment.
2010-08-26
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the STS-134 crew is on hand for the arrival of the Alpha Magnetic Spectrometer, or AMS. At the microphone is Commander Mark Kelly and left to right are Mission Specialists Greg Chamitoff, Andrew Feustel, European Space Agency astronaut Roberto Vittori, Mission Specialist Michael Fincke and Pilot Gregory H. Johnson. AMS is a state-of-the-art particle physics detector is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett
2010-08-27
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician releases the bolts on a panel that protected the Alpha Magnetic Spectrometer, or AMS, during shipment. The Air Force C-5M flight crew that delivered AMS to Kennedy's Shuttle Landing Facility left their signatures and good wishes for the success of the mission on the panel. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
20 plus Years of Computational Fluid Dynamics for the Space Shuttle
NASA Technical Reports Server (NTRS)
Gomez, Reynaldo J., III
2011-01-01
This slide presentation reviews the use of computational fluid dynamics in performing analysis of the space shuttle with particular reference to the return to flight analysis and other shuttle problems. Slides show a comparison of pressure coefficient with the shuttle ascent configuration between the wind tunnel test and the computed values. the evolution of the grid system for the space shuttle launch vehicle (SSLv) from the early 80's to one in 2004, the grid configuration of the bipod ramp redesign from the original design to the current configuration, charts with the computations showing solid rocket booster surface pressures from wind tunnel data, calculated over two grid systems (i.e., the original 14 grid system, and the enhanced 113 grid system), and the computed flight orbiter wing loads are compared with strain gage data on STS-50 during flight. The loss of STS-107 initiated an unprecedented review of all external environments. The current SSLV grid system of 600+ grids, 1.8 Million surface points and 95+ million volume points is shown. The inflight entry analyses is shown, and the use of Overset CFD as a key part to many external tank redesign and debris assessments is discussed. The work that still remains to be accomplished for future shuttle flights is discussed.
STS-65 Mission Specialist Chiao in LES at pre-test WETF bailout briefing
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing on procedures that would become necessary in the event of an emergency egress situation from the Space Shuttle. The astronaut was in the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29 for the launch emergency egress training (bailout) exercise. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
NASA Manned Launch Vehicle Lightning Protection Development
NASA Technical Reports Server (NTRS)
McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.
2009-01-01
Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle, which has resulted in lost launch opportunities and increased expenditures in manpower to assess Space Shuttle vehicle health and safety after lightning events at the launch pad. Because of high-percentage launch availability and long-term on-pad requirements, LCC constraints are no longer considered feasible. The Constellation vehicles must be designed to withstand direct and indirect effects of lightning. A review of the vehicle design and potential concerns will be presented as well as the new catenary lightning protection system for the launch pad. This system is required to protect the Constellation vehicles during launch processing when vehicle lightning effects protection might be compromised by such items as umbilical connections and open access hatches.
Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements
NASA Technical Reports Server (NTRS)
Stec, Robert C.
1999-01-01
The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.
STS-54 toys in space experiment
1993-01-13
S93-25647 (6 Jan 1993) --- Part of the educational activities onboard the Space Shuttle Endeavour for STS-54 will include several experiments with various toys, some of which are depicted here. The detailed supplementary objective (DSO-802) will allow the Shuttle crewmembers to experiment with the various types of toys in a microgravity environment while talking to pupils who will be able to monitor (via classroom TV sets) the activities at a number of schools. Among toys seen here are a friction car and loop track, paper eagle, and a balloon helicopter.
Aerogel: Tile Composites Toughen a Brittle Superinsulation
NASA Technical Reports Server (NTRS)
White, Susan; Rasky, Daniel; Arnold, James O. (Technical Monitor)
1998-01-01
Pure aerogels, though familiar in the laboratory for decades as exotic lightweight insulators with unusual physical properties, have had limited industrial applications due to their low strength and high brittleness. Composites formed of aerogels and the ceramic fiber matrices like those used as space shuttle tiles bypass the fragility of pure aerogels and can enhance the performance of space shuttle tiles in their harsh operating environment. Using a layer of aerogel embedded in a tile may open up a wide range of applications where thermal insulation, gas convection control and mechanical strength matter.
Aerogel: Tile Composites Toughen a Brittle Superinsulation
NASA Technical Reports Server (NTRS)
White, Susan; Rasky, Daniel; Arnold, James O. (Technical Monitor)
1998-01-01
Pure aerogels, though familiar in the laboratory for decades as exotic lightweight insulators with unusual physical properties, have had limited industrial applications due to their low strength and high brittleness. Composites formed of aerogels and the ceramic fiber matrices used as space shuttle tiles bypass the fragility of pure aerogels and can enhance the performance of space shuttle tiles in their harsh operating environment. Using a layer of aerogel embedded in a tile may open up a wide range of applications where thermal insulation, gas convection control and mechanical strength matter.
2011-02-25
STS133-E-006008 (25 Feb. 2011) --- On space shuttle Discovery’s middeck, astronaut Nicole Stott, STS-133 mission specialist, enjoys a flight day 2 snack. She is holding an apple and a tortilla, food items that do not tend to create burdensome crumbs in the weightless environment of space. Photo credit: NASA or National Aeronautics and Space Administration
Emergency Medical Operations at Kennedy Space Center in Support of Space Shuttle
NASA Technical Reports Server (NTRS)
Myers, K. Jeffrey; Tipton, David A.; Woodard, Daniel; Long, Irene D.
1992-01-01
The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur.
Emergency medical operations at Kennedy Space Center in support of space shuttle
NASA Technical Reports Server (NTRS)
Myers, K. J.; Tipton, D. A.; Woodard, D.; Long, I. D.
1992-01-01
The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur.
An Induced Environment Contamination Monitor for the Space Shuttle
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor); Decher, R. (Editor)
1978-01-01
The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given.
Japanese Experiment Module arrival
2007-03-29
Inside the Space Station Processing Facility, workers monitor progress as a huge crane is used to remove the top of the crate carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Japanese Experiment Module arrival
2007-03-29
Inside the Space Station Processing Facility, the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is revealed after the top of the crate is removed. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
In the Space Station Processing Facility, the JEM Experiment Logistics Module Pressurized Section is lowered onto a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
System definition study of deployable, non-metallic space structures
NASA Technical Reports Server (NTRS)
Stimler, F. J.
1984-01-01
The state of the art for nonmetallic materials and fabrication techniques suitable for future space structures are summarized. Typical subsystems and systems of interest to the space community that are reviewed include: (1) inflatable/rigidized space hangar; (2) flexible/storable acoustic barrier; (3) deployable fabric bulkhead in a space habitat; (4) extendible tunnel for soft docking; (5) deployable space recovery/re-entry systems for personnel or materials; (6) a manned habitat for a space station; (7) storage enclosures external to the space station habitat; (8) attachable work stations; and (9) safe haven structures. Performance parameters examined include micrometeoroid protection; leakage rate prediction and control; rigidization of flexible structures in the space environment; flammability and offgassing; lifetime for nonmetallic materials; crack propagation prevention; and the effects of atomic oxygen and space debris. An expandable airlock for shuttle flight experiments and potential tethered experiments from shuttle are discussed.
NASA Technical Reports Server (NTRS)
Cohen, M. M.
1985-01-01
The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.
STS-69 Liftoff across the water (landscape)
NASA Technical Reports Server (NTRS)
1995-01-01
The fifth Space Shuttle flight of 1995 thunders aloft from Launch Pad 39A at 11:09:00.052 a.m. EDT, Sept. 7, 1995. On board the Space Shuttle Endeavour, making its ninth trip into space, are a crew of five, an assortment of experiments and two deployable scientific spacecraft: the Wake Shield Facility-2 (WSF-2) and the Spartan-201 free-flyer. The Wake Shield Facility-2 will fly free of the Shuttle for a period of time during the 11-day mission, during which it will generate an ultra-vacuum environment in space in which to grow thin semiconductor films for next- generation advanced electronics. The Spartan-201 free-flyer is a scientific research effort aimed at the investigation of the interaction between the sun and its outflowing wind of charged particles. Commanding the mission is David M. Walker; Kenneth D. Cockrell is the pilot; Michael L. Gernhardt and James H. Newman are mission specialists and James S. Voss is the payload commander. Also scheduled is an extravehicular activity, or spacewalk, by Voss and Gernhardt to rehearse space station activities as well as to evaluate space suit design modifications.
Weight minimization of structural components for launch in space shuttle
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Gendy, Atef S.; Hopkins, Dale A.; Berke, Laszlo
1994-01-01
Minimizing the weight of structural components of the space station launched into orbit in a space shuttle can save cost, reduce the number of space shuttle missions, and facilitate on-orbit fabrication. Traditional manual design of such components, although feasible, cannot represent a minimum weight condition. At NASA Lewis Research Center, a design capability called CometBoards (Comparative Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures) has been developed especially for the design optimization of such flight components. Two components of the space station - a spacer structure and a support system - illustrate the capability of CometBoards. These components are designed for loads and behavior constraints that arise from a variety of flight accelerations and maneuvers. The optimization process using CometBoards reduced the weights of the components by one third from those obtained with traditional manual design. This paper presents a brief overview of the design code CometBoards and a description of the space station components, their design environments, behavior limitations, and attributes of their optimum designs.
Development and approach to low-frequency microgravity isolation systems
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1990-01-01
The low-gravity environment provided by space flight has afforded the science community a unique arena for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment are being developed. The design constraints imposed by acceleration-sensitive, microgravity experiment payloads in the unique environment of space and a theoretical background for active isolation are discussed. A design is presented for a six-degree-of-freedom, active, inertial isolation system based on the baseline relative and inertial isolation techniques described.
Automatic mathematical modeling for space application
NASA Technical Reports Server (NTRS)
Wang, Caroline K.
1987-01-01
A methodology for automatic mathematical modeling is described. The major objective is to create a very friendly environment for engineers to design, maintain and verify their model and also automatically convert the mathematical model into FORTRAN code for conventional computation. A demonstration program was designed for modeling the Space Shuttle Main Engine simulation mathematical model called Propulsion System Automatic Modeling (PSAM). PSAM provides a very friendly and well organized environment for engineers to build a knowledge base for base equations and general information. PSAM contains an initial set of component process elements for the Space Shuttle Main Engine simulation and a questionnaire that allows the engineer to answer a set of questions to specify a particular model. PSAM is then able to automatically generate the model and the FORTRAN code. A future goal is to download the FORTRAN code to the VAX/VMS system for conventional computation.
Error protection capability of space shuttle data bus designs
NASA Technical Reports Server (NTRS)
Proch, G. E.
1974-01-01
Error protection assurance in the reliability of digital data communications is discussed. The need for error protection on the space shuttle data bus system has been recognized and specified as a hardware requirement. The error protection techniques of particular concern are those designed into the Shuttle Main Engine Interface (MEI) and the Orbiter Multiplex Interface Adapter (MIA). The techniques and circuit design details proposed for these hardware are analyzed in this report to determine their error protection capability. The capability is calculated in terms of the probability of an undetected word error. Calculated results are reported for a noise environment that ranges from the nominal noise level stated in the hardware specifications to burst levels which may occur in extreme or anomalous conditions.
NASA Technical Reports Server (NTRS)
Nelson, T. E.; Peterson, J. R.
1982-01-01
The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.
Post-Shuttle EVA Operations on ISS
NASA Technical Reports Server (NTRS)
West, William; Witt, Vincent; Chullen, Cinda
2010-01-01
The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1
Teleoperator systems for manned space missions
NASA Technical Reports Server (NTRS)
Interian, A.
1972-01-01
The development of remote mechanical systems to augment man's capabilities in our manned space effort is considered. A teleoperator system extends man's innate intelligence and sensory capabilities to distant hostile and hazardous environments through a manipulator-equipped spacecraft and an RF link. Examined are space teleoperator system applications in the space station/space shuttle program, which is where the most immediate need exists and the potential return is greatest.
Summary Status of the Space Acceleration Measurement System (SAMS), September 1993
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1993-01-01
The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the flrst Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered 18 gigabytes of data representing 68 days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and.the Microgravity Measurement and Analysis Project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.
Performance of an ablator for Space Shuttle inorbit repair in an arc-plasma airstream
NASA Technical Reports Server (NTRS)
Stewart, D. A.; Cuellar, M.; Flowers, O.
1983-01-01
An ablator patch material performed well in an arc plasma environment simulating nominal Earth entry conditions for the Space Shuttle. Ablation tests using vacuum molded cones provided data to optimize the formulation of a two part polymer system for application under space conditions. The blunt cones were made using a Teflon mold and a state of the art caulking gun. Char stability of formulations with various amounts of catalyst and diluent were investigated. The char was found to be unstable in formulations with low amounts of catalyst and high amounts of diluent. The best polymer system determined by these tests was evaluated using a half tile patch in a multiple High Temperature Reusable surface Insulation tile model. It was demonstrated that this ablator could be applied in a space environment using a state of the art caulking gun, would maintain the outer mold line of the thermal protection system during entry, and would keep the bond line temperature at the aluminum tile interface below the design limit.
Science in a Box: An Educator Guide with NASA Glovebox Activities in Science, Math, and Technology.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC. Education Dept.
The Space Shuttle and International Space Station provide a unique microgravity environment for research that is a critical part of the National Aeronautics and Space Administration's (NASA) mission to improve the quality of life on Earth and enable the health and safety of space explorers for long duration missions beyond our solar system. This…
2004-02-13
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers confirm the Multi-Purpose Logistics Module Donatello is safely in place on a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Multi-Purpose Logistics Module Donatello is slowly lowered toward a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2004-02-18
KENNEDY SPACE CENTER, FLA. - All three Multi-Purpose Logistics Modules are on the floor of the Space Station Processing Facility. This is the first time the three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is moved away from the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers help the Multi-Purpose Logistics Module Donatello settle onto a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello, is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Donatello is suspended by cables over the payload canister in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-18
KENNEDY SPACE CENTER, FLA. - This view reveals all three Multi-Purpose Logistics Modules on the floor of the Space Station Processing Facility. This is the first time all three - Leonardo, Raffaello and Donatello -- have been in one location. Donatello has been stored in the Operations and Checkout Building since its arrival at KSC and was brought into the SSPF for routine testing. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is tied up at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2006-06-29
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok packs the meals that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett
2006-06-29
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok packs the meals that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett
Voice loops as coordination aids in space shuttle mission control.
Patterson, E S; Watts-Perotti, J; Woods, D D
1999-01-01
Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.
Voice loops as coordination aids in space shuttle mission control
NASA Technical Reports Server (NTRS)
Patterson, E. S.; Watts-Perotti, J.; Woods, D. D.
1999-01-01
Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.
Space Shuttle main engine product improvement
NASA Technical Reports Server (NTRS)
Lucci, A. D.; Klatt, F. P.
1985-01-01
The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.
2003-06-09
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions
NASA Technical Reports Server (NTRS)
Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi
2009-01-01
Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the space flight environment may adversely affect the shelf life of pharmaceuticals aboard space missions.
Space shuttle booster multi-engine base flow analysis
NASA Technical Reports Server (NTRS)
Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.
1972-01-01
A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.
1992-08-24
This STS-46 onboard photo is of the Tethered Satellite System-1 (TSS-1) being deployed from its boom as it is perched above the cargo bay of the Earth-orbiting Space Shuttle Atlantis. Circling the Earth at an altitude of 296 kilometers (184 miles), the TSS-1 will be well within the tenuous, electrically charged layer of the atmosphere known as the ionosphere. There, a satellite attached to the orbiter by a thin conducting cord, or tether, will be reeled from the Shuttle payload bay. On this mission the satellite was plarned to be deployed 20 kilometers (12.5 miles) above the Shuttle. The conducting tether will generate high voltage and electrical currents as it moves through the atmosphere allowing scientists to examine the electrodynamics of a conducting tether system. These studies will not only increase our understanding of physical processes in the near-Earth space environment, but will also help provide an explanation for events witnessed elsewhere in the solar system. The crew of the STS-46 mission were unable to reel the satellite as planned. After several unsuccessful attempts, they were only able to extend the satellite 9.8 kilometers (6.1 miles). The TSS was a cooperative development effort by the Italian Space Agency (ASI), and NASA.
Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables
NASA Technical Reports Server (NTRS)
Johnson, D. W.; Curry, D. M.; Kelly, R. E.
1986-01-01
Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.
Atmospheric environment for Space Shuttle (STS-41D) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.
1984-01-01
Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments.
Columbia Crew Survival Investigation Report
NASA Technical Reports Server (NTRS)
2009-01-01
NASA commissioned the Columbia Accident Investigation Board (CAIB) to conduct a thorough review of both the technical and the organizational causes of the loss of the Space Shuttle Columbia and her crew on February 1, 2003. The accident investigation that followed determined that a large piece of insulating foam from Columbia s external tank (ET) had come off during ascent and struck the leading edge of the left wing, causing critical damage. The damage was undetected during the mission. The CAIB's findings and recommendations were published in 2003 and are available on the web at http://caib.nasa.gov/. NASA responded to the CAIB findings and recommendations with the Space Shuttle Return to Flight Implementation Plan. Significant enhancements were made to NASA's organizational structure, technical rigor, and understanding of the flight environment. The ET was redesigned to reduce foam shedding and eliminate critical debris. In 2005, NASA succeeded in returning the space shuttle to flight. In 2010, the space shuttle will complete its mission of assembling the International Space Station and will be retired to make way for the next generation of human space flight vehicles: the Constellation Program. The Space Shuttle Program recognized the importance of capturing the lessons learned from the loss of Columbia and her crew to benefit future human exploration, particularly future vehicle design. The program commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT). The SCSIIT was asked to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival for all future human space flight vehicles. To do this, the SCSIIT investigated all elements of crew survival, including the design features, equipment, training, and procedures intended to protect the crew. This report documents the SCSIIT findings, conclusions, and recommendations.
Human Space Exploration and Radiation Exposure from EVA: 1981-2011
NASA Astrophysics Data System (ADS)
Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.
2011-12-01
There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.
Photographic documentation of the PGIM-1 experiment during STS-100
2013-11-18
STS093-345-008 (22-27 July 1999) --- Close-up view of the Plant Growth Investigations in Microgravity (PGIM-1) payload experiment onboard the Earth-orbiting Space Shuttle Columbia. The PGIM-1 monitors the space flight environment for stressful conditions that affect plant growth.
STS-59 crewmembers during bailout training in WETF
1993-12-22
S93-50710 (22 Dec 1993) --- Astronaut Sidney M. Gutierrez, commander, takes a break during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Gutierrez and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Modular plant culture systems for life support functions
NASA Technical Reports Server (NTRS)
1985-01-01
The current state of knowledge with regard to culture of higher plants in the zero-G environment is assessed; and concepts for the empirical development of small plant growth chambers for the production of salad type vegetables on space shuttle or space station are evaluated. American and Soviet space flight experiences in gravitational biology are summarized.
2006-09-26
KENNEDY SPACE CENTER, FLA. - Workers mingle around the west door entry to the crew exploration vehicle (CEV) environment in the Operations and Checkout Building. A ribbon-cutting officially reactivated the entry. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
2006-09-26
KENNEDY SPACE CENTER, FLA. - Following ribbon-cutting ceremony, workers and officials wait outside the west door to the Operations and Checkout Building for its reactivation as the entry into the crew exploration vehicle environment. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
Shuttle Performance: Lessons Learned, part 1
NASA Technical Reports Server (NTRS)
Arrington, J. P. (Compiler); Jones, J. J. (Compiler)
1983-01-01
Beginning with the first orbital flight of the Space Shuttle, a great wealth of flight data became available to the aerospace community. These data were immediately subjected to analyses by several different groups with different viewpoints and motivations. The results were collected and presented in several papers in the subject areas of ascent and entry aerodynaics; guidance, navigation, and control; aerothermal environment prediction; thermal protection systems; and measurement techniques.
NASA Technical Reports Server (NTRS)
Wilson, Brad; Galatzer, Yishai
2008-01-01
The Space Shuttle is protected by a Thermal Protection System (TPS) made of tens of thousands of individually shaped heat protection tile. With every flight, tiles are damaged on take-off and return to earth. After each mission, the heat tiles must be fixed or replaced depending on the level of damage. As part of the return to flight mission, the TPS requirements are more stringent, leading to a significant increase in heat tile replacements. The replacement operation requires scanning tile cavities, and in some cases the actual tiles. The 3D scan data is used to reverse engineer each tile into a precise CAD model, which in turn, is exported to a CAM system for the manufacture of the heat protection tile. Scanning is performed while other activities are going on in the shuttle processing facility. Many technicians work simultaneously on the space shuttle structure, which results in structural movements and vibrations. This paper will cover a portable, ultra-fast data acquisition approach used to scan surfaces in this unstable environment.
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Burns, Lee; Merry, Carl; Harrington, Brian
2008-01-01
Atmospheric parameters are essential in assessing the flight performance of aerospace vehicles. The effects of the Earth's atmosphere on aerospace vehicles influence various aspects of the vehicle during ascent ranging from its flight trajectory to the structural dynamics and aerodynamic heatmg on the vehicle. Atmospheric databases charactenzing the wind and thermodynamic environments, known as Range Reference Atmospheres (RRA), have been developed at space launch ranges by a governmental interagency working group for use by aerospace vehicle programs. The National Aeronantics and Space Administration's (NASA) Space Shuttle Program (SSP), which launches from Kennedy Space Center, utilizes atmosphenc statistics derived from the Cape Canaveral Air Force Station Range Reference Atmosphere (CCAFS RRA) database to evaluate environmental constraints on various aspects of the vehlcle during ascent.
STS-60 Cosmonauts in Weightless Environment Training Facility (WETF) training
1993-01-07
S93-26021 (Feb 1993) --- Russian cosmonaut Sergei Krikalev maneuvers a small life raft during bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Two SCUBA-equipped divers assisted Krikalev in the STS-60 training exercise. Shuttle crew members frequently utilize the 25-ft. deep pool to learn proper procedures to follow in the event of emergency egress from their Space Shuttle via the escape pole system. Krikalev is one of two cosmonauts in training for the STS-60 mission. One of the two will serve as primary payload specialist with the other filling an alternate's role. This pool and the facility in which it is housed are titled the WET-F, because they are also used by astronauts rehearsing both mission-specific and contingency extravehicular activities (EVA).
The role of visual context in manual target localization
NASA Technical Reports Server (NTRS)
Barry, Susan R.
1993-01-01
During space flight and immediately after return to the 1-g environment of earth, astronauts experience perceptual and sensory-motor disturbances. These changes result from adaptation of the astronaut to the microgravity environment of space. During space flight, sensory information from the eyes, limbs, and vestibular organs is reinterpreted by the central nervous system in order to produce appropriate body movements in the microgravity. This adaptation takes several days to develop. Upon return to earth, the changes in the sensory-motor system are no longer appropriate to a 1-g environment. Over several days, the astronaut must re-adapt to the terrestrial environment. Alterations in sensory-motor function may affect eye-head-hand coordination and, thus, the crewmember's ability to manually locate objects in extrapersonal space. Previous reports have demonstrated that crewmembers have difficulty in estimating joint and limb position and in pointing to memorized target positions on orbit and immediately postflight. The ability to point at or reach toward an object or perform other manual tasks is essential for safe Shuttle operation and may be compromised particularly during re-entry and landing sequences and during possible emergency egress from the Shuttle. An understanding of eye-head-hand coordination and the changes produced during space flight is necessary to develop effective countermeasures. This summer's project formed part of the study of the sensory cues use in the manual localization of objects.
NASA Technical Reports Server (NTRS)
Whitson, D. W.
1975-01-01
The specific electrical discharge problems that can directly affect the shuttle vehicle and its payloads are addressed. General design guidelines are provided to assist flight hardware managers in minimizing these kinds of problems. Specific data are included on workmanship practices and system testing while in low pressure environments. Certain electrical discharge problems that may be unique to the design of the shuttle vehicle itself and to its various mission operational models are discussed.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.
Science Data Report for the Optical Properties Monitor (OPM) Experiment
NASA Technical Reports Server (NTRS)
Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)
2001-01-01
This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.
1992-08-24
A crewmember aboard the Space Shuttle Orbiter Atlantis (STS-46) used a 70mm handheld camera to capture this medium closeup view of early operations with the Tethered Satellite System (TSS). TSS-1 is being deployed from its boom as it is perched above the cargo bay of the Earth-orbiting Shuttle circling the Earth at an altitude of 296 kilometers (184 miles), the TSS-1 will be well within the tenuous, electrically charged layer of the atmosphere known as the ionosphere. There, a satellite attached to the orbiter by a thin conducting cord, or tether, will be reeled from the Shuttle payload bay. On this mission the satellite was plarned to be deployed 20 kilometers (12.5 miles) above the Shuttle. The conducting tether will generate high voltage and electrical currents as it moves through the atmosphere allowing scientists to examine the electrodynamics of a conducting tether system. These studies will not only increase our understanding of physical processes in the near-Earth space environment, but will also help provide an explanation for events witnessed elsewhere in the solar system. The crew of the STS-46 mission were unable to reel the satellite as planned. After several unsuccessful attempts, they were only able to extend the satellite 9.8 kilometers (6.1 miles). The TSS was a cooperative development effort by the Italian Space Agency (ASI), and NASA.
2008-09-24
CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, ramps are in place for the offloading of the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann
2008-09-24
CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers remove material from a cargo box before offloading the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann
2008-09-24
CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, equipment is removed from the Russian Antonov AH-124-100 cargo airplane to facilitate offloading of the primary cargo, the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. The components are the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann
Toward large space systems. [Space Construction Base development from shuttles
NASA Technical Reports Server (NTRS)
Daros, C. J.; Freitag, R. F.; Kline, R. L.
1977-01-01
The design of the Space Transportation System, consisting of the Space Shuttle, Spacelab, and upper stages, provides experience for the development of more advanced space systems. The next stage will involve space stations in low earth orbit with limited self-sufficiency, characterized by closed ecological environments, space-generated power, and perhaps the first use of space materials. The third phase would include manned geosynchronous space-station activity and a return to lunar operations. Easier access to space will encourage the use of more complex, maintenance-requiring satellites than those currently used. More advanced space systems could perform a wide range of public services such as electronic mail, personal and police communication, disaster control, earthquake detection/prediction, water availability indication, vehicle speed control, and burglar alarm/intrusion detection. Certain products, including integrated-circuit chips and some enzymes, can be processed to a higher degree of purity in space and might eventually be manufactured there. Hardware including dishes, booms, and planar surfaces necessary for advanced space systems and their development are discussed.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-109
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-110
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-105
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-104
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-108
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Vaughan, W. W.
1999-01-01
This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.
Astronaut Kevin Chilton takes a break during bailout training
1993-12-22
S93-50720 (22 Dec 1993) --- Astronaut Kevin P. Chilton, pilot, takes a break during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Chilton and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Astronaut Sidney Gutierrez suspended by parachute during bailout training
1993-12-22
S93-50718 (22 Dec 1993) --- Astronaut Sidney M. Gutierrez, commander, is suspended by his parachute gear during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Gutierrez and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Astronaut Thomas Jones during emergency bailout training in WETF
1993-06-02
S93-43108 (2 June 1993) --- Astronaut Thomas D. Jones, mission specialist, takes a break during emergency bailout training at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Jones and five other NASA astronauts are scheduled to fly aboard the Space Shuttle Endeavour next year.
Reisman floats in the FWD MDDK during STS-132
2010-05-15
S132-E-007185 (15 May 2010) --- NASA astronaut Garrett Reisman, STS-132 mission specialist, takes advantage of the weightless environment on the middeck of the Earth-orbiting space shuttle Atlantis to get creative with his posture during Flight Day 2 activities. Photo credit: National Aeronautics and Space Administration
Mission Evaluation Room Intelligent Diagnostic and Analysis System (MIDAS)
NASA Technical Reports Server (NTRS)
Pack, Ginger L.; Falgout, Jane; Barcio, Joseph; Shnurer, Steve; Wadsworth, David; Flores, Louis
1994-01-01
The role of Mission Evaluation Room (MER) engineers is to provide engineering support during Space Shuttle missions, for Space Shuttle systems. These engineers are concerned with ensuring that the systems for which they are responsible function reliably, and as intended. The MER is a central facility from which engineers may work, in fulfilling this obligation. Engineers participate in real-time monitoring of shuttle telemetry data and provide a variety of analyses associated with the operation of the shuttle. The Johnson Space Center's Automation and Robotics Division is working to transfer advances in intelligent systems technology to NASA's operational environment. Specifically, the MER Intelligent Diagnostic and Analysis System (MIDAS) project provides MER engineers with software to assist them with monitoring, filtering and analyzing Shuttle telemetry data, during and after Shuttle missions. MIDAS off-loads to computers and software, the tasks of data gathering, filtering, and analysis, and provides the engineers with information which is in a more concise and usable form needed to support decision making and engineering evaluation. Engineers are then able to concentrate on more difficult problems as they arise. This paper describes some, but not all of the applications that have been developed for MER engineers, under the MIDAS Project. The sampling described herewith was selected to show the range of tasks that engineers must perform for mission support, and to show the various levels of automation that have been applied to assist their efforts.
Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation
NASA Technical Reports Server (NTRS)
Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip
2006-01-01
The Space Shuttle External Tank is covered with rigid polymeric closed-cell foam insulation to prevent ice formation, protect the metallic tank from aerodynamic heating, and control the breakup of the tank during re-entry. The cryogenic state of the tank, as well as the ascent into a vacuum environment, places this foam under significant stress. Because the loss of the foam during ascent poses a critical risk to the shuttle orbiter, there is much interest in understanding the stress state in the foam insulation and how it may contribute to fracture and debris loss. Several foam applications on the external tank have been analyzed using finite element methods. This presentation describes the approach used to model the foam material behavior and compares analytical results to experiments.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
NASA Technical Reports Server (NTRS)
1973-01-01
Techniques are considered which would be used to characterize areospace computers with the space shuttle application as end usage. The system level digital problems which have been encountered and documented are surveyed. From the large cross section of tests, an optimum set is recommended that has a high probability of discovering documented system level digital problems within laboratory environments. Defined is a baseline hardware, software system which is required as a laboratory tool to test aerospace computers. Hardware and software baselines and additions necessary to interface the UTE to aerospace computers for test purposes are outlined.
Space shuttle onboard navigation console expert/trainer system
NASA Technical Reports Server (NTRS)
Wang, Lui; Bochsler, Dan
1987-01-01
A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.
NASA Technical Reports Server (NTRS)
1995-01-01
The seventh day of the STS-70 Space Shuttle Discovery mission is featured on this video. The astronauts obtained a successful alignment of the Hercules geo-locating camera and evaluated the manual setup procedures for the rotating wall Bioreactor. Specialist Don Thomas activated and deactivated the Microencapsulation in Space experiment, using a device that produces a timed-release of an antibiotic medication in a weightlessness environment. The Discovery crew begins to wrap up their experiments after a week of gathering data, ranging from observations of Earth's surface and atmosphere to biological studies. There are several minutes of Shuttle observations of Earth included.
Environment effects from SRB exhaust effluents: Technique development and preliminary assessment
NASA Technical Reports Server (NTRS)
Goldford, A. I.; Adelfang, S. I.; Hickey, J. S.; Smith, S. R.; Welty, R. P.; White, G. L.
1977-01-01
Techniques to determine the environmental effects from the space shuttle SRB (Solid Rocket Booster) exhaust effluents are used to perform a preliminary climatological assessment. The exhaust effluent chemistry study was performed and the exhaust effluent species were determined. A reasonable exhaust particle size distribution is constructed for use in nozzle analyses and for the deposition model. The preliminary assessment is used to identify problems that are associated with the full-scale assessment; therefore, these preliminary air quality results are used with caution in drawing conclusion regarding the environmental effects of the space shuttle exhaust effluents.
Pilot Overmyer eats on middeck
1982-11-16
STS005-15-588 (13 Nov. 1982) --- Astronaut Robert F. Overmyer, STS-5 pilot, enjoys a meal from a jury-rigged set-up in the middeck area of the Earth-orbiting space shuttle Columbia. He wears a T-shirt and the trouser portion of a multi-piece constant wear garment. His feet are positioned in recently-rigged foot restraints to avoid involuntary movement in the micro-gravity environment of space. Behind Overmyer are components of the suit, including helmet, worn during landing and takeoff for shuttle flights. The trousers he is presently wearing are part of that attire. Photo credit: NASA
Advanced automation in space shuttle mission control
NASA Technical Reports Server (NTRS)
Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.
1991-01-01
The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-06-04
KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
Human interactions in space: ISS vs. Shuttle/Mir
NASA Astrophysics Data System (ADS)
Kanas, N. A.; Salnitskiy, V. P.; Ritsher, J. B.; Gushin, V. I.; Weiss, D. S.; Saylor, S. A.; Kozerenko, O. P.; Marmar, C. R.
2006-07-01
This paper compares findings from two NASA-funded studies of international long-duration missions to the Mir space station (Shuttle/Mir) and to the International Space Station (ISS). American and Russian crewmembers and mission control personnel participated. Issues examined included changes in mood and group social climate over time, displacement of group tension to outside monitoring personnel, cultural differences, and leadership roles. Findings were based on the completion of a weekly questionnaire that included items from the Profile of Mood States, the Group Environment Scale, and the Work Environment Scale. An examination of issues investigated in both studies revealed much similarity in findings. There was little support for the presence of changes in levels of mood and group climate over time, and no evidence for a "3rd quarter phenomenon". Both studies also provided evidence for the displacement of negative emotions to outside personnel in both crewmembers and mission control personnel. There were similar patterns of differences between Americans and Russians and between crewmembers and mission control personnel. Finally, in both studies, the support role of the leader was related to group cohesion among crewmembers, and both the task and support roles of the leader were related to cohesion among mission control personnel. Thus, in these four areas, the ISS study substantially replicated the findings from the earlier Shuttle/Mir study, suggesting that common psychosocial issues affect people engaged in on-orbit space missions.
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Rajkumar, T.
2003-01-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
Intelligent launch and range operations virtual testbed (ILRO-VTB)
NASA Astrophysics Data System (ADS)
Bardina, Jorge; Rajkumar, Thirumalainambi
2003-09-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
1983-07-01
problems . Six appendices offer more detailed environmental assessments for the key issues of air quality impacts, inadvertent weather modification...research studies in problem areas, and newly- acquired knowledge of the affected environment. The physical, chemi- cal, biological, and...Shuttle program, in conjunction with other projects within the county, will aggravate short-tenm problems concerning housing, and the quality and quantity
The BIMDA shuttle flight mission - A low cost MPS payload
NASA Technical Reports Server (NTRS)
Holemans, Jaak; Cassanto, John M.; Morrison, Dennis; Rose, Alan; Luttges, Marvin
1990-01-01
The design, operation, and experimental protocol of the Bioserve-ITA Materials Dispersion Apparatus Payload (BIMDA) to be flown on the Space Shuttle on STS-37 are described. The aim of BIMDA is to investigate the methods and commercial potential of biomedical and fluid science applications in the microgravity environment. The BIMDA payload operations are diagrammed, and the payload components and experiments are listed, including the investigators and sponsoring institutions.
Development of a thermoelectric one-man cooler for use by NASA astronauts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heenan, P.; Mathiprakasam, B.; DeMott, D.
This paper presents the development of a one-man thermoelectric (TE) cooling unit designed for use by NASA astronauts while they are wearing a protective suit during the launch and reentry phases of space shuttle missions. The unit was designed to provide a low-cooling level of 340 Btu/hour in a 75{degree}F environment and a high-cooling level of 480 Btu/hour in a 95{degree}F environment. The unit has an envelope 8 inches wide by 11 inches high by 4.5 inches deep. The TE unit was designed to optimize space and power consumption while providing adequate cooling. The operation of the TE cooling unitmore » requires {similar_to}1.2 amps of 28 VDC power in the low power mode and {similar_to}3.0 amps of 28 VDC power in the high power mode. Two of these units have flown on several shuttle missions this year and are scheduled for continued use on future missions. The response to the TE unit`s performance has been very positive from the shuttle crew. Additional units are being fabricated to keep the shuttle crew members cooled while final development is under way. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.« less
Mass loss of TEOS-coated RCC subjected to the environment at the shuttle wing leading edge
NASA Technical Reports Server (NTRS)
Stroud, C. W.; Rummler, D. R.
1981-01-01
Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the Space Shuttle. The mass loss characteristics of RCC specimens coated with tetra-ethyl-ortho-silicate (TEOS) were determined for conditions which simulated the entry environment expected at the stagnation area of the wing leading edge. Maximum specimen temperature was 1632 K. Specimens were exposed for up to 100 missions. Stress levels up to 8.274 MPa caused an average increase in oxidation of 6 percent over unstressed specimens. Experimentally determined mass losses were compared with those predicted by an existing empirical analysis.
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.
2006-09-26
KENNEDY SPACE CENTER, FLA. - Inside the Operations and Checkout Building, Center Director Jim Kennedy (second from right) joins workers and officials after the ceremony that reactivated the entry into this crew exploration vehicle (CEV) environment. During the rest of the decade, KSC will transition from launching space shuttles to launching new vehicles in NASA’s Vision For Space Exploration. Photo credit: NASA/Kim Shiflett
ASTRONAUT YOUNG, JOHN W. - ZERO-GRAVITY (ZERO-G) - KC-135
1978-12-15
S79-30347 (31 March 1979) --- Taking advantage of a brief period of zero-gravity afforded aboard a KC-135 flying a parabolic curve, the flight crew of the first space shuttle orbital flight test (STS-1) goes through a spacesuit donning exercise. Astronaut John W. Young has just entered the hard-material torso of the shuttle spacesuit by approaching it from below. He is assisted by astronaut Robert L. Crippen. The torso is held in place by a special stand here, simulating the function provided by the airlock wall aboard the actual shuttle craft. The life support system is mated to the torso on Earth and remains so during the flight, requiring this type of donning and doffing exercise. Note Crippen?s suit is the type to be used for intravehicular activity in the shirt sleeve environment to be afforded aboard shuttle. The suit worn by Young is for extravehicular activity (EVA). Young will be STS-1 commander and Crippen, pilot. They will man the space shuttle orbiter 102 Columbia. Photo credit: NASA
Fine Pointing Of The Solar Optical Telescope In The Space Shuttle Environment
NASA Astrophysics Data System (ADS)
Gowrinathan, Sankaran
1987-02-01
Instruments attached to the payload bay of the Space Shuttle require special attention where fine pointing is involved. Fine pointing, for purposes of this discussion, is defined as sub-arc second pointing. Instruments requiring such fine pointing (Solar Optical Telescope and Shuttle Infrared Telescope, for example) will require two stages of pointing (coarse and fine). Coarse pointing will be performed by a gimbal system such as the Instrument Pointing System (IPS). Fine pointing will be provided by image motion compensation (IMC). Most forms of IMC involve adjustable optical elements in the optical system to compensate for fast transient disturbances. This paper describes work performed on the Solar Optical Telescope (SOT) concept design that illustrates IMC as applied to SOT. The fine pointing requirements on SOT dictate use of IMC at about 20 Hz. bandwidth. It will be shown that the need for this high bandwidth is related to shuttle-induced disturbances. Shuttle-induced disturbances are primarily due to two sources; man push-offs and vernier thruster firings. Both disturbance sources have high-frequency content that drive the IMC bandwidth.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
An overhead crane moves the JEM Experiment Logistics Module Pressurized Section above the floor of the Space Station Processing Facility to a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
In the Space Station Processing Facility, an overhead crane moves the JEM Experiment Logistics Module Pressurized Section toward a scale (at left) for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
The JEM Experiment Logistics Module Pressurized Section is lifted from its shipping crate in the Space Station Processing Facility. The module will be moved to a scale for weight and center-of-gravity measurements and then to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
In the Space Station Processing Facility, an overhead crane lifts the JEM Experiment Logistics Module Pressurized Section from its shipping container and moves it toward a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
NASA Technical Reports Server (NTRS)
Taylor, Edith C.; Ross, Michael
1989-01-01
The Shuttle Remote Manipulator System is a mature system which has successfully completed 18 flights. Its primary functional design driver was the capability to deploy and retrieve payloads from the Orbiter cargo bay. The Space Station Freedom Mobile Servicing Center is still in the requirements definition and early design stage. Its primary function design drivers are the capabilities: to support Space Station construction and assembly tasks; to provide external transportation about the Space Station; to provide handling capabilities for the Orbiter, free flyers, and payloads; to support attached payload servicing in the extravehicular environment; and to perform scheduled and un-scheduled maintenance on the Space Station. The differences between the two systems in the area of geometric configuration, mobility, sensor capabilities, control stations, control algorithms, handling performance, end effector dexterity, and fault tolerance are discussed.
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-14
KENNEDY SPACE CENTER, FLA. -- In the cryogenic test bed facility at NASA's Kennedy Space Center, Time Domain Reflectometry, or TDR, instrumentation is being exposed to "wet" super-cold temperatures for identifying the signature of a cryogenic environment and calibrating the TDR equipment. The equipment will be used at the launch pad to test a procedure identical to a tanking test on space shuttle Atlantis' external tank planned for Dec. 18. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the engine cut-off, or ECO, sensor system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
Toward a history of the space shuttle. An annotated bibliography
NASA Technical Reports Server (NTRS)
Launius, Roger D. (Compiler); Gillette, Aaron K. (Compiler)
1992-01-01
This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work.
Plant growth chamber based on space proven controlled environment technology
NASA Astrophysics Data System (ADS)
Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.
1997-01-01
Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.
Random Access Frame (RAF) System Neutral Buoyancy Evaluations
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Polit-Casillas, Raul; Akin, David L.; McBryan, Katherine; Carlsen, Christopher
2015-01-01
The Random Access Frame (RAF) concept is a system for organizing internal layouts of space habitats, vehicles, and outposts. The RAF system is designed as a more efficient improvement over the current International Standard Payload Rack (ISPR) used on the International Space Station (ISS), which was originally designed to allow for swapping and resupply by the Space Shuttle. The RAF system is intended to be applied in variable gravity or microgravity environments. This paper discusses evaluations and results of testing the RAF system in a neutral buoyancy facility simulating low levels of gravity that might be encountered in a deep space environment.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (third from left) watch as a USA technician (right) creates a tile for use in the Shuttle's Thermal Protection System (TPS). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2007-12-03
KENNEDY SPACE CENTER, FLA. -- After the mission STS-122 crew's arrival at NASA's Kennedy Space Center, Mission Specialist Hans Schlegel is introduced during a media opportunity on the Shuttle Landing Facility. Schlegel represents the European Space Agency. The crew's arrival signals the imminent launch of space shuttle Atlantis on mission STS-122. The launch countdown begins at 7 p.m. Dec. 3. Launch is scheduled for 4:31 p.m. EST on Dec. 6. Atlantis will carry the Columbus Lab, Europe's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett
2007-09-28
KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett
2007-09-28
KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett
2007-09-28
KENNEDY SPACE CENTER, FLA. -- STS-122 crew members get a close look at shuttle equipment from inside the payload bay of space shuttle Atlantis. The crew comprises six astronauts: Commander Stephen Frick, Pilot Alan Poindexter and Mission Specialists Rex Walheim, Stanley Love, Leland Melvin and Hans Schlegel, who represents the European Space Agency. A seventh astronaut is Leopold Eyharts, also with the ESA, who will join the Expedition 16 crew as flight engineer on the International Space Station. The mission will carry and install the Columbus Lab, a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. It is Europe’s largest contribution to the construction of the International Space Station and will support scientific and technological research in a microgravity environment. STS-122 is targeted for launch in December. Photo credit: NASA/Kim Shiflett
2006-06-29
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok stows packages of food that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett
2006-06-29
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok closes a container of food packages that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett
2006-06-29
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, Michele Perchonok stows packages of food that the STS-121 crew will eat on the 12-day mission. Perchonok is a NASA Subsystem manager for Shuttle Food Systems from Johnson Space Center. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Diets are designed to supply each astronaut with 100 percent of the daily value of vitamins and minerals necessary for the environment of space. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. A supplementary food supply (pantry) consisting of two extra days per person is stowed aboard the space shuttle for each flight. Pantry items are flown in addition to the menu in case the flight is unexpectedly extended because of bad weather at the landing site or for some other unforeseen reason. Photo credit: NASA/Kim Shiflett
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2004-02-10
KENNEDY SPACE CENTER, FLA. - The Multi-Purpose Logistics Module Raffaello moves away from its stand in the Space Station Processing Facility. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It is being moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - Overhead cables carry the Multi-Purpose Logistics Module Donatello from the payload canister (lower right) to a work stand in the Space Station Processing Facility. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside onto a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2004-02-10
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility secure the Multi-Purpose Logistics Module Raffaello onto a new work stand. Raffaello is the second MPLM built by the Italian Space Agency, serving as a reusable logistics carrier and primary delivery system to resupply and return station cargo requiring a pressurized environment. It has been moved to allow the third MPLM, Donatello, to be brought in for routine testing. Donatello has been stored in the Operations and Checkout Building. This is the first time all three MPLMs are in the SSPF; the other one is the Leonardo. Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2004-02-13
KENNEDY SPACE CENTER, FLA. - Workers on the floor of the Space Station Processing Facility watch as overhead cables carry the Multi-Purpose Logistics Module Donatello to a work stand. Previously housed in the Operations and Checkout Building, Donatello was brought into the SSPF for routine testing. This is the first time all three MPLMs (Donatello, Raffaello and Leonardo) are in the SSPF. The MPLMs were built by the Italian Space Agency, to serve as reusable logistics carriers and the primary delivery system to resupply and return station cargo requiring a pressurized environment. The third MPLM, Raffaello is scheduled to fly on Space Shuttle Atlantis on mission STS-114.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers in the hold of a ship attach a crane to the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The ship brought the module from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is ready for lifting out of the hold of the ship that brought it from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Loh, Yin C.; Boster, John; Hwu, Shian; Watson, John C.; deSilva, Kanishka; Piatek, Irene (Technical Monitor)
1999-01-01
The Wireless Video System (WVS) provides real-time video coverage of astronaut extra vehicular activities during International Space Station (ISS) assembly. The ISS wireless environment is unique due to the nature of the ISS structure and multiple RF interference sources. This paper describes how the system was developed to combat multipath, blockage, and interference using an automatic antenna switching system. Critical to system performance is the selection of receiver antenna installation locations determined using Uniform Geometrical Theory of Diffraction (GTD) techniques.
A Study of Rapidly Developing Low Cloud Ceilings in a Stable Atmosphere at the Florida Spaceport
NASA Technical Reports Server (NTRS)
Wheeler, Mark M.; Case, Jonathan L.; Baggett, G. Wayne
2006-01-01
Forecasters at the Space Meteorology Group (SMG) issue 30 to 90 minute forecasts for low cloud ceilings at the Shuttle Landing Facility (KTTS) in Kennedy Space Center, FL for all Space Shuttle missions. Mission verification statistics have shown cloud ceilings to be the biggest forecast challenge. SMG forecasters are especially concerned with rapidly developing cloud ceilings below 8000 ft. in a stable, capped thermodynamic environment because ceilings below 8000 ft restrict Shuttle landing operations and are the most challenging to predict accurately. This project involves the development of a database of these cases over east-central Florida in order to identify the onset, location, and if possible, dissipation times of rapidly-developing low cloud ceilings. Another goal is to document the atmospheric regimes favoring this type of cloud development to improve forecast skill of such events during Space Shuttle launch and landing operations. A 10-year database of stable, rapid low cloud development days during the daylight hours was compiled for the Florida cool-season months by examining the Cape Canaveral Air Force Station sounding data, and identifying days that had high boundary layer relative humidity associated with a thermally-capped environment below 8000 ft. Archived hourly surface observations from KTTS and Melbourne, Orlando, Sanford, and Ocala, FL were then examined for the onset of cloud ceilings below 8000 ft between 1100 and 2000 UTC. Once the database was supplemented with the hourly surface cloud observations, visible satellite imagery was examined in 30-minute intervals to confirm event occurrences. This paper will present results from some of the rapidly developing cloud ceiling cases and the prevailing meteorological conditions associated with these events, focusing on potential pre-curser information that may help improve their prediction.
NASA Technical Reports Server (NTRS)
Visentine, James T.; Leger, Lubert J.
1987-01-01
To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.
NASA Technical Reports Server (NTRS)
Chase, Thaddeus J.
1993-01-01
Extensive experimental investigation has been carried out on used flight bearings of the high pressure oxidizer turbopumps (HPOTP) of the space shuttle main engine (SSME) in order to determine the dominant wear modes, their extent, and causes. The paper presents the methodology, various surface analysis techniques used, results, and discussion. The mode largely responsible for premature bearing wear has been identified as adhesive/shear peeling of the upper layers of bearing balls and rings. This mode relies upon the mechanisms of scale formation, breakdown, and removal, all of which are greatly enhanced by the heavy oxidation environment of the HPOTP. Major causes of the high wear rates appear to be lubrication and cooling, both inadequate for the imposed conditions of operation. Numerous illustrations and evidence are provided.
Space shuttle electromagnetic environment experiment. Phase A: Definition study
NASA Technical Reports Server (NTRS)
Haber, F.; Showers, R. M.; Taheri, S. H.; Forrest, L. A., Jr.; Kocher, C.
1974-01-01
A program is discussed which develops a concept for measuring the electromagnetic environment on earth with equipment on board an orbiting space shuttle. Earlier work on spaceborne measuring experiments is reviewed, and emissions to be expected are estimated using, in part, previously gathered data. General relations among system parameters are presented, followed by a proposal on spatial and frequency scanning concepts. The methods proposed include a nadir looking measurement with small lateral scan and a circularly scanned measurement looking tangent to the earth's surface at the horizon. Antenna requirements are given, assuming frequency coverage from 400 MHz to 40 GHz. For the low frequency range, 400-1000 MHz, a processed, thinned array is proposed which will be more fully analyzed in the next phase of the program. Preliminary hardware and data processing requirements are presented.
NASA Applications and Lessons Learned in Reliability Engineering
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Fuller, Raymond P.
2011-01-01
Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.
Enhanced Software for Scheduling Space-Shuttle Processing
NASA Technical Reports Server (NTRS)
Barretta, Joseph A.; Johnson, Earl P.; Bierman, Rocky R.; Blanco, Juan; Boaz, Kathleen; Stotz, Lisa A.; Clark, Michael; Lebovitz, George; Lotti, Kenneth J.; Moody, James M.;
2004-01-01
The Ground Processing Scheduling System (GPSS) computer program is used to develop streamlined schedules for the inspection, repair, and refurbishment of space shuttles at Kennedy Space Center. A scheduling computer program is needed because space-shuttle processing is complex and it is frequently necessary to modify schedules to accommodate unanticipated events, unavailability of specialized personnel, unexpected delays, and the need to repair newly discovered defects. GPSS implements constraint-based scheduling algorithms and provides an interactive scheduling software environment. In response to inputs, GPSS can respond with schedules that are optimized in the sense that they contain minimal violations of constraints while supporting the most effective and efficient utilization of space-shuttle ground processing resources. The present version of GPSS is a product of re-engineering of a prototype version. While the prototype version proved to be valuable and versatile as a scheduling software tool during the first five years, it was characterized by design and algorithmic deficiencies that affected schedule revisions, query capability, task movement, report capability, and overall interface complexity. In addition, the lack of documentation gave rise to difficulties in maintenance and limited both enhanceability and portability. The goal of the GPSS re-engineering project was to upgrade the prototype into a flexible system that supports multiple- flow, multiple-site scheduling and that retains the strengths of the prototype while incorporating improvements in maintainability, enhanceability, and portability.
Use of Heritage Hardware on Orion MPCV Exploration Flight Test One
NASA Technical Reports Server (NTRS)
Rains, George Edward; Cross, Cynthia D.
2012-01-01
Due to an aggressive schedule for the first space flight of an unmanned Orion capsule, currently known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made within the Orion Program to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi-Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the MPLM cabin Positive Pressure Relief Assembly (PPRA), and the Shuttle Ground Support Equipment Heat Exchanger (GSE HX). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE HX had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the activities required in order to utilize heritage hardware for EFT1.
NASA Technical Reports Server (NTRS)
Locke, James; Leveton, Lauren; Keeton, Kathryn; Whitmire, Alexandra
2009-01-01
Astronauts report significant difficulties with sleep during Space missions. Psychological, physiological, and habitability factors are all thought to play a role in spaceflight insomnia. Crewmembers gain experience with the spaceflight sleep environment as their missions progress, but this knowledge is not formally collected and communicated to subsequent crews. This lack of information transfer prevents crews from optimizing their capability to sleep during mission, which leads to fatigue and its potentially deleterious effects. The goal of this project is astronauts with recent spaceflight experience to gather their knowledge of and insights into sleep in Space. Structured interviews consisting of standardized closed and open-ended questionnaires are administered to astronauts who have flown on the Space Shuttle since the Columbia disaster. It is hoped that review and analysis of the pooled responses to the interview questions will lead to greater understanding of the sleep environment during short duration spaceflight, with attention placed on problem aspects and their potential solutions.
1996-03-14
S96-08073 (April 1996) --- Astronaut Daniel W. Bursch, mission specialist, uses his helmet to bail out water from his life raft during emergency bailout training for crewmembers in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Bursch will join five other astronauts for nine days aboard the Space Shuttle Endeavour next month.
Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Defining the Natural Atmospheric Environment Requirements for the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Leahy, Frank
2008-01-01
The National Aeronautics and Space Administration began developing a new vehicle under the Constellation Program to replace the Space Shuttle. The Ares-1 launch vehicle and the Orion capsule will be used to ferry crew and some payloads to the International Space Station and will also be used for new missions to the moon, As development of this new vehicle begins, the Natural Environments Branch at Marshall Space Flight Center has been tasked with defining the natural environments the vehicle will encounter and working with the program to develop natural environmental requirements for the vehicles' elements. An overview of the structure of the program is given, along with a description of the Constellation Design Specification for Natural Environments and the Constellation Natural Environments Definition for Design documents and how they apply to the Ares-I and Orion vehicles.
Arc discharge convection studies: A Space Shuttle experiment
NASA Technical Reports Server (NTRS)
Bellows, A. H.; Feuersanger, A. E.
1984-01-01
Three mercury vapor arc lamps were tested in the microgravity environment of one of NASA's small, self-contained payloads during STS-41B. A description of the payload structural design, photographic and optical systems, and electrical system is provided. Thermal control within the payload is discussed. Examination of digital film data indicates that the 175 watt arc lamp has a significant increase in light output when convection is removed in the gravity-free environment of space.
System Report for the Optical Properties Monitor (OPM) Experiment
NASA Technical Reports Server (NTRS)
Hummer, L.
2001-01-01
This systems report describes how the Optical Properties Monitor (OPM) experiment was developed. Pertinent design parameters are discussed, along with mission information and system requirements to successfully complete the mission. Environmental testing was performed on the OPM to certify it for spaceflight. This testing included vibration, thermal vacuum, electromagnetic interference and conductance, and toxicity tests. Instrument and monitor subsystem performances, including the reflectometer, vacuum ultraviolet, total integrated scatter, atomic oxygen monitor, irradiance monitor, and molecular contamination monitor during the mission are discussed. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. The OPM conducted in situ measurements of a number of material samples. These data may be found in the OPM Science Report. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.
Comparison of Commercial EMI Test Techniques to NASA EMI Test Techniques
NASA Astrophysics Data System (ADS)
Smith, Valerie
2000-11-01
This systems report describes how the Optical Properties Monitor (OPM) experiment was developed. Pertinent design parameters are discussed, along with mission information and system requirements to successfully complete the mission. Environmental testing was performed on the OPM to certify it for spaceflight. This testing included vibration, thermal vacuum, electromagnetic interference and conductance, and toxicity tests. Instrument and monitor subsystem performances, including the reflectometer, vacuum ultraviolet, total integrated scatter, atomic oxygen monitor, irradiance monitor, and molecular contamination monitor during the mission are discussed. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. The OPM conducted in situ measurements of a number of material samples. These data may be found in the OPM Science Report. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.
NASA Technical Reports Server (NTRS)
1984-01-01
The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.
STS-65 Mission Specialist Chiao floats in a single person raft in JSC's WETF
NASA Technical Reports Server (NTRS)
1994-01-01
Having just deployed a small, single-person life raft, astronaut and STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), floats in a 25-feet deep pool at the Johnson Space Center (JSC). The astronaut was in the Weightless Environment Training Facility (WETF) Bldg 29 pool for a training exercise, designed to familiarize crewmembers with procedures to call on in the event of an emergency egress situation with the Space Shuttle. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.
An Overview of the Space Shuttle Aerothermodynamic Design
NASA Technical Reports Server (NTRS)
Martin, Fred
2011-01-01
The Space Shuttle Thermal Protection System was one of the three areas that required the development of new technology. The talk discusses the pre-flight development of the aerothermodynamic environment which was based on Mach 8 wind tunnel data. A high level overview of the pre-flight heating rate predictions and comparison to the Orbiter Flight Test (OFT) data is presented, along with a discussion of the dramatic improvement in the state-of-the-art in aerothermodynamic capability that has been used to support the Shuttle Program. A high level review of the Orbiter aerothermodynamic design is discussed, along with improvements in Computational Fluid Dynamics and wind tunnel testing that was required for flight support during the last 30 years. The units have been removed from the plots, and the discussion is kept at a high level.
Summary Status of the Space Acceleration Measurement System (SAMS), September 1993
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1994-01-01
The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Nemeth, Michael P.; Hilburger, Mark W.
2004-01-01
A technology review and assessment of modeling and analysis efforts underway in support of a safe return to flight of the thermal protection system (TPS) for the Space Shuttle external tank (ET) are summarized. This review and assessment effort focuses on the structural modeling and analysis practices employed for ET TPS foam design and analysis and on identifying analysis capabilities needed in the short-term and long-term. The current understanding of the relationship between complex flight environments and ET TPS foam failure modes are reviewed as they relate to modeling and analysis. A literature review on modeling and analysis of TPS foam material systems is also presented. Finally, a review of modeling and analysis tools employed in the Space Shuttle Program is presented for the ET TPS acreage and close-out foam regions. This review includes existing simplified engineering analysis tools are well as finite element analysis procedures.
NASA Technical Reports Server (NTRS)
Foust, J. W.
1979-01-01
Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.
Considerations for Life Science experimentation on the Space Shuttle.
Souza, K A; Davies, P; Rossberg Walker, K
1992-10-01
The conduct of Life Science experiments aboard the Shuttle Spacelab presents unaccustomed challenges to scientists. Not only is one confronted with the challenge of conducting an experiment in the unique microgravity environment of a orbiting spacecraft, but there are also the challenges of conducing experiments remotely, using equipment, techniques, chemicals, and materials that may differ from those standardly used in ones own laboratory. Then there is the question of "controls." How does one study the effects of altered gravitational fields on biological systems and control for other variables like vibration, acceleration, noise, temperature, humidity, and the logistics of specimen transport? Typically, the scientist new to space research has neither considered all of these potential problems nor has the data at hand with which to tackle the problems. This paper will explore some of these issues and provide pertinent data from recent Space Shuttle flights that will assist the new as well as the experienced scientist in dealing with the challenges of conducting research under spaceflight conditions.
Considerations for Life Science experimentation on the Space Shuttle
NASA Technical Reports Server (NTRS)
Souza, K. A.; Davies, P.; Rossberg Walker, K.
1992-01-01
The conduct of Life Science experiments aboard the Shuttle Spacelab presents unaccustomed challenges to scientists. Not only is one confronted with the challenge of conducting an experiment in the unique microgravity environment of a orbiting spacecraft, but there are also the challenges of conducing experiments remotely, using equipment, techniques, chemicals, and materials that may differ from those standardly used in ones own laboratory. Then there is the question of "controls." How does one study the effects of altered gravitational fields on biological systems and control for other variables like vibration, acceleration, noise, temperature, humidity, and the logistics of specimen transport? Typically, the scientist new to space research has neither considered all of these potential problems nor has the data at hand with which to tackle the problems. This paper will explore some of these issues and provide pertinent data from recent Space Shuttle flights that will assist the new as well as the experienced scientist in dealing with the challenges of conducting research under spaceflight conditions.
NASA Technical Reports Server (NTRS)
Drzewiecki, R. F.; Foust, J. W.
1976-01-01
A model test program was conducted to determine heat transfer and pressure distributions in the base region of the space shuttle vehicle during simulated launch trajectory conditions of Mach 4.5 and pressure altitudes between 90,000 and 210,000 feet. Model configurations with and without the solid propellant booster rockets were examined to duplicate pre- and post-staging vehicle geometries. Using short duration flow techniques, a tube wind tunnel provided supersonic flow over the model. Simultaneously, combustion generated exhaust products reproduced the gasdynamic and thermochemical structure of the main vehicle engine plumes. Heat transfer and pressure measurements were made at numerous locations on the base surfaces of the 19-OTS space shuttle model with high response instrumentation. In addition, measurements of base recovery temperature were made indirectly by using dual fine wire and resistance thermometers and by extrapolating heat transfer measurements.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro are briefed on the properties of the tile used in the Shuttle's Thermal Protection System (TPS) by USA Manager of the TPS Facility Martin Wilson (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
SSME to RS-25: Challenges of Adapting a Heritage Engine to a New Vehicle Architecture
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2015-01-01
Following the cancellation of the Constellation program and retirement of the Space Shuttle, NASA initiated the Space Launch System (SLS) program to provide next-generation heavy lift cargo and crew access to space. A key constituent of the SLS architecture is the RS-25 engine, also known as the Space Shuttle Main Engine (SSME). The RS-25 was selected to serve as the main propulsion system for the SLS core stage in conjunction with the solid rocket boosters. This selection was largely based on the maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. However, while the RS-25 is a highly mature system, simply unbolting it from the Space Shuttle boat-tail and installing it on the new SLS vehicle is not a "plug-and-play" operation. In addition to numerous technical integration details involving changes to significant areas such as the environments, interface conditions, technical performance requirements, operational constraints and so on, there were other challenges to be overcome in the area of replacing the obsolete engine control system (ECS). While the magnitude of accomplishing this effort was less than that needed to develop and field a new clean-sheet engine system, the path to the first flight of SLS has not been without unexpected challenges.
Biological and Medical Experiments on the Space Shuttle, 1981 - 1985
NASA Technical Reports Server (NTRS)
Halstead, Thora W. (Editor); Dufour, Patricia A. (Editor)
1986-01-01
This volume is the first in a planned series of reports intended to provide a comprehensive record of all the biological and medical experiments and samples flown on the Space Shuttle. Experiments described have been conducted over a five-year period, beginning with the first plant studies conducted on STS-2 in November 1981, and extending through STS 61-C, the last mission to fly before the tragic Challenger accident of January 1986. Experiments were sponsored within NASA not only by the Life Sciences Division of the Office of Space Science and Applications, but also by the Shuttle Student Involvement Program (SSIP) and the Get Away Special (GAS) Program. Independent medical studies were conducted as well on the Shuttle crew under the auspices of the Space Biomedical Research Institute at Johnson Space Center. In addition, cooperative agreements between NASA and foreign government agencies led to a number of independent experiments and also paved the way for the joint US/ESA Spacelab 1 mission and the German (DFVLR) Spacelab D-1. Experiments included: (1) medically oriented studies of the crew aimed at identifying, preventing, or treating health problems due to space travel; (2) projects to study morphological, physiological, or behavioral effects of microgravity on animals and plants; (3) studies of the effects of microgravity on cells and tissues; and (4) radiation experiments monitoring the spacecraft environment with chemical or biological dosimeters or testing radiation effects on simple organisms and seeds.
Suited for spacewalking: A teacher's guide with activities
NASA Technical Reports Server (NTRS)
Vogt, Gregory L. (Editor); Manning, Cheryl A. (Editor)
1992-01-01
This publication is an activity guide for teachers on spacesuits and spacewalking. It uses the intensive interest many children have in space exploration as a launching point for hands-on-opportunities. The guide begins with brief discussions of the space environment, the history of space walking, the Space Shuttle spacesuit, and working in space. These are followed by a series of activities that enable children to explore the space environment as well as the science and technology behind the functions of spacesuits. The activities are not rated for specific grade levels because they can be adapted for students of many ages. The guide concludes with a brief glossary as well as references and resources.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Industrial Engineering Lifts Off at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Barth, Tim
1998-01-01
When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.
5 Percent Ares I Scale Model Acoustic Test: Overpressure Characterization and Analysis
NASA Technical Reports Server (NTRS)
Alvord, David; Casiano, Matthew; McDaniels, Dave
2011-01-01
During the ignition of a ducted solid rocket motor (SRM), rapid expansion of injected hot gases from the motor into a confined volume causes the development of a steep fronted wave. This low frequency transient wave propagates outward from the exhaust duct, impinging the vehicle and ground structures. An unsuppressed overpressure wave can potentially cause modal excitation in the structures and vehicle, subsequently leading to damage. This presentation details the ignition transient f indings from the 5% Ares I Scale Model Acoustic Test (ASMAT). The primary events of the ignition transient environment induced by the SRM are the ignition overpressure (IOP), duct overpressure (DOP), and source overpressure (SOP). The resulting observations include successful knockdown of the IOP environment through use of a Space Shuttle derived IOP suppression system, a potential load applied to the vehicle stemming from instantaneous asymmetrical IOP and DOP wave impingement, and launch complex geometric influences on the environment. The results are scaled to a full-scale Ares I equivalent and compared with heritage data including Ares I-X and both suppressed and unsuppressed Space Shuttle IOP environments.
The Floating Potential Probe (FPP) taken during the third EVA of STS-97
2000-12-07
STS097-376-029 (7 December 2000) --- Space walking Endeavour astronauts topped off their scheduled space walk activities with an image of an evergreen tree placed atop the P6 solar array structure, the highest point in their construction project. They then took this photo of the "tree" before returning to the shirt-sleeve environment of the Space Shuttle Endeavour.
Exterior view of the ISS taken during EVA-3
2011-05-25
ISS028-E-005416 (25 May 2011) --- The forward section of the space shuttle Endeavour is pictured with two components of the International Space Station (ISS) -- the Harmony node (left) and the European Space Agency's Columbus laboratory. Nine astronauts and cosmonauts continue to work inside the shirt-sleeve environment of the ISS and preparing for the final of four spacewalks on May 26.
Shuttle Discovery Landing at Palmdale, California, Maintenance Facility
NASA Technical Reports Server (NTRS)
1995-01-01
NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility
NASA Technical Reports Server (NTRS)
1995-01-01
Space Shuttle Discovery being unloaded from NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance. Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Enterprise Mated to 747 SCA for Delivery to Smithsonian
NASA Technical Reports Server (NTRS)
1983-01-01
The Space Shuttle Enterprise atop the NASA 747 Shuttle Carrier Aircraft as it leaves NASA's Dryden Flight Research Center, Edwards, California. The Enterprise, first orbiter built, was not spaceflight rated and was used in 1977 to verify the landing, approach, and glide characteristics of the orbiters. It was also used for engineering fit-checks at the shuttle launch facilities. Following approach and landing tests in 1977 and its use as an engineering vehicle, Enterprise was donated to the National Air and Space Museum in Washington, D.C. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
2003-10-22
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.
2003-10-22
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.
Space Shuttle Orbiter auxiliary power unit status
NASA Technical Reports Server (NTRS)
Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.
1991-01-01
An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.
NASA Technical Reports Server (NTRS)
1981-01-01
The preliminary grant assessed the use of laboratory experiments for simulating low g liquid drop experiments in the space shuttle environment. Investigations were begun of appropriate immiscible liquid systems, design of experimental apparatus and analyses. The current grant continued these topics, completed construction and preliminary testing of the experimental apparatus, and performed experiments on single and compound liquid drops. A continuing assessment of laboratory capabilities, and the interests of project personnel and available collaborators, led to, after consultations with NASA personnel, a research emphasis specializing on compound drops consisting of hollow plastic or elastic spheroids filled with liquids.
Education instructors explain and demonstrate STS-54 DSO 802 toys at JSC
1993-01-06
S93-25649 (6 Jan 1993) --- Carolyn Sumners, Ed.D., project director for Toys in Space, demonstrates some of the toys to be carried aboard the Space Shuttle Endeavour for the STS-54 mission later this month. Gregory Vogt, Ed.D., NASA education specialist, is seen showing another of the toys to news media representatives here for the pre-flight press briefing. The detailed supplementary objective (DSO-802) will allow the Shuttle crewmembers to experiment with the various types of toys in a microgravity environment while talking to pupils who will be able to monitor (via classroom TV sets) the activities at a number of schools.
1998-09-30
The open doors of the payload bay on Space Shuttle Discovery await the transfer of four of the payloads on mission STS-95: the SPACEHAB single module, Spartan, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). At the top of bay are the airlock (used for depressurization and repressurization during extravehicular activity and transfer to Mir) and the tunnel adapter (enables the flight crew members to transfer from the pressurized middeck crew compartment to Spacelab's pressurized shirt-sleeve environment). SPACEHAB involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Discovery is scheduled to launch on Oct. 29, 1998
Washing Away the Worries About Germs
NASA Technical Reports Server (NTRS)
2005-01-01
Fresh fruits and vegetables have been in demand by orbiting astronauts since the early days of the Space Shuttle. As one can imagine, however, oranges, onions, tomatoes, garlic, and other fresh items can provide a cornucopia of smells in a closed environment such as the Space Shuttle or the International Space Station (ISS), especially when they begin to perish. It does not help that they are loaded onto the Space Shuttle up to 24 hours in advance of a launch, and that the on-orbit shelf life is just 2 to 3 days for most, due to a lack of refrigeration. While such produce adds significant variety to astronauts diets and increases their morale, the odor that emanates from it as it ages can cause nausea. One of the last things astronauts need is associating this healthy fare with feelings of nausea. NASA is currently investigating the use of a commercial sanitation product it helped develop with private industry to thoroughly cleanse and, thus, increase the shelf life of fruits and vegetables being sent into space. Meanwhile, this product is ripe for the picking for consumers looking to do the same, and more, on Earth.
Nitrogen Oxygen Recharge System for the International Space Station
NASA Technical Reports Server (NTRS)
Williams, David E.; Dick, Brandon; Cook, Tony; Leonard, Dan
2009-01-01
The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle is retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen in the human spaceflight environment.
Shuttle in Mate-Demate Device being Loaded onto SCA-747
NASA Technical Reports Server (NTRS)
1991-01-01
At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
2009-09-02
ISS020-E-037367 (1 Sept. 2009) --- A close-up view of a Materials International Space Station Experiment (MISSE-6) on the exterior of the Columbus laboratory is featured in this image photographed by a space walking astronaut during the STS-128 mission’s first session of extravehicular activity (EVA). MISSE collects information on how different materials weather in the environment of space. MISSE was later placed in Space Shuttle Discovery’s cargo bay for its return to Earth.
Astronaut Linda Godwin during contingency EVA training in WETF
1993-08-17
S93-41572 (17 Aug 1993) --- Astronaut Linda M. Godwin, payload commander, prepares to donn her helmet before being submerged in a 25-feet deep pool at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Astronauts Godwin and Thomas D. Jones, mission specialist, are using the WET-F to train for contingency space walks for their Space Shuttle Endeavour mission next year. No space walks are planned for the flight.
Space Shuttle orbiter modifications to support Space Station Freedom
NASA Technical Reports Server (NTRS)
Segert, Randall; Lichtenfels, Allyson
1992-01-01
The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.
The potential impact of the space shuttle on space benefits to mankind
NASA Technical Reports Server (NTRS)
Rattinger, I.
1972-01-01
The potential impact of the space shuttle on space benefits to mankind is discussed. The space shuttle mission profile is presented and the capabilities of the spacecraft to perform various maneuvers and operations are described. The cost effectiveness of the space shuttle operation is analyzed. The effects upon technological superiority and national economics are examined. Line drawings and artist concepts of space shuttle configurations are included to clarify the discussion.
STS-68 747 SCA Ferry Flight Takeoff for Delivery to Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Columbia, atop NASA's 747 Shuttle Carrier Aircraft (SCA), taking off for the Kennedy Space Center shortly after its landing on 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
The embodiment design of the heat rejection system for the portable life support system
NASA Technical Reports Server (NTRS)
Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.
1994-01-01
The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.
Enterprise - First Tailcone Off Free Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the Shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preperation for the first space mission with the orbiter Columbia in April 1981. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Columbia Post-landing Tow - with Reflection in Water
NASA Technical Reports Server (NTRS)
1982-01-01
A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. MartinMarietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...