Sample records for space shuttle flew

  1. STS-26 crew arrives at KSC Shuttle Landing Facility (SLF)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crew arrives at Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). The recently announced flight crew of the next space shuttle mission STS-26 stands in front of NASA T-38 aircraft. The STS-26 crew is making a motivational visit to KSC in order to talk to and meet the support teams that help launch the shuttle. From left to right are: Mission Specialist (MS) David C. Hilmers who flew on 51J; Pilot Richard O. Covey who flew on 51I; Commander Frederick H. Hauck who flew as commander on 51A and as pilot on STS-7; and MS George D. Nelson who flew on 41C and 61C.

  2. Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.

    DTIC Science & Technology

    safety tested, and flew hardware we call the Microencapsulation in Space (MIS) experiment. The MIS experiment flew on Space Shuttle Discovery...of the same composition. From our experience, these improved properties should improve the release properties of microencapsulated drugs and...eliminate unwanted residual process aids. Furthermore, it is likely that microencapsulation in space will let us encapsulate drugs that cannot be microencapsulated on the earth

  3. jsc2012e241584

    NASA Image and Video Library

    2012-12-09

    In Baikonur, Kazakhstan, Expedition 34/35 backup crewmembers Karen Nyberg of NASA (left), Luca Parmitano of the European Space Agency (center) and Fyodor Yurchikhin (right) view an exhibit honoring the Space Shuttle Program Dec. 9, 2012 during a traditional tour of the city. Nyberg flew on the STS-124 mission of the shuttle Discovery in 2008 and Yurchikhin flew on the shuttle Atlantis in 2002. Prime crewmembers Flight Engineer Tom Marshburn of NASA, Soyuz Commander Roman Romanenko and Flight Engineer Chris Hadfield of the Canadian Space Agency will launch Dec. 19 from the Baikonur Cosmodrome in their Soyuz TMA-07M spacecraft for a five-month mission on the International Space Station. Photo Credit: NASA/Victor Zelentsov

  4. A decade on board America's Space Shuttle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Spectacular moments from a decade (1981-1991) of Space Shuttle missions, captured on film by the astronauts who flew the missions, are presented. First hand accounts of astronauts' experiences aboard the Shuttle are given. A Space Shuttle mission chronology featuring flight number, vehicle name, crew, launch and landing dates, and mission highlights is given in tabular form.

  5. Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle - Follow-On Experiments

    DTIC Science & Technology

    1996-10-01

    TITLE: Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle - Follow-On Experiments PRINCIPAL INVESTIGATOR...REPORT DATE 3. REPORT TYPE AND DATES COVERED October 1996 Final (4 May 92 - 3 Jul 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Microencapsulation of...call the Microencapsulation in Space (MIS-B) experiment. The MIS-B experiment flew on Space Shuttle Discovery -- Mission STS-70. Before launch, NASA

  6. KENNEDY SPACE CENTER, FLA. - - In the Orbiter Processing Facility, STS-114 Mission Specialists Andrew Thomas, Soichi Noguchi and Charles Camarda greet astronaut John Young (far right), who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Behind Camarda is Pilot James Kelly. Young is associate director, Technical, at Johnson Space Center. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - - In the Orbiter Processing Facility, STS-114 Mission Specialists Andrew Thomas, Soichi Noguchi and Charles Camarda greet astronaut John Young (far right), who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Behind Camarda is Pilot James Kelly. Young is associate director, Technical, at Johnson Space Center. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  7. Discovery STS-133 Mission Landing

    NASA Image and Video Library

    2011-03-09

    The runway of the Shuttle Landing Facility (SLF) is marked to show where the wheels stopped for the space shuttle Discovery (STS-133) shortly after it landed, Wednesday, March 9, 2011, at Kennedy Space Center in Cape Canaveral, Fla., completing its 39th and final flight. Since 1984, Discovery flew 39 missions, spent 365 days in space, orbited Earth 5,830 times and traveled 148,221,675 miles. Photo credit: (NASA/Bill Ingalls)

  8. Interpretation of plasma diagnostics package results in terms of large space structure plasma interactions

    NASA Technical Reports Server (NTRS)

    Kurth, William S.

    1991-01-01

    The Plasma Diagnostics Package (PDP) is a spacecraft which was designed and built at The University of Iowa and which contained several scientific instruments. These instruments were used for measuring Space Shuttle Orbiter environmental parameters and plasma parameters. The PDP flew on two Space Shuttle flights. The first flight of the PDP was on Space Shuttle Mission STS-3 and was a part of the NASA/Office of Space Science payload (OSS-1). The second flight of the PDP was on Space Shuttle Mission STS/51F and was a part of Spacelab 2. The interpretation of both the OSS-1 and Spacelab 2 PDP results in terms of large space structure plasma interactions is emphasized.

  9. KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands in front of the operations desk in the Orbiter Processing Facility. At far right is astronaut John Young, who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Young is associate director, Technical, at Johnson Space Center. From left are Young’s pilot; STS-114 Commander Eileen Collins; Mission Specialists Andrew Thomas, Soichi Noguchi and Stephen Robinson; Pilot James Kelly; and Mission Specialist Charles Camarda. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - The STS-114 crew stands in front of the operations desk in the Orbiter Processing Facility. At far right is astronaut John Young, who flew on the first flight of Space Shuttle Columbia with Robert Crippen. Young is associate director, Technical, at Johnson Space Center. From left are Young’s pilot; STS-114 Commander Eileen Collins; Mission Specialists Andrew Thomas, Soichi Noguchi and Stephen Robinson; Pilot James Kelly; and Mission Specialist Charles Camarda. Noguchi represents the Japanese Aerospace and Exploration Agency. The STS-114 crew is spending time becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  10. Microgravity Science Laboratory (MSL-1)

    NASA Technical Reports Server (NTRS)

    Robinson, M. B. (Compiler)

    1998-01-01

    The MSL-1 payload first flew on the Space Shuttle Columbia (STS-83) April 4-8, 1997. Due to a fuel cell problem, the mission was cut short, and the payload flew again on Columbia (STS-94) July 1-17, 1997. The MSL-1 investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Twenty-nine experiments were performed and represented disciplines such as fluid physics, combustion, materials science, biotechnology, and plant growth. Four accelerometers were used to record and characterize the microgravity environment. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  11. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former space shuttle astronaut Jon McBride speaks at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  12. STS-69 Mission Commander David M. Walker arrives at SLF

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Commander David M. Walker arrives at KSC's Shuttle Landing Facility. Walker and four fellow crew members flew in from Johnson Space Center, Houston in the T-38 jet aircraft traditionally used by the astronaut corps. Later today, the countdown will begin as final preparations continue toward liftoff of the Space Shuttle Endeavour at 11:04 a.m. EDT, August 31 on STS-69.

  13. Discovery STS-133 Mission Landing

    NASA Image and Video Library

    2011-03-09

    Space Shuttle Discovery (STS-133) lands, Wednesday, March 9, 2011, at Kennedy Space Center in Cape Canaveral, Fla., completing its 39th and final flight. Since 1984, Discovery flew 39 missions, spent 365 days in space, orbited Earth 5,830 times and traveled 148,221,675 miles. Photo credit: (NASA/Bill Ingalls)

  14. Modulation of Radiogenic Damage by Microgravity: Results From STS-76

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory; Kazarians, Gayane; Schubert, Wayne; Kern, Roger; Schranck, David; Hartman, Philip; Hlavacek, Anthony; Wilde, Honor; Lewicki, Dan; Benton, Eugene; hide

    1999-01-01

    The STS-76 (Shuttle-Mir 3) spaceflight provided an opportunity to test two questions about radiation responses in C. elegans. First, does the absence of gravity modify the dose-response relation for mutation and chromosome aberration and second, what are the features of the mutation spectrum resulting from exposure to cosmic rays? These questions were put to the test in space using the ESA "Biorack" facility which was housed in the Spacehab module aboard shuttle Atlantis. The mission flew in March, 1996 and was a shuttle rendezvous with the Russian space station Mir.

  15. Spacelab Accomplishments Forum 4

    NASA Technical Reports Server (NTRS)

    Emond, J. (Editor); Bennet, N. (Compiler); McCauley, D. (Compiler); Murphy, K. (Compiler); Baugher, Charles R. (Technical Monitor)

    1999-01-01

    The Spacelab Module, exposed platforms, and supporting instrumentation were designed and developed by the European Space Agency to house advanced experiments inside the Space Shuttle cargo bay. The Spacelab program has hosted a cross-disciplinary research agenda over a 17-year flight history. Several variations of Spacelab were used to host payloads for almost every space research discipline that NASA pursues-life sciences, microgravity research, space sciences, and earth observation studies. After seventeen years of flight, Spacelab modules, pallets, or variations thereof flew on the Shuttle 36 times for a total of 375 flight days.

  16. E-21093

    NASA Image and Video Library

    1969-12-18

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10. The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970 and logged the highest and fastest records in the lifting body program.

  17. E-21115

    NASA Image and Video Library

    1969-12-18

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10. The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 20, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970 and logged the highest and fastest records in the lifting body program.

  18. EC69-2358

    NASA Image and Video Library

    1969-12-18

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10. The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 21, 1971. The HL-10 flew from December 22, 1966 until July 17, 1970, and logged the highest and fastest records in the lifting body program.

  19. ECN-2359

    NASA Image and Video Library

    1969-12-18

    The wingless, lifting body aircraft sitting on Rogers Dry Lake at what is now NASA's Dryden Flight Research Center, Edwards, California, from left to right are the X-24A, M2-F3 and the HL-10. The lifting body aircraft studied the feasibility of maneuvering and landing an aerodynamic craft designed for reentry from space. These lifting bodies were air launched by a B-52 mother ship, then flew powered by their own rocket engines before making an unpowered approach and landing. They helped validate the concept that a space shuttle could make accurate landings without power. The X-24A flew from April 17, 1969 to June 4, 1971. The M2-F3 flew from June 2, 1970 until December 22, 1972. The HL-10 flew from December 22, 1966 until July 17, 1970, and logged the highest and fastest records in the lifting body program.

  20. Discovery STS-133 Mission Landing

    NASA Image and Video Library

    2011-03-09

    Space Shuttle Discovery (STS-133) is seen shortly after it landed, Wednesday, March 9, 2011, at Kennedy Space Center in Cape Canaveral, Fla., completing its 39th and final flight. Since 1984, Discovery flew 39 missions, spent 365 days in space, orbited Earth 5,830 times and traveled 148,221,675 miles. Photo credit: (NASA/Bill Ingalls)

  1. Smoke over Lake Toba, Indonesia

    NASA Image and Video Library

    1997-10-03

    As the Space Shuttle Atlantis flew over the Indonesian archipelago on Saturday, Sept. 27, 1997, middle school students across the country used NASA Kidsat camera to photograph the fires and smoke that blanket the island of Sumatra.

  2. Space Science

    NASA Image and Video Library

    1992-03-24

    Space Shuttle Atlantis (STS-45) onboard photo of Mission Specialist Kathryn Sullivan working in the Atmospheric Laboratory for Applications and Science (Atlas-1) module. Atlas-1 flew in a series of Spacelab flights that measured long term variability in the total energy radiated by the Sun and determined the variability in the solar spectrum.

  3. KSC-2012-3564

    NASA Image and Video Library

    2012-06-28

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility SLF at NASA’s Kennedy Space Center in Florida, a special plaque marks the nose gear wheel stop of space shuttle Atlantis. The 16-by-28-inch black granite plaque is the third to be permanently mounted, commemorating the final landings of each of the three orbiters. Atlantis completed the STS-135 mission by landing at the SLF on July 21, 2011, at 5:57 a.m. Atlantis flew 33 missions, completed 4,848 orbits of the Earth, traveled nearly 126 million miles and spent 307 days in space. Atlantis carried 207 astronauts to space. Photo credit: NASA/Charisse Nahser

  4. STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Space shuttle mission STS-107, the 28th flight of the space shuttle Columbia and the 113th shuttle mission to date, will give more than 70 international scientists access to both the microgravity environment of space and a set of seven human researchers for 16 uninterrupted days. Columbia's 16-day mission is dedicated to a mixed complement of competitively selected and commercially sponsored research in the space, life and physical sciences. An international crew of seven, including the first Israeli astronaut, will work 24 hours a day in two alternating shifts to carry out experiments in the areas of astronaut health and safety; advanced technology development; and Earth and space sciences. When Columbia is launched from Kennedy Space Center's Launch Pad 39A it will carry a SPACEHAB Research Double Module (RDM) in its payload bay. The RDM is a pressurized environment that is accessible to the crew while in orbit via a tunnel from the shuttle's middeck. Together, the RDM and the middeck will accommodate the majority of the mission's payloads/experiments. STS-107 marks the first flight of the RDM, though SPACEHAB Modules and Cargo Carriers have flown on 17 previous space shuttle missions. Astronaut Rick Husband (Colonel, USAF) will command STS-107 and will be joined on Columbia's flight deck by pilot William 'Willie' McCool (Commander, USN). Columbia will be crewed by Mission Specialist 2 (Flight Engineer) Kalpana Chawla (Ph.D.), Mission Specialist 3 (Payload Commander) Michael Anderson (Lieutenant Colonel, USAF), Mission Specialist 1 David Brown (Captain, USN), Mission Specialist 4 Laurel Clark (Commander, USN) and Payload Specialist 1 Ilan Ramon (Colonel, Israeli Air Force), the first Israeli astronaut. STS-107 marks Husband's second flight into space - he served as pilot during STS-96, a 10-day mission that saw the first shuttle docking with the International Space Station. Husband served as Chief of Safety for the Astronaut Office until his selection to command the STS-107 crew. Anderson and Chawla will also be making their second spaceflights. Anderson first flew on STS-89 in January 1998 (the eighth Shuttle-Mir docking mission) while Chawla flew on STS-87 in November 1997 (the fourth U.S. Microgravity Payload flight). McCool, Brown, Clark and Ramon will be making their first flights into space.

  5. KSC-2012-4000

    NASA Image and Video Library

    2012-07-20

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, a flight instructor and his students inspect the lightweight aircraft they flew in earlier in the day from Florida Tech, or FIT, in Melbourne. Several instructors and their students arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett

  6. KSC-2012-3999

    NASA Image and Video Library

    2012-07-20

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility, or SLF, in Florida, a flight instructor and his students inspect the lightweight aircraft they flew in earlier in the day from Florida Tech, or FIT, in Melbourne. Several instructors and their students arrived at the SLF in Cherokee Warrior and Cessna 172S lightweight aircraft. The middle and high school students are participating in FIT’s Av/Aero summer camp experience. They and their flight instructors toured the SLF midfield control tower, viewed F104 Starfighters and NASA Huey helicopters in the RLV Hangar, viewed the runway plaques marking wheels stop for each of the three space shuttles, and toured the Vehicle Assembly Building where space shuttle Atlantis currently is stored. Photo credit: NASA/Kim Shiflett

  7. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    NAME sings the National Anthem at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  8. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    Dr. Marc Mauer, president of the National Federation of the Blind, left, accepts two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009 from NASA Associate Administrator Chris Scolese, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  9. KSC-2011-5529

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery ventures out in public seemingly "undressed" -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors. The shuttle is rolling from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann

  10. NASA Remembers Astronaut John Young, Moonwalker and First Shuttle Commander

    NASA Image and Video Library

    2018-01-06

    Astronaut John Young, who walked on the Moon during Apollo 16 and commanded the first space shuttle mission, has passed away at the age of 87. After earning an engineering degree from Georgia Tech and flying planes for the Navy, Young began his impressive career at NASA in 1962, when he was selected from among hundreds of young pilots to join NASA's second astronaut class, known as the "New Nine." Young first flew in space on the first manned Gemini flight, Gemini 3 in March 1965. He later commanded the Gemini 10 mission in July 1966, served as command module pilot on Apollo 10 in 1969, and landed on the Moon as commander of Apollo 16 in April 1972. He went on to command the first Space Shuttle flight in 1981, and also commanded the STS-9 shuttle mission in 1983. He is the only person to go into space as part of the Gemini, Apollo and space shuttle programs and was the first to fly into space six times -- or seven times, when counting his liftoff from the Moon during Apollo 16.

  11. Astronaut John Young Remembrance, Wreath Laying Ceremony

    NASA Image and Video Library

    2018-01-11

    NASA is remembering the accomplishments and legacy of astronaut John Young, who died Jan. 5 at the age of 87. The U.S. Navy fighter pilot joined the space program in 1962 and went on to fly six missions spanning three generations of NASA spacecraft. NASA, the Astronaut Memorial Foundation and the Kennedy Space Center Visitor Complex hosted a wreath laying ceremony at the Heroes and Legends exhibit at Kennedy’s Visitor Complex Jan. 11 in honor of Young. Young flew aboard Gemini 3 in 1965 and commanded Gemini 10 the following year. In May 1969, he served as command module pilot on Apollo 10 and returned to the Moon as commander of Apollo 16. In April 1981, he commanded the ultimate test flight: STS-1, the first flight of the space shuttle. He was joined aboard shuttle Columbia by pilot Bob Crippen. Young flew his final mission, STS-9, in 1983, but he continued to work in NASA’s astronaut office until his retirement in 2004. Kennedy’s Firing Room 1 was named the Young-Crippen Firing Room in April 2006, the 25th anniversary of Columbia’s maiden voyage.

  12. KSC-2010-4538

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, three of NASA's T-38 training jets sit on the parking apron of the Shuttle Landing Facility. The STS-134 crew members flew the jets to Kennedy to watch the Alpha Magnetic Spectrometer (AMS) arrive aboard an Air Force C-5M aircraft from Europe. The state-of-the-art particle physics detector will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  13. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    NASA astronaut Greg Johnson, at podium, speaks at a ceremony where senior NASA officials presented the National Federation of the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  14. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    Dr. Marc Mauer, president of the National Federation of the Blind speaks at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  15. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    Chris Scolese, NASA Associate Administrator, speaks at a ceremony where senior NASA officials presented the National Federation of the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  16. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    Chris Scolese, NASA Associate Administrator, speaks at a ceremony where senior NASA officials presented the National Federation of the Blind, with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  17. KSC-2012-1939

    NASA Image and Video Library

    2012-04-03

    CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, Mike Williams, a thermal protection system technician with United Space Alliance, applies adhesive to the right wing of space shuttle Endeavour in preparation for tile bonding. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston

  18. KSC-2012-3562

    NASA Image and Video Library

    2012-06-28

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility SLF at NASA’s Kennedy Space Center in Florida, Chad Stout with C Spray Glass Blasting in Cocoa, Fla., prepares to install a special plaque to mark the nose gear wheel stop of space shuttle Atlantis. The black granite plaque, which is 16 by 28 inches, is the third plaque permanently mounted to commemorate the final landing of each of the three orbiters. Atlantis completed the STS-135 mission by landing at the SLF on July 21, 2011, at 5:57 a.m. Atlantis flew 33 missions, completed 4,848 orbits of the Earth, traveled nearly 126 million miles and spent 307 days in space. Atlantis carried 207 astronauts to space. Photo credit: NASA/Charisse Nahser

  19. KSC-2012-3563

    NASA Image and Video Library

    2012-06-28

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility SLF at NASA’s Kennedy Space Center in Florida, Chad Stout with C Spray Glass Blasting in Cocoa, Fla., installs a special plaque to mark the nose gear wheel stop of space shuttle Atlantis. The plaque, which is 16 by 28 inches, is the third black granite plaque permanently mounted to commemorate the final landing of each of the three orbiters. Atlantis completed the STS-135 mission by landing at the SLF on July 21, 2011, at 5:57 a.m. Atlantis flew 33 missions, completed 4,848 orbits of the Earth, traveled nearly 126 million miles and spent 307 days in space. Atlantis carried 207 astronauts to space. Photo credit: NASA/Charisse Nahser

  20. Space shuttle food system summary, 1981-1986

    NASA Technical Reports Server (NTRS)

    Stadler, Connie R.; Rapp, Rita M.; Bourland, Charles T.; Fohey, Michael F.

    1988-01-01

    All food in the Space Shuttle food system was precooked and processed so it required no refrigeration and was either ready-to-eat or could be prepared for consumption by simply adding water and/or heating. A gun-type water dispenser and a portable, suitcase-type heater were used to support this food system during the first four missions. On STS-5, new rehydratable packages were introduced along with a needle-injection water dispenser that measured the water as it was dispensed into the packages. A modular galley was developed to facilitate the meal preparation process aboard the Space Shuttle. The galley initially flew on STS-9. A personal hygiene station, a hot or cold water dispenser, a convection oven, and meal assembly areas were included in the galley.

  1. KSC-2011-5574

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- finds shelter in the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley

  2. KSC-2011-5546

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- winds its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin

  3. KSC-2011-5550

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- awaits entry into the Vehicle Assembly Building, or VAB, after rolling from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin

  4. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  5. SpaceX Launches Tenth Cargo Mission to the International Space Station

    NASA Image and Video Library

    2017-02-19

    On Feb. 19, SpaceX launched almost 5,500 pounds of scientific research and other supplies on a Dragon spacecraft to the International Space Station. The Dragon launched on top of the company’s Falcon 9 rocket from historic Launch Complex 39A at NASA’s Kennedy Space Center, where Apollo and Shuttle missions flew. This was the first commercial launch from Kennedy, and highlights the center’s transition to providing support for both government and commercial aerospace activities.

  6. KSC-02pd0194

    NASA Image and Video Library

    2002-02-24

    KENNEDY SPACE CENTER, FLA. - John Glenn Jr. speaks to the audience at KSC's Apollo/Saturn V Center during the dinner celebration of the 40th anniversary of American spaceflight. Glenn was the first American to orbit the Earth, aboard the Friendship 7 spacecraft. That journey lasted nearly five hours. In 1998, 36 years later, Glenn flew on Space Shuttle Discovery on mission STS-95, orbiting the Earth for 218 hours

  7. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    Dr. Marc Mauer, president of the National Federation of the Blind, at podium, speaks at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  8. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    Mark Riccobono, executive director of the Jernigan Institute of the National Federation of the Blind speaks at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  9. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    House Majority Leader U.S. Rep. Steny Hoyer, D-Md., speaks at a ceremony where senior NASA officials presented the National Federation for the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  10. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    House Majority Leader U.S. Rep. Steny Hoyer, D-Md., speaks at a ceremony where senior NASA officials presented the National Federation of the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  11. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    Dr. Marc Mauer, president of the National Federation of the Blind accepts an award from William Gerstenmaier, Associate Administrator, Space Operations, NASA Headquarters at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  12. KSC-2012-1942

    NASA Image and Video Library

    2012-04-03

    CAPE CANAVERAL, Fla. – Jeremy Schwarz, left, quality assurance technician, and Mike Williams, right, a thermal protection system technician, both with United Space Alliance, affix a section of tile to the right wing of space shuttle Endeavour at NASA's Kennedy Space Center in Florida. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston

  13. KSC-2012-1937

    NASA Image and Video Library

    2012-04-03

    CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, Mike Williams, a thermal protection system technician with United Space Alliance, crouches on space shuttle Endeavour's right wing as he prepares the wing surface for tile bonding. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston

  14. KSC-2012-1186

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is being prepared to be backed out and towed to Orbiter Processing Facility-2 (OPF-2). In the background is space shuttle Atlantis. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  15. KSC-2012-1185

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is being prepared to be backed out and towed to Orbiter Processing Facility-2 (OPF-2). In the background is space shuttle Atlantis. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  16. 400mm Mapping Sequence performed during the STS-119 R-Bar Pitch Maneuver

    NASA Image and Video Library

    2008-03-17

    ISS018-E-040790 (17 March 2009) --- Backdropped by the blackness of space, Space Shuttle Discovery is featured in this image photographed by an Expedition 18 crewmember on the International Space Station during rendezvous and docking operations. Before docking with the station, astronaut Lee Archambault, STS-119 commander, flew the shuttle through a Rendezvous Pitch Maneuver or basically a backflip to allow the space station crew a good view of Discovery's heat shield. Using digital still cameras equipped with both 400 and 800 millimeter lenses, the ISS crewmembers took a number of photos of the shuttle's thermal protection system and sent them down to teams on the ground for analysis. A 400 millimeter lens was used for this image. Docking occurred at 4:20 p.m. (CDT) on March 17, 2009. The final pair of power-generating solar array wings and the S6 truss segment are visible in Discovery?s cargo bay.

  17. 400mm Mapping Sequence performed during the STS-119 R-Bar Pitch Maneuver

    NASA Image and Video Library

    2008-03-17

    ISS018-E-040789 (17 March 2009) --- Backdropped by the blackness of space, Space Shuttle Discovery is featured in this image photographed by an Expedition 18 crewmember on the International Space Station during rendezvous and docking operations. Before docking with the station, astronaut Lee Archambault, STS-119 commander, flew the shuttle through a Rendezvous Pitch Maneuver or basically a backflip to allow the space station crew a good view of Discovery's heat shield. Using digital still cameras equipped with both 400 and 800 millimeter lenses, the ISS crewmembers took a number of photos of the shuttle's thermal protection system and sent them down to teams on the ground for analysis. A 400 millimeter lens was used for this image. Docking occurred at 4:20 p.m. (CDT) on March 17, 2009. The final pair of power-generating solar array wings and the S6 truss segment are visible in Discovery’s cargo bay.

  18. KSC-2011-5533

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- has arrived at the door of the Vehicle Assembly Building, or VAB, from Orbiter Processing Facility-2, or OPF-2, in the background. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann

  19. KSC-2011-5549

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- has arrived at the door of the Vehicle Assembly Building, or VAB, from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin

  20. KSC-2011-5545

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past Orbiter Processing Facility-3, or OPF-3, at right, on its way from OPF-2 to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin

  1. KSC-2011-5542

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past the Thermal Protection System Facility, at right, on its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Frankie Martin

  2. KSC-2011-5528

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery, as it is seldom seen in public -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls out of Orbiter Processing Facility-2, or OPF-2, on its way to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann

  3. KSC-2011-5532

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls past the Thermal Protection System Facility, at right, on its way from Orbiter Processing Facility-2, or OPF-2, to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Jim Grossmann

  4. KSC-2011-5573

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- is welcomed into the Vehicle Assembly Building, or VAB, after its roll from Orbiter Processing Facility-2, or OPF-2. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley

  5. KSC-2011-5572

    NASA Image and Video Library

    2011-07-13

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Discovery -- its nose encased in protective plastic, its cockpit windows covered, and strongbacks attached to its payload bay doors -- rolls out of Orbiter Processing Facility-2, or OPF-2, on its move to the Vehicle Assembly Building, or VAB. Discovery will be stored inside the VAB for approximately one month while shuttle Atlantis undergoes processing in OPF-2 following its final mission, STS-135. Discovery flew its 39th and final mission, STS-133, in February and March 2011, and currently is being prepared for public display at the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia. For more information about Discovery's Transition and Retirement, visit www.nasa.gov/mission_pages/shuttle/launch/discovery_rss_collection_archive_1.html. Photo credit: NASA/Ken Thornsley

  6. STS-89 M.S. Andrew Thomas suits up

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist Andrew Thomas, Ph.D., gives a 'thumbs up' as he completes the donning of his launch/entry suit in the Operations and Checkout (O&C) Building. In June 1995, he was named as payload commander for STS-77 and flew his first flight in space on Endeavour in May 1996. He and six fellow crew members will soon depart the O&C and head for Launch Pad 39A, where the Space Shuttle Endeavour will lift off during a launch window that opens at 9:43 p.m. EST, Jan. 22. STS-89 is the eighth of nine planned missions to dock the Space Shuttle with Russia's Mir space station, where Dr. Thomas will succeed David Wolf, M.D.

  7. Colloidal Disorder-Order Transition Experiment Probes Particle Interactions in Microgravity

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Everything in the universe is made up of the same basic building blocks - atoms. All physical properties of matter such as weight, hardness, and color are determined by the kind of atoms present and the way they interact with each other. The Colloidal Disorder-Order Transition (CDOT) shuttle flight experiment tested fundamental theories that model atomic interactions. The experiment was part of the Second United States Microgravity Laboratory (USML-2) aboard the Space Shuttle Columbia, which flew from October 20 to November 5, 1995.

  8. Free Enterprise: Contributions of the Approach and Landing Test (ALT) Program to the Development of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2006-01-01

    The space shuttle orbiter was the first spacecraft designed with the aerodynamic characteristics and in-atmosphere handling qualities of a conventional airplane. In order to evaluate the orbiter's flight control systems and subsonic handling characteristics, a series of flight tests were undertaken at NASA Dryden Flight Research Center in 1977. A modified Boeing 747 Shuttle Carrier Aircraft carried the Enterprise, a prototype orbiter, during eight captive tests to determine how well the two vehicles flew together and to test some of the orbiter s systems. The free-flight phase of the ALT program allowed shuttle pilots to explore the orbiter's low-speed flight and landing characteristics. The Enterprise provided realistic, in-flight simulations of how subsequent space shuttles would be flown at the end of an orbital mission. The fifth free flight, with the Enterprise landing on a concrete runway for the first time, revealed a problem with the space shuttle flight control system that made it susceptible to pilot-induced oscillation, a potentially dangerous control problem. Further research using various aircraft, particularly NASA Dryden's F-8 Digital-Fly-By-Wire testbed, led to correction of the problem before the first Orbital Test Flight.

  9. MS Lucid and Blaha with MGBX aboard the Mir space station Priroda module

    NASA Image and Video Library

    1997-03-26

    STS079-S-092 (16-26 Sept. 1996) --- Astronauts Shannon W. Lucid and John E. Blaha work at a microgravity glove box on the Priroda Module aboard Russia's Mir Space Station complex. Blaha, who flew into Earth-orbit with the STS-79 crew, and Lucid are the first participants in a series of ongoing exchanges of NASA astronauts serving time as cosmonaut guest researchers onboard Mir. Lucid went on to spend a total of 188 days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules, with the cooperation of the Russian Space Agency (RSA). A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  10. STS-89 M.S. Sharipov of the RSA arrives at the SLF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist Salizhan Sharipov of the Russian Space Agency arrives at the KSC Shuttle Landing Facility in one of the T-38 aircraft traditionally flown by the astronaut corps. The eight STS-89 crew members flew into KSC from Johnson Space Center as final preparations are under way toward the scheduled liftoff on Jan. 22 of the Space Shuttle Endeavour on the eighth mission to dock with the Russian Space Station Mir. After docking, STS-89 Mission Specialist Andrew Thomas, Ph.D., will transfer to the space station, succeeding David Wolf, M.D., who will return to Earth aboard Endeavour. Dr. Thomas will live and work on Mir until June. STS-89 is scheduled for a Jan. 22 liftoff at 9:48 p.m. EST.

  11. STS-89 M.S. Sharipov, his wife, and M.S. Thomas, at the SLF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist Salizhan Sharipov of the Russian Space Agency, at left, poses with his wife, Nadezhda Sharipova, and Mission Specialist Andrew Thomas, Ph.D., at right, shortly after arrival at the KSC Shuttle Landing Facility. The eight STS-89 crew members flew into KSC from Johnson Space Center as final preparations are under way toward the scheduled liftoff on Jan. 22 of the Space Shuttle Endeavour on the eighth mission to dock with the Russian Space Station Mir. After docking, Dr. Thomas will transfer to the space station, succeeding David Wolf, M.D., who will return to Earth aboard Endeavour. Dr. Thomas will live and work on Mir until June. STS-89 is scheduled for a Jan. 22 liftoff at 9:48 p.m. EST.

  12. KSC-2012-1938

    NASA Image and Video Library

    2012-04-03

    CAPE CANAVERAL, Fla. – Jeremy Schwarz, left, quality assurance technician, and Mike Williams, right, a thermal protection system technician, both with United Space Alliance, prepare the right wing of space shuttle Endeavour for tile bonding. Endeavour is inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston

  13. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    NASA astronaut Greg Johnson, left, speaks with Dr. Marc Mauer, president of the National Federation of the Blind, right, prior to a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  14. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    Mark Riccobono, executive director of the Jernigan Institute of the National Federation of the Blind, at podium, delivers remarks at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  15. STS-69 Crew members display 'Dog Crew' patches

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Following their arrival at KSC's Shuttle Landing Facility, the five astronauts assigned to Space Shuttle Mission STS-69 display the unofficial crew patch for their upcoming spaceflight: the Dog Crew II patch. Mission Commander David M. Walker (center) and Payload Commander James S. Voss (second from right) previously flew together on Mission STS-53, the final dedicated Department of Defense flight on the Space Shuttle. A close comradery formed among Walker, Voss and the rest of the crew, and they dubbed themselves the 'dogs of war', with each of the STS-53 'Dog Crew' members assigned a 'dog tag' or nickname. When the STS-69 astronauts also became good buddies, they decided it was time for the Dog Crew II to be named. Walker's dog tag is Red Dog, Voss's is Dogface, Pilot Kenneth D. Cockrell (second from left) is Cujo, space rookie and Mission Specialist Michael L. Gernhardt (left) is Under Dog, and Mission Specialist James H. Newman (right) is Pluato. The Dog Crew II patch features a bulldog peering out from a doghouse shaped like the Space Shuttle and lists the five crew member's dog names. The five astronauts are scheduled to lift off on the fifth Shuttle flight of the year at 11:04 a.m. EDT, August 31, aboard the Space Shuttle Endeavour.

  16. Spectators in the stands watch launch of STS-95 and Space Shuttle Discovery.

    NASA Technical Reports Server (NTRS)

    1998-01-01

    These stands are filled with spectators watching and photographing the launch of STS-95. The viewing sites and roadways at Kennedy Space Center bulge with people and vehicles wanting to see Space Shuttle Discovery lift off. Extra attention has been drawn to the mission due to the addition to the crew of John H. Glenn Jr., a senator from Ohio. STS-95 is Glenn's second flight into space after 36 years; he was one of the original Project Mercury astronauts and flew his first mission in February 1962. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  17. 400mm Mapping Sequence performed during the STS-119 R-Bar Pitch Maneuver

    NASA Image and Video Library

    2008-03-17

    ISS018-E-040791 (17 March 2009) --- Backdropped by a blanket of clouds, Space Shuttle Discovery is featured in this image photographed by an Expedition 18 crewmember on the International Space Station during rendezvous and docking operations. Before docking with the station, astronaut Lee Archambault, STS-119 commander, flew the shuttle through a Rendezvous Pitch Maneuver or basically a backflip to allow the space station crew a good view of Discovery's heat shield. Using digital still cameras equipped with both 400 and 800 millimeter lenses, the ISS crewmembers took a number of photos of the shuttle's thermal protection system and sent them down to teams on the ground for analysis. A 400 millimeter lens was used for this image. Docking occurred at 4:20 p.m. (CDT) on March 17, 2009. The final pair of power-generating solar array wings and the S6 truss segment are visible in Discovery?s cargo bay.

  18. 400mm Mapping Sequence performed during the STS-119 R-Bar Pitch Maneuver

    NASA Image and Video Library

    2008-03-17

    ISS018-E-040792 (17 March 2009) --- Backdropped by a blanket of clouds, Space Shuttle Discovery is featured in this image photographed by an Expedition 18 crewmember on the International Space Station during rendezvous and docking operations. Before docking with the station, astronaut Lee Archambault, STS-119 commander, flew the shuttle through a Rendezvous Pitch Maneuver or basically a backflip to allow the space station crew a good view of Discovery's heat shield. Using digital still cameras equipped with both 400 and 800 millimeter lenses, the ISS crewmembers took a number of photos of the shuttle's thermal protection system and sent them down to teams on the ground for analysis. A 400 millimeter lens was used for this image. Docking occurred at 4:20 p.m. (CDT) on March 17, 2009. The final pair of power-generating solar array wings and the S6 truss segment are visible in Discovery?s cargo bay.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2001-01-01

    This is the STS-102 mission crew insignia. The central image on the crew patch depicts the International Space Station (ISS) in the build configuration that it had at the time of the arrival and docking of Discovery during the STS-102 mission, the first crew exchange flight to the Space Station. The station is shown along the direction of the flight as was seen by the shuttle crew during their final approach and docking, the so-called V-bar approach. The names of the shuttle crew members are depicted in gold around the top of the patch, and surnames of the Expedition crew members being exchanged are shown in the lower barner. The three ribbons swirling up to and around the station signify the rotation of these ISS crew members. The number 2 is for the Expedition 2 crew who flew up to the station, and the number 1 is for the Expedition 1 crew who then returned down to Earth. In conjunction with the face of the Lab module of the Station, these Expedition numbers create the shuttle mission number 102. Shown mated below the ISS is the Italian-built Multipurpose Logistics Module, Leonardo, that flew for the first time on this flight. The flags of the countries that were the major contributors to this effort, the United States, Russia, and Italy are also shown in the lower part of the patch. The build-sequence number of this flight in the overall station assembly sequence, 5A.1, is captured by the constellations in the background.

  20. KSC-2012-3561

    NASA Image and Video Library

    2012-06-28

    CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility SLF at NASA’s Kennedy Space Center in Florida, Chad Stout with C Spray Glass Blasting in Cocoa, Fla., prepares to install a special plaque to mark the nose gear wheel stop of space shuttle Atlantis. Stout is cutting the 15,000 by 1,000-foot-long concrete runway to accommodate the black granite plaque, which is 16 by 28 inches. It is the third plaque permanently mounted to commemorate the final landing of each of the three orbiters. Atlantis completed the STS-135 mission by landing at the SLF on July 21, 2011, at 5:57 a.m. Atlantis flew 33 missions, completed 4,848 orbits of the Earth, traveled nearly 126 million miles and spent 307 days in space. Atlantis carried 207 astronauts to space. Photo credit: NASA/Charisse Nahser

  1. Microgravity

    NASA Image and Video Library

    2000-04-14

    Representatives of NASA materials science experiments supported the NASA exhibit at the Rernselaer Polytechnic Institute's Space Week activities, April 5 through 11, 1999. From left to right are: Angie Jackman, project manager at NASA's Marshall Space Flight Center for dendritic growth experiments; Dr. Martin Glicksman of Rennselaer Polytechnic Instutute, Troy, NY, principal investigator on the Isothermal Dendritic Growth Experiment (IDGE) that flew three times on the Space Shuttle; and Dr. Matthew Koss of College of the Holy Cross in Worcester, MA, a co-investigator on the IDGE and now principal investigator on the Transient Dendritic Solidification Experiment being developed for the International Space Station (ISS). The image at far left is a dendrite grown in Glicksman's IDGE tests aboard the Shuttle. Glicksman is also principal investigator for the Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters.

  2. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    A memorial wreath stands at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex before a ceremony remembering astronaut Sen. John Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  3. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    A portrait of Sen. John Glenn and a memorial wreath stand at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex before a ceremony remembering the iconic astronaut who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  4. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    News media members and visitors gather at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  5. KSC-2011-4444

    NASA Image and Video Library

    2011-06-15

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a crane is attached to the remote manipulator system, or RMS, in space shuttle Endeavour's payload bay. The removal is part of Endeavour's transition and retirement processing. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles over the course of its 19-year career. Photo credit: NASA/Tim Jacobs

  6. KSC-2012-1940

    NASA Image and Video Library

    2012-04-03

    CAPE CANAVERAL, Fla. – Jeremy Schwarz, left, quality assurance technician, and Mike Williams, right, a thermal protection system technician, both with United Space Alliance, apply adhesive to space shuttle Endeavour's right wing. The work is being done in preparation for tile bonding. Endeavour is inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston

  7. KSC-2012-1941

    NASA Image and Video Library

    2012-04-03

    CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, Mike Williams, a thermal protection system technician with United Space Alliance, puts the finishing touches on a layer of adhesive applied to the right wing of space shuttle Endeavour. The work is being done in preparation for tile bonding. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston

  8. KSC-2012-1944

    NASA Image and Video Library

    2012-04-03

    CAPE CANAVERAL, Fla. – Mike Williams, a thermal protection system technician with United Space Alliance, arranges weights atop a freshly installed section of tile on the right wing of space shuttle Endeavour at NASA's Kennedy Space Center in Florida. The weights will hold the section in place while the adhesive hardens beneath. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston

  9. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    Derrick Tuff, right in wheelchair, and Kayla Weathers, standing left, deliver remarks at a ceremony where senior NASA officials presented the National Federation of the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Man standing at center is unidentified. Photo Credit: (NASA/Paul E. Alers)

  10. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    House Majority Leader U.S. Rep. Steny Hoyer, D-Md., smiles as he speaks to those in attendance at a ceremony where senior NASA officials presented the National Federation of the Blind with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  11. EM-0115-02

    NASA Image and Video Library

    2013-05-22

    During a visit to NASA's Dryden Flight Research Center on May 22, 2013, NASA Administrator Charlie Bolden spoke at a media event showcasing Sierra Nevada Corporation’s (SNC) Dream Chaser flight test vehicle that had recently arrived at the center. Bolden, a former Marine Corps pilot and space shuttle astronaut, also flew a simulation of the Dream Chaser's approach and landing profile at Dryden.

  12. STS-93 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An overview of Flight STS-93 is presented. The primary objective of the STS-93 mission was to deploy the Advanced X-Ray Astrophysics Facility (AXAF), also known as the Chandra X-ray Observatory. The mission flew on the Columbia Shuttle, on July 22, 1999. This facility is the most sophisticated X-ray observatory ever built. Other payloads on STS-93 were: (1) the Midcourse Space Experiment (MSX), (2) Shuttle Ionospheric Modification with Pulsed Local Exhaust (SIMPLEX), (3) Southwest Ultraviolet Imaging System (SWUIS), (4) Gelation of Sols: Applied Microgravity Research (GOSAMR), Space Tissue Loss-B (STL-B), (5) Light Weight Flexible Solar Array Hinge (LFSAH), (6) Cell Culture Module (CCM), and (7) the Shuttle Amateur Radio Experiment-II (SAREX-II), (8) EarthKam, (9) Plant Growth Investigations in Microgravity (PGIM), (10) Commercial Generic Bioprocessing Apparatus (CGBA), (11) Micro-Electrical Mechanical System (MEMS), and (12) the Biological Research in Canisters (BRIC). The crew was: Eileen M. Collins, Mission Commander, the first female shuttle commander; Jeffrey S. Ashby, Pilot; Steven A. Hawley , Mission Specialist; Catherine G. Coleman, Mission Specialist; Michel Tognini (CNES), Mission Specialist. The video contains views of life aboard the space shuttle. This mission featured both a night launching and a night landing at the Kennedy Space Center.

  13. STS-91 Commander Precourt talks to Cosmonauts Kondakova and Ryumin at SLF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Commander Charles Precourt (left) talks to Elena V. Kondakova and her husband, Valery Ryumin, a cosmonaut with the Russian Space Agency (RSA) and STS-91 mission specialist, at Kennedy Space Center's Shuttle Landing Facility (SLF). The STS-91 crew had just arrived at the SLF aboard T-38 jets in preparation for launch. Kondakova, also a cosmonaut with the RSA, flew with Commander Precourt as a mission specialist on STS-84 which launched on May 15, 1997. STS-91 is scheduled to be launched on June 2 on Space Shuttle Discovery with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.- Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Pilot Dominic Gorie and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; and Janet Kavandi, Ph.D. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.

  14. STS-75 Mission Cmdr Andrew Allen inspects SPREE in O&C

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-75 Mission Commander Andrew Allen inspects the Shuttle Potential and Return Experiment (SPRE) that will fly on his mission in the Operations and Checkout (O&C) Building. This 14- day mission is now scheduled for early 1996 aboard the Space Shuttle Orbiter Columbia. The primary payloads are the Tethered Satellite System-1R (TSS-1R) and the U.S. Microgravity Payload-3 (USMP-3). The 'R' designation indicates a reflight of the TSS-1. It originally flew on STS-46 in July 1992 but achieved only partial success.

  15. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks with news media members at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex following a ceremony remembering astronaut Sen. John Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  16. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  17. Life and Microgravity Spacelab (LMS)

    NASA Technical Reports Server (NTRS)

    Downey, James Patton (Compiler)

    1998-01-01

    This document reports the results and analyses presented at the Life and Microgravity Spacelab One Year Science Review meeting. The science conference was held in Montreal, Canada, on August 20-21, 1997, and was hosted by the Canadian Space Agency. The LMS payload flew on the Space Shuttle Columbia (STS-78) from June 20 - July 7, 1996. The LMS investigations were performed in a pressurized Spacelab module and the Shuttle middeck. Forty scientific experiments were performed in fields such as fluid physics, solidification of metals, alloys, and semiconductors, the growth of protein crystals, and animal, human, and plant life sciences. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity.

  18. Space acquired photography

    USGS Publications Warehouse

    ,

    2008-01-01

    Interested in a photograph of the first space walk by an American astronaut, or the first photograph from space of a solar eclipse? Or maybe your interest is in a specific geologic, oceanic, or meteorological phenomenon? The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center is making photographs of the Earth taken from space available for search, download, and ordering. These photographs were taken by Gemini mission astronauts with handheld cameras or by the Large Format Camera that flew on space shuttle Challenger in October 1984. Space photographs are distributed by EROS only as high-resolution scanned or medium-resolution digital products.

  19. John H Glenn Jr. Wreath Laying Ceremony - Inside Hereos and Lege

    NASA Image and Video Library

    2016-12-09

    A plaque inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows the name of astronaut Sen. John Glenn. Glenn, who passed away Dec. 8, 2016 at age 95, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  20. STS-71 Pilot Charles J. Precort arrival in T-38

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-71 Pilot Charles J. Precourt arrives at the KSC Shuttle Landing Facility in one of the T-38 aircraft traditionally flown by the astronaut corps. The seven STS-71 crew members flew into KSC from Johnson Space Center as final preparations are under way toward the scheduled liftoff on June 23 of the Space Shuttle Atlantis on the first mission to dock with the Russian Space Station Mir. KSC-95EC-870 - Mir 19 Flight Engineer Nikolai M. Budarin arrives at KSC Mir 19 Flight Engineer Nikolai M. Budarin hitches a ride with STS-71 Pilot Charles J. Precourt in a T-38. Budarin, Precourt and the rest of the STS-71 crew arrived at KSC's Shuttle Landing Facility the same day the countdown clock began ticking toward a scheduled liftoff on Friday, June 23. During the historic flight of the Space Shuttle Atlantis on STS- 71, the crew will perform the first U.S. docking with the Russian Space Station Mir. Budarin and Mir 19 Mission Commander Anatoly Solovyev will transfer to Mir during the flight, and the three crew members currently on Mir will return to Earth in the orbiter.

  1. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    NASA Technical Reports Server (NTRS)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  2. Spectators in the stands watch launch of STS-95 and Space Shuttle Discovery.

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Amid the thousands of spectators watching the launch of STS-95 are Insurance Commissioner Bill Nelson (second from left, pointing) and Heavyweight Boxing Champion Evander Holyfield (next to him). A former U.S. representative, Nelson flew as a crew member on STS 61-C in January 1986. The STS-95 mission, which lifted off at 2:19:34 p.m. EST on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process. Extra attention has been drawn to the mission due to the addition to the crew of John H. Glenn Jr., a senator from Ohio. STS-95 is Glenn's second flight into space after 36 years; he was one of the original Project Mercury astronauts and flew his first mission in February 1962.

  3. Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.

    2009-01-01

    Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.

  4. KSC-2012-1205

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is towed inside Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  5. KSC-2012-1203

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is towed inside Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  6. KSC-2012-1201

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is being towed to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  7. KSC-2012-1206

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is towed inside Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  8. KSC-2012-1204

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is towed inside Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  9. KSC-2012-1202

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is towed to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  10. John H Glenn Jr. Wreath Laying Ceremony - Inside Heroes and Lege

    NASA Image and Video Library

    2016-12-09

    A plaque inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows astronaut Sen. John Glenn, along with his mission insignias for Friendship 7 and STS-95, the two flights he made into space. Glenn, who passed away Dec. 8, 2016 at age 95, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  11. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    Mark Riccobono, executive director of the Jernigan Institute of the National Federation of the Blind, right, accepts an award from Dr. Joyce Winterton, Assistant Administrator, Office of Education, NASA Headquarters, center, and Ken Silberman, from Goddard Space Flight Center, at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  12. KSC-2012-1943

    NASA Image and Video Library

    2012-04-03

    CAPE CANAVERAL, Fla. – Mike Williams, left, a thermal protection system technician, and Jeremy Schwarz, right, quality assurance technician, both with United Space Alliance, set weights atop a newly installed section of tile on the right wing of space shuttle Endeavour at NASA's Kennedy Space Center in Florida. The weights will hold the section in place while the adhesive hardens beneath. Ongoing transition and retirement activities are preparing the spacecraft for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions during its 19-year career. Photo credit: NASA/Cory Huston

  13. KSC-98pc1465

    NASA Image and Video Library

    1998-10-28

    The day before the launch of mission STS-95, the Press Site was inundated with 40 trailers, 75 trucks and RVs, 8 stages and 8 risers to accommodate the 3,750 media requests to cover the launch and return to space of John H. Glenn Jr., a senator from Ohio. Glenn flew aboard Friendship 7 in February 1962, and was the first American to orbit the Earth. Glenn is one of a crew of seven on board Space Shuttle Discovery for the nine-day mission

  14. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    House Majority Leader U.S. Rep. Steny Hoyer, D-Md., left, holds up an award presented to him by Mark Riccobono, executive director of the Jernigan Institute of the National Federation of the Blind at a ceremony where senior NASA officials presented the NFB with two Louis Braille Bicentennial Silver Dollars that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  15. National Federation of the Blind Braille Coin

    NASA Image and Video Library

    2009-07-30

    NASA Associate Administrator Chris Scolese, left, and Mark Riccobono, executive director of the Jernigan Institute of the National Federation of the Blind hold up a Braille enscribed award with two Louis Braille Bicentennial Silver Dollars at a ceremony where senior NASA officials presented the NFB with coins that flew on Space Shuttle Atlantis' mission (STS-125) to the Hubble Space Telescope in May 2009, Friday evening, July 31, 2009, at the Capitol Visitors Center in Washington. Photo Credit: (NASA/Paul E. Alers)

  16. STS-73 Cmdr Kenneth D. Bowersox arrives at SLF

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-73 Mission Commander Kenneth D. Bowersox arrives at KSC's Shuttle Landing Facility (SLF), ready to fly one spaceship into orbit as another vehicle is prepared for a different destination behind him. Bowersox and his six-member crew flew into KSC just hours after the countdown clock began ticking toward a scheduled liftoff of the Space Shuttle Columbia from Pad 39B at 9:35 a.m EDT, Sept. 28. The orbiter Discovery was towed to the SLF for a cross-country trip to the West Coast and a regularly scheduled refurbishment and checkout period.

  17. Space Shuttle Columbia touches down on Runway 33

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia touches down on Runway 33 at KSC''';s Shuttle Landing Facility at 2:33:11 p.m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. At main gear touchdown, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L. Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations.

  18. Space Shuttle Columbia prepares to touch down on Runway 33

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia prepares to touch down on Runway 33 at KSC''';s Shuttle Landing Facility at approximately 2:33 p.m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. At main gear touchdown, the STS-83 mission duration will be just under four days. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations.

  19. KSC-2009-5950

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Nearly twice as tall as the space shuttle, the Constellation Program's 327-foot-tall Ares I-X test rocket races off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  20. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.

    2004-01-01

    Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  1. An overview of Ball Aerospace cryogen storage and delivery systems

    NASA Astrophysics Data System (ADS)

    Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.

    2015-12-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.

  2. KSC-06pd0790

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - Brewster H. Shaw Jr. (right) accepts congratulations from Al Worden, U.S. Astronaut Hall of Fame member and chairman of the Astronaut Scholarship Foundation. The occasion is the 2006 induction ceremony for the U.S. Astronaut Hall of Fame, held in the Apollo/Saturn V Center. The inductees for 2006 are former NASA astronauts Shaw, Henry "Hank" Hartsfield Jr., and Charles F. Bolden Jr. Shaw flew on three space shuttle missions including STS-9, STS-61B, STS-28, logging 533 hours in space. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  3. KSC-06pd0789

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - Henry "Hank" Hartsfield Jr. (right) accepts congratulations from Al Worden, U.S. Astronaut Hall of Fame member and chairman of the Astronaut Scholarship Foundation. The occasion is the 2006 induction ceremony for the U.S. Astronaut Hall of Fame, held in the Apollo/Saturn V Center. The inductees for 2006 are former NASA astronauts Hartsfield, Brewster H. Shaw Jr. and Charles F. Bolden Jr. Hartsfield flew on three space shuttle missions including STS-4, STS-41D and STS-61A, logging 482 hours in space. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  4. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former astronauts Bob Cabana, director of NASA's Kennedy Space Center in Florida, from left, Jon McBride, Al Worden and Winston Scott pose outside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex following a ceremony remembering astronaut Sen. John Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  5. Fluid Acquisition and Resupply Experiments on Space Shuttle Flights STS-53 and STS-57

    NASA Technical Reports Server (NTRS)

    Dominick, S. M.; Tegart, J. R.; Driscoll, S. L.; Sledd, J. D.; Hastings, L. J.

    2011-01-01

    The Fluid Acquisition and Resupply Experiment (FARE) program, managed by the Marshall Space Flight Center Space Propulsion Branch with Martin Marietta Civil Space and Communications as the contractor, consisted of two flights designated FARE I and FARE II. FARE I flew in December 1992 on STS-53 with a screen channel liquid acquisition device (LAD) and FARE II flew in June 1993 on STS-57 with a vane-type LAD. Thus, the FARE I and II flights represent the two basic LAD categories usually considered for in-space fluid management. Although both LAD types have been used extensively, the usefulness of the on-orbit data has been constrained by the lack of experimentation beyond predicted performance limits, including both propellant fill and expulsion. Therefore, the FARE tests were designed to obtain data that would satisfy two primary objectives: (1) Demonstrate the performance of the two types of LADs, screen channel and vane, and (2) support the anchoring of analytical models. Both flights were considered highly successful in meeting these two primary objectives.

  6. KSC-2012-1194

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians walk alongside as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  7. KSC-2012-1189

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – Space shuttle Endeavour is backed away from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida so that it can be towed to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  8. KSC-2012-1207

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is safed inside Orbiter Processing Facility-2 (OPF-2) after being towed from the Vehicle Assembly Building. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  9. KSC-2012-1197

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  10. KSC-2012-1195

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians walk alongside as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  11. KSC-2012-1188

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – Space shuttle Endeavour is backed away from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida so that it can be towed to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  12. KSC-2012-1200

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians assist as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  13. KSC-2012-1196

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians walk alongside as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  14. KSC-2012-1198

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  15. KSC-2012-1191

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – Space shuttle Endeavour is backed away from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida so that it can be towed to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  16. KSC-2012-1187

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare space shuttle Endeavour for its move to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  17. KSC-2012-1184

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is being prepared for its move to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  18. KSC-2012-1199

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians assist as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  19. KSC-2012-1193

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians walk alongside as space shuttle Endeavour is being towed from the Vehicle Assembly Building to Orbiter Processing Facility-2. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  20. Microgravity

    NASA Image and Video Library

    2004-04-15

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  1. Lightning over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These two images were taken 9 seconds apart as the STS-97 Space Shuttle flew over equatorial Africa east of Lake Volta on December 11, 2000. The top of the large thunderstorm, roughly 20 km across, is illuminated by a full moon and frequent bursts of lightning. Because the Space Shuttle travels at about 7 km/sec, the astronaut perspectives on this storm system becomes more oblique over the 9-second interval between photographs. The images were taken with a Nikon 35 mm camera equipped with a 400 mm lens and high-speed (800 ISO) color negative film. Images are STS097-351-9 and STS097-351-12, provided and archived by the Earth Science and Image Analysis Laboratory, Johnson Space Center. Additional images taken by astronauts can be viewed at NASA-JSC's Gateway to Astronaut Photography of Earth at http://eol.jsc.nasa.gov/

  2. Bacillus thuringiensis (Bt)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  3. Official STS-67 preflight crew portrait

    NASA Image and Video Library

    1994-12-01

    STS067-S-002 (December 1994) --- Five NASA astronauts and two payload specialists from the private sector have been named to fly aboard the Space Shuttle Endeavour for the STS-67/ASTRO-2 mission, scheduled for March 1995. In front are astronauts (left to right) Stephen S. Oswald, mission commander; Tamara E. Jernigan, payload commander; and William G. Gregory, pilot. In the back are (left to right) Ronald A. Parise, payload specialist; astronauts Wendy B. Lawrence, and John M. Grunsfeld, both mission specialists; and Samuel T. Durrance, payload specialist. Dr. Durrance is a research scientist in the Department of Physics and Astronomy at Johns Hopkins University, Baltimore, Maryland. Dr. Parise is a senior scientist in the Space Observatories Department, Computer Sciences Corporation, Silver Spring, Maryland. Both payload specialist's flew aboard the Space Shuttle Columbia for the STS-35/ASTRO-1 mission in December 1990.

  4. KSC-98pc673

    NASA Image and Video Library

    1998-06-02

    With the help of a suit technician, STS-91 Pilot Dominic L. Gorie dons his flight suit in the Operations and Checkout (O&C) Building prior to the crew walkout and transport to Launch Pad 39A. Gorie is on his first Shuttle mission. As a commander in the Navy, he flew combat missions in Operation Desert Storm and has earned a Distinguished Flying Cross as well as a master’s degree in aviation systems. Along with backing up Precourt on the flight deck, Gorie will perform the final Shuttle-Mir undocking and flyaround. He will also assist with the transfer of materials to and from Mir and the photographic documentation of the space station. STS91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir

  5. KSC-06pd0791

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - Charles F. Bolden Jr. (right) accepts congratulations from Al Worden, U.S. Astronaut Hall of Fame member and chairman of the Astronaut Scholarship Foundation. The occasion is the 2006 induction ceremony for the U.S. Astronaut Hall of Fame, held in the Apollo/Saturn V Center. The inductees for 2006 are former NASA astronauts Bolden, Henry "Hank" Hartsfield Jr. and Brewster H. Shaw Jr. Bolden flew on four space shuttle missions including STS-61C, STS-31, STS-45 and STS-60, logging 680 hours in space. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  6. Expedition 18 Group Photo

    NASA Image and Video Library

    2009-03-20

    ISS018-E-041340 (20 March 2009) --- Expedition 18 crewmembers pose for a group photo in the Harmony node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. From the right are NASA astronaut Michael Fincke, commander; Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata and cosmonaut Yury Lonchakov, both flight engineers; along with NASA astronaut Sandra Magnus, STS-119 mission specialist. Magnus flew to the station on STS-126 to serve as a flight engineer for Expedition 18, and will return to Earth as mission specialist with the STS-119 crew.

  7. John H Glenn Jr. Wreath Laying Ceremony - Inside Heroes and Lege

    NASA Image and Video Library

    2016-12-09

    A life-size photo inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows astronaut Sen. John Glenn, center, with fellow Mercury Seven astronauts Gordon Cooper, left, and Gus Grissom. Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  8. Media blitz of mission STS-95 fills grounds around Press Site

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The day before the launch of mission STS-95, the Press Site was inundated with 40 trailers, 75 trucks and RVs, 8 stages and 8 risers to accommodate the 3,750 media requests to cover the launch and return to space of John H. Glenn Jr., a senator from Ohio. Glenn flew aboard Friendship 7 in February 1962, and was the first American to orbit the Earth. Glenn is one of a crew of seven on board Space Shuttle Discovery for the nine-day mission.

  9. KSC-97PC856

    NASA Image and Video Library

    1997-05-24

    Astronaut and recent Mir 23 crew member Jerry M. Linenger, standing, reunites with his wife, Kathryn, and their 18-month-old son, John, in the astronaut suit-up room in the Operations and Checkout Building. Kathryn Linenger is expecting their second child next month. Linenger just returned to Earth after a four-month stay on the Russian Space Station Mir. He flew back on Atlantis with six other members of the STS-84 crew, who conducted the sixth Space Shuttle docking with the Mir. STS-84 Mission Specialist C. Michael Foale replaced Linenger on the Mir

  10. KSC-97PC857

    NASA Image and Video Library

    1997-05-24

    Astronaut and recent Mir 23 crew member Jerry M. Linenger poses for a photograph with his wife, Kathryn, and their 18-month-old son, John, during a family reunion in the Operations and Checkout Building. Kathryn Linenger is expecting their second child next month. Linenger just returned to Earth after a four-month stay on the Russian Space Station Mir. He flew back on Atlantis with six other members of the STS-84 crew, who conducted the sixth Space Shuttle docking with the Mir. STS-84 Mission Specialist C. Michael Foale replaced Linenger on the Mir

  11. KSC-2012-1192

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – With the massive doors of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida in the background, space shuttle Endeavour is being towed from the VAB to Orbiter Processing Facility-2. Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  12. KSC-2012-1190

    NASA Image and Video Library

    2012-02-01

    CAPE CANAVERAL, Fla. – Technicians monitor the progress as Space shuttle Endeavour is backed away from the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida so that it can be towed to Orbiter Processing Facility-2 (OPF-2). Shuttle Endeavour will remain in OPF-2 so that the orbiter maneuvering system (OMS) pods and forward reaction control system can be installed. Technicians also will offload water and Freon gas from lines located in Endeavour’s midbody. The work is part of Endeavour’s transition and retirement processing. The spacecraft is being prepared for public display at the California Science Center in Los Angeles. Endeavour flew 25 missions, spent 299 days in space, orbited Earth 4,671 times and traveled 122, 883, 151 miles over the course of its 19-year career. Endeavour’s STS-134 and final mission was completed after landing on June 1, 2011. Photo credit: Kim Shiflett

  13. STS-74 view of ODS from Payload Changout Room

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Workers at Launch Pad 39A are preparing to close the payload bay doors on the Space Shuttle Atlantis for its upcoming launch on Mission STS-74 and the second docking with the Russian Space Station Mir. Uppermost in the payload bay is the Orbiter Docking System (ODS), which also flew on the first docking flight between the Space Shuttle and MIR. Lowermost is the primary payload of STS-74, the Russian-built Docking Module. During the mission, the Docking Module will first be attached to ODS and then to Mir. It will be left attached to Mir to become a permanent extension that will afford adequate clearance between the orbiter and the station during future dockings. At left in the payload bay, looking like a very long pole, is the Canadian-built Remote Manipulator System arm that will be used by the crew to hoist the Docking Module and attach it to the ODS.

  14. STS-74 view of MIR Docking module at Pad 39A

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Workers at Launch Pad 39A are preparing to close the payload bay doors on the Space Shuttle Atlantis for its upcoming launch on Mission STS-74 and the second docking with the Russian Space Station Mir. Uppermost in the payload bay is the Orbiter Docking System (ODS), which also flew on the first docking flight between the Space Shuttle and MIR. Lowermost is the primary payload of STS-74, the Russian-built Docking Module. During the mission, the Docking Module will first be attached to ODS and then to Mir. It will be left attached to Mir to become a permanent extension that will afford adequate clearance between the orbiter and the station during future dockings. At left in the payload bay, looking like a very long pole, is the Canadian-built Remote Manipulator System arm that will be used by the crew to hoist the Docking Module and attach it to the ODS.

  15. KSC-2012-1462

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Former space shuttle launch director, Bob Sieck, left, talks to guests in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Sieck is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston

  16. KSC-2012-1461

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Former space shuttle launch director, Bob Sieck, left, talks to guests in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Sieck is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston

  17. KSC-2012-1465

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Former space shuttle launch director, Bob Sieck, talks to guests in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Sieck is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston

  18. KSC-2010-4450D

    NASA Image and Video Library

    2010-07-29

    CAPE CANAVERAL, Fla. -- This is a version of space shuttle Atlantis' orbiter tribute, or OV-104, which hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In 2011, the tribute was updated to reflect the addition of one more Atlantis flight -- STS-135 -- which will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. In the lower-left corner, it features Atlantis soaring above Earth and threaded through the design are the mission patches for each of Atlantis’ flights. Atlantis' accomplishments include seven missions to the Russian space station Mir and several assembly, construction and resupply missions to the International Space Station. Atlantis also flew the last Hubble Space Telescope servicing mission on STS-125. In the tribute, the planet Venus represents the Magellan probe being deployed during STS-30, and Jupiter represents the Galileo probe being deployed during STS-34. The inset photos illustrate various aspects of shuttle processing as well as significant achievements, such as the glass cockpit and the first shuttle docking with Mir during STS-71. The inset photo in the upper-left corner shows a rainbow over Atlantis on Launch Pad 39A and shuttle Endeavour on Launch Pad 39B at Kennedy. Endeavour was the assigned vehicle had Atlantis’ STS-125 mission needed rescue, and this was the last time both launch pads were occupied at the same time. The stars in the background represent the many people who have worked with Atlantis and their contributions to the vehicle’s success. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-161-KSC

  19. KSC-2010-4450E

    NASA Image and Video Library

    2010-07-29

    CAPE CANAVERAL, Fla. -- This is a printable version of space shuttle Atlantis' orbiter tribute, or OV-104, which hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In 2011, the tribute was updated to reflect the addition of one more flight -- STS-135 -- which will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. In the lower-left corner, it features Atlantis soaring above Earth and threaded through the design are the mission patches for each of Atlantis’ flights. Atlantis' accomplishments include seven missions to the Russian space station Mir and several assembly, construction and resupply missions to the International Space Station. Atlantis also flew the last Hubble Space Telescope servicing mission on STS-125. In the tribute, the planet Venus represents the Magellan probe being deployed during STS-30, and Jupiter represents the Galileo probe being deployed during STS-34. The inset photos illustrate various aspects of shuttle processing as well as significant achievements, such as the glass cockpit and the first shuttle docking with Mir during STS-71. The inset photo in the upper-left corner shows a rainbow over Atlantis on Launch Pad 39A and shuttle Endeavour on Launch Pad 39B at Kennedy. Endeavour was the assigned vehicle had Atlantis’ STS-125 mission needed rescue, and this was the last time both launch pads were occupied at the same time. The stars in the background represent the many people who have worked with Atlantis and their contributions to the vehicle’s success. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-161-KSC

  20. KSC-2010-4450C

    NASA Image and Video Library

    2010-07-29

    CAPE CANAVERAL, Fla. -- This orbiter tribute of space shuttle Atlantis, or OV-104, hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In 2011, the tribute was updated to reflect the addition of one more Atlantis flight -- STS-135 -- which will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. In the lower-left corner, it features Atlantis soaring above Earth and threaded through the design are the mission patches for each of Atlantis’ flights. Atlantis' accomplishments include seven missions to the Russian space station Mir and several assembly, construction and resupply missions to the International Space Station. Atlantis also flew the last Hubble Space Telescope servicing mission on STS-125. In the tribute, the planet Venus represents the Magellan probe being deployed during STS-30, and Jupiter represents the Galileo probe being deployed during STS-34. The inset photos illustrate various aspects of shuttle processing as well as significant achievements, such as the glass cockpit and the first shuttle docking with Mir during STS-71. The inset photo in the upper-left corner shows a rainbow over Atlantis on Launch Pad 39A and shuttle Endeavour on Launch Pad 39B at Kennedy. Endeavour was the assigned vehicle had Atlantis’ STS-125 mission needed rescue, and this was the last time both launch pads were occupied at the same time. The stars in the background represent the many people who have worked with Atlantis and their contributions to the vehicle’s success. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-161-KSC

  1. Celebrating John Glenn’s Legacy

    NASA Image and Video Library

    2012-03-02

    Former NASA Astronaut Steve Lindsey gives remarks at an event celebrating John Glenn's legacy and 50 years of americans in orbit held at the Cleveland State University Wolstein Center on Friday, March 3, 2012 in Cleveland, Ohio. In 1998 Lindsey flew onboard the space shuttle Discovery along with then 77 year-old Sen. John Glenn for the STS-95 mission. Glenn became the first American to orbit Earth in 1962. Photo Credit: (NASA/Bill Ingalls)

  2. KSC-2009-5951

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 12 times the thrust produced by a Boeing 747 jet aircraft, the Constellation Program's Ares I-X test rocket roars off Launch Pad 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and goes supersonic in 39 seconds. At left is space shuttle Atlantis, poised on Launch Pad 39A for liftoff, targeted for Nov. 16. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  3. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Spinhirne, James D.; OCStarr, David (Technical Monitor)

    2001-01-01

    Multi-angle remote sensing provides a wealth of information for earth and climate monitoring. And, as technology advances so do the options for developing instrumentation versatile enough to meet the demands associated with these types of measurements. In the current work, the multiangle measurement capability of the Infrared Spectral Imaging Radiometer is demonstrated. This instrument flew as part of mission STS-85 of the space shuttle Columbia in 1997 and was the first earth-observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height from the multi-spectral stereo measurements acquired during this flight has been developed and the results demonstrate that a vertical precision of 10.6 km was achieved. Further, the accuracy of these measurements is confirmed by comparison with coincident direct laser ranging measurements from the Shuttle Laser Altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  4. STS-70 landing just before main gear touchdown

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle orbiter Discovery touches down on KSC's Runway 33, marking a successful conclusion to the STS-70 mission. Discovery landed on orbit 143, during the second opportunity of the day. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. The orbiter traveled some 3.7 million statute miles during the nearly nine-day flight, which included a one-day extension because of fog and low visibility conditions at the KSC Shuttle Landing Facility. STS-70 was the 24th landing at KSC and the 70th Space Shuttle mission. The five-member crew deployed a Tracking and Data Relay Satellite-G (TDRS-G). Crew members were Commander Terence 'Tom' Henricks, Pilot Kevin R. Kregel, and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. STS-70 also was the maiden flight of the new Block I orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.

  5. STS-70 landing main gear touchdown (side view)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle orbiter Discovery touches down on KSC's Runway 33, marking a successful conclusion to the STS-70 mission. Discovery landed on orbit 143, during the second opportunity of the day. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. The orbiter traveled some 3.7 million statute miles during the nearly nine-day flight, which included a one-day extension because of fog and low visibility conditions at the KSC Shuttle Landing Facility. STS-70 was the 24th landing at KSC and the 70th Space Shuttle mission. The five-member crew deployed a Tracking and Data Relay Satellite-G (TDRS-G). Crew members were Commander Terence 'Tom' Henricks, Pilot Kevin R. Kregel, and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. STS-70 also was the maiden flight of the new Block I orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.

  6. KSC-2010-4450B

    NASA Image and Video Library

    2010-07-29

    CAPE CANAVERAL, Fla. -- This is a printable version of space shuttle Atlantis' orbiter tribute, or OV-104, which hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In the lower-left corner, it features Atlantis soaring above Earth and threaded through the design are the mission patches for each of Atlantis’ flights. Atlantis' accomplishments include seven missions to the Russian space station Mir and several assembly, construction and resupply missions to the International Space Station. Atlantis also flew the last Hubble Space Telescope servicing mission on STS-125. In the tribute, the planet Venus represents the Magellan probe being deployed during STS-30, and Jupiter represents the Galileo probe being deployed during STS-34. The inset photos illustrate various aspects of shuttle processing as well as significant achievements, such as the glass cockpit and the first shuttle docking with Mir during STS-71. The inset photo in the upper-left corner shows a rainbow over Atlantis on Launch Pad 39A and shuttle Endeavour on Launch Pad 39B at Kennedy. Endeavour was the assigned vehicle had Atlantis’ STS-125 mission needed rescue, and this was the last time both launch pads were occupied at the same time. The stars in the background represent the many people who have worked with Atlantis and their contributions to the vehicle’s success. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-161-KSC

  7. KSC-2010-4450

    NASA Image and Video Library

    2010-07-29

    CAPE CANAVERAL, Fla. -- This orbiter tribute of space shuttle Atlantis, or OV-104, hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In the lower-left corner, it features Atlantis soaring above Earth and threaded through the design are the mission patches for each of Atlantis’ flights. Atlantis' accomplishments include seven missions to the Russian space station Mir and several assembly, construction and resupply missions to the International Space Station. Atlantis also flew the last Hubble Space Telescope servicing mission on STS-125. In the tribute, the planet Venus represents the Magellan probe being deployed during STS-30, and Jupiter represents the Galileo probe being deployed during STS-34. The inset photos illustrate various aspects of shuttle processing as well as significant achievements, such as the glass cockpit and the first shuttle docking with Mir during STS-71. The inset photo in the upper-left corner shows a rainbow over Atlantis on Launch Pad 39A and shuttle Endeavour on Launch Pad 39B at Kennedy. Endeavour was the assigned vehicle had Atlantis’ STS-125 mission needed rescue, and this was the last time both launch pads were occupied at the same time. The stars in the background represent the many people who have worked with Atlantis and their contributions to the vehicle’s success. Graphic design credit: NASA/Amy Lombardo

  8. KSC-2010-4450A

    NASA Image and Video Library

    2010-07-29

    CAPE CANAVERAL, Fla. -- This is a version of space shuttle Atlantis' orbiter tribute, or OV-104, which hangs in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. In the lower-left corner, it features Atlantis soaring above Earth and threaded through the design are the mission patches for each of Atlantis’ flights. Atlantis' accomplishments include seven missions to the Russian space station Mir and several assembly, construction and resupply missions to the International Space Station. Atlantis also flew the last Hubble Space Telescope servicing mission on STS-125. In the tribute, the planet Venus represents the Magellan probe being deployed during STS-30, and Jupiter represents the Galileo probe being deployed during STS-34. The inset photos illustrate various aspects of shuttle processing as well as significant achievements, such as the glass cockpit and the first shuttle docking with Mir during STS-71. The inset photo in the upper-left corner shows a rainbow over Atlantis on Launch Pad 39A and shuttle Endeavour on Launch Pad 39B at Kennedy. Endeavour was the assigned vehicle had Atlantis’ STS-125 mission needed rescue, and this was the last time both launch pads were occupied at the same time. The stars in the background represent the many people who have worked with Atlantis and their contributions to the vehicle’s success. Graphic design credit: NASA/Amy Lombardo. NASA publication number: SP-2010-08-161-KSC

  9. STS-99 Shuttle Radar Topography Mission Stability and Control

    NASA Technical Reports Server (NTRS)

    Hamelin, Jennifer L.; Jackson, Mark C.; Kirchwey, Christopher B.; Pileggi, Roberto A.

    2001-01-01

    The Shuttle Radar Topography Mission (SRTM) flew aboard Space Shuttle Endeavor February 2000 and used interferometry to map 80% of the Earth's landmass. SRTM employed a 200-foot deployable mast structure to extend a second antenna away from the main antenna located in the Shuttle payload bay. Mapping requirements demanded precision pointing and orbital trajectories from the Shuttle on-orbit Flight Control System (PCS). Mast structural dynamics interaction with the FCS impacted stability and performance of the autopilot for attitude maneuvers and pointing during mapping operations. A damper system added to ensure that mast tip motion remained with in the limits of the outboard antenna tracking system while mapping also helped to mitigate structural dynamic interaction with the FCS autopilot. Late changes made to the payload damper system, which actually failed on-orbit, required a redesign and verification of the FCS autopilot filtering schemes necessary to ensure rotational control stability. In-flight measurements using three sensors were used to validate models and gauge the accuracy and robustness of the pre-mission notch filter design.

  10. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    An Atlas rocket and Mercury capsule like the ones that carried Sen. John Glenn into Earth orbit in February 1962 stand in the Rocket Garden at the Kennedy Space Center Visitor Complex adjacent to the Heroes and Legends exhibit hall where Glenn was remembered during a ceremony Dec. 9, 2016. Glenn, one of the Mercury Seven astronauts NASA chose to fly the first missions of the Space Age, passed away on Dec. 8, 2016, at age 95. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  11. Celebrating John Glenn’s Legacy

    NASA Image and Video Library

    2012-03-02

    Cleveland State University Master of Music Major James Binion Jr. sings a musical tribute during an event celebrating John Glenn's legacy and 50 years of americans in orbit held at the university's Wolstein Center on Friday, March 3, 2012 in Cleveland, Ohio. In 1998 Lindsey flew onboard the space shuttle Discovery along with then 77 year-old Sen. John Glenn for the STS-95 mission. Glenn became the first American to orbit Earth in 1962. Photo Credit: (NASA/Bill Ingalls)

  12. NASA X-57 Simulator Prepares Pilots, Engineers for Flight of Electric X-Plane

    NASA Image and Video Library

    2016-11-29

    NASA Administrator Charlie Bolden, a former pilot and astronaut who flew on four shuttle missions, appeared natural at the controls of the X-57 simulator cockpit, and flew a pair of simulations where he landed on the Edwards Air Force Base runway.

  13. Expedition 18 Group Photo

    NASA Image and Video Library

    2009-03-20

    ISS018-E-041334 (20 March 2009) --- Expedition 18 crewmembers pose for a group photo in the Harmony node of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station. From the left (front row) are cosmonaut Yury Lonchakov and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both flight engineers. From the left (back row) are NASA astronauts Sandra Magnus, STS-119 mission specialist, and Michael Fincke, commander. Magnus flew to the station on STS-126 to serve as a flight engineer for Expedition 18, and will return to Earth as mission specialist with the STS-119 crew.

  14. KSC-04PD-1016

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Frederick (Rick) Hauck acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russias Mir space station; the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Hauck flew on three Space Shuttle missions, including command of the redesigned spaceship on its critical first flight after the explosion of Challenger. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  15. KSC-04pd1016

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Frederick (Rick) Hauck acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Hauck flew on three Space Shuttle missions, including command of the redesigned spaceship on its critical first flight after the explosion of Challenger. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  16. First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit

    NASA Technical Reports Server (NTRS)

    Meade, Carl J.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.

  17. KSC-07pd3104

    NASA Image and Video Library

    2007-11-02

    KENNEDY SPACE CENTER, FLA. -- During the World Space Expo held at NASA's Kennedy Space Center Visitor Complex, veteran astronauts pose with current and future VIPs of the Space Program: from left, Mercury astronaut Scott Carpenter; Brig. Gen. Susan J. Helms, Commander of the 45th Space Wing at Patrick Air Force Base and former shuttle astronaut; Mercury astronaut John Glenn, who also flew on space shuttle Discovery for STS-95 in 1998; Kennedy Space Center Director Bill Parsons; and NASA Associate Administrator Chris Scolese. The astronauts were part of the World Space Expo, an event to commemorate humanity's first 50 years in space while looking forward to returning people to the moon and exploring beyond. The expo showcased various panels, presentations and educational programs, as well as an aerial salute featuring the U.S. Air Force Thunderbirds, U.S. Air Force F-22 Raptor, U.S. Navy F-18 Super Hornet, U.S. Air Force F-15 Eagle, the P-51 Mustang Heritage Flight, and the U.S. Air Force 920th Rescue Wing, which was responsible for Mercury and Gemini capsule recovery. The U.S. Army Golden Knights also demonstrated precision skydiving. Photo credit: NASA/George Shelton

  18. Enterprise - Free Flight after Separation from 747

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free of NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  19. Enterprise - Free Flight after Separation from 747

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Center, Edwards, California in 1977, as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  20. KSC-98pc1398

    NASA Image and Video Library

    1998-10-26

    STS-95 Payload Specialist John H. Glenn Jr., senator from Ohio, reaches to embrace his wife, Annie, after landing at Kennedy Space Center's Shuttle Landing Facility aboard a T-38 jet. Behind the couple is the mate/demate device used to raise and lower the orbiter from its shuttle carrier aircraft during ferry operations. Glenn and other crewmembers flew into KSC to make final preparations for launch. Targeted for liftoff at 2 p.m. on Oct. 29, the STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC on Nov. 7. The other STS-95 crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA)

  1. STS-70 Crew in front of Discovery post landing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 crew members give a 'thumbs up' to press representatives and others waiting to greet them on Runway 33 of KSC's Shuttle Landing Facility after the conclusion of their successful flight on the Space Shuttle Discovery. From left, are Commander Terence 'Tom' Henricks, Mission Specialists Mary Ellen Weber, Nancy Jane Currie and Donald A. Thomas, and Pilot Kevin R. Kregel. Discovery landed on orbit 143. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. Both opportunities for a KSC touchdown on the scheduled landing date, July 21, were waived off because of fog and low visibility conditions at the Shuttle Landing Facility. The first opportunity on July 22 at KSC also was waived off. STS-70 was the 24th landing at KSC and the 70th Space Shuttle mission. During the eight-day, 22-hour flight, the crew deployed a Tracking and Data Relay Satellite-G (TDRS-G) and performed many experiments. STS-70 also was the maiden flight of the new Block I orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.

  2. KSC-04pd1018

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Joe Engle acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Engle made 16 flights in the X-15 rocket plane before he became a NASA astronaut and flew two Space Shuttle missions. In 1981, he commanded the second flight of Columbia, the first manned spacecraft to be reflown in space, and in 1985 he commanded a five-man crew on the 20th shuttle flight, a satellite-deploy and repair mission. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  3. Celebrating John Glenn’s Legacy

    NASA Image and Video Library

    2012-03-02

    Sen. John Glenn, left, shakes hands with former Astronaut Steve Lindsey as NASA Administrator Charles Bolden smiles at an event celebrating John Glenn's legacy and 50 years of americans in orbit held at the Cleveland State University Wolstein Center on Friday, March 3, 2012 in Cleveland, Ohio. In 1998 Lindsey flew onboard the space shuttle Discovery along with then 77 year-old Sen. John Glenn for the STS-95 mission. Glenn became the first American to orbit Earth in 1962. Photo Credit: (NASA/Bill Ingalls)

  4. Alan Bean and Don Peterson Wreath Laying Ceremony

    NASA Image and Video Library

    2018-05-30

    NASA’s Kennedy Space Center Visitor Complex hosted two remembrance ceremonies Wednesday, May 30 in honor of astronauts Alan Bean and Don Peterson, respectively. Bean, a member of the U.S. Astronaut Hall of Fame was selected to join NASA’s third astronaut class in 1963. He was the fourth person to walk on the Moon during the Apollo 12 mission in 1969. Bean went on to become the commander of the second crewed flight of Skylab in 1973 and an accomplished artist during his retirement. He passed away on May 26 at the age of 86. Peterson became a NASA astronaut in 1969. He flew on the maiden voyage of Space Shuttle Challenger in 1983 and was one of the first astronauts to perform a spacewalk from the shuttle. He passed away on May 27 at the age of 84.WreatWreljklaejlkjawekjwWwewerewrwefdsfdsgdfgsdfggdfsgdfsgdfsfdgdffgddsfgrtWrjelkwjlkrewsadjkl

  5. Electrical design of Space Shuttle payload G-534: The pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1993-01-01

    Payload G-534, the Pool Boiling Experiment (PBE), is a Get Away Special (GAS) payload that flew on the Space Shuttle Spacelab Mission J (STS 47) on September 19-21, 1992. This paper will give a brief overall description of the experiment with the main discussion being the electrical design with a detailed description of the power system and interface to the GAS electronics. The batteries used and their interface to the experiment Power Control Unit (PCU) and GAS electronics will be examined. The design philosophy for the PCU will be discussed in detail. The criteria for selection of fuses, relays, power semiconductors, and other electrical components along with grounding and shielding policy for the entire experiment are presented. The intent of this paper is to discuss the use of military tested parts and basic design guidelines to build a quality experiment for minimal additional cost.

  6. KSC-97pc602

    NASA Image and Video Library

    1997-04-08

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia touches down on Runway 33 at KSC's Shuttle Landing Facility at 2:33:11 p.m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. At main gear touchdown, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L. Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations

  7. KSC-97pc608

    NASA Image and Video Library

    1997-04-08

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia touches down on Runway 33 at KSC's Shuttle Landing Facility at 2:33:11 p.m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. At main gear touchdown, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L. Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations

  8. KSC-97pc599

    NASA Image and Video Library

    1997-04-08

    KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle Columbia hurtles down Runway 33 at KSCþs Shuttle Landing Facility to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. With main gear touchdown at 2:33:11 p.m. EDT, April 8, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to a mechanical problem. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations

  9. KSC-97pc600

    NASA Image and Video Library

    1997-04-08

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia touches down on Runway 33 at KSC's Shuttle Landing Facility at 2:33:11 p.m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. At main gear touchdown, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L. Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations

  10. KSC-97pc601

    NASA Image and Video Library

    1997-04-08

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia touches down on Runway 33 at KSC's Shuttle Landing Facility at 2:33:11 p.m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. At main gear touchdown, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L. Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations

  11. KSC-97pc603

    NASA Image and Video Library

    1997-04-08

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia prepares to touch down on Runway 33 at KSC's Shuttle Landing Facility at approximately 2:33 p.m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. At main gear touchdown, the STS-83 mission duration will be just under four days. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations

  12. KSC-97pc604

    NASA Image and Video Library

    1997-04-08

    KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle Columbia hurtles down Runway 33 at KSC's Shuttle Landing Facility to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. With main gear touchdown at 2:33:11 p.m. EDT, April 8, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to a mechanical problem. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations

  13. KSC-2009-5946

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. At right is space shuttle Atlantis, poised on Launch Pad 39A for liftoff, targeted for Nov. 16. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  14. KSC-00pp1960

    NASA Image and Video Library

    2000-12-21

    Nobel laureate Professor Samuel C. C. Ting of the Massachusetts Institute of Technology pauses for a photo in the Space Station Processing Facility. Dr. Ting is directing an experiment, an international collaboration of some 37 universities and laboratories, using a state-of-the-art particle physics detector called the Alpha Magnetic Spectrometer (AMS), which will fly on a future launch to the International Space Station. Using the unique environment of space, the AMS will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. AMS flew initially as a Space Shuttle payload on the June 1998 mission STS-91 that provided the investigating team with data on background sources and verified the detector’s performance under actual space flight conditions. The detector’s second space flight is scheduled to be launched on mission UF-4 October 2003 for installation on the Space Station as an attached payload. Current plans call for operating the detector for three years before it is returned to Earth on the Shuttle. Using the Space Station offers the science team the opportunity to conduct the long-duration research above the Earth’s atmosphere necessary to collect sufficient data required to accomplish the science objectives

  15. KSC-00pp1959

    NASA Image and Video Library

    2000-12-21

    Nobel laureate Professor Samuel C. C. Ting of the Massachusetts Institute of Technology pauses for a photo in the Space Station Processing Facility. Dr. Ting is directing an experiment, an international collaboration of some 37 universities and laboratories, using a state-of-the-art particle physics detector called the Alpha Magnetic Spectrometer (AMS), which will fly on a future launch to the International Space Station. Using the unique environment of space, the AMS will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. AMS flew initially as a Space Shuttle payload on the June 1998 mission STS-91 that provided the investigating team with data on background sources and verified the detector’s performance under actual space flight conditions. The detector’s second space flight is scheduled to be launched on mission UF-4 October 2003 for installation on the Space Station as an attached payload. Current plans call for operating the detector for three years before it is returned to Earth on the Shuttle. Using the Space Station offers the science team the opportunity to conduct the long-duration research above the Earth’s atmosphere necessary to collect sufficient data required to accomplish the science objectives

  16. Enterprise Separates from 747 SCA for First Tailcone off Free Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise rises from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preparation for the first space mission with the orbiter Columbia in April 1981. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  17. Lidar In-space Technology Experiment: Overview and early results

    NASA Technical Reports Server (NTRS)

    McCormick, M. Patrick

    1995-01-01

    The September 1994 Shuttle flight of the Lidar In-space Technology Experiment (LITE) brought to fruition 10 years of effort at NASA's Langley Research Center where it was built. Being the first flight of a spaceborne lidar to measure atmospheric constituents and parameters and surface properties, it culminates the efforts of many worldwide over the last 20 years to usher in this new remote sensing technique from space. This paper will describe the LITE instrument, the in-orbit performance, and initial results. In addition, the global correlative measurements program will be outlined which involved 60 groups in 20 countries who made various simultaneous ground-based or aircraft measurements as LITE flew overhead.

  18. KSC00pp1465

    NASA Image and Video Library

    2000-10-01

    KENNEDY SPACE CENTER, FLA. -- Still seated in the cockpit of the T-38 jet aircraft she flew from Houston, STS-92 Pilot Pamela Ann Melroy smiles for the camera. She and other crew members Commander Brian Duffy and Mission Specialists Koichi Wakata of Japan, Leroy Chiao, Peter J.K. “Jeff” Wisoff, Michael E. Lopez-Alegria and William S. McArthur Jr. expressed their eagerness to launch to a waiting group of media at the Shuttle Landing Facility. The mission is the fifth flight for the construction of the International Space Station. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or space walks, are planned

  19. KSC-00pp1465

    NASA Image and Video Library

    2000-10-01

    KENNEDY SPACE CENTER, FLA. -- Still seated in the cockpit of the T-38 jet aircraft she flew from Houston, STS-92 Pilot Pamela Ann Melroy smiles for the camera. She and other crew members Commander Brian Duffy and Mission Specialists Koichi Wakata of Japan, Leroy Chiao, Peter J.K. “Jeff” Wisoff, Michael E. Lopez-Alegria and William S. McArthur Jr. expressed their eagerness to launch to a waiting group of media at the Shuttle Landing Facility. The mission is the fifth flight for the construction of the International Space Station. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. During the 11-day mission, four extravehicular activities (EVAs), or space walks, are planned

  20. Support activities to maintain SUMS flight readiness

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation began about one hour prior to shuttle de-orbit entry maneuver and continued until reaching 1.6 torr (about 86 km altitude). The SUMS mass spectrometer consists of the spare unit from the Viking mission to Mars. Bendix Aerospace under contract to NASA LaRC incorporated the Viking mass spectrometer, a microprocessor based logic card, a pressurized instrument case, and the University of Texas at Dallas provided a gas inlet system into a configuration suited to interface with the shuttle Columbia. The SUMS experiment underwent static and dynamic calibration as well as vacuum maintenance before and after STS 40 shuttle flight. The SUMS flew a total of 3 times on the space shuttle Columbia. Between flights the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399.

  1. KSC-2012-2865

    NASA Image and Video Library

    2012-05-19

    CAPE CANAVERAL, Fla. – Student investigator Emily Soice is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Soice is an eighth-grade student at Johnston Middle School in Houston, Texas. Her experiment, “Hepatocyte Development in Bioscaffolds Infused with TGFB3 in Microgravity,” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods

  2. Official STS-67 preflight crew portrait

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Official STS-67 preflight crew portrait. In front are astronauts (left to right) Stephen S. Oswald, mission commander; Tamara E. Jernigan, payload commander; and William G. Gregory, pilot. In the back are (left to right) Ronald A. Parise, payload specialist; astronauts Wendy B. Lawrence, and John Grunsfeld, both mission specialists; and Samuel T. Durrance, payload specialist. Dr. Durrance is a research scientist in the Department of Physics and Astronomy at Johns Hopkins University, Baltimore, Maryland. Dr. Parise is a senior scientist in the Space Observatories Department, Computer Sciences Corporation, Silver Spring, Maryland. Both payload specialists flew aboard the Space Shuttle Columbia for STS-35/ASTRO-1 mission in December 1990.

  3. Returning Mir 23 crewmember, U.S. astronaut Jerry Linenger, with family following landing of STS-84

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronaut and recent Mir 23 crew member Jerry M. Linenger, standing, reunites with his wife, Kathryn, and their 18-month-old son, John, in the astronaut suit-up room in the Operations and Checkout Building. Kathryn Linenger is expecting their second child next month. Linenger just returned to Earth after a four- month stay on the Russian Space Station Mir. He flew back on Atlantis with six other members of the STS-84 crew, who conducted the sixth Space Shuttle docking with the Mir. STS-84 Mission Specialist C. Michael Foale replaced Linenger on the Mir.

  4. Polymers Advance Heat Management Materials for Vehicles

    NASA Technical Reports Server (NTRS)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  5. KSC-04pd1007

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, astronaut John Young is warmly greeted as he is introduced as a previous inductee. Co-holder of a record for the most space flights, six, he flew on Gemini 3 and 10, orbited the Moon on Apollo 10, walked on the Moon on Apollo 16, and commanded two space shuttle missions, STS-1 and STS-9. Young currently serves as associate director, technical, at Johnson Space Center. The induction ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  6. KSC-2012-1449

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand under space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  7. KSC-2012-1451

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn stands in the middeck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  8. KSC-2012-1444

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand under space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  9. KSC-2012-1443

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, left, enter Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida where space shuttle Discovery is being prepared for public display. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  10. KSC-2012-1453

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and NASA astronaut Stephen Robinson sit in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  11. KSC-2012-1458

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn signs autographs in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida where space shuttle Discovery is being prepared for public display. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  12. KSC-2012-1454

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and NASA Kennedy Space Center Director Bob Cabana sit in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  13. KSC-2012-1445

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand under space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  14. KSC-2012-1447

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn stands beside the wheel of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  15. KSC-2012-1452

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and NASA astronaut Stephen Robinson stand in the middeck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  16. KSC-2012-1455

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Bob Cabana sits at the controls in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1. At the space center in Florida, Cabana is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  17. KSC-2012-1457

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn signs the wall of the clean room leading into space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  18. Enterprise - Free Flight after Separation from 747

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) over Rogers Dry Lake during the second of five free flights carried out at the Dryden Flight Research Center, Edwards, California, as part of the Shuttle program's Approach and Landing Tests (ALT) in 1977. The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. A series of test flights during which Enterprise was taken aloft atop the SCA, but was not released, preceded the free flight tests. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  19. Thomas checks the condition of the MIS-B middeck locker experiment

    NASA Image and Video Library

    1995-07-28

    STS070-329-022 (13-22 JULY 1995)--- Astronaut Donald A. Thomas, mission specialist, prepares to activate the Microcapsules in Space (MIS-B) experiment on the space shuttle Discovery?s middeck. MIS-B is an Army project to improve the understanding of microencapsulated drug technology and demonstrate the feasibility of producing pharmaceutical microcapsules in the weightlessness of space. This is the second flight of the experiment, which originally flew on STS-53 in 1992. Microcapsules are tiny spheres about 50 to 100 micrometers in diameter (about the thickness of a strand of human hair). They are used to develop high-performance chemical products and innovative pharmaceuticals such as time-release prescriptions. The drug used in the MIS experiments was ampicillin.

  20. First Shuttle/747 Captive Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise rides smoothly atop NASA's first Shuttle Carrier Aircraft (SCA), NASA 905, during the first of the shuttle program's Approach and Landing Tests (ALT) at the Dryden Flight Research Center, Edwards, California, in 1977. During the nearly one year-long series of tests, Enterprise was taken aloft on the SCA to study the aerodynamics of the mated vehicles and, in a series of five free flights, tested the glide and landing characteristics of the orbiter prototype. In this photo, the main engine area on the aft end of Enterprise is covered with a tail cone to reduce aerodynamic drag that affects the horizontal tail of the SCA, on which tip fins have been installed to increase stability when the aircraft carries an orbiter. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

  1. The fungicidal and phytotoxic properties of benomyl and PPM in supplemented agar media supporting transgenic arabidopsis plants for a Space Shuttle flight experiment

    NASA Technical Reports Server (NTRS)

    Paul, A. L.; Semer, C.; Kucharek, T.; Ferl, R. J.

    2001-01-01

    Fungal contamination is a significant problem in the use of sucrose-enriched agar-based media for plant culture, especially in closed habitats such as the Space Shuttle. While a variety of fungicides are commercially available, not all are equal in their effectiveness in inhibiting fungal contamination. In addition, fungicide effectiveness must be weighed against its phytotoxicity and in this case, its influence on transgene expression. In a series of experiments designed to optimize media composition for a recent shuttle mission, the fungicide benomyl and the biocide "Plant Preservative Mixture" (PPM) were evaluated for effectiveness in controlling three common fungal contaminants, as well as their impact on the growth and development of arabidopsis seedlings. Benomyl proved to be an effective inhibitor of all three contaminants in concentrations as low as 2 ppm (parts per million) within the agar medium, and no evidence of phytotoxicity was observed until concentrations exceeded 20 ppm. The biocide mix PPM was effective as a fungicide only at concentrations that had deleterious effects on arabidopsis seedlings. As a result of these findings, a concentration of 3 ppm benomyl was used in the media for experiment PGIM-01 which flew on shuttle Columbia mission STS-93 in July 1999.

  2. KSC-2012-1456

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA astronaut Stephen Robinson sits at the controls in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Robinson is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  3. John H. Glenn Jr. is greeted by his wife after arriving at KSC for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr., senator from Ohio, reaches to embrace his wife, Annie, after landing at Kennedy Space Center's Shuttle Landing Facility aboard a T-38 jet. Behind the couple is the mate/demate device used to raise and lower the orbiter from its shuttle carrier aircraft during ferry operations. Glenn and other crewmembers flew into KSC to make final preparations for launch. Targeted for liftoff at 2 p.m. on Oct. 29, the STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC on Nov. 7. The other STS-95 crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA).

  4. Space Research Results Purify Semiconductor Materials

    NASA Technical Reports Server (NTRS)

    2010-01-01

    While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.

  5. Shuttle Payload Ground Command and Control: An Experiment Implementation Combustion Module-2 Software Development, STS-107

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2003-01-01

    This presentation covers the design of a command and control architecture developed by the author for the Combustion Module-2 microgravity experiment, which flew aboard the STS-107 Shuttle mission, The design was implemented to satisfy a hybrid network that utilized TCP/IP for both the onboard segment and ground segment, with an intermediary unreliable transport for the space to ground segment. With the infusion of Internet networking technologies into Space Shuttle, Space Station, and spacecraft avionics systems, comes the need for robust methodologies for ground command and control. Considerations of high bit error links, and unreliable transport over intermittent links must be considered in such systems. Internet protocols applied to these systems, coupled with the appropriate application layer protections, can provide adequate communication architectures for command and control. However, there are inherent limitations and additional complexities added by the use of Internet protocols that must be considered during the design. This presentation will discuss the rationale for the: framework and protocol algorithms developed by the author. A summary of design considerations, implantation issues, and learned lessons will be will be presented. A summary of mission results using this communications architecture will be presented. Additionally, areas of further needed investigation will be identified.

  6. KSC-2012-1450

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Bob Cabana, right, talks to guests in Orbiter Processing Facility-1 OPF-1 where space shuttle Discovery is being prepared for public display during a 50th anniversary celebration of the first orbital flight of an American. The astronaut who made that first flight, John Glenn, is at the space center to commemorate that achievement. Glenn orbited the Earth three times in the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. He later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Also in the photo are Glenn's wife, Annie, NASA astronaut Stephen Robinson, and Bob Sieck, a former shuttle launch director. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  7. Preliminary Results from the Flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the OAST-2 mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials and floating potentials for arrays and spacecraft in LEO.

  8. KSC-00pp1754

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Pilot Michael Bloomfield climbs out of the cockpit of a T-38 jet aircraft he flew from Johnson Space Center. He and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  9. KSC00pp1754

    NASA Image and Video Library

    2000-11-27

    At the Shuttle Landing Facility, STS-97 Pilot Michael Bloomfield climbs out of the cockpit of a T-38 jet aircraft he flew from Johnson Space Center. He and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST

  10. KSC-2009-5952

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - A bow shock forms around the Constellation Program's 327-foot-tall Ares I-X test rocket traveling at supersonic speed. The rocket produces 2.96 million pounds of thrust at liftoff and goes supersonic in 39 seconds. Liftoff of the 6-minute flight test from Launch Pad 39B at NASA's Kennedy Space Center in Florida was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  11. KSC-2009-5947

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, the Constellation Program's 327-foot-tall Ares I-X test rocket races off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  12. KSC-2009-6023

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, NASA's 327-foot-tall Ares I-X test rocket lifts off from Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Carl Winebarger

  13. KSC-2009-5937

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, the Constellation Program's 327-foot-tall Ares I-X test rocket lifts off from Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Jack Pfaller

  14. KSC-2009-5941

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, the Constellation Program's 327-foot-tall Ares I-X test rocket races off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  15. Coarsening Experiment Prepared for Flight

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark

    2003-01-01

    The Coarsening in Solid-Liquid Mixtures-2 (CSLM-2) experiment is a materials science spaceflight experiment whose purpose is to investigate the kinetics of competitive particle growth within a liquid matrix. During coarsening, small particles shrink by losing atoms to larger particles, causing the larger particles to grow. In this experiment, solid particles of tin will grow (coarsen) within a liquid lead-tin eutectic matrix. The following figures show the coarsening of tin particles in a lead-tin (Pb-Sn) eutectic as a function of time. By conducting this experiment in a microgravity environment, we can study a greater range of solid volume fractions, and the effects of sedimentation present in terrestrial experiments will be negligible. The CSLM-2 experiment flew November 2002 on space shuttle flight STS-113 for operation on the International Space Station, but it could not be run because of problems with the Microgravity Science Glovebox in the U.S. Laboratory module. Additional samples will be sent to ISS on subsequent shuttle flights.

  16. KSC-2009-5959

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – A fiery blaze trails the Ares I-X test rocket as it takes off from Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT Oct. 28. Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ Kenny Allen

  17. KSC-2009-5962

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – Two of the lightning towers frame the Ares I-X test rocket as it takes off from Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ Sandra Joseph and Kevin O'Connell

  18. KSC-2009-5968

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – NASA's Ares I-X test rocket ignites its first stage at Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. The Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ George Roberts and Tony Gray

  19. KSC-2009-5971

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – NASA's Ares I-X test rocket climbs into the skies above Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ George Roberts and Tony Gray

  20. KSC-2009-5972

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – NASA's Ares I-X test rocket flies high above Launch Pad 39B at Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX.Photo credit: NASA/ George Roberts and Tom Farrar

  1. KSC-2009-5973

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – The Ares I-X test rocket launches into a bright Florida sky from Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/George Roberts and Tom Farrar

  2. KSC-2009-5942

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  3. KSC-2009-5938

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Jack Pfaller

  4. KSC-2009-6021

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, NASA's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Carl Winebarger

  5. Richard A. Searfoss

    NASA Image and Video Library

    2001-07-31

    Richard A. Searfoss became a research pilot in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, Calif., in July 2001. He brought to Dryden more than 5,000 hours of military flying time and 939 hours in space. Searfoss served in the U.S. Air Force for more than 20 years, retiring with the rank of colonel. Following graduation in 1980 from Undergraduate Pilot Training at Williams Air Force Base, Ariz., Searfoss flew F-111s at RAF Lakenheath, England, and Mountain Home Air Force Base, Idaho. In 1988 he attended the U.S. Naval Test Pilot School, Patuxent River, Md., as a U.S. Air Force exchange officer. He was an instructor pilot at the U.S. Air Force Test Pilot School, Edwards Air Force Base, Calif., when selected for the astronaut program in January 1990. Searfoss became an astronaut in July 1991. A veteran of three space flights, Searfoss has logged 39 days in space. He served as STS-58 pilot on the seven-person life science research mission aboard Space Shuttle Columbia, launching from NASA's Kennedy Space Center, Fla., on Oct. 18, 1993, and landing at Edwards Air Force Base, Calif., on Nov. 1, 1993. The crew performed a number of medical experiments on themselves and 48 rats, expanding knowledge of human and animal physiology. Searfoss flew his second mission as pilot of STS-76 aboard the Space Shuttle Atlantis. During this nine-day mission, which launched March 22, 1996, the crew preformed the third docking of an American spacecraft with the Russian space station Mir. The crew transported to Mir nearly two tons of water, food, supplies, and scientific equipment, as well as U.S. Astronaut Shannon Lucid to begin her six-month stay in space. Completing 145 orbits, STS-76 landed at Edwards Air Force Base, Calif., on March 31, 1996. Searfoss commanded a seven-person crew on the STS-90 Neurolab mission launched on April 17, 1998. The crew served as both experiment subjects and operators for life science experiments focusing on the effects of m

  6. KSC-2012-2863

    NASA Image and Video Library

    2012-05-19

    CAPE CANAVERAL, Fla. – Student investigator Ryan Puri is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Puri, a tenth-grade student at San Marino High School in San Marino, Calif., is co-investigator of the student-developed experiment “Effect of Microgravity on the Antibacterial Resistance of P. aeruginosa.” The experiment is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods

  7. KSC-2012-2864

    NASA Image and Video Library

    2012-05-19

    CAPE CANAVERAL, Fla. – Student investigators Cameron Zandstra, Jack Barth and JP Peerbolte are interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. The team members are seventh- and eighth-grade students at Highland Christian School in Lake County, Ind. Their experiment, “The Effect of Microgravity on the Quality and Nutritional Value of the Seed Sprout of Germinated 92M72 Genetically-Modified Soy Bean,” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods

  8. KSC-2012-2867

    NASA Image and Video Library

    2012-05-19

    CAPE CANAVERAL, Fla. – Teacher Anthonette Pena is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Pena is the facilitator for the student experiment developed by a team of eighth-graders at the Capitol Hill Cluster School in Washington, D.C. The experiment, “Does Hay Bacillus Break Down Human Waste Represented by Brown Egg in Microgravity as Well as in Earth Gravity?” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods

  9. Preliminary results from the flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.

  10. Results of an International Space Crew Debrief

    NASA Technical Reports Server (NTRS)

    Santy, P. A.; Holland, A. W.; Looper, L.; Marcondes-North, R.

    1992-01-01

    In order to identify potential multi-cultural and multinational problems for future International Space Station Freedom crew, a crew debrief questionnaire was developed for U.S. astronauts who flew on shuttle missions with one or more crew members from other countries. Methods: From 1981-90, a total of 20 U.S. astronauts flew on international space missions. Debriefs were mailed to all 20 with instructions not to identify themselves or their specific mission. The debrief focused primarily on preflight training and post flight incidents of misunderstanding, miscommunication, and interpersonal friction among crewmembers. Astronauts were also asked to rate the impact of the incident to the mission (low, medium, high). Results: Ten astronauts responded, but only nine responses were able to be scored, for a return rate of 45 percent. 42 incidents were reported, 9 in the preflight period, 26 inflight, and 7 in the postflight period. Most of the incidents were rated at a low or medium impact, but 5 of the inflight incidents were rated at a 'high' mission impact. A number of causes for the problems were listed, and are discussed. Conclusions: The debrief respondents provide useful and timely recommendations on preflight training which might help facilitate the integration of multinational crews and prevent multi-cultural or multinational factors from interfering with mission operations.

  11. Support activities to maintain SUMS flight readiness, volume 2. Attachment A: Flight 61-C report

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation system (STS). The experiment mission operation begins about 1 hour to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume is the flight data report for flight 61-C.

  12. KSC-2012-1448

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand beside the wheel of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  13. KSC-2012-1446

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks to guests in Orbiter Processing Facility-1 OPF-1 where space shuttle Discovery is being prepared for public display during a 50th anniversary celebration of the first orbital flight of an American. The astronaut who made that first flight, John Glenn, is at the space center to commemorate that achievement. Glenn orbited the Earth three times in the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. He later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  14. Flight Testing of the Capillary Pumped Loop 3 Experiment

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; Butler, Dan; Ku, Jentung; Cheung, Kwok; Baldauff, Robert; Hoang, Triem

    2002-01-01

    The Capillary Pumped Loop 3 (CAPL 3) experiment was a multiple evaporator capillary pumped loop experiment that flew in the Space Shuttle payload bay in December 2001 (STS-108). The main objective of CAPL 3 was to demonstrate in micro-gravity a multiple evaporator capillary pumped loop system, capable of reliable start-up, reliable continuous operation, and heat load sharing, with hardware for a deployable radiator. Tests performed on orbit included start-ups, power cycles, low power tests (100 W total), high power tests (up to 1447 W total), heat load sharing, variable/fixed conductance transition tests, and saturation temperature change tests. The majority of the tests were completed successfully, although the experiment did exhibit an unexpected sensitivity to shuttle maneuvers. This paper describes the experiment, the tests performed during the mission, and the test results.

  15. What Threats to Human Health Does Space Radiation Pose in Orbit

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Semones, Eddie; Weyland, Mark; Zapp, Neal; Cucinotta, Francis A.

    2011-01-01

    The Space Shuttle program spanned more than the entire length of a solar cycle. Investigations aimed towards understanding the health risks of the astronauts from exposures to space radiation involved mostly physical measurements of the dose and the linear energy transfer (LET) spectrum. Measurement of the dose rate on the Shuttle provided invariable new data for different periods of the solar cycle, whereas measurement of the LET spectrum using the tissue equivalent proportional counter (TEPC) produced the most complete mapping of the radiation environment of the low Earth orbits (LEO). Exposures to the Shuttle astronauts were measured by the personal dosimeter worn by the crewmembers. Analysis of over 300 personal dosimeter readings indicated a dependence on the mission duration, the altitude and inclination of the orbit, and the solar cycle, with the crewmembers on the launch and repair of the Hubble telescope receiving the highest doses due to the altitude of the mission. Secondary neutrons inside the Shuttle were determined by recoil protons or with Bonner spheres, and may contribute significantly to the risks of the crewmembers. In addition, the skin dose and the doses received at different organs were compared using a human phantom onboard a Shuttle mission. A number of radiobiology investigations wer e also performed. The biological doses were determined on six astronauts/cosmonauts on long-duration Shuttle/Mir missions and on two crewmembers on a Hubble repair mission by analyzing the damages in the chromosomes of the crewmembers? white blood cells. Several experiments were also conducted to address the question of possible synergistic effects of spaceflight, microgravity in particular, on the repair of radiation-induced DNA damages. The experimental design included exposure of cells before launch, during flight, or after landing. These physical and biological studies were invaluable in predicting the health risks for astronauts on ISS and future exploration missions. Educational Objectives: A group of high school students flew color negative films on tw o Shuttle missions to detect the radiation environment in orbit. This and other experiments onboard of the Shuttle were aimed at educating the general public of the space program.

  16. Research pilot Fred Haise

    NASA Image and Video Library

    1966-04-07

    Fred W. Haise Jr. was a research pilot and an astronaut for the National Aeronautics and Space Administration from 1959 to 1979. He began flying at the Lewis Research Center in Cleveland, Ohio (today the Glenn Research Center), in 1959. He became a research pilot at the NASA Flight Research Center (FRC), Edwards, Calif., in 1963, serving NASA in that position for three years until being selected to be an astronaut in 1966 His best-known assignment at the FRC (later redesignated the Dryden Flight Research Center) was as a lifting body pilot. Shortly after flying the M2-F1 on a car tow to about 25 feet on April 22, 1966, he was assigned as an astronaut to the Johnson Space Center in Houston, Texas. While at the FRC he had also flown a variety of other research and support aircraft, including the variable-stability T-33A to simulate the M2-F2 heavyweight lifting body, some light aircraft including the Piper PA-30 to evaluate their handling qualities, the Apache helicopter, the Aero Commander, the Cessna 310, the Douglas F5D, the Lockheed F-104 and T-33, the Cessna T-37, and the Douglas C-47. After becoming an astronaut, Haise served as a backup crewmember for the Apollo 8, 11, and 16 missions. He flew on the aborted Apollo 13 lunar mission in 1970, spending 142 hours and 54 minutes in space before returning safely to Earth. In 1977, he was the commander of three free flights of the Space Shuttle prototype Enterprise when it flew its Approach and Landing Tests at Edwards Air Force Base, Calif. Meanwhile, from April 1973 to January 1976, Haise served as the Technical Assistant to the Manager of the Space Shuttle Orbiter Project. In 1979, he left NASA to become the Vice President for Space Programs with the Grumman Aerospace Corporation. He then served as President of Grumman Technical Services, an operating division of Northrop Grumman Corporation, from January 1992 until his retirement. Haise was born in Biloxi, Miss., on November 14, 1933. He underwent flight traini

  17. A Tribute to National Aeronautics and Space Administration Minority Astronauts: Past and Present

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has been selecting astronauts since 1959. The first group was called the "Mercury Seven." These seven men were chosen because of their performance as military officers and test pilots, their character, their intelligence, and their guts. Six of these seven flew in the Mercury capsule. Several additional groups were chosen between 1959 and 1978. It was an exciting period in the American space program. Many of these astronauts participated in the Gemini and Apollo programs, traveled and walked on the Moon, docked with the Russians during the Apollo-Soyuz Test Project, and occupied America's first space station, the Skylab. With the onset of the Space Shuttle, a new era began. The astronauts selected in 19 78 broke the traditional mold. For the first time, minorities and women became part of America's astronaut corps. Since then, eight additional groups have been selected, with an increasing mix of African American, Hispanic, Latino, Asian/Pacific Islander, and Native American men and women. These astronauts will continue the American space program into the new millennium by continuing flights on the Space Shuttle and participating in the construction and occupancy of the International Space Station. These astronauts, and those who will be chosen in the future, will lead America and its partners to future voyages beyond the influence of Earth's gravity.

  18. MSL-2 accelerometer data results

    NASA Technical Reports Server (NTRS)

    Henderson, Fred

    1990-01-01

    The Materials Science Laboratory-2 (MSL-2) mission flew the Marshall Space Flight Center-developed Linear Triaxial Accelerometer (LTA) on the Space Transportation System (STS) 61-C Shuttle mission launched January 21, 1986. Flight data were analyzed to verify the quietness of the MSL carrier and to characterize the acceleration environment for future MSL users. The MSL was found to introduce no significant experiment acceleration; and the effects of crew treadmill exercise, Orbiter vernier engine firings, and other routine flight occurrences were established. The LTA was found to be well suited for measuring nominal to very quiet STS acceleration levels at frequencies below 50 Hz. Special processing was used to examine the low-frequency spectrum and to establish the effective rms amplitude associated with dominant frequencies.

  19. Particle and Smoke Detection on ISS for Next Generation Smoke Detectors

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary; Yuan, Zeng-guang; Sheredy, William; Funk, Greg

    2007-01-01

    Rapid fire detection requires the ability to differentiate fire signatures from background conditions and nuisance sources. Proper design of a fire detector requires detailed knowledge of all of these signal sources so that a discriminating detector can be designed. Owing to the absence of microgravity smoke data, all current spacecraft smoke detectors were designed based upon normal-g conditions. The removal of buoyancy reduces the velocities in the high temperature zones in flames, increasing the residence time of smoke particles and consequently allowing longer growth time for the particles. Recent space shuttle experiments confirmed that, in some cases, increased particles sizes are seen in low-gravity and that the relative performance of the ISS (International Space Station) and space-shuttle smoke-detectors changes in low-gravity; however, sufficient particle size information to design new detectors was not obtained. To address this issue, the SAME (Smoke Aerosol Measurement Experiment) experiment is manifested to fly on the ISS in 2007. The SAME experiment will make measurements of the particle size distribution of the smoke particulate from several typical spacecraft materials providing quantitative design data for spacecraft smoke detectors. A precursor experiment (DAFT: Dust Aerosol measurement Feasibility Test) flew recently on the ISS and provided the first measurement of the background smoke particulate levels on the ISS. These background levels are critical to the design of future smoke detectors. The ISS cabin was found to be a very clean environment with particulate levels substantially below the space shuttle and typical ground-based environments.

  20. Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry

    NASA Technical Reports Server (NTRS)

    Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.

    2010-01-01

    High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next flight, STS-128. Again, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. During this mission, Cast Glance was able to image laminar and turbulent flow phenomenology optimizing data collection for Mach 14.7. The purpose of this paper is to describe key elements associated with STS-119/125/128 mission planning and execution from the perspective of the Cast Glance flight crew that obtained the imagery. The paper will emphasize a human element of experience, expertise and adaptability seamlessly coupled with Cast Glance system and sensor technology required to manually collect the required imagery. Specific topics will include a near infrared (NIR) camera upgrade that was implemented just prior to the missions, how pre-flight radiance modeling was utilized to optimize the IR sensor configuration, communications, the development of aircraft test support positions based upon Shuttle trajectory information, support to contingencies such as Shuttle one orbit wave-offs/west coast diversions and then the Cast Glance perspective during an actual Shuttle imaging mission.

  1. Using the Shuttle In Situ Window and Radiator Data for Meteoroid Measurements

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2015-01-01

    Every time NASA's Space Shuttle flew in orbit, it was exposed to the natural meteoroid and artificial debris environment. NASA Johnson Space Center maintains a database of impact cratering data of 60 Shuttle missions flown since the mid-1990's that were inspected after flight. These represent a total net exposure time to the space environment of 2 years. Impact damage was recorded on the windows and radiators, and in many cases information on the impactor material was determined by later analysis of the crater residue. This information was used to segregate damage caused by natural meteoroids and artificial space debris. The windows represent a total area of 3.565 sq m, and were capable of resolving craters down to about 10 micrometers in size. The radiators represent a total area of 119.26 sq m, and saw damage from objects up to approximately 1 mm in diameter. These data were used extensively in the development of NASA's ORDEM 3.0 Orbital Debris Environment Model, and gives a continuous picture of the orbital debris environment in material type and size ranging from about 10 micrometers to 1 mm. However, the meteoroid data from the Shuttles have never been fully analyzed. For the orbital debris work, special "as flown" files were created that tracked the pointing of the surface elements and their shadowing by structure (such as the ISS during docking). Unfortunately, such files for the meteoroid environment have not yet been created. This talk will introduce these unique impact data and describe how they were used for orbital debris measurements. We will then discuss some simple first-order analyses of the meteoroid data, and point the way for future analyses.

  2. KSC-2012-2866

    NASA Image and Video Library

    2012-05-19

    CAPE CANAVERAL, Fla. – Dr. Freya Shephard is interviewed by the media in the NASA Newsroom at Kennedy Space Center in Florida during prelaunch activities for the SpaceX demonstration test flight. Shephard is a researcher from the University of Nottingham in the United Kingdom and mentor to Paul Warren, an eleventh-grade student investigator from Henry E. Lackey High School in Charles County, Md. Warren’s experiment “Physiological Effects of Microgravity and Increased Levels of Radiation on Wild Type and Genetically Engineered Caenorhabditis elegans,” is one of 15 in the Student Spaceflight Experiments Program, or SSEP, being ferried to the International Space Station inside the Dragon capsule. The launch will be the second demonstration test flight for SpaceX for NASA's Commercial Orbital Transportation Services program, or COTS. SSEP, which began operation in June 2010 through a partnership of the National Center for Earth and Space Science Education with NanoRacks LLC, is a U.S. national science, technology, engineering and mathematics STEM education initiative that gives students across a community the opportunity to propose and design real experiments to fly in low Earth orbit. SSEP experiments flew on space shuttle missions STS-134 and STS-135 in 2011, the final flights of space shuttles Endeavour and Atlantis. For more information on SSEP, visit http://www.nasa.gov/audience/foreducators/station-here-we-come.html. Photo credit: NASA/Gianni Woods

  3. Research pilot and former astronaut Gordon Fullerton is congratulated by retired astronaut Fred Haise upon Fullerton's induction into the Astronaut Hall of Fame

    NASA Image and Video Library

    2005-04-30

    Former astronaut Gordon Fullerton (left), currently chief research pilot at NASA's Dryden Flight Research Center at Edwards Air Force Base, is congratulated by former astronaut Fred Haise (right) upon Fullerton's induction into the Astronaut Hall of Fame at the Kennedy Space Center (KSC) in Florida on April 30, 2005. Fullerton and Haise were one of two flight crews who flew the Approach and Landing Tests of the prototype Space Shuttle orbiter Enterprise at Dryden in 1977. Fullerton, who had served on the support crews for four Apollo moon landing missions in the early 1970s, went on to fly two Shuttle missions, STS-3 in 1982 and STS-51F in 1985. STS-3 became the only Shuttle mission to date to land at White Sands, N.M., and STS-51F was completed successfully despite the failure of one of the Shuttle's main engines during ascent to orbit. Haise, a member of the crew on the ill-fated Apollo 13 mission, was also a research pilot at NASA Dryden during his pre-astronaut career. Former astronauts Joseph Allen and Bruce McCandless were also inducted during the 2005 ceremonies at the KSC Visitor Center. In addition to honoring former members of NASA's astronaut corps who have made significant contributions to the advancement of space flight, the annual induction ceremonies serve as a fund-raiser for the Astronaut Scholarship Foundation. The foundation funded 17 $10,000 scholarships to college students studying science and engineering in 2004.

  4. Space Radar Image of Wadi Kufra, Libya

    NASA Image and Video Library

    1998-04-14

    The ability of a sophisticated radar instrument to image large regions of the world from space, using different frequencies that can penetrate dry sand cover, produced the discovery in this image: a previously unknown branch of an ancient river, buried under thousands of years of windblown sand in a region of the Sahara Desert in North Africa. This area is near the Kufra Oasis in southeast Libya, centered at 23.3 degrees north latitude, 22.9 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on its 60th orbit on October 4, 1994. This SIR-C image reveals a system of old, now inactive stream valleys, called "paleodrainage systems, http://photojournal.jpl.nasa.gov/catalog/PIA01310

  5. STS-74/MIR Photogrammetric Appendage Structural Dynamics Experiment Preliminary Data Analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Welch, Sharon S.; Pappa, Richard S.; Demeo, Martha E.

    1997-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment was designed, developed, and flown to demonstrate and prove measurement of the structural vibration response of a Russian Space Station Mir solar array using photogrammetric methods. The experiment flew on the STS-74 Space Shuttle mission to Mir in November 1995 and obtained video imagery of solar array structural response to various excitation events. The video imagery has been digitized and triangulated to obtain response time history data at discrete points on the solar array. This data has been further processed using the Eigensystem Realization Algorithm modal identification technique to determine the natural vibration frequencies, damping, and mode shapes of the solar array. The results demonstrate that photogrammetric measurement of articulating, nonoptically targeted, flexible solar arrays and appendages is a viable, low-cost measurement option for the International Space Station.

  6. A solar magnetic and velocity field measurement system for Spacelab 2: The solar optical universal polarimeter (SOUP)

    NASA Astrophysics Data System (ADS)

    Tarbell, Theodore D.; Title, Alan M.

    1992-08-01

    The Solar Optical Universal Polarimeter flew on the Shuttle Mission Spacelab 2 (STS-51F) in August, 1985, and collected historic solar observations. SOUP is the only solar telescope on either a spacecraft or balloon which has delivered long sequences of diffraction-limited images. These movies led to several discoveries about the solar atmosphere which were published in the scientific journals. After Spacelab 2, reflights were planned on the Space Shuttle Sunlab Mission, which was cancelled after the Challenger disaster, and on balloon flights, which were also cancelled for funding reasons. In the meantime, the instrument was used in a productive program of ground-based observing, which collected excellent scientific data and served as instrument tests. This report gives an overview of the history of the SOUP program, the scientific discoveries, and the instrument design and performance.

  7. Pilot Joseph Algranti entering a McDonnell F2H-2B Banshee

    NASA Image and Video Library

    1958-02-21

    Pilot Joe Algranti climbs into the cockpit of a McDonnell F2H-2B Banshee on the tarmac at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Nine months later the laboratory became part of the new National Aeronautics and Space Administration, and the NACA logo was permanently removed from the hangar. Algranti served as a Navy fighter pilot from 1946 to 1947 and earned a Physics degree from the University of North Carolina. He joined the NACA Lewis staff in 1951 witnessed the technological transformation from high speed flight to space. At Lewis Algranti piloted icing research flights, operated the liquid-hydrogen pump system for Project Bee, and served as the primary test subject for the Multi-Axis Space Test Inertia Facility (MASTIF). The MASTIF was a device used to train the Mercury astronauts how to control a spinning capsule. In 1960, Algranti and fellow Lewis pilots Warren North and Harold Ream transferred to NASA’s Space Task Group at Langley to actively participate in the space program. Two years later, Algranti became the Chief of Aircraft Operations and Chief Test Pilot at NASA’s new Manned Space Center in Houston. Algranti earned notoriety in 1968 when he test flew the first Lunar Landing Training Vehicle. He operated the vehicle four minutes before being forced to eject moments before it impacted the ground. Algranti also flew the NASA’s modified Boeing 747 Shuttle Carrier Aircraft, the Super Guppy, and the KC-135 "Vomit Comet" training aircraft. He retired in 1992 with over 40 years of NASA service.

  8. KSC-2009-5943

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, the Constellation Program's 327-foot-tall Ares I-X test rocket races off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  9. KSC-2009-5934

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, the Constellation Program's 327-foot-tall Ares I-X test rocket lifts off from Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews, Canon

  10. Wireless infrared communications for space and terrestrial applications

    NASA Technical Reports Server (NTRS)

    Crimmins, James W.

    1993-01-01

    Voice and data communications via wireless (and fiberless) optical means has been commonplace for many years. However, continuous advances in optoelectronics and microelectronics have resulted in significant advances in wireless optical communications over the last decade. Wilton has specialized in diffuse infrared voice and data communications since 1979. In 1986, NASA Johnson Space Center invited Wilton to apply its wireless telecommunications and factory floor technology to astronaut voice communications aboard the shuttle. In September, 1988 a special infrared voice communications system flew aboard a 'Discovery' Shuttle mission as a flight experiment. Since then the technology has been further developed, resulting in a general purpose of 2Mbs wireless voice/data LAN which has been tested for a variety of applications including use aboard Spacelab. Funds for Wilton's wireless IR development were provided in part by NASA's Technology Utilization Office and by the NASA Small Business Innovative Research Program. As a consequence, Wilton's commercial product capability has been significantly enhanced to include diffuse infrared wireless LAN's as well as wireless infrared telecommunication systems for voice and data.

  11. KSC-2009-5949

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - About the length of eight school buses stacked end to end, the Constellation Program's 327-foot-tall Ares I-X test rocket races off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  12. Highlights of the Zeno Results from the USMP-2 Mission

    NASA Technical Reports Server (NTRS)

    Gammon, Robert W.; Shaumeyer, J. N.; Briggs, Matthew E.; Boukari, Hacene; Gent, David A.; Wilkinson, R. Allen

    1995-01-01

    The Zeno instrument, a High-precision, light-scattering spectrometer, was built to measure the decay rates of density fluctuations in xenon near its liquid-vapor critical point in the low-gravity environment of the U.S. Space Shuttle. Eliminating the severe density gradients created in a critical fluid by Earth's gravity, we were able to make measurements to within 100 microKelvin of the critical point. The instrument flew for fourteen days in March, 1994 on the Space Shuttle Columbia, STS-62 flight, as part of the very successful USMP-2 payload. We describe the instrument and document its performance on orbit, showing that it comfortably reached the desired 3 microKelvin temperature control of the sample. Locating the critical temperature of the sample on orbit was a scientific challenge; we discuss the advantages and short-comings of the two techniques we used. Finally we discuss problems encountered with making measurements of the turbidity of the sample, and close with the results of the measurement of the decay rates of the critical-point fluctuations.

  13. KSC-2009-6008

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, NASA’s Ares I-X test rocket soars into blue skies above Launch Pad 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Sandra Joseph and Kevin O'Connel

  14. KSC-2009-5936

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews, Canon

  15. Support activities to maintain SUMS flight readiness, volume 7. Attachment B: Flight STS-35 report, section E

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents data from the reentry of flight STS-35 in tabular and graphical format.

  16. Support activities to maintain SUMS flight readiness, volume 8. Attachment B: Flight STS-35 report, section F

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents tabular and graphical spectral data of the reentry of flight STS-35.

  17. Support activities to maintain SUMS flight readiness, volume 3. Attachment B: Flight STS-35 report, section A

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1992-01-01

    The Shuttle Upper Atmosphere Mass Spectrometer (SUMS), a component experiment of the NASA Orbital Experiments Program (OEX), was flown aboard the shuttle Columbia (OV102) mounted at the forward end of the nose landing gear well with an atmospheric gas inlet system fitted to the lower fuselage (chin panel) surface. The SUMS was designed to provide atmospheric data in flow regimes inaccessible prior to the development of the Space Transportation System (STS). The experiment mission operation begins about 1 hour prior to shuttle de-orbit entry maneuver and continues until reaching 1.6 torr (about 86 km altitude). The SUMS flew a total of three missions, 61C, STS-35, and STS-40. Between flights, the SUMS was maintained in flight ready status. The flight data has been analyzed by the NASA LaRC Aerothermodynamics Branch. Flight data spectrum plots and reports are presented in the Appendices to the Final Technical Report for NAS1-17399. This volume presents flight data for flight STS-35 in graphical format.

  18. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - T-cell science team member Miya Yoshida, of the Hughes-Fulford Laboratory in San Francisco, Calif., works in a biosafety hood during preflight experiment preparations in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  19. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., at the microscope, examines T-cells as part of preflight experiment operations in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  20. A study of the radiation environment on board the space shuttle flight STS-57

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Benton, E. V.; Frank, A. L.; Keegan, R. P.; Dudkin, V. E.; Karpov, O. N.; Potapov, V.; Akopova, A. B.; Magradze, N. V.

    1995-01-01

    A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on space shuttle flight STS-57 was conducted. The shuttle flew in a nearly circular orbit of 28.5 deg inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTD's) and thermoluminescent detectors (TLD's), and Russian nuclear emulsions, PNTD's, and TLD's. All the detector systems were shielded by the same shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micron and 200 keV/micron. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than TLD's, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLD's to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.

  1. Orthostatic Hypotension After Long-Duration Space Flight: NASA's Experiences from the International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Feiveson, Alan H.; Stenger, Michael B.; Stein, Sydney P.; Platts, Steven H.

    2011-01-01

    Our laboratory previously reported that the incidence of orthostatic hypotension (OH) was greater after long- than short-duration spaceflight in astronauts who participated in Mir Space Station and Space Shuttle missions. To confirm and extend these findings, we retrospectively examined tilt test data from International Space Station (ISS) and Shuttle astronauts. We anticipated that the proportion of ISS astronauts experiencing OH would be high on landing day and the number of days to recover greater after long- than short-duration missions. Methods: Twenty ISS and 66 Shuttle astronauts participated in 10-min 80? head-up tilt tests 10 d before launch (L-10), on landing day (R+0) or 1 d after landing (R+1). Data from 5 ISS astronauts tested on R+0 or R+1 who used non-standard countermeasures were excluded. Many astronauts repeated the test 3 d (R+3) after landing. Fisher?s Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the tilt test on R+0. Cox regression was used to identify cardiovascular parameters that were associated with test completion across all tests, and mixed model analysis was used to compare the change and recovery rates between ISS and Shuttle astronauts. In these analyses, ISS data from R+0 and R+1 were pooled to provide sufficient statistical power. Results: The proportion of astronauts who completed the tilt test on R+0 without OH was less in ISS than in Shuttle astronauts (p=0.03). On R+0, only 2 of 6 ISS astronauts completed the test compared to 53 of 66 (80%) Shuttle astronauts. However, 8 of 9 ISS astronauts completed the test on R+1. On R+3, 13 of 15 (87%) of the ISS and 19 of 19 (100%) of the Shuttle astronauts completed the 10-min test. An index comprised of stroke volume and diastolic blood pressure provided a very good prediction of overall tilt survival. This index was altered by spaceflight similarly for both groups soon after landing (pooled R+0 and R+ 1), but ISS astronauts did not recover at the same rate as Shuttle astronauts (p=0.007). Conclusions: The proportion of ISS astronauts who could not complete the tilt test on R+0 due to OH (4 of 6) is similar to that reported in astronauts who flew on Mir (5 of 6). Further, cardiovascular parameters most closely associated with OH recover more slowly after long- compared to short-duration spaceflight.

  2. STS-114: Crew Interviews 1. Andy Thomas 2. Steve Robinson

    NASA Technical Reports Server (NTRS)

    2005-01-01

    STS-114 Mission Specialists, Andy Thomas and Steve Robinson, are seen in this pre-flight interview. Andy Thomas begins by talking about his interest in spaceflight as a young boy growing up in Australia. He expresses that the chances of an Australian boy studying to eventually become an astronaut was very remote. His Mechanical Engineering Degree in Australia and a Doctorate enabled him to acquire unique skills to come to the United States to work for Lockheed Martin. On the topic of return to flight, he reflects on experiences that he had working with the Michael Anderson and Kalpana Chawla of the ill-fated Space Shuttle Columbia. He also talks about the safety of the Space Shuttle Discovery and repairs to its Thermal Protection system. He explains in detail the Logistics Flight (LF) 1, spacewalks, Multipurpose Logistics Module (MPLM) and the External Stowage Platform (ESP)-2. Steve Robinson expresses that he had many interests as a child and becoming an astronaut was one of them. He was fascinated with things that fly and wanted to find out how they flew. He also designed hang gliders as a teenager. He expresses how his family feels about the risky business of spaceflight. He talks about how the space shuttle discovery crew will remember the Columbia crew by including seven stars on their patch so that they can bring them into orbit and then back home. Robinson also talks about his primary job, and the spacewalks that he and Soichi Noguchi will be performing.

  3. KSC-04pd1006

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Gordon Cooper is introduced as a previous inductee. One of America’s original Mercury Seven astronauts, Cooper flew the last and longest Project Mercury orbital mission and spent eight days in space aboard Gemini 5. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  4. KSC-98pc1200

    NASA Image and Video Library

    1998-09-30

    Spacelab is wrapped and ready for transport to the National Air and Space Museum in Washington, DC. Spacelab was designed by the European Space Agency (ESA) for the Space Shuttle program and first flew on STS-9 in November 1983. Its final flight was the STS-90 Neurolab mission in April 1998. A sister module will travel home and be placed on display in Europe. The Spacelab concept of modular experiment racks in a pressurized shirt-sleeve environment made it highly user-friendly and accessible. Numerous experiments conceived by hundreds of scientists on the ground were conducted by flight crews in orbit. Spacelab modules served as on-orbit homes for everything from squirrel monkeys to plant seeds. They supported astronomical as well as Earth observations, for servicing the Hubble Space Telescope and for research preparatory to the International Space Station. One of the greatest benefits afforded by the Spacelab missions was the opportunity to fly a mission more than once, with the second or third flight building on the experiences and data gathered from its predecessors

  5. KSC-2012-1460

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Bob Cabana talks to guests about the Mercury Project's Atlas rocket in the Vehicle Assembly Building. At the space center in Florida, Cabana is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston

  6. KSC-2012-1459

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Bob Cabana talks to a guest about the Mercury Project's Atlas rocket in the Vehicle Assembly Building. At the space center in Florida, Cabana is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston

  7. KSC-2012-1463

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn tours the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston

  8. Spacelab ready for transport to Washington, DC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Spacelab is wrapped and ready for transport to the National Air and Space Museum in Washington, DC. Spacelab was designed by the European Space Agency (ESA) for the Space Shuttle program and first flew on STS-9 in November 1983. Its final flight was the STS-90 Neurolab mission in April 1998. A sister module will travel home and be placed on display in Europe. The Spacelab concept of modular experiment racks in a pressurized shirt-sleeve environment made it highly user-friendly and accessible. Numerous experiments conceived by hundreds of scientists on the ground were conducted by flight crews in orbit. Spacelab modules served as on-orbit homes for everything from squirrel monkeys to plant seeds. They supported astronomical as well as Earth observations, for servicing the Hubble Space Telescope and for research preparatory to the International Space Station. One of the greatest benefits afforded by the Spacelab missions was the opportunity to fly a mission more than once, with the second or third flight building on the experiences and data gathered from its predecessors.

  9. DSMC simulations of the Shuttle Plume Impingement Flight EXperiment(SPIFEX)

    NASA Technical Reports Server (NTRS)

    Stewart, Benedicte; Lumpkin, Forrest

    2017-01-01

    During orbital maneuvers and proximity operations, a spacecraft fires its thrusters inducing plume impingement loads, heating and contamination to itself and to any other nearby spacecraft. These thruster firings are generally modeled using a combination of Computational Fluid Dynamics (CFD) and DSMC simulations. The Shuttle Plume Impingement Flight EXperiment(SPIFEX) produced data that can be compared to a high fidelity simulation. Due to the size of the Shuttle thrusters this problem was too resource intensive to be solved with DSMC when the experiment flew in 1994.

  10. Thyroid function changes related to use of iodinated water in the U.S. Space Program.

    PubMed

    McMonigal, K A; Braverman, L E; Dunn, J T; Stanbury, J B; Wear, M L; Hamm, P B; Sauer, R L; Billica, R D; Pool, S L

    2000-11-01

    The National Aeronautics and Space Administration (NASA) has used iodination as a method of microbial disinfection of potable water systems in U.S. spacecraft and long-duration habitability modules. A review of thyroid function tests of NASA astronauts who had consumed iodinated water during spaceflight was conducted. Thyroid function tests of all past and present astronauts were reviewed. Medical records of astronauts with a diagnosis of thyroid disease were reviewed. Iodine consumption by space crews from water and food was determined. Serum thyroid-stimulating hormone (TSH) and urinary iodine excretion from space crews were measured following modification of the Space Shuttle potable water system to remove most of the iodine. Mean TSH significantly increased in 134 astronauts who had consumed iodinated water during spaceflight. Serum TSH, and urine iodine levels of Space Shuttle crewmembers who flew following modification of the potable water supply system to remove iodine did not show a statistically significant change. There was no evidence supporting association between clinical thyroid disease and the number of spaceflights, amount of iodine consumed, or duration of iodine exposure. It is suggested that pharmacological doses of iodine consumed by astronauts transiently decrease thyroid function, as reflected by elevated serum TSH values. Although adverse effects of excess iodine consumption in susceptible individuals are well documented, exposure to high doses of iodine during spaceflight did not result in a statistically significant increase in long-term thyroid disease in the astronaut population.

  11. SRTM Anaglyph: Near Zapala, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Topographic data provided by the Shuttle Radar Topography Mission can provide many clues to geologic history and processes. This view of an area southwest of Zapala, Argentina, shows a wide diversity of geologic features. The highest peaks (left) appear to be massive (un-layered)crystalline rocks, perhaps granites. To their right (eastward) are tilted and eroded layered rocks, perhaps old lava flows, forming prominent ridges. Farther east and south, more subtle and curvilinear ridges show that the rock layers have not only been tilted but also folded. At the upper right, plateaus that cap the underlying geologic complexities are more recent lava flows -younger than the folding, but older than the current erosional pattern. Landforms in the southeast (lower right) and south-central areas appear partially wind sculpted.

    This anaglyph was produced by first shading a preliminary elevation model from the Shuttle Radar Topography Mission. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11,2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on Space Shuttle Endeavour in 1994. Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 45.9 by 36.0 kilometers ( 28.5 by 22.3 miles) Location: 39.4 deg. South lat., 70.3 deg. West lon. Orientation: North toward the top Image Data: Shaded Shuttle Radar Topography Mission elevation model Date Acquired: February 2000

  12. Press Pelease Image - STS-1 - Earth View

    NASA Image and Video Library

    1981-04-12

    S81-30396 (12-14 April 1981) --- A vertical view of Eleuthera Island in the Bahamas and part of the great Bahama Bank, as photographed with a 70mm handheld camera from the space shuttle Columbia in Earth orbit. The light blue of the Bahama Bank contrasts sharply with the darker blue of the deep ocean waters. Astronauts John W. Young, commander, and Robert L. Crippen, pilot, took a series of Earth photos from inside the flight deck of the Columbia, which has windows on its top side, convenient for shooting photographs as the spacecraft flew ?upside down? above Earth. The mission frame ID number is STS001-12-322. Photo credit: NASA

  13. Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS)

    NASA Technical Reports Server (NTRS)

    Rush, John; Israel, David; Harlacher, Marc; Haas, Lin

    2003-01-01

    The Low Power Transceiver (LPT) is an advanced signal processing platform that offers a configurable and reprogrammable capability for supporting communications, navigation and sensor functions for mission applications ranging from spacecraft TT&C and autonomous orbit determination to sophisticated networks that use crosslinks to support communications and real-time relative navigation for formation flying. The LPT is the result of extensive collaborative research under NASNGSFC s Advanced Technology Program and ITT Industries internal research and development efforts. Its modular, multi-channel design currently enables transmitting and receiving communication signals on L- or S-band frequencies and processing GPS L-band signals for precision navigation. The LPT flew as a part of the GSFC Hitchhiker payload named Fast Reaction Experiments Enabling Science Technology And Research (FREESTAR) on-board Space Shuttle Columbia s final mission. The experiment demonstrated functionality in GPS-based navigation and orbit determination, NASA STDN Ground Network communications, space relay communications via the NASA TDRSS, on-orbit reconfiguration of the software radio, the use of the Internet Protocol (IP) for TT&C, and communication concepts for space based range safety. All data from the experiment was recovered and, as a result, all primary and secondary objectives of the experiment were successful. This paper presents the results of the LPTs maiden space flight as a part of STS- 107.

  14. Richard A. Searfoss

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Richard A. Searfoss became a research pilot in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, Calif., in July 2001. He brought to Dryden more than 5,000 hours of military flying time and 939 hours in space. Searfoss served in the U.S. Air Force for more than 20 years, retiring with the rank of colonel. Following graduation in 1980 from Undergraduate Pilot Training at Williams Air Force Base, Ariz., Searfoss flew F-111s at RAF Lakenheath, England, and Mountain Home Air Force Base, Idaho. In 1988 he attended the U.S. Naval Test Pilot School, Patuxent River, Md., as a U.S. Air Force exchange officer. He was an instructor pilot at the U.S. Air Force Test Pilot School, Edwards Air Force Base, Calif., when selected for the astronaut program in January 1990. Searfoss became an astronaut in July 1991. A veteran of three space flights, Searfoss has logged 39 days in space. He served as STS-58 pilot on the seven-person life science research mission aboard Space Shuttle Columbia, launching from NASA's Kennedy Space Center, Fla., on Oct. 18, 1993, and landing at Edwards Air Force Base, Calif., on Nov. 1, 1993. The crew performed a number of medical experiments on themselves and 48 rats, expanding knowledge of human and animal physiology. Searfoss flew his second mission as pilot of STS-76 aboard the Space Shuttle Atlantis. During this nine-day mission, which launched March 22, 1996, the crew preformed the third docking of an American spacecraft with the Russian space station Mir. The crew transported to Mir nearly two tons of water, food, supplies, and scientific equipment, as well as U.S. Astronaut Shannon Lucid to begin her six-month stay in space. Completing 145 orbits, STS-76 landed at Edwards Air Force Base, Calif., on March 31, 1996. Searfoss commanded a seven-person crew on the STS-90 Neurolab mission launched on April 17, 1998. The crew served as both experiment subjects and operators for life science experiments focusing on the effects of microgravity on the brain and nervous system. STS-90 was the last and most complex of the 25 Spacelab missions. Completed in 256 orbits, STS-90 landed at Kennedy Space Center, Fla., on May 3, 1998. Searfoss is a 1978 graduate of the U.S. Air Force Academy with a bachelor of science degree in aeronautical engineering. He earned a master of science degree in aeronautics from the California Institute of Technology on a National Science Foundation Fellowship in 1979. He holds FAA Airline Transport Pilot, glider and flight instructor ratings.

  15. KSC-2009-6025

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – The solid rocket booster recovery ship Freedom Star, towing the spent first stage of NASA's Ares I-X rocket, traverses the Banana River along the shore of Cape Canaveral Air Force Station in Florida. Across the river, in the background, is the Vehicle Assembly Building at NASA's Kennedy Space Center. Following the launch of the Ares I-X flight test, the booster splashed down in the Atlantic Ocean and was recovered. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  16. Combustion Module-2 Achieved Scientific Success on Shuttle Mission STS-107

    NASA Technical Reports Server (NTRS)

    Over, Ann P.

    2004-01-01

    The familiar teardrop shape of a candle is caused by hot, spent air rising and cool fresh air flowing behind it. This type of airflow obscures many of the fundamental processes of combustion and is an impediment to our understanding and modeling of key combustion controls used for manufacturing, transportation, fire safety, and pollution. Conducting experiments in the microgravity environment onboard the space shuttles eliminates these impediments. NASA Glenn Research Center's Combustion Module-2 (CM-2) and its three experiments successfully flew on STS-107/Columbia in the SPACEHAB module and provided the answers for many research questions. However, this research also opened up new questions. The CM-2 facility was the largest and most complex pressurized system ever flown by NASA and was a precursor to the Glenn Fluids and Combustion Facility planned to fly on the International Space Station. CM-2 operated three combustion experiments: Laminar Soot Processes (LSP), Structure of Flame Balls at Low Lewis-Number (SOFBALL), and Water Mist Fire Suppression Experiment (Mist). Although Columbia's mission ended in tragedy with the loss of her crew and much data, most of the CM-2 results were sent to the ground team during the mission.

  17. KSC-2009-6029

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, the spent first stage of NASA's Ares I-X rocket is secured in a slip. The solid rocket booster recovery ship Freedom Star recovered the booster after it splashed down in the Atlantic Ocean following its flight test. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  18. KSC-2009-6024

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – The solid rocket booster recovery ship Freedom Star, towing the spent first stage of NASA's Ares I-X rocket, passes through Port Canaveral in Florida. Following the launch of the Ares I-X flight test, the booster splashed down in the Atlantic Ocean and was recovered. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  19. KSC-2009-6032

    NASA Image and Video Library

    2009-10-31

    CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, the spent first stage of NASA's Ares I-X rocket, secured in a slip, awaits inspection. The booster was recovered by the solid rocket booster recovery ship Freedom Star after it splashed down in the Atlantic Ocean following its flight test. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  20. KSC-2009-6027

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – The solid rocket booster recovery ship Freedom Star delivers the spent first stage of NASA's Ares I-X rocket to Hangar AF at Cape Canaveral Air Force Station in Florida. Following the launch of the Ares I-X flight test, the booster splashed down in the Atlantic Ocean and was recovered. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  1. KSC-2009-6028

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, workers guide the spent first stage of NASA's Ares I-X rocket into a slip. The solid rocket booster recovery ship Freedom Star, in the background, recovered the booster after it splashed down in the Atlantic Ocean following its flight test. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  2. KSC-2009-6030

    NASA Image and Video Library

    2009-10-31

    CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, the spent first stage of NASA's Ares I-X rocket is secured in a slip. The solid rocket booster recovery ship Freedom Star recovered the booster after it splashed down in the Atlantic Ocean following its flight test. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  3. KSC-98pc1145

    NASA Image and Video Library

    1998-09-22

    KENNEDY SPACE CENTER, FLA. -- Two Spacelab modules (end to end) are made ready in the Operations and Checkout Building for shipment to the National Air and Space Museum in Washington, DC. Spacelab was designed by the European Space Agency (ESA) for the Space Shuttle program and first flew on STS-9 in November 1983. Its final flight was the STS-90 Neurolab mission in April 1998. The sister module (first in line) will travel home and be placed on display in Europe. The Spacelab concept of modular experiment racks in a pressurized shirt-sleeve environment made it highly user-friendly and accessible. Numerous experiments conceived by hundreds of scientists on the ground were conducted by flight crews in orbit. Spacelab modules served as on-orbit homes for everything from squirrel monkeys to plant seeds. They supported astronomical as well as Earth observations, for servicing the Hubble Space Telescope and for research preparatory to the International Space Station. One of the greatest benefits afforded by the Spacelab missions was the opportunity to fly a mission more than once, with the second or third flight building on the experiences and data gathered from its predecessors

  4. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - From left, T-cell science team members Emily Martinez, Miya Yoshida and Tara Candelario, of the Hughes-Fulford Laboratory, San Francisco, Calif., discuss preflight and post-flight experiment operations with researcher and principal investigator Dr. Millie Hughes-Fulford in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  5. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - T-cell science team member Tara Candelario of the Hughes-Fulford Laboratory, San Francisco, Calif., at the microscope, discusses preflight and post-flight experiment operations with researcher and principal investigator Dr. Millie Hughes-Fulford in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida as T-cell science team members Emily Martinez, left, and Miya Yoshida look on. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  6. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford of the Hughes-Fulford Laboratory, San Francisco, Calif., at right, plans preflight and post-flight experiment operations with T-cell science team members Emily Martinez, left, and Tara Candelario in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  7. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and former NASA payload specialist Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., discusses her laboratory's T-cell experiment and the impact the research may have on aging adults and their immune systems with an interviewer in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  8. KSC-04pd1005

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Wally Schirra is greeted with applause as he is introduced as a previous inductee. One of America's original Mercury Seven astronauts, Schirra is the only one who flew in all three of the nation's pioneering space programs, Mercury, Gemini, and Apollo. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  9. Retired NASA research pilot and former astronaut Gordon Fullerton was greeted by scores of NASA Dryden staff who bid him farewell after his final NASA flight.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  10. A water-cannon salute from two Air Force fire trucks heralds NASA research pilot Gordon Fullerton's final mission as his NASA F/A-18 taxis beneath the spray.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  11. Two NASA Dryden F/A-18s flown by Gordon Fullerton and Nils Larson fly in tight formation Dec. 21, 2007 during Fullerton's final flight before his retirement.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  12. Orbiter LH2 Feedline Flowliner Cracking Problem. Version 1.0

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Cragg, Clinton H.; Raju, Ivatury S.; Elliot, Kenny B.; Madaras, Eric I.; Piascik, Robert S.; Halford, Gary R.; Bonacuse, Peter J.; Sutliff, Daniel L.; Bakhle, Milind A.

    2005-01-01

    In May of 2002, three cracks were found in the downstream flowliner at the gimbal joint in the LH2 feedline at the interface with the Low Pressure Fuel Turbopump (LPFP) of Space Shuttle Main Engine (SSME) #1 of Orbiter OV-104. Subsequent inspections of the feedline flowliners in the other orbiters revealed the existence of 8 additional cracks. No cracks were found in the LO2 feedline flowliners. A solution to the cracking problem was developed and implemented on all orbiters. The solution included weld repair of all detectable cracks and the polishing of all slot edges to remove manufacturing discrepancies that could initiate new cracks. Using the results of a fracture mechanics analysis with a scatter factor of 4 on the predicted fatigue life, the orbiters were cleared for return to flight with a one-flight rationale requiring inspections after each flight. OV-104 flew mission STS-112 and OV-105 flew mission STS-113. The post-flight inspections did not find any cracks in the repaired flowliners. At the request of the Orbiter Program, the NESC conducted an assessment of the Orbiter LH2 Feedline Flowliner cracking problem with a team of subject matter experts from throughout NASA.

  13. Apollo and Beyond

    NASA Technical Reports Server (NTRS)

    Aldrin, Buzz

    2005-01-01

    The orbiter medium has a pod that can be ejected from the pad or from anywhere in flight. The essence of that ejectable pod and its capacity and its systems could also be used as a lifeboat, similar to the X-38. The orbiter medium, when boosted by one booster, goes into low-Earth orbit. With two boosters and a tank, it can then rendezvous with things at the L-1 port. The L-1 port really comes from the habitable volumes that are put up. We would envision looking at a prototype during this period and actually launching one before the end of the year 2008 into the space station orbit of the International Space Station, where it could supplement what we think is a desirable thing . . . an orbiter on station. Owen Garriott, who flew on Skylab, has been pioneering the activity of long-duration orbiters that could be left at the Station and relieved on Station by another orbiter, thereby relieving the burden of having to rely on the lifeboat Soyuz and a half module, both of which have been sort of postponed now by NASA because of cost overruns. The booster large now is a fly-back booster for the Shuttle, and two of those go with the Shuttle system as it proceeds toward phase out. One large booster launches an orbiter large into low-Earth orbit for Space Shuttle transportation two into the future. With two boosters and a tank, it can then go to high orbits, which means it can intercept cycling space ships. Cycling space ships are a derivative of what we first put at the 51.6-degree inclination and then work close to the International Space Station, perhaps take the nose section of the tank and put it actually on the ISS as a larger half module than we plan to do right now.

  14. STS-94 Mission Specialist Gernhardt in LC-39A White Room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-94 Mission Specialist Michael L. Gernhardt prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. He first flew in this capacity on STS-69. He has been a professional deep sea diver and engineer and holds a doctorate in bioengineering. Gernhardt will be in charge of the Blue shift and as flight engineer will operate and maintain the orbiter while Halsell and Still are asleep as members of the Red shift. He will also back them up on the flight deck during the ascent and re- entry phases of the mission. Gernhardt and six fellow crew members will lift off during a launch window that opens at 1:50 a.m. EDT, July 1. The launch window will open 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reach the space center.

  15. Bulk Growth of 2-6 Crystals in the Microgravity Environment of USML-1

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Lehoczky, Sandor L.; Szofran, Frank R.; Larson, David J.; Su, Ching-Hua; Sha, Yi-Gao; Alexander, Helga A.

    1993-01-01

    The first United States Microgravity Laboratory Mission (USML- 1) flew in June 1992 on the Space Shuttle Columbia. An important part of this SpaceLab mission was the debut of the Crystal Growth Furnace (CGF). Of the seven samples grown in the furnace, three were bulk grown 2-6 compounds, two of a cadmium zinc telluride alloy, and one of a mercury zinc telluride alloy. Ground based results are presented, together with the results of computer simulated growths of these experimental conditions. Preliminary characterization results for the three USML-1 growth runs are also presented and the flight sample characteristics are compared to the equivalent ground truth samples. Of particular interest are the effect of the containment vessel on surface features, and especially on the nucleation, and the effect of the gravity vector on radial and axial compositional variations and stress and defect levels.

  16. GRC-2010-C-00452

    NASA Image and Video Library

    2006-02-02

    From Space to the Super Bowl Members of the STS-129 shuttle mission present a specially minted silver medallion to National Football League officials on Wednesday, Jan. 27, 2010, at the Pro Football Hall of Fame in Canton, Ohio. The coin, which was flown in space during the November flight of Atlantis, will be used for the official coin toss prior to the kickoff of Super Bowl XLIV on Sunday, Feb. 7, 2010. One member of Atlantis' crew, Leland Melvin, was drafted by the NFL's Detroit Lions in 1986. The crew also flew other NFL-related memorabilia, including jerseys and a football inscribed with the name of every member of the Hall of Fame. From left: Astronauts Bobby Satcher, Randy Bresnik, and Charlie Hobaugh; Joe Horrigan, Vice President of Communications/Exhibits for the Pro Football Hall of Fame, Steve Perry, President/Executive Director of the Pro Football Hall of Fame; astronauts Berry Wilmore, Michael Foreman and Leland Melvin. Photo Credit: NASA/Marv Smith

  17. KSC-2011-6172

    NASA Image and Video Library

    2011-07-29

    NACOGDOCHES, Texas -- A round 40-inch aluminum storage tank from space shuttle Columbia's Power Reactant and Storage Distribution System rests on the edge of Lake Nacogdoches in Texas. Lower lake water levels due to a local drought allowed the debris to become exposed. Columbia was destroyed during re-entry at the conclusion of the STS-107 mission in 2003. Approximately 38 to 40 percent of Columbia was recovered following the accident in a half-million-acre search area which extended from eastern Texas and to western Louisiana. This tank is one of 18 cryogenic liquid storage tanks that flew aboard Columbia. The tank is not hazardous to people or the environment and will be transported to NASA's Kennedy Space Center for storage inside the Vehicle Assembly Building with the rest of the recovered Columbia debris. For information on STS-107 and the Columbia accident, visit http://www.nasa.gov/columbia/home/index.html. Photo credit: Nacogdoches Police Dept.

  18. KSC-99pp0598

    NASA Image and Video Library

    1999-05-27

    NASA Administrator Daniel Goldin (left) greets Mme. Aline Chretien, wife of the Canadian Prime Minister, at the launch of STS-96. Looking on in the background (between them) is former astronaut Jean-Loup Chretien (no relation), who flew on STS-86. Mme. Chretien attended the launch because one of the STs-96 crew is Mission Specialist Julie Payette, who represents the Canadian Space Agency. Space Shuttle Discovery launched on time at 6:49:42 a.m. EDT to begin a 10-day logistics and resupply mission for the International Space Station. Along with such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment, Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission includes a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT

  19. KSC-2012-1464

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson tour the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston

  20. KSC-08pd0911

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- A U.S. Navy F-18 Hornet taxis on the Shuttle Landing Facility runway at NASA's Kennedy Space Center. Aboard are Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane. They flew into Kennedy to begin preparations for their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  1. KSC-08pd0910

    NASA Image and Video Library

    2008-04-07

    CAPE CANAVERAL, Fla. -- A U.S. Navy F-18 Hornet lands at the Shuttle Landing Facility at NASA's Kennedy Space Center. Aboard are Blue Angel pilots Lt. Frank Weisser and Lt. Dan McShane. They flew into Kennedy to begin preparations for their involvement in the second annual Space & Air Show at Kennedy Space Center Nov. 8-9. The air show will be only the second time the Blue Angels have performed at Kennedy. Their precision flight team will perform high-speed passes, fast rolls, mirror formations, tight turns and their signature Delta formation showcasing the capabilities of the powerful aircraft. The 2008 Space & Air Show will include aircraft displays and space-related exhibits on the ground and plenty of action in the skies over Kennedy. Returning to the show is the 920th Rescue Wing, an Air Force Reserve Command combat search and rescue unit based at Patrick Air Force Base in Central Florida. Also, more than 20 astronauts and special guests will be on hand to personally meet guests, pose for photos and sign memorabilia. Photo credit: NASA/Kim Shiflett

  2. John H. Glenn Jr. poses with his family after arriving at KSC for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Payload Specialist John H. Glenn Jr. (second from right), senator from Ohio, poses (left to right) with his son, David, daughter, Lyn, and (far right) his wife, Annie, after landing at Kennedy Space Center's Shuttle Landing Facility aboard a T-38 jet. Glenn and other crewmembers flew into KSC to make final preparations for launch. Targeted for liftoff at 2 p.m. on Oct. 29, the STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC on Nov. 7. The other STS-95 crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA).

  3. KSC-98pc1144

    NASA Image and Video Library

    1998-09-22

    Spacelab Module MD001 (foreground) and its sister module (behind it) are prepared for shipment to the National Air and Space Museum in Washington, DC. Spacelab was designed by the European Space Agency (ESA) for the Space Shuttle program. It first flew on STS-9 in November 1983 and its final flight was the STS-90 Neurolab mission in April 1998. The sister module will travel home and be placed on display in Europe. The Spacelab concept of modular experiment racks in a pressurized shirt-sleeve environment made it highly user-friendly and accessible. Numerous experiments conceived by hundreds of scientists on the ground were conducted by flight crews in orbit. Spacelab modules served as on-orbit homes for everything from squirrel monkeys to plant seeds. They supported astronomical as well as Earth observations, for servicing the Hubble Space Telescope and for research preparatory to the International Space Station. One of the greatest benefits afforded by the Spacelab missions was the opportunity to fly a mission more than once, with the second or third flight building on the experiences and data gathered from its predecessors

  4. KSC-98pc1141

    NASA Image and Video Library

    1998-09-22

    Viewed looking forward, this Spacelab module is empty now, being prepared in the Operations & Checkout Building for shipment to the National Air and Space Museum in Washington, DC. Visible on the floor are the foot restraints used by astronauts to keep them stationary while conducting experiments. Spacelab was designed by the European Space Agency (ESA) for the Space Shuttle program. It first flew on STS-9 in November 1983 and its final flight was the STS-90 Neurolab mission in April 1998. The Spacelab concept of modular experiment racks in a pressurized shirt-sleeve environment made it highly user-friendly and accessible. Numerous experiments conceived by hundreds of scientists on the ground were conducted by flight crews in orbit. Spacelab modules served as on-orbit homes for everything from squirrel monkeys to plant seeds. They supported astronomical as well as Earth observations, for servicing the Hubble Space Telescope and for research preparatory to the International Space Station. One of the greatest benefits afforded by the Spacelab missions was the opportunity to fly a mission more than once, with the second or third flight building on the experiences and data gathered from its predecessors

  5. KSC-98pc1140

    NASA Image and Video Library

    1998-09-22

    Viewed looking aft, this Spacelab module is empty now, being prepared in the Operations & Checkout Building for shipment to the National Air and Space Museum in Washington, DC. Visible on the floor are the foot restraints used by astronauts to keep them stationary while conducting experiments. Spacelab was designed by the European Space Agency (ESA) for the Space Shuttle program. It first flew on STS-9 in November 1983 and its final flight was the STS-90 Neurolab mission in April 1998. The Spacelab concept of modular experiment racks in a pressurized shirt-sleeve environment made it highly user-friendly and accessible. Numerous experiments conceived by hundreds of scientists on the ground were conducted by flight crews in orbit. Spacelab modules served as on-orbit homes for everything from squirrel monkeys to plant seeds. They supported astronomical as well as Earth observations, for servicing the Hubble Space Telescope and for research preparatory to the International Space Station. One of the greatest benefits afforded by the Spacelab missions was the opportunity to fly a mission more than once, with the second or third flight building on the experiences and data gathered from its predecessors

  6. Spacelab

    NASA Image and Video Library

    1992-06-01

    The first United States Microgravity Laboratory (USML-1) flew in orbit inside the Spacelab science module for extended periods, providing scientists and researchers greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This photograph shows Astronaut Larry De Lucas wearing a stocking plethysmograph during the mission. Muscle size in the legs changes with exposure to microgravity. A stocking plethysmograph, a device for measuring the volume of a limb, was used to help determine these changes. Several times over the course of the mission, an astronaut will put on the plethysmograph, pull the tapes tight and mark them. By comparing the marks, changes in muscle volume can be measured. The USML-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.

  7. KSC-03pd0305

    NASA Image and Video Library

    2003-02-07

    KENNEDY SPACE CENTER, FLA. - A Columbia Crew Memorial Service is held at the Shuttle Landing Facility for KSC employees and invited guests. Florida Senator Bill Nelson, seated in the center (gold tie), flew on Columbia in 1986 as a payload specialist on mission STS 61-C. Beside him (left) is Congressman Dave Weldon. The Columbia and her crew of seven were lost on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. Taking part in the service were NASA Administrator Sean O’Keefe, former KSC Director Robert Crippen, astronaut Jim Halsell, several employees, area clergymen, and members of Patrick Air Force Base. The service concluded with a “Missing Man Formation Fly Over” by NASA T-38 jet aircraft.

  8. Precursor SSF utilization: The MODE experiments

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.

    1992-01-01

    The MIT Space Engineering Research Center is the principal investigator for a series of experiments which utilize the Shuttle Middeck as an engineering dynamics laboratory. The first, which flew on STS-48 in Sep. 1991, was the Middeck O-gravity Dynamics Experiment (MODE). This experiment focused on the dynamics of a scaled deployable truss, similar to that of SSF, and contained liquids in tanks. MODE will be reflown in the fall of 1993. In mid-1994, the Middeck Active Control Experiment (MACE) will examine the issues associated with predicting and verifying the closed loop behavior of a controlled structure in zero gravity. The paper will present experiment background, planning, operational experience, results, and lessons learned from these experiments which are pertinent to SSF utilization.

  9. The Evolution of Utilizing Manual Throttles to Avoid Excessively Low LH2 NPSP at the SSME Inlet

    NASA Technical Reports Server (NTRS)

    Henfling, Rick

    2011-01-01

    In the late 1970s, years before the Space Shuttle flew its maiden voyage, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) could have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System (MPS) could result in a low LH2 NPSP condition, which at extremely low levels can result in cavitation of SSME turbomachinery. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs (via the Pilot s Speedbrake/Throttle Controller), which alleviated the low LH2 NPSP condition. Manually throttling the SSME to a lower power level resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at the lower throttle setting. Early in the Space Shuttle Program s history, the relevant Flight Rule for the Booster flight controllers in Mission Control did not distinguish between ET and Orbiter MPS failures and the same crew action was taken for both. However, after a review of all Booster operational techniques following the Challenger disaster in the late 1980s, it was determined manually throttling the SSME to a lower power was only effective for Orbiter MPS failures and the Flight Rule was updated to reflect this change. The Flight Rule and associated crew actions initially called for a single throttle step to minimum power level when a low threshold for NPSP was met. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of the additional capabilities. This paper will examine the evolution of the Flight rule and associated procedure and how increases in knowledge about the SSME and the Space Shuttle vehicle as a whole have helped shape their development. What once was a single throttle step when NPSP decreased to a certain threshold has now become three throttle steps, each occurring at a lower NPSP threshold. Additionally the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now results in a nominal Main Engine Cut Off and no loss of mission objectives.

  10. The Evolution of Utilizing Manual Throttling to Avoid Excessively Low LH2 NPSP at the SSME Inlet

    NASA Technical Reports Server (NTRS)

    Henfling, Rick

    2010-01-01

    In the late 1970s, years before the Space Shuttle flew its maiden voyage, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) could have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System (MPS) could result in a low LH2 NPSP condition, which at extremely low levels can result in cavitation of SSME turbomachinery. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs (via the Pilot s Speedbrake/Throttle Controller), which alleviated the low LH2 NPSP condition. Manually throttling the SSME to a lower power level resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at the lower throttle setting. Early in the Space Shuttle Program s history, the relevant Flight Rule for the Booster flight controller in Mission Control did not distinguish between ET and Orbiter MPS failures and the same crew action was taken for both. However, after a review of all Booster operational techniques following the Challenger disaster in the late 1980s, it was determined manually throttling the SSME to a lower power was only effective for Orbiter MPS failures and the Flight Rule was updated to reflect this change. The Flight Rule and associated crew actions initially called for a single throttle step to minimum power level when a low threshold for NPSP was met. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of the additional capabilities. This paper will examine the evolution of the Flight rule and associated procedure and how increases in knowledge about the SSME and the Space Shuttle vehicle as a whole have helped shape their development. What once was a single throttle step when NPSP decreased to a certain low threshold has now become three throttle steps, each occurring at a lower NPSP threshold. Additionally the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now results in a nominal Main Engine Cut Off and no loss of mission objectives.

  11. Perspective View with Landsat Overlay, Sacramento, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    California's state capitol, Sacramento, can be seen clustered along the American and Sacramento Rivers in this computer-generated perspective viewed from the west. Folsom Lake is in the center and the Sierra Nevada is above, with the edge of Lake Tahoe just visible at top center.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: scale varies in this perspective image Location: 38.6 deg. North lat., 121.3 deg. West lon. Orientation: looking east Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  12. Perspective View with Landsat Overlay, Mount Shasta, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At more than 4,300 meters (14,000 feet ), Mount Shasta is California's tallest volcano and part of the Cascade chain of volcanoes extending south from Washington. This computer-generated perspective viewed from the west also includes Shastina, a slightly smaller volcanic cone left of Shasta's summit and Black Butte, another volcano in the right foreground.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Size: scale varies in this perspective image Location: 41.4 deg. North lat., 122.3 deg. West lon. Orientation: looking east Image Data: Landsat Bands 3,2,1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  13. Gulf Coast, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    The topography of the Gulf Coast states is well shown in this color-coded shaded relief map generated with data from the Shuttle Radar Topography Mission. The image on the top (see Figure 1) is a standard view showing southern Louisiana, Mississippi, Alabama and the panhandle of Florida. Green colors indicate low elevations, rising through yellow and tan, to white at the highest elevations.

    For the view on the bottom (see Figure 2), elevations below 10 meters (33 feet) above sea level have been colored light blue. These low coastal elevations are especially vulnerable to flooding associated with storm surges. Planners can use data like these to predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 31 degrees north latitude, 88 degrees west longitude Orientation: North toward the top, Mercator projection Size: 702 by 433 kilometers (435 by 268 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  14. Southern Florida, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The very low topography of southern Florida is evident in this color-coded shaded relief map generated with data from the Shuttle Radar Topography Mission. The image on the left is a standard view, with the green colors indicating low elevations, rising through yellow and tan, to white at the highest elevations. In this exaggerated view even those highest elevations are only about 60 meters (197 feet) above sea level.

    For the view on the right, elevations below 5 meters (16 feet) above sea level have been colored dark blue, and lighter blue indicates elevations below 10 meters (33 feet). This is a dramatic demonstration of how Florida's low topography, especially along the coastline, make it especially vulnerable to flooding associated with storm surges. Planners can use data like these to predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 27 degrees north latitude, 81 degrees west longitude Orientation: North toward the top, Mercator projection Size: 397 by 445 kilometers (246 by 276 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  15. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and former NASA payload specialist Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., accepts the European Space Agency ESA T-cell experiment flight units being handed over in a Space Station Processing Facility laboratory at NASA's Kennedy Space Center in Florida. From left are Raimondo Fortezza of ESA, Hughes-Fulford, and Pier Luigi Ganga and Fabio Creati of Kayser Italia, manufacturer of the hardware. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  16. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and former NASA payload specialist Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., accepts the European Space Agency ESA T-cell experiment flight units being handed over in a Space Station Processing Facility laboratory at NASA's Kennedy Space Center in Florida. From left are Raimondo Fortezza of ESA, Hughes-Fulford, and Pier Luigi Ganga, Marco Vukich and Fabio Creati of Kayser Italia, manufacturer of the hardware. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  17. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and former NASA payload specialist Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., accepts the European Space Agency ESA T-cell experiment flight units being handed over in a Space Station Processing Facility laboratory at NASA's Kennedy Space Center in Florida. From left are Hughes-Fulford shaking hands with Pier Luigi Ganga of Kayser Italia, manufacturer of the hardware, with Raimondo Fortezza of ESA looking on. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  18. Radar image of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The area is predominantly scrub forest. Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. Image brightness differences in this image are caused by differences in vegetation type and density. Tributaries of the Sao Francisco are visible in the upper right. The Sao Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This radar image was obtained by the Shuttle Radar Topography Mission as part of its mission to map the Earth's topography. The image was acquired by just one of SRTM's two antennas, and consequently does not show topographic data but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover, and urbanization.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  19. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  20. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2008-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  1. Use of Traffic Displays for General Aviation Approach Spacing: A Human Factors Study

    DTIC Science & Technology

    2007-12-01

    engine rated pilots participated. Eight flew approaches in a twin-engine Piper Aztec originating in Sanford, ME, and eight flew approaches in the same...flew approaches in a twin-engine Piper Aztec originating in Sanford, ME, and eight flew approaches in the same aircraft originating in Atlantic City... Aztec . The plane was equipped with a horizontal Situation Indicator (hSI). The Garmin International MX-20™ multifunction traffic display or “Basic

  2. KSC-2009-6026

    NASA Image and Video Library

    2009-10-30

    CAPE CANAVERAL, Fla. – The solid rocket booster recovery ship Freedom Star, towing the spent first stage of NASA's Ares I-X rocket through the Banana River, delivers the booster to Hangar AF at Cape Canaveral Air Force Station in Florida. Following the launch of the Ares I-X flight test, the booster splashed down in the Atlantic Ocean and was recovered. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  3. KSC-2009-6031

    NASA Image and Video Library

    2009-10-31

    CAPE CANAVERAL, Fla. – At Hangar AF on Cape Canaveral Air Force Station in Florida, workers prepare to inspect the spent first stage of NASA's Ares I-X rocket, secured in a slip. The booster was recovered by the solid rocket booster recovery ship Freedom Star after it splashed down in the Atlantic Ocean following its flight test. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  4. KSC-98pc1142

    NASA Image and Video Library

    1998-09-23

    KENNEDY SPACE CENTER, FLA. -- A closeup view of the hatch to this Spacelab module shows an empty interior as the module is being prepared in the Operations & Checkout Building for shipment to the National Air and Space Museum in Washington, DC. Visible on the floor are the foot restraints used by astronauts to keep them stationary while conducting experiments. Spacelab was designed by the European Space Agency (ESA) for the Space Shuttle program. It first flew on STS-9 in November 1983 and its final flight was the STS-90 Neurolab mission in April 1998. The Spacelab concept of modular experiment racks in a pressurized shirt-sleeve environment made it highly user-friendly and accessible. Numerous experiments conceived by hundreds of scientists on the ground were conducted by flight crews in orbit. Spacelab modules served as on-orbit homes for everything from squirrel monkeys to plant seeds. They supported astronomical as well as Earth observations, for servicing the Hubble Space Telescope and for research preparatory to the International Space Station. One of the greatest benefits afforded by the Spacelab missions was the opportunity to fly a mission more than once, with the second or third flight building on the experiences and data gathered from its predecessors

  5. 3-D perspective of Saint Pierre and Miquelon Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image shows two islands, Miquelon and Saint Pierre, located south of Newfoundland, Canada. These islands, along with five smaller islands, are a self-governing territory of France. A thin barrier beach divides Miquelon, with Grande Miquelon to the north and Petite Miquelon to the south. Saint Pierre Island is located to the lower right. With the islands' location in the north Atlantic Ocean and their deep water ports, fishing is the major part of the economy. The maximum elevation of the island is 240 meters (787 feet). The land mass of the islands is about 242 square kilometers, or 1.5 times the size of Washington DC.

    This image shows how data collected by the Shuttle Radar Topography Mission (SRTM) can be used to enhance other satellite images. Color and natural shading are provided by a Landsat 7 image acquired on September 1, 1999. Terrain perspective and shading were derived from SRTM elevation data acquired on February 12, 2000. Topography is exaggerated by about six times vertically. The United States Geological Survey's Earth Resources Observations Systems (EROS) DataCenter, Sioux Falls, South Dakota, provided the Landsat data.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  6. KSC-03pd0301

    NASA Image and Video Library

    2003-02-07

    KENNEDY SPACE CENTER, FLA. - A Columbia Crew Memorial Service is held at the Shuttle Landing Facility for KSC employees and invited guests. KSC Director and former astronaut Roy Bridges, Jr., is seated third from right. Florida Senator Bill Nelson, seated in the center (gold tie), also flew on Columbia in 1986 as a payload specialist on mission STS 61-C. The Columbia and her crew of seven were lost on Feb. 1, 2003, over East Texas as they returned to Earth after a 16-day research mission. Taking part in the service were NASA Administrator Sean O’Keefe, former KSC Director Robert Crippen, astronaut Jim Halsell, several employees, area clergymen, and members of Patrick Air Force Base. The service concluded with a “Missing Man Formation Fly Over” by NASA T-38 jet aircraft.

  7. Spaceflight-Induced Visual Impairment and Globe Deformations in Astronauts Are Linked to Orbital Cerebrospinal Fluid Volume Increase.

    PubMed

    Alperin, Noam; Bagci, Ahmet M

    2018-01-01

    Most of the astronauts onboard the International Space Station (ISS) develop visual impairment and ocular structural changes that are not fully reversible upon return to earth. Current understanding assumes that the so-called visual impairments/intracranial pressure (VIIP) syndrome is caused by cephalad vascular fluid shift. This study assesses the roles of cerebrospinal fluid (CSF) and intracranial pressure (ICP) in VIIP. Seventeen astronauts, 9 who flew a short-duration mission on the space shuttle (14.1 days [SD 1.6]) and 7 who flew a long-duration mission on the ISS (188 days [SD 22]) underwent MRI of the brain and orbits to assess the pre-to-post spaceflight changes in four categories: VIIP severity measures: globe flattening and nerve protrusion; orbital and ventricular CSF volumes; cortical gray and white matter volumes; and MR-derived ICP (MRICP). Significant pre-to-post-flight increase in globe flattening and optic nerve protrusion occurred only in the long-duration cohort (0.031 [SD 0.019] vs -0.001 [SD 0.006], and 0.025 [SD 0.013] vs 0.001 [SD 0.006]; p < 0.00002 respectively). The increased globe deformations were associated with significant increases in orbital and ventricular CSF volumes, but not with increased tissue vascular fluid content. Additionally, a moderate increase in MRICP of 6 mmHg was observed in only two ISS astronauts with large ocular structure changes. These findings are evidence for the primary role of CSF and a lesser role for intracranial cephalad fluid-shift in the formation of VIIP. VIIP is caused by a prolonged increase in orbital CSF spaces that compress the globes' posterior pole, even without a large increase in ICP.

  8. Women's Health Issues in the Space Environment

    NASA Technical Reports Server (NTRS)

    Jennings, Richard T.

    1999-01-01

    Women have been an integral part of US space crews since Sally Ride's mission in 1983, and a total of 40 women have been selected as US astronauts. The first Russian female cosmonaut flew in 1963. This presentation examines the health care and reproductive aspects of flying women in space. In addition, the reproductive implications of delaying one's childbearing for an astronaut career and the impact of new technology such as assisted reproductive techniques are examined. The reproductive outcomes of the US female astronauts who have become pregnant following space flight exposure are also presented. Since women have gained considerable operational experience on the Shuttle, Mir and during EVA, the unique operational considerations for preflight certification, menstruation control and hygiene, contraception, and urination are discussed. Medical and surgical implications for women on long-duration missions to remote locations are still evolving, and enabling technologies for health care delivery are being developed. There has been considerable progress in the development of microgravity surgical techniques, including laparoscopy, thoracoscopy, and laparotomy. The concepts of prevention of illness, conversion of surgical conditions to medically treatable conditions and surgical intervention for women on long duration space flights are considered.

  9. Millie Hughes-Fulford, Scientist and Prior Astronaut

    NASA Image and Video Library

    2014-03-13

    CAPE CANAVERAL, Fla. - Researcher and principal investigator Dr. Millie Hughes-Fulford, of the Hughes-Fulford Laboratory, San Francisco, Calif., discusses her laboratory's T-cell experiment and the impact the research may have on aging adults and their immune systems with an interviewer in the Space Station Processing Facility. From left, T-cell science team members Miya Yoshida, Emily Martinez and Tara Candelario are at work preparing for launch in the background. The immunology experiment will launch on SpaceX-3 and focus on the effects of microgravity on early T-cell signaling pathways. Current work aims to identify and compare the gene expression of microRNAs miRNAs during T-cell activation under normal gravity and in microgravity, and compare those patterns to changes seen in aging populations. The experiment will be the first flown on SpaceX funded by the National Institutes of Health. Dr. Hughes-Fulford flew aboard space shuttle mission STS-40 in June 1991, the first Spacelab mission dedicated to biomedical studies. For more information on the T-cell experiment, visit http://hughesfulfordlab.com and http://www.nasa.gov/ames/research/space-biosciences/t-cell-activation-in-aging-spacex-3/. Photo credit: NASA/Cory Huston

  10. SRTM Perspective View with Landsat Overlay: Manhattan Island, New York

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this image of Manhattan, the city's skyscrapers appear as ghostly white spikes. The green patch in the middle of the image is Central park. The Hudson River is visible on the upper left-hand side and the east River on the upper right. Although not designed to measure the heights of buildings, the radar used by the Shuttle Radar Topography Mission (SRTM) was so sensitive that it easily detected the Manhattan skyscrapers but could not distinguish individual structures.

    The image was generated using topographic data from SRTM and enhanced true-color Landsat 5 satellite images. Topographic shading in the image was enhanced with false shading derived from the elevation model. Topographic expression is exaggerated 6X.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60-meters (about 200-feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: scale varies in this perspective, Manhattan is about 3.5 km (2.2 miles) across. Location: 40.8 deg. North lat., 74 deg. West lon. Orientation: North toward the top Image Data: Landsat bands 1, 2, 3, and 4 Date Acquired: February 12, 2000 (SRTM)

  11. SRTM Colored Height and Shaded Relief: Near Zapala, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Topographic data provided by the Shuttle Radar Topography Mission can provide many clues to geologic history and processes. This view of an area southwest of Zapala, Argentina, shows a wide diversity of geologic features. The highest peaks (left) appear to be massive (un-layered)crystalline rocks, perhaps granites. To their right (eastward) are tilted and eroded layered rocks, perhaps old lava flows, forming prominent ridges. Farther east and south, more subtle and curvilinear ridges show that the rock layers have not only been tilted but also folded. At the upper right, plateaus that cap the underlying geologic complexities are more recent lava flows - younger than the folding, but older than the current erosional pattern. Landforms in the southeast (lower right) and south-central areas appear partially wind sculpted.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color-coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11,2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on Space Shuttle Endeavour in 1994. Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 45.9 by 36.0 kilometers ( 28.5 by 22.3 miles) Location: 39.4 deg. South lat., 70.3 deg. West lon. Orientation: North toward the top Image Data: Shaded and colored Shuttle Radar Topography Mission elevation model Date Acquired: February 2000

  12. Evaluation of Oxygen Interactions with Materials 3: Mission and induced environments

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Leger, Lubert J.; Rickman, Steven L.; Hakes, Charles L.; Bui, David T.; Hunton, Donald; Cross, Jon B.

    1995-01-01

    The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen/material reactivity data. The experiment was conducted during Space Shuttle mission 46 (STS-46), which flew July 31 to August 7, 1992. Quantitative interpretation of the materials reactivity measurements requires a complete and accurate definition of the space environment exposure, including the thermal history of the payload, the solar ultraviolet exposure, the atomic oxygen fluence, and any spacecraft outgassing contamination effects. The thermal history of the payload was measured using twelve thermocouple sensors placed behind selected samples and on the EOIM-3 payload structure. The solar ultraviolet exposure history of the EOIM-3 payload was determined by analysis of the as-flown orbit and vehicle attitude combined with daily average solar ultraviolet and vacuum ultraviolet (UV/VUV) fluxes. The atomic oxygen fluence was assessed in three different ways. First, the O-atom fluence was calculated using a program that incorporates the MSIS-86 atmospheric model, the as-flown Space Shuttle trajectory, and solar activity parameters. Second, the oxygen atom fluence was estimated directly from Kapton film erosion. Third, ambient oxygen atom measurements were made using the quadrupole mass spectrometer on the EOIM-3 payload. Our best estimate of the oxygen atom fluence as of this writing is 2.3 +/- 0.3 x 10(exp 20) atoms/sq cm. Finally, results of post-flight X-ray photoelectron spectroscopy (XPS) surface analyses of selected samples indicate low levels of contamination on the payload surface.

  13. More than 200 Dryden staff formed two long lines on the Dryden ramp to greet retired research pilot Gordon Fullerton after his final flight in a NASA F/A-18.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  14. NASA Dryden research pilot Gordon Fullerton flies his final mission in NASA F/A-18B #852 in formation with NASA F/A-18A #850 on Dec. 21, 2007.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of sp

  15. Nile River, Lake Nasser, North Sudan and Lower Egypt

    NASA Image and Video Library

    1992-11-01

    STS052-152-026 (22Oct-1 Nov 1992) --- Backdropped over eastern Egypt, the Canadian-built remote manipulator system (RMS) attached to NASA's Earth-orbiting Space Shuttle Columbia displays a Canadian Space Agency (CSA) experiment. Materials Exposure in Low Earth Orbit (MELEO) is one of a number of Canadian experiments which flew aboard Columbia for the ten-day STS-52 mission. Principal investigator for the experiment is Dr. David G. Zimick of the CSA. Plastic and composite materials used on the external surfaces of spacecraft have been found to degrade in the harsh environment of space. Evidence suggests that this degradation is caused by interaction with atomic oxygen which induces damaging chemical and physical reactions. The result is a loss in mass, strength, stiffness and stability of size and shape. During the mission, MELEO exposed over 350 material specimens mounted on "witness plates" on the RMS arm. The specimen collection will be analyzed in the weeks following the mission. Typical spacecraft materials and new developments in protective measures against atomic oxygen were tested as part of the MELEO experiment.

  16. San Andreas Fault in the Carrizo Plain

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The 1,200-kilometer (800-mile)San Andreas is the longest fault in California and one of the longest in North America. This perspective view of a portion of the fault was generated using data from the Shuttle Radar Topography Mission (SRTM), which flew on NASA's Space Shuttle last February, and an enhanced, true-color Landsat satellite image. The view shown looks southeast along the San Andreas where it cuts along the base of the mountains in the Temblor Range near Bakersfield. The fault is the distinctively linear feature to the right of the mountains. To the left of the range is a portion of the agriculturally rich San Joaquin Valley. In the background is the snow-capped peak of Mt. Pinos at an elevation of 2,692 meters (8,831 feet). The complex topography in the area is some of the most spectacular along the course of the fault. To the right of the fault is the famous Carrizo Plain. Dry conditions on the plain have helped preserve the surface trace of the fault, which is scrutinized by both amateur and professional geologists. In 1857, one of the largest earthquakes ever recorded in the United States occurred just north of the Carrizo Plain. With an estimated magnitude of 8.0, the quake severely shook buildings in Los Angeles, caused significant surface rupture along a 350-kilometer (220-mile) segment of the fault, and was felt as far away as Las Vegas, Nev. This portion of the San Andreas is an important area of study for seismologists. For visualization purposes, topographic heights displayed in this image are exaggerated two times.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet) long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif, for NASA's Earth Science Enterprise, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.

    Distance to Horizon: 73 kilometers (45.3 miles) Location: 35.42 deg. North lat., 119.5 deg. West lon. View: Toward the Southeast Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat Image: NASA/JPL/NIMA

  17. Spacelab

    NASA Image and Video Library

    1994-07-01

    Astronaut Chiaki Mukai conducts the Lower Body Negative Pressure (LBNP) experiment inside the International Microgravity Laboratory-2 (IML-2) mission science module. Dr. Chiaki Mukai is one of the National Space Development Agency of Japan (NASDA) astronauts chosen by NASA as a payload specialist (PS). She was the second NASDA PS who flew aboard the Space Shuttle, and was the first female astronaut in Asia. When humans go into space, the lack of gravity causes many changes in the body. One change is that fluids normally kept in the lower body by gravity shift upward to the head and chest. This is why astronauts' faces appear chubby or puffy. The change in fluid volume also affects the heart. The reduced fluid volume means that there is less blood to circulate through the body. Crewmembers may experience reduced blood flow to the brain when returning to Earth. This leads to fainting or near-fainting episodes. With the use of the LBNP to simulate the pull of gravity in conjunction with fluids, salt tablets can recondition the cardiovascular system. This treatment, called "soak," is effective up to 24 hours. The LBNP uses a three-layer collapsible cylinder that seals around the crewmember's waist which simulates the effects of gravity and helps pull fluids into the lower body. The data collected will be analyzed to determine physiological changes in the crewmembers and effectiveness of the treatment. The IML-2 was the second in a series of Spacelab flights designed by the international science community to conduct research in a microgravity environment Managed by the Marshall Space Flight Center, the IML-2 was launched on July 8, 1994 aboard the STS-65 Space Shuttle Orbiter Columbia mission.

  18. STS-65 Onboard Photograph

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Chiaki Mukai conducts the Lower Body Negative Pressure (LBNP) experiment inside the International Microgravity Laboratory-2 (IML-2) mission science module. Dr. Chiaki Mukai is one of the National Space Development Agency of Japan (NASDA) astronauts chosen by NASA as a payload specialist (PS). She was the second NASDA PS who flew aboard the Space Shuttle, and was the first female astronaut in Asia. When humans go into space, the lack of gravity causes many changes in the body. One change is that fluids normally kept in the lower body by gravity shift upward to the head and chest. This is why astronauts' faces appear chubby or puffy. The change in fluid volume also affects the heart. The reduced fluid volume means that there is less blood to circulate through the body. Crewmembers may experience reduced blood flow to the brain when returning to Earth. This leads to fainting or near-fainting episodes. With the use of the LBNP to simulate the pull of gravity in conjunction with fluids, salt tablets can recondition the cardiovascular system. This treatment, called 'soak,' is effective up to 24 hours. The LBNP uses a three-layer collapsible cylinder that seals around the crewmember's waist which simulates the effects of gravity and helps pull fluids into the lower body. The data collected will be analyzed to determine physiological changes in the crewmembers and effectiveness of the treatment. The IML-2 was the second in a series of Spacelab flights designed by the international science community to conduct research in a microgravity environment Managed by the Marshall Space Flight Center, the IML-2 was launched on July 8, 1994 aboard the STS-65 Space Shuttle Orbiter Columbia mission.

  19. STS Approach and Landing Test (ALT): Flight 5 - Slow Motion video of pilot-induced oscillation (PIO)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During 1977 the NASA Dryden Flight Research Center, Edwards, California, hosted the Approach and Landing Tests for the space shuttle prototype Enterprise. Since the shuttles would land initially on Rogers Dry Lakebed adjacent to Dryden on Edwards Air Force Base, NASA had already modified a Boeing 747 to carry them back to their launch site at Kennedy Space Center, Florida. Computer calculations and simulations had predicted the mated shuttle and 747 could fly together safely, but NASA wanted to verify that prediction in a controlled flight-test environment before the shuttles went into operation. The agency also wanted to glide test the orbiter to ensure it could land safely before sending it into space with human beings aboard. So NASA's Johnson Space Center, Houston, Texas, developed a three-phase test program. First, an unpiloted-captive phase tested the shuttle/747 combination without a crew on the Enterprise in case of a problem that required jettisoning the prototype. There were three taxi tests and five flight tests without a crew in the shuttle. That phase ended on March 2, 1977. The second or captive-active phase-completed on July 26, 1977, flew the orbiter mated to the 747 with a two-person crew inside. Finally there were five flights-completed on October 26, 1977, in which the orbiter separated from the Shuttle Carrier Aircraft (SCA, as the 747 was designated) and landed. Beginning on August 12, 1977, the first four landings took place uneventfully on lakebed runways, but the fifth occurred on the concrete, 15,000-foot runway at Edwards. For the first three flights, a tail cone was placed around the dummy main engines to reduce buffeting. The tail-cone fairing was removed for the last two flights. This movie clip begins with the Enterprise just prior to touchdown on the main runway at Edwards AFB after it's fifth and final unpowered free flight. Shuttle pilots Gordon Fullerton and Fred Haise were attempting a couple of firsts on this flight--a precision 'spot' landing on the concrete runway and flying the orbiter without it's tail-cone fairing, since the previous lakebed landing without the fairing had been made by Joe Engle and Richard Truly. Both Haise and Fullerton had prepared as well as possible for the variables of this mission by flying simulated approach profiles in NASA's shuttle training aircraft. However, as with most simulations, the performance wasn't completely identical to that of the real vehicle. Consequently Haise, the mission commander in the left seat, was too fast on the orbiter's landing approach. Deploying the speed brakes, he tried vainly to hit the assigned landing mark but in the stress of the moment, began to overcorrect the vehicle. The orbiter entered a pilot-induced oscillation or PIO along both it's roll and pitch axis causing the vehicle to begin to 'porpoise' down the runway. As it settled down to land it began to bounce from one main landing gear to the next before being brought under control and finally landed by the crew. Engineers at Dryden later determined that a roughly 270-millisecond time delay in the space shuttle's fly-by-wire system had been the cause of the problem, which was then explored with NASA Dryden's F-8 Digital Fly-By-Wire aircraft and corrected with a suppression filter integrated into the orbiter's flight control system.

  20. STS Approach and Landing Test (ALT): Flight 5 - pilot-induced oscillation (PIO) on landing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During 1977 the NASA Dryden Flight Research Center, Edwards, California, hosted the Approach and Landing Tests for the space shuttle prototype Enterprise. Since the shuttles would land initially on Rogers Dry Lakebed adjacent to Dryden on Edwards Air Force Base, NASA had already modified a Boeing 747 to carry them back to their launch site at Kennedy Space Center, Florida. Computer calculations and simulations had predicted the mated shuttle and 747 could fly together safely, but NASA wanted to verify that prediction in a controlled flight-test environment before the shuttles went into operation. The agency also wanted to glide test the orbiter to ensure it could land safely before sending it into space with human beings aboard. So NASA's Johnson Space Center, Houston, Texas, developed a three-phase test program. First, an unpiloted-captive phase tested the shuttle/747 combination without a crew on the Enterprise in case of a problem that required jettisoning the prototype. There were three taxi tests and five flight tests without a crew in the shuttle. That phase ended on March 2, 1977. The second or captive-active phase-completed on July 26, 1977, flew the orbiter mated to the 747 with a two-person crew inside. Finally there were five flights-completed on October 26, 1977, in which the orbiter separated from the Shuttle Carrier Aircraft (SCA, as the 747 was designated) and landed. Beginning on August 12, 1977, the first four landings took place uneventfully on lakebed runways, but the fifth occurred on the concrete, 15,000-foot runway at Edwards. For the first three flights, a tail cone was placed around the dummy main engines to reduce buffeting. The tail-cone fairing was removed for the last two flights. This movie clip begins with the Enterprise just prior to touchdown on the main runway at Edwards AFB after it's fifth and final unpowered free flight. Shuttle pilots Gordon Fullerton and Fred Haise were attempting a couple of firsts on this flight--a precision 'spot' landing on the concrete runway and flying the orbiter without it's tail-cone fairing, since the previous lakebed landing without the fairing had been made by Joe Engle and Richard Truly. Both Haise and Fullerton had prepared as well as possible for the variables of this mission by flying simulated approach profiles in NASA's shuttle training aircraft. However, as with most simulations, the performance wasn't completely identical to that of the real vehicle. Consequently Haise, the mission commander in the left seat, was too fast on the orbiter's landing approach. Deploying the speed brakes, he tried vainly to hit the assigned landing mark but in the stress of the moment, began to overcorrect the vehicle. The orbiter entered a pilot-induced oscillation or PIO along both it's roll and pitch axis causing the vehicle to begin to 'porpoise' down the runway. As it settled down to land it began to bounce from one main landing gear to the next before being brought under control and finally landed by the crew. Engineers at Dryden later determined that a roughly 270-millisecond time delay in the space shuttle's fly-by-wire system had been the cause of the problem, which was then explored with NASA Dryden's F-8 Digital Fly-By-Wire aircraft and corrected with a suppression filter integrated into the orbiter's flight control system.

  1. Perspective View with Landsat Overlay, Palm Springs, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The city of Palm Springs nestles at the base of Mount San Jacinto in this computer-generated perspective viewed from the east. The many golf courses in the area show up as irregular green areas while the two prominent lines passing through the middle of the image are Interstate 10 and the adjacent railroad tracks. The San Andreas Fault passes through the middle of the sandy Indio Hills in the foreground.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Size: scale varies in this perspective image Location: 33.8 deg. North lat., 116.3 deg. West lon. Orientation: looking west Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  2. Perspective View with Landsat Overlay, San Diego, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The influence of topography on the growth of the city of San Diego is seen clearly in this computer-generated perspective viewed from the south. The Peninsular Ranges to the east of the city have channeled development of the cities of La Mesa and El Cajon, above the center. San Diego itself clusters around the bay enclosed by Point Loma and Coronado Island. In the mountains to the right, Lower Otay Lake and Sweetwater Reservoir are the dark patches.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: scale varies in this perspective image Location: 32.6 deg. North lat., 117.1 deg. West lon. Orientation: looking north Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  3. Perspective View with Landsat Overlay, Los Angeles Basin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Most of Los Angeles is visible in this computer-generated north-northeast perspective viewed from above the Pacific Ocean. In the foreground the hilly Palos Verdes peninsula lies to the left of the harbor at Long Beach, and in the middle distance the various communities that comprise the greater Los Angeles area appear as shades of grey and white. In the distance the San Gabriel Mountains rise up to separate the basin from the Mojave Desert, which can be seen near the top of the image.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image mosaic. Topographic expression is exaggerated one and one-half times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: View width 70 kilometers (42 miles), View distance 160 kilometers(100 miles) Location: 34.0 deg. North lat., 118.2 deg. West lon. Orientation: View north-northeast Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Date Acquired: February 2000 (SRTM)

  4. Radar image with color as height, Bahia State, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image is the first to show the full 240-kilometer-wide (150 mile)swath collected by the Shuttle Radar Topography Mission (SRTM). The area shown is in the state of Bahia in Brazil. The semi-circular mountains along the leftside of the image are the Serra Da Jacobin, which rise to 1100 meters (3600 feet) above sea level. The total relief shown is approximately 800 meters (2600 feet). The top part of the image is the Sertao, a semi-arid region, that is subject to severe droughts during El Nino events. A small portion of the San Francisco River, the longest river (1609 kilometers or 1000 miles) entirely within Brazil, cuts across the upper right corner of the image. This river is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, drought and human influences on ecosystems.

    This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. The three dark vertical stripes show the boundaries where four segments of the swath are merged to form the full scanned swath. These will be removed in later processing. Colors range from green at the lowest elevations to reddish at the highest elevations.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  5. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    NASA Technical Reports Server (NTRS)

    Tuma, M. L.; Chenevert, D. J.

    2009-01-01

    Ground vibration testing has been an integral tool for developing new launch vehicles throughout the space age. Several launch vehicles have been lost due to problems that would have been detected by early vibration testing, including Ariane 5, Delta III, and Falcon 1. NASA will leverage experience and testing hardware developed during the Saturn and Shuttle programs to perform ground vibration testing (GVT) on the Ares I crew launch vehicle and Ares V cargo launch vehicle stacks. NASA performed dynamic vehicle testing (DVT) for Saturn and mated vehicle ground vibration testing (MVGVT) for Shuttle at the Dynamic Test Stand (Test Stand 4550) at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, and is now modifying that facility to support Ares I integrated vehicle ground vibration testing (IVGVT) beginning in 2012. The Ares IVGVT schedule shows most of its work being completed between 2010 and 2014. Integrated 2nd Stage Ares IVGVT will begin in 2012 and IVGVT of the entire Ares launch stack will begin in 2013. The IVGVT data is needed for the human-rated Orion launch vehicle's Design Certification Review (DCR) in early 2015. During the Apollo program, GVT detected several serious design concerns, which NASA was able to address before Saturn V flew, eliminating costly failures and potential losses of mission or crew. During the late 1970s, Test Stand 4550 was modified to support the four-body structure of the Space Shuttle. Vibration testing confirmed that the vehicle's mode shapes and frequencies were better than analytical models suggested, however, the testing also identified challenges with the rate gyro assemblies, which could have created flight instability and possibly resulted in loss of the vehicle. Today, NASA has begun modifying Test Stand 4550 to accommodate Ares I, including removing platforms needed for Shuttle testing and upgrading the dynamic test facilities to characterize the mode shapes and resonant frequencies of the vehicle. The IVGVT team expects to collect important information about the new launch vehicles, greatly increasing astronaut safety as NASA prepares to explore the Moon and beyond.

  6. BIOPACK: the ground controlled late access biological research facility.

    PubMed

    van Loon, Jack J W A

    2004-03-01

    Future Space Shuttle flights shall be characterized by activities necessary to further build the International Space Station, ISS. During these missions limited resources are available to conduct biological experiments in space. The Shuttles' Middeck is a very suitable place to conduct science during the ISS assembly missions or dedicated science missions. The BIOPACK, which flew its first mission during the STS-107, provides a versatile Middeck Locker based research tool for gravitational biology studies. The core facility occupies the space of only two Middeck Lockers. Experiment temperatures are controlled for bacteria, plant, invertebrate and mammalian cultures. Gravity levels and profiles can be set ranging from 0 to 2.0 x g on three independent centrifuges. This provides the experimenter with a 1.0 x g on-board reference and intermediate hypogravity and hypergravity data points to investigate e.g. threshold levels in biological responses. Temperature sensitive items can be stored in the facilities' -10 degrees C and +4 degrees C stowage areas. During STS-107 the facility also included a small glovebox (GBX) and passive temperature controlled units (PTCU). The GBX provides the experimenter with two extra levels of containment for safe sample handling. This biological research facility is a late access (L-10 hrs) laboratory, which, when reaching orbit, could automatically be starting up reducing important experiment lag-time and valuable crew time. The system is completely telecommanded when needed. During flight system parameters like temperatures, centrifuge speeds, experiment commanding or sensor readouts can be monitored and changed when needed. Although ISS provides a wide range of research facilities there is still need for an STS-based late access facility such as the BIOPACK providing experimenters with a very versatile research cabinet for biological experiments under microgravity and in-flight control conditions.

  7. Perspective View, Radar Image, Color as Height, Molokai, Lanai and Maui, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows three Hawaiian islands: Molokai (lower left), Lanai (right), and the northwest tip of Maui (upper left). Data such as these will be useful for studying the history of volcanic activity on these now extinct volcanoes. SRTM data also will help local officials evaluate and mitigate natural hazards for islands throughout the Pacific. For example, improved elevation data will make it easier for communities to plan for tsunamis (tidal waves generated by earthquakes around the perimeter of the Pacific) by helping them identify evacuation routes and areas prone to flooding.

    This perspective view combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains 1800 meters (5900 feet) of total relief.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 60 by 70 kilometers (37 by 43 miles) Location: 20.8 deg. North lat., 156.7 deg. West lon. Orientation: Looking southeast Original Data Resolution: 30 meters (99 feet) Date Acquired: February 18, 2000

  8. Research pilot and former astronaut C. Gordon Fullerton in an F/A-18

    NASA Image and Video Library

    2002-05-14

    Former NASA astronaut C. Gordon Fullerton, seated in the cockpit of an F/A-18, is a research pilot at NASA's Dryden Flight Research Center, Edwards, Calif. Since transferring to Dryden in 1986, his assignments have included a variety of flight research and support activities piloting NASA's B-52 launch aircraft, the 747 Shuttle Carrier Aircraft (SCA), and other multi-engine and high performance aircraft. He flew a series of development air launches of the X-38 prototype Crew Return Vehicle and in the launches for the X-43A Hyper-X project. Fullerton also flies Dryden's DC-8 Airborne Science aircraft in support a variety of atmospheric physics, ground mapping and meteorology studies. Fullerton also was project pilot on the Propulsion Controlled Aircraft program, during which he successfully landed both a modified F-15 and an MD-11 transport with all control surfaces neutralized, using only engine thrust modulation for control. Fullerton also evaluated the flying qualities of the Russian Tu-144 supersonic transport during two flights in 1998, one of only two non-Russian pilots to fly that aircraft. With more than 15,000 hours of flying time, Fullerton has piloted 135 different types of aircraft in his career. As an astronaut, Fullerton served on the support crews for the Apollo 14, 15, 16, and 17 lunar missions. In 1977, Fullerton was on one of the two flight crews that piloted the Space Shuttle prototype Enterprise during the Approach and Landing Test Program at Dryden. Fullerton was the pilot on the STS-3 Space Shuttle orbital flight test mission in 1982, and commanded the STS-51F Spacelab 2 mission in 1985. He has logged 382 hours in space flight. In July 1988, he completed a 30-year career with the U.S. Air Force and retired as a colonel.

  9. Shaded relief, color as height, Salalah, Oman

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This elevation map shows a part of the southern coast of the Arabian Peninsula including parts of the countries of Oman and Yemen. The narrow coastal plain on the right side of the image includes the city of Salahlah, the second largest city in Oman. Various crops, including coconuts, papayas and bananas, are grown on this plain. The abrupt topography of the coastal mountains wrings moisture from the monsoon, enabling agriculture in the otherwise dry environment of the Arabian Peninsula. These mountains are historically significant as well: Some scholars believe these mountains are the 'southern mountains' of the book of Genesis.

    This image brightness corresponds to shading illumination from the right, while colors show the elevation as measured by the Shuttle Radar Topography Mission. Colors range from green at the lowest elevations to brown at the highest elevations. This image contains about 1400 meters (4600 feet) of total relief. The Arabian Sea is colored blue.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI)space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 149 by 40 kilometers (92 by 25 miles) Location: 16.9 deg. North lat., 53.7 deg. East lon. Orientation: North at top right Date Acquired: February 15, 2000 Image: NASA/JPL/NIMA

  10. Shaded Relief Image of Saint Pierre and Miquelon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image shows two islands, Miquelon and Saint Pierre, located south of Newfoundland, Canada. These islands, along with five smaller islands, are a self-governing territory of France. A thin barrier beach divides Miquelon, with Grande Miquelon to the north and Petite Miquelonto the south. Saint Pierre Island is located to the lower right. With the islandsi location in the north Atlantic Ocean and their deep water ports, fishing is the major part of the economy. The maximum elevation of the island is 240 meters (787 feet). The land mass of the islands is about 242 square kilometers, or 1.5 times the size of Washington DC.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASAis Jet Propulsion Laboratory, Pasadena, CA, for NASA1s Earth Science Enterprise, Washington, DC.nal measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  11. SRTM Anaglyph: Las Bayas, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The interplay of volcanism, stream erosion and landslides is evident in this Shuttle Radar Topography Mission view of the eastern flank of the Andes Mountains, southeast of San Carlos de Bariloche, Argentina. Older lava flows emanating from the Andes once covered much of this area. Younger, local volcanoes (seen here as small peaks) then covered parts of the area with fresh, erosion resistant flows (seen here as very smooth surfaces). Subsequent erosion has created fine patterns on the older surfaces (bottom of the image) and bolder, irregular patterns through and around the younger surfaces (upper center and right center). Meanwhile, where a large stream immediately borders the resistant plateau (center of the image), lateral erosion has undercut the resistant plateau causing slivers of it to fall into the stream channel. This scene well illustrate show topographic data alone can reveal some aspects of recent geologic history.

    This anaglyph was produced by first shading a preliminary elevation model from data acquired by the Shuttle Radar Topography Mission. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 54.3 x 36.4 kilometers ( 33.7 x 22.6 miles) Location: 41.4 deg. South lat., 70.8 deg. West lon. Orientation: North toward the top Image Data: Shaded SRTM elevation model Date Acquired: February 2000

  12. SRTM Colored Height and Shaded Relief: Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet).

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 93.0 x 105.7 kilometers ( 57.7 x 65.6 miles) Location: 58.3 deg. North lat., 160.9 deg. East lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 12, 2000

  13. SRTM Anaglyph: Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet).

    This anaglyph was produced by first shading a preliminary SRTM elevation model. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 93.0 x 105.7 kilometers ( 57.7 x 65.6 miles) Location: 58.3 deg. North lat., 160.9 deg. East lon. Orientation: North toward the top Image Data: Shaded SRTM elevation model Date Acquired: February 12, 2000

  14. Sredinnyy Khrebet, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Kamchatka Peninsula in eastern Russia is shown in this scene created from a preliminary elevation model derived from the first data collected during the Shuttle Radar Topography Mission (SRTM) on February 12, 2000. Sredinnyy Khrebet, the mountain range that makes up the spine of the peninsula, is a chain of active volcanic peaks. Pleistocene and recent glaciers have carved the broad valleys and jagged ridges that are common here. The relative youth of the volcanism is revealed by the topography as infilling and smoothing of the otherwise rugged terrain by lava, ash, and pyroclastic flows, particularly surrounding the high peaks in the south central part of the image. Elevations here range from near sea level up to 2,618 meters (8,590 feet). Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 93.0 x 105.7 kilometers ( 57.7 x 65.6 miles) Location: 58.3 deg. North lat., 160.9 deg. East lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 12, 2000 Image courtesy NASA/JPL/NIMA

  15. Portland, Mount Hood, & Columbia River Gorge, Oregon, Perspective View

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Portland, the largest city in Oregon, is located on the Columbia River at the northern end of the Willamette Valley. On clear days, Mount Hood highlights the Cascade Mountains backdrop to the east. The Columbia is the largest river in the American Northwest and is navigable up to and well beyond Portland. It is also the only river to fully cross the Cascade Range, and has carved the Columbia River Gorge, which is seen in the left-central part of this view. A series of dams along the river, at topographically favorable sites, provide substantial hydroelectric power to the region.

    This perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat satellite image, and a false sky. Topographic expression is vertically exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data substantially help in analyzing Landsat images by revealing the third dimension of Earth's surface, topographic height. The Landsat archive is managed by the U.S. Geological Survey's Eros Data Center (USGS EDC).

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, DC.

    Size: View width 88 kilometers (49 miles), View distance 106 kilometers (66 miles) Location: 45.5 degrees North latitude, 122.5 degrees West longitude Orientation: View East-Southeast, 10 degrees below horizontal, 2 times vertical exaggeration Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Date Acquired: February 2000 (SRTM), August 10, 1992 (Landsat)

  16. Views of the ISS during Endeavour's final flyaround for STS-97

    NASA Image and Video Library

    2000-12-09

    STS097-712-004 (9 December 2000) --- This picture of the distant International Space Station (ISS) blended against the darkness of space and the blue Earth at its horizon is one of a series of 70mm frames exposed of the station following undocking at 1:13 p.m. (CST), December 9, 2000. This series of images, as well as video and digital still imagery taken at the same time, represent the first imagery of the entire station with its new solar array panels deployed, though they are difficult to see in this angle. Before separation, the shuttle and space station had been docked to one another for 6 days, 23 hours and 13 minutes. Endeavour moved downward from the space station, then began a tail-first circle at a distance of about 500 feet. The maneuver, with pilot Michael J. Bloomfield at the controls, took about an hour. While Endeavour flew that circle, the two spacecraft, moving at five miles a second, navigated about two-thirds of the way around the Earth. Undocking took place 235 statute miles above the border of Kazakhstan and China. When Endeavour made its final separation burn, the orbiter and the space station were near the northeastern coast of South America.

  17. Experimental Results from the Thermal Energy Storage-2 (TES-2) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol

    2000-01-01

    Thermal Energy Storage-2 (TES-2) is a flight experiment that flew on the Space Shuttle Endeavour (STS-72), in January 1996. TES-2 originally flew with TES-1 as part of the OAST-2 Hitchhiker payload on the Space Shuttle Columbia (STS-62) in early 1994. The two experiments, TES-1 and TES-2 were identical except for the fluoride salts to be characterized. TES-1 provided data on lithium fluoride (LiF), TES-2 provided data on a fluoride eutectic (LiF/CaF2). Each experiment was a complex autonomous payload in a Get-Away-Special payload canister. TES-1 operated flawlessly for 22 hr. Results were reported in a paper entitled, Effect of Microgravity on Materials Undergoing Melting and Freezing-The TES Experiment, by David Namkoong et al. A software failure in TES-2 caused its shutdown after 4 sec of operation. TES-1 and 2 were the first experiments in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store energy in a thermal energy salt such as lithium fluoride or a eutectic of lithium fluoride/calcium difluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes were developed for predicting performance of a space-based solar dynamic power system. Experimental verification of the analytical predictions were needed prior to using the analytical results for future space power design applications. The four TES flight experiments were to be used to obtain the needed experimental data. This paper will address the flight results from the first and second experiments, TES-1 and 2, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. An analysis of the TES-2 data was conducted by Cleveland State University Professor, Mounir Ibrahim. TESSIM validation was based on two types of results; temperature history of various points on the containment vessel and TES material distribution within the vessel upon return from flight. The TESSIM prediction showed close comparison with the flight data. Distribution of the TES material within the vessel was obtained by a tomography imaging process. The frozen TES material was concentrated toward the colder end of the canister. The TESSIM prediction indicated a similar pattern. With agreement between TESSIM and the flight data, a computerized representation was produced to show the movement and behavior of the void during the entire melting and freezing cycles.

  18. NASA Beechcraft KingAir #801 in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA 801 Beechcraft Beech Super KingAir in flight. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  19. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  20. NASA KingAir #801 during takeoff

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA KingAir N801NA during takeoff. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. Dryden assumed the mission and aircraft in September 1996. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  1. Spaceflight-induced changes in white matter hyperintensity burden in astronauts.

    PubMed

    Alperin, Noam; Bagci, Ahmet M; Lee, Sang H

    2017-11-21

    To assess the effect of weightlessness and the respective roles of CSF and vascular fluid on changes in white matter hyperintensity (WMH) burden in astronauts. We analyzed prespaceflight and postspaceflight brain MRI scans from 17 astronauts, 10 who flew a long-duration mission on the International Space Station (ISS) and 7 who flew a short-duration mission on the Space Shuttle. Automated analysis methods were used to determine preflight to postflight changes in periventricular and deep WMH, CSF, and brain tissue volumes in fluid-attenuated inversion recovery and high-resolution 3-dimensional T1-weighted imaging. Differences between cohorts and associations between individual measures were assessed. The short-term reversibility of the identified preflight to postflight changes was tested in a subcohort of 5 long-duration astronauts who had a second postflight MRI scan 1 month after the first postflight scan. Significant preflight to postflight changes were measured only in the long-duration cohort and included only the periventricular WMH and ventricular CSF volumes. Changes in deep WMH and brain tissue volumes were not significant in either cohort. The increase in periventricular WMH volume was significantly associated with an increase in ventricular CSF volume (ρ = 0.63, p = 0.008). A partial reversal of these increases was observed in the long-duration subcohort with a 1-month follow-up scan. Long-duration exposure to microgravity is associated with an increase in periventricular WMH in astronauts. This increase was linked to an increase in ventricular CSF volume documented in ISS astronauts. There was no associated change in or abnormal levels of WMH volumes in deep white matter as reported in U-2 high-altitude pilots. © 2017 American Academy of Neurology.

  2. Mississippi Delta, Radar Image with Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for the animation

    About the animation: This simulated view of the potential effects of storm surge flooding on Lake Pontchartrain and the New Orleans area was generated with data from the Shuttle Radar Topography Mission. Although it is protected by levees and sea walls against storm surges of 18 to 20 feet, much of the city is below sea level, and flooding due to storm surges caused by major hurricanes is a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments.

    About the image: The geography of the New Orleans and Mississippi delta region is well shown in this radar image from the Shuttle Radar Topography Mission. In this image, bright areas show regions of high radar reflectivity, such as from urban areas, and elevations have been coded in color using height data also from the mission. Dark green colors indicate low elevations, rising through yellow and tan, to white at the highest elevations.

    New Orleans is situated along the southern shore of Lake Pontchartrain, the large, roughly circular lake near the center of the image. The line spanning the lake is the Lake Pontchartrain Causeway, the world's longest over water highway bridge. Major portions of the city of New Orleans are below sea level, and although it is protected by levees and sea walls, flooding during storm surges associated with major hurricanes is a significant concern.

    Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 30 degrees North latitude, 90 degrees East longitude Orientation: North toward the top, Mercator projection Size: 222.6 by 192.8 kilometers (138.3 by 119.8 miles) Image Data: Radar image and colored Shuttle Radar Topography Mission elevation model Date Acquired: February 2000

  3. Differentiation and Tropisms in Space-Grown Moss

    NASA Technical Reports Server (NTRS)

    Sack, Fred D.; Kern, Volker

    1999-01-01

    This grant supported a Space Shuttle experiment on the effects of microgravity on moss cells. Moss provides a rich system for gravitational and spaceflight research. The early phase of the moss life cycle consists of chains of cells that only grow only at their tips. In the moss Ceratodon purpureus these filaments (protonemata) grow away from gravity in the dark, in a process called gravitropism. The tipmost cells, the apical cells, contain heavy starch-filled bodies called amyloplasts that probably function in g-sensing and that sediment within the apical cell. The SPM-A (Space Moss aka SPAM) experiment flew in November - December, 1997 on STS-87 as part of the Collaborative US Ukrainian Experiment (CLTE). The experiment was accommodated in hardware purpose-built by NASA KSC and Bionetics and included Petri Dish Fixation Units (PDFU) and BRIC-LEDs. Together, this hardware allowed for the culture of the moss on agar in commercial petri dishes, for unilateral illumination with red light of varying intensity, and for chemical fixation in situ. The key findings of the spaceflight were quite unexpected. Neither the orientation of tip-growth nor the distribution of amyloplasts was random in microgravity.

  4. Fas/APO-1 protein is increased in spaceflown lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Cubano, L. A.; Lewis, M. L.

    2000-01-01

    Human lymphocytes flown on the Space Shuttle respond poorly to mitogen stimulation and populations of the lymphoblastoid T cell line, Jurkat, manifest growth arrest, increase in apoptosis and time- and microgravity-dependent increases in the soluble form of the cell death factor, Fas/APO-1 (sFas). The potential role of apoptosis in population dynamics of space-flown lymphocytes has not been investigated previously. We flew Jurkat cells on Space Transportation System (STS)-80 and STS-95 to determine whether apoptosis and the apparent microgravity-related release of sFas are characteristic of lymphocytes in microgravity. The effects of spaceflight and ground-based tests simulating spaceflight experimental conditions, including high cell density and low serum concentration, were assessed. Immunofluorescence microscopy showed increased cell associated Fas in flown cells. Results of STS-80 and STS-95 confirmed increase in apoptosis during spaceflight and the release of sFas as a repeatable, time-dependent and microgravity-related response. Ground-based tests showed that holding cells at 1.5 million/ml in medium containing 2% serum before launch did not increase sFas. Reports of increased Fas in cells of the elderly and the increases in spaceflown cells suggest possible similarities between aging and spaceflight effects on lymphocytes.

  5. Mini AERCam Inspection Robot for Human Space Missions

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.

    2004-01-01

    The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.

  6. Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?

    PubMed Central

    Mao, Xiao Wen; Bellinger, Denise L.; Jonscher, Karen R.; Stodieck, Louis S.; Ferguson, Virginia L.; Bateman, Ted A.; Mohney, Robert P.; Gridley, Daila S.

    2017-01-01

    The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA’s Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function. PMID:28542224

  7. The Hopkins Ultraviolet Telescope Data Archive: Old Data in a New Format

    NASA Astrophysics Data System (ADS)

    Blair, William P.; Dixon, V.; Kruk, J.; Romelfanger, M.

    2011-05-01

    The Hopkins Ultraviolet Telescope (HUT) was a key component of the Astro Observatory, a package of telescopes that flew on the space shuttle as part of two dedicated astronomy missions, Astro-1 in December 1990 (STS-35), and Astro-2 in March 1995 (STS-67). HUT was a 0.9m telescope and prime-focus spectrograph operating primarily in the far-ultraviolet 900 - 1800 Angstrom spectral region, returning spectra with about 3 Angstrom resolution. Over 330 objects were observed during the two shuttle missions, and the data were originally archived at the NSSDC (NASA/GSFC), before moving to MAST, the Multimission Archive at Space Telescope. As part of a NASA Astrophysics Data Program grant, we are reprocessing and re-archiving this unique data set in a modern and more user-friendly format. Additional file-header keywords include the RA and Dec in J2000 coordinates, the aperture position angle, and target-magnitude and color information. A new data product, similar to the Intermediate Data Files developed for the FUSE mission, provides a flux- and wavelength-calibrated photon-event list with two-second time resolution. These files will allow users to customize their data extractions (e.g., to search for temporal variations in flux or exclude times of bad pointing). The reprocessed data are fully compliant with NVO specifications. They will be available from MAST starting in late 2011. We acknowledge support from NASA ADP grant NNX09AC70G to the Johns Hopkins University.

  8. Is spaceflight-induced immune dysfunction linked to systemic changes in metabolism?

    PubMed

    Pecaut, Michael J; Mao, Xiao Wen; Bellinger, Denise L; Jonscher, Karen R; Stodieck, Louis S; Ferguson, Virginia L; Bateman, Ted A; Mohney, Robert P; Gridley, Daila S

    2017-01-01

    The Space Shuttle Atlantis launched on its final mission (STS-135) on July 8, 2011. After just under 13 days, the shuttle landed safely at Kennedy Space Center (KSC) for the last time. Female C57BL/6J mice flew as part of the Commercial Biomedical Testing Module-3 (CBTM-3) payload. Ground controls were maintained at the KSC facility. Subsets of these mice were made available to investigators as part of NASA's Bio-specimen Sharing Program (BSP). Our group characterized cell phenotype distributions and phagocytic function in the spleen, catecholamine and corticosterone levels in the adrenal glands, and transcriptomics/metabolomics in the liver. Despite decreases in most splenic leukocyte subsets, there were increases in reactive oxygen species (ROS)-related activity. Although there were increases noted in corticosterone levels in both the adrenals and liver, there were no significant changes in catecholamine levels. Furthermore, functional analysis of gene expression and metabolomic profiles suggest that the functional changes are not due to oxidative or psychological stress. Despite changes in gene expression patterns indicative of increases in phagocytic activity (e.g. endocytosis and formation of peroxisomes), there was no corresponding increase in genes related to ROS metabolism. In contrast, there were increases in expression profiles related to fatty acid oxidation with decreases in glycolysis-related profiles. Given the clear link between immune function and metabolism in many ground-based diseases, we propose a similar link may be involved in spaceflight-induced decrements in immune and metabolic function.

  9. Cryogenic Two-Phase Flight Experiment: Results overview

    NASA Technical Reports Server (NTRS)

    Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.

    1995-01-01

    This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.

  10. An expert system for fault management assistance on a space sleep experiment

    NASA Technical Reports Server (NTRS)

    Atamer, A.; Delaney, M.; Young, L. R.

    2002-01-01

    The expert system, Principal Investigator-in-a-box, or [PI], was designed to assist astronauts or other operators in performing experiments outside their expertise. Currently, the software helps astronauts calibrate instruments for a Sleep and Respiration Experiment without contact with the investigator on the ground. It flew on the Space Shuttle missions STS-90 and STS-95. [PI] displays electrophysiological signals in real time, alerts astronauts via the indicator lights when a poor signal quality is detected, and advises astronauts how to restore good signal quality. Thirty subjects received training on the sleep instrumentation and the [PI] interface. A beneficial effects of [PI] and training reduced troubleshooting time. [PI] benefited subjects on the most difficult scenarios, even though its lights were not 100% accurate. Further, questionnaires showed that most subjects preferred monitoring waveforms with [PI] assistance rather than monitoring waveforms alone. This study addresses problems of complex troubleshooting and the extended time between training and execution that is common to many human operator situations on earth such as in power plant operation, and marine exploration.

  11. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  12. Preparing for New Challenges

    NASA Astrophysics Data System (ADS)

    Shepherd, William M.

    2002-01-01

    This conference brings back fond memories for me. I recall Alan Shepard being at the Naval Academy in spring 1971 after he walked on the Moon. That was a special moment for me because I have always been interested in aviation. My dad was a Navy flier in World War II. My grandfather flew biplanes in France in World War I. It had long been one of my ambitious to be a naval aviator, but I found out shortly before that day in 1971 that I didn't have the eyesight to be a pilot. So I ended up being a Navy diver, a SEAL. I was sitting there listening to Al Shepard talk about his adventures on the Moon, and I was thinking I probably would never have to worry about doing anything like that. How strange events have turned. I bring that up because I enjoy talking to kids and making education a very relevant part of space exploration. I think we often forget what impact exploration, technology, and human spaceflight have on the young kids of this country. A little more personal history: I served in the Navy for thirteen years, was selected in 1984 to go to Houston and to start training as an astronaut. I flew three times on the Shuttle. They were very interesting flights. The longest flight I had was ten days. Right after that, I was asked to go to Washington for two weeks and help as the Administration had changed in 1992. In early 1993, there was a complete review of the Space Station program. We were in the middle of trying to decide whether Space Station Freedom would continue as a program or be canceled or be transformed into something else. So I had a lot of time in Washington working on how we would convert Freedom into something that was more feasible.

  13. The astrobiological mission EXPOSE-R on board of the International Space Station

    NASA Astrophysics Data System (ADS)

    Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, Andre; Panitz, Corinna; Horneck, Gerda; Burfeindt, Jürgen; Molter, Ferdinand; Jaramillo, Esther; Pereira, Carlos; Weiß, Peter; Willnecker, Rainer; Demets, René; Dettmann, Jan

    2015-01-01

    EXPOSE-R flew as the second of the European Space Agency (ESA) EXPOSE multi-user facilities on the International Space Station. During the mission on the external URM-D platform of the Zvezda service module, samples of eight international astrobiology experiments selected by ESA and one Russian guest experiment were exposed to low Earth orbit space parameters from March 10th, 2009 to January 21st, 2011. EXPOSE-R accommodated a total of 1220 samples for exposure to selected space conditions and combinations, including space vacuum, temperature cycles through 273 K, cosmic radiation, solar electromagnetic radiation at >110, >170 or >200 nm at various fluences up to GJ m-2. Samples ranged from chemical compounds via unicellular organisms and multicellular mosquito larvae and seeds to passive radiation dosimeters. Additionally, one active radiation measurement instrument was accommodated on EXPOSE-R and commanded from ground in accordance with the facility itself. Data on ultraviolet radiation, cosmic radiation and temperature were measured every 10 s and downlinked by telemetry and data carrier every few months. The EXPOSE-R trays and samples returned to Earth on March 9th, 2011 with Shuttle flight, Space Transportation System (STS)-133/ULF 5, Discovery, after successful total mission duration of 27 months in space. The samples were analysed in the individual investigators laboratories. A parallel Mission Ground Reference experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions following to the data transmitted from the flight mission.

  14. Jay L. King, Joseph D. Huxman, and Orion D. Billeter Assist Pilot Milt Thompson into the M2-F2 Attac

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA research pilot Milt Thompson is helped into the cockpit of the M2-F2 lifting body research aircraft at NASA's Flight Research Center (now the Dryden Flight Research Center). The M2-F2 is attached to a wing pylon under the wing of NASA's B-52 mothership. The flight was a captive flight with the pilot on-board. Milt Thompson flew in the lifting body throughout the flight, but it was never dropped from the mothership. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet.. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  15. Dynamic Echo Information Guides Flight in the Big Brown Bat

    PubMed Central

    Warnecke, Michaela; Lee, Wu-Jung; Krishnan, Anand; Moss, Cynthia F.

    2016-01-01

    Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g., Srinivasan et al., 1991, 1996). In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats’ flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat’s sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments. PMID:27199690

  16. Shenandoah National Park, Virginia, Shaded Relief with Height as Color

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Shenandoah National Park lies astride part of the Blue Ridge Mountains, which form the southeastern range of the greater Appalachian Mountains in Virginia. The park is well framed by this one-degree of latitude (38-39 north) by one-degree of longitude (78-79 west) cell of Shuttle Radar Topography Mission data, and it appears here as the most prominent ridge trending diagonally across the scene. Skyline Drive, a 169-kilometer (105-mile) road that winds along the crest of the mountains through the length the park, provides vistas of the surrounding landscape. The Shenandoah River flows through the valley to the west, with Massanutten Mountain standing between the river's north and south forks. Unusually pronounced meanders of both river forks are very evident near the top center of this scene. Massanutten Mountain itself is an unusually distinctive landform also, consisting of highly elongated looping folds of sedimentary rock. The rolling Piedmont country lies to the southeast of the park, with Charlottesville located at the bottom center of the scene.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to bluish-white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, DC.

    Size: 111 by 87 kilometers (69 by 54 miles) Location: 38-39 degrees North latitude, 78-79 degrees West longitude Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  17. SRTM Colored Height and Shaded Relief: Las Bayas, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The interplay of volcanism, stream erosion and landslides is evident in this Shuttle Radar Topography Mission view of the eastern flank of the Andes Mountains, southeast of San Carlos de Bariloche, Argentina. Older lava flows emanating from the Andes once covered much of this area. Younger, local volcanoes (seen here as small peaks) then covered parts of the area with fresh, erosion resistant flows (seen here as very smooth surfaces). Subsequent erosion has created fine patterns on the older surfaces (bottom of the image) and bolder, irregular patterns through and around the younger surfaces (upper center and right center). Meanwhile, where a large stream immediately borders the resistant plateau (center of the image), lateral erosion has undercut the resistant plateau causing slivers of it to fall into the stream channel. This scene well illustrate show topographic data alone can reveal some aspects of recent geologic history.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 54.3 x 36.4 kilometers ( 33.7 x 22.6 miles) Location: 41.4 deg. South lat., 70.8 deg. West lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  18. Hurricane Rita Track Radar Image with Topographic Overlay

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Animation

    About the animation: This simulated view of the potential effects of storm surge flooding on Galveston and portions of south Houston was generated with data from the Shuttle Radar Topography Mission. Although it is protected by a 17-foot sea wall against storm surges, flooding due to storm surges caused by major hurricanes remains a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments.

    About the image: The Gulf Coast from the Mississippi Delta through the Texas coast is shown in this satellite image from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) overlain with data from the Shuttle Radar Topography Mission (SRTM), and the predicted storm track for Hurricane Rita. The prediction from the National Weather Service was published Sept. 22 at 4 p.m. Central Time, and shows the expected track center in black with the lighter shaded area indicating the range of potential tracks the storm could take.

    Low-lying terrain along the coast has been highlighted using the SRTM elevation data, with areas within 15 feet of sea level shown in red, and within 30 feet in yellow. These areas are more at risk for flooding and the destructive effects of storm surge and high waves.

    Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 28 degrees North latitude, 23.5 degrees West longitude Orientation: North toward the top Size:890 by 1447 kilometers (552 by 897 miles) Image Data: MODIS image and colored SRTM elevation model Date Acquired: February 2000

  19. Obituary: Ronald A. Parise, 1951-2008

    NASA Astrophysics Data System (ADS)

    Gull, Theodore R.

    2009-01-01

    Ronald A. Parise, astronomer and astronaut, passed away at his home in Burtonsville, Maryland, in the presence of his family on 9 May 2008. He died of a brain tumor at age 56 after several years of valiant struggle. He was an inspiration to many students, ham operators, astronomers, and friends the world over. His enthusiasm for astronomy and space exploration was infectious. We, colleagues at Goddard Space Flight Center and Computer Sciences Corporation, treasured his contributions to space astronomy and human spaceflight. Ron, along with Samuel Durrance, flew as Payload Specialist on Astro-1 and Astro-2. They were selected by peers from the instrument teams of the Hopkins Ultraviolet Telescope (HUT provided by Hopkins University), the Ultraviolet Imaging Telescope (UIT, Goddard Space Flight Center) and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE, University of Wisconsin). Astro-1 flew 2-10 December 1990 on the Columbia. Astro-2 flew 2-18 March 1995. Ron carried along amateur radio equipment and operated on the air during his free time during the missions. Ron was born 24 May 1951 in Warren, Ohio, to Henry and Catherine Parise. His interests first were in amateur radio, becoming a licensed operator by age eleven. He later was attracted to both astronomy and aviation, becoming a pilot in his teens. Ron graduated from Western Reserve High School in 1969 and attended Youngstown State University where he received a bachelor of science degree in physics with minors in mathematics, astronomy. and geology. His graduate work was at University of Florida where he obtained a masters degree in 1977 and a doctorate in 1979 in astronomy. Ron joined Operations Research, Inc. upon graduation, working at Goddard Space Flight Center where he supported studies of several NASA missions. In 1980 he joined Computer Sciences Corporation supporting the International Ultraviolet Explorer [IUE], first as a data-management scientist and later as the section manager of the IUE hardcopy facility. By 1981 he joined a team of engineers and scientists beginning the development of the newly selected the Ultraviolet Imaging Telescope (UIT), selected by NASA to fly on board the space shuttles as an attached Spacelab experiment. The UIT project, headed by Ted Stecher as Principal Investigator, was one of three ultraviolet experimental telescopes selected to fly together as an Office of Space Sciences [OSS] payload. Initial plans were for multiple flights with emphasis of observing Halley's Comet in three missions from November 1985 to summer 1986. Ron's responsibilities involved flight hardware and software development, electronic system design, and mission planning activities for UIT. His proficiency led to his selection by the Principal Investigators of the three instruments as a Payload Specialist candidate and acceptance by NASA as one of three payload specialists in support of the series of missions. He, Samuel Durrance, and Kenneth Nordsieck shouldered the responsibilities of training as payload specialists for the instruments integrated on a common pointer, the Spacelab Instrument Pointing System, IPS. As a team they represented the operational needs of the instrument teams and trained to fly with the shuttle team. Preparations moved forward to the March 1986 launch date of Astro-1 to observe Comet Halley and well over a hundred astronomical sources. Unfortunately, the Challenger accident occurred 28 January 1986, thirty-five days before the intended launch date of Astro-1. Ron and Sam, as prime Payload Specialists, and Ken as backup/ ground communicator, took the delay well, staying focused on training to ensure that Astro-1, delayed until December 1990, would be an outstanding success. With at least thirteen launch delays, and on-orbit operational problems, they, the professional astronaut crew, the science teams, and the multitude of engineers and mission support staff managed to accomplish a very successful astronomy mission. Even though Comet Halley was not observed by Astro-1, well over a hundred papers on multiple astronomical sources resulted from Astro-1 and Astro-2. Ron participated in a number of observational astronomy projects using data from ground-based observatories, Copernicus, IUE, and the Astro observatory. His interests were primarily in circumstellar matter within binary star systems and globular- cluster evolution. He bridged the gaps between science, engineering, and spaceflight operations. After the completion of the two Astro missions, Ron supported NASA studies in advanced communications for spaceflight missions and was involved in projects in the Advanced Architectures and Automation Branch developing standard Internet Protocols [IP] in space-data transmission applications. Throughout his career, Ron supported education both by appearances at schools and through his amateur radio interests. Indeed, he had a large following of ham radio operators as he, along with Frank Bauer, brought about the Shuttle Amateur Radio Experiment [SAREX] payload that enabled many schools to talk to Shuttle crew members in space. Ron's love for amateur radio and for inspiring students came to focus through the Amateur Radio on the International Space STation [ARISS] program. His volunteer help was key in the development of those systems now on board the ISS. As Frank Bauer, a ham colleague, put it in his tribute to Ron Parise, WA4SIR SK: may your exploration spirit live on in us all! Ron leaves behind his wife, Cecilia; son, Nicholas; daughter, Katharine; his parents Henry and Kathryn Parise; and sister, Rita Parise.

  20. Perspective View with Landsat Overlay, San Francisco Bay Area, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The defining landmarks of San Francisco, its bay and the San Andreas Fault are clearly seen in this computer-generated perspective viewed from the south. Running from the bottom of the scene diagonally up to the left, the trough of the San Andreas Fault is occupied by Crystal Springs Reservoir and San Andreas Lake. Interstate 280 winds along the side of the fault. San Francisco International Airport is the angular feature projecting into the bay just below San Bruno Mountain, the elongated ridge cutting across the peninsula. The hills of San Francisco can be seen beyond San Bruno Mountain and beyond the city, the Golden Gate.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: scale varies in this perspective image Location: 37.5 deg. North lat., 122.3 deg. West lon. Orientation: looking north Image Data: Landsat Bands 3,2,1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  1. Shaded relief of Bahia State, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image is the first to show the full 240-kilometer-wide (150 mile)swath collected by the Shuttle Radar Topography Mission (SRTM). The area shown is in the state of Bahia in Brazil. The semi-circular mountains along the left side of the image are the Serra Da Jacobin, which rise to 1100 meters (3600 feet) above sea level. The total relief shown is approximately 800 meters (2600 feet). The top part of the image is the Sertao, a semi-arid region, that is subject to severe droughts during El Nino events. A small portion of the San Francisco River, the longest river (1609 kilometers or 1000 miles) entirely within Brazil, cuts across the upper right corner of the image. This river is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, drought and human influences on ecosystems.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from green at the lowest elevations to reddish at the highest elevations. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  2. Perspective View, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). In the foreground is the broad, flat floodplain of the Amanina River, shown in blue. In background of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills in the upper right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.

    This shaded relief perspective view was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. To emphasize subtle differences in topography, the relief is exaggerated by a factor of 5.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 80 km (50 miles) x 100 km (62 miles) Location: 57.5 deg. North lat., 158.8 deg. East lon. Orientation: View toward the East Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000

  3. Space Shuttle Projects Overview to Columbia Air Forces War College

    NASA Technical Reports Server (NTRS)

    Singer, Jody; McCool, Alex (Technical Monitor)

    2000-01-01

    This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

  4. SRTM Data Release for Africa, Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This color shaded relief image shows the extent of digital elevation data for Africa recently released by the Shuttle Radar Topography Mission (SRTM). This release includes data for all of the continent, plus the island of Madagascar and the Arabian Peninsula. SRTM flew on board the Space Shuttle Endeavour in February 2000 and used an interferometric radar system to map the topography of Earth's landmass between latitudes 56 degrees south and 60 degrees north.

    The data were processed into geographic 'tiles,' each of which represents one by one degree of latitude and longitude. A degree of latitude measures 111 kilometers (69 miles) north-south, and a degree of longitude measures 111 kilometers or less east-west, decreasing away from the equator. The data are being released to the public on a continent-by-continent basis. This Africa segment includes 3256 tiles, almost a quarter of the total data set. Previous releases covered North America, South America and Eurasia. Forthcoming releases will include Australia plus an 'Islands' release for those islands not included in the continental releases. Together these data releases constitute the world's first high-resolution, near-global elevation model. The resolution of the publicly released data is three arcseconds (1/1,200 of a degree of latitude and longitude), which is about 90 meters (295 feet).

    Coverage in the current data release extends from 35 degrees north latitude at the southern edge of the Mediterranean to the very tip of South Africa, encompassing a great diversity of landforms. The northern part of the continent consists of a system of basins and plateaus, with several volcanic uplands whose uplift has been matched by subsidence in the large surrounding basins. Many of these basins have been infilled with sand and gravel, creating the vast Saharan lands. The Atlas Mountains in the northwest were created by convergence of the African and Eurasian tectonic plates.

    The geography of the central latitudes of Africa is dominated by the Great Rift Valley, extending from Lake Nyasa to the Red Sea, and splitting into two arms to enclose an interior plateau and the nearly circular Lake Victoria, visible in the right center of the image. To the west lies the Congo Basin, a vast, shallow depression which rises to form an almost circular rim of highlands.

    Most of the southern part of the continent rests on a concave plateau comprising the Kalahari basin and a mountainous fringe, skirted by a coastal plain which widens out in Mozambique in the southeast.

    Many of these regions were previously very poorly mapped due to persistent cloud cover or the inaccessibility of the terrain. Digital elevation data, such as provided by SRTM, are particularly in high demand by scientists studying earthquakes, volcanism, and erosion patterns for use in mapping and modeling hazards to human habitation. But the shape of Earth's surface affects nearly every natural process and human endeavor that occurs there, so elevation data are used in a wide range of applications.

    In this index map color-coding is directly related to topographic height, with brown and yellow at the lower elevations, rising through green, to white at the highest elevations. Blue areas on the map represent water within the mapped tiles, each of which includes shorelines or islands.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, DC.

    Orientation: North toward the top, Mercator projection Image Data: Colored SRTM elevation model Date Acquired: February 2000

  5. SRTM Data Release for Eurasia, Index Map and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The colored regions of this map show the extent of digital elevation data recently released by the Shuttle Radar Topography Mission (SRTM). This release includes data for most of Europe and Asia plus numerous islands in the Indian and Pacific Oceans. SRTM flew on board the Space Shuttle Endeavour in February 2000 and used an interferometric radar system to map the topography of Earth's landmass between latitudes 56 degrees south and 60 degrees north.

    The data were processed into geographic 'tiles,' each of which represents one by one degree of latitude and longitude. A degree of latitude measures 111 kilometers (69 miles) north-south, and a degree of longitude measures 111 kilometers or less east-west, decreasing away from the equator. The data are being released to the public on a continent-by-continent basis. This Eurasia segment includes 5,940 tiles, more than a third of the total data set. Previous releases covered North America and South America. Forthcoming releases will include Africa-Arabia and Australia plus an 'Islands' release for those islands not included in the continental releases. Together these data releases constitute the world's first high-resolution, near-global elevation model. The resolution of the publicly released data is three arcseconds (1/1,200 of a degree of latitude and longitude), which is about 90 meters (295 feet).

    European coverage in the current data release stretches eastward from the British Isles and the Iberian Peninsula in the west, across the Alps and Carpathian Mountains, as well as the Northern European Plain, to the Ural and Caucasus Mountains bordering Asia. The Asian coverage includes a great diversity of landforms, including the Tibetan Plateau, Tarin Basin, Mongolian Plateau, and the mountains surrounding Lake Baikal, the world's deepest lake. Mt. Everest in the Himalayas, at 8,848 meters (29,029 feet) is the world's highest mountain. From India's Deccan Plateau, to Southeast Asia, coastal China, and Korea, various landforms place constraints upon land use planning for a great population. Volcanoes in the East Indies, the Philippines, Japan, and the Kamchatka Peninsula form the western part of the 'Ring of Fire' around the Pacific Ocean.

    Many of these regions were previously very poorly mapped due to persistent cloud cover or the inaccessibility of the terrain. Digital elevation data, such as provided by SRTM, are particularly in high demand by scientists studying earthquakes, volcanism, and erosion patterns for use in mapping and modeling hazards to human habitation. But the shape of Earth's surface affects nearly every natural process and human endeavor that occurs there, so elevation data are used in a wide range of applications.

    In this index map color-coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. The large, very dark green feature in western Asia is the Caspian Sea, which is below sea level. Blue areas on the map represent water within the mapped tiles, each of which includes shorelines or islands.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Orientation: North toward the top Image Data: Colored SRTM elevation model Date Acquired: February 2000

  6. New Orleans Topography, Radar Image with Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for the animation

    About the animation: This simulated view of the potential effects of storm surge flooding on Lake Pontchartrain and the New Orleans area was generated with data from the Shuttle Radar Topography Mission. Although it is protected by levees and sea walls against storm surges of 18 to 20 feet, much of the city is below sea level, and flooding due to storm surges caused by major hurricanes is a concern. The animation shows regions that, if unprotected, would be inundated with water. The animation depicts flooding in one-meter increments.

    About the image: The city of New Orleans, situated on the southern shore of Lake Pontchartrain, is shown in this radar image from the Shuttle Radar Topography Mission (SRTM). In this image bright areas show regions of high radar reflectivity, such as from urban areas, and elevations have been coded in color using height data also from the SRTM mission. Dark green colors indicate low elevations, rising through yellow and tan, to white at the highest elevations.

    New Orleans is near the center of this scene, between the lake and the Mississippi River. The line spanning the lake is the Lake Pontchartrain Causeway, the world's longest overwater highway bridge. Major portions of the city of New Orleans are actually below sea level, and although it is protected by levees and sea walls that are designed to protect against storm surges of 18 to 20 feet, flooding during storm surges associated with major hurricanes is a significant concern.

    Data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate, Washington, D.C.

    Location: 30.2 degrees North latitude, 90.1 degrees East longitude Orientation: North toward the top, Mercator projection Size: 80.3 by 68.0 kilometers (49.9 by 42.3 miles) Image Data: Radar image and colored Shuttle Radar Topography Mission elevation model Date Acquired: February 2000

  7. KSC-99pp0877

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- During an anniversary banquet honoring the Apollo program team, the people who made the entire lunar landing program possible, former Apollo astronaut Gene Cernan relates a humorous comment while Wally Schirra (background) gestures behind him. Cernan, who flew on Apollo 10 and 17, was the last man to walk on the moon; Schirra flew on Apollo 7. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Other guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch of the first moon landing, and Walt Cunningham, who also flew on Apollo 7

  8. International Space Station Environmental Control and Life Support System: Verification for the Pressurized Mating Adapters

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMA 1 and PMA 2 flew to ISS on Flight 2A and PMA 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and the detailed Element Verification methodologies utilized during the Qualification phase for the PMAs.

  9. International Space Station Environmental Control and Life Support System Acceptance Testing for the Pressurized Mating Adapters

    NASA Technical Reports Server (NTRS)

    Williams, David E.

    2008-01-01

    The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMAs 1 and 2 flew to ISS on Flight 2A and Pressurized Mating Adapter (PMA) 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and a detailed discussion of the ISS ECLS Acceptance Testing methodologies utilized for the PMAs.

  10. HL-10 on lakebed with pilot John Manke

    NASA Technical Reports Server (NTRS)

    1969-01-01

    John Manke is shown here on the lakebed next to the HL-10, one of four different lifting-body vehicles he flew, including the X-24B, which he flew 16 times. His total of 42 lifting-body flights was second only to the 51 flights Milt Thompson achieved, including one in the remotely piloted Hyper III. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.

  11. KSC-99pp0843

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, identifies a reporter to pose a question to one of the former Apollo astronauts seated next to her. From left, they are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon

  12. Perspective View with Landsat Overlay, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Most of the population of Utah lives just west of the Wasatch Mountains in the north central part of the state. This broad east-northeastward view shows that region with the cities of Ogden, Salt Lake City, and Provo seen from left to right. The Great Salt Lake (left) and Utah Lake (right) are quite shallow and appear greenish in this enhanced natural color view. Thousands of years ago ancient Lake Bonneville covered all of the lowlands seen here. Its former shoreline is clearly seen as a wave-cut bench and/or light colored 'bathtub ring' at several places along the base of the mountain front - evidence seen from space of our ever-changing planet.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat 5 satellite image mosaic, and a false sky. Topographic expression is exaggerated four times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: View width 147 kilometers (91 miles), View distance 38 kilometers (24 miles) Location: 40.7 deg. North lat., 112.0 deg. West lon. Orientation: View 19.5 deg North of East, 20 degrees below horizontal Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively. Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 30 meters (98 feet) Date Acquired: February 2000 (SRTM), 1990s (Landsat 5 image mosaic)

  13. SRTM Perspective of Colored Height and Shaded Relief Laguna Mellquina, Andes Mountains, Argentina

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This depiction of an area south of San Martin de Los Andes, Argentina, is the first Shuttle Radar Topography Mission (SRTM)view of the Andes Mountains, the tallest mountain chain in the western hemisphere. This particular site does not include the higher Andes peaks, but it does include steep-sided valleys and other distinctive landforms carved by Pleistocene glaciers. Elevations here range from about 700 to 2,440 meters (2,300 to 8,000 feet). This region is very active tectonically and volcanically, and the landforms provide a record of the changes that have occurred over many thousands of years. Large lakes fill the broad mountain valleys, and the spectacular scenery here makes this area a popular resort destination for Argentinians.

    Three visualization methods were combined to produce this image: shading, color coding of topographic height and a perspective view. The shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark, as would be the case at noon at this latitude in the southern hemisphere. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations. The perspective is toward the west, 20 degrees off horizontal with 2X vertical exaggeration. The back (west) edge of the data set forms a false skyline within the Andes Range.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 55.0 x 37.2 kilometers ( 34.1 x 23.1 miles) Location: 40.4 deg. South lat., 71.3 deg. West lon. Orientation: West toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  14. ASTER-SRTM Perspective of Mount Oyama Volcano, Miyake-Jima Island, Japan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Mount Oyama is a 820-meter-high (2,700 feet) volcano on the island of Miyake-Jima, Japan. In late June 2000, a series of earthquakes alerted scientists to possible volcanic activity. On June 27, authorities evacuated 2,600 people, and on July 8 the volcano began erupting and erupted five times over that week. The dark gray blanket covering green vegetation in the image is the ash deposited by prevailing northeasterly winds between July 8 and 17. This island is about 180 kilometers (110 miles) south of Tokyo and is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu. Miyake-Jima is home to 3,800 people. The previous major eruptions of Mount Oyama occurred in 1983 and 1962, when lava flows destroyed hundreds of houses. An earlier eruption in 1940 killed 11 people.

    This image is a perspective view created by combining image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite with an elevation model from the Shuttle Radar Topography Mission (SRTM). Vertical relief is exaggerated, and the image includes cosmetic adjustments to clouds and image color to enhance clarity of terrain features.

    The ASTER instrument is a cooperative project between NASA, JPL, and the Japanese Ministry of International Trade and Industry.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: Island is approximately 8 kilometers (5 miles) in diameter Location: 34.1 deg. North lat., 139.5 deg. East lon. Orientation: View toward the west-southwest. Image Data: ASTER visible and near infrared Date Acquired: February 20, 2000 (SRTM), July 17, 2000 (ASTER)

  15. Space Radar Image of North Sea, Germany

    NASA Image and Video Library

    1999-05-01

    This is an X-band image of an oil slick experiment conducted in the North Sea, Germany. The image is centered at 54.58 degrees north latitude and 7.48 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 6, 1994, during the second flight of the spaceborne radar. The experiment was designed to differentiate between petroleum oil spills and natural slicks floating on the sea surface. Two types of petroleum oil and six types of oils resembling natural sea surface slicks were poured on the sea surface from ships and a helicopter just before the space shuttle flew over the region. At the bottom of the image is the Sylt peninsula, a famous holiday resort. Twenty-six gallons (100 liters) of diesel oil was dissipated due to wave action before the shuttle reached the site. The oil spill seen at the uppermost part of the image is about 105 gallons (400 liters) of heavy heating oil and the largest spill is about 58 gallons (220 liters) of oleyl alcohol, resembling a "natural oil" like the remaining five spills used to imitate natural slicks that have occurred offshore from various states. The volume of these other oils spilled on the ocean surface during the five experimental spills varied from 16 gallons to 21 gallons (60 liters to 80 liters). The distance between neighboring spills was about half a mile (800 meters) at the most. The largest slick later thinned out to monomolecular sheets of about 10 microns, which is the dimension of a molecule. Oceanographers found that SIR-C/X-SAR was able to clearly distinguish the oil slicks from algae products dumped nearby. Preliminary indications are that various types of slicks may be distinguished, especially when other radar wavelengths are included in the analysis. Radar imaging of the world's oceans on a continuing basis may allow oceanographers in the future to detect and clean up oil spills much more swiftly than is currently possible. http://photojournal.jpl.nasa.gov/catalog/PIA01748

  16. Space Radar Image of West Texas - SAR Scan

    NASA Image and Video Library

    1999-04-15

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by "scanning" the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the forthcoming Canadian RADARSAT satellite. http://photojournal.jpl.nasa.gov/catalog/PIA01787

  17. Kamchatka Peninsula, Russia 3-D Perspective with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This three-dimensional perspective view, looking up the Tigil River, shows the western side of the volcanically active Kamchatka Peninsula, Russia. The image shows that the Tigil River has eroded down from a higher and differing landscape and now flows through, rather than around the large green-colored bedrock ridge in the foreground. The older surface was likely composed of volcanic ash and debris from eruptions of nearby volcanoes. The green tones indicate that denser vegetation grows on south facing sunlit slopes at the northern latitudes. High resolution SRTM elevation data will be used by geologists to study how rivers shape the landscape, and by ecologists to study the influence of topography on ecosystems.

    This image shows how data collected by the Shuttle Radar Topography Mission (SRTM) can be used to enhance other satellite images. Color and natural shading are provided by a Landsat 7 image acquired on January 31, 2000. Terrain perspective and shading were derived from SRTM elevation data acquired on February 12, 2000. Topography is exaggerated by about six times vertically. The United States Geological Survey's Earth Resources Observations Systems (EROS) DataCenter, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 71 km (44 miles) x 20 km (12 miles) Location: 57 deg. North lat., 159 deg. East lon. Orientation: Looking to the east Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000

  18. Radar Image, Wrapped Color as Height, Lanai and West Maui, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic radar image shows Lanai (left) and western Maui (right). Data such as these will be useful for studying the history of volcanic activity on these now extinct volcanoes. SRTM data also will help local officials evaluate and mitigate natural hazards for islands throughout the Pacific. For example, improved elevation data will make it easier for communities to plan for tsunamis (tidal waves generated by earthquakes around the perimeter of the Pacific) by helping them identify evacuation routes and areas prone to flooding.

    This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 1800 meters (5900 feet) of total relief.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 68 by 45 kilometers (42 by 28 miles) Location: 20.8 deg. North lat., 156.7 deg. West lon. Orientation: North toward upper left Original Data Resolution: 30 meters (99 feet) Date Acquired: February 18, 2000 Image: NASA/JPL/NIMA

  19. Spacelab

    NASA Image and Video Library

    1992-06-25

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs and provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. In this photograph, astronaut Carl Meade is reviewing the manual to activate the Generic Bioprocessing Apparatus (GBA) inside the Spacelab module. The GBA for the USML-1 mission was a multipurpose facility that could help us answer important questions about the relationship between gravity and biology. This unique facility allowed scientists to study biological processes in samples ranging from molecules to small organisms. For example, scientists would examine how collagen, a protein substance found in cornective tissue, bones, and cartilage, forms fibers. In microgravity, it might be possible to alter collagen fiber assembly so that this material could be used more effectively as artificial skin, blood vessels, and other parts of the body. The USML-1 was managed by the Marshall Space Flight Center and waslaunched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.

  20. STS-50 USML-1, Onboard Photo

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs and provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology, and combustion science. In this photograph, astronaut Carl Meade is reviewing the manual to activate the Generic Bioprocessing Apparatus (GBA) inside the Spacelab module. The GBA for the USML-1 mission was a multipurpose facility that could help us answer important questions about the relationship between gravity and biology. This unique facility allowed scientists to study biological processes in samples ranging from molecules to small organisms. For example, scientists would examine how collagen, a protein substance found in cornective tissue, bones, and cartilage, forms fibers. In microgravity, it might be possible to alter collagen fiber assembly so that this material could be used more effectively as artificial skin, blood vessels, and other parts of the body. The USML-1 was managed by the Marshall Space Flight Center and waslaunched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.

  1. KSC-98pc1143

    NASA Image and Video Library

    1998-09-22

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, Rainer Goercke shakes hands with Norman Jatz in front of the Spacelab Module MD001 as they prepare to close it for the last time before shipment to the National Air and Space Museum in Washington, DC. Goercke and Jatz have been on the Spacelab program since 1979 and were part of the team that first unloaded the module at KSC. Goercke is the only remaining European representative from the German-based Spacelab contractor, ERNO, and Jatz is a mechanical engineering lead from Boeing. Spacelab was designed by the European Space Agency (ESA) for the Space Shuttle program. It first flew on STS-9 in November 1983 and its final flight was the STS-90 Neurolab mission in April 1998. The sister module will travel home and be placed on display in Europe. The Spacelab concept of modular experiment racks in a pressurized shirt-sleeve environment made it highly user-friendly and accessible. Numerous experiments conceived by hundreds of scientists on the ground were conducted by flight crews in orbit. Spacelab modules served as on-orbit homes for everything from squirrel monkeys to plant seeds. They supported astronomical as well as Earth observations, for servicing the Hubble Space Telescope and for research preparatory to the International Space Station. One of the greatest benefits afforded by the Spacelab missions was the opportunity to fly a mission more than once, with the second or third flight building on the experiences and data gathered from its predecessors

  2. Space shuttle requirements/configuration evolution

    NASA Technical Reports Server (NTRS)

    Andrews, E. P.

    1991-01-01

    Space Shuttle chronology; Space Shuttle comparison; Cost comparison; Performance; Program ground rules; Sizing criteria; Crew/passenger provisions; Space Shuttle Main Engine (SSME) characteristics; Space Shuttle program milestones; and Space Shuttle requirements are outlined. This presentation is represented by viewgraphs.

  3. KSC-99pp0844

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- In the Apollo/Saturn V Center, Lisa Malone (left), chief of KSC's Media Services branch, laughs at a humorous comment along with former Apollo astronauts Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. The four met with the media before an anniversary banquet celebrating the accomplishments of the Apollo program team. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon

  4. Electric field effects on a near-critical fluid in microgravity

    NASA Technical Reports Server (NTRS)

    Zimmerli, G.; Wilkinson, R. A.; Ferrell, R. A.; Hao, H.; Moldover, M. R.

    1994-01-01

    The effects of an electric field on a sample of SF6 fluid in the vicinity of the liquid-vapor critical point is studied. The isothermal increase of the density of a near-critical sample as a function of the applied electric field was measured. In agreement with theory, this electrostriction effect diverges near the critical point as the isothermal compressibility diverges. Also as expected, turning on the electric field in the presence of density gradients can induce flow within the fluid, in a way analogous to turning on gravity. These effects were observed in a microgravity environment by using the Critical Point Facility which flew onboard the Space Shuttle Columbia in July 1994 as part of the Second International Microgravity Laboratory Mission. Both visual and interferometric images of two separate sample cells were obtained by means of video downlink. The interferometric images provided quantitative information about the density distribution throughout the sample. The electric field was generated by applying 500 Volts to a fine wire passing through the critical fluid.

  5. Surface Tension and Viscosity Measurements in Microgravity: Some Results and Fluid Flow Observations during MSL-1

    NASA Technical Reports Server (NTRS)

    Hyer, Robert W.; Trapaga, G.; Flemings, M. C.

    1999-01-01

    The viscosity of a liquid metal was successfully measured for the first time by a containerless method, the oscillating drop technique. This method also provides a means to obtain a precise, non-contact measurement of the surface tension of the droplet. This technique involves exciting the surface of the molten sample and then measuring the resulting oscillations; the natural frequency of the oscillating sample is determined by its surface tension, and the damping of the oscillations by the viscosity. These measurements were performed in TEMPUS, a microgravity electromagnetic levitator (EML), on the Space Shuttle as a part of the First Microgravity Science Laboratory (MSL-1), which flew in April and July 1997 (STS-83 and STS-94). Some results of the surface tension and viscosity measurements are presented for Pd82Si18. Some observations of the fluid dynamic characteristics (dominant flow patterns, turbulent transition, cavitation, etc.) of levitated droplets are presented and discussed together with magnetohydrodynamic calculations, which were performed to justify these findings.

  6. Earth observations taken from orbiter Discovery during STS-85 mission

    NASA Image and Video Library

    1997-08-15

    STS085-722-019 (15 August 1997) --- This view of supertyphoon Winnie was taken on August 15, 1997, as the storm swirled about 400 miles south of the southern tip of Japan. Sustained winds were 105 knots, gusting to 130 knots. This photo was shot on the Space Shuttle Discovery's twenty-third flight, as it glided by 170 miles above the sea surface on Orbit 123. On one pass the Discovery flew right over the eye; the commander commented that the eye was so large that it completely filled the window. The robotic arm crosses the top of the view. The cloud mass associated with Winnie covered thousands of square miles as this storm grew to supertyphoon status in the previous days, and raked across the Marianas Islands. A few days after this shot was taken, Winnie ploughed ashore on the coast of China, a bit south of the major metropolis of Shanghai, reportedly killing at least 100 people.

  7. KidSat: Image User's Manual

    NASA Technical Reports Server (NTRS)

    Way, JoBea; Andres, Paul; Baker, John; Goodson, Greg; Marshall, William; McGuire, John; Rackley, Kathleen; Stork, Elizabeth Jones; Yiu, Lisa

    1999-01-01

    The goal of KidSat was to provide young students with the opportunity to participate directly in the NASA space program and to enhance learning in the process. The KidSat pilot project was focused on using a color digital camera, mounted on the space shuttle, to take pictures of the Earth. These could be used to enhance middle school curricula. The project not only benefited middle school students, who were essentially the Science Team, responsible for deciding where to take pictures, but it also benefited high school students and undergraduates, who were essentially the Project Team, responsible for the development and implementation of the project. KidSat flew on three missions as part of the pilot project: STS-76, STS-81, and STS-86. This document describes the goals, project elements, results, and data for the three KidSat missions that made up the pilot program. It serves as a record for this pilot project and may be used as a reference for similar projects. It can also be a too] in using the data to its fullest extent. The KidSat Web page remains on-line at http://kidsat.jpl.nasa.gov/kidsat, and the images may be downloaded in their full resolution.

  8. M2-F1 under tow across lakebed by car

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This 20-second clip shows the M2-F1 being towed by the Pontiac across Rogers Dry Lakebed. The M2-F1 lifting body, dubbed the 'flying bathtub' by the media, was the precursor of a remarkable series of wingless flying vehicles that contributed data used in the Space Shuttles, the X-33 Advanced Technology Demonstrator for the next century's Reusable Launch Vehicle, and the X-38 Technology Demonstrator for crew return from the International Space Station. Based on the ideas and basic design of Alfred J. Eggers and others at the Ames Aeronautical Laboratory (now the Ames Research Center), Mountain View, California, in the mid-1950's, the M2-F1 was built in 1962-63 over a four-month period for a cost of only about $30,000, plus an additional $8,000-$10,000 for an ejection seat. Engineers and technicians at the NASA Flight Research Center (now NASA Dryden) kept costs low by designing and fabricating it partly in-house, with the plywood shell constructed by a local sailplane builder. Someone at the time estimated that it would have cost a major aircraft company $150,000 to build the same vehicle. Unlike the later lifting bodies, the M2-F1 was unpowered and was initially towed by a souped-up Pontiac convertible until it was airborne. Later a C-47 took over the towing duties. Flown by such famous research pilots as Milt Thompson, Bruce Peterson, Chuck Yeager, and Bill Dana, the lightweight flying bathtub demonstrated that a wingless vehicle shaped for reentry into the Earth's atmosphere from space could be flown and landed safely. Flown from 1963 to 1966, the lightweight M2-F1 paved the way for the heavyweight M2-F2, M2`F3, HL-10, X-24A, and X-24B lifting bodies that flew under rocket power after launch from a B-52 mothership. The heavyweights flew from 1966 to 1975, demonstrating the viability and versatility of the wingless configuration and the ability of a vehicle with low lift-over-drag characteristics to fly to high altitudes and then to land precisely with their rocket engines no longer burning. Their unpowered approaches and landings showed that the Space Shuttles need not decrease their payloads by carrying fuel and engines that would have been required for conventional, powered landings. The lifting bodies also prepared the way for the later X-33 and X-38 programs that feature lifting-body shapes. The entire lifting-body program was carried out at comparatively low cost in partnership with the Ames and Langley Research Centers, the Air Force, and their Northrop and Martin industrial partners. It was a harbinger of NASA's current philosophy, 'faster, better, cheaper,' and as such, it epitomizes the innovation, technical agility, and discovery through flight research that have characterized the Dryden Flight Research Center for more than fifty years.

  9. Probabilistic risk assessment of the Space Shuttle. Phase 3: A study of the potential of losing the vehicle during nominal operation. Volume 5: Auxiliary shuttle risk analyses

    NASA Technical Reports Server (NTRS)

    Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.

    1995-01-01

    Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.

  10. Measurement of Cosmic Ray and Trapped Proton LET Spectra on the STS-95 HOST Mission

    NASA Astrophysics Data System (ADS)

    Stassinopoulos, E. G.; Barth, J. L.; Stauffer, C. A.

    2017-08-01

    This paper reports on in situ measurements of the linear energy transfer spectra of galactic cosmic rays and their progeny and of trapped Van Allen belt protons as recorded by a pulse height analyzer (PHA) radiation spectrometer which flew on the STS-95 DISCOVERY mission on the Hubble Orbital Systems Test cradle. The shuttle was launched on October 29, 1998 and had a mission duration of 8.5 days during the minimum phase of the solar activity cycle. The orbit of the STS-95 was about 550 km altitude and 28.5° inclination. Close agreement was seen between radiation environment model predictions and the measurements of the PHA. Agreement is obtained by considering the directionality of the radiation interacting with the shuttle structure.

  11. Colored Height and Shaded Relief, Central America

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panama, Costa Rica, Nicaragua, El Salvador, Honduras, Guatemala, Belize, southern Mexico and parts of Cuba and Jamaica are all seen in this image from NASA's Shuttle Radar Topography Mission. The dominant feature of the northern part of Central America is the Sierra Madre Range, spreading east from Mexico between the narrow Pacific coastal plain and the limestone lowland of the Yucatan Peninsula. Parallel hill ranges sweep across Honduras and extend south, past the Caribbean Mosquito Coast to lakes Managua and Nicaragua. The Cordillera Central rises to the south, gradually descending to Lake Gatun and the Isthmus of Panama. A highly active volcanic belt runs along the Pacific seaboard from Mexico to Costa Rica.

    High-quality satellite imagery of Central America has, until now, been difficult to obtain due to persistent cloud cover in this region of the world. The ability of SRTM to penetrate clouds and make three-dimensional measurements has allowed the generation of the first complete high-resolution topographic map of the entire region. This map was used to generate the image.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the north-south direction. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow, red, and magenta, to white at the highest elevations.

    For an annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] (Large image: 9 mB jpeg)

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar that flew twice on the Space Shuttle Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (200-foot)-long mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 1720 by 1670 kilometers (1068 by 1036 miles) Location: 14.5 degrees North latitude, 85.0 degrees West longitude Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000

  12. Astronaut John Glenn dons space suit during preflight operations

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John Glenn dons space suit during preflight operations at Cape Canaveral, February 20, 1962, the day he flew his Mercury-Atlas 6 spacecraft, Friendship 7, into orbital flight around the Earth.

  13. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  14. KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

  15. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  16. SRTM Radar Image, Wrapped Color as Height/EarthKam Optical Honolulu, Hawaii

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These two images of the eastern part of the island of Oahu, Hawaii provide information on regional topography and show the relationship between urban development and sensitive ecosystems. On the left is a topographic radar image collected by the Shuttle Radar Topography Mission (SRTM.) On the right is an optical image acquired by a digital camera on the Space Shuttle Endeavour, which carried SRTM. Features of interest in this scene include Diamond Head (an extinct volcano at the lower center), Waikiki Beach (just left of Diamond Head), the Punchbowl National Cemetery (another extinct volcano, at the foot of the Koolau Mountains), downtown Honolulu and Honolulu airport (lower left of center), and Pearl Harbor (at the left edge.)

    The topography shows the steep, high central part of the island surrounded by flatter coastal areas. The optical image shows the urban areas and a darker, forested region on the mountain slopes. The clouds in the optical image and the black areas on the topographic image are both a result of the steep topography. In this tropical region, high mountain peaks are usually covered in clouds. These steep peaks also cause shadows in the radar data, resulting in missing data 'holes.' A second pass over the island was obtained by SRTM and will be used to fill in the holes.

    The left image combines two types of SRTM data. Brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation. Each color cycle (from pink through blue and back to pink) represents 400 meters (1,300 feet) of elevation difference, like the contour lines on a topographic map. This image contains about 2,400 meters (8,000 feet) of total relief. The optical image was acquired by the Shuttle Electronic Still Camera with a lens focal length of 64 millimeters (2.5 inches) for the Earth Knowledge Acquired by Middle school students (EarthKAM) project. EarthKAM has flown on five space shuttle missions since 1996. Additional information about EarthKAM is available at http://Earthkam.sdsc.edu/geo/ .

    The Shuttle Radar Topography Mission (SRTM) was carried onboard the Space Shuttle Endeavor, which launched on February 11,2000. It uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI)space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 35 by 35 kilometers (22 by 22 miles) Location: 21.4 degrees North latitude, 157.8 degrees West longitude Orientation: North at top Original Data Resolution: SRTM, 30 meters (99 feet), EarthKAM Electronic Still Camera, 40 meters (132 feet) Date Acquired: SRTM, February 18, 2000; EarthKAM, February 12, 2000 Image: NASA/JPL/NIMA

  17. Microgravity

    NASA Image and Video Library

    1992-07-15

    A steel hemisphere was at the core of the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. It was capped by a sapphire dome. Silicone oil between the two played the part of a steller atmosphere. An electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. GFFC flew on Spacelab-3 in 1985 and U.S. Microgravity Laboratory-2 in 1995. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall Space Flight Center)

  18. Microgravity

    NASA Image and Video Library

    1995-10-10

    This composite image depicts one set of flow patterns simulated in the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. Silicone oil served as the atmosphere around a rotating steel hemisphere (dotted circle) and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. GFFC flew on Spacelab-3 in 1985 and U.S. Microgravity Laboratory-2 in 1995. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall Space Flight Center)

  19. KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  20. Constellation's First Flight Test: Ares I-X

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  1. Developing and flight testing the HL-10 lifting body: A precursor to the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.; Thompson, Milton O.

    1994-01-01

    The origins of the lifting-body idea are traced back to the mid-1950's, when the concept of a manned satellite reentering the Earth's atmosphere in the form of a wingless lifting body was first proposed. The advantages of low reentry deceleration loads, range capability, and horizontal landing of a lifting reentry vehicle (as compared with the high deceleration loads and parachute landing of a capsule) are presented. The evolution of the hypersonic HL-10 lifting body is reviewed from the theoretical design and development process to its selection as one of two low-speed flight vehicles for fabrication and piloted flight testing. The design, development, and flight testing of the low-speed, air-launched, rocket-powered HL-10 was part of an unprecedented NASA and contractor effort. NASA Langley Research Center conceived and developed the vehicle shape and conducted numerous theoretical, experimental, and wind-tunnel studies. NASA Flight Research Center (now NASA Dryden Flight Research Center) was responsible for final low-speed (Mach numbers less than 2.0) aerodynamic analysis, piloted simulation, control law development, and flight tests. The prime contractor, Northrop Corp., was responsible for hardware design, fabrication, and integration. Interesting and unusual events in the flight testing are presented with a review of significant problems encountered in the first flight and how they were solved. Impressions by the pilots who flew the HL-10 are included. The HL-10 completed a successful 37-flight program, achieved the highest Mach number and altitude of this class vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies.

  2. Perspective View with Landsat Overlay, Mount Shasta, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The volcanic nature of Mount Shasta is clearly evident in this computer-generated perspective viewed from the northwest. At over 4,300 meters (14,000 feet), Mount Shasta is California's tallest volcano and part of the Cascade chain of volcanoes extending south from Washington. The twin summits of Shasta and Shastina tower over a lava flow on the flank of the volcano. Cutting across the lava flow is the bright line of a railroad. The bright area at the right edge is the town of Weed.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced false-color Landsat 5 satellite image. Colors are from Landsat bands 3, 2, and 1 as red, green and blue, respectively. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    The Landsat Thematic Mapper image used here came from an online mosaic of Landsat images for the continental United States (http://mapus.jpl.nasa.gov), a part of NASA's Digital Earth effort.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: scale varies in this perspective image Location: 41.4 degrees North latitude, 122.3 degrees West longitude Orientation: looking southeast Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet) Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)

  3. Shaded Relief, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). On the left side are four rivers, which flow northwest to the Sea of Okhotsk. These rivers are, from the south to north, Tigil, Amanina, Voyampolka, and Zhilovaya. The broad, flat floodplains of the rivers are shown in blue. These rivers are important spawning grounds for salmon. In the right side of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills to the lower right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 158 km (98 miles) x 122 km (77 miles) Location: 57.5 deg. North lat., 158.8 deg. East lon. Orientation: North approximately at top Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000

  4. Shaded Relief Color Wrapped, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This shaded relief topographic image shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). On the left side are five rivers, which flow northwest to the Sea of Okhotsk. These rivers are, from the south to north, Tigil, Amanina, Voyampolka, Zhilovaya, and Kakhtana. The broad, flat floodplains of the rivers are shown in yellow. These rivers are important spawning grounds for salmon. In the right side of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills to the lower right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.

    This image was generated using topographic data from the Shuttle Radar Topography Mission. Colors show the elevation as measured by SRTM. Each cycle of colors (from red through green back to red) represents an equal amount of elevation difference (400 meters, or 1300 feet)similar to contour lines on a standard topographic map. This image contains about 2300 meters (7500 feet) of total relief. For the shading, a computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 240 km (150 miles) x 122 km (77 miles) Location: 57.5 deg. North lat., 158.8 deg. East lon. Orientation: North at top Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000

  5. Anaglyph with Landsat Overlay, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This 3-D anaglyph shows an area on the western side of the volcanically active Kamchatka Peninsula, Russia. Red-blue glasses are required to see the 3-D effect. The topographic data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). Images from the optical Landsat satellite are overlain on the SRTM topography data. The meandering channel of the Tigil River is seen along the bottom of the image, at the base of steep cliffs. In the middle left of the image, a terrace indicates recent uplift of the terrain and downcutting by the river. High resolution SRTM topographic data will be used by geologists and hydrologists to study the interplay of tectonic uplift and erosion.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data, which are overlain on the topography.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 5.3 km (3.3 miles) x 6.0 km (3.7 miles) Location: 57 deg. North lat., 159 deg. East lon. Orientation: North at left Original Data Resolution: SRTM 30 meters (99 feet); Landsat 15 meters (45 feet) Date Acquired: February 12, 2000

  6. Bali, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The volcanic nature of the island of Bali is evident in this shaded relief image generated with data from the Shuttle Radar Topography Mission (SRTM).

    Bali, along with several smaller islands, make up one of the 27 Provinces of Indonesia. It lies over a major subduction zone where the Indo-Australian tectonic plate collides with the Sunda plate, creating one of the most volcanically active regions on the planet.

    The most significant feature on Bali is Gunung Agung, the symmetric, conical mountain at the right-center of the image. This 'stratovolcano,' 3,148 meters (10,308 feet) high, is held sacred in Balinese culture, and last erupted in 1963 after being dormant and thought inactive for 120 years. This violent event resulted in over 1,000 deaths, and coincided with a purification ceremony called Eka Dasa Rudra, meant to restore the balance between nature and man. This most important Balinese rite is held only once per century, and the almost exact correspondence between the beginning of the ceremony and the eruption is though to have great religious significance.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Location: 8.33 degrees South latitude, 115.17 degrees East longitude Orientation: North toward the top, Mercator projection Size: 153 by 112 kilometers (95 by 69 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  7. Toward a history of the space shuttle. An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Launius, Roger D. (Compiler); Gillette, Aaron K. (Compiler)

    1992-01-01

    This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work.

  8. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  9. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  10. KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  11. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (third from left) watch as a USA technician (right) creates a tile for use in the Shuttle's Thermal Protection System (TPS). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (third from left) watch as a USA technician (right) creates a tile for use in the Shuttle's Thermal Protection System (TPS). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  12. Perspective View, San Andreas Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is the San Andreas Fault in an image created with data from NASA's shuttle Radar Topography Mission (SRTM), which will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, California, about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. This area is at the junction of two large mountain ranges, the San Gabriel Mountains on the left and the Tehachapi Mountains on the right. Quail Lake Reservoir sits in the topographic depression created by past movement along the fault. Interstate 5 is the prominent linear feature starting at the left edge of the image and continuing into the fault zone, passing eventually over Tejon Pass into the Central Valley, visible at the upper left.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: Varies in a perspective view Location: 34.78 deg. North lat., 118.75 deg. West lon. Orientation: Looking Northwest Original Data Resolution: SRTM and Landsat: 30 meters (99 feet) Date Acquired: February 16, 2000

  13. Perspective with Landsat Overlay: Mojave to Ventura, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Southern California's dramatic topography plays acritical role in its climate, hydrology, ecology, agriculture, and habitability. This image of Southern California, from the desert at Mojave to the ocean at Ventura, shows a variety of landscapes and environments. Winds usually bring moisture to this area from the west, moving from the ocean, across the coastal plains, to the mountains, and then to the deserts. Most rainfall occurs as the air masses rise over the mountains and cool with altitude. Continuing east, and now drained of their moisture, the air masses drop in altitude and warm as they spread across the desert. The mountain rainfall supports forest and chaparral vegetation, seen here, and also becomes ground water and stream flow that supports citrus, avocado, strawberry, other crops, and a large and growing population on the coastal plains.

    This perspective view was generated by draping a Landsat satellite image over a preliminary topographic map from the Shuttle Radar Topography Mission. It shows the Tehachapi Mountains in the right foreground, the city of Ventura on the coast at the distant left, and the eastern most Santa Ynez Mountains forming the skyline at the distant right.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30 meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive.

    The elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington DC.

    Size: 43 kilometers (27 miles) view width, 166 kilometers (103 miles) view distance Location: 34.8 deg. North lat., 118.8 deg. West lon. Orientation: View toward the southwest, 3X vertical exaggeration Image: Landsat bands 1, 2&4, 3 as blue, green, and red, respectively Date Acquired: February 16, 2000 (SRTM), November 11, 1986 (Landsat) Image: NASA/JPL/NIMA

  14. SRTM Colored Height and Shaded Relief: Pinon Canyon region, Colorado

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Erosional features are prominent in this view of southern Colorado taken by the Shuttle Radar Topography Mission (SRTM). The area covers about 20,000 square kilometers and is located about 50 kilometers south of Pueblo, Colorado. The prominent mountains near the left edge of the image are the Spanish Peaks, remnants of a 20 million year old volcano. Rising 2,100 meters (7,000 ft) above the plains to the east, these igneous rock formations with intrusions of eroded sedimentary rock historically served as guiding landmarks for travelers on the Mountain Branch of the Santa Fe Trail.

    Near the center of the image is the Pinon Canyon Maneuver Site, a training area for soldiers of the U.S. Army from nearby Fort Carson. The site supports a diverse ecosystem with large numbers of big and small game, fisheries, non-game wildlife, forest, range land and mineral resources. It is bounded on the east by the dramatic topography of the Purgatoire River Canyon, a 100 meter (328 foot) deep scenic red canyon with flowing streams, sandstone formations, and exposed geologic processes.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction. Southern slopes appear bright and northern slopes appear dark. Color coding is directly related to topographic height, with blue and green at the lower elevations, rising through yellow and brown to white at the highest elevations.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 177.8 x 111.3 kilometers ( 110.5 x 69.2 miles) Location: 37.5 deg. North lat., 104 deg. West lon. Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Original Data Resolution: SRTM 1 arcsecond (30 meters or 99 feet) Date Acquired: February 2000

  15. SRTM Anaglyph: Pinon Canyon region, Colorado

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Erosional features are prominent in this view of southern Colorado taken by the Shuttle Radar Topography Mission (SRTM). The area covers about 20,000square kilometers and is located about 50 kilometers south of Pueblo, Colorado. The prominent mountains near the left edge of the image are the Spanish Peaks, remnants of a 20 million year old volcano. Rising 2,100 meters (7,000 feet) above the plains to the east, these igneous rock formations with intrusions of eroded sedimentary rock historically served as guiding landmarks for travelers on the Mountain Branch of the Santa Fe Trail.

    Near the center of the image is the Pinon Canyon Maneuver Site, a training area for soldiers of the U.S. Army from nearby Fort Carson. The site supports a diverse ecosystem with large numbers of big and small game, fisheries, non-game wildlife, forest, range land and mineral resources. It is bounded on the east by the dramatic topography of the Purgatoire River Canyon, a 100 meter (328 feet) deep scenic red canyon with flowing streams, sandstone formations and exposed geologic processes.

    This anaglyph was produced by first shading a preliminary SRTM elevation model. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 177.8 x 111.3 kilometers ( 110.5 x 69.2 miles) Location: 37.5 deg. North lat., 104 deg. West lon. Orientation: North toward the top Original Data Resolution: SRTM 1 arcsecond (30 meters or 99 feet) Image Data: Shaded and colored SRTM elevation model

  16. Perspective View, Garlock Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    California's Garlock Fault, marking the northwestern boundary of the Mojave Desert, lies at the foot of the mountains, running from the lower right to the top center of this image, which was created with data from NASA's shuttle Radar Topography Mission (SRTM), flown in February 2000. The data will be used by geologists studying fault dynamics and landforms resulting from active tectonics. These mountains are the southern end of the Sierra Nevada and the prominent canyon emerging at the lower right is Lone Tree canyon. In the distance, the San Gabriel Mountains cut across from the leftside of the image. At their base lies the San Andreas Fault which meets the Garlock Fault near the left edge at Tejon Pass. The dark linear feature running from lower right to upper left is State Highway 14 leading from the town of Mojave in the distance to Inyokern and the Owens Valley in the north. The lighter parallel lines are dirt roads related to power lines and the Los Angeles Aqueduct which run along the base of the mountains.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: Varies in a perspective view Location: 35.25 deg. North lat., 118.05 deg. West lon. Orientation: Looking southwest Original Data Resolution: SRTM and Landsat: 30 meters (99 feet) Date Acquired: February 16, 2000

  17. 3-D Perspective View, Miquelon and Saint Pierre Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image shows Miquelon and Saint Pierre Islands, located south of Newfoundland, Canada. These islands, along with five smaller islands, are a self-governing territory of France. North is in the top right corner of the image. The island of Miquelon, in the background, is divided by a thin barrier beach into Petite Miquelon on the left, and Grande Miquelon on the right. Saint Pierre Island is seen in the foreground. The maximum elevation of this land is 240 meters (787 feet). The land mass of the islands is about 242square kilometers (94 square miles) or 1.5 times the size of Washington, DC.

    This three-dimensional perspective view is one of several still photographs taken from a simulated flyover of the islands. It shows how elevation data collected by the Shuttle Radar Topography Mission (SRTM) can be used to enhance other satellite images. Color and natural shading are provided by a Landsat 7 image taken on September 7, 1999. The Landsat image was draped over the SRTM data. Terrain perspective and shading are from SRTM. The vertical scale has been increased six times to make it easier to see the small features. This also makes the sea cliffs around the edges of the islands look larger. In this view the capital city of Saint Pierre is seen as the bright area in the foreground of the island. The thin bright line seen in the water is a breakwater that offers some walled protection for the coastal city.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 34 km (21 miles) by 44 km (27 miles) Location: 46.8 degrees north latitude, 56.3 degrees west longitude Orientation: Looking west Original Data Resolution: 30 meters (about 33 yards) per pixel Date Acquired: February 12, 2000

  18. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  19. KSC-2011-7953

    NASA Image and Video Library

    2011-11-26

    CAPE CANAVERAL, Fla. – Former astronaut Leland Melvin, NASA associate administrator for Education, takes part in a Tweetup in a tent set up at NASA Kennedy Space Center's Press Site in Florida during prelaunch activities for the agency’s Mars Science Laboratory (MSL) launch. Melvin flew on the space shuttle Atlantis' STS-122 mission in 2008 and STS-129 mission in 2009. Participants in the Tweetup are given the opportunity to listen to agency briefings, tour locations on the center normally off limits to visitors, and get a close-up view of Space Launch Complex-41 on Cape Canaveral Air Force Station. The tweeters will share their experiences with followers through the social networking site Twitter. The MSL mission will pioneer precision landing technology and a sky-crane touchdown to place a car-sized rover, Curiosity, near the foot of a mountain inside Gale Crater on Aug. 6, 2012. During a nearly two-year prime mission after landing, the rover will investigate whether the region has ever offered conditions favorable for microbial life, including the chemical ingredients for life. Liftoff of MSL aboard a United Launch Alliance Atlas V rocket from pad 41 is planned during a launch window which extends from 10:02 a.m. to 11:45 a.m. EST on Nov. 26. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  20. HL-10 on lakebed with pilot Bill Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA research pilot Bill Dana stands in front of the HL-10 Lifting Body following his first glide flight on April 25, 1969. Dana later retired Chief Engineer at NASA's Dryden Flight Research Center, which was called only the NASA Flight Research Center in 1969. Prior to his lifting body assignment, Dana flew the famed X-15 research airplane. He flew the rocket-powered aircraft 16 times, reaching a top speed of 3,897 miles per hour and a peak altitude of 310,000 feet (almost 59 miles high). The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle.

  1. KSC-99pp0874

    NASA Image and Video Library

    1999-07-16

    KENNEDY SPACE CENTER, FLA. -- NASA Administrator Daniel S. Goldin addresses the audience at the Apollo 11 anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin "Buzz" Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7

  2. Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  3. Phantom torso experiment on the international space station; flight measurements and calculations

    NASA Astrophysics Data System (ADS)

    Atwell, W.; Semones, E.; Cucinotta, F.

    The Phantom Torso Experiment (PTE) first flew on the 10-day Space Shuttle mission STS-91 in June 1998 during a period near solar minimum. The PTE was re- f l o w n on the I ternational Space Station (ISS) Increment 2 mission from April-n A u g u s t 2001 during a period near solar maximum. The experiment was located with a suite of other radiation experiments in the US Lab module Human Research Facility (HRF) rack. The objective of the experiment was to measure space radiation exposures at several radiosensitive critical body organs (brain, thyroid, heart/lung, stomach and colon) and two locations on the surface (skin) of a modified RandoTM phantom. Prior to flight, active solid -state silicon dosimeters were located at the RandoTM critical body organ locations and passive dosimeters were placed at the two surface locations. Using a mathematically modified Computerized Anatomical Male (CAM) model, shielding distributions were generated for the five critical body organ and two skin locations. These shielding distributions were then combined with the ISS HRF rack shielding distribution to account for the total shielding "seen" by the PTE. Using the trapped proton and galactic cosmic radiation environment models and high -energy particle transport codes, absorbed dose, dose equivalent, and LET (linear energy transfer) values were computed for the seven dose point locations of interest. The results of these computations are compared with the actual flight measurements.

  4. A Glass Can Be Half Full: Even in Microgravity

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas

    2004-01-01

    When conducting physical science research in space, the smallest vibration or disturbance can disrupt sensitive experiments. Back in the 1990s we developed an instrument, the Space Acceleration Measurement System (SAMS) that flew on the shuttle to monitor the vibration environment - but it wasn't very flexible. It could only measure vibrations for three users and only at fixed frequency ranges, and it had to be disassembled after each two-week mission to be readied for reuse. Then the International Space Station came along. Our researchers needed a second-generation system, the SAMS-II, which would measure acceleration and vibrations for multiple payloads conducting experiments throughout the life of the station. Measurement requirements were all over the map with a variety of frequencies that needed measuring over a broad dynamic range, so it was essential to develop a robust system that would be flexible enough to accommodate all the particular users. We came up with a concept using the Space Station's Ethernet as the means to talk between multiple remote triaxial sensor systems and a remote controller box. Ultimately, our job was to acquire data within the existing constraints of the station and to quickly and effectively get that information to the scientists. In 1994 we had a $2.1-million budget and a four-year development schedule aimed at achieving these goals. Technical risks were few and primarily resulted from uncertainty of ISS capabilities. At that point, we didn't worry about a thing programmatically; our cup runneth over.

  5. Telescience operations with the solar array module plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Bibyk, Irene K.

    1995-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  6. Residual acceleration data on IML-1: Development of a data reduction and dissemination plan

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. Iwan D.; Wolf, Randy

    1992-01-01

    The need to record some measure of the low-gravity environment of an orbiting space vehicle was recognized at an early stage of the U.S. Space Program. Such information was considered important for both the assessment of an astronaut's physical condition during and after space missions and the analysis of the fluid physics, materials processing, and biological sciences experiments run in space. Various measurement systems were developed and flown on space platforms beginning in the early 1970's. Similar in concept to land based seismometers that measure vibrations caused by earthquakes and explosions, accelerometers mounted on orbiting space vehicles measure vibrations in and of the vehicle due to internal and external sources, as well as vibrations in a sensor's relative acceleration with respect to the vehicle to which it is attached. The data collected over the years have helped to alter the perception of gravity on-board a space vehicle from the public's early concept of zero-gravity to the science community's evolution of thought from microgravity to milligravity to g-jitter or vibrational environment. Since the advent of the Shuttle Orbiter Program, especially since the start of Spacelab flights dedicated to scientific investigations, the interest in measuring the low-gravity environment in which experiments are run has increased. This interest led to the development and flight of numerous accelerometer systems dedicated to specific experiments. It also prompted the development of the NASA MSAD-sponsored Space Acceleration Measurement System (SAMS). The first SAMS units flew in the Spacelab on STS-40 in June 1991 in support of the first Spacelab Life Sciences mission (SLS-1). SAMS is currently manifested to fly on all future Spacelab missions.

  7. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro are briefed on the properties of the tile used in the Shuttle's Thermal Protection System (TPS) by USA Manager of the TPS Facility Martin Wilson (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro are briefed on the properties of the tile used in the Shuttle's Thermal Protection System (TPS) by USA Manager of the TPS Facility Martin Wilson (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  8. Landsat with SRTM Shaded Relief, Los Angeles and Vicinity from Space

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Los Angeles and vicinity seen from space, as viewed by the Landsat 7 satellite from an altitude of 437 miles on May 4, 2001. North is at the top. Topographic shading has been enhanced using an elevation data set acquired by the Space Shuttle Endeavour in February 2000. Downtown Los Angeles is just south of the image center, with L.A. and Long Beach harbors to the south, Santa Monica Bay to the west, San Fernando Valley to the northwest, San Gabriel Valley to the east, and Orange County to the southeast. The San Andreas fault forms the straight diagonal mountain front bordering the Mojave Desert at the top of the image. At full resolution, features on the ground as small as 15 meters (49 feet) across can be distinguished, including street patterns and large buildings, as well as boats and their wakes on the ocean. More than ten million people live within this scene.

    This image was generated by first geographically matching the Landsat scene to a Shuttle Radar Topography Mission (SRTM) elevation model. A measure of topographic slope along a southeast-northwest trend was then calculated, such that southeast facing slopes appear bright and northwest facing slopes appear dark. This slope image was then added to the enhanced Landsat scene in order to intensify the appearance of topography. Topographic shading was subtle in the original Landsat scene due to the fairly high sun angle (63 degrees above the horizon) during the satellite overflight in late morning of a mid-Spring day.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and helps in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 138.8 kilometers (86.1 miles) by 94.0 kilometers (58.3 miles) Location: 34.1 degrees North latitude, 118.3 degrees West longitude Orientation: North at top Image Data: Landsat bands 3, 2+4, 1 as red, green, blue, respectively, with SRTM shaded relief, plus Landsat panchromatic band 8 added for detail. Original Data Resolution: SRTM 1 arc-second (30 meters or 98 feet), Landsat color 30 meters (98 feet) sharpened with Landsat panchromatic band (15 meters or 49 feet). Date Acquired: May 4, 2001 (Landsat), February 2000 (SRTM)

  9. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  10. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  11. KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  12. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  13. Shuttle Discovery Landing at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  14. Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Discovery being unloaded from NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance. Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  15. Shuttle Enterprise Mated to 747 SCA for Delivery to Smithsonian

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Enterprise atop the NASA 747 Shuttle Carrier Aircraft as it leaves NASA's Dryden Flight Research Center, Edwards, California. The Enterprise, first orbiter built, was not spaceflight rated and was used in 1977 to verify the landing, approach, and glide characteristics of the orbiters. It was also used for engineering fit-checks at the shuttle launch facilities. Following approach and landing tests in 1977 and its use as an engineering vehicle, Enterprise was donated to the National Air and Space Museum in Washington, D.C. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  16. Earth observtion taken by the Expedition 43 crew

    NASA Image and Video Library

    2015-05-24

    ISS043E249688 (04/24/2015) --- This picture of Hawaii was tweeted out by NASA astronaut Scott Kelly on the International Space Station with this comment: "Just flew over you #Honolulu #Hawaii. Happy #MemorialDay! #YearInSpace ".

  17. B-52 Testing Developmental Space Shuttle Drag Chute

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A close-up of an experimental drag chute deploying in a cloud of dust behind NASA's B-52 research aircraft just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  18. B-52 Testing Developmental Space Shuttle Drag Chute

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An aerial view of NASA's B-52 research aircraft deploying an experimental drag chute just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  19. B-52 Testing Developmental Space Shuttle Drag Chute

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's B-52 research aircraft deploys an experimental drag chute just after landing the runway at the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  20. B-52 Testing Developmental Space Shuttle Drag Chute

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An experimental drag chute deploys amidst a cloud of dust behind NASA's B-52 research aircraft just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  1. B-52 Testing Developmental Space Shuttle Drag Chute

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A rear view of NASA's B-52 research aircraft deploying an experimental drag chute just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  2. Shuttle in Mate-Demate Device being Loaded onto SCA-747

    NASA Technical Reports Server (NTRS)

    1991-01-01

    At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  3. Shaded Relief of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The scrub forest terrain shows relief of about 400 meters (1300 feet). Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. This region has little topographic relief, but even subtle changes in topography have far-reaching effects on regional ecosystems. The image covers an area of 57 km x 79 km and represents one quarter of the 225 km SRTM swath. Colors range from dark blue at water level to white and brown at hill tops. The terrain features that are clearly visible in this image include tributaries of the Sao Francisco, the dark-blue branch-like features visible from top right to bottom left, and on the left edge of the image, and hills rising up from the valley floor. The San Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  4. Ambae Island, Vanuatu (South Pacific)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The recently active volcano Mt. Manaro is the dominant feature in this shaded relief image of Ambae Island, part of the Vanuatu archipelago located 1400 miles northeast of Sydney, Australia. About 5000 inhabitants, half the island's population, were evacuated in early December from the path of a possible lahar, or mud flow, when the volcano started spewing clouds of steam and toxic gases 10,000 feet into the atmosphere.

    Last active in 1996, the 1496 meter (4908 ft.) high Hawaiian-style basaltic shield volcano features two lakes within its summit caldera, or crater. The ash and gas plume is actually emerging from a vent at the center of Lake Voui (at left), which was formed approximately 425 years ago after an explosive eruption.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Location: 15.4 degree south latitude, 167.9 degrees east longitude Orientation: North toward the top, Mercator projection Size: 36.8 by 27.8 kilometers (22.9 by 17.3 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  5. Ireland, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The island of Ireland comprises a large central lowland of limestone with a relief of hills surrounded by a discontinuous border of coastal mountains which vary greatly in geological structure. The mountain ridges of the south are composed of old red sandstone separated by limestone river valleys. Granite predominates in the mountains of Galway, Mayo and Donegal in the west and north-west and in Counties Down and Wicklow on the east coast, while a basalt plateau covers much of the north-east of the country. The central plain, which is broken in places by low hills, is extensively covered with glacial deposits of clay and sand. It has considerable areas of bog and numerous lakes. The island has seen at least two general glaciations and everywhere ice-smoothed rock, mountain lakes, glacial valleys and deposits of glacial sand, gravel and clay mark the passage of the ice.

    Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.

    Location: 53.5 degrees North latitude, 8 degrees West longitude Orientation: North toward the top, Mercator projection Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000

  6. Space Shuttle orbiter modifications to support Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Segert, Randall; Lichtenfels, Allyson

    1992-01-01

    The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.

  7. The potential impact of the space shuttle on space benefits to mankind

    NASA Technical Reports Server (NTRS)

    Rattinger, I.

    1972-01-01

    The potential impact of the space shuttle on space benefits to mankind is discussed. The space shuttle mission profile is presented and the capabilities of the spacecraft to perform various maneuvers and operations are described. The cost effectiveness of the space shuttle operation is analyzed. The effects upon technological superiority and national economics are examined. Line drawings and artist concepts of space shuttle configurations are included to clarify the discussion.

  8. STS-68 747 SCA Ferry Flight Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Columbia, atop NASA's 747 Shuttle Carrier Aircraft (SCA), taking off for the Kennedy Space Center shortly after its landing on 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  9. KSC-2013-4295

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander’s engine has completed its firing during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  10. KSC-2013-4289

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  11. KSC-2013-4292

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  12. KSC-2013-4290

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  13. KSC-2013-4291

    NASA Image and Video Library

    2013-12-06

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper

  14. Enterprise - First Tailcone Off Free Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the Shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preperation for the first space mission with the orbiter Columbia in April 1981. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  15. Shuttle Columbia Post-landing Tow - with Reflection in Water

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. MartinMarietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  16. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  17. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  18. 14 CFR 1214.101 - Eligibility for flight of a non-U.S. government reimbursable payload on the Space Shuttle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... government reimbursable payload on the Space Shuttle. 1214.101 Section 1214.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle... non-U.S. government reimbursable payload on the Space Shuttle. To be eligible for flight on the Space...

  19. KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  20. Low gravity environment on-board Columbia during STS-40

    NASA Technical Reports Server (NTRS)

    Rogers, M. J. B.; Baugher, C. R.; Blanchard, R. C.; Delombard, R.; During, W. W.; Matthiesen, D. H.; Neupert, W.; Roussel, P.

    1993-01-01

    The first NASA Spacelab Life Sciences mission (SLS-I) flew 5 June to 14 June 1991 on the orbiter Columbia (STS-40). The purpose of the mission was to investigate the human body's adaptation to the low gravity conditions of space flight and the body's readjustment after the mission to the 1 g environment of earth. In addition to the life sciences experiments manifested for the Spacelab module, a variety of experiments in other scientific disciplines flew in the Spacelab and in Get Away Special (GAS) Canisters on the GAS Bridge Assembly. Several principal investigators designed and flew specialized accelerometer systems to characterize the low gravity environment. This was done to better assess the results of theft experiments. This was also the first flight of the NASA Microgravity Science and Applications Division (MSAD) sponsored Space Acceleration Measurement System (SAMS) and the first flight of the NASA Orbiter Experiments Office (OEX) sponsored Orbital Acceleration Research Experiment accelerometer (OARE). We present a brief introduction to seven STS-40 accelerometer systems and discuss and compare the resulting data.

Top