Economics in ground operations of the Space Shuttle
NASA Technical Reports Server (NTRS)
Gray, R. H.
1973-01-01
The physical configuration, task versatility, and typical mission profile of the Space Shuttle are illustrated and described, and a comparison of shuttle and expendable rocket costs is discussed, with special emphasis upon savings to be achieved in ground operations. A review of economies achieved by engineering design improvements covers the automated checkout by onboard shuttle systems, the automated launch processing system, the new maintenance concept, and the analogy of Space Shuttle and airline repetitive operations. The Space Shuttle is shown to represent a new level in space flight technology, particularly, the sophistication of the systems and procedures devised for its support and ground operations.
Space shuttle requirements/configuration evolution
NASA Technical Reports Server (NTRS)
Andrews, E. P.
1991-01-01
Space Shuttle chronology; Space Shuttle comparison; Cost comparison; Performance; Program ground rules; Sizing criteria; Crew/passenger provisions; Space Shuttle Main Engine (SSME) characteristics; Space Shuttle program milestones; and Space Shuttle requirements are outlined. This presentation is represented by viewgraphs.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Launch and Landing Effects Ground Operations (LLEGO) Model
NASA Technical Reports Server (NTRS)
2008-01-01
LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.
1978-04-21
This is an interior ground level view of the Shuttle Orbiter Enterprise being lowered for mating to External Tank (ET) inside Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.
2013-09-09
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, officials pose at the site where a Shuttle Program time capsule has been secured vault within the walls of the Space Shuttle Atlantis home at the Kennedy Space Center Visitor Complex. From the left are: Pete Nickolenko, deputy director of NASA Ground Processing at Kennedy, Patty Stratton of Abacus Technology, currently program manager for the Information Management Communications Support Contract. During the Shuttle Program she was deputy director of Ground Operations for NASA's Space Program Operations Contractor, United Space Alliance, Rita Wilcoxon, NASA's now retired director of Shuttle Processing, Bob Cabana, director of the Kennedy Space Center and George Jacobs, deputy director of Center Operations, who was manager of the agency's Shuttle Transition and Retirement Project Office. The time capsule, containing artifacts and other memorabilia associated with the history of the program is designated to be opened on the 50th anniversary of the shuttle's final landing, STS-135. The new $100 million "Space Shuttle Atlantis" facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. Photo credit: NASA/Jim Grossmann
Stability of Formulations Contained in the Pharmaceutical Payload Aboard Space Missions
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Du, Brian; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick
2008-01-01
Efficacious pharmaceuticals with adequate shelf life are essential for successful space medical operations in support of space exploration missions. Physical and environmental factors unique to space missions such as vibration, G forces and ionizing radiation may adversely affect stability of pharmaceuticals intended for standard care of astronauts aboard space missions. Stable pharmaceuticals, therefore, are of paramount importance for assuring health and wellness of astronauts in space. Preliminary examination of stability of formulations from Shuttle and International Space Station (ISS) medical kits revealed that some of these medications showed physical and chemical degradation after flight raising concern of reduced therapeutic effectiveness with these medications in space. A research payload experiment was conducted with a select set of formulations stowed aboard a shuttle flight and on ISS. The payload consisted of four identical pharmaceutical kits containing 31 medications in different dosage forms that were transported to the International Space Station (ISS) aboard the Space Shuttle, STS 121. One of the four kits was stored on the shuttle and the other three were stored on the ISS for return to Earth at six months intervals on a pre-designated Shuttle flight for each kit; the shuttle kit was returned to Earth on the same flight. Standard stability indicating physical and chemical parameters were measured for all pharmaceuticals returned from the shuttle and from the first ISS increment payload along with ground-based matching controls. Results were compared between shuttle, ISS and ground controls. Evaluation of data from the three paradigms indicates that some of the formulations exhibited significant degradation in space compared to respective ground controls; a few formulations were unstable both on the ground and in space. An increase in the number of pharmaceuticals from ISS failing USP standards was noticed compared to those from the shuttle flight. A comprehensive evaluation of results is in progress.
Thousands gather to watch a Space Shuttle Main Engine Test
2001-04-21
Approximately 13,000 people fill the grounds at NASA's John C. Stennis Space Center for the first-ever evening public engine test of a Space Shuttle Main Engine. The test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.
NASA Technical Reports Server (NTRS)
1972-01-01
A definition of the expendable second stage and space shuttle booster separation system is presented. Modifications required on the reusable booster for expendable second stage/payload flight and the ground systems needed to operate the expendable second stage in conjuction with the space shuttle booster are described. The safety, reliability, and quality assurance program is explained. Launch complex operations and services are analyzed.
Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.
Space Shuttle Damper System for Ground Wind Load Tests
NASA Technical Reports Server (NTRS)
Robinson, G. D.; Holt, J. R.; Chang, C. S.
1973-01-01
An active damper system which was originally developed for a 5.5% Saturn IB/Skylab Ground Winds Model was modified and used for similar purposes in a Space Shuttle model. A second damper system which was originally used in a 3% Saturn V/Dry Workshop model was also modified and made compatible with the Space Shuttle model to serve as a back-up system. Included in this final report are descriptions of the modified damper systems and the associated control and instrumentation.
Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability
NASA Technical Reports Server (NTRS)
1972-01-01
The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.
Space shuttle orbiter test flight series
NASA Technical Reports Server (NTRS)
Garrett, D.; Gordon, R.; Jackson, R. B.
1977-01-01
The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.
Electronics systems test laboratory testing of shuttle communications systems
NASA Technical Reports Server (NTRS)
Stoker, C. J.; Bromley, L. K.
1985-01-01
Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail.
1978-10-04
The Shuttle Orbiter Enterprise inside of Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement including Orbiter, external tank, and solid rocket boosters were vertically mated.
NASA Technical Reports Server (NTRS)
1976-01-01
Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.
NASA Technical Reports Server (NTRS)
Balieiro, M. G.; Martini, P. R.; Dossantos, J. R.; Demattos, J. T.
1984-01-01
The ground observations undertaken over the northern position of Minas Gerais State, and part of Distrito Federal from 7 to 12 December 1982, along the Space Shuttle 2 flying orbit 22 of November 1981 are described. Field data related mostly with lithology, geological structures and forest cover, and specific geomorphological and pedological aspects were collected. Ground data are applied to evaluate the SIR-A Experiment, developed in the Space Shuttle-2 mission for natural resources mapping and prospecting.
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex in Florida, Kennedy Space Center Deputy Director Janet Petro speaks during the Ground Breaking Ceremony for the future home of space shuttle Atlantis. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Jim Grossmann
Wilde, R C; McBarron, J W; Faszcza, J J
1997-06-01
To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.
Space Shuttle Navigation in the GPS Era
NASA Technical Reports Server (NTRS)
Goodman, John L.
2001-01-01
The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.
1978-04-21
The Shuttle Orbiter Enterprise is lowered into the Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT) at the Marshall Space Flight Center. The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.
1978-10-04
The Shuttle Orbiter Enterprise is being installed into liftoff configuration at Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.
Kennedy Space Center, Space Shuttle Processing, and International Space Station Program Overview
NASA Technical Reports Server (NTRS)
Higginbotham, Scott Alan
2011-01-01
Topics include: International Space Station assembly sequence; Electrical power substation; Thermal control substation; Guidance, navigation and control; Command data and handling; Robotics; Human and robotic integration; Additional modes of re-supply; NASA and International partner control centers; Space Shuttle ground operations.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., makes its way to Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., makes its way to Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., arrives at Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck
1994-07-23
STS065-44-014 (8-23 July 1994) --- Astronaut Robert D. Cabana, mission commander, is seen on the Space Shuttle Columbia's flight deck with the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex (KSCVC) in Florida, KSCVC Chief Operating Officer Bill Moore speaks during the Ground Breaking Ceremony for the future home of space shuttle Atlantis. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Jim Grossmann
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs USA Associate Program Manager of Ground Operations Andy Allen (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) on the properties of the components used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex in Florida, Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies, speaks during the Ground Breaking Ceremony for the future home of space shuttle Atlantis. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Jim Grossmann
A Comparison Between Orion Automated and Space Shuttle Rendezvous Techniques
NASA Technical Reports Server (NTRS)
Ruiz, Jose O,; Hart, Jeremy
2010-01-01
The Orion spacecraft will replace the space shuttle and will be the first human spacecraft since the Apollo program to leave low earth orbit. This vehicle will serve as the cornerstone of a complete space transportation system with a myriad of mission requirements necessitating rendezvous to multiple vehicles in earth orbit, around the moon and eventually beyond . These goals will require a complex and robust vehicle that is, significantly different from both the space shuttle and the command module of the Apollo program. Historically, orbit operations have been accomplished with heavy reliance on ground support and manual crew reconfiguration and monitoring. One major difference with Orion is that automation will be incorporated as a key element of the man-vehicle system. The automated system will consist of software devoted to transitioning between events based on a master timeline. This effectively adds a layer of high level sequencing that moves control of the vehicle from one phase to the next. This type of automated control is not entirely new to spacecraft since the shuttle uses a version of this during ascent and entry operations. During shuttle orbit operations however many of the software modes and hardware switches must be manually configured through the use of printed procedures and instructions voiced from the ground. The goal of the automation scheme on Orion is to extend high level automation to all flight phases. The move towards automation represents a large shift from current space shuttle operations, and so these new systems will be adopted gradually via various safeguards. These include features such as authority-to-proceed, manual down modes, and functional inhibits. This paper describes the contrast between the manual and ground approach of the space shuttle and the proposed automation of the Orion vehicle. I will introduce typical orbit operations that are common to all rendezvous missions and go on to describe the current Orion automation architecture and contrast it with shuttle rendezvous techniques and circumstances. The shuttle rendezvous profile is timed to take approximately 3 days from orbit insertion to docking at the International Space Station (ISS). This process can be divided into 3 phases: far-field, mid-field and proximity operations. The far-field stage is characterized as the most quiescent phase. The spacecraft is usually too far to navigate using relative sensors and uses the Inertial Measurement Units (IMU s) to numerically solve for its position. The maneuvers are infrequent, roughly twice per day, and are larger than other burns in the profile. The shuttle uses this opportunity to take extensive ground based radar updates and keep high fidelity orbit states on the ground. This state is then periodically uplinked to the shuttle computers. The targeting solutions for burn maneuvers are also computed on the ground and uplinked. During the burn the crew is responsible for setting the shuttle attitude and configuring the propulsion system for ignition. Again this entire process is manually driven by both crew and ground activity. The only automatic processes that occur are associated with the real-time execution of the burn. The Orion automated functionality will seek to relieve the workload of both the crew and ground during this phase
Photography by KSC Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid
NASA Technical Reports Server (NTRS)
1980-01-01
Photography by KSC Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid rocket boosters on top of a Mobil Launcher Platform, undergoes fit and function checks at the launch site for the first Space Shuttle at Launch Complex 39's Pad A. The dummy Space Shuttle was assembled in the Vehicle Assembly Building and rolled out to the launch site on May 1 as part of an exercise to make certain shuttle elements are compatible with the Spaceport's assembly and launch facilities and ground support equipment, and help clear the way for the launch of the Space Shuttle Orbiter Columbia.
PHOTOGRAPHY BY KSC SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID
NASA Technical Reports Server (NTRS)
1980-01-01
PHOTOGRAPHY BY KSC SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.
Space shuttle environmental and thermal control/life support system study
NASA Technical Reports Server (NTRS)
Rousseau, J.
1973-01-01
The study of the space shuttle environmental and thermal control/life support system is summarized. Design approaches, system descriptions, maintenance requirements, testing requirements, instrumentation, and ground support equipment requirements are discussed.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., passes the Astronaut Hall of Fame on its way to Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
1980-02-06
Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid rocket boosters on top of a Mobil Launcher Platform, undergoes fit and function checks at the launch site for the first Space Shuttle at Launch Complex 39's Pad A. The dummy Space Shuttle was assembled in the Vehicle Assembly Building and rolled out to the launch site on May 1 as part of an exercise to make certain shuttle elements are compatible with the Spaceport's assembly and launch facilities and ground support equipment, and help clear the way for the launch of the Space Shuttle Orbiter Columbia.
1980-02-06
SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.
1980-02-06
SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.
NASA Technical Reports Server (NTRS)
Flanders, J. H.; Helmers, C. T.; Stanten, S. F.
1973-01-01
This report deals with the feasibility, problems, solutions, and mapping of a GOAL language to HAL language translator. Ground Operations Aerospace Language, or GOAL, is a test-oriented higher order language developed by the John F. Kennedy Space Center to be used in checkout and launch of the space shuttle. HAL is a structured higher order language developed by the Johnson Space Center to be used in writing the flight software for the onboard shuttle computers. Since the onboard computers will extensively support ground checkout of the space shuttle, and since these computers and the software development facilities on the ground use the HAL language as baseline, the translation of GOAL to HAL becomes significant. The issue of feasibility was examined and it was found that a GOAL to HAL translator is feasible. Special problems are identified and solutions proposed. Finally, examples of translation are provided for each category of complete GOAL statement.
Space Shuttle astrodynamical constants
NASA Technical Reports Server (NTRS)
Cockrell, B. F.; Williamson, B.
1978-01-01
Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.
Shuttle's 160 hour ground turnaround - A design driver
NASA Technical Reports Server (NTRS)
Widick, F.
1977-01-01
Turnaround analysis added a new dimension to the Space Program with the advent of the Space Shuttle. The requirement to turn the flight hardware around in 160 working hours from landing to launch was a significant design driver and a useful tool in forcing the integration of flight and ground systems design to permit an efficient ground operation. Although there was concern that time constraints might increase program costs, the result of the analysis was to minimize facility requirements and simplify operations with resultant cost savings.
NASA Technical Reports Server (NTRS)
1976-01-01
Each system was chosen on the basis of its importance with respect to crew safety and mission success. An overview of the systems management is presented. The space shuttle main engine, orbiter thermal protection system, avionics, external tanks and solid rocket boosters were examined. The ground test and ground support equipment programs were studied. Program management was found to have an adequate understanding of the significant ground and flight risks involved.
1978-09-01
This photograph shows stacking of the left side of the solid rocket booster (SRB) segments in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). Staging shown here are the aft skirt, aft segment, and aft center segment. The SRB was attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT is to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB's to which the ET was attached.
1978-09-01
This photograph shows the left side of the solid rocket booster (SRB) segment as it awaits being mated to the nose cone and forward skirt in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB's to which the ET was attached.
1978-09-01
Workmen in the Dynamic Test Stand lowered the nose cone into place to complete stacking of the left side of the solid rocket booster (SRB) in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB'S to which the ET was attached.
Legacy of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Sullivan, Steven J.
2010-01-01
This slide presentation reviews many of the innovations from Kennedy Space Center engineering for ground operations that were made during the shuttle program. The innovations are in the areas of detection, image analysis, protective equipment, software development and communications.
NASA Technical Reports Server (NTRS)
Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.
1970-01-01
A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.
2009-01-01
As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., arrives at the hangar at the KSC Shuttle Landing Facility (SLF). Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the SLF and during transport of the payloads to other facilities.
Ground winds for Kennedy Space Center, Florida, 1979 revision
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.
1979-01-01
Revised ground-level runway wind statistics for the Kennedy Space Center, Florida area are presented. Crosswind, headwind, tailwind, and headwind reversal percentage frequencies are given with respect to month and hour for the Kennedy Space Center Space Shuttle runway.
A concept for Space Shuttle payload ground operations
NASA Technical Reports Server (NTRS)
Mccoy, G.
1973-01-01
A Space Transportation System that involves the reusable Space Shuttle offers mankind's next great frontier. The country and the NASA must approach this potential opportunity with an open mind for new ideas and concepts in operations management, business principles, and sensitivity to cost. Our long term future in this new frontier will depend as much on our success in these areas as on our technological successes. This paper attempts to provide, for people with a working understanding of current ground operations, some examples of these evolving concepts.
Shuttle considerations for the design of large space structures
NASA Technical Reports Server (NTRS)
Roebuck, J. A., Jr.
1980-01-01
Shuttle related considerations (constraints and guidelines) are compiled for use by designers of a potential class of large space structures which are transported to orbit and, deployed, fabricated or assembled in space using the Space Shuttle Orbiter. Considerations of all phases of shuttle operations from launch to ground turnaround operations are presented. Design of large space structures includes design of special construction fixtures and support equipment, special stowage cradles or pallets, special checkout maintenance, and monitoring equipment, and planning for packaging into the orbiter of all additional provisions and supplies chargeable to payload. Checklists of design issues, Shuttle capabilities constraints and guidelines, as well as general explanatory material and references to source documents are included.
2011-04-12
CAPE CANAVERAL, Fla. -- Standing under the insignia designed for the Space Shuttle Program, Patty Stratton, associate program manager for Ground Operations at United Space Alliance, speaks to the audience attending a 30th anniversary celebration in honor of the Space Shuttle Program's first shuttle launch at NASA's Kennedy Space Center Visitor Complex in Florida. The celebration followed an announcement by NASA Administrator Charles Bolden where the four orbiters will be placed for permanent display after retirement. Photo credit: NASA/Kim Shiflett
1998-12-18
An artist's rendering shows the $8-million Reusable Launch Vehicle (RLV) Support Complex planned for the Shuttle Landing Facility (SLF) at Kennedy Space Center. The ground breaking took place today. To be located at the tow-way adjacent to the SLF, the complex will include a multi-purpose RLV hangar and adjacent facilities for related ground support equipment and administrative/technical support. It will be available to accommodate the Space Shuttle, the X-34 RLV technology demonstrator, the L-1011 carrier aircraft for Pegasus and X-34, and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
2003-09-03
KENNEDY SPACE CENTER, FLA. - A KSC employee wipes down some of the hoses of the ground support equipment in the Orbiter Processing Facility (OPF) where Space Shuttle Atlantis is being processed for flight. Preparations are under way for the next launch of Atlantis on mission STS-114, a utilization and logistics flight to the International Space Station.
NASA Technical Reports Server (NTRS)
1974-01-01
The capabilities for preflight feeding of flight personnel and the supply and control of the space shuttle flight food system were investigated to determine ground support requirements; and the functional details of an onboard food system galley are shown in photographic mockups. The elements which were identified as necessary to the efficient accomplishment of ground support functions include the following: (1) administration; (2) dietetics; (3) analytical laboratories; (4) flight food warehouse; (5) stowage module assembly area; (6) launch site module storage area; (7) alert crew restaurant and disperse crew galleys; (8) ground food warehouse; (9) manufacturing facilities; (10) transport; and (11) computer support. Each element is discussed according to the design criteria of minimum cost, maximum flexibility, reliability, and efficiency consistent with space shuttle requirements. The galley mockup overview illustrates the initial operation configuration, food stowage locations, meal assembly and serving trays, meal preparation configuration, serving, trash management, and the logistics of handling and cleanup equipment.
NASA Technical Reports Server (NTRS)
Sayers, R. S.
1972-01-01
An information management system is proposed for use in the space shuttle sortie, the modular space station, the tracking data relay satellite and associated ground support systems. Several different information management functions, including data acquisition, transfer, storage, processing, control and display are integrated in the system.
Space Shuttle Orbital Drag Parachute Design
NASA Technical Reports Server (NTRS)
Meyerson, Robert E.
2001-01-01
The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.
1978-09-29
This photo depicts the installation of an External Tank (ET) into the Marshall Space Flight Center Dynamic Test Stand, building 4550. It is being mated to the Solid Rocket Boosters (SRB's) for a Mated Vertical Ground Vibration Test (MVGVT). At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable.
NASA Technical Reports Server (NTRS)
Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.
2009-01-01
The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., drives past the Vehicle Assembly Building (background, left) and Operations Support Building (background, right) on its way to the KSC Shuttle Landing Facility (SLF). Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the SLF and during transport of the payloads to other facilities.
Shuttle roll-out set for 17 September 1976
NASA Technical Reports Server (NTRS)
1976-01-01
The unveiling of the first reusable space shuttle vehicle by the National Aeronautics and Space Administration is discussed. The role of orbiter 101 as a test vehicle is stressed. Approach and landing tests, ground vibration tests, crew are among the topics included.
Collaborative Software Development Approach Used to Deliver the New Shuttle Telemetry Ground Station
NASA Technical Reports Server (NTRS)
Kirby, Randy L.; Mann, David; Prenger, Stephen G.; Craig, Wayne; Greenwood, Andrew; Morsics, Jonathan; Fricker, Charles H.; Quach, Son; Lechese, Paul
2003-01-01
United Space Alliance (USA) developed and used a new software development method to meet technical, schedule, and budget challenges faced during the development and delivery of the new Shuttle Telemetry Ground Station at Kennedy Space Center. This method, called Collaborative Software Development, enabled KSC to effectively leverage industrial software and build additional capabilities to meet shuttle system and operational requirements. Application of this method resulted in reduced time to market, reduced development cost, improved product quality, and improved programmer competence while developing technologies of benefit to a small company in California (AP Labs Inc.). Many modifications were made to the baseline software product (VMEwindow), which improved its quality and functionality. In addition, six new software capabilities were developed, which are the subject of this article and add useful functionality to the VMEwindow environment. These new software programs are written in C or VXWorks and are used in conjunction with other ground station software packages, such as VMEwindow, Matlab, Dataviews, and PVWave. The Space Shuttle Telemetry Ground Station receives frequency-modulation (FM) and pulse-code-modulated (PCM) signals from the shuttle and support equipment. The hardware architecture (see figure) includes Sun workstations connected to multiple PCM- and FM-processing VersaModule Eurocard (VME) chassis. A reflective memory network transports raw data from PCM Processors (PCMPs) to the programmable digital-to-analog (D/A) converters, strip chart recorders, and analysis and controller workstations.
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex (KSCVC) in Florida, STS-135 Commander Chris Ferguson speaks during the Ground Breaking Ceremony for the future home of space shuttle Atlantis. Seated at right, are KSCVC Chief Operating Officer Bill Moore; Kennedy Space Center Deputy Director Janet Petro; Lt. Governor of Florida Jennifer Carroll; and Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Kim Shiflett
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex (KSCVC) in Florida, Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies, speaks during the Ground Breaking Ceremony for the future home of space shuttle Atlantis. Seated at right, are KSCVC Chief Operating Officer Bill Moore; Kennedy Space Center Deputy Director Janet Petro; Lt. Governor of Florida Jennifer Carroll; and STS-135 Commander Chris Ferguson. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Kim Shiflett
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex (KSCVC) in Florida, Lt. Governor Jennifer Carroll speaks during the Ground Breaking Ceremony for the future home of space shuttle Atlantis. Seated at right, are KSCVC Chief Operating Officer Bill Moore; Kennedy Space Center Deputy Director Janet Petro; Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies; and STS-135 Commander Chris Ferguson. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Kim Shiflett
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex (KSCVC) in Florida, Kennedy Space Center Deputy Director Janet Petro speaks during the Ground Breaking Ceremony for the future home of space shuttle Atlantis. Seated at right, are KSCVC Chief Operating Officer Bill Moore; Lt. Governor of Florida Jennifer Carroll; Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies; and STS-135 Commander Chris Ferguson. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Kim Shiflett
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex in Florida, Chief Operating Officer Bill Moore speaks during a Ground Breaking Ceremony for the future home of space shuttle Atlantis. Seated at right, are Kennedy Space Center Deputy Director Janet Petro; Lt. Governor of Florida Jennifer Carroll; Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies; and STS-135 Commander Chris Ferguson. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Kim Shiflett
Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Partridge, Jonathan K.
2011-01-01
The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.
NASA Technical Reports Server (NTRS)
Mellett, Kevin
2006-01-01
This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.
1978-04-21
This is a double exposure of the Shuttle Orbiter Enterprise on the strong back of the Dynamic Test Stand at Marshall Space Flight Center's building 4550 as it undergoes a Mated Vertical Ground Vibration Test (MVGVT). One exposure depicts a sunset view, while the other depicts a post-sunset view.
Interface Circuit Board For Space-Shuttle Communications
NASA Technical Reports Server (NTRS)
Parrish, Brett T.
1995-01-01
Report describes interface electronic circuit developed to enable ground controllers to send commands and data via Ku-band radio uplink to multiple circuits connected to standard IEEE-488 general-purpose interface bus in space shuttle. Design of circuit extends data-throughput capability of communication system.
STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Commander Robert D. Cabana is seen on the Space Shuttle Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck with the Shuttle Amateur Radio Experiment II (SAREX-II) (configuration C). Cabana is equipped with the SAREX-II headset and holds a cable leading to the 2-h window antenna mounted in forward flight deck window W1 (partially blocked by the seat headrest). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the shuttle.
Cornering characteristics of the nose-gear tire of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Vogler, W. A.; Tanner, J. A.
1981-01-01
An experimental investigation was conducted to evaluate cornering characteristics of the 32 x 8.8 nose gear tire of the space shuttle orbiter. Data were obtained on a dry concrete runway at nominal ground speeds ranging from 50 to 100 knots and over a range of tire vertical loads and yaw angles which span the expected envelope of loads and yaw angles to be encountered during space shuttle landing operations. The cornering characteristics investigated included side and drag forces and friction coefficients, aligning and overturning torques, friction force moment arm, and the lateral center of pressure shift. Results of this investigation indicate that the cornering characteristics of the space shuttle nose gear tire are insensitive to variations in ground speed over the range tested. The effects on cornering characteristics of variations in the tire vertical load and yaw angle are as expected. Trends observed are consistent with trends observed during previous cornering tests involving other tire sizes.
Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Scholz, A. L.; Hart, M. T.; Lowry, D. J.
1987-01-01
Methods and technolgoy were defined to reduce the overall operations cost of a major space program. Space Shuttle processing at Kennedy Space Center (KSC) was designed as the working model that would be the source of the operational information. Methods of improving efficiency of ground operations were assessed and technology elements that could reduce cost identified. Emphasis is on: (1) specific technology items and (2) management approaches required to develop and support efficient ground operations. Prime study results are to be recommendations on how to achieve more efficient operations and identification of existing or new technology that would make vehicle processing in both the current program and future programs more efficient and, therefore, less costly.
NASA Technical Reports Server (NTRS)
Woodbury, Sarah K.
2008-01-01
The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.
Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions
NASA Technical Reports Server (NTRS)
Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi
2009-01-01
Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the space flight environment may adversely affect the shelf life of pharmaceuticals aboard space missions.
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation of the compatibility of the space shuttle and Agena rocket vehicle was conducted. The Agena space tug configuration design is described in terms of the total vehicle system as well as the individual subsystems and major assemblies and components. The complete interface between the Agena space tug and the space shuttle orbiter is defined for in-flight and ground operations. The derivation and design of an evolutionary stage is also presented. This vehicle conforms to the same guidelines and interface requirements as the Agena space tug. Performance data developed for both vehicles for each of the three study baseline missions are included.
A comparison of time-shared vs. batch development of space software
NASA Technical Reports Server (NTRS)
Forthofer, M.
1977-01-01
In connection with a study regarding the ground support software development for the Space Shuttle, an investigation was conducted concerning the most suitable software development techniques to be employed. A time-sharing 'trial period' was used to determine whether or not time-sharing would be a cost-effective software development technique for the Ground Based Shuttle system. It was found that time-sharing substantially improved job turnaround and programmer access to the computer for the representative group of ground support programmers. Moreover, this improvement resulted in an estimated saving of over fifty programmer days during the trial period.
A comparison of hypersonic vehicle flight and prediction results
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Shafer, Mary F.
1995-01-01
Aerodynamic and aerothermodynamic comparisons between flight and ground test for four hypersonic vehicles are discussed. The four vehicles are the X-15, the Reentry F, the Sandia Energetic Reentry Vehicle Experiment (SWERVE), and the Space Shuttle. The comparisons are taken from papers published by researchers active in the various programs. Aerodynamic comparisons include reaction control jet interaction on the Space Shuttle. Various forms of heating including catalytic, boundary layer, shock interaction and interference, and vortex impingement are compared. Predictions were significantly exceeded for the heating caused by vortex impingement (on the Space Shuttle OMS pods) and for heating caused by shock interaction and interference on the X-15 and the Space Shuttle. Predictions of boundary-layer state were in error on the X-15, the SWERVE, and the Space Shuttle vehicles.
Space Shuttle Technical Conference, part 1
NASA Technical Reports Server (NTRS)
Chaffee, N. (Compiler)
1985-01-01
Articles providing a retrospective presentation and documentation of the key scientific and engineering achievements of the Space Shuttle Program are compiled. Topics areas include: (1) integrated avionics; (2) guidance, navigation, and control; (3) aerodynamics; (4) structures; (5) life support; environmental control; and crew station; and (6) ground operations.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, workers mate the External Tank, at left, to the underside of Space Shuttle Discovery, at right. Each of two aft external tank umbilical plates mate with a corresponding plate on the orbiter. The plates help maintain alignment among the umbilicals. The attach fitting is aft of the nose gear wheel well. Workers next will perform an electrical and mechanical verification of the mated interfaces to verify all critical vehicle connections. A Shuttle interface test is performed using the launch processing system to verify Space Shuttle vehicle interfaces and Space Shuttle vehicle-to-ground interfaces. In approximately one week, Space Shuttle Discovery will be ready for rollout to Launch Pad 39B for Return to Flight mission STS-114. The launch window for STS-114 is May 15 to June 3.
NASA Technical Reports Server (NTRS)
1972-01-01
The design and operations guidelines and requirements developed in the study of space shuttle nuclear system transportation are presented. Guidelines and requirements are presented for the shuttle, nuclear payloads (reactor, isotope-Brayton and small isotope sources), ground support systems and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.
10 Gbps Shuttle-to-Ground Adjunct Communication Link Capability Experiment
NASA Technical Reports Server (NTRS)
Ceniceros, J. M.; Sandusky, J. V.; Hemmati, H.
1999-01-01
A 1.2 Gbps space-to-ground laser communication experiment being developed for use on an EXpedite the PRocessing of Experiments to the Space Station (EXPRESS) Pallet Adapter can be adapted to fit the Hitchhiker cross-bay-carrier pallet and upgraded to data rates exceeding 1O Gbps. So modified, this instrument would enable both real-time data delivery and increased data volume for payloads using the Space Shuttle. Applications such as synthetic aperture radar and multispectral imaging collect large data volumes at a high rate and would benefit from the capability for real-time data delivery and from increased data downlink volume. Current shuttle downlink capability is limited to 50 Mbps, forcing such instruments to store large amounts of data for later analysis. While the technology is not yet sufficiently proven to be relied on as the primary communication link, when in view of the ground station it would increase the shuttle downlink rate capability 200 times, with typical total daily downlinks of 200 GB - as much data as the shuttle could downlink if it were able to maintain its maximum data rate continuously for one day. The lasercomm experiment, the Optical Communication Demonstration and High-Rate Link Facility (OCDHRLF), is being developed by the Jet Propulsion Laboratory's (JPL) Optical Communication Group through support from the International Space Station Engineering Research and Technology Development program. It is designed to work in conjunction with the Optical Communication Telescope Laboratory (OCTL) NASA's first optical communication ground station, which is under construction at JPL's Table Mountain Facility near Wrightwood, California. This paper discusses the modifications to the preliminary design of the flight system that would be necessary to adapt it to fit the Hitchhiker Cross-Bay Carrier. It also discusses orbit geometries which are favorable to the OCTL and potential non-NASA ground stations, anticipated burst-error-rates and bit-error-rates, and requirements for data collection on the ground.
Assessment of possible environmental effects of space shuttle operations
NASA Technical Reports Server (NTRS)
Cicerone, R. J.; Stedman, D. H.; Stolarski, R. S.; Dingle, A. N.; Cellarius, R. A.
1973-01-01
The potential of shuttle operations to contribute to atmospheric pollution is investigated. Presented in this interim report are results of the study to date on rocket exhaust inventory, exhaust interactions, dispersion of the ground cloud, detection and measurement of hydrochloric acid and aluminum oxide, environmental effects of hydrochloric acid and aluminum oxide, stratospheric effects of shuttle effluents, and mesospheric and ionospheric effects of orbiter reentry. The results indicate space shuttle operation will not result in adverse environmental effects if appropriate launch constraints are met.
2008-12-13
CAPE CANAVERAL, Fla. -- Before dawn, at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida, space shuttle Endeavour has been lifted away from the shuttle carrier aircraft, or SCA, underneath. The SCA will be rolled back and Endeavour placed on the ground. Visible on Endeavour is the tail cone that covers and protects the main engines during the ferry flight. The SCA carried the shuttle piggyback from California, where Endeavour landed Nov. 30 to end the STS-126 mission. After Endeavour is on the ground, it will be towed via the two-mile tow-way from the SLF by a diesel-powered tractor to the Orbiter Processing Facility where it will begin preparations for its next mission, STS-127, targeted for May 2009. Photo credit: NASA/Jim Grossmann
2008-12-13
CAPE CANAVERAL, Fla. -- Before dawn, at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida, space shuttle Endeavour is suspended by a sling under the mate/demate device. The shuttle carrier aircraft, or SCA, has rolled away. Endeavour, which retains the tail cone that covers and protects the main engines during the ferry flight, will be lowered onto the ground. The SCA carried the shuttle piggyback from California, where Endeavour landed Nov. 30 to end the STS-126 mission. After Endeavour is on the ground, it will be towed via the two-mile tow-way from the SLF by a diesel-powered tractor to the Orbiter Processing Facility where it will begin preparations for its next mission, STS-127, targeted for May 2009. Photo credit: NASA/Jim Grossmann
Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview
NASA Technical Reports Server (NTRS)
Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.
2014-01-01
In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.
Launch Processing System. [for Space Shuttle
NASA Technical Reports Server (NTRS)
Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.
1976-01-01
This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex (KSCVC) in Florida, Chief Operating Officer Bill Moore speaks during the Ground Breaking Ceremony for the future home of space shuttle Atlantis. Seated at right, are Kennedy Space Center Deputy Director Janet Petro; Lt. Governor of Florida Jennifer Carroll; and Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies. Partially blocked from view is STS-135 Commander Chris Ferguson. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Kim Shiflett
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex in Florida, state and local dignitaries participate in a Ground Breaking Ceremony for the future home of space shuttle Atlantis. The group includes KSCVC Chief Operating Officer Bill Moore; Kennedy Space Center Deputy Director Janet Petro; Lt. Governor of Florida Jennifer Carroll; Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies; and STS-135 Commander Chris Ferguson. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Jim Grossmann
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex (KSCVC) in Florida, state and local dignitaries participate in a Ground Breaking Ceremony for the future home of space shuttle Atlantis. From left, are KSCVC Chief Operating Officer Bill Moore; Kennedy Space Center Deputy Director Janet Petro; Lt. Governor of Florida Jennifer Carroll; Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies; and STS-135 Commander Chris Ferguson. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Kim Shiflett
2012-01-18
CAPE CANAVERAL, Fla. – During a ceremony in the Shuttle Plaza area at the Kennedy Space Center Visitor Complex in Florida, state and local dignitaries break ground for the future home of space shuttle Atlantis. From left, are KSCVC Chief Operating Officer Bill Moore; Kennedy Space Center Deputy Director Janet Petro; Lt. Governor of Florida Jennifer Carroll; Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies; and STS-135 Commander Chris Ferguson. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Jim Grossmann
2012-01-18
CAPE CANAVERAL, Fla. – In the Shuttle Plaza area at the Kennedy Space Center Visitor Complex (KSCVC) in Florida, dignitaries wait to speak during the Ground Breaking Ceremony for the future home of space shuttle Atlantis. From left, are KSCVC Chief Operating Officer Bill Moore; Kennedy Space Center Deputy Director Janet Petro; Lt. Governor of Florida Jennifer Carroll; Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies; and STS-135 Commander Chris Ferguson. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Jim Grossmann
2012-01-18
CAPE CANAVERAL, Fla. – During a ceremony in the Shuttle Plaza area at the Kennedy Space Center Visitor Complex (KSCVC) in Florida, state and local dignitaries break ground for the future home of space shuttle Atlantis. From left, are KSCVC Chief Operating Officer Bill Moore; Kennedy Space Center Deputy Director Janet Petro; Lt. Governor of Florida Jennifer Carroll; Jeremy Jacobs, chairman and chief executive officer of Delaware North Companies; and STS-135 Commander Chris Ferguson. Delaware North Parks & Resorts, in partnership with NASA’s Kennedy Space Center, broke ground for the 65,000 square-foot exhibit that will house Atlantis at the visitor complex. For more information, visit www.KennedySpaceCenter.com. Photo credit: NASA/Kim Shiflett
Ground winds for Kennedy Space Center, Florida (1978 version)
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.
1978-01-01
Ground level runway wind statistics are presented for the Kennedy Space Center, Florida area. Crosswind, headwind, tailwind, and headwind reversal percentage frequencies are given with respect to month and hour for the Kennedy Space Center Space Shuttle runway. This document supersedes NASA CR-128995 and should be used in place of it.
Force limits measured on a space shuttle flight
NASA Technical Reports Server (NTRS)
Scharton, T.
2000-01-01
The random vibration forces between a payload and the sidewall of the space shuttle have been measured in flight and compared with the force specifications used in ground vibration tests. The flight data are in agreement with a semi-empirical method, which is widely used to predict vibration test force limits.
NASA Technical Reports Server (NTRS)
1976-01-01
Physical, functional, and operational interfaces between the space shuttle orbiter and the AMPS payload are described for the ground handling and test phases, prelaunch, launch and ascent, operational, stowage, and reentry and landing activities.
Study of solid rocket motors for a space shuttle booster. Volume 4: Mass properties report
NASA Technical Reports Server (NTRS)
Vonderesch, A. H.
1972-01-01
Mass properties data for the 156 inch diameter, parallel burn, solid propellant rocket engine for the space shuttle booster are presented. Design ground rules and assumptions applicable to generation of the mass properties data are described, together with pertinent data sources.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Shafer, Mary F.
1993-01-01
Aerodynamic and aerothermodynamic comparisons between flight and ground test for the Space Shuttle at hypersonic speeds are discussed. All of the comparisons are taken from papers published by researchers active in the Space Shuttle program. The aerodynamic comparisons include stability and control derivatives, center-of-pressure location, and reaction control jet interaction. Comparisons are also discussed for various forms of heating, including catalytic, boundary layer, top centerline, side fuselage, OMS pod, wing leading edge, and shock interaction. The jet interaction and center-of-pressure location flight values exceeded not only the predictions but also the uncertainties of the predictions. Predictions were significantly exceeded for the heating caused by the vortex impingement on the OMS pods and for heating caused by the wing leading-edge shock interaction.
STS-56 Commander Cameron uses SAREX on OV-103's aft flight deck
1993-04-17
STS056-30-022 (8-17 April 1993) --- Aboard Discovery, astronaut Kenneth D. Cameron (call letters N5AWP), talks to amateur radio operators on Earth via the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League\\Amateur Satellite Corporation and the Johnson Space Center Amateur Radio Club to encourage public participation in the space program. It is part of an endeavor to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
STS-56 Pilot Oswald uses SAREX on forward flight deck of Discovery, OV-103
1993-04-17
STS056-04-004 (8-17 April 1993) --- Aboard Discovery, Astronaut Stephen S. Oswald, Pilot, talks to amateur radio operators on Earth via the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center Amateur Radio Club to encourage public participation in the space program through a program to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2015-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2014-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
Impact of combustion products from Space Shuttle launches on ambient air quality
NASA Technical Reports Server (NTRS)
Dumbauld, R. K.; Bowers, J. F.; Cramer, H. E.
1974-01-01
The present work describes some multilayer diffusion models and a computer program for these models developed to predict the impact of ground clouds formed during Space Shuttle launches on ambient air quality. The diffusion models are based on the Gaussian plume equation for an instantaneous volume source. Cloud growth is estimated on the basis of measurable meteorological parameters: standard deviation of the wind azimuth angle, standard deviation of wind elevation angle, vertical wind-speed shear, vertical wind-direction shear, and depth of the surface mixing layer. Calculations using these models indicate that Space Shuttle launches under a variety of meteorological regimes at Kennedy Space Center and Vandenberg AFB are unlikely to endanger the exposure standards for HCl; similar results have been obtained for CO and Al2O3. However, the possibility that precipitation scavenging of the ground cloud might result in an acidic rain that could damage vegetation has not been investigated.
Closeup view of a Space Shuttle Main Engine (SSME) installed ...
Close-up view of a Space Shuttle Main Engine (SSME) installed in position number one on the Orbiter Discovery. A ground-support mobile platform is in place below the engine to assist in technicians with the installation of the engine. This Photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Space Shuttle Operations and Infrastructure: A Systems Analysis of Design Root Causes and Effects
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.
2005-01-01
This NASA Technical Publication explores and documents the nature of Space Shuttle operations and its supporting infrastructure and addresses fundamental questions often asked of the Space Shuttle program why does it take so long to turnaround the Space Shuttle for flight and why does it cost so much? Further, the report provides an overview of the cause-and effect relationships between generic flight and ground system design characteristics and resulting operations by using actual cumulative maintenance task times as a relative measure of direct work content. In addition, this NASA TP provides an overview of how the Space Shuttle program's operational infrastructure extends and accumulates from these design characteristics. Finally, and most important, the report derives a set of generic needs from which designers can revolutionize space travel from the inside out by developing and maturing more operable and supportable systems.
Electromagnetic Compatibility for the Space Shuttle
NASA Technical Reports Server (NTRS)
Scully, Robert C.
2004-01-01
This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.
STS-56 MS1 Foale uses SAREX on forward flight deck of Discovery, OV-103
1993-04-17
STS056-30-001 (8-17 April 1993) --- Aboard Discovery, astronaut C. Michael Foale, (call letters KB5UAC), talks to amateur radio operators on Earth via the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center Amateur Radio Club to encourage public participation in the space program through an endeavor to demonstrate the effectiveness of conducting short-wave radio transmissions. These transmissions occur between the Shuttle and ground-based radio operators at low cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.
Laser data transfer flight experiment definition
NASA Technical Reports Server (NTRS)
Merritt, J. R.
1975-01-01
A set of laser communication flight experiments to be performed between a relay satellite, ground terminals, and space shuttles were synthesized and evaluated. Results include a definition of the space terminals, NASA ground terminals, test methods, and test schedules required to perform the experiments.
NASA Technical Reports Server (NTRS)
2000-01-01
Kennedy Space Center's need to conduct real-time monitoring of Space Shuttle operations led to the development of Netlander Inc.'s JTouch system. The technology behind JTouch allows engineers to view Space Shuttle and ground support data from any desktop computer using a web browser. Companies can make use of JTouch to better monitor locations scattered around the world, increasing decision-making speed and reducing travel costs for site visits.
2000-06-02
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC
2000-06-02
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC
1998-12-18
Donald McMonagle (left), manager, Launch Integration, speaks to federal and state elected officials during the ground breaking ceremony for a multi-purpose hangar, phase one of the Reusable Launch Vehicle (RLV) Support Complex to be built near the Shuttle Landing Facility. At right are Center Director Roy Bridges and Executive Director of the Spaceport Florida Authority (SFA) Ed O'Connor. The new complex is jointly funded by SFA, NASA's Space Shuttle Program and Kennedy Space Center. It is intended to support the Space Shuttle and other RLV land X-vehicle systems. Completion is expected by the year 2000
NASA Technical Reports Server (NTRS)
Ingalls, John; Cipolletti, John
2011-01-01
Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures and methods are incongruent. Some processing products are still done on paper, some electronic, and many being converted in between. Business systems then are not fully compatible, and paper as well as electronic conversions are time-consuming and costly. NASA and its Shuttle contractors setup rules and systems to handle what has produced over 130 RLV launches, but they have had many challenges. Attempts have been made to apply aviation industry specifications to make the Shuttle more efficient with its ground processing. One efficiency project example was to make a Shuttle Maintenance Manual (SMM) based on the commercial ATA (Air Transport Association of America) Spec 100 for technical publications. This industry standard, along with others, has been a foundation for efficient global MRO of commercial airlines for years. A modified version was also made for some military aircraft. The SMM project found many similarities in Spec 100 which apply to the Shuttle, and room for expansion for space systems/structures not in aircraft. The SMM project team met with the ATA and representatives from NASA's X-33 and X-34 programs to discuss collaboration on a national space standard based on Spec 100. A pilot project was enabled for a subset of Shuttle systems. Full implementation was not yet achieved, X-33 and X-34 were cancelled, and the Shuttles were then designated for retirement. Nonetheless, we can learn from this project how to expand this concept to all space vehicle products. Since then, ATA has joined with ASD (AeroSpace and Defence Industries Association of Europe) and AIA (Aerospace Industries Association) to form a much-enhanced and expanded international specification: Sl000D, International Specification for Technical Publications. It includes air, land, and sea vehicles, missiles, support equipment, ordnance, and communications. It is used by a growing number of countries for commercial and government products. Its modular design is supported by a Common Source Dabase (CSDB), and COTS (commercial off-the-shelf) software is available for production of IETP's (Interactive Electronic Technical Publications). A few space industry products in Europe have begun to apply Sl000D already. Also, there are other related standards/specifications which have global implications. We have an opportunity to adapt Sl000D and possibly other standards for use with space vehicles and ground systems. Sl000D has plenty of flexibility to apply to any product needed. To successfully grow the viability of the space industry, all members, commercial and government, will need to engage cooperatively in developing and applying standards to move toward interoperability. If we leverage and combine the best existing space standards and specifications, develop new ones to address known gaps, and adapt the best applicable features from other industries, we can establish an infrastructure to not only accelerate current development, but also build longevity for a more cohesive international space community.
NASA Technical Reports Server (NTRS)
1974-01-01
The impacts of achieving compatibility of the Earth Observatory Satellite (EOS) with the space shuttle and the potential benefits of space shuttle utilization are discussed. Mission requirements and mission suitability, including the effects of multiple spacecraft missions, are addressed for the full spectrum of the missions. Design impact is assessed primarily against Mission B, but unique requirements reflected by Mission A, B, and C are addressed. The preliminary results indicated that the resupply mission had the most pronounced impact on spacecraft design and cost. Program costs are developed for the design changes necessary to achieve EOS-B compatibility with Space Shuttle operations. Non-recurring and recurring unit costs are determined, including development, test, ground support and logistics, and integration efforts. Mission suitability is addressed in terms of performance, volume, and center of gravity compatibility with both space shuttle and conventional launch vehicle capabilities.
1999-10-29
A steam roller packs down the ground next to construction of a support building, part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes a multi-purpose hangar and the building to be used for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
Mathematical models for space shuttle ground systems
NASA Technical Reports Server (NTRS)
Tory, E. G.
1985-01-01
Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.
Proposed space shuttle cargo handling criteria at the operational site (preliminary)
NASA Technical Reports Server (NTRS)
Beck, P. E.
1972-01-01
The criteria for cargo handling at the operational site of space shuttles are presented, based on assumed program requirements. The concepts for the following functions are described: maintenance and checkout facility, transfer to launch pad, and launch pad. The requirements for the ground equipment are given along with the general sequences for cargo loading.
Study of solid rocket motor for space shuttle booster, volume 2, book 2
NASA Technical Reports Server (NTRS)
1972-01-01
A technical analysis of the solid propellant rocket engines for use with the space shuttle is presented. The subjects discussed are: (1) solid rocket motor stage recovery, (2) environmental effects, (3) man rating of the solid propellant rocket engines, (4) system safety analysis, (5) ground support equipment, and (6) transportation, assembly, and checkout.
The space shuttle payload planning working groups. Volume 2: Atmospheric and space physics
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of the Atmospheric and Space Physics working group of the space shuttle mission planning activity are presented. The principal objectives defined by the group are: (1) to investigate the detailed mechanisms which control the near-space environment of the earth, (2) to perform plasma physics investigations not feasible in ground-based laboratories, and (3) to conduct investigations which are important in understanding planetary and cometary phenomena. The core instrumentation and laboratory configurations for conducting the investigations are defined.
Seismic excitation by space shuttles
Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.
1992-01-01
Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were simultaneously hit by the space shuttle shock waves. The proximity of the natural periods of the high rise buildings and the modal periods of the Los Angeles basin enabled efficient energy transfer from shock wave to seismic wave. ?? 1992 Springer-Verlag.
Space transportation system shuttle turnabout analysis report
NASA Technical Reports Server (NTRS)
Reedy, R. E.
1979-01-01
The progress made and the problems encountered by the various program elements of the shuttle program in achieving the 160 hour ground turnaround goal are presented and evaluated. Task assessment time is measured against the program allocation time.
Shuttle Liquid Fly Back Booster Configuration Options
NASA Technical Reports Server (NTRS)
Healy, T. J., Jr.
1998-01-01
This paper surveys the basic configuration options available to a Liquid Fly Back Booster (LFBB), integrated with the Space Shuttle system. The background of the development of the LFBB concept is given. The influence of the main booster engine (BME) installations and the Fly Back Engine (FBE) installation on the aerodynamic configurations are also discussed. Limits on the LFBB configuration design space imposed by the existing Shuttle flight and ground elements are also described. The objective of the paper is to put the constrains and design space for an LFBB in perspective. The object of the work is to define LFBB configurations that significantly improve safety, operability, reliability and performance of the Shuttle system and dramatically lower operations costs.
Weather impacts on space operations
NASA Astrophysics Data System (ADS)
Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.
The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.
STS-68 on Runway with 747 SCA/Columbia Ferry Flyby
1994-10-11
The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor’s landing 11 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land.
STS-68 on Runway with 747 SCA - Columbia Ferry Flyby
1994-10-11
The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor’s landing 11 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land.
2008-03-27
CAPE CANAVERAL, Fla. --- STS-123 Mission Specialist Takao Doi talks to the media about his experiences on the mission to the International Space Station. Doi represents the Japan Aerospace Exploration Agency. The crew landed at Kennedy aboard space shuttle Endeavour at 8:39 p.m. EDT March 26. Endeavour's 16-day flight was the longest shuttle mission to the International Space Station and included a record five spacewalks. The shuttle's seven astronauts worked with the three-member station crew and ground teams around the world to install the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, known as Dextre. Photo credit: NASA/Kim Shiflett
Ion beam plume and efflux characterization flight experiment study. [space shuttle payload
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.
1977-01-01
A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet
NASA Technical Reports Server (NTRS)
2000-01-01
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet
2000-02-03
The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing "jumbo jets" that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.
NASA Astrophysics Data System (ADS)
Bowling, Timothy; Calais, Eric; Haase, Jennifer S.
2013-03-01
The exhaust plume of the Space Shuttle during its ascent triggers acoustic waves which propagate through the atmosphere and induce electron density changes at ionospheric heights which changes can be measured using ground-based Global Positioning System (GPS) phase data. Here, we use a network of GPS stations to study the acoustic wave generated by the STS-125 Space Shuttle launch on May 11, 2009. We detect the resulting changes in ionospheric electron density, with characteristics that are typical of acoustic waves triggered by explosions at or near the Earth's surface or in the atmosphere. We successfully reproduce the amplitude and timing of the observed signal using a ray-tracing model with a moving source whose amplitude is directly scaled by a physical model of the shuttle exhaust energy, acoustic propagation in a dispersive atmosphere and a simplified two-fluid model of collisions between neutral gas and free electrons in the ionosphere. The close match between observed and model waveforms validates the modelling approach. This raises the possibility of using ground-based GPS networks to estimate the acoustic energy release of explosive sources near the Earth's surface or in atmosphere, and to constrain some atmospheric acoustic parameters.
STS-116 Flight Controllers on console during mission - WFCR - Orbit 2
2006-12-20
JSC2006-E-54711 (21 Dec. 2006) --- Overall view of the Shuttle Flight Control Room in the Johnson Space Center's Mission Control Center during the final deployment of some small satellites from Space Shuttle Discovery's cargo bay. On a screen in the front of the control room, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers and viewed via live television on the ground.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Processing ground-based near-infrared imagery of space shuttle re-entries
NASA Astrophysics Data System (ADS)
Spisz, Thomas S.; Taylor, Jeff C.; Kennerly, Stephen W.; Osei-Wusu, Kwame; Gibson, David M.; Horvath, Thomas J.; Zalameda, Joseph N.; Kerns, Robert V.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; Dantowitz, Ronald F.; Kozubal, Marek J.
2012-06-01
Ground-based high-resolution, calibrated, near-infrared (NIR) imagery of the Space Shuttle STS-134 Endeavour during reentry has been obtained as part of NASA's HYTHIRM (Hypersonic Thermodynamic InfraRed Measurements) project. The long-range optical sensor package called MARS (Mobile Aerospace Reconnaissance System) was positioned in advance to acquire and track part of the shuttle re-entry. Imagery was acquired during a few minutes, with the best imagery being processed when the shuttle was at 133 kft at Mach 5.8. This paper describes the processing of the NIR imagery, building upon earlier work from the airborne imagery collections of several prior shuttle missions. Our goal is to calculate the temperature distribution of the shuttle's bottom surface as accurately as possible, considering both random and systematic errors, while maintaining all physical features in the imagery, especially local intensity variations. The processing areas described are: 1) radiometric calibration, 2) improvement of image quality, 3) atmospheric compensation, and 4) conversion to temperature. The computed temperature image will be shown, as well as comparisons with thermocouples at different positions on the shuttle. A discussion of the uncertainties of the temperature estimates using the NIR imagery is also given.
Aerial photo shows RLV complex at KSC
NASA Technical Reports Server (NTRS)
2000-01-01
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi- purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.
1988-01-01
This artist's concept drawing depicts the Tracking and Data Relay Satellite-C (TDRS-C), which was the primary payload of the Space Shuttle Discovery on the STS-26 mission, launched on September 29, 1988. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The deployment of TDRS-G on the STS-70 mission being the latest in the series, NASA has successfully launched six TDRSs.
Orion Navigation Sensitivities to Ground Station Infrastructure for Lunar Missions
NASA Technical Reports Server (NTRS)
Getchius, Joel; Kukitschek, Daniel; Crain, Timothy
2008-01-01
The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.
Landing of the Shuttle Challenger at Edwards AFB and end of STS 51-F mission
1985-08-06
51F-S-160 (6 Aug 1985) --- The Space Shuttle Challenger is moments away from touchdown on the dry lake bed at Edwards Air Force Base in California in this ground-level view. The early afternoon landing brought to a successful close eight days in space for seven crewmembers and a battery of scientific experiments aboard.
NASA Technical Reports Server (NTRS)
Wright, J. P.; Wilson, D. E.
1976-01-01
Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights.
2008-12-13
CAPE CANAVERAL, Fla. -- Before dawn, at the Shuttle Landing Facility, or SLF, at NASA's Kennedy Space Center in Florida, space shuttle Endeavour is lowered toward the ground by the sling in the mate/demate device. Visible on Endeavour is the tail cone that covers and protects the main engines during the ferry flight. After Endeavour is on the ground, it will be towed via the two-mile tow-way from the SLF by a diesel-powered tractor to the Orbiter Processing Facility where it will begin preparations for its next mission, STS-127, targeted for May 2009. Photo credit: NASA/Jim Grossmann
2006-08-26
KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.
2006-08-26
KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.
Analysis of microgravity space experiments Space Shuttle programmatic safety requirements
NASA Technical Reports Server (NTRS)
Terlep, Judith A.
1996-01-01
This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.
Achieving Space Shuttle Abort-to-Orbit Using the Five-Segment Booster
NASA Technical Reports Server (NTRS)
Craft, Joe; Ess, Robert; Sauvageau, Don
2003-01-01
The Five-Segment Booster design concept was evaluated by a team that determined the concept to be feasible and capable of achieving the desired abort-to-orbit capability when used in conjunction with increased Space Shuttle main engine throttle capability. The team (NASA Johnson Space Center, NASA Marshall Space Flight Center, ATK Thiokol Propulsion, United Space Alliance, Lockheed-Martin Space Systems, and Boeing) selected the concept that provided abort-to-orbit capability while: 1) minimizing Shuttle system impacts by maintaining the current interface requirements with the orbiter, external tank, and ground operation systems; 2) minimizing changes to the flight-proven design, materials, and processes of the current four-segment Shuttle booster; 3) maximizing use of existing booster hardware; and 4) taking advantage of demonstrated Shuttle main engine throttle capability. The added capability can also provide Shuttle mission planning flexibility. Additional performance could be used to: enable implementation of more desirable Shuttle safety improvements like crew escape, while maintaining current payload capability; compensate for off nominal performance in no-fail missions; and support missions to high altitudes and inclinations. This concept is a low-cost, low-risk approach to meeting Shuttle safety upgrade objectives. The Five-Segment Booster also has the potential to support future heavy-lift missions.
Aerial views of construction on the RLV hangar at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Looking southwest, this view shows ongoing construction of a multi-purpose hangar, which is part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. Edging the construction is Sharkey Road, which parallels the landing strip of the Shuttle Landing Facility nearby. The RLV complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
NASA Technical Reports Server (NTRS)
Carek, David Andrew
2003-01-01
This presentation covers the design of a command and control architecture developed by the author for the Combustion Module-2 microgravity experiment, which flew aboard the STS-107 Shuttle mission, The design was implemented to satisfy a hybrid network that utilized TCP/IP for both the onboard segment and ground segment, with an intermediary unreliable transport for the space to ground segment. With the infusion of Internet networking technologies into Space Shuttle, Space Station, and spacecraft avionics systems, comes the need for robust methodologies for ground command and control. Considerations of high bit error links, and unreliable transport over intermittent links must be considered in such systems. Internet protocols applied to these systems, coupled with the appropriate application layer protections, can provide adequate communication architectures for command and control. However, there are inherent limitations and additional complexities added by the use of Internet protocols that must be considered during the design. This presentation will discuss the rationale for the: framework and protocol algorithms developed by the author. A summary of design considerations, implantation issues, and learned lessons will be will be presented. A summary of mission results using this communications architecture will be presented. Additionally, areas of further needed investigation will be identified.
NASA Technical Reports Server (NTRS)
Haas, Lin; Massey, Christopher; Baraban, Dmitri
2003-01-01
This paper presents the Global Positioning System (GPS) navigation results from the Communications and Navigation Demonstration on Shuttle (CANDOS) experiment flown on STS-107. This experiment was the initial flight of a Low Power Transceiver (LPT) that featured high capacity space- space and space-ground communications and GPS- based navigation capabilities. The LPT also hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using LPT communications links via the Tracking and Data Relay Satellite System (TDRSS). An overview of the LPT s navigation software and the GPS experiment timeline is presented, along with comparisons of test results to the NASA Johnson Space Center (JSC) real-time ground navigation vectors and Best Estimate of Trajectory (BET).
Shuttle Carrier Aircraft (SCA) Fleet Photo
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's two Boeing 747 Shuttle Carrier Aircraft (SCA) are seen here nose to nose at Dryden Flight Research Center, Edwards, California. The front mounting attachment for the Shuttle can just be seen on top of each. The SCAs are used to ferry Space Shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are; three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached, and two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Texas. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
The Space Shuttle Columbia Preservation Project - The Debris Loan Process
NASA Technical Reports Server (NTRS)
Thurston, Scott; Comer, Jim; Marder, Arnold; Deacon, Ryan
2005-01-01
The purpose of this project is to provide a process for loan of Columbia debris to qualified researchers and technical educators to: (1) Aid in advanced spacecraft design and flight safety development (2) Advance the study of hypersonic re-entry to enhance ground safety. (3) Train and instruct accident investigators and (4) Establish an enduring legacy for Space Shuttle Columbia and her crew.
Study of solid rocket motor for space shuttle booster, volume 2, book 1
NASA Technical Reports Server (NTRS)
1972-01-01
The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.
Study of solid rocket motor for space shuttle booster, volume 2, book 3, appendix A
NASA Technical Reports Server (NTRS)
1972-01-01
A systems requirements analysis for the solid propellant rocket engine to be used with the space shuttle was conducted. The systems analysis was developed to define the physical and functional requirements for the systems and subsystems. The operations analysis was performed to identify the requirements of the various launch operations, mission operations, ground operations, and logistic and flight support concepts.
1985-07-01
This photograph shows the Instrument Pointing System (IPS) for Spacelab-2 being deployed in the cargo bay of the Space Shuttle Orbiter Challenger. The European Space Agency (ESA) developed this irnovative pointing system for the Spacelab program. Previously, instruments were pointed toward particular celestial objects or areas by maneuvering the Shuttle to an appropriate attitude. The IPS could aim instruments more accurately than the Shuttle and kept them fixed on a target as the Shuttle moved. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the IPS. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that uses ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities to carry very large instruments, launch and retrieve satellites, and point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched on July 29, 1985 aboard the Space Shuttle Orbiter Challenger. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.
1985-07-01
This photograph shows the Instrument Pointing System (IPS) for Spacelab-2 being deployed in the cargo bay of the Space Shuttle Orbiter Challenger. The European Space Agency (ESA) developed this irnovative pointing system for the Spacelab program. Previously, instruments were pointed toward particular celestial objects or areas by maneuvering the Shuttle to an appropriate attitude. The IPS could aim instruments more accurately than the Shuttle and kept them fixed on a target as the Shuttle moved. On the first pallet, three solar instruments and one atmospheric instrument were mounted on the IPS. Spacelab-2 was the first pallet-only mission. One of the goals of the mission was to verify that the pallets' configuration was satisfactory for observations and research. Except for two biological experiments and an experiment that used ground-based instruments, the Spacelab-2 scientific instruments needed direct exposure to space. The Spacelab-2 mission was designed to capitalize on the Shuttle-Spacelab capabilities to carry very large instruments, launch and retrieve satellites, and point several instruments independently with accuracy and stability. Spacelab-2 (STS-51F, 19th Shuttle mission) was launched on July 29, 1985 aboard the Space Shuttle Orbiter Challenger. The Marshall Space Flight Center had overall management responsibilities of the Spacelab missions.
2004-02-25
KENNEDY SPACE CENTER, FLA. - On a tour of the Orbiter Processing Facility, Center Director Jim Kennedy (left) listens to Kathy Laufenberg, Orbiter Airframe Engineering ground area manager, with United Space Alliance, about corrosion work being done on the external tank door of orbiter Endeavour. On either side of Laufenberg are Tom Roberts, Airframe Engineering System specialist, also with USA, and Joy Huff, with KSC Space Shuttle Processing. Endeavour is in its Orbiter Major Modification period, which began in December 2003.
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; McCrea, Andrew C.; Gruber, Jennifer R.; Hensley, Doyle W.; Verstynen, Harry A.; Oram, Timothy D.; Berger, Karen T.; Splinter, Scott C.; Horvath, Thomas J.; Kerns, Robert V.
2011-01-01
The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project has been responsible for obtaining spatially resolved, scientifically calibrated in-flight thermal imagery of the Space Shuttle Orbiter during reentry. Starting with STS-119 in March of 2009 and continuing through to the majority of final flights of the Space Shuttle, the HYTHIRM team has to date deployed during seven Shuttle missions with a mix of airborne and ground based imaging platforms. Each deployment of the HYTHIRM team has resulted in obtaining imagery suitable for processing and comparison with computational models and wind tunnel data at Mach numbers ranging from over 18 to under Mach 5. This paper will discuss the detailed mission planning and coordination with the NASA Johnson Space Center Mission Control Center that the HYTHIRM team undergoes to prepare for and execute each mission.
Deployment of DRAGONSAT from Space Shuttle Endeavours Payload Bay
2009-07-30
S127-E-012308 (30 July 2009) --- As seen through windows on the aft flight deck of Space Shuttle Endeavour, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment 2 (ANDE-2) is released from the shuttle's payload bay by STS-127 crew members. ANDE-2 consists of two spherical micro-satellites which will measure the density and composition of the low-Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
Deployment of DRAGONSAT from Space Shuttle Endeavours Payload Bay
2009-07-30
S127-E-012322 (30 July 2009) --- As seen through windows on the aft flight deck of Space Shuttle Endeavour, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment 2 (ANDE-2) is released from the shuttle's payload bay by STS-127 crew members. ANDE-2 consists of two spherical micro-satellites which will measure the density and composition of the low-Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
1999-08-23
A worker takes a measurement for construction of the Reusable Launch Vehicle (RLV) complex at KSC. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-08-23
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-08-23
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-08-23
Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Starr, Stanley O.; Stevenson, G.; Rivera, Jorge E.; Sullivan, Steven J.
2011-01-01
For over 30 years the Kennedy Space Center (KSC) has processed the Space Shuttle; handling all hands-on aspects from receiving the Orbiter, External Tanks, Solid Rocket Booster Segments, and Payloads, through certification, check-out, and assembly, and ending with fueling, count-down, and launch. A team of thousands have worked this highly complicated, yet supremely organized, process and have, as a consequence, generated an exceptional amount of technology to solve a host of problems. This paper describes the contributions of one team that formed with the express purpose to help solve some of these diverse Shuttle ground processing problems.
Aerial photo shows RLV complex at KSC
NASA Technical Reports Server (NTRS)
2000-01-01
In the foreground of this aerial photo is the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to its left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (center). At the upper left is the runway. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.
International Space Station (ISS) Water Transfer Hardware Logistics
NASA Technical Reports Server (NTRS)
Shkedi, Brienne D.
2006-01-01
Water transferred from the Space Shuttle to the International Space Station (ISS) is generated as a by-product from the Shuttle fuel cells, and is generally preferred over the Progress which has to launch water from the ground. However, launch mass and volume are still required for the transfer and storage hardware. Some of these up-mass requirements have been reduced since ISS assembly began due to changes in the storage hardware (CWC). This paper analyzes the launch mass and volume required to transfer water from the Shuttle and analyzes the up-mass savings due to modifications in the CWC. Suggestions for improving the launch mass and volume are also provided.
Oblique view at ground level looking at the aft and ...
Oblique view at ground level looking at the aft and port side of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note that the Orbiter Maneuvering System/Reaction Control System pods and the Shuttle Main Engines are removed in this image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
A summary of existing and planned experiment hardware for low-gravity fluids research
NASA Technical Reports Server (NTRS)
Hill, Myron E.; Omalley, Terence F.
1991-01-01
An overview is presented of (1) existing ground-based, low gravity research facilities, with examples of hardware capabilities, and (2) existing and planned space-based research facilities, with examples of current and past flight hardware. Low-gravity, ground-based facilities, such as drop towers and aircraft, provide the experimenter with quick turnaround time, easy access to equipment, gravity levels ranging from 10(exp -2) to 10(exp -6) G, and low-gravity durations ranging from 2 to 30 sec. Currently, the only operational space-based facility is the Space Shuttle. The Shuttle's payload bay and middeck facilities are described. Existing and planned low-gravity fluids research facilities are also described with examples of experiments and hardware capabilities.
2012-04-16
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the Shuttle Carrier Aircraft backs away from the mate/demate device with space shuttle Discovery secured to its back. The device, also known as the MDD, is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the aircraft, or SCA. The SCA is a Boeing 747 jet, originally manufactured for commercial use, which was modified by NASA to transport the shuttles between destinations on Earth. The SCA designated NASA 905 is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Tim Jacobs
Expendable Second Stage Reusable Space Shuttle Booster. Volume 9; Preliminary System Specification
NASA Technical Reports Server (NTRS)
1971-01-01
The specification for establishing the requirements for the system performance, design, development, and ground and flight operations of the expendable second stage on a reusable space shuttle booster system is presented. The basic specification is that the system shall be capable of placing payloads in excess of 100,000 pounds into earth orbit. In addition, the expendable second stage provides a multimission, economical, large capability system suitable for a variety of space missions in the 1980 time period.
Umbilical Connect Techniques Improvement-Technology Study
NASA Technical Reports Server (NTRS)
Valkema, Donald C.
1972-01-01
The objective of this study was to develop concepts, specifications, designs, techniques, and procedures capable of significantly reducing the time required to connect and verify umbilicals for ground services to the space shuttle. The desired goal was to reduce the current time requirement of several shifts for the Saturn 5/Apollo to an elapsed time of less than one hour to connect and verify all of the space shuttle ground service umbilicals. The study was conducted in four phases: (1) literature and hardware examination, (2) concept development, (3) concept evaluation and tradeoff analysis, and (4) selected concept design. The final product of this study was a detail design of a rise-off disconnect panel prototype test specimen for a LO2/LH2 booster (or an external oxygen/hydrogen tank for an orbiter), a detail design of a swing-arm mounted preflight umbilical carrier prototype test specimen, and a part 1 specification for the umbilical connect and verification design for the vehicles as defined in the space shuttle program.
Space Shuttle orbiter Columbia on the ground at Edwards Air Force Base
1981-04-14
S81-30749 (14 April 1981) --- This high angle view shows the scene at Edwards Air Force Base in southern California soon after the successful landing of the space shuttle orbiter Columbia to end STS-1. Service vehicles approach the spacecraft to perform evaluations for safety, egress preparedness, etc. Astronauts John W. Young, commander, and Robert L. Crippen, pilot, are still inside the spacecraft. Photo credit: NASA
NASA Technical Reports Server (NTRS)
1975-01-01
Cost comparisons were made between three modes of operation (expend, ground refurbish, and space resupply) for the Earth Observation System (EOS-B) to furnish data to NASA on alternative ways to use the shuttle/EOS. Results of the analysis are presented in tabular form.
Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erwin V.
2008-01-01
A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for the four actuators on one shuttle, each with a 2-bearing shaft assembly, established a reliability level of 96.9 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.
Post-Shuttle EVA Operations on ISS
NASA Technical Reports Server (NTRS)
West, Bill; Witt, Vincent; Chullen, Cinda
2010-01-01
The EVA hardware used to assemble and maintain the ISS was designed with the assumption that it would be returned to Earth on the Space Shuttle for ground processing, refurbishment, or failure investigation (if necessary). With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (EMU, Airlock Systems, EVA tools, and associated support equipment and consumables) to perform ISS EVAs until 2016 and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, NASA and the One EVA contractor team jointly initiated the EVA 2010 Project. Challenges were addressed to extend the operating life and certification of EVA hardware, secure the capability to launch EVA hardware safely on alternate launch vehicles, and protect EMU hardware operability on orbit for long durations.
Aeronautics and Space Report of the President: Fiscal Year 1996 Activities
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.
2008-05-06
CAPE CANAVERAL, Fla. -- Back at the NASA Kennedy Space Center Shuttle Landing Facility, STS-124 Pilot Ken Ham is happy with the successful space shuttle landing practice aboard NASA's Shuttle Training Aircraft, or STA. Building. Kelly and Ham will be practicing space shuttle landings. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. The crew for space shuttle Discovery's STS-124 mission is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test, or TCDT. Providing astronauts and ground crews with an opportunity to participate in various simulated countdown activities, TCDT includes equipment familiarization and emergency training. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
Physical performance is maintained in women consuming only foods used on the U.S. Space Shuttle.
Gretebeck, R J; Siconolfi, S F; Rice, B; Lane, H W
1994-11-01
In-flight reductions in caloric intake, body weight, lean body mass (LBM), aerobic capacity, and other measures of physical performance have been consistent findings in the U.S. and Russian space programs. The diet provided for astronauts in space has been suggested as a possible contributor to these changes because food selection, preparation, and storage facilities are limited on spacecraft. In this ground-based study, consuming only foods used on the Space Shuttle for 28 d did not affect aerobic capacity, LBM, or measures of muscle strength or endurance in 12 healthy women (ages 28-47 years). However, normal consumption patterns were affected by restriction to the Space Shuttle diet, namely a proportional increase in carbohydrate consumed, with compensatory decreases in protein and fat. These results suggest that physical performance and LBM can be maintained under normal gravity conditions in active women who consume a Space Shuttle food-system diet for 28 d.
Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.
1989-01-01
An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences.
Atmospheric environment for Space Shuttle (STS-5) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1983-01-01
This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-5 launch time on November 11, 1982, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in he SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-5 vehicle ascent and SRB descent have been constructed. The STS-5 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.
Enhanced Software for Scheduling Space-Shuttle Processing
NASA Technical Reports Server (NTRS)
Barretta, Joseph A.; Johnson, Earl P.; Bierman, Rocky R.; Blanco, Juan; Boaz, Kathleen; Stotz, Lisa A.; Clark, Michael; Lebovitz, George; Lotti, Kenneth J.; Moody, James M.;
2004-01-01
The Ground Processing Scheduling System (GPSS) computer program is used to develop streamlined schedules for the inspection, repair, and refurbishment of space shuttles at Kennedy Space Center. A scheduling computer program is needed because space-shuttle processing is complex and it is frequently necessary to modify schedules to accommodate unanticipated events, unavailability of specialized personnel, unexpected delays, and the need to repair newly discovered defects. GPSS implements constraint-based scheduling algorithms and provides an interactive scheduling software environment. In response to inputs, GPSS can respond with schedules that are optimized in the sense that they contain minimal violations of constraints while supporting the most effective and efficient utilization of space-shuttle ground processing resources. The present version of GPSS is a product of re-engineering of a prototype version. While the prototype version proved to be valuable and versatile as a scheduling software tool during the first five years, it was characterized by design and algorithmic deficiencies that affected schedule revisions, query capability, task movement, report capability, and overall interface complexity. In addition, the lack of documentation gave rise to difficulties in maintenance and limited both enhanceability and portability. The goal of the GPSS re-engineering project was to upgrade the prototype into a flexible system that supports multiple- flow, multiple-site scheduling and that retains the strengths of the prototype while incorporating improvements in maintainability, enhanceability, and portability.
Orbiter Interface Unit and Early Communication System
NASA Technical Reports Server (NTRS)
Cobbs, Ronald M.; Cooke, Michael P.; Cox, Gary L.; Ellenberger, Richard; Fink, Patrick W.; Haynes, Dena S.; Hyams, Buddy; Ling, Robert Y.; Neighbors, Helen M.; Phan, Chau T.;
2004-01-01
This report describes the Orbiter Interface Unit (OIU) and the Early Communication System (ECOMM), which are systems of electronic hardware and software that serve as the primary communication links for the International Space Station (ISS). When a space shuttle is at or near the ISS during assembly and resupply missions, the OIU sends groundor crew-initiated commands from the space shuttle to the ISS and relays telemetry from the ISS to the space shuttle s payload data systems. The shuttle then forwards the telemetry to the ground. In the absence of a space shuttle, the ECOMM handles communications between the ISS and Johnson Space Center via the Tracking and Data Relay Satellite System (TDRSS). Innovative features described in the report include (1) a "smart data-buffering algorithm that helps to preserve synchronization (and thereby minimize loss) of telemetric data between the OIU and the space-shuttle payload data interleaver; (2) an ECOMM antenna-autotracking algorithm that selects whichever of two phased-array antennas gives the best TDRSS signal and electronically steers that antenna to track the TDRSS source; and (3) an ECOMM radiation-latchup controller, which detects an abrupt increase in current indicative of radiation-induced latchup and temporarily turns off power to clear the latchup, restoring power after the charge dissipates.
NASA Astrophysics Data System (ADS)
McCrea, Terry
The Shuttle Processing Contract (SPC) workforce consists of Lockheed Space Operations Co. as prime contractor, with Grumman, Thiokol Corporation, and Johnson Controls World Services as subcontractors. During the design phase, reliability engineering is instrumental in influencing the development of systems that meet the Shuttle fail-safe program requirements. Reliability engineers accomplish this objective by performing FMEA (failure modes and effects analysis) to identify potential single failure points. When technology, time, or resources do not permit a redesign to eliminate a single failure point, the single failure point information is formatted into a change request and presented to senior management of SPC and NASA for risk acceptance. In parallel with the FMEA, safety engineering conducts a hazard analysis to assure that potential hazards to personnel are assessed. The combined effort (FMEA and hazard analysis) is published as a system assurance analysis. Special ground rules and techniques are developed to perform and present the analysis. The reliability program at KSC is vigorously pursued, and has been extremely successful. The ground support equipment and facilities used to launch and land the Space Shuttle maintain an excellent reliability record.
Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments
NASA Technical Reports Server (NTRS)
DeBell, L.; Paulsen, A.; Spooner, B.
1992-01-01
Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.
ACES: Space shuttle flight software analysis expert system
NASA Technical Reports Server (NTRS)
Satterwhite, R. Scott
1990-01-01
The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.
2012-04-17
CAPE CANAVERAL, Fla. - The wheels of the Shuttle Carrier Aircraft leave the ground at NASA's Kennedy Space Center in Florida as space shuttle Discovery's ferry flight begins. The duo took off from Kennedy's runway 15 at 7 a.m. EDT. The aircraft, known as an SCA, is a Boeing 747 jet, originally manufactured for commercial use, which was modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 carried Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian's National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS- 013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www .nasa.gov/transition. Photo credit: NASA/Rusty Backer
STS-66 Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1995-01-01
This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.
STS-66 mission highlights resource tape
NASA Astrophysics Data System (ADS)
1995-04-01
This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.
Voice control of the space shuttle video system
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Dotson, R. S.; Brown, J. W.; Lewis, J. L.
1981-01-01
A pilot voice control system developed at the Jet Propulsion Laboratory (JPL) to test and evaluate the feasibility of controlling the shuttle TV cameras and monitors by voice commands utilizes a commercially available discrete word speech recognizer which can be trained to the individual utterances of each operator. Successful ground tests were conducted using a simulated full-scale space shuttle manipulator. The test configuration involved the berthing, maneuvering and deploying a simulated science payload in the shuttle bay. The handling task typically required 15 to 20 minutes and 60 to 80 commands to 4 TV cameras and 2 TV monitors. The best test runs show 96 to 100 percent voice recognition accuracy.
2011-11-10
CAPE CANAVERAL, Fla. –This 3-D image shows a tugboat pulling the Pegasus Barge along the Banana River after leaving NASA's Kennedy Space Center in Florida. The 266-foot-long and 50-foot-wide barge will be towed by NASA's Freedom Star ship to deliver space shuttle main engine (SSME) ground support equipment to Stennis Space Center near Bay St. Louis, Miss. Since being delivered to NASA in 1999, Pegasus sailed 41 times and transported 31 shuttle external fuel tanks from Michoud Assembly Facility near New Orleans to Kennedy. To view this image, use green and magenta 3-D glasses. The barge is leaving Kennedy, perhaps for the final time. Both the barge and shuttle equipment will remain in storage until their specific future uses are determined. The SSMEs themselves will be transported to Stennis separately for use with the agency's new heavy-lift rocket, the Space Launch System. The work is part of the Space Shuttle Program’s transition and retirement processing. For more information about Shuttle Transition and Retirement, visit http://www.nasa.gov/mission_pages/transition/home/index.html. Photo credit: NASA/Frankie Martin
Ramjet/scramjet plus rocket propulsion for a heavy-lift Space Shuttle
NASA Astrophysics Data System (ADS)
Lantz, Edward
1993-10-01
The possibility of using hydrogen-fueled ramjet/scramjet engines for improving the performance and reducing the operating cost of a second-generation Space Shuttle is examined. For a heavy-lift capability, a two-stage system would be necessary. This could consist of a central Trans Atmospheric Vehicle (TAV) with a hypersonic booster attached to each side. A wheeled ground-based launcher could make the takeoff of such a system possible. By using data from the NASP project and the present Space Shuttle, it is shown that a TAV, which is about 20 percent longer than a Boeing 747, could take a payload of about 200,000 pounds to an earth orbit.
1999-10-14
Construction continues on an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (upper right). Near the top of the photo is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-10-14
An aerial closeup view reveals the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and at left a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. Near the top of the photo can be seen the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erin V.
2007-01-01
A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for a 2-bearing shaft assembly in each body flap actuator established a reliability level of 99.6 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.
Solid propellant exhausted aluminum oxide and hydrogen chloride - Environmental considerations
NASA Technical Reports Server (NTRS)
Cofer, W. R., III; Winstead, E. L.; Purgold, G. C.; Edahl, R. A.
1993-01-01
Measurements of gaseous hydrogen chloride (HCl) and particulate aluminum oxide (Al2O3) were made during penetrations of five Space Shuttle exhaust clouds and one static ground test firing of a shuttle booster. Instrumented aircraft were used to penetrate exhaust clouds and to measure and/or collect samples of exhaust for subsequent analyses. The focus was on the primary solid rocket motor exhaust products, HCl and Al2O3, from the Space Shuttle's solid boosters. Time-dependent behavior of HCl was determined for the exhaust clouds. Composition, morphology, surface chemistry, and particle size distributions were determined for the exhausted Al2O3. Results determined for the exhaust cloud from the static test firing were complicated by having large amounts of entrained alkaline ground debris (soil) in the lofted cloud. The entrained debris may have contributed to neutralization of in-cloud HCl.
Langley applications experiments data management system study. [for space shuttles
NASA Technical Reports Server (NTRS)
Lanham, C. C., Jr.
1975-01-01
A data management system study is presented that defines, in functional terms, the most cost effective ground data management system to support Advanced Technology Laboratory (ATL) flights of the space shuttle. Results from each subtask performed and the recommended system configuration for reformatting the experiment instrumentation tapes to computer compatible tape are examined. Included are cost factors for development of a mini control center for real-time support of the ATL flights.
Orbiter Enterprise at Marshall Space Flight Center for testing
2002-10-29
In this view, the Shuttle Orbiter Enterprise is seen heading South on Rideout Road with Marshall Space Flight Center's (MSFC'S) administrative 4200 Complex in the background, as it is being transported to MSFC's building 4755 for later Mated Vertical Ground Vibration tests (MVGVT) at MSFC's Dynamic Test Stand. The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.
A new era of space transportation. [Space Shuttle system utilization
NASA Technical Reports Server (NTRS)
Fletcher, J. C.
1976-01-01
It is pointed out that founded on the experiences of Apollo, Skylab, and the Apollo/Soyuz mission an era is entered which will be characterized by a displacement of the interface between the experimenter and his experiment from the control center on the ground to the laboratory in orbit. A new world has been opened by going into space. Economic applications are related to the achievement of an enormous efficiency in world communications at a much lower cost. However, programs of space exploration and usage are under severe economic constraints. A primary tool to lower the cost of programs is to be the Space Transportation System using the Space Shuttle. It is emphasized that the Shuttle system is an international enterprise. Attention is also given to the results of the Viking missions, the Landsat satellites, and applications of space technology for science and commerce.
NASA Technical Reports Server (NTRS)
1979-01-01
This specification establishes the natural and induced environments to which the power extension package may be exposed during ground operations and space operations with the shuttle system. Space induced environments are applicable at the Orbiter attach point interface location. All probable environments are systematically listed according to each ground and mission phase.
NASA Technical Reports Server (NTRS)
1978-01-01
Low energy conceptual stage designs and adaptations to existing/planned shuttle upper stages were developed and their performance established. Selected propulsion modes and subsystems were used as a basis to develop airborne support equipment (ASE) design concepts. Orbiter installation and integration (both physical and electrical interfaces) were defined. Low energy stages were adapted to the orbiter and ASE interfaces. Selected low energy stages were then used to define and describe typical ground and flight operations.
2011-06-17
CAPE CANAVERAL, Fla. -- Sunrise at NASA's Kennedy Space Center in Florida finds space shuttle Atlantis on Launch Pad 39A after the payload canister carrying the Raffaello multi-purpose logistics module (MPLM) was lifted into the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on space shuttle Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Mehlis, J. G.
1976-01-01
Results of an implementation study for a synthetic aperture radar for the space shuttle orbiter are described. The overall effort was directed toward the determination of the feasibility and usefulness of a multifrequency, multipolarization imaging radar for the shuttle orbiter. The radar is intended for earth resource monitoring as well as oceanographic and marine studies.
2008-02-23
KENNEDY SPACE CENTER, FLA. -- STS-123 Mission Specialist Takao Doi of the Japan Aerospace Exploration Agency, at left, is greeted by Shuttle Launch Director Mike Leinbach following his arrival at NASA Kennedy Space Center's Shuttle Landing Facility. The crew for space shuttle Endeavour's STS-123 mission is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. Endeavour's seven astronauts arrived at Kennedy's Shuttle Landing Facility in their T-38 training aircraft between 10:45 and 10:58 a.m. EST. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Public Affairs Officer Michael Curie, left, Associate Administrator for Space Operations Bill Gerstenmaier, Space Shuttle Program Launch Integration Manager Mike Moses and Shuttle Launch Director Mike Leinbach talk to media following a Flight Readiness Review that gave a unanimous "go" to launch space shuttle Discovery on the STS-133 mission to the International Space Station. This will be the second launch attempt for Discovery, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
Ground Robotic Hand Applications for the Space Program study (GRASP)
NASA Astrophysics Data System (ADS)
Grissom, William A.; Rafla, Nader I.
1992-04-01
This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.
Ground Robotic Hand Applications for the Space Program study (GRASP)
NASA Technical Reports Server (NTRS)
Grissom, William A.; Rafla, Nader I. (Editor)
1992-01-01
This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.
1991-08-01
The free-flying Tracking and Data Relay Satellite-E (TDRS-E), still attached to an Inertial Upper Stage (IUS), was photographed by one of the crewmembers during the STS-43 mission. The TDRS-E was boosted by the IUS into geosynchronous orbit and positioned to remain stationary 22,400 miles above the Pacific Ocean southwest of Hawaii. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The IUS is an unmarned transportation system designed to ferry payloads from low Earth orbit to higher orbits that are unattainable by the Shuttle. The Space Shuttle Orbiter Atlantis for the STS-43 mission was launched on August 2, 1991.
Lightning protection design external tank /Space Shuttle/
NASA Technical Reports Server (NTRS)
Anderson, A.; Mumme, E.
1979-01-01
The possibility of lightning striking the Space Shuttle during liftoff is considered and the lightning protection system designed by the Martin Marietta Corporation for the external tank (ET) portion of the Shuttle is discussed. The protection system is based on diverting and/or directing a lightning strike to an area of the spacecraft which can sustain the strike. The ET lightning protection theory and some test analyses of the system's design are reviewed including studies of conductivity and thermal/stress properties in materials, belly band feasibility, and burn-through plug grounding and puncture voltage. The ET lightning protection system design is shown to be comprised of the following: (1) a lightning rod on the forward most point of the ET, (2) a continually grounded, one inch wide conductive strip applied circumferentially at station 371 (belly band), (3) a three inch wide conductive belly band applied over the TPS (i.e. the insulating surface of the ET) and grounded to a structure with eight conductive plugs at station 536, and (4) a two inch thick TPS between the belly bands which are located over the weld lands.
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Rajkumar, T.
2003-01-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
Intelligent launch and range operations virtual testbed (ILRO-VTB)
NASA Astrophysics Data System (ADS)
Bardina, Jorge; Rajkumar, Thirumalainambi
2003-09-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
NASA Technical Reports Server (NTRS)
Hargraves, W. R.; Delulio, E. B.; Justus, C. G.
1977-01-01
The Global Reference Atmospheric Model is used along with the revised perturbation statistics to evaluate and computer graph various atmospheric statistics along a space shuttle reference mission and abort trajectory. The trajectory plots are height vs. ground range, with height from ground level to 155 km and ground range along the reentry trajectory. Cross sectional plots, height vs. latitude or longitude, are also generated for 80 deg longitude, with heights from 30 km to 90 km and latitude from -90 deg to +90 deg, and for 45 deg latitude, with heights from 30 km to 90 km and longitudes from 180 deg E to 180 deg W. The variables plotted are monthly average pressure, density, temperature, wind components, and wind speed and standard deviations and 99th inter-percentile range for each of these variables.
The evolution of automation and robotics in manned spaceflight
NASA Technical Reports Server (NTRS)
Moser, T. L.; Erickson, J. D.
1986-01-01
The evolution of automation on all manned spacecraft including the Space Shuttle is reviewed, and a concept for increasing automation and robotics from the current Shuttle Remote Manipulator System (RMS) to an autonomous system is presented. The requirements for robotic elements are identified for various functions on the Space Station, including extravehicular functions and functions within laboratory and habitation modules which expand man's capacity in space and allow selected teleoperation from the ground. The initial Space Station will employ a telerobot and necessary knowledge based systems as an advisory to the crew on monitoring, fault diagnosis, and short term planning and scheduling.
NASA Technical Reports Server (NTRS)
Shiokari, T.
1973-01-01
Payloads to be launched on the space shuttle/space tug/sortie lab combinations are discussed. The payloads are of four types: (1) expendable, (2) ground refurbishable, (3) on-orbit maintainable, and (4) sortie. Economic comparisons are limited to the four types of payloads described. Additional system guidelines were developed by analyzing two payloads parameterically and demonstrating the results on an example satellite. In addition to analyzing the selected guidelines, emphasis was placed on providing economic tradeoff data and identifying payload parameters influencing the low cost approaches.
1989-11-27
The primary payload for Space Shuttle Mission STS-35, launched December 2, 1990, was the ASTRO-1 Observatory. Designed for round the clock observation of the celestial sphere in ultraviolet and X-ray astronomy, ASTRO-1 featured a collection of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo- Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-ray Telescope (BBXRT). Ultraviolet telescopes mounted on Spacelab elements in cargo bay were to be operated in shifts by flight crew. Loss of both data display units (used for pointing telescopes and operating experiments) during mission impacted crew-aiming procedures and forced ground teams at Marshall Space Flight Center to aim ultraviolet telescopes with fine-tuning by flight crew. BBXRT, also mounted in cargo bay, was directed from outset by ground-based operators at Goddard Space Flight Center. This is the logo or emblem that was designed to represent the ASTRO-1 payload.
Photometric analysis of a space shuttle water venting
NASA Technical Reports Server (NTRS)
Viereck, R. A.; Murad, E.; Pike, C. P.; Kofsky, I. L.; Trowbridge, C. A.; Rall, D. L. A.; Satayesh, A.; Berk, A.; Elgin, J. B.
1991-01-01
Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment.
2012-05-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, stowage of a Ku-band antenna at the forward end of space shuttle Endeavour’s payload bay is in progress in preparation for final closure of the shuttle’s payload bay doors. The antenna, which resembles a mini-satellite dish, was used to transmit audio, video and data between the shuttle and ground stations on Earth. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Cory Huston
2012-05-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, operations are under way to stow a Ku-band antenna in space shuttle Endeavour’s payload bay in preparation for final closure of the shuttle’s payload bay doors. The antenna, which resembles a mini-satellite dish, was used to transmit audio, video and data between the shuttle and ground stations on Earth. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Cory Huston
2012-05-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a Ku-band antenna is being stowed in space shuttle Endeavour’s payload bay in preparation for final closure of the shuttle’s payload bay doors. The antenna, which resembles a mini-satellite dish, was used to transmit audio, video and data between the shuttle and ground stations on Earth. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Cory Huston
2012-05-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, stowage of a Ku-band antenna in space shuttle Endeavour’s payload bay is under way in preparation for final closure of the shuttle’s payload bay doors. The antenna, which resembles a mini-satellite dish, was used to transmit audio, video and data between the shuttle and ground stations on Earth. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Cory Huston
2012-05-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, stowage of a Ku-band antenna in space shuttle Endeavour’s payload bay is under way in preparation for final closure of the shuttle’s payload bay doors. The antenna, which resembles a mini-satellite dish, was used to transmit audio, video and data between the shuttle and ground stations on Earth. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Cory Huston
2012-05-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a Ku-band antenna is stowed at the forward end of space shuttle Endeavour’s payload bay in preparation for final closure of the shuttle’s payload bay doors. The antenna, which resembles a mini-satellite dish, was used to transmit audio, video and data between the shuttle and ground stations on Earth. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Cory Huston
2012-05-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a Ku-band antenna is stowed at the forward end of space shuttle Endeavour’s payload bay in preparation for final closure of the shuttle’s payload bay doors. The antenna, which resembles a mini-satellite dish, was used to transmit audio, video and data between the shuttle and ground stations on Earth. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Cory Huston
2012-05-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a Ku-band antenna is stowed in space shuttle Endeavour’s payload bay in preparation for final closure of the shuttle’s payload bay doors. The antenna, which resembles a mini-satellite dish, was used to transmit audio, video and data between the shuttle and ground stations on Earth. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Cory Huston
2012-05-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, stowage of a Ku-band antenna in space shuttle Endeavour’s payload bay is under way in preparation for final closure of the shuttle’s payload bay doors. The antenna, which resembles a mini-satellite dish, was used to transmit audio, video and data between the shuttle and ground stations on Earth. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Cory Huston
2012-05-10
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a Ku-band antenna is being stowed in space shuttle Endeavour’s payload bay in preparation for final closure of the shuttle’s payload bay doors. The antenna, which resembles a mini-satellite dish, was used to transmit audio, video and data between the shuttle and ground stations on Earth. Endeavour is being prepared for public display at the California Science Center in Los Angeles. Its ferry flight to California is targeted for mid-September. Endeavour was the last space shuttle added to NASA’s orbiter fleet. Over the course of its 19-year career, Endeavour spent 299 days in space during 25 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Cory Huston
2008-03-27
CAPE CANAVERAL, Fla. --- Space shuttle Endeavour crew members meet with the media to discuss their experiences on the STS-123 mission to the International Space Station. From left are Commander Dominic Gorie, Pilot Gregory H. Johnson, and Mission Specialists Robert L. Behnken, Mike Foreman, Japan Aerospace Exploration Agency astronaut Takao Doi and Rick Linnehan. They landed at Kennedy at 8:39 p.m. EDT March 26. Endeavour's 16-day flight was the longest shuttle mission to the International Space Station and included a record five spacewalks. The shuttle's seven astronauts worked with the three-member station crew and ground teams around the world to install the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, known as Dextre. Photo credit: NASA/Kim Shiflett
2008-03-27
CAPE CANAVERAL, Fla. --- Space shuttle Endeavour crew members meet with the media to discuss their experiences on the STS-123 mission to the International Space Station. From left are Commander Dominic Gorie, Pilot Gregory H. Johnson, and Mission Specialists Robert L. Behnken, Mike Foreman, Japan Aerospace Exploration Agency astronaut Takao Doi and Rick Linnehan. They landed at Kennedy at 8:39 p.m. EDT March 26. Endeavour's 16-day flight was the longest shuttle mission to the International Space Station and included a record five spacewalks. The shuttle's seven astronauts worked with the three-member station crew and ground teams around the world to install the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, known as Dextre. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- Patty Stratton, associate program manager for Ground Operations at United Space Alliance, NASA Astronaut and STS-135 Commander Chris Ferguson and NASA Administrator Charles Bolden take a moment to converse on a very warm, sunny Florida afternoon while attending the 30th anniversary celebration in honor of the Space Shuttle Program's first shuttle launch. The event is being held at NASA's Kennedy Space Center Visitor Complex. The celebration followed an announcement by NASA Administrator Charles Bolden where the four orbiters will be placed for permanent display after retirement. Photo credit: NASA/Kim Shiflett
Atmospheric environment for Space Shuttle (STS-11) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1984-01-01
Atmospheric conditions observed near Space Shuttle STS-11 launch time on February 3, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles are reported. Wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area are presented. Meteorological tapes, which consist of wind and thermodynamic parameters vesus altitude, for STS-11 vehicle ascent and SRB descent/impact were constructed.
2009-09-15
EDWARDS AIR FORCE BASE, Calif. – (ED09-0253-81) Space Shuttle Discovery is surrounded by the Mate-DeMate Device gantry and ground support equipment at NASA’s Dryden Flight Research Center during processing for its ferry flight back to the Kennedy Space Center in Florida. Discovery returned to Earth Sept. 11 on the STS-128 mission, landing at Edwards Air Force Base in California. The shuttle delivered more than 7 tons of supplies, science racks and equipment, as well as additional environmental hardware to sustain six crew members on the International Space Station. Photo credit: NASA/Carla Thomas
1999-10-29
The support building at the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center takes form. It will house related ground support equipment and administrative/technical support. The RLV complex includes a multi-purpose hangar that will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion
NASA Technical Reports Server (NTRS)
Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott
2009-01-01
The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.
Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Asloms. Brice R.
2009-01-01
As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.
2006-06-30
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility at NASA's Kennedy Space Center, flight crew systems technician Troy Mann and flight crew systems manager Jim Blake store the food containers that will be stowed on Space Shuttle Discovery for the flight of mission STS-121. The containers hold meals prepared for the mission crew. Mann and Blake are with United Space Alliance ground operations. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. Launch of Space Shuttle Discovery on mission STS-121 is scheduled for July 1. Photo credit: NASA/Jack Pfaller
2006-06-30
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility at NASA's Kennedy Space Center, Jim Blake, Dennis Huefner and Troy Mann wrap food containers that will be stowed on Space Shuttle Discovery for the flight of mission STS-121. The containers hold meals prepared for the mission crew. The men are with United Space Alliance ground operations. Astronauts select their own menus from a large array of food items. Astronauts are supplied with three balanced meals, plus snacks. Foods flown on space missions are researched and developed at the Space Food Systems Laboratory at the Johnson Space Center (JSC) in Houston, which is staffed by food scientists, dietitians and engineers. Foods are analyzed through nutritional analysis, sensory evaluation, storage studies, packaging evaluations and many other methods. Each astronaut’s food is stored aboard the space shuttle and is identified by a colored dot affixed to each package. Launch of Space Shuttle Discovery on mission STS-121 is scheduled for July 1. Photo credit: NASA/Jack Pfaller
2012-04-14
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, workers secure a sling to space shuttle Discovery for its lift onto the top of a Shuttle Carrier Aircraft with the aid of the mate-demate device. The device, known as the MDD, is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the aircraft, or SCA. The SCA is a Boeing 747 jet, originally manufactured for commercial use, which was modified by NASA to transport the shuttles between destinations on Earth. The SCA designated NASA 905 is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-14
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, workers secure a sling to space shuttle Discovery to enable the mate-demate device to lift it onto a Shuttle Carrier Aircraft. The device, known as the MDD, is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the aircraft, or SCA. The SCA is a Boeing 747 jet, originally manufactured for commercial use, which was modified by NASA to transport the shuttles between destinations on Earth. The SCA designated NASA 905 is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-14
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, workers secure a sling to space shuttle Discovery in order to lift it onto the top of a Shuttle Carrier Aircraft with the aid of the mate-demate device. The device, known as the MDD, is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the aircraft, or SCA. The SCA is a Boeing 747 jet, originally manufactured for commercial use, which was modified by NASA to transport the shuttles between destinations on Earth. The SCA designated NASA 905 is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-14
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, workers secure a sling to space shuttle Discovery to enable the mate-demate device to lift it onto a Shuttle Carrier Aircraft. The device, known as the MDD, is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the aircraft, or SCA. The SCA is a Boeing 747 jet, originally manufactured for commercial use, which was modified by NASA to transport the shuttles between destinations on Earth. The SCA designated NASA 905 is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, have arrived. From the left, are Mission Specialists Alvin Drew, Nicole Stott, Michael Barrett and Steve Bowen, Pilot Eric Boe and Commander Steve Lindsay. In the background is the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, have arrived. From the left, are Mission Specialists Alvin Drew, Nicole Stott, Michael Barrett and Steve Bowen, Pilot Eric Boe and Commander Steve Lindsay. In the background is the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, have arrived. Commander Steve Lindsay visits with the media. Also present, but not in view, are Mission Specialists Nicole Stott, Michael Barrett, Steve Bowen and Alvin Drew, and Pilot Eric Boe. The crew arrived to view the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, have arrived. Pilot Eric Boe visits with the media. Also present, but not in view, are Mission Specialists Nicole Stott, Michael Barrett, Steve Bowen and Alvin Drew, and Commander Steve Lindsay. The crew arrived to view the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, have arrived. From the left, are Mission Specialists Nicole Stott, Michael Barrett and Alvin Drew facing away, Pilot Eric Boe and Commander Steve Lindsay. In the background is the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, have arrived. Commander Steve Lindsay visits with the media. Also present, but not in view, are Mission Specialists Nicole Stott, Michael Barrett, Steve Bowen and Alvin Drew, and Pilot Eric Boe. The crew arrived to view the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
NASA Technical Reports Server (NTRS)
1989-01-01
Requirements are presented for shuttle system definition; performance and design characteristics; shuttle vehicle end item performance and design characteristics; ground operations complex performance and design characteristics; operability and system design and construction standards; and quality control.
NASA Technical Reports Server (NTRS)
Osder, S.; Keller, R.
1971-01-01
Guidance and control design studies that were performed for three specific space shuttle candidate vehicles are described. Three types of simulation were considered. The manual control investigations and pilot evaluations of the automatic system performance is presented. Recommendations for systems and equipment, both airborne and ground-based, necessary to flight test the guidance and control concepts for shuttlecraft terminal approach and landing are reported.
Environmental analysis of the chemical release module. [space shuttle payload
NASA Technical Reports Server (NTRS)
Heppner, J. P.; Dubin, M.
1980-01-01
The environmental analysis of the Chemical Release Module (a free flying spacecraft deployed from the space shuttle to perform chemical release experiments) is reviewed. Considerations of possible effects of the injectants on human health, ionosphere, weather, ground based optical astronomical observations, and satellite operations are included. It is concluded that no deleterious environmental effects of widespread or long lasting nature are anticipated from chemical releases in the upper atmosphere of the type indicated for the program.
Documentation of logistics transfer from shuttle Spacehab
1996-04-24
STS076-345-017 (22 - 31 March 1996) --- Onboard the Spacehab module in the cargo bay of the Earth-orbiting Space Shuttle Atlantis, astronaut Michael R. (Rich) Clifford secures a stowed gyrodyne. The stabilizing instrument earlier had been replaced on Russia's Mir Space Station with a new one brought up from the ground by the crew. The mission specialist and his crew mates docked with Mir on March 23, 1996 and remained linked until March 28, 1996.
2001-03-05
KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis arrives at KSC’s Shuttle Landing Facility riding piggyback on a Shuttle Carrier Aircraft, a modified Boeing 747. Atlantis landed in California Feb. 19 concluding mission STS-98. The ferry flight began in California March 1; unfavorable weather conditions kept it on the ground at Altus AFB, Okla., until it could return to Florida. The orbiter will next fly on mission STS-104, the 10th construction flight to the International Space Station, scheduled June 8
NASA Technical Reports Server (NTRS)
1995-01-01
This report summarizes past corrosion issues experienced by the NASA space shuttle orbiter fleet. Design considerations for corrosion prevention and inspection methods are reviewed. Significant corrosion issues involving structures and subsystems are analyzed, including corrective actions taken. Notable successes and failures of corrosion mitigation systems and procedures are discussed. The projected operating environment used for design is contrasted with current conditions in flight and conditions during ground processing.
NASA Technical Reports Server (NTRS)
1975-01-01
A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.
NASA Contingency Shuttle Crew Support (CSCS) Medical Operations
NASA Technical Reports Server (NTRS)
Adams, Adrien
2010-01-01
The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support
1998-07-06
James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998
AI mass spectrometers for space shuttle health monitoring
NASA Technical Reports Server (NTRS)
Adams, F. W.
1991-01-01
The facility Hazardous Gas Detection System (HGDS) at Kennedy Space Center (KSC) is a mass spectrometer based gas analyzer. Two instruments make up the HGDS, which is installed in a prime/backup arrangement, with the option of using both analyzers on the same sample line, or on two different lines simultaneously. It is used for monitoring the Shuttle during fuel loading, countdown, and drainback, if necessary. The use of complex instruments, operated over many shifts, has caused problems in tracking the status of the ground support equipment (GSE) and the vehicle. A requirement for overall system reliability has been a major force in the development of Shuttle GSE, and is the ultimate driver in the choice to pursue artificial intelligence (AI) techniques for Shuttle and Advanced Launch System (ALS) mass spectrometer systems. Shuttle applications of AI are detailed.
The SSMEPF opens with a ribbon-cutting ceremony
NASA Technical Reports Server (NTRS)
1998-01-01
James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.
STS-70 Discovery launch before tower clear (fish eye view)
NASA Technical Reports Server (NTRS)
1995-01-01
The fourth Space Shuttle flight of 1995 is off to an all-but- perfect start, as the Shuttle Discovery surges skyward from Launch Pad 39B at 9:41:55.078 a.m. EDT, July 13, 1995. On board for Discovery's 21st spaceflight are a crew of five: Commander Terence 'Tom' Henricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. Primary objective of Mission STS-70 is to assure the continued readiness of NASA's Tracking and Data Relay Satellite (TDRS) communications network which links Earth-orbiting spacecraft -- including the Shuttle -- with the ground. The 70th Shuttle flight overall also marks the maiden flight of the new Block I Space Shuttle Main Engine configuration designed to increase engine performance as well as safety and reliability.
Close-up of Shuttle tire after LSRA test
NASA Technical Reports Server (NTRS)
1995-01-01
One of the final tests of the CV-990 Landing Systems Research Aircraft (LSRA) in August, 1995 at NASA's Dryden Flight Research Center, Edwards, California, resulted in the destruction of the wheel, following a fire caused by a mixture of heat, aluminum particles, and rubber. Following successful tests of tire wear at Edwards and the Kennedy Space Center, Fl., this series of roll-on-rim tests determined the failure modes ofwheels for the space shuttle. The aluminum wheel locked in postion and was ground to within four inches of the axle before the test concluded. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy. Project engineer Christopher J. Nagy said, 'NASA pilots Gordon Fullerton and Terry Rager did a superb job of flying the aircraft in many difficult test situations, at speeds higher than the aircraft was intended to land, without once losing a single flight.'
The SSMEPF opens with a ribbon-cutting ceremony
NASA Technical Reports Server (NTRS)
1998-01-01
Participants in the ribbon cutting for KSC's new 34,600-square- foot Space Shuttle Main Engine Processing Facility (SSMEPF) pose in front of a Space Shuttle Main Engine on display for the ceremony. From left, they are Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; John Plowden, vice president of Rocketdyne; Donald R. McMonagle, manager of Launch Integration; U.S. Congressman Dave Weldon; KSC Center Director Roy D. Bridges Jr.; Wade Ivey of Ivey Construction, Inc.; and Robert B. Sieck, director of Shuttle Processing. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.
Definition of technology development missions for early space stations: Large space structures
NASA Technical Reports Server (NTRS)
1983-01-01
The testbed role of an early (1990-95) manned space station in large space structures technology development is defined and conceptual designs for large space structures development missions to be conducted at the space station are developed. Emphasis is placed on defining requirements and benefits of development testing on a space station in concert with ground and shuttle tests.
Reflight of the First Microgravity Science Laboratory: Quick Turnaround of a Space Shuttle Mission
NASA Technical Reports Server (NTRS)
Simms, Yvonne
1998-01-01
Due to the short flight of Space Shuttle Columbia, STS-83, in April 1997, NASA chose to refly the same crew, shuttle, and payload on STS-94 in July 1997. This was the first reflight of an entire mission complement. The reflight of the First Microgravity Science Laboratory (MSL-1) on STS-94 required an innovative approach to Space Shuttle payload ground processing. Ground processing time for the Spacelab Module, which served as the laboratory for MSL-1 experiments, was reduced by seventy-five percent. The Spacelab Module is a pressurized facility with avionics and thermal cooling and heating accommodations. Boeing-Huntsville, formerly McDonnell Douglas Aerospace, has been the Spacelab Integration Contractor since 1977. The first Spacelab Module flight was in 1983. An experienced team determined what was required to refurbish the Spacelab Module for reflight. Team members had diverse knowledge, skills, and background. An engineering assessment of subsystems, including mechanical, electrical power distribution, command and data management, and environmental control and life support, was performed. Recommendations for resolution of STS-83 Spacelab in-flight anomalies were provided. Inspections and tests that must be done on critical Spacelab components were identified. This assessment contributed to the successful reflight of MSL-1, the fifteenth Spacelab Module mission.
NASA Technical Reports Server (NTRS)
Daniels, Vernie; Du, Jianping; Crady, Camille; Satterfield, Rick; Putcha, Lakshmi
2007-01-01
The purpose is to assess physical and chemical degradation of select pharmaceutical formulations from the Shuttle and ISS medical kits. Eleven pharmaceuticals dispensed as different dosage forms were selected based on their physical / chemical characteristics and susceptibility to environmental factors such as, temperature, humidity and light sensitivity. When available, ground-controls of the study medications with matching brand and lot numbers were used for comparison. Samples retrieved from flight were stored along with their matching controls in a temperature and humidity controlled environmental chamber. Temperature, humidity, and radiation data from the Shuttle and ISS were retrieved from onboard HOBO U12 Temp/RH Data Loggers, and from passive dosimeters. Physical and chemical analyses of the pharmaceuticals were conducted using validated United States Pharmacopeia (USP) methods. Results indicated degradation of 6 of the 11 formulations returned from space flights. Four formulations, Amoxicillin / Clavulanate, promethazine, sulfamethoxazole / trimethoprim, and ciprofloxacin tablets depicted discoloration after flight. Chemical content analyses using High or Ultra Performance Liquid Chromatography (HPLC / UPLC) methods revealed that dosage forms of Amoxicillin / Clavulanate, promethazine, sulfamethoxazole / trimethoprim, lidocaine, ciprofloxacin and mupirocin contained less than 95% of manufacturer s labeled claim of active drug compound. Shuttle and ISS environments affect stability and shelf life of certain mediations flown on these missions. Data analysis is in progress to examine the effect of specific space flight environmental factors on pharmaceutical stability. The degradation profiles generated from ground studies in analog environments will be useful in establishing predictive shelf-life profiles for medications intended for use during long-term space exploration missions.
2001-08-01
This is the insignia of the STS-109 Space Shuttle mission. Carrying a crew of seven, the Space Shuttle Orbiter Columbia was launched with goals of maintenance and upgrades to the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm where four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 27th flight of the Orbiter Columbia and the 108th flight overall in NASA's Space Shuttle Program.
Shuttle Radar Topography Mission (SRTM)
,
2009-01-01
Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.
1991-08-01
The primary payload of the STS-43 mission, Tracking and Data Relay Satellite-E (TDRS-E) attached to an Inertial Upper Stage (IUS) was photographed at the moment of its release from the cargo bay of the Space Shuttle Orbiter Atlantis. The TDRS-E was boosted by the IUS into geosynchronous orbit and positioned to remain stationary 22,400 miles above the Pacific Ocean southwest of Hawaii. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The IUS is an unmarned transportation system designed to ferry payloads from low Earth orbit to higher orbits that are unattainable by the Shuttle. The launch of STS-43 occurred on August 2, 1991.
NASA Technical Reports Server (NTRS)
2011-01-01
In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.
Alternative Approach to Vehicle Element Processing
NASA Technical Reports Server (NTRS)
Huether, Jacob E.; Otto, Albert E.
1995-01-01
The National Space Transportation Policy (NSTP), describes the challenge facing today's aerospace industry. 'Assuring reliable and affordable access to space through U.S. space transportation capabilities is a fundamental goal of the U.S. space program'. Experience from the Space Shuttle Program (SSP) tells us that launch and mission operations are responsible for approximately 45 % of the cost of each shuttle mission. Reducing these costs is critical to NSTP goals in the next generation launch vehicle. Based on this, an innovative alternative approach to vehicle element processing was developed with an emphasis on reduced launch costs. State-of-the-art upgrades to the launch processing system (LPS) will enhance vehicle ground operations. To carry this one step further, these upgrade could be implemented at various vehicle element manufacturing sites to ensure system compatibility between the manufacturing facility and the launch site. Design center vehicle stand alone testing will ensure system integrity resulting in minimized checkout and testing at the launch site. This paper will addresses vehicle test requirements, timelines and ground checkout procedures which enable concept implementation.
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Mission Specialist Nicole Stott prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Stott and her five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 crew members depart NASA's Kennedy Space Center in Florida in a T-38 training jet. The six-member crew will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Commander Steve Lindsey prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Lindsey and his five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 crew members depart NASA's Kennedy Space Center in Florida in a T-38 training jet. The six-member crew will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Commander Steve Lindsey, left, and Mission Specialist Nicole Stott prepare to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. The six-member crew will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Pilot Eric Boe prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Boe and his five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 crew prepares to depart NASA's Kennedy Space Center in Florida in T-38 training jets. Mission Specialist Michael Barratt, left, Pilot Eric Boe and Mission Specialist Nicole Stott and their three crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Pilot Eric Boe prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Boe and his five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2010-11-05
CAPE CANAVERAL, Fla. -- Space shuttle Discovery's STS-133 Mission Specialist Tim Kopra prepares to depart NASA's Kennedy Space Center in Florida in a T-38 training jet. Kopra and his five crewmates will wait until at least Nov. 30 to launch to the International Space Station because a leak was detected at the Ground Umbilical Carrier Plate (GUCP) while Discovery's external fuel tank was being loaded for launch on Nov. 5. The GUCP is an attachment point between the external tank and a pipe that carries gaseous hydrogen safely away from the shuttle to the flare stack, where it is burned off. Engineers and managers also will evaluate a crack in the foam on the external tank. During the 11-day mission, STS-133 will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
Effects of Promethazine on Performance During Simulated Shuttle Landings
NASA Technical Reports Server (NTRS)
Harm, D. L.; Putcha, L.; Sekula, B. K.; Berens, K. L.
1999-01-01
Promethazine (PMZ) is the antimotion sickness drug of choice in the U.S. Space Shuttle program; however, virtually nothing is known about the bioavailability and performance effects of this drug in the microgravity environment. PMZ has detrimental side effects on human performance on Earth that could affect Shuttle operations. In a recent ground-based study we examined: 1) the effects of promethazine (PMZ) on Shuttle landing performance using the portable inflight landing operations trainer (PILOT), and 2) saliva and urine samples to determine the pharmacokinetics of PMZ. The PILOT performance data is presented here.
NASA Technical Reports Server (NTRS)
Batson, B. H.; Seyl, J. W.; Huth, G. K.
1977-01-01
This paper describes an approach for relay of data-modulated subcarriers from Shuttle payloads through the Shuttle Ku-band communications subsystem (and subsequently through a tracking and data relay satellite system to a ground terminal). The novelty is that a channel originally provided for baseband digital data is shown to be suitable for this purpose; the resulting transmission scheme is referred to as a narrowband bent-pipe scheme. Test results demonstrating the validity of the narrowband bent-pipe mode are presented, and limitations on system performance are described.
2000-10-31
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour and the Mobile Launcher Platform (MLP) start backing through the gate to Launch Pad 39B after a cracked cleat was discovered on the crawler-transporter. Workers near the pad (behind the crawler track) look at the cleats. The vehicle, which moves the MLP and Shuttle at about 1 mph, has a leveling system designed to keep the top of the Space Shuttle vertical while negotiating the 5 percent grade leading to the top of the pad. When the Shuttle-MLP are back on level ground, the crawler tracks will be inspected and the broken cleat repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour and the Mobile Launcher Platform (MLP) start backing through the gate to Launch Pad 39B after a cracked cleat was discovered on the crawler-transporter. Workers near the pad (behind the crawler track) look at the cleats. The vehicle, which moves the MLP and Shuttle at about 1 mph, has a leveling system designed to keep the top of the Space Shuttle vertical while negotiating the 5 percent grade leading to the top of the pad. When the Shuttle-MLP are back on level ground, the crawler tracks will be inspected and the broken cleat repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.
1980-01-01
A comparison was made between ground facility measurements, the aerodynamic design data book values, and the dynamic damping derivatives extracted from the space shuttle orbiter approach and landing flight tests. The comparison covers an angle of attack range from 2 deg to 10 deg at subsonic Mach numbers. The parameters of pitch, yaw, and roll damping, as well as the yawing moment due to rolling velocity and rolling moment due to yawing velocity are compared.
Shuttle Lesson Learned - Toxicology
NASA Technical Reports Server (NTRS)
James, John T.
2010-01-01
This is a script for a video about toxicology and the space shuttle. The first segment is deals with dust in the space vehicle. The next segment will be about archival samples. Then we'll look at real time on-board analyzers that give us a lot of capability in terms of monitoring for combustion products and the ability to monitor volatile organics on the station. Finally we will look at other issues that are about setting limits and dealing with ground based lessons that pertain to toxicology.
Inhibited interferon-gamma but normal interleukin-3 production from rats flown on the Space Shuttle
NASA Technical Reports Server (NTRS)
Gould, Cheryl L.; Lyte, Mark; Williams, Joann; Mandel, Adrian D.; Sonnenfeld, Gerald
1987-01-01
Rats were flown on Space Shuttle SL-3 for one week. When spleen cells were removed from these rats and challenged with concanavalin-A, interferon-gamma production was severely inhibited, while interleukin-3 production was unaffected compared to ground-based control rats. These data indicate that there is a defect in interferon-gamma production in rats that have been exposed to spaceflight. This defect could contribute to, and be one reason for, immunosuppression observed after spaceflight.
Documentation of logistics transfer from shuttle Spacehab
1996-04-24
STS076-345-019 (22 - 31 March 1996) --- Onboard the Spacehab Module in the cargo bay of the Earth-orbiting Space Shuttle Atlantis, astronaut Richard A. Searfoss fetches a battery which is to be transferred to Russia's Mir Space Station. The pilot and his crew mates docked with Mir on March 23, 1996, and remained linked until March 28, 1996. At right is a stowed gyrodyne, which earlier had been replaced on Mir with a new one brought up from the ground by the STS-76 crew.
1992-10-22
The Space Shuttle Columbia (STS-52) thunders off Launch Pad 39B, embarking on a 10-day flight and carrying a crew of six who will deploy the Laser Geodynamic Satellite II (LAGEOS). LAGEOS is a spherical passive satellite covered with reflectors which are illuminated by ground-based lasers to determine precise measurements of the Earth's crustal movements. The other major payload on this mission is the United States Microgravity Payload 1 (USMP-1), where experiments will be conducted by crew members while in low earth orbit (LEO).
NASA Technical Reports Server (NTRS)
1973-01-01
Configuration data and design information for the space shuttle launched configuration is presented. The overall system definition, operations and control, and telecommunication service system including link budgets are discussed. A brief description of the user transceiver and ground station is presented. A final section includes a summary description of the TDR spacecraft and all the subsystems. The data presented are largely in tabular form.
Telemetry Boards Interpret Rocket, Airplane Engine Data
NASA Technical Reports Server (NTRS)
2009-01-01
For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.
Software Architecture of the NASA Shuttle Ground Operations Simulator - SGOS
NASA Technical Reports Server (NTRS)
Cook, Robert P.; Lostroscio, Charles T.
2005-01-01
The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. It is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,000 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.
Software Architecture of the NASA Shuttle Ground Operations Simulator--SGOS
NASA Technical Reports Server (NTRS)
Cook Robert P.; Lostroscio, Charles T.
2005-01-01
The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. it is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,00 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.
Automation of checkout for the shuttle operations era
NASA Technical Reports Server (NTRS)
Anderson, J. A.; Hendrickson, K. O.
1985-01-01
The Space Shuttle checkout is different from its Apollo predecessor. The complexity of the hardware, the shortened turnaround time, and the software that performs ground checkout are outlined. Generating new techniques and standards for software development and the management structure to control it are implemented. The utilization of computer systems for vehicle testing is high lighted.
Hard X-ray imaging facility for space shuttle: A scientific and conceptual engineering study
NASA Technical Reports Server (NTRS)
Peterson, L. E.; Hudson, H. S.; Hurford, G.; Schneible, D.
1976-01-01
A shuttle-accommodated instrument for imaging hard X-rays in the study of nonthermal particles and high temperature particles in various solar and cosmic phenomena was defined and its feasibility demonstrated. The imaging system configuration is described as well as the electronics, aspect systems, mechanical and thermal properties and the ground support equipment.
NASA Technical Reports Server (NTRS)
Mennell, R. C.; Cameron, B. W.
1974-01-01
Experimental aerodynamic investigations were conducted on a .0405 scale representation of the space shuttle orbiter in a 7.75 x 11 foot low speed wind tunnel during the time period March 21, to April 17, 1973. The primary test objectives were to investigate both the aerodynamic and propulsion effects of various air breathing engine systems in free air and in the presence of the ground. The free air portion of this test investigated the aerodynamic effects of engine nacelle number, nacelle grouping, and nacelle location. For this testing the model was sting mounted on a six component internal strain gage balance entering through the model base. The ground plane portion of the aerodynamic test investigated the same nacelle effects at ground plane locations of full scale W.P. = 239.9, 209.3, 158.9, 108.5, and 7.78 in. At the conclusion of the aerodynamic test period the propulsion effects of various nacelle locations and freestream orientations in the presence of the ground were investigated.
Atmospheric environment for Space Shuttle (STS-51D)
NASA Technical Reports Server (NTRS)
Jasper, G. L.; Johnson, D. L.; Hill, C. K.; Batts, G. W.
1985-01-01
A summary of selected atmospheric conditions observed near the space shuttle STS-51D launch time on April 12, 1985, at Kennedy Space Center Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51D vehicle ascent is constructed. The STS-51D ascent atmospheric data tape is compiled by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post-flight performance assessments.
NASA Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III
2011-01-01
Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.
Recent Advances in Studies of Ionospheric Modification Using Rocket Exhaust (Invited)
NASA Astrophysics Data System (ADS)
Bernhardt, P. A.
2009-12-01
Rocket exhaust interacts with the ionosphere to produce a wide range of disturbances. A ten second burn of the Orbital Maneuver Subsystem (OMS) engines on the Space Shuttle deposits over 1 Giga Joule of energy into the upper atmosphere. The exhaust vapors travel at speeds between 4.7 and 10.7 km/s coupling momentum into the ions by both collisions and charge exchange. Long-lived plasma irregularities are formed by the artificial hypersonic “neutral wind” passing through the ionosphere. Charge exchange between the fast neutrals and the ambient ions yields high-speed ion beams that excite electro-static plasma waves. Ground based radar has been used to detect both field aligned irregularities and electrostatic turbulence driven by the Space Shuttle OMS exhaust. Molecular ions produced by the charge exchange with molecules in the rocket exhaust recombine with a time scale of 10 minutes leaving a residual plasma depression. This ionospheric “hole” fills in by ambipolar diffusion leaving a depleted magnetic flux tube. This large scale reduction in Pedersen conductivity can provide a seed for plasma interchange instabilities. For instance, a rocket firing on the bottom side of the ionosphere near the equator can trigger a Rayleigh-Taylor instability that is naturally seen as equatorial Spread-F. The Naval Research Laboratory has been exploring these phenomena with dedicated burns of the Space Shuttle OMS engines and exhaust releases from rockets. The Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) series of experiments uses ground radars to probe the ionosphere affected by dedicated burns of the Space Shuttle OMS engines. Radars located at Millstone Hill, Massachusetts; Arecibo, Puerto Rico; Jicamarca, Peru; Kwajalein, Marshall Island; and Alice Springs, Australia have participated in the SIMPLEX program. A companion program called Shuttle Exhaust Ionospheric Turbulence Experiment has or will use satellites to fly through the turbulence ionosphere produced by Space Shuttle Exhaust. This program is employing the Air Force Research Laboratory C/NOFS and the Canadian CASSIOPE/EPoP satellites to make in situ measurements of Space Shuttle exhaust effects. Finally, NRL is conducting the Charged Aerosol Release Experiment which employs a solid rocket motor to modify the ionosphere using supersonic particulate injection and dusty plasma formation. Both the theoretic basis for these experiments and as summary of the experimental results will be presented.
A SLAM II simulation model for analyzing space station mission processing requirements
NASA Technical Reports Server (NTRS)
Linton, D. G.
1985-01-01
Space station mission processing is modeled via the SLAM 2 simulation language on an IBM 4381 mainframe and an IBM PC microcomputer with 620K RAM, two double-sided disk drives and an 8087 coprocessor chip. Using a time phased mission (payload) schedule and parameters associated with the mission, orbiter (space shuttle) and ground facility databases, estimates for ground facility utilization are computed. Simulation output associated with the science and applications database is used to assess alternative mission schedules.
NASA Technical Reports Server (NTRS)
Dumbauld, R. K.; Bjorklund, J. R.
1972-01-01
A quantitative assessment is described of the potential environmental hazard posed by the atmospheric release of HCl resulting from the burning of solid propellant during two hypothetical on-pad aborts of the Titan 3 C and space shuttle vehicles at Kennedy Space Center. In one pad-abort situation, it is assumed that the cases of the two solid-propellant engines are ruptured and the burning propellant falls to the ground in the immediate vicinity of the launch pad where it continues to burn for 5 minutes. In the other pad-abort situation considered, one of the two solid engines on each vehicle is assumed to ignite and burn at the normal rate while the vehicle remains on the launch pad. Calculations of maximum HCl ground-level concentration for the above on-pad abort situations were made using the computerized NASA/MSFC multilayer diffusion models in conjunction with appropriate meteorological and source inputs. Three meteorological regimes are considered-fall, spring, and afternoon sea-breeze. Source inputs for the hazard calculations were developed. The principal result of the calculations is that maximum ground-level HCl concentrations at distances greater than 1 kilometer from the launch pad are less than 3 parts per million in all cases considered.
2004-03-18
KENNEDY SPACE CENTER, FLA. - All of the workers involved in the arrival of the Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., gather for a photo. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the SLF and during transport of the payloads to other facilities.
Atmospheric environment for Space Shuttle (STS-3) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.; Batts, G. W.
1982-01-01
Selected atmospheric conditions observed near Space Shuttle STS-3 launch time on March 22, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prlaunch Jimsphere measured vertical wind profiles and the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-3 vehicle ascent and SRB descent were constructed. The STS-3 ascent meteorological data tape is constructed.
NASA Technical Reports Server (NTRS)
1975-01-01
Facilities are described on which detailed preliminary design was undertaken and which may be used on early space shuttle missions in the 1979-1982 time-frame. The major hardware components making up each facility are identified, and development schedules for the major hardware items and the payload buildup are included. Cost data for the facilities, and the assumptions and ground rules supporting these data are given along with a recommended listing of supporting research and technology needed to ensure confidence in the ability to achieve successful development of the equipment and technology.
Acquisition/expulsion system for earth orbital propulsion system study. Volume 2: Cryogenic design
NASA Technical Reports Server (NTRS)
1973-01-01
Detailed designs were made for three earth orbital propulsion systems; (1) the space shuttle (integrated) OMS/RCS, (2) the space shuttle (dedicated) OMS (LO2), and (3) the space tug. The preferred designs from the integrated OMS/RCS were used as the basis for the flight test article design. A plan was prepared that outlines the steps, cost, and schedule required to complete the development of the prototype DSL tank and feedline (LH2 and LO2) systems. Ground testing of a subscale model using LH2 verified the expulsion characteristics of the preferred DSL designs.
1999-10-29
The first roof panels are placed on the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes the hangar and a building for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-10-29
Work continues on construction of the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. In the background can be seen the new construction for the building that will house related ground support equipment and administrative/technical support. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
1999-10-29
Workers place the first roof panels on the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes the hangar and a building for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, have arrived. Mission Specialist Nicole Stott visits with the media. Also present, but not in view, are Mission Specialists Michael Barrett, Steve Bowen and Alvin Drew, Pilot Eric Boe and Commander Steve Lindsay. The crew arrived to view the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, have arrived. From the left, are Mission Specialists Alvin Drew, Nicole Stott, Steve Bowen partially hidden and Michael Barrett, and Pilot Eric Boe. Also present, but not in view, is Commander Steve Lindsay. The crew arrived to view the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, have arrived. Mission Specialists Michael Barrett foreground and Alvin Drew visit with the media. Also present, but not in view, are Mission Specialists Nicole Stott and Steve Bowen, Pilot Eric Boe and Commander Steve Lindsay. The crew arrived to view the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, have arrived. Mission Specialist Alvin Drew visits with the media. Also present, but not in view, are Mission Specialists Nicole Stott, Michael Barrett and Steve Bowen, Pilot Eric Boe and Commander Steve Lindsay. In the background is the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-04-16
CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center’s Shuttle Landing Facility in Florida, crew members of space shuttle Discovery’s last mission, STS-133, visit with each other after arriving in T-38 jet aircraft. From the left, are Mission Specialists Alvin Drew, Nicole Stott, Michael Barrett and Steve Bowen, Pilot Eric Boe and Commander Steve Lindsay. In the background is the Shuttle Carrier Aircraft, or SCA, with space shuttle Discovery attached atop after being backed away from the mate/demate device. Known as the MDD, the devise is a large gantry-like steel structure used to hoist a shuttle off the ground and position it onto the back of the SCA. The SCA is a Boeing 747 jet that was originally manufactured for commercial use and modified by NASA to transport the shuttles between destinations on Earth. This SCA, designated NASA 905, is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 905 is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on display in the Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
Selected tether applications in space: An analysis of five selected concepts
NASA Technical Reports Server (NTRS)
1984-01-01
Ground rules and assumptions; operations; orbit considerations/dynamics; tether system design and dynamics; functional requirements; hardware concepts; and safety factors are examined for five scenarios: tethered effected separation of an Earth bound shuttle from the space station; tether effected orbit boost of a spacecraft (AXAF) into its operational orbit from the shuttle; an operational science/technology platform tether deployed from space station; a tether mediated rendezvous involving an OMV tether deployed from space station to rendezvous with an aerobraked OTV returning to geosynchronous orbit from a payload delivery mission; and an electrodynamic tether used in a dual motor/generator mode to serve as the primary energy storage facility for space station.
STS-114 Space Shuttle Discovery Performs Back Flip For Photography
NASA Technical Reports Server (NTRS)
2005-01-01
Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
TDRSS S-shuttle unique receiver equipment
NASA Astrophysics Data System (ADS)
Weinberg, A.; Schwartz, J. J.; Spearing, R.
1985-01-01
Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.
Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations
NASA Technical Reports Server (NTRS)
Cutri-Kohart, Rebecca M.
2011-01-01
The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.
NASA Astrophysics Data System (ADS)
Lind, F. D.; Erickson, P. J.; Bhatt, A.; Bernhardt, P. A.
2009-12-01
The Space Shuttle's Orbital Maneuvering System (OMS) engines have been used since the early days of the STS program for active ionospheric modification experiments designed to be viewed by ground based ionospheric radar systems. In 1995, the Naval Research Laboratory initiated the Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) Program using dedicated Space Shuttle OMS burns scheduled through the US Department of Defense's Space Test Program. SIMPLEX objectives include generation of localized ion-acoustic turbulence and the formation of ionospheric density irregularities for injections perpendicular to the local magnetic field, creating structures which can scatter incident UHF radar signals. We discuss radar observations made during several recent SIMPLEX mid-latitude experiments conducted over the Millstone Hill incoherent scatter radar system in Westford, Massachusetts. OMS engine firings release 10 kg/s of CO2, H2, H2O, and N2 molecules which charge exchange with ambient O+ ions in the F region, producing molecular ions and long lived electron density depletions as recombination occurs with ambient electrons. Depending on the magnetic field angle, the high velocity of the injected reactive exhaust molecules relative to the background ionosphere can create longitudinal propagating ion acoustic waves with amplitudes well above normal thermal levels and stimulate a wide variety of plasma instability processes. These effects produce high radar cross section targets readily visible to the Millstone Hill system, a high power large aperture radar designed to measure very weak scatter from the quiescent background ionosphere. We will survey the plasma instability parameter space explored to date and discuss plans for future SIMPLEX observations.
Preliminary risk assessment for nuclear waste disposal in space, volume 2
NASA Technical Reports Server (NTRS)
Rice, E. E.; Denning, R. S.; Friedlander, A. L.
1982-01-01
Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.
2004-02-25
KENNEDY SPACE CENTER, FLA. - On a tour of the Orbiter Processing Facility, Center Director Jim Kennedy (center) and Deputy Director Woodrow Whitlow Jr. (far left) look at the external tank door corrosion work being done on Endeavour. Next to Whitlow is Bruce Buckingham, assistant to the deputy director. Providing information, at right, are Orbiter Airframe Engineering ground area manager, and Tom Roberts, Airframe Engineering System specialist, both with United Space Alliance; and Joy Huff, with KSC Space Shuttle Processing. Endeavour is in its Orbiter Major Modification period, which began in December 2003.
2004-02-25
KENNEDY SPACE CENTER, FLA. - On a tour of the Orbiter Processing Facility, Center Director Jim Kennedy (center) and Deputy Director Woodrow Whitlow Jr. (far left) look at the external tank door corrosion work being done on Endeavour. Next to Whitlow is Bruce Buckingham, assistant to the deputy director. Providing information, at right, are Kathy Laufenberg, Orbiter Airframe Engineering ground area manager, and Tom Roberts, Airframe Engineering System specialist, both with United Space Alliance; and Joy Huff, with Space Shuttle Processing. Endeavour is in its Orbiter Major Modification period, which began in December 2003.
1998-08-19
KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprisING KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.
1998-08-20
KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprising KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29
NASA Technical Reports Server (NTRS)
Campbell, Colin
2015-01-01
As the Shuttle/ISS EMU Program exceeds 35 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Launch Commit Criteria Monitoring Agent
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Foster, J. D.
1973-01-01
Unpowered automatic approaches and landings with a CV990 aircraft were conducted to study navigation, guidance, and control problems associated with terminal area approach and landing for the space shuttle. The flight tests were designed to study from 11,300 m to touchdown the performance of a navigation and guidance concept which utilized blended radio/inertial navigation using VOR, DME, and ILS as the ground navigation aids. In excess of fifty automatic approaches and landings were conducted. Preliminary results indicate that this concept may provide sufficient accuracy to accomplish automatic landing of the shuttle orbiter without air-breathing engines on a conventional size runway.
A mobile robot system for ground servicing operations on the space shuttle
NASA Astrophysics Data System (ADS)
Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.
1992-11-01
A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.
A mobile robot system for ground servicing operations on the space shuttle
NASA Technical Reports Server (NTRS)
Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.
1992-01-01
A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.
NASA Technical Reports Server (NTRS)
2004-01-01
The Space Shuttle fleet has been grounded since the Columbia accident. As a result, 'Return to Flight' has become not just a phrase but a program and the global of virtually everyone associated with NASA. Even those who are not affiliated with the Shuttle Program are looking forward to the safe and successful completion of the next Shuttle mission. In this recovery process, NASA will be guided by the Report of the Columbia Accident Investigation Board (CAIB). The CAIB was an investigating body, convened by NASA Administrator O'Keefe the day of the Columbia accident, according to procedures established after the loss of Space Challenger.
STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight
NASA Technical Reports Server (NTRS)
1981-01-01
The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.
Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design
NASA Technical Reports Server (NTRS)
Campbell, Colin
2011-01-01
As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still successfully supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Shuttle/ISS EMU Failure History and the Impact on Advanced EMU PLSS Design
NASA Technical Reports Server (NTRS)
Campbell, Colin
2015-01-01
As the Shuttle/ISS EMU Program exceeds 30 years in duration and is still supporting the needs of the International Space Station (ISS), a critical benefit of such a long running program with thorough documentation of system and component failures is the ability to study and learn from those failures when considering the design of the next generation space suit. Study of the subject failure history leads to changes in the Advanced EMU Portable Life Support System (PLSS) schematic, selected component technologies, as well as the planned manner of ground testing. This paper reviews the Shuttle/ISS EMU failure history and discusses the implications to the AEMU PLSS.
Habitability and Behavioral Issues of Space Flight.
ERIC Educational Resources Information Center
Stewart, R. A., Jr.
1988-01-01
Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…
STARPAHC space-oriented medical evaluation. [telemedicine system
NASA Technical Reports Server (NTRS)
1979-01-01
Development of the STARPAHC telemedicine system is documented. Using STARPAHC assessment results and monitoring experience, on board and ground based flight medical system monitoring requirements and operational procedures were developed for use with the Space Transportation System during OFT and mature operation phases of the shuttle.
Load control system. [for space shuttle external tank ground tests
NASA Technical Reports Server (NTRS)
Grosse, J. C.
1977-01-01
The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.
An advanced telerobotic system for shuttle payload changeout room processing applications
NASA Technical Reports Server (NTRS)
Sklar, M.; Wegerif, D.
1989-01-01
To potentially alleviate the inherent difficulties in the ground processing of the Space Shuttle and its associated payloads, a teleoperated, semi-autonomous robotic processing system for the Payload Changeout Room (PCR) is now in the conceptual stages. The complete PCR robotic system as currently conceived is described and critical design issues and the required technologies are discussed.
400mm Mapping Sequence performed during the STS-119 R-Bar Pitch Maneuver
2008-03-17
ISS018-E-040790 (17 March 2009) --- Backdropped by the blackness of space, Space Shuttle Discovery is featured in this image photographed by an Expedition 18 crewmember on the International Space Station during rendezvous and docking operations. Before docking with the station, astronaut Lee Archambault, STS-119 commander, flew the shuttle through a Rendezvous Pitch Maneuver or basically a backflip to allow the space station crew a good view of Discovery's heat shield. Using digital still cameras equipped with both 400 and 800 millimeter lenses, the ISS crewmembers took a number of photos of the shuttle's thermal protection system and sent them down to teams on the ground for analysis. A 400 millimeter lens was used for this image. Docking occurred at 4:20 p.m. (CDT) on March 17, 2009. The final pair of power-generating solar array wings and the S6 truss segment are visible in Discovery?s cargo bay.
400mm Mapping Sequence performed during the STS-119 R-Bar Pitch Maneuver
2008-03-17
ISS018-E-040789 (17 March 2009) --- Backdropped by the blackness of space, Space Shuttle Discovery is featured in this image photographed by an Expedition 18 crewmember on the International Space Station during rendezvous and docking operations. Before docking with the station, astronaut Lee Archambault, STS-119 commander, flew the shuttle through a Rendezvous Pitch Maneuver or basically a backflip to allow the space station crew a good view of Discovery's heat shield. Using digital still cameras equipped with both 400 and 800 millimeter lenses, the ISS crewmembers took a number of photos of the shuttle's thermal protection system and sent them down to teams on the ground for analysis. A 400 millimeter lens was used for this image. Docking occurred at 4:20 p.m. (CDT) on March 17, 2009. The final pair of power-generating solar array wings and the S6 truss segment are visible in Discovery’s cargo bay.
Summary of Results from Space Shuttle Main Engine Off-Nominal Testing
NASA Technical Reports Server (NTRS)
Horton, James F.; Megivern, Jeffrey M.; McNutt, Leslie M.
2011-01-01
This paper is a summary of Space Shuttle Main Engine (SSME) off-nominal testing that occurred during 2008 and 2009. During the last two years of planned SSME testing at Stennis Space Center, Pratt & Whitney Rocketdyne worked with their NASA MSFC customer to systematically identify, develop, assess, and implement challenging test objectives in order to expand the knowledge of one of the world s most reliable and highly tested large rocket engine. The objectives successfully investigated three main areas of interest expanding engine performance margins, demonstrating system operational capabilities, and establishing ground work for new rocket engine technology. The testing gave the Space Shuttle Program new options to safely fly out the flight manifest and provided Pratt & Whitney Rocketdyne and NASA new insight into the operational capabilities of the SSME, capabilities which can be used in assessing potential future applications of the RS-25 engine.
STS-121: Discovery L-1 Countdown Status Briefing
NASA Technical Reports Server (NTRS)
2006-01-01
Bruce Buckingham, NASA Public Affairs, introduces Jeff Spaulding, NASA Test Director; Debbie Hahn, STS-121 Payload Manager; and Kathy Winters, Shuttle Weather Officer. Spaulding gives his opening statement on this one day prior to the launching of the Space Shuttle Discovery. He discusses the following topics: 1) Launch of the Space Shuttle Discovery; 2) Weather; 3) Load over of onboard reactants; 4) Hold time for liquid hydrogen; 5) Stowage of Mid-deck completion; 6) Check-out of onboard and ground network systems; 7) Launch windows; 8) Mission duration; 9) Extravehicular (EVA) plans; 10) Space Shuttle landing day; and 11) Scrub turn-around plans. Hahn presents and discusses a short video of the STS-121 payload flow. Kathy Winters gives her weather forecast for launch. She then presents a slide presentation on the following weather conditions for the Space Shuttle Discovery: 1) STS-121 Tanking Forecast; 2) Launch Forecast; 3) SRB Recovery; 4) CONUS Launch; 5) TAL Launch; 6) 24 Hour Delay; 7) CONUS 24 Hour; 8) TAL 24 Hour; 9) 48 Hour Launch; 10) CONUS 48 Hour; and 11) TAL 48 Hour. The briefing ends with a question and answer period from the media.
NASA Astrophysics Data System (ADS)
Caton, R. G.; Groves, K. M.; Pedersen, T. R.; Hysell, D. L.; Carrano, C. S.; Bernhardt, P. A.; Tsunoda, R. T.; Coster, A. J.
2009-12-01
In a continuation of the Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) experiment, a series of Orbiting Maneuver Subsystem (OMS) engine burns from the space shuttle have been carried out over Kwajalein Atoll in the Republic of the Marshall Islands. Exhaust from the shuttle’s two OMS engines consists of CO, CO2, H2, H20, and N2, each of which interact with the background ionosphere (predominately O+) through charge exchange resulting in electron “holes.” Such interactions have been detected from the ground with radars, optical imagers, and GPS TEC measurements and from space with satellites such as the Communication/Navigation Outage Forecasting System (C/NOFS) in the Shuttle Exhaust Ion Turbulence Experiment (SEITE). In this talk, we present signatures of ionospheric modification resulting from OMS burns during recent shuttle missions observed in incoherent scatter returns on the ARPA Long-range Tracking And Instrumentation Radar (ALTAIR) and in optical data from an All-Sky Imager. GPS TEC measurements are investigated for evidence of depletions resulting from post-burn molecular recombination. Space Shuttle OMS Engine Burn
The Role and Training of NASA Astronauts in the Post-Shuttle Era
NASA Technical Reports Server (NTRS)
2011-01-01
In May 2010 the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC's Committee on Human Spaceflight Crew Operations was tasked to: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change following space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA's human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA's human spaceflight program has garnered considerable discussion in recent years, and there is considerable uncertainty about what that program will involve in the coming years, the committee was not tasked to address whether or not human spaceflight should continue, or what form it should take. The committee's task restricted it to studying those activities managed by the Flight Crew Operations Directorate, or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.
NASA Technical Reports Server (NTRS)
Brink, Jeffrey S.
2005-01-01
The space shuttle Aft Propulsion System (APS) pod requires precision alignment to be installed onto the orbiter deck. The Ground Support Equipment (GSE) used to perform this task cannot be manipulated along a single Cartesian axis without causing motion along the other Cartesian axes. As a result, manipulations required to achieve a desired motion are not intuitive. My study calculated the joint angles required to align the APS pod, using reverse kinematic analysis techniques. Knowledge of these joint angles will allow the ground support team to align the APS pod more safely and efficiently. An uncertainty analysis was also performed to estimate the accuracy associated with this approach and to determine whether any inexpensive modifications can be made to further improve accuracy.
Cost containment and KSC Shuttle facilities or cost containment and aerospace construction
NASA Technical Reports Server (NTRS)
Brown, J. A.
1985-01-01
This presentation has the objective to show examples of Cost Containment of Aerospace Construction at Kennedy Space Center (KSC), taking into account four major levels of Project Development of the Space Shuttle Facilities. The levels are related to conceptual criteria and site selection, the design of construction and ground support equipment, the construction of facilities and ground support equipment (GSE), and operation and maintenance. Examples of cost containment are discussed. The continued reduction of processing time from landing to launching represents a demonstration of the success of the cost containment methods. Attention is given to the factors which led to the selection of KSC, the use of Cost Engineering, the employment of the Construction Management Concept, and the use of Computer Aided Design/Drafting.
Space Shuttle Ascent Flight Design Process: Evolution and Lessons Learned
NASA Technical Reports Server (NTRS)
Picka, Bret A.; Glenn, Christopher B.
2011-01-01
The Space Shuttle Ascent Flight Design team is responsible for defining a launch to orbit trajectory profile that satisfies all programmatic mission objectives and defines the ground and onboard reconfiguration requirements for this high-speed and demanding flight phase. This design, verification and reconfiguration process ensures that all applicable mission scenarios are enveloped within integrated vehicle and spacecraft certification constraints and criteria, and includes the design of the nominal ascent profile and trajectory profiles for both uphill and ground-to-ground aborts. The team also develops a wide array of associated training, avionics flight software verification, onboard crew and operations facility products. These key ground and onboard products provide the ultimate users and operators the necessary insight and situational awareness for trajectory dynamics, performance and event sequences, abort mode boundaries and moding, flight performance and impact predictions for launch vehicle stages for use in range safety, and flight software performance. These products also provide the necessary insight to or reconfiguration of communications and tracking systems, launch collision avoidance requirements, and day of launch crew targeting and onboard guidance, navigation and flight control updates that incorporate the final vehicle configuration and environment conditions for the mission. Over the course of the Space Shuttle Program, ascent trajectory design and mission planning has evolved in order to improve program flexibility and reduce cost, while maintaining outstanding data quality. Along the way, the team has implemented innovative solutions and technologies in order to overcome significant challenges. A number of these solutions may have applicability to future human spaceflight programs.
Close-up of Shuttle tire after LSRA test
NASA Technical Reports Server (NTRS)
1995-01-01
One of the final tests of the CV-990 Landing Systems Research Aircraft (LSRA) in August, 1995 at NASA's Dryden Flight Research Center, Edwards, California, resulted in the destruction of the wheel, following a fire caused by a mixture of heat, aluminum particles, and rubber. Following successful tests of tire wear at Edwards and the Kennedy Space Center, Fla., this series of roll-on-rim tests determined the failure modes of wheels for the space shuttle. In one test, the aluminum wheel locked in position and was ground to within four inches of the axle before the test concluded. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy. Project engineer Christopher J. Nagy said, 'NASA pilots Gordon Fullerton and Terry Rager did a superb job of flying the aircraft in many difficult test situations, at speeds higher than the aircraft was intended to land, without once losing a single test flight.'
2011-06-17
CAPE CANAVERAL, Fla. -- A canister, carrying the Raffaello multi-purpose logistics module (MPLM) for space shuttle Atlantis' STS-135 mission to the International Space Station, arrives at Launch Pad 39A at NASA's Kennedy Space Center in Florida. The canister will be lifted to the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Dimitri Gerondidakis
2011-06-16
CAPE CANAVERAL, Fla. -- A canister, carrying the Raffaello multi-purpose logistics module (MPLM) for space shuttle Atlantis' STS-135 mission to the International Space Station, arrives at Launch Pad 39A at NASA's Kennedy Space Center in Florida. The canister will be lifted to the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux
2011-06-17
CAPE CANAVERAL, Fla. -- A canister, carrying the Raffaello multi-purpose logistics module (MPLM) for space shuttle Atlantis' STS-135 mission to the International Space Station, arrives at Launch Pad 39A at NASA's Kennedy Space Center in Florida. The canister will be lifted to the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Dimitri Gerondidakis
Mass Analyzers Facilitate Research on Addiction
NASA Technical Reports Server (NTRS)
2012-01-01
The famous go/no go command for Space Shuttle launches comes from a place called the Firing Room. Located at Kennedy Space Center in the Launch Control Center (LCC), there are actually four Firing Rooms that take up most of the third floor of the LCC. These rooms comprise the nerve center for Space Shuttle launch and processing. Test engineers in the Firing Rooms operate the Launch Processing System (LPS), which is a highly automated, computer-controlled system for assembly, checkout, and launch of the Space Shuttle. LPS monitors thousands of measurements on the Space Shuttle and its ground support equipment, compares them to predefined tolerance levels, and then displays values that are out of tolerance. Firing Room operators view the data and send commands about everything from propellant levels inside the external tank to temperatures inside the crew compartment. In many cases, LPS will automatically react to abnormal conditions and perform related functions without test engineer intervention; however, firing room engineers continue to look at each and every happening to ensure a safe launch. Some of the systems monitored during launch operations include electrical, cooling, communications, and computers. One of the thousands of measurements derived from these systems is the amount of hydrogen and oxygen inside the shuttle during launch.
Shuttle Columbia Mated to 747 SCA with Crew
NASA Technical Reports Server (NTRS)
1981-01-01
The crew of NASA's 747 Shuttle Carrier Aircraft (SCA), seen mated with the Space Shuttle Columbia behind them, are from viewers left: Tom McMurtry, pilot; Vic Horton, flight engineer; Fitz Fulton, command pilot; and Ray Young, flight engineer. The SCA is used to ferry the shuttle between California and the Kennedy Space Center, Florida, and other destinations where ground transportation is not practical. The NASA 747 has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Turnaround operations analysis for OTV. Volume 2: Detailed technical report
NASA Technical Reports Server (NTRS)
1988-01-01
The objectives and accomplishments were to adapt and apply the newly created database of Shuttle/Centaur ground operations. Previously defined turnaround operations analyses were to be updated for ground-based OTVs (GBOTVs) and space-based OTVs (SBOTVs), design requirements identified for both OTV and Space Station accommodations hardware, turnaround operations costs estimated, and a technology development plan generated to develop the required capabilities. Technical and programmatic data were provided for NASA pertinent to OTV round and space operations requirements, turnaround operations, task descriptions, timelines and manpower requirements, OTV modular design and booster and Space Station interface requirements. SBOTV accommodations development schedule, cost and turnaround operations requirements, and a technology development plan for ground and space operations and space-based accommodations facilities and support equipment. Significant conclusion are discussed.
Space construction system analysis. Part 2: Cost and programmatics
NASA Technical Reports Server (NTRS)
Vonflue, F. W.; Cooper, W.
1980-01-01
Cost and programmatic elements of the space construction systems analysis study are discussed. The programmatic aspects of the ETVP program define a comprehensive plan for the development of a space platform, the construction system, and the space shuttle operations/logistics requirements. The cost analysis identified significant items of cost on ETVP development, ground, and flight segments, and detailed the items of space construction equipment and operations.
STS-68 on Runway with 747 SCA/Columbia Ferry Flyby
NASA Technical Reports Server (NTRS)
1994-01-01
The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-68 on Runway with 747 SCA - Columbia Ferry Flyby
NASA Technical Reports Server (NTRS)
1994-01-01
The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
1994-03-04
Space Shuttle Columbia (STS-62) onboard photo of Astronaut Charles (Sam) Gemar talking to ground controllers while assisting astronaut Andrew M. Allen with a soak in the Lower Body Negative Pressure (LBNP) apparatus on the middeck.
NASA Technical Reports Server (NTRS)
Mennell, R. C.
1973-01-01
Experimental aerodynamic investigations were conducted in a low speed wind tunnel on an 0.0405 scale representation of the 89A light weight Space Shuttle Orbiter to obtain pressure loads data in the presence of the ground for orbiter structural strength analysis. The model and the facility are described, and data reduction is outlined. Tables are included for data set/run number collation, data set/component collation, model component description, and pressure tap locations by series number. Tabulated force and pressure source data are presented.
Ground and Range Operations for a Heavy-Lift Vehicle: Preliminary Thoughts
NASA Technical Reports Server (NTRS)
Rabelo, Luis; Zhu, Yanshen; Compton, Jeppie; Bardina, Jorge
2011-01-01
This paper discusses the ground and range operations for a Shuttle derived Heavy-Lift Vehicle being launched from the Kennedy Space Center on the Eastern range. Comparisons will be made between the Shuttle and a heavy lift configuration (SLS-ETF MPCV April 2011) by contrasting their subsystems. The analysis will also describe a simulation configuration with the potential to be utilized for heavy lift vehicle processing/range simulation modeling and the development of decision-making systems utilized by the range. In addition, a simple simulation model is used to provide the required critical thinking foundations for this preliminary analysis.
NASA Technical Reports Server (NTRS)
1972-01-01
The technical and cost analysis that was performed for the payload system operations analysis is presented. The technical analysis consists of the operations for the payload/shuttle and payload/tug, and the spacecraft analysis which includes sortie, automated, and large observatory type payloads. The cost analysis includes the costing tradeoffs of the various payload design concepts and traffic models. The overall objectives of this effort were to identify payload design and operational concepts for the shuttle which will result in low cost design, and to examine the low cost design concepts to identify applicable design guidelines. The operations analysis examined several past and current NASA and DoD satellite programs to establish a shuttle operations model. From this model the analysis examined the payload/shuttle flow and determined facility concepts necessary for effective payload/shuttle ground operations. The study of the payload/tug operations was an examination of the various flight timelines for missions requiring the tug.
Shuttle Discovery Mated to 747 SCA
NASA Technical Reports Server (NTRS)
1983-01-01
The Space Shuttle Discovery rides atop '905,' NASA's 747 Shuttle Carrier Aircraft, on its delivery flight from California to the Kennedy Space Center, Florida, where it was prepared for its first orbital mission for 30 August to 5 September 1984. The NASA 747, obtained in 1974, has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. A second modified 747, no. 911, went in to service in November 1990 and is also used to ferry orbiters to destinations where ground transportation is not practical. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Radar Topography Mission (SRTM)
,
2003-01-01
Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Imagery and Mapping Agency (NIMA), the U.S. Geological Survey (USGS) is now distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project between NASA and NIMA to map the Earth's land surface in three dimensions at a level of detail unprecedented for such a large area. Flown aboard the NASA Space Shuttle Endeavour February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface, for most of the area between 60? N. and 56? S. latitude. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected specifically with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.
2008-05-06
CAPE CANAVERAL, Fla. -- Back at the NASA Kennedy Space Center Shuttle Landing Facility, STS-124 Commander Mark Kelly happily crosses the parking area after the successful space shuttle landing practice aboard NASA's Shuttle Training Aircraft, or STA. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. The crew for space shuttle Discovery's STS-124 mission is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test, or TCDT. Providing astronauts and ground crews with an opportunity to participate in various simulated countdown activities, TCDT includes equipment familiarization and emergency training. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Morring, Frank, Jr.
2005-01-01
NASA's space shuttle fleet is nearing its return to flight with a complex mission on board Discovery that will combine tests of new hardware and procedures adopted in the wake of Columbia's loss with urgent repairs and resupply for the International Space Station. A seven-member astronaut crew has trained throughout most of the two-year hiatus in shuttle operations for the 13-day mission, shooting for a three-week launch window that opens May 15. The window, and much else about the STS-114 mission, is constrained by NASA's need to ensure it has fixed the ascent/debris problem that doomed Columbia and its crew as they attempted to reenter the atmosphere on Feb. 1, 2003. The window was selected so Discovery's ascent can be photographed in daylight with 107 different ground- and aircraft-based cameras to monitor the redesigned external tank for debris shedding. Fixed cameras and the shuttle crew will also photograph the tank in space after it has been jettisoned.
Space Station Freedom assembly and operation at a 51.6 degree inclination orbit
NASA Technical Reports Server (NTRS)
Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.
1993-01-01
This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.
Behnken during Expedition 16 / STS-123 EVA 4
2008-03-21
ISS016-E-033400 (21 March 2008) --- Astronaut Robert L. Behnken, STS-123 mission specialist, participates in the mission's fourth scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 6-hour, 24-minute spacewalk, Behnken and astronaut Mike Foreman (out of frame), mission specialist, replaced a failed Remote Power Control Module -- essentially a circuit breaker -- on the station's truss. The spacewalkers also tested a repair method for damaged heat resistant tiles on the space shuttle. This technique used a caulk-gun-like tool named the Tile Repair Ablator Dispenser to dispense a material called Shuttle Tile Ablator-54 into purposely damaged heat shield tiles. The sample tiles will be returned to Earth to undergo extensive testing on the ground. A portion of the Space Shuttle Endeavour payload bay is visible in the background.
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Banks, Bruce A.; Ma, David
2004-01-01
The objective of this research was to calibrate the ground-to-space effective atomic oxygen fluence for DC 93-500 silicone in a thermal energy electron cyclotron resonance (ECR) oxygen plasma facility. Silicones, commonly used spacecraft materials, do not chemically erode with atomic oxygen attack like other organic materials but form an oxidized hardened silicate surface layer. Therefore, the effective atomic oxygen fluence in a ground test facility should not be determined based on mass loss measurements, as they are with organic polymers. A technique has been developed at the Glenn Research Center to determine the equivalent amount of atomic oxygen exposure in an ECR ground test facility to produce the same degree of atomic oxygen damage as in space. The approach used was to compare changes in the surface hardness of ground test (ECR) exposed DC 93-500 silicone with DC 93-500 exposed to low Earth orbit (LEO) atomic oxygen as part of a shuttle flight experiment. The ground to in-space effective atomic oxygen fluence correlation was determined based on the fluence in the ECR source that produced the same hardness for the fluence in-space. Nanomechanical hardness versus contact depth measurements were obtained for five ECR exposed DC 93-500 samples (ECR exposed for 18 to 40 hrs, corresponding to Kapton effective fluences of 4.2 x 10(exp 20) to 9.4 x 10(exp 20) atoms/sq cm, respectively) and for space exposed DC 93-500 from the Evaluation of Oxygen Interactions with Materials III (EOIM III) shuttle flight experiment, exposed to LEO atomic oxygen for 2.3 x 10(exp 20) atoms/sq cm. Pristine controls were also evaluated. A ground-to-space correlation value was determined based on correlation values for four contact depths (150, 200, 250, and 300 nm), which represent the near surface depth data. The results indicate that the Kapton effective atomic oxygen fluence in the ECR facility needs to be 2.64 times higher than in LEO to replicate equivalent exposure damage in the ground test silicone as occurred in the space exposed silicone.
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the ground umbilical carrier plate (GUCP) is removed from space shuttle Discovery's external fuel tank. A hydrogen gas leak at that location during tanking for Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers examine the ground umbilical carrier plate (GUCP). A hydrogen gas leak at that location on the external fuel tank during tanking for space shuttle Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers examine the ground umbilical carrier plate (GUCP). A hydrogen gas leak at that location on the external fuel tank during tanking for space shuttle Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers remove the ground umbilical carrier plate (GUCP) from space shuttle Discovery's external fuel tank. A hydrogen gas leak at that location during tanking for Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2003-04-10
KENNEDY SPACE CENTER, FLA. -- (From left) Dean Schaaf, Barksdale site manager and NASA KSC Shuttle Process Integration Ground Operations manager, and Elliot Clement, an United Space Alliance engineer at Kennedy Space Center, inspect bagged pieces of Columbia at the Barksdale Hangar site. KSC workers are participating in the Columbia Recovery efforts at the Lufkin (Texas) Command Center, four field sites in East Texas, and the Barksdale, La., hangar site. KSC is working with representatives from other NASA Centers and with those from a number of federal, state and local agencies in the recovery effort. KSC provides vehicle technical expertise in the field to identify, collect and return Shuttle hardware to KSC.
Definition of air quality measurements for monitoring space shuttle launches
NASA Technical Reports Server (NTRS)
Thorpe, R. D.
1978-01-01
A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.
1999-10-29
Construction workers are silhouetted against the sky as they work on the girders of a support building, part of the new $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The building is to be used for related ground support equipment and administrative/technical support. The RLV complex also includes a multi-purpose hangar. The complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The facility, jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC, will be operational in early 2000
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free of NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Center, Edwards, California in 1977, as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks
NASA Technical Reports Server (NTRS)
2013-01-01
In 1990, NASA grounded its space shuttle fleet. The reason: leaks detected in the hydrogen fuel systems of the Space Shuttles Atlantis and Columbia. Unless the sources of the leaks could be identified and fixed, the shuttles would not be safe to fly. To help locate the existing leaks and check for others, Kennedy Space Center engineers used portable ultrasonic detectors to scan the fuel systems. As a gas or liquid escapes from a leak, the resulting turbulence creates ultrasonic noise, explains Gary Mohr, president of Elmsford, New York-based UE Systems Inc., a long-time leader in ultrasonic detector technologies. "In lay terms, the leak is like a dog whistle, and the detector is like the dog ear." Because the ultrasound emissions from a leak are highly localized, they can be used not only to identify the presence of a leak but also to help pinpoint a leak s location. The NASA engineers employed UE s detectors to examine the shuttle fuel tanks and solid rocket boosters, but encountered difficulty with the devices limited range-certain areas of the shuttle proved difficult or unsafe to scan up close. To remedy the problem, the engineers created a long-range attachment for the detectors, similar to "a zoom lens on a camera," Mohr says. "If you are on the ground, and the leak is 50 feet away, the detector would now give you the same impression as if you were only 25 feet away." The enhancement also had the effect of reducing background noise, allowing for a clearer, more precise detection of a leak s location.
Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.
2011-01-01
Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.
NASA Astrophysics Data System (ADS)
Kanas, Nick; Ritsher, Jennifer
2005-05-01
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.
Kanas, Nick; Ritsher, Jennifer
2005-01-01
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station. c2005 Elsevier Ltd. All rights reserved.
2008-02-23
KENNEDY SPACE CENTER, FLA. -- STS-123 Mission Specialist Takao Doi, of the Japan Aerospace Exploration Agency, awaits his turn to address the news media on hand for his arrival at NASA Kennedy Space Center's Shuttle Landing Facility. The crew for space shuttle Endeavour's STS-123 mission is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. Endeavour's seven astronauts arrived at Kennedy's Shuttle Landing Facility in their T-38 training aircraft between 10:45 and 10:58 a.m. EST. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2008-02-23
KENNEDY SPACE CENTER, FLA. -- STS-123 Mission Specialist Takao Doi, of the Japan Aerospace Exploration Agency, addresses the news media on hand for his arrival at NASA Kennedy Space Center's Shuttle Landing Facility. The crew for space shuttle Endeavour's STS-123 mission is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. Endeavour's seven astronauts arrived at Kennedy's Shuttle Landing Facility in their T-38 training aircraft between 10:45 and 10:58 a.m. EST. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1974-01-01
A space shuttle sortie mission which can be performed inexpensively in the early shuttle era and which, if the necessary intermediate steps are accomplished provides a major technological advance for the user organization-the U.S. Bureau of Census is described. The orbital configuration created for the Urban Land Use/1980 Census mission is illustrated including sensors and ground support equipment along with the information flow for the mission. Factors discussed include: specific Census Bureau functions to be supported by the mission; hardware and flight operations necessary for implementation of the mission; and integration of the TERSSE pallet into a shuttle mission.
Radio Frequency (RF) Attenuation Measurements of the Space Shuttle Vehicle
NASA Technical Reports Server (NTRS)
Scully, R. C.; Kent, B. M.; Kempf, D. R.; Johnk, R. T.
2006-01-01
Following the loss of Columbia, the Columbia Accident Investigation Board (CAIB) provided recommendations to be addressed prior to Return To Flight (RTF). As a part of CAIB Recommendation 3.4.1 - Ground Based Imagery, new C-band and X-band radars were added to the array of ground-based radars and cameras already in-situ at Kennedy Space Center. Because of higher power density considerations and new operating frequencies, the team of Subject Matter Experts (SMEs) assembled to investigate the technical details of introducing the new radars recommended a series of radio frequency (RF) attenuation tests be performed on the Space Shuttle vehicle to establish the attenuation of the vehicle outer mold line structure with respect to its external RF environment. Because of time and complex logistical constraints, it was decided to split the test into two separate efforts. The first of these would be accomplished with the assistance of the Air Force Research Laboratory (AFRL), performing RF attenuation measurements on the aft section of OV-103 (Discovery) while in-situ in Orbiter Processing Facility (OPF) 3, located at Kennedy Space Center. The second would be accomplished with the assistance of the National Institute of Standards and Technology (NIST) and the electromagnetic interference (EMI) laboratory out of the Naval Air Warfare Center, Patuxent River, Maryland (PAX River), performing RF attenuation measurements on OV-105 (Endeavour) in-situ inside the Space Shuttle Landing Facility (SLF) hangar, also located at Kennedy Space Center. This paper provides a summary description of these efforts and their results.
Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing
NASA Technical Reports Server (NTRS)
Tuma, M. L.; Chenevert, D. J.
2009-01-01
Ground vibration testing has been an integral tool for developing new launch vehicles throughout the space age. Several launch vehicles have been lost due to problems that would have been detected by early vibration testing, including Ariane 5, Delta III, and Falcon 1. NASA will leverage experience and testing hardware developed during the Saturn and Shuttle programs to perform ground vibration testing (GVT) on the Ares I crew launch vehicle and Ares V cargo launch vehicle stacks. NASA performed dynamic vehicle testing (DVT) for Saturn and mated vehicle ground vibration testing (MVGVT) for Shuttle at the Dynamic Test Stand (Test Stand 4550) at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, and is now modifying that facility to support Ares I integrated vehicle ground vibration testing (IVGVT) beginning in 2012. The Ares IVGVT schedule shows most of its work being completed between 2010 and 2014. Integrated 2nd Stage Ares IVGVT will begin in 2012 and IVGVT of the entire Ares launch stack will begin in 2013. The IVGVT data is needed for the human-rated Orion launch vehicle's Design Certification Review (DCR) in early 2015. During the Apollo program, GVT detected several serious design concerns, which NASA was able to address before Saturn V flew, eliminating costly failures and potential losses of mission or crew. During the late 1970s, Test Stand 4550 was modified to support the four-body structure of the Space Shuttle. Vibration testing confirmed that the vehicle's mode shapes and frequencies were better than analytical models suggested, however, the testing also identified challenges with the rate gyro assemblies, which could have created flight instability and possibly resulted in loss of the vehicle. Today, NASA has begun modifying Test Stand 4550 to accommodate Ares I, including removing platforms needed for Shuttle testing and upgrading the dynamic test facilities to characterize the mode shapes and resonant frequencies of the vehicle. The IVGVT team expects to collect important information about the new launch vehicles, greatly increasing astronaut safety as NASA prepares to explore the Moon and beyond.
2011-07-08
CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Satellite news trucks, trailers and automobiles can be seen in the parking lot. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
Enterprise Separates from 747 SCA for First Tailcone off Free Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise rises from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preparation for the first space mission with the orbiter Columbia in April 1981. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Unisys' experience in software quality and productivity management of an existing system
NASA Technical Reports Server (NTRS)
Munson, John B.
1988-01-01
A summary of Quality Improvement techniques, implementation, and results in the maintenance, management, and modification of large software systems for the Space Shuttle Program's ground-based systems is provided.
Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design
NASA Technical Reports Server (NTRS)
Runkle, R. E.; Drobnik, R. F.
1979-01-01
The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.
Brine shrimp development in space: ground-based data to shuttle flight results
NASA Technical Reports Server (NTRS)
Spooner, B. S.; DeBell, L.; Hawkins, L.; Metcalf, J.; Guikema, J. A.; Rosowski, J.
1992-01-01
The brine shrimp, Artemia salina, has been used as a model system to assess microgravity effects on developing organisms. Following fertilization and early development, the egg can arrest in early gastrula as a dehydrated cyst stage that is stable to harsh environments over long time periods. When salt water is added, the cysts can reactivate, with embryonic development and egg hatching occurring in about 24 h. A series of larval molts or instars, over about a 2 week period, results in the adult crustacean. We have assessed these developmental events in a closed syringe system, a bioprocessing module, in ground-based studies, and have conducted preliminary in-orbit experiments aboard the Space Shuttle Atlantis during the flights of STS-37 and STS-43. Although the in-flight data are limited, spectacular degrees of development have been achieved.
HERCULES/MSI: a multispectral imager with geolocation for STS-70
NASA Astrophysics Data System (ADS)
Simi, Christopher G.; Kindsfather, Randy; Pickard, Henry; Howard, William, III; Norton, Mark C.; Dixon, Roberta
1995-11-01
A multispectral intensified CCD imager combined with a ring laser gyroscope based inertial measurement unit was flown on the Space Shuttle Discovery from July 13-22, 1995 (Space Transport System Flight No. 70, STS-70). The camera includes a six position filter wheel, a third generation image intensifier, and a CCD camera. The camera is integrated with a laser gyroscope system that determines the ground position of the imagery to an accuracy of better than three nautical miles. The camera has two modes of operation; a panchromatic mode for high-magnification imaging [ground sample distance (GSD) of 4 m], or a multispectral mode consisting of six different user-selectable spectral ranges at reduced magnification (12 m GSD). This paper discusses the system hardware and technical trade-offs involved with camera optimization, and presents imagery observed during the shuttle mission.
DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay
2006-12-21
S116-E-07837 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay
2006-12-21
S116-E-07831 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
DOD Pico-Satellite known as ANDE released from the STS-116 shuttle payload bay
2006-12-21
S116-E-07838 (21 Dec. 2006) --- As seen through windows on the aft flight deck of Space Shuttle Discovery, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers. ANDE consists of two micro-satellites which will measure the density and composition of the low Earth orbit (LEO) atmosphere while being tracked from the ground. The data will be used to better predict the movement of objects in orbit.
Shuttle crew escape systems (CES) rocket test at Hurricane Mesa, Utah
1987-11-12
Shuttle crew escape systems (CES) tractor rocket tests conducted at Hurricane Mesa, Utah. This preliminary ground test of the tractor rocket will lead up to in-air evaluations. View shows tractor rocket as it is fired from side hatch mockup. The tractor rocket concept is one of two escape methods being studied to provide crew egress capability during Space Shuttle controlled gliding flight. In-air tests of the system, utilizing a Convair-240 aircraft, will begin 11-19-87 at the Naval Weapons Center in China Lake, California.
Seedling growth and development on space shuttle
NASA Astrophysics Data System (ADS)
Cowles, J.; Lemay, R.; Jahns, G.
1994-11-01
Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.
Seedling growth and development on space shuttle
NASA Technical Reports Server (NTRS)
Cowles, J.; Lemay, R.; Jahns, G.
1994-01-01
Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.
Atmospheric environment for Space Shuttle (STS-41D) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.
1984-01-01
Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments.
2008-02-25
KENNEDY SPACE CENTER, FLA. -- At the NASA Kennedy Space Center's Shuttle Landing Facility, STS-123 Mission Specialist Takao Doi waits in the aircraft that will return him to Houston. He and the other STS-123 crew members took part in a terminal countdown demonstration test, or TCDT, in preparation for the launch of space shuttle Endeavour scheduled on March 11. Doi represents the Japan Aerospace Exploration Agency. The TCDT enables astronauts and ground crews to participate in various countdown activities, including equipment familiarization and emergency egress training. On the STS-123 mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre Photo credit: NASA/Kim Shiflett
2011-06-16
CAPE CANAVERAL, Fla. -- After sunset, lights glow on Launch Pad 39A at NASA's Kennedy Space Center in Florida as space shuttle Atlantis awaits delivery of the Raffaello multi-purpose logistics module (MPLM) in its transportation canister. Once delivered, the canister will be lifted to the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux
2011-06-16
CAPE CANAVERAL, Fla. -- Inside the Canister Rotation Facility, the container that carries the Raffaello multi-purpose logistics module (MPLM), secured on its transportation vehicle, is ready for its journey to Launch Pad 39A at NASA's Kennedy Space Center in Florida. Once there, the canister will be lifted to the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into space shuttle Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux
2011-06-16
CAPE CANAVERAL, Fla. -- The container that carries the Raffaello multi-purpose logistics module (MPLM), secured on its transportation vehicle, makes its way past the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. Once there, the canister will be lifted to the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into space shuttle Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux
2011-06-16
CAPE CANAVERAL, Fla. -- A hazy sun sets over Launch Pad 39A at NASA's Kennedy Space Center in Florida as space shuttle Atlantis awaits delivery of the Raffaello multi-purpose logistics module (MPLM) in its transportation canister. Once delivered, the canister will be lifted to the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux
2011-06-16
CAPE CANAVERAL, Fla. -- A hazy sun sets over Launch Pad 39A at NASA's Kennedy Space Center in Florida as space shuttle Atlantis awaits delivery of the Raffaello multi-purpose logistics module (MPLM) in its transportation canister. Once delivered, the canister will be lifted to the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux
2007-05-15
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, mounted on a mobile launch platform, finally rests on the hard stand of Launch Pad 39A after an early morning rollout. This is the second rollout for the shuttle. Seen on either side of the main engine exhaust hole on the launcher platform are the tail service masts. Their function is to provide umbilical connections for liquid oxygen and liquid hydrogen lines to fuel the external tank from storage tanks adjacent to the launch pad. Other umbilical lines carry helium and nitrogen, as well as ground electrical power and connections for vehicle data and communications. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
In-Situ Monitoring of a Bismuth-Tin Alloy Solidification Using MEPHISTO
NASA Technical Reports Server (NTRS)
Abbaschian, Reza; Beatty, Kirk M.; Chen, Fuwang; deGroh, Henry, III; Cambon, Gerard
1999-01-01
Experiments were carried out to study the morphological stability of Bi- 1 atomic % Sn alloys using the MEPHISTO directional solidification apparatus aboard Space Shuttle Columbia (STS-87, launched Nov. 19, 1997) and in ground-based studies. The Seebeck signal and temperature measurements indicate that convection was significant for ground-based studies. In the space-based experiments, interface breakdown was observed at growth velocities of 6.7, 27, and 40 microns/sec, but not at 1.8 and 3.3 microns/sec.
Microgravity metal processing: from undercooled liquids to bulk metallic glasses
Hofmann, Douglas C; Roberts, Scott N
2015-01-01
Bulk metallic glasses (BMGs) are a novel class of metal alloys that are poised for widespread commercialization. Over 30 years of NASA and ESA (as well as other space agency) funding for both ground-based and microgravity experiments has resulted in fundamental science data that have enabled commercial production. This review focuses on the history of microgravity BMG research, which includes experiments on the space shuttle, the ISS, ground-based experiments, commercial fabrication and currently funded efforts. PMID:28725709
STS-43 TDRS-E & IUS over the Pacific Ocean after deployment from OV-104's PLB
1991-08-02
STS043-601-033 (2 Aug 1991) --- The Tracking and Data Relay Satellite (TDRS-E), is seen almost as a silhouette in this 70mm image. The TDRS spacecraft was captured on film as it moved away from the earth-orbiting Atlantis a mere six hours after the shuttle was launched from Pad 39A at Kennedy Space Center, Florida. TDRS, built by TRW, will be placed in a geosynchronous orbit and after on-orbit testing, which requires several weeks, will be designated TDRS-5. The communications satellite will replace TDRS-3 at 174 degrees west longitude. The backbone of NASA's space-to-ground communications, the Tracking and Data Relay Satellites have increased NASA's ability to send and receive data to spacecraft in low-earth orbit to more than 85 percent of the time. Before TDRS, NASA relied solely on a system of ground stations that permitted communications only 15 percent of the time. Increased coverage has allowed on-orbit repairs, live television broadcast from space and continuous dialogues between astronaut crews and ground control during critical periods such as space shuttle landings. The five astronauts of the STS-43 are John E. Blaha, mission commander, Michael a. Baker, pilot, and mission specialists Shannon W. Lucid, G. David Low and James C. Adamson.
400mm Mapping Sequence performed during the STS-119 R-Bar Pitch Maneuver
2008-03-17
ISS018-E-040791 (17 March 2009) --- Backdropped by a blanket of clouds, Space Shuttle Discovery is featured in this image photographed by an Expedition 18 crewmember on the International Space Station during rendezvous and docking operations. Before docking with the station, astronaut Lee Archambault, STS-119 commander, flew the shuttle through a Rendezvous Pitch Maneuver or basically a backflip to allow the space station crew a good view of Discovery's heat shield. Using digital still cameras equipped with both 400 and 800 millimeter lenses, the ISS crewmembers took a number of photos of the shuttle's thermal protection system and sent them down to teams on the ground for analysis. A 400 millimeter lens was used for this image. Docking occurred at 4:20 p.m. (CDT) on March 17, 2009. The final pair of power-generating solar array wings and the S6 truss segment are visible in Discovery?s cargo bay.
400mm Mapping Sequence performed during the STS-119 R-Bar Pitch Maneuver
2008-03-17
ISS018-E-040792 (17 March 2009) --- Backdropped by a blanket of clouds, Space Shuttle Discovery is featured in this image photographed by an Expedition 18 crewmember on the International Space Station during rendezvous and docking operations. Before docking with the station, astronaut Lee Archambault, STS-119 commander, flew the shuttle through a Rendezvous Pitch Maneuver or basically a backflip to allow the space station crew a good view of Discovery's heat shield. Using digital still cameras equipped with both 400 and 800 millimeter lenses, the ISS crewmembers took a number of photos of the shuttle's thermal protection system and sent them down to teams on the ground for analysis. A 400 millimeter lens was used for this image. Docking occurred at 4:20 p.m. (CDT) on March 17, 2009. The final pair of power-generating solar array wings and the S6 truss segment are visible in Discovery?s cargo bay.
NASA Technical Reports Server (NTRS)
Bergmann, E.
1976-01-01
The current baseline method and software implementation of the space shuttle reaction control subsystem failure detection and identification (RCS FDI) system is presented. This algorithm is recommended for conclusion in the redundancy management (RM) module of the space shuttle guidance, navigation, and control system. Supporting software is presented, and recommended for inclusion in the system management (SM) and display and control (D&C) systems. RCS FDI uses data from sensors in the jets, in the manifold isolation valves, and in the RCS fuel and oxidizer storage tanks. A list of jet failures and fuel imbalance warnings is generated for use by the jet selection algorithm of the on-orbit and entry flight control systems, and to inform the crew and ground controllers of RCS failure status. Manifold isolation valve close commands are generated in the event of failed on or leaking jets to prevent loss of large quantities of RCS fuel.
Chemical Analysis Results for Potable Water from ISS Expeditions 21 Through 25
NASA Technical Reports Server (NTRS)
Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin
2011-01-01
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 21 through 25. Over a 14-month period the Space Shuttle visited the ISS on four occasions to complete construction and deliver supplies. The onboard supplies of potable water available for consumption by the Expeditions 21 to 25 crews consisted of Russian ground-supplied potable water, Russian potable water regenerated from humidity condensate, and US potable water recovered from urine distillate and condensate. Chemical archival water samples that were collected with U.S. hardware during Expeditions 21 to 25 were returned on Shuttle flights STS-129 (ULF3), STS-130 (20A), STS-131 (19A), and STS-132 (ULF4), as well as on Soyuz flights 19-23. This paper reports the analytical results for these returned potable water archival samples and their compliance with ISS water quality standards.
2011-06-17
CAPE CANAVERAL, Fla. -- Workers attach umbilical hoses that maintain a controlled environment inside the canister carrying the Raffaello multi-purpose logistics module (MPLM). The payload was delivered to Launch Pad 39A at NASA's Kennedy Space Center in Florida for space shuttle Atlantis' STS-135 mission to the International Space Station. The canister is being lifted into the payload changeout room. The payload ground-handling mechanism then will be used to transfer Raffaello out of the canister into Atlantis' payload bay. Next, the rotating service structure that protects the shuttle from the elements and provides access will be rotated back into place. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are targeted to lift off on Atlantis July 8, taking with them the MPLM packed with supplies, logistics and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Dimitri Gerondidakis
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. At the controls are Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the AtmosphereShuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet Hale-Bopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. At the controls are Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the AtmosphereShuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet Hale-Bopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. At the controls are Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the AtmosphereShuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet Hale-Bopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls and the Vehicle Assembly Building (VAB) in the background, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
Shuttle program: Ground tracking data program document shuttle OFT launch/landing
NASA Technical Reports Server (NTRS)
Lear, W. M.
1977-01-01
The equations for processing ground tracking data during a space shuttle ascent or entry, or any nonfree flight phase of a shuttle mission are given. The resulting computer program processes data from up to three stations simultaneously: C-band station number 1; C-band station number 2; and an S-band station. The C-band data consists of range, azimuth, and elevation angle measurements. The S-band data consists of range, two angles, and integrated Doppler data in the form of cycle counts. A nineteen element state vector is used in Kalman filter to process the measurements. The acceleration components of the shuttle are taken to be independent exponentially-correlated random variables. Nine elements of the state vector are the measurement bias errors associated with range and two angles for each tracking station. The biases are all modeled as exponentially-correlated random variables with a typical time constant of 108 seconds. All time constants are taken to be the same for all nine state variables. This simplifies the logic in propagating the state error covariance matrix ahead in time.
International Space Station (ISS)
2005-07-28
Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
International Space Station (ISS)
2005-07-28
Launched on July 26, 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
International Space Station (ISS)
2005-07-28
Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery’s heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.
NASA Technical Reports Server (NTRS)
Kennedy, Barbara J.
2004-01-01
The purposes of this study are to compare the current Space Shuttle Ground Support Equipment (GSE) infrastructure with the proposed GSE infrastructure upgrade modification. The methodology will include analyzing the first prototype installation equipment at Launch PAD B called the "Pathfinder". This study will begin by comparing the failure rate of the current components associated with the "Hardware interface module (HIM)" at the Kennedy Space Center to the failure rate of the neW Pathfinder components. Quantitative data will be gathered specifically on HIM components and the PAD B Hypergolic Fuel facility and Hypergolic Oxidizer facility areas which has the upgraded pathfinder equipment installed. The proposed upgrades include utilizing industrial controlled modules, software, and a fiber optic network. The results of this study provide evidence that there is a significant difference in the failure rates of the two studied infrastructure equipment components. There is also evidence that the support staff for each infrastructure system is not equal. A recommendation to continue with future upgrades is based on a significant reduction of failures in the new' installed ground system components.
Mission safety evaluation report for STS-39, postflight edition
NASA Technical Reports Server (NTRS)
Hardie, Kenneth O.; Hill, William C.; Finkel, Seymour I.
1991-01-01
After a delay of approximately 2 months due to a rollback from the pad to replace the External Tank door lug housing, Space Shuttle Discovery was launched from NASA-Kennedy at 7:33 a.m. Eastern Daylight Time on 28 April 1991. STS-39 was the first unclassified DoD Shuttle mission. On 28 April, countdown proceeded normally through the T-20 minute hold. No significant problems were encountered except for the Operations Sequence-2 recorder starting unexpectedly; it was stopped by an uplink command. Discovery landed on KSC runway 15 at 2:55 p.m. EDT on 6 May 1991. This was the second time in 6 months that the Space Shuttle was diverted to KSC for landing because of high winds at Edwards AFB, Calif. This was also the 7th of 40 Shuttle missions to land at KSC in the history of the Space Shuttle Program. The Main Landing Gear outer right tire shredded 3 of the 16 cords due to either an uneven landing or a maximum force breaking test during rollout. Contributing factors to the tire cord shredding were the development of last minute crosswinds and reluctance of the ground controllers to distract the Shuttle pilots with warnings of the low flight path. As a corrective action, communication procedures will be modified for future flights.
Space shuttle onboard navigation console expert/trainer system
NASA Technical Reports Server (NTRS)
Wang, Lui; Bochsler, Dan
1987-01-01
A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.
John Glenn during preflight training for STS-95
1998-04-14
S98-06946 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). This training mockup is called The full fuselage trainer (FFT). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crew members for procedures to follow in egressing a troubled shuttle on the ground. Photo Credit: Joe McNally, National Geographic, for NASA
Orbital operation study. Volume 3: Basic vehicle summaries
NASA Technical Reports Server (NTRS)
Anderson, N. R.; Gianformaggio, A.
1972-01-01
The vehicle related data developed during the orbital operations study are described. The interfacing activity findings have been realigned into the four basic vehicle systems as follows: (1) earth orbital shuttle (EOS), (2) research and applications module (RAM), (3) space based, ground based, manned and unmanned tugs, and (4) modular space station (MSS).
Mine-Resistant Ambush-Protection vehicles
2014-02-13
CAPE CANAVERAL, Fla. – One of four new emergency egress vehicles, called Mine-Resistant Ambush-Protection, or MRAP, vehicles sits near space shuttle-era M-113 vehicles at the Maintenance and Operations Facility at NASA’s Kennedy Space Center in Florida. The MRAPs arrived from the U.S. Army Red River Depot in Texarkana, Texas in December 2013. The vehicles were processed in and then transported to the Rotation, Processing and Surge Facility near the Vehicle Assembly Building for temporary storage. The Ground Systems Development and Operations Program at Kennedy led the efforts to an emergency egress vehicle that future astronauts could quickly use to leave the Launch Complex 39 area in case of an emergency. During crewed launches of NASA’s Space Launch System and Orion spacecraft, the MRAP will be stationed by the slidewire termination area at the pad. In case of an emergency, the crew will ride a slidewire to the ground and immediately board the MRAP for safe egress from the pad. The new vehicles replace the M-113 vehicles that were used during the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
Requirement for a standard language for test and ground operations
NASA Technical Reports Server (NTRS)
Medlock, J. R.
1971-01-01
The basic requirements for a standard test and checkout language applicable to all phases of the space shuttle test and ground operations are determined. The general characteristics outlined here represent the integration of selected ideas and concepts from operational elements within Kennedy Space Center (KSC) that represent diverse disciplines associated with space vehicle testing and launching operations. Special reference is made to two studies conducted in this area for KSC as authorized by the Advanced Development Element of the Office of Manned Space Flight (MSF). Information contained in reports from these studies have contributed significantly to the final selection of language features depicted in this technical report.
A Definition of STS Accommodations for Attached Payloads
NASA Technical Reports Server (NTRS)
Echols, F. L.; Broome, P. A.
1983-01-01
An input to a study conducted to define a set of carrier avionics for supporting large structures experiments attached to the Space Shuttle Orbiter is reported. The "baseline" Orbier interface used in developing the avionics concept for the Space Technology Experiments Platform, STEP, which Langley Research Center has proposed for supporting experiments of this sort is defined. Primarily, flight operations capabilities and considerations and the avionics systems capabilities that are available to a payload as a "mixed cargo" user of the Space Transportation System are addressed. Ground operations for payload integration at Kennedy Space Center, and ground operations for payload support during the mission are also discussed.
ISAAC: Inflatable Satellite of an Antenna Array for Communications, volume 6
NASA Technical Reports Server (NTRS)
Lodgard, Deborah; Ashton, Patrick; Cho, Margaret; Codiana, Tom; Geith, Richard; Mayeda, Sharon; Nagel, Kirsten; Sze, Steven
1988-01-01
The results of a study to design an antenna array satellite using rigid inflatable structure (RIS) technology are presented. An inflatable satellite allows for a very large structure to be compacted for transportation in the Space Shuttle to the Space Station where it is assembled. The proposed structure resulting from this study is a communications satellite for two-way communications with many low-power stations on the ground. Total weight is 15,438 kilograms which is within the capabilities of the Space Shuttle. The satellite will have an equivalent aperture greater than 100 meters in diameter and will be operable in K and C band frequencies, with a total power requirement of 10,720 watts.
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers prepare to remove the ground umbilical carrier plate (GUCP) from space shuttle Discovery's external fuel tank. A hydrogen gas leak at that location during tanking for Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-11-10
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers remove the seal from the ground umbilical carrier plate (GUCP). A hydrogen gas leak at that location on the external fuel tank during tanking for space shuttle Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers install a cap over the hole in space shuttle Discovery's external fuel tank where the ground umbilical carrier plate (GUCP) was removed. A hydrogen gas leak at that location during tanking for Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers begin to remove the ground umbilical carrier plate (GUCP) from space shuttle Discovery's external fuel tank. A hydrogen gas leak at that location during tanking for Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the ground umbilical carrier plate (GUCP) is ready to be examined. A hydrogen gas leak at that location on the external fuel tank during tanking for space shuttle Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-11-10
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers examine the seal from the ground umbilical carrier plate (GUCP). A hydrogen gas leak at that location on the external fuel tank during tanking for space shuttle Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2010-11-10
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers begin to remove the seal from the ground umbilical carrier plate (GUCP). A hydrogen gas leak at that location on the external fuel tank during tanking for space shuttle Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers move the ground umbilical carrier plate (GUCP) to a location where it can be examined. A hydrogen gas leak at that location on the external fuel tank during tanking for space shuttle Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers install a cap over the hole in space shuttle Discovery's external fuel tank where the ground umbilical carrier plate (GUCP) was removed. A hydrogen gas leak at that location during tanking for Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-11-11
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers prepare to remove the ground umbilical carrier plate (GUCP) from space shuttle Discovery's external fuel tank. A hydrogen gas leak at that location during tanking for Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Dimitri Gerondidakis
2010-11-10
CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers examine the seal from the ground umbilical carrier plate (GUCP). A hydrogen gas leak at that location on the external fuel tank during tanking for space shuttle Discovery's STS-133 mission to the International Space Station caused the launch attempt to be scrubbed Nov. 5. The GUCP will be examined to determine the cause of the hydrogen leak and then repaired. The GUCP is the overboard vent to the pad and the flame stack where the excess hydrogen is burned off. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jack Pfaller
Pen-based computers: Computers without keys
NASA Technical Reports Server (NTRS)
Conklin, Cheryl L.
1994-01-01
The National Space Transportation System (NSTS) is comprised of many diverse and highly complex systems incorporating the latest technologies. Data collection associated with ground processing of the various Space Shuttle system elements is extremely challenging due to the many separate processing locations where data is generated. This presents a significant problem when the timely collection, transfer, collation, and storage of data is required. This paper describes how new technology, referred to as Pen-Based computers, is being used to transform the data collection process at Kennedy Space Center (KSC). Pen-Based computers have streamlined procedures, increased data accuracy, and now provide more complete information than previous methods. The end results is the elimination of Shuttle processing delays associated with data deficiencies.
2009-03-11
CAPE CANAVERAL, Fla. – Seen in the photo is the hydrogen vent line attached to the Ground Umbilical Carrier Plate on space shuttle Discovery's external fuel tank. The shuttle is on Launch Pad 39A at NASA's Kennedy Space Center in Florida. A leak of hydrogen at the location during tanking caused the STS-119 mission to be scrubbed at 2:36 p.m. March 11. The vent line is at the intertank and is the overboard vent to the pad and the flare stack where the vented hydrogen is burned off. Mission management teams believe they have sufficient understanding of the repair plan to continue toward a March 15 launch at 7:43 p.m. EDT. Photo courtesy of United Space Alliance
2007-02-12
KENNEDY SPACE CENTER, FLA. -- A worker in the payload changeout room (PCR) on Launch Pad 39A monitors the payload ground-handling mechanism that is used to transfer the payload into the PCR and the shuttle's payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller
Construction continues on RLV Support Complex at SLF
NASA Technical Reports Server (NTRS)
1999-01-01
An aerial view reveals (foreground) the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. In the background is the Vehicle Assembly Building. The road at right is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
A space system for high-accuracy global time and frequency comparison of clocks
NASA Technical Reports Server (NTRS)
Decher, R.; Allan, D. W.; Alley, C. O.; Vessot, R. F. C.; Winkler, G. M. R.
1981-01-01
A Space Shuttle experiment in which a hydrogen maser clock on board the Space Shuttle will be compared with clocks on the ground using two-way microwave and short pulse laser signals is described. The accuracy goal for the experiment is 1 nsec or better for the time transfer and 10 to the minus 14th power for the frequency comparison. A direct frequency comparison of primary standards at the 10 to the minus 14th power accuracy level is a unique feature of the proposed system. Both time and frequency transfer will be accomplished by microwave transmission, while the laser signals provide calibration of the system as well as subnanosecond time transfer.
1999-10-14
An aerial view reveals (foreground) the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. In the background is the Vehicle Assembly Building. The road at right is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) over Rogers Dry Lake during the second of five free flights carried out at the Dryden Flight Research Center, Edwards, California, as part of the Shuttle program's Approach and Landing Tests (ALT) in 1977. The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. A series of test flights during which Enterprise was taken aloft atop the SCA, but was not released, preceded the free flight tests. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
An Induced Environment Contamination Monitor for the Space Shuttle
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor); Decher, R. (Editor)
1978-01-01
The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given.
2009-03-14
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the orbiter access arm and White Room are extended toward space shuttle Discovery after rollback of the rotating service structure. The White Room provides crew access into the shuttle. The rollback is in preparation for Discovery's liftoff on the STS-119 mission with a crew of seven. An earlier launch attempt March 11 was scrubbed at 2:36 p.m. due to a gaseous hydrogen leak from the external tank at the Ground Umbilical Carrier Plate during tanking. A seven-inch quick disconnect and two seals were replaced. The STS-119 mission is the 28th to the International Space Station and the 125th space shuttle flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Liftoff of Discovery is scheduled for 7:43 p.m. EDT on March 15. Photo credit: NASA/Jack Pfaller
2009-03-14
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the orbiter access arm and White Room are extended toward space shuttle Discovery after rollback of the rotating service structure. The White Room provides crew access into the shuttle. The rollback is in preparation for Discovery's liftoff on the STS-119 mission with a crew of seven. An earlier launch attempt March 11 was scrubbed at 2:36 p.m. due to a gaseous hydrogen leak from the external tank at the Ground Umbilical Carrier Plate during tanking. A seven-inch quick disconnect and two seals were replaced. The STS-119 mission is the 28th to the International Space Station and the 125th space shuttle flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Liftoff of Discovery is scheduled for 7:43 p.m. EDT on March 15. Photo credit: NASA/Jack Pfaller
Experiment module concepts study. Volume 1: Management summary
NASA Technical Reports Server (NTRS)
1970-01-01
The minimum number of standardized (common) module concepts that will satisfy the experiment program for manned space stations at least cost is investigated. The module interfaces with other elements such as the space shuttle, ground stations, and the experiments themselves are defined. The total experiment module program resource and test requirements are also considered. The minimum number of common module concepts that will satisfy the program at least cost is found to be three, plus a propulsion slice and certain experiment-peculiar integration hardware. The experiment modules rely on the space station for operational, maintenance, and logistic support. They are compatible with both expendable and shuttle launch vehicles, and with servicing by shuttle, tug, or directly from the space station. A total experiment module program cost of approximately $2319M under the study assumptions is indicated. This total is made up of $838M for experiment module development and production, $806M for experiment equipment, and $675M for interface hardware, experiment integration, launch and flight operations, and program management and support.
Construction bidding cost of KSC's space shuttle facilities
NASA Technical Reports Server (NTRS)
Brown, Joseph Andrew
1977-01-01
The bidding cost of the major Space Transportation System facilities constructed under the responsibility of the John F. Kennedy Space Center (KSC) is described and listed. These facilities and Ground Support Equipment (GSE) are necessary for the receiving, assembly, testing, and checkout of the Space Shuttle for launch and landing missions at KSC. The Shuttle launch configuration consists of the Orbiter, the External Tank, and the Solid Rocket Boosters (SRB). The reusable Orbiter and SRB's is the major factor in the program that will result in lowering space travel costs. The new facilities are the Landing Facility; Orbiter Processing Facility; Orbiter Approach and Landing Test Facility (Dryden Test Center, California); Orbiter Mating Devices; Sound Suppression Water System; and Emergency Power System for LC-39. Also, a major factor was to use as much Apollo facilities and hardware as possible to reduce the facilities cost. The alterations to existing Apollo facilities are the VAB modifications; Mobile Launcher Platforms; Launch Complex 39 Pads A and B (which includes a new concept - the Rotary Service Structure), which was featured in ENR, 3 Feb. 1977, 'Hinged Space Truss will Support Shuttle Cargo Room'; Launch Control Center mods; External Tank and SRB Processing and Storage; Fluid Test Complex mods; O&C Spacelab mods; Shuttle mods for Parachute Facility; SRB Recovery and Disassembly Facility at Hangar 'AF'; and an interesting GSE item - the SRB Dewatering Nozzle Plug Sets (Remote Controlled Submarine System) used to inspect and acquire for reuse of SRB's.
Lightning Protection System for Space Shuttle
NASA Technical Reports Server (NTRS)
1977-01-01
The suitability and cost effectiveness of using a lightning mast for the shuttle service and access tower (SSAT) similar to the type used for the Apollo Soyuz Test Project (ASTP) mobile launcher (ML) was evaluated. Topics covered include: (1) ASTP launch damage to mast, mast supports, grounded overhead wires, and the instrumentation system; (2) modifications required to permit reusing the ASTP mast on the SSAT; (3) comparative costing factors per launch over a 10 year period in repetitive maintenance and refurbishment of the existing and modified masts, mast supports, grounded overhead wires, and ground instrumentation required to sustain mechanical and electrical integrity of the masts; (4) effects of blast testing samples of the ASTP ML type mast (corrosion and electrical flashover); (5) comparison of damages from ASTP launch and from blast testing.
NASA Technical Reports Server (NTRS)
1972-01-01
A preliminary estimate is presented of the resources required to develop the basic general purpose walking boom manipulator system. It is assumed that the necessary full scale zero g test facilities will be available on a no cost basis. A four year development effort is also assumed and it is phased with an estimated shuttle development program since the shuttle will be developed prior to the space station. Based on delivery of one qualification unit and one flight unit and without including any ground support equipment or flight test support it is estimated (within approximately + or - 25%) that a total of 3551 man months of effort and $17,387,000 are required.
Performance analysis of wideband data and television channels. [space shuttle communications
NASA Technical Reports Server (NTRS)
Geist, J. M.
1975-01-01
Several aspects are discussed of space shuttle communications, including the return link (shuttle-to-ground) relayed through a satellite repeater (TDRS). The repeater exhibits nonlinear amplification and an amplitude-dependent phase shift. Models were developed for various link configurations, and computer simulation programs based on these models are described. Certain analytical results on system performance were also obtained. For the system parameters assumed, the results indicate approximately 1 db degradation relative to a link employing a linear repeater. While this degradation is dependent upon the repeater, filter bandwidths, and modulation parameters used, the programs can accommodate changes to any of these quantities. Thus the programs can be applied to determine the performance with any given set of parameters, or used as an aid in link design.
Mechanical features of the shuttle rotating service structure
NASA Technical Reports Server (NTRS)
Crump, J. M.
1985-01-01
With the development of the space shuttle launching facilities, it became mandatory to develop a shuttle rotating service structure to provide for the insertion and/or removal of payloads at the launch pads. The rotating service structure is a welded tubular steel space frame 189 feet high, 65 feet wide, and weighing 2100 tons. At the pivot column the structure is supported on a 30 inch diameter hemispherical bearing. At the opposite terminus the structure is supported on two truck assemblies each having eight 36 inch diameter double flanged wheels. The following features of the rotating service structure are discussed: (1) thermal expansion and contraction; (2) hurricane tie downs; (3) payload changeout room; (4) payload ground handling mechanism; (5) payload and orbiter access platforms; and (6) orbiter cargo bay access.
Space shuttle booster multi-engine base flow analysis
NASA Technical Reports Server (NTRS)
Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.
1972-01-01
A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.
Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System
NASA Technical Reports Server (NTRS)
Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty
2006-01-01
Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.
MS Reilly at work on Endeavour
1998-03-04
S89-E-5536 (22-31 Jan 1998) --- This Electronic Still Camera (ESC) image taken on the Space Shuttle Endeavour's middeck, shows astronaut James F. Reilly, mission specialist, looks over a long roll of "mail" from ground controllers.
Utilizing HDTV as Data for Space Flight
NASA Technical Reports Server (NTRS)
Grubbs, Rodney; Lindblom, Walt
2006-01-01
In the aftermath of the Space Shuttle Columbia accident February 1, 2003, the Columbia Accident Investigation Board recognized the need for better video data from launch, on-orbit, and landing to assess the status and safety of the shuttle orbiter fleet. The board called on NASA to improve its imagery assets and update the Agency s methods for analyzing video. This paper will feature details of several projects implemented prior to the return to flight of the Space Shuttle, including an airborne HDTV imaging system called the WB-57 Ascent Video Experiment, use of true 60 Hz progressive scan HDTV for ground and airborne HDTV camera systems, and the decision to utilize a wavelet compression system for recording. This paper will include results of compression testing, imagery from the launch of STS-114, and details of how commercial components were utilized to image the shuttle launch from an aircraft flying at 400 knots at 60,000 feet altitude. The paper will conclude with a review of future plans to expand on the upgrades made prior to return to flight.
Evaluation of the Space Shuttle Transatlantic Abort Landing Atmospheric Sounding System
NASA Technical Reports Server (NTRS)
Leahy, Frank B.
2003-01-01
A study was conducted to determine the quality of thermodynamic and wind data measured by or derived from the Transatlantic Abort Landing (TAL) Atmospheric Sounding System (TASS). The system has Global Positioning System (GPS) tracking capability and includes a helium-filled latex balloon that carries an instrument package (sonde) and various ground equipment that receives and processes the data from the sonde. TASS is used to provide vertical profiles of thermodynamic and low-resolution wind data in support of Shuttle abort landing operations at TAL sites. TASS uses GPS to determine height, wind speed, and wind direction. The TASS sonde has sensors that directly measure air temperature and relative humidity. These are then used to derive air pressure and density. Test flights were conducted where a TASS sonde and a reference sonde were attached to the same balloon and the two profiles were compared. The objective of the testing was to determine if TASS thermodynamic and wind data met Space Shuttle Program (SSP) accuracy requirements outlined in the Space Shuttle Launch and Landing Program Requirements Document (PRD).
Shuttle structural dynamics characteristics: The analysis and verification
NASA Technical Reports Server (NTRS)
Modlin, C. T., Jr.; Zupp, G. A., Jr.
1985-01-01
The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.
2009-07-15
CAPE CANAVERAL, Fla. – In the Firing Room at NASA's Kennedy Space Center in Florida, Center Director Bob Cabana congratulates the mission team for the successful launch of space shuttle Endeavour on the STS-127 mission. Liftoff was on-time at 6:03 p.m. EDT. Looking on at left are Associate Administrator of Program Analysis & Evaluation at NASA Dr. Michael Hawes, Shuttle Launch Director Mike Leinbach and Endeavour Flow Director Dana Hutcherson , and at right, STS-127 Shuttle Launch Director Pete Nickolenko. Today was the sixth launch attempt for the STS-127 mission. The launch was scrubbed on June 13 and June 17 when a hydrogen gas leak occurred during tanking due to a misaligned Ground Umbilical Carrier Plate. The mission was postponed July 11, 12 and 13 due to weather conditions near the Shuttle Landing Facility at Kennedy that violated rules for launching, and lightning issues. Endeavour will deliver the Japanese Experiment Module's Exposed Facility and the Experiment Logistics Module-Exposed Section in the final of three flights dedicated to the assembly of the Japan Aerospace Exploration Agency's Kibo laboratory complex on the International Space Station. Photo credit: NASA/Kim Shiflett
Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Vaughan, W. W.
1999-01-01
This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.
1983-01-01
This photograph shows the Spacelab 1 module and pallet ready to be installed in the cargo bay of the Space Shuttle Orbiter Columbia at the Kennedy Space Center. The overall goal of the first Spacelab mission was to verify its Space performance through a variety of scientific experiments. The investigation selected for this mission tested the Spacelab hardware, flight and ground systems, and crew to demonstrate their capabilities for advanced research in space. However, Spacelab 1 was not merely a checkout flight or a trial run. Important research problems that required a laboratory in space were scheduled for the mission. Spacelab 1 was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. These fields were Astronomy and Solar Physics, Space Plasma Physics, Atmospheric Physics and Earth Observations, Life Sciences, and Materials Science. Spacelab 1 was launched aboard the Space Shuttle Columbia (STS-9 mission) on November 28, 1983.
Microbiological Lessons Learned from the Space Shuttle
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.
2011-01-01
After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date.
First Shuttle/747 Captive Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise rides smoothly atop NASA's first Shuttle Carrier Aircraft (SCA), NASA 905, during the first of the shuttle program's Approach and Landing Tests (ALT) at the Dryden Flight Research Center, Edwards, California, in 1977. During the nearly one year-long series of tests, Enterprise was taken aloft on the SCA to study the aerodynamics of the mated vehicles and, in a series of five free flights, tested the glide and landing characteristics of the orbiter prototype. In this photo, the main engine area on the aft end of Enterprise is covered with a tail cone to reduce aerodynamic drag that affects the horizontal tail of the SCA, on which tip fins have been installed to increase stability when the aircraft carries an orbiter. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
1992-09-12
The group of Japanese researchers of the Spacelab-J (SL-J) were thumbs-up in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center after the successful launch of Space Shuttle Orbiter Endeavour that carried their experiments. The SL-J was a joint mission of NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted microgravity investigations in materials and life sciences. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, frogs, and frog eggs. The POCC was the air/ground communications channel between the astronauts and ground control teams during the Spacelab missions. The Spacelab science operations were a cooperative effort between the science astronaut crew in orbit and their colleagues in the POCC. Spacelab-J was launched aboard the Space Shuttle Orbiter Endeavour on September 12, 1992.
Activities During Spacelab-J Mission at Payload Operations and Control Center
NASA Technical Reports Server (NTRS)
1992-01-01
The group of Japanese researchers of the Spacelab-J (SL-J) were thumbs-up in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center after the successful launch of Space Shuttle Orbiter Endeavour that carried their experiments. The SL-J was a joint mission of NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted microgravity investigations in materials and life sciences. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, frogs, and frog eggs. The POCC was the air/ground communications channel between the astronauts and ground control teams during the Spacelab missions. The Spacelab science operations were a cooperative effort between the science astronaut crew in orbit and their colleagues in the POCC. Spacelab-J was launched aboard the Space Shuttle Orbiter Endeavour on September 12, 1992.
2001-03-05
The orbiter Atlantis arrives at KSC’s Shuttle Landing Facility riding piggyback on a Shuttle Carrier Aircraft, a modified Boeing 747. Atlantis landed in California Feb. 19 concluding mission STS-98. The ferry flight began in California March 1; unfavorable weather conditions kept it on the ground at Altus AFB, Okla., until it could return to Florida. The orbiter will next fly on mission STS-104, the 10th construction flight to the International Space Station, scheduled June 8
2001-03-05
The orbiter Atlantis arrives at KSC’s Shuttle Landing Facility riding piggyback on a Shuttle Carrier Aircraft, a modified Boeing 747. Atlantis landed in California Feb. 19 concluding mission STS-98. The ferry flight began in California March 1; unfavorable weather conditions kept it on the ground at Altus AFB, Okla., until it could return to Florida. The orbiter will next fly on mission STS-104, the 10th construction flight to the International Space Station, scheduled June 8
NASA Astrophysics Data System (ADS)
Rembala, Richard; Ower, Cameron
2009-10-01
MDA has provided 25 years of real-time engineering support to Shuttle (Canadarm) and ISS (Canadarm2) robotic operations beginning with the second shuttle flight STS-2 in 1981. In this capacity, our engineering support teams have become familiar with the evolution of mission planning and flight support practices for robotic assembly and support operations at mission control. This paper presents observations on existing practices and ideas to achieve reduced operational overhead to present programs. It also identifies areas where robotic assembly and maintenance of future space stations and space-based facilities could be accomplished more effectively and efficiently. Specifically, our experience shows that past and current space Shuttle and ISS assembly and maintenance operations have used the approach of extensive preflight mission planning and training to prepare the flight crews for the entire mission. This has been driven by the overall communication latency between the earth and remote location of the space station/vehicle as well as the lack of consistent robotic and interface standards. While the early Shuttle and ISS architectures included robotics, their eventual benefits on the overall assembly and maintenance operations could have been greater through incorporating them as a major design driver from the beginning of the system design. Lessons learned from the ISS highlight the potential benefits of real-time health monitoring systems, consistent standards for robotic interfaces and procedures and automated script-driven ground control in future space station assembly and logistics architectures. In addition, advances in computer vision systems and remote operation, supervised autonomous command and control systems offer the potential to adjust the balance between assembly and maintenance tasks performed using extra vehicular activity (EVA), extra vehicular robotics (EVR) and EVR controlled from the ground, offloading the EVA astronaut and even the robotic operator on-orbit of some of the more routine tasks. Overall these proposed approaches when used effectively offer the potential to drive down operations overhead and allow more efficient and productive robotic operations.
2008-09-24
CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, ramps are in place for the offloading of the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann
2008-09-24
CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers remove material from a cargo box before offloading the primary cargo from the Russian Antonov AH-124-100 cargo airplane. The plane carries the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station: the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann
2008-09-24
CAPE CANAVERAL, Fla. - On the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, equipment is removed from the Russian Antonov AH-124-100 cargo airplane to facilitate offloading of the primary cargo, the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station. The components are the Kibo Exposed Facility, or EF, and the Experiment Logistics Module Exposed Section, or ELM-ES. The EF provides a multipurpose platform where science experiments can be deployed and operated in the exposed environment. The payloads attached to the EF can be exchanged or retrieved by Kibo's robotic arm, the JEM Remote Manipulator System. The ELM-ES will be attached to the end of the EF to provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be detached from the EF and returned to the ground aboard the space shuttle. The two JEM components will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch in May 2009. Photo credit: NASA/Jim Grossmann
2008-02-23
KENNEDY SPACE CENTER, FLA. -- The crew for space shuttle Endeavour's STS-123 mission head for the bus which will transport them to crew quarters following their arrival at NASA Kennedy Space Center's Shuttle Landing Facility. From left are Commander Dominic Gorie; Mission Specialists Garrett Reisman and Takao Doi of the Japan Aerospace Exploration Agency; Pilot Gregory H. Johnson; and Mission Specialists Rick Linnehan and Robert L. Behnken. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. Endeavour's seven astronauts arrived at Kennedy's Shuttle Landing Facility in their T-38 training aircraft between 10:45 and 10:58 a.m. EST. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2008-02-23
KENNEDY SPACE CENTER, FLA. -- The crew for space shuttle Endeavour's STS-123 mission pose for a group portrait following their arrival at NASA Kennedy Space Center's Shuttle Landing Facility. From left are Commander Dominic Gorie; Mission Specialists Takao Doi of the Japan Aerospace Exploration Agency, Garrett Reisman and Rick Linnehan; Pilot Gregory H. Johnson; and Mission Specialists Robert L. Behnken and Mike Foreman. The crew is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. Endeavour's seven astronauts arrived at Kennedy's Shuttle Landing Facility in their T-38 training aircraft between 10:45 and 10:58 a.m. EST. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Satellite news trucks, trailers and automobiles can be seen in the parking lot. In the background is the Operations and Support Building II where VIPs are able to watch the launch from its upper balcony. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen towering above is the massive Vehicle Assembly Building. Satellite news trucks, trailers and automobiles can be seen in the parking lot with the massive Vehicle Assembly Building towering above. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Dozens of satellite news vehicles can be seen in the parking lot while the massive Vehicle Assembly Building towers above in the background. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Dozens of satellite news vehicles can be seen in the parking lot with the massive Vehicle Assembly Building towering above. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Media from around the globe gather on the grounds of the Press Site at NASA's Kennedy Space Center in Florida to photograph and cover the prelaunch activities and lift off of space shuttle Atlantis on its STS-135 mission to the International Space Station. Dozens of satellite news vehicles can be seen in the parking lot while the massive Vehicle Assembly Building towers above in the background. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
Shuttle Orbiter Active Thermal Control Subsystem design and flight experience
NASA Technical Reports Server (NTRS)
Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo
1991-01-01
The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.
NASA Technical Reports Server (NTRS)
Mitchell, T. R.
1974-01-01
The development of a test engineer oriented language has been under way at the Kennedy Space Center for several years. The result of this effort is the Ground Operations Aerospace Language, GOAL, a self-documenting, high-order language suitable for coding automatic test, checkout and launch procedures. GOAL is a highly readable, writable, retainable language that is easily learned by nonprogramming oriented engineers. It is sufficiently powerful for use at all levels of Space Shuttle ground processing, from line replaceable unit checkout to integrated launch day operations. This paper will relate the language development, and describe GOAL and its applications.
2001-08-10
KENNEDY SPACE CENTER, Fla. -- Clouds of smoke and steam roll across the ground as Space Shuttle Discovery hurtles into the blue sky against a backdrop of cumulus clouds. Liftoff from Launch Pad 39A occurred at 5:10:14 p.m. EDT. Besides the Shuttle crew of four, Discovery carries the Expedition Three crew who will replace Expedition Two on the Space Station. The mission payload includes the third flight of the Italian-built Multi-Purpose Logistics Module Leonardo, delivering additional scientific racks, equipment and supplies for the Space Station, and the Early Ammonia Servicer (EAS) tank. The EAS, which will be attached to the Station during two spacewalks, contains spare ammonia for the Station’s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station
2002-10-18
KENNEDY SPACE CENTER, FLA. - At the KSC Shuttle Landing Facility, an overhead crane lifts the container with the TDRS-J spacecraft onto a transport vehicle. In the background is the Air Force C-17 air cargo plane that delivered it. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
STS-66 landing at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
1994-01-01
The main landing gear is on the ground and the nose gear is about to touch down as the Space Shuttle Atlantis heads toward a stop at Edwards Air Force Base in southern California, ending a successful 10 day, 22 hour and 34 minute space mission. Landing occured at 7:34 a.m. (PST), November 14, 1994.
Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7
NASA Technical Reports Server (NTRS)
2011-01-01
The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility to have a representative in Firing Room 2 at KSC in case of potential motor problems. However, the last time ATK was responsible for a space shuttle launch slip was 1989. During launch, engineers were also stationed in Promontory on teleconference with counterparts at KSC in the event their support was required.
1990-12-02
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. Pictured onboard the shuttle is astronaut Robert Parker using a Manual Pointing Controller (MPC) for the ASTRO-1 mission Instrument Pointing System (IPS).
NASA Technical Reports Server (NTRS)
Hagopian, Jeff
2002-01-01
With the successful implementation of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) enters a new era of opportunity for scientific research. The ISS provides a working laboratory in space, with tremendous capabilities for scientific research. Utilization of these capabilities requires a launch system capable of routinely transporting crew and logistics to/from the ISS, as well as supporting ISS assembly and maintenance tasks. The Space Shuttle serves as NASA's launch system for performing these functions. The Space Shuttle also serves as NASA's launch system for supporting other science and servicing missions that require a human presence in space. The Space Shuttle provides proof that reusable launch vehicles are technically and physically implementable. However, a couple of problems faced by NASA are the prohibitive cost of operating and maintaining the Space Shuttle and its relative inability to support high launch rates. The 2nd Generation Reusable Launch Vehicle (2nd Gen RLV) is NASA's solution to this problem. The 2nd Gen RLV will provide a robust launch system with increased safety, improved reliability and performance, and less cost. The improved performance and reduced costs of the 2nd Gen RLV will free up resources currently spent on launch services. These resource savings can then be applied to scientific research, which in turn can be supported by the higher launch rate capability of the 2nd Gen RLV. The result is a win - win situation for science and NASA. While meeting NASA's needs, the 2nd Gen RLV also provides the United States aerospace industry with a commercially viable launch capability. One of the keys to achieving the goals of the 2nd Gen RLV is to develop and implement new technologies and processes in the area of flight operations. NASA's experience in operating the Space Shuttle and the ISS has brought to light several areas where automation can be used to augment or eliminate functions performed by crew and ground controllers. This experience has also identified the need for new approaches to staffing and training for both crew and ground controllers. This paper provides a brief overview of the mission capabilities provided by the 2nd Gen RLV, a description of NASA's approach to developing the 2nd Gen RLV, a discussion of operations concepts, and a list of challenges to implementing those concepts.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.
1984-01-01
The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.
Infrared Imagery of Shuttle (IRIS). Task 1
NASA Technical Reports Server (NTRS)
Chocol, C. J.
1977-01-01
Assessment of available IR sensor technology showed that the four aerothermodynamic conditions of interest during the entry trajectory of space shuttle can be accommodated by an aircraft flying parallel to the orbiter reentry ground track. Thermal information from the sides of the vehicle can be obtained with degraded performance (temperatures below 800 K) by flying the C-141 aircraft on the opposite side of the shuttle ground track and in the direction opposite that which is optimum for lower surface viewing. An acquisition system using a 6.25-cm aperture telescope and a single indium antimonide detector were designed to meet the acquisition requirements and interface with the 91.5-cm telescope with minimum modification. An image plane system using 600 indium antimonide detectors in two arrays which requires no modification to the existing telescope was also designed. Currently available components were used in a data handling system with interfaces with the experimentors station and the HP2100 computer.
1997-08-19
KENNEDY SPACE CENTER, FLA. -- With Commander Curtis L. Brown, Jr. and Pilot Kent V. Rominger at the controls and the Mate/Demate Device (MDD) and the Vehicle Assembly Building (VAB) in the background, the Space Shuttle orbiter Discovery touches down on Runway 33 at KSC’s Shuttle Landing Facility at 7:07:59 a.m. EDT Aug. 19 to complete the 11-day, 20-hour and 27-minute-long STS-85 mission. The first landing opportunity on Aug. 18 was waved off due to the potential for ground fog. Also onboard the orbiter are Payload Commander N. Jan Davis, Mission Specialist Robert L. Curbeam, Jr., Mission Specialist Stephen K. Robinson and Payload Specialist Bjarni V. Tryggvason. During the 86th Space Shuttle mission, the crew deployed the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer to conduct research on the Earth’s middle atmosphere, retrieving it on flight day 9. The crew also conducted investigations with the Manipulator Flight Demonstration (MFD), Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments. Robinson also made observations of the comet HaleBopp with the Southwest Ultraviolet Imaging System (SWIS) while other members of the crew conducted biological experiments in the orbiter’s crew cabin. This was the 39th landing at KSC in the history of the Space Shuttle program and the 11th touchdown for Discovery at the space center
Lessons learned for improving spacecraft ground operations
NASA Astrophysics Data System (ADS)
Bell, Michael; Stambolian, Damon; Henderson, Gena
NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.
Lessons Learned for Improving Spacecraft Ground Operations
NASA Technical Reports Server (NTRS)
Bell, Michael A.; Stambolian, Damon B.; Henderson, Gena M.
2012-01-01
NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.
Radar activities of the DFVLR Institute for Radio Frequency Technology
NASA Technical Reports Server (NTRS)
Keydel, W.
1983-01-01
Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.
2011-07-08
CAPE CANAVERAL, Fla. -- A media event was held for the Multi-Purpose Crew Vehicle (MPCV) that was on display in a tent on the grounds of the Press Site at NASA's Kennedy Space Center in Florida during launch activities for space shuttle Atlantis' STS-135 mission to the International Space Station. The MPCV is based on the Orion design requirements for traveling beyond low Earth orbit and will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. Atlantis began its final flight, with Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim on board, at 11:29 a.m. EDT July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Also in Atlantis' payload bay is the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann