Code of Federal Regulations, 2011 CFR
2011-10-01
... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...
Code of Federal Regulations, 2010 CFR
2010-10-01
... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station activities. (a) In agreements covering Space Shuttle services, certain ELV launches, and Space Station...
Space Shuttle Discovery Launch
2008-05-31
NASA Shuttle Launch Director Michael Leinbach, left, STS-124 Assistant Launch Director Ed Mango, center, and Flow Director for Space Shuttle Discovery Stephanie Stilson clap in the the Launch Control Center after the main engine cut off and successful launch of the Space Shuttle Discovery (STS-124) Saturday, May 31, 2008, at the Kennedy Space Center in Cape Canaveral, Fla. The Shuttle lifted off from launch pad 39A at 5:02 p.m. EDT. Photo Credit: (NASA/Bill Ingalls)
Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future
NASA Technical Reports Server (NTRS)
Cates, Grant R.
2014-01-01
The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.
Photography by KSC Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid
NASA Technical Reports Server (NTRS)
1980-01-01
Photography by KSC Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid rocket boosters on top of a Mobil Launcher Platform, undergoes fit and function checks at the launch site for the first Space Shuttle at Launch Complex 39's Pad A. The dummy Space Shuttle was assembled in the Vehicle Assembly Building and rolled out to the launch site on May 1 as part of an exercise to make certain shuttle elements are compatible with the Spaceport's assembly and launch facilities and ground support equipment, and help clear the way for the launch of the Space Shuttle Orbiter Columbia.
PHOTOGRAPHY BY KSC SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID
NASA Technical Reports Server (NTRS)
1980-01-01
PHOTOGRAPHY BY KSC SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
STS129-S-056 (16 Nov. 2009) --- Members of the space shuttle launch team watch Space Shuttle Atlantis' launch through the newly installed windows of Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.
1980-02-06
Space Shuttle Orbiter Enterprise mated to an external fuel tank and two solid rocket boosters on top of a Mobil Launcher Platform, undergoes fit and function checks at the launch site for the first Space Shuttle at Launch Complex 39's Pad A. The dummy Space Shuttle was assembled in the Vehicle Assembly Building and rolled out to the launch site on May 1 as part of an exercise to make certain shuttle elements are compatible with the Spaceport's assembly and launch facilities and ground support equipment, and help clear the way for the launch of the Space Shuttle Orbiter Columbia.
1980-02-06
SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.
1980-02-06
SPACE SHUTTLE ORBITER ENTERPRISE MATED TO AN EXTERNAL FUEL TANK AND TWO SOLID ROCKET BOOSTERS ON TOP OF A MOBIL LAUNCHER PLATFORM, UNDERGOES FIT AND FUNCTION CHECKS AT THE LAUNCH SITE FOR THE FIRST SPACE SHUTTLE AT LAUNCH COMPLEX 39'S PAD A. THE DUMMY SPACE SHUTTLE WAS ASSEMBLED IN THE VEHICLE ASSEMBLY BUILDING AND ROLLED OUT TO THE LAUNCH SITE ON MAY 1 AS PART OF AN EXERCISE TO MAKE CERTAIN SHUTTLE ELEMENTS ARE COMPATIBLE WITH THE SPACEPORT'S ASSEMBLY AND LAUNCH FACILITIES AND GROUND SUPPORT EQUIPMENT, AND HELP CLEAR THE WAY FOR THE LAUNCH OF THE SPACE SHUTTLE ORBITER COLUMBIA.
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
STS129-S-058 (16 Nov. 2009) --- In Firing Room 4 of NASA Kennedy Space Center's Launch Control Center, shuttle launch director Michael Leinbach (standing), assistant launch director Peter Nickolenko and Atlantis flow director Angie Brewer (both seated), applaud the launch team upon the successful launch of Space Shuttle Atlantis. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.
Space Shuttle Discovery Launch
2008-05-31
NASA Administrator, Michael Griffin watches the launch of the Space Shuttle Discovery (STS-124) from the Launch Control Center Saturday, May 31, 2008, at the Kennedy Space Center in Cape Canaveral, Fla. The Shuttle lifted off from launch pad 39A at 5:02 p.m. EDT. Photo Credit: (NASA/Bill Ingalls)
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
STS129-S-055 (16 Nov. 2009) --- The space shuttle launch team monitors the progress of Space Shuttle Atlantis' countdown from consoles on the main floor of Firing Room 4 in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.
President and Mrs. Clinton watch launch of Space Shuttle Discovery
NASA Technical Reports Server (NTRS)
1998-01-01
Watching a successful launch of Space Shuttle Discovery from the roof of the Launch Control Center are (left to right) U.S. President Bill Clinton, First Lady Hillary Rodham Clinton, Astronaut Robert Cabana and NASA Administrator Daniel Goldin. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on mission STS-95. Cabana will command the crew of STS-88, the first Space Shuttle mission to carry hardware to space for the assembly of the International Space Station, targeted for liftoff on Dec. 3.
President and Mrs. Clinton watch launch of Space Shuttle Discovery
NASA Technical Reports Server (NTRS)
1998-01-01
From the roof of the Launch Control Center, U.S. President Bill Clinton and First Lady Hillary Rodham Clinton track the plume and successful launch of Space Shuttle Discovery on mission STS-95. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on the mission.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2015-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2014-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
Assessment Regarding Impact of Atmospheric Conditions on Space Shuttle Launch Delays
NASA Technical Reports Server (NTRS)
Johnson D. L.; Pearson, S. D.; Vaughan, W. W.; Batts, G. W.
1998-01-01
The atmospheric environment definition has played a key role in the development and operation of the NASA Space Shuttle as it has in other NASA Space Vehicle Programs. The objective of any definition of natural environment design requirements for a space vehicle development is to insure that the vehicle will perform safely and in a timely manner relative to the mission(s) for which the vehicle is being developed. The NASA Space Shuttle has enjoyed the longest tenure of any Space Vehicle from an operational standpoint. As such, it has provided a wealth of information on many engineering aspects of a Space Vehicle plus the influence of the atmosphere on operational endeavors. The atmospheric environment associated with the NASA Space Shuttle launches at the NASA Kennedy Space Center in Florida has been reviewed and studied over the entire NASA Space Shuttle flight history. The results of the analysis of atmospheric environment related launch delays relative to other sources of launch delays has been assessed. This paper will provide a summary of those conditions as well as mission analysis examples focused on atmospheric constraints for launch. Atmospheric conditions associated with NASA Space Shuttle launch delays will be presented to provide a reference as to the type conditions experienced which have mainly caused the delays.
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
STS129-S-057 (16 Nov. 2009) --- From left, LeRoy Cain, NASA's deputy manager, Space Shuttle Program; Michael Coats, director of NASA's Johnson Space Center; and Bob Cabana, director of NASA's Kennedy Space Center, watch the launch of Space Shuttle Atlantis from the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) and Center Director Jim Kennedy congratulate the launch team after the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) congratulates the launch team after the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. At far right is Center Director Jim Kennedy. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
President and Mrs. Clinton watch launch of Space Shuttle Discovery
NASA Technical Reports Server (NTRS)
1998-01-01
Watching a successful launch of Space Shuttle Discovery from the roof of the Launch Control Center are (left to right) Astronaut Eileen Collins (in flight suit) with unidentified companions, NASA Administrator Daniel Goldin, Astronaut Robert Cabana, First Lady Hillary Rodham Clinton, and U.S. President Bill Clinton. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on mission STS-95. Collins will command the crew of STS-93, the first woman to hold that position. Cabana will command the crew of STS-88, the first Space Shuttle mission to carry hardware to space for the assembly of the International Space Station, targeted for liftoff on Dec. 3.
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
STS129-S-059 (16 Nov. 2009) --- In Firing Room 4 of NASA Kennedy Space Center's Launch Control Center, Kennedy Director Bob Cabana congratulates the launch team upon the successful launch of Space Shuttle Atlantis. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.
NASA Technical Reports Server (NTRS)
1983-01-01
The prelaunch, launch, and landing activities of the STS-7 Space Shuttle mission are highlighted in this video, with brief footage of the deployment of the Shuttle Pallet Satellite (SPAS). The flight crew consisted of: Cmdr. Bob Crippen, Pilot Rich Hauck, and Mission Specialists John Fabian, Dr. Sally Ride, and Norm Thaggart. With this mission, Cmdr. Crippen became the first astronaut to fly twice in a Space Shuttle Mission and Dr. Sally Ride was the first American woman to fly in space. There is a large amount of footage of the Space Shuttle by the aircraft that accompanies the Shuttle launchings and landings.
2008-09-20
CAPE CANAVERAL, Fla. - With a crystal blue Atlantic Ocean in the background, space shuttle Endeavour sits on Launch Pad B at NASA’s Kennedy Space Center in Florida. At left of the shuttle is the open rotating service structure with the payload changeout room revealed. The rotating service structures provide protection for weather and access to the shuttle. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis’ upcoming mission to repair NASA’s Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for its STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Troy Cryder
2007-10-23
In the firing room of the Kennedy Space Center in Florida, NASA Shuttle Launch Director Michael Leinbach (2nd from right) and launch managers watch the 11:38 a.m. EDT launch of Space Shuttle Discovery. Discovery launched Oct. 23 on a 14-day construction mission to the International Space Station. Photo credit: "NASA/Bill Ingalls"
2007-10-23
STS120-S-026 (23 Oct. 2007) --- In the firing room of the Kennedy Space Center in Florida, NASA Shuttle Launch Director Michael Leinbach (second right) and launch managers watch the 11:38 a.m. (EDT) launch of Space Shuttle Discovery. Discovery launched Oct. 23 on a 14-day construction mission to the International Space Station. Photo credit: NASA/Bill Ingalls
2006-08-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At right are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
2006-08-29
KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
2006-08-29
KENNEDY SPACE CENTER, FLA. - A late-day sun spotlights Space Shuttle Atlantis as it rolls up the ramp to Launch Pad 39B atop the crawler-transporter. The crawler has a leveling system designed to keep the top of the space shuttle vertical while negotiating the 5-percent grade leading to the top of the launch pad. Also, a laser docking system provides almost pinpoint accuracy when the crawler and mobile launcher platform are positioned at the launch pad. At left are the open rotating service structure and the fixed service structure topped by the 80-foot lightning mast. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability
NASA Technical Reports Server (NTRS)
1972-01-01
The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.
2006-08-29
KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis is hard down on the launch pad after rolling back to Launch Pad 39B. The Atlantic Ocean and lagoon water in the background reflect the glowing light of a setting sun. The shuttle had been moved off the launch pad due to concerns about the impact of Tropical Storm Ernesto, expected within 24 hours. The forecast of lesser winds expected from Ernesto and its projected direction convinced Launch Integration Manager LeRoy Cain and Shuttle Launch Director Mike Leinbach to return the shuttle to the launch pad. Photo credit: NASA/Kim Shiflett
2007-05-15
KENNEDY SPACE CENTER, FLA. -- Under a feather-painted sky, Space Shuttle Atlantis, mounted on a mobile launch platform atop a crawler transporter, creeps up the ramp to Launch Pad 39A. This is the second rollout for the shuttle. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
2007-05-15
KENNEDY SPACE CENTER, FLA. -- Under a feather-painted sky, Space Shuttle Atlantis, mounted on a mobile launch platform atop a crawler transporter, nears Launch Pad 39A. This is the second rollout for the shuttle. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
2009-02-20
CAPE CANAVERAL, Fla. – Mike Curie (far left), with NASA Public Affairs, moderates the flight readiness review news conference for space shuttle Discovery's STS-119 mission. On the panel are (from left) Associate Administrator for Space Operations Bill Gerstenmaier, Space Shuttle Program Manager John Shannon and Space Shuttle Launch Director Mike Leinbach. During a thorough review of Discovery's readiness for flight, NASA managers decided Feb. 20 more data and possible testing are required before proceeding to launch. Engineering teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. A new launch date has not been determined. NASA managers decided Feb. 20 more data and possible testing are required before proceeding to launch. Engineering teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. A new launch date has not been determined. Photo credit: NASA/Glenn Benson
Launch of STS-67 Space Shuttle Endeavour
NASA Technical Reports Server (NTRS)
1995-01-01
Carrying a crew of seven and a complement of astronomic experiments, the Space Shuttle Endeavour embarks on NASA's longest shuttle flight to date. Endeavour's liftoff from Launch Pad 39A occurred at 1:38:13 a.m. (EST), March 2, 1995. In this view the fence line near the launch pad is evident in the foreground.
Spacely's rockets: Personnel launch system/family of heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
1991-01-01
During 1990, numerous questions were raised regarding the ability of the current shuttle orbiter to provide reliable, on demand support of the planned space station. Besides being plagued by reliability problems, the shuttle lacks the ability to launch some of the heavy payloads required for future space exploration, and is too expensive to operate as a mere passenger ferry to orbit. Therefore, additional launch systems are required to complement the shuttle in a more robust and capable Space Transportation System. In December 1990, the Report of the Advisory Committee on the Future of the U.S. Space Program, advised NASA of the risks of becoming too dependent on the space shuttle as an all-purpose vehicle. Furthermore, the committee felt that reducing the number of shuttle missions would prolong the life of the existing fleet. In their suggestions, the board members strongly advocated the establishment of a fleet of unmanned, heavy lift launch vehicles (HLLV's) to support the space station and other payload-intensive enterprises. Another committee recommendation was that a space station crew rotation/rescue vehicle be developed as an alternative to the shuttle, or as a contingency if the shuttle is not available. The committee emphasized that this vehicle be designed for use as a personnel carrier, not a cargo carrier. This recommendation was made to avoid building another version of the existing shuttle, which is not ideally suited as a passenger vehicle only. The objective of this project was to design both a Personnel Launch System (PLS) and a family of HLLV's that provide low cost and efficient operation in missions not suited for the shuttle.
2011-07-08
CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. In the foreground, from left, are NASA Test Directors Steve Payne and Bob Holl; Landing and Recovery Director Greg Gaddis; Shuttle Launch Director Mike Leinbach; Atlantis' NASA Flow Director Angie Brewer; NASA Test Director Charlie Blackwell-Thompson; STS-135 Launch Commentator George Diller; NASA Test Directors Jeremy Graeber, Tim Potter, and Jeff Spaulding; Orbiter Test Conductor Roberta Wyrick; Assistant Orbiter Test Conductor Laurie Sally; Assistant Launch Director Pete Nickolenko; United Space Alliance Vice President of Launch and Recovery Systems Mark Nappi; and United Space Alliance Test Conductor Mark Paxton. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, the launch team stands to view the liftoff of Space Shuttle Discovery on mission STS-121 -- the first ever Independence Day launch of a space shuttle. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2011-07-07
NASA Administrator Charles Bolden, right, participates in the post launch traditional beans and cornbread at the NASA Kennedy Space Center, Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Microchemical Analysis Of Space Operation Debris
NASA Technical Reports Server (NTRS)
Cummings, Virginia J.; Kim, Hae Soo
1995-01-01
Report discusses techniques used in analyzing debris relative to space shuttle operations. Debris collected from space shuttle, expendable launch vehicles, payloads carried by space shuttle, and payloads carried by expendable launch vehicles. Optical microscopy, scanning electron microscopy with energy-dispersive spectrometry, analytical electron microscopy with wavelength-dispersive spectrometry, and X-ray diffraction chosen as techniques used in examining samples of debris.
Barbara Morgan and Christa McAuliffe watch the STS 61-A launch of Challenger
1986-01-09
S86-25293 (30 Oct. 1985) --- Barbara R. Morgan and Sharon Christa McAuliffe (right) are pictured during a visit to NASA's Kennedy Space Center (KSC) Launch Complex 39 to witness the launch of the space shuttle Challenger. McAuliffe is scheduled to launch aboard the space shuttle Challenger, STS-51L mission, herself early next year as the United States? first in-space citizen observer. Morgan is the backup for the Teacher-in-Space Project?s payload specialist position. The photo was taken by Keith Meyers of the New York Times. EDITOR'S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA
Barbara Morgan and Christa McAuliffe watch the STS 61-A launch of Challenger
1986-01-09
S86-25294 (30 Oct. 1985) --- Barbara R. Morgan and Sharon Christa McAuliffe (right) are pictured during a visit to NASA's Kennedy Space Center (KSC) Launch Complex 39 to witness the launch of the space shuttle Challenger. McAuliffe is scheduled to launch aboard the space shuttle Challenger, STS-51L mission, herself early next year as the United States? first in-space citizen observer. Morgan is the backup for the Teacher-in-Space Project?s payload specialist position. The photo was taken by Keith Meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA
2007-05-25
KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Speaking to attendees is Center Director Bill Parsons. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
STS-108 Endeavour Launch from Pad 39-B
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1788 KENNEDY SPACE CENTER, Fla. -- A pool of water near Launch Pad 39B turns crimson from the reflection of flames at the launch of Space Shuttle Endeavour on mission STS-109. The second attempt in two days, liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.
Mass Analyzers Facilitate Research on Addiction
NASA Technical Reports Server (NTRS)
2012-01-01
The famous go/no go command for Space Shuttle launches comes from a place called the Firing Room. Located at Kennedy Space Center in the Launch Control Center (LCC), there are actually four Firing Rooms that take up most of the third floor of the LCC. These rooms comprise the nerve center for Space Shuttle launch and processing. Test engineers in the Firing Rooms operate the Launch Processing System (LPS), which is a highly automated, computer-controlled system for assembly, checkout, and launch of the Space Shuttle. LPS monitors thousands of measurements on the Space Shuttle and its ground support equipment, compares them to predefined tolerance levels, and then displays values that are out of tolerance. Firing Room operators view the data and send commands about everything from propellant levels inside the external tank to temperatures inside the crew compartment. In many cases, LPS will automatically react to abnormal conditions and perform related functions without test engineer intervention; however, firing room engineers continue to look at each and every happening to ensure a safe launch. Some of the systems monitored during launch operations include electrical, cooling, communications, and computers. One of the thousands of measurements derived from these systems is the amount of hydrogen and oxygen inside the shuttle during launch.
National Space Transportation System Reference. Volume 2: Operations
NASA Technical Reports Server (NTRS)
1988-01-01
An overview of the Space Transportation System is presented in which aspects of the program operations are discussed. The various mission preparation and prelaunch operations are described including astronaut selection and training, Space Shuttle processing, Space Shuttle integration and rollout, Complex 39 launch pad facilities, and Space Shuttle cargo processing. Also, launch and flight operations and space tracking and data acquisition are described along with the mission control and payload operations control center. In addition, landing, postlanding, and solid rocket booster retrieval operations are summarized. Space Shuttle program management is described and Space Shuttle mission summaries and chronologies are presented. A glossary of acronyms and abbreviations are provided.
Recommendations for a wind profiling network to support Space Shuttle launches
NASA Technical Reports Server (NTRS)
Zamora, R. J.
1992-01-01
The feasibility is examined of a network of clear air radar wind profilers to forecast wind conditions before Space Shuttle launches during winter. Currently, winds are measured only in the vicinity of the shuttle launch site and wind loads on the launch vehicle are estimated using these measurements. Wind conditions upstream of the Cape are not monitored. Since large changes in the wind shear profile can be associated with weather systems moving over the Cape, it may be possible to improve wind forecasts over the launch site if wind measurements are made upstream. A radar wind profiling system is in use at the Space Shuttle launch site. This system can monitor the wind profile continuously. The existing profiler could be combined with a number of radars located upstream of the launch site. Thus, continuous wind measurements would be available upstream and at the Cape. NASA-Marshall representatives have set the requirements for radar wind profiling network. The minimum vertical resolution of the network must be set so that the wind shears over the depths greater than or = 1 km will be detected. The network should allow scientists and engineers to predict the wind profile over the Cape 6 hours before a Space Shuttle launch.
STS-121: Discovery L-1 Countdown Status Briefing
NASA Technical Reports Server (NTRS)
2006-01-01
Bruce Buckingham, NASA Public Affairs, introduces Jeff Spaulding, NASA Test Director; Debbie Hahn, STS-121 Payload Manager; and Kathy Winters, Shuttle Weather Officer. Spaulding gives his opening statement on this one day prior to the launching of the Space Shuttle Discovery. He discusses the following topics: 1) Launch of the Space Shuttle Discovery; 2) Weather; 3) Load over of onboard reactants; 4) Hold time for liquid hydrogen; 5) Stowage of Mid-deck completion; 6) Check-out of onboard and ground network systems; 7) Launch windows; 8) Mission duration; 9) Extravehicular (EVA) plans; 10) Space Shuttle landing day; and 11) Scrub turn-around plans. Hahn presents and discusses a short video of the STS-121 payload flow. Kathy Winters gives her weather forecast for launch. She then presents a slide presentation on the following weather conditions for the Space Shuttle Discovery: 1) STS-121 Tanking Forecast; 2) Launch Forecast; 3) SRB Recovery; 4) CONUS Launch; 5) TAL Launch; 6) 24 Hour Delay; 7) CONUS 24 Hour; 8) TAL 24 Hour; 9) 48 Hour Launch; 10) CONUS 48 Hour; and 11) TAL 48 Hour. The briefing ends with a question and answer period from the media.
A view toward future launch vehicles - A civil perspective
NASA Technical Reports Server (NTRS)
Darwin, Charles R.; Austin, Gene; Varnado, Lee; Eudy, Glenn
1989-01-01
Prospective NASA launch vehicle development efforts, which in addition to follow-on developments of the Space Shuttle encompass the Shuttle-C cargo version, various possible Advanced Launch System (ALS) configurations, and various Heavy Lift Launch System (HLLS) design options. Fully and partially reusable manned vehicle alternatives are also under consideration. In addition to improving on the current Space Shuttle's reliability and flexibility, ALS and HLLV development efforts are expected to concentrate on the reduction of operating costs for the given payload-launch capability.
NASA Technical Reports Server (NTRS)
1995-01-01
This wide lux image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station shows the base of the launch pad as well as the orbiter just clearing the gantry. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour sits on Launch Pad 39A waiting for the Rotating Service Structure to be rolled back into its protective position. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour sits on Launch Pad 39A waiting for the Rotating Service Structure to be rolled back into its protective position. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2011-07-07
NASA Photographer Kim Shiflett, left, and Videographer Glenn Benson capture a group photo of the launch team in Firing Room Four of the NASA Kennedy Space Center Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (foreground) cheers over the successful liftoff of Space Shuttle Discovery, watching it rocket through the sky on mission STS-121 -- the first ever Independence Day launch of a space shuttle. At far left is Stephanie Stilson, NASA flow director in the Process Integration Branch of the Shuttle Processing Directorate, who began conducting Discovery's processing operations in December 2000. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Lisa Nowak is happy to be making a third launch attempt on the mission. She is suiting up before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - Mission Specialist Thomas Reiter, happy to be making a third launch attempt on mission STS-121, is suited up before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
Space Shuttle Discovery rolls out to Launch Pad 39A for Oct. 5 launch
NASA Technical Reports Server (NTRS)
2000-01-01
As the sun crawls from below the horizon at right, Space Shuttle Discovery crawls up Launch Pad 39A and its resting spot next to the fixed service structure (FSS) (seen at left). The powerful silhouette dwarfs people and other vehicles near the FSS. Discovery is scheduled to launch Oct. 5 at 9:30 p.m. EDT on mission STS-92. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date.
Launch of Space Shuttle Endeavour as it leaps free of Launch Pad
2007-08-08
Space Shuttle Endeavour paints the still-blue evening sky as it leaves Earth behind on its journey into space on mission STS-118. Liftoff from Launch Pad 39A was on time at 6:36 p.m. EDT. The mission is the 22nd shuttle flight to the International Space Station. It will continue space station construction by delivering a third starboard truss segment, S5, and other payloads such as the SPACEHAB module and the external stowage platform 3. The 11-day mission may be extended to as many as 14 depending on the test of the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the waning twilight, the service structures on Launch Pad 39B (left) and the Mobile Launcher Platform carrying Space Shuttle Discovery glow with lights. The Shuttle began rollout to the pad at 2:04 p.m. EDT from the Vehicle Assembly Building at NASAs Kennedy Space Center, marking a major milestone in the Space Shuttle Programs Return to Flight. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
2011-06-01
JSC2011-E-050262 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA
2011-06-01
JSC2011-E-050254 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA
2011-06-01
JSC2011-E-050249 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA
2011-06-01
JSC2011-E-050245 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA
2011-06-01
JSC2011-E-050253 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA
2006-07-04
KENNEDY SPACE CENTER, FLA. - Members of the launch team in Firing Room 4 of the Launch Control Center watch the historic ride of Space Shuttle Discovery as it rockets through the sky on mission STS-121 -- the first ever Independence Day launch of a space shuttle. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Lovelace, Uriel; Sumrall, Phil; Pritchard, Brian
1989-04-01
An evaluation is made of performance requirements and technology development prospects for the logistical capacity entailed by manned space exploration. While the Space Shuttle will suffice for the launch of crews to a LEO Space Station, in support of such exploration missions, cargo transport will require 500-1000 tonne annual payload capacity launchers. As a first step toward satisfaction of such requirements, NASA has undertaken the development of the Shuttle-C unmanned Space Shuttle derivative. This will be followed by the Shuttle-Z derivative-family, aimed at meeting the needs of Mars missions. Joint USAF/NASA Advanced Launch System development will allow a given launch to place 91 tonnes in LEO.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, workers mate the External Tank, at left, to the underside of Space Shuttle Discovery, at right. Each of two aft external tank umbilical plates mate with a corresponding plate on the orbiter. The plates help maintain alignment among the umbilicals. The attach fitting is aft of the nose gear wheel well. Workers next will perform an electrical and mechanical verification of the mated interfaces to verify all critical vehicle connections. A Shuttle interface test is performed using the launch processing system to verify Space Shuttle vehicle interfaces and Space Shuttle vehicle-to-ground interfaces. In approximately one week, Space Shuttle Discovery will be ready for rollout to Launch Pad 39B for Return to Flight mission STS-114. The launch window for STS-114 is May 15 to June 3.
2011-06-02
JSC2011-E-059493 (31 May 2011) --- The space shuttle Atlantis is seen in the background on Launch Pad 39A at NASA?s Kennedy Space Center in Florida on May 31, 2011. The crawler/transporter is seen slowly driving away from the launch pad after making its final scheduled delivery of a shuttle. The orbiter is scheduled to fly the final mission of the Space Shuttle Program, launching on July 8. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2003-08-18
KENNEDY SPACE CENTER, FLA. -Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building, with a Mobile Launcher Platform on top, on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds.
2009-10-24
CAPE CANAVERAL, Fla. – A tugboat moves the Pegasus barge, carrying external tank 134, through the Banana River toward the turn basin near the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Space Shuttle Atlantis awaits launch on Launch Pad 39A in the background. Pegasus arrived in Florida after an ocean voyage towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans. After Pegasus docks in the turn basin, the fuel tank will be offloaded and transported into the VAB. ET-134 will be used to launch space shuttle Endeavour on the STS-130 mission to the International Space Station. Launch is targeted for Feb. 4, 2010. For information on the components of the space shuttle and the STS-130 mission, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Mellett, Kevin
2006-01-01
This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.
NASA Technical Reports Server (NTRS)
2009-01-01
Several employees who contributed to the Space Shuttle Main Engine (SSME) program describe their most memorable experiences relating to the launching of the Space Shuttle. Some describe the emotional aspects they experienced while watching and filming the launch from Kennedy Space Center.
Astronauts Bob Behnken and Eric Boe walk the Crew Access Arm at
2017-08-30
Astronauts Bob Behnken, left, and Eric Boe walk down the Crew Access Arm being built by SpaceX for Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The access arm will be installed on the launch pad, providing a bridge between the launch tower it’s the Fixed Service Structure, as noted below, and SpaceX’s Dragon 2 spacecraft for astronauts flying to the International Space Station on the company’s Falcon 9 rocket as part of NASA’s Commercial Crew Program. The access arm is being readied for installation in early 2018. It will be installed 70 feet higher than the former space shuttle access arm on the launch pad’s Fixed Service Structure. SpaceX continues to modify the historic launch site from its former space shuttle days, removing more than 500,000 pounds of steel from the pad structure, including the Rotating Service Structure that was once used for accessing the payload bay of the shuttle. SpaceX also is using the modernized site to launch commercial payloads, as well as cargo resupply missions to and from the International Space Station for NASA. The first SpaceX launch from the historic Apollo and space shuttle site was this past February. NASA’s Commercial Crew Program is working with private companies, Boeing and SpaceX, with a goal of once again flying people to and from the International Space Station, launching from the United States.
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Cloud cover rolls in behind Space Shuttle Endeavour as the Rotating Service Structure begins rolling back into its protective position on Launch Pad 39A. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2000-02-01
KENNEDY SPACE CENTER, Fla. -- Cloud cover rolls in behind Space Shuttle Endeavour as the Rotating Service Structure begins rolling back into its protective position on Launch Pad 39A. The launch of Space Shuttle Endeavour on mission STS-99 was delayed when NASA managers decided to replace the Enhanced Master Events Controller that became suspect during the Jan. 31 launch countdown. The next scheduled launch is NET Feb. 9
2007-05-25
KENNEDY SPACE CENTER, FLA. -- Many former astronauts gathered at the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
1995-01-01
A 35mm camera was used to expose this close-up image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches.
STS-113 Space Shuttle Endeavour launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - Water near Launch Pad 39A provides a mirror image of Space Shuttle Endeavour blazing a path into the night sky after launch on mission STS-113. Liftoff occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey.
Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads
1990-09-05
S90-48650 (5 Sept 1990) --- This rare view shows two space shuttles on adjacent pads at Launch Complex 39 with the Rotating Service Structures (RSR) retracted. Space Shuttle Columbia (foreground) is on Pad A where it awaits further processing for a September 6 early morning launch on STS-35. Discovery, its sister spacecraft, is set to begin preparations for an October liftoff on STS-41 when the Ulysses spacecraft is scheudled to be taxied into space. PLEASE NOTE: Following the taking of this photograph, STS-35 was postponed and STS-41's Discovery was successfully launched on Oct. 6.
Weather impacts on space operations
NASA Astrophysics Data System (ADS)
Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.
The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.
Ice/frost/debris assessment for space shuttle Mission STS-32 (61-C)
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Speece, Robert F.
1986-01-01
An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-32 (61-C). This assessment begins with debris inspections of the flight elements and launch facilities before and after launch. Ice/Frost formations are calculated during cryogenic loading of the external tank followed by an on-pad assessment of the Shuttle vehicle and pad at T-3 hours in the countdown. High speed films are reviewed after launch to identify Ice/Frost/Debris sources and investigate potential vehicle damage. The Ice/Frost/Debris conditions and their effects on the Space Shuttle are documented.
2012-02-17
Space Shuttle Orbiters: From its establishment in 1958, NASA studied aspects of reusable launch vehicles and spacecraft that could return to earth. On January 5, 1972, President Richard Nixon announced that the United States would develop the space shuttle, a delta-winged orbiter about the size of a DC-9 aircraft. Between the first launch on April 12, 1981, and the final landing on July 21, 2011, NASA's space shuttle fleet -- Columbia, Challenger, Discovery, Atlantis and Endeavour – launched on 135 missions, helped construct the International Space Station and inspired generations. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
The Space Shuttle: An Attempt at Low-Cost, Routine Access to Space
1990-09-01
thinking on new heavy-lift launch systems. The thesis objective is to show the Space Shuttle was an attempt at developing a routine, low-cost access to... development costs were those used to create a launch facility at Vandenburg Air Force Base. DOD agreed in 1971 not to develop any new launch vehicles...booster. • To reduce the design weight of the Shuttle so as not to decrease the 65,000 pound payload capability. * To develop a new thermal protection
2006-07-04
KENNEDY SPACE CENTER, FLA. - Mission Specialist Piers Sellers is happy to be making a third launch attempt on mission STS-121. Here, he fixes one of his gloves during suitup before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
2009-03-15
CAPE CANAVERAL, Fla. – In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Flow Director for space shuttle Discovery Stephanie Stilson, Assistant Launch Director Pete Nickolenko and Shuttle Launch Director Mike Leinbach check the computers for follow-up images of the launch of space shuttle Discovery on the STS-119 mission. Launch was on time at 7:43 p.m. EDT. The STS-119 mission is the 28th to the space station and Discovery's 36th flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett
KSC Launch Pad Flame Trench Environment Assessment
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.
2010-01-01
This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.
2011-05-31
CAPE CANAVERAL, Fla. -- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion was at 8:42 p.m. EDT. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-05-31
CAPE CANAVERAL, Fla. -- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion was at 8:42 p.m. EDT. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-05-31
CAPE CANAVERAL, Fla. -- Bathed in xenon lights, space shuttle Atlantis passes the Turn Basin as it makes its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion was at 8:42 p.m. EDT. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-05-31
CAPE CANAVERAL, Fla. -- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion was at 8:42 p.m. EDT. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-05-31
CAPE CANAVERAL, Fla. -- Bathed in xenon lights, space shuttle Atlantis passes the Turn Basin as it makes its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion was at 8:42 p.m. EDT. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-05-31
CAPE CANAVERAL, Fla. -- Bathed in xenon lights, space shuttle Atlantis passes the Turn Basin as it makes its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion was at 8:42 p.m. EDT. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1995-01-01
A 70mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.
NASA Technical Reports Server (NTRS)
1995-01-01
A 35mm camera was used to expose this image of the Space Shuttle Discovery as it began its race to catch up with Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST) February 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. The launch pad and orbiter can be seen reflected in the water directly in front of it.
STS-134 Flight Controllers on Console - Launch.
2011-05-16
JSC2011-E-044228 (16 May 2011) --- Flight director Tony Ceccacci is pictured at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Endeavour's STS-134 launch. Liftoff was at 8:56 a.m. (EDT) on May 16, 2011, from Launch Pad 39A at NASA's Kennedy Space Center. Photo credit: NASA
STS-122 flight controllers in WFCR during launch
2008-02-07
JSC2008-E-010344 (7 Feb. 2008) --- Flight directors Norm Knight (left), Bryan Lunney and Richard Jones monitor data at their consoles in the space shuttle flight control room of Johnson Space Center's Mission Control Center (MCC) during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis' scheduled STS-122 launch. Liftoff occurred at 2:45 p.m. (EST) on Feb. 7, 2008 from launch pad 39A at Kennedy Space Center.
2009-05-13
CAPE CANAVERAL, Fla. – In Launch Pad 39A lame trench at NASA's Kennedy Space Center in Florida, workers document damage found after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Koller, A. M., Jr.; Knott, W. M.
1985-01-01
Near field and far field environmental monitoring activities extending from the first launch of the Space Shuttle at the Kennedy Space Center have provided a database from which conclusions can now be drawn for short term, acute effects of launch and, to a lesser degree, long term cumulative effects on the natural environment. Data for the first 15 launches of the Space Shuttle from Kennedy Space Center Pad 39A are analyzed for statistical significance and reduced to graphical presentations of individual and collective disposition isopleths, summarization of observed environmental impacts (e.g., vegetation damage, fish kills), and supporting data from specialized experiments and laboratory analyses. Conclusions are drawn with regard to the near field environment at Pad A, the effects on the lagoonal complex, and the relationships of these data and conclusions to upcoming operations at Complex 39 Pad B where the environment is significantly different. The paper concludes with a subjective evaluation of the likely impacts at Vandenberg Space Launch Complex 6 for the first Shuttle launch next year.
2007-05-25
KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Walking through the crowd is former astronaut Roy Bridges, who also is a former center director of KSC. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
2011-07-08
CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-06
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here are Public Affairs Officer Candrea Thomas (left), Space Shuttle Program Launch Integration Manager Mike Moses, Shuttle Launch Director Mike Leinbach and Shuttle Weather Officer Kathy Winters. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jack Pfaller
Space Shuttle and Launch Pad Lift-Off Debris Transport Analysis: SRB Plume-Driven
NASA Technical Reports Server (NTRS)
West, Jeff; Strutzenberg, Louis; Dougherty, Sam; Radke, Jerry; Liever, Peter
2007-01-01
This paper discusses the Space Shuttle Lift-Off model developed for potential Lift-Off Debris transport. A critical Lift-Off portion of the flight is defined from approximately 1.5 sec after SRB Ignition up to 'Tower Clear', where exhaust plume interactions with the Launch Pad occur. A CFD model containing the Space Shuttle and Launch Pad geometry has been constructed and executed. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the effects of the Space Shuttle plumes, the wind environment, their interactions with the Launch Pad, and their ultimate effect on potential debris during Lift-Off. Emphasis in this paper is on potential debris that might be caught by the SRB plumes.
2009-03-15
CAPE CANAVERAL, Fla. – In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Flow Director for space shuttle Discovery Stephanie Stilson (center) and Shuttle Launch Director Mike Leinbach applaud the mission management team for the successful launch of space shuttle Discovery on the STS-119 mission. Launch was on time at 7:43 p.m. EDT. The STS-119 mission is the 28th to the space station and Discovery's 36th flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett
2010-04-05
JSC2010-E-046737 (5 April 2010) --- Flight director Tony Ceccacci is pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
2007-05-25
KENNEDY SPACE CENTER, FLA. -- A crowd of visitors to Kennedy Space Center's Visitor Complex eagerly wait to experience the newest attraction, the Shuttle Launch Experience. The attraction was officially open to the public following a ribbon breaking attended by NASA, Kennedy Space Center and State of Florida dignitaries. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
2010-05-12
NASA Astronaut Janet Voss speaks to participants at the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)
2011-07-07
NASA Administrator Charles Bolden speaks to visitors at the NASA Kennedy Space Center Banana Creek viewing site prior to going to the Launch Control Center (LCC) for the planned launch of the space shuttle Atlantis from pad 39A on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
2007-05-25
KENNEDY SPACE CENTER, FLA. -- Many former astronauts gather at the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. In front are John Young (left) and Bob Crippen. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
Testing of Laser Components Subjected to Exposure in Space
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.
2010-01-01
Materials International Space Station Experiment (MISSE) missions provide an opportunity for developing space qualifiable materials by studying the response of novel materials when subjected to the synergistic effects of the harsh space environment. MISSE 6 was transported to the international Space Station (ISS) via STS 123 on March 11. 2008. The astronauts successfully attached the passive experiment containers (PEC) to external handrails of the international space station (ISS) and opened up for long term exposure. After more than a year of exposure attached to the station's exterior, the PEC with several hundred material samples returned to the earth with the STS-128 space shuttle crew that was launched on shuttle Discovery from the Kennedy Space Center, Fla., on Aug. 28. Meanwhile, MISSE 7 launch is scheduled to be launched on STS 129 mission. MISSE-7 was launched on Space Shuttle mission STS-129 on Atlantis was launched on November 16, 2009. This paper will briefly review recent efforts on MISSE 6 and MISSE 7 missions at NASA Langley Research Center (LaRC).
2009-11-12
CAPE CANAVERAL, Fla. - STS-129 Mission Specialist Mike Foreman, left, is greeted by Space Shuttle Launch Director Mike Leinbach upon his arrival at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Looking on is astronaut Jerry L. Ross, chief of the Vehicle Integration Test Office at the Johnson Space Center. The six astronauts for space shuttle Atlantis’ STS-129 mission arrived at Kennedy aboard a NASA Shuttle Training Aircraft, a modified Gulfstream II jet, to make final preparations for their launch. On STS-129, the crew will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Launch is set for Nov. 16. For information on the STS-129 mission objectives and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Launch of space shuttle Challenger on the 41-C mission
1984-04-06
41C-3029 (6 April 1984) --- The space shuttle Challenger and its five-member astronaut crew leave the launch pad at the Kennedy Space Center to begin a six-day stay in space. Astronaut John W. Young, a veteran of two shuttle missions and six spaceflights overall, recorded the image with a handheld 70mm camera from the shuttle training aircraft which he was using to monitor environmental conditions around Florida. This is the eighth mission on which Young photographed one of NASA's orbiter vehicles beginning its orbital stay. Photo credit: NASA
1972-03-07
This early chart conceptualizes the use of two parallel Solid Rocket Motor Boosters in conjunction with three main engines to launch the proposed Space Shuttle to orbit. At approximately twenty-five miles altitude, the boosters would detach from the Orbiter and parachute back to Earth where they would be recovered and refurbished for future use. The Shuttle was designed as NASA's first reusable space vehicle, launching vertically like a spacecraft and landing on runways like conventional aircraft. Marshall Space Flight Center had management responsibility for the Shuttle's propulsion elements, including the Solid Rocket Boosters.
2011-04-29
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Public Affairs Officer George Diller, Kennedy Director Bob Cabana, Space Shuttle Program Launch Integration Manager Mike Moses and Shuttle Launch Director Mike Leinbach participate in a news conference following the April 29 scrubbed launch attempt of space shuttle Endeavour. During the STS-134 countdown, fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) failed. Technicians later discovered that the Load Control Assembly-2 (LCA-2), which distributes power to nine shuttle systems, was the cause of the failure reading. The LCA-2 located in Endeavour's aft section will be replaced and systems will be retested before the launch is rescheduled. STS-134 will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. The mission also will be the final spaceflight for Endeavour. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, Firing Room 4 inside the Launch Control Center at NASA's Kennedy Space Center was one of the four control rooms used by NASA and contractor launch teams to oversee a space shuttle countdown. This firing room was the most advanced of the control rooms used for shuttle missions and was the primary firing room for the shuttle's final series of launches before retirement. It is furnished in a more contemporary style with wood cabinets and other features, although it retains many of the computer systems the shuttle counted on to operate safely. Specialized operators worked at consoles tailored to keep track of the status of shuttle systems while the spacecraft was processed in the Orbiter Processing Facility, being stacked inside the Vehicle Assembly Building and standing at the launch pad before liftoff. The firing rooms, including 3, were also used during NASA's Apollo Program. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
The STS-98 crew gathers for snack before launch
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-98 crew gathers around a table for a snack before getting ready for launch on Space Shuttle Atlantis. Seated left to right are Mission Specialist Thomas Jones, Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialists Marsha Ivins and Robert Curbeam. STS-98 is the seventh construction flight to the International Space Station. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks, by Curbeam and Jones, are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.
2010-04-05
JSC2010-E-046798 (5 April 2010) --- Flight director Bryan Lunney watches the big screens in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Inside the cab of crawler-transporter (CT) number 2, driver Sam Dove, with United Space Alliance, operates the vehicle on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, NASA launch team members cheer and wave American flags at the successful launch of Space Shuttle Discovery on mission STS-121. The launch made history as the first to occur on Independence Day. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Bill Ingalls
International Space Station (ISS) Water Transfer Hardware Logistics
NASA Technical Reports Server (NTRS)
Shkedi, Brienne D.
2006-01-01
Water transferred from the Space Shuttle to the International Space Station (ISS) is generated as a by-product from the Shuttle fuel cells, and is generally preferred over the Progress which has to launch water from the ground. However, launch mass and volume are still required for the transfer and storage hardware. Some of these up-mass requirements have been reduced since ISS assembly began due to changes in the storage hardware (CWC). This paper analyzes the launch mass and volume required to transfer water from the Shuttle and analyzes the up-mass savings due to modifications in the CWC. Suggestions for improving the launch mass and volume are also provided.
The Vehicle Control Systems Branch at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Barret, Chris
1990-01-01
This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.
2000-11-30
KENNEDY SPACE CENTER, Fla. -- Blue mach diamonds signal the speed and force at which Space Shuttle Endeavour roars into space after a perfect launch. Liftoff occurred on time at 10:06:01 p.m. EST. The Shuttle and its five-member crew will deliver U.S. solar arrays to the International Space Station and be the first Shuttle crew to visit the Station’s first resident crew. The 11-day mission includes three spacewalks. This marks the 101st mission in Space Shuttle history and the 25th night launch. Endeavour is expected to land at KSC Dec. 11 at 6:19 p.m. EST
2000-11-30
KENNEDY SPACE CENTER, Fla. -- Blue mach diamonds signal the speed and force at which Space Shuttle Endeavour roars into space after a perfect launch. Liftoff occurred on time at 10:06:01 p.m. EST. The Shuttle and its five-member crew will deliver U.S. solar arrays to the International Space Station and be the first Shuttle crew to visit the Station’s first resident crew. The 11-day mission includes three spacewalks. This marks the 101st mission in Space Shuttle history and the 25th night launch. Endeavour is expected to land at KSC Dec. 11 at 6:19 p.m. EST
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, the Rotating Service Structure at Launch Complex 39A at NASA's Kennedy Space Center housed space shuttle payloads temporarily so they could be loaded inside the 60-foot-long cargo bay of a shuttle before launch. The RSS, as the structure was known, was hinged to the Fixed Service Structure on one side and rolled on a rail on the other. As its name suggests, the enclosed facility would rotate into place around the shuttle as it stood at the launch pad. Once in place, the RSS protected the shuttle and its cargo. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
2011-05-09
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the launch status of space shuttle Endeavour's STS-134 mission and announce a new launch date. From left are NASA News Chief Allard Beutel, Space Shuttle Program Launch Integration Manager, Mike Moses and Shuttle Launch Director Mike Leinbach. Technicians replaced and tested the aft load control assembly-2 (ALCA-2) and wiring located in Endeavour's aft avionics bay 5. ALCA-2 distributes power to nine shuttle systems and is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt. Launch now is scheduled for May 16 at 8:56 a.m. EDT. Endeavour and its crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2009-05-13
CAPE CANAVERAL, Fla. – A closeup of damage found in the Launch Pad 39A flame trench at NASA's Kennedy Space Center in Florida after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett
2009-05-13
CAPE CANAVERAL, Fla. – A closeup of damage found in the Launch Pad 39A flame trench at NASA's Kennedy Space Center in Florida after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett
2009-05-13
CAPE CANAVERAL, Fla. – A closeup of damage found in the Launch Pad 39A flame trench at NASA's Kennedy Space Center in Florida after launch of space shuttle Atlantis on the STS-125 mission May 11. About 25 square feet of Fondue Fyre broke off from the north side of the solid rocket booster flame deflector. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle. Fondue Fyre is a fire-resistant concrete-like material. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged. Preliminary assessments indicated technicians can make repairs to the pad in time to support space shuttle Endeavour's targeted June 13 launch. Photo credit: NASA/Kim Shiflett
Vice President Pence Visits NASA's Kennedy Space Center
2017-07-06
Vice President Mike Pence got a first-hand look at the public-private partnerships at America’s multi-user spaceport on Thursday, July 6, during a visit to NASA’s Kennedy Space Center in Florida. Speaking in the center’s iconic Vehicle Assembly Building, the Vice President thanked employees for their commitment to America’s continued leadership in the space frontier, before taking a tour showcasing both NASA and commercial work that will soon lead to U.S.-based astronaut launches and eventual missions into deep space. The Vice President started his visit at Shuttle Landing Facility, the former space shuttle landing strip now leased and operated by Space Florida. He also visited the Neil Armstrong Operations and Checkout Building, where the Orion spacecraft is being prepped for its first integrated flight with the Space Launch System (SLS) in 2019. A driving tour showcased the mobile launch platform being readied for SLS flights as well as two commercial space facilities: Launch Complex 39A, the historic Apollo and shuttle pad now leased by SpaceX and used for commercial launches, and Boeing’s facility, where engineers are prepping the company’s Starliner capsule for crew flights to the space station in the same facility once used to do the same thing for space shuttles.
Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107
NASA Technical Reports Server (NTRS)
Overbey, B. G.; Roberts, B. C.
2005-01-01
During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) is congratulated by NASA Administrator Mike Griffin (right) for the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. Behind Leinbach are David R. Mould, assistant administrator for Public Affairs NASA, and Lisa Malone, director of External Relations at Kennedy. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2011-03-30
CAPE CANAVERAL, Fla. - Battalion Chief David Seymour provides supervision while space shuttle Endeavour's STS-134 crew members participate in M113 armored personnel carrier training near Launch Pad 39B at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the pad is needed and every shuttle crew is trained on driving the vehicle before launch. Space shuttle Endeavour's six crew members are at Kennedy for the launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Targeted to launch April 19 at 7:48 p.m. EDT, they will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the space station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-03-30
CAPE CANAVERAL, Fla. - Battalion Chief David Seymour provides supervision while space shuttle Endeavour's STS-134 crew members participate in M113 armored personnel carrier training near Launch Pad 39B at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the pad is needed and every shuttle crew is trained on driving the vehicle before launch. Space shuttle Endeavour's six crew members are at Kennedy for the launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Targeted to launch April 19 at 7:48 p.m. EDT, they will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the space station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
1998-12-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
Assessment of Atmospheric Winds Aloft during NASA Space Shuttle Program Day-of-Launch Operations
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Leach, Richard
2005-01-01
The Natural Environments Branch at the National Aeronautics and Space Administration s Marshall Space Flight Center monitors the winds aloft at Kennedy Space Center in support of the Space Shuttle Program day of launch operations. High resolution wind profiles are derived from radar tracked Jimsphere balloons, which are launched at predetermined times preceding the launch, for evaluation. The spatial (shear) and temporal (persistence) wind characteristics are assessed against a design wind database to ensure wind change does not violate wind change criteria. Evaluations of wind profies are reported to personnel at Johnson Space Center.
2011-05-16
CAPE CANAVERAL, Fla. - Shuttle Launch Director Mike Leinbach, standing, and his launch team monitor the countdown to liftoff of space shuttle Endeavour in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. Endeavour lifted off on its STS-134 mission to the International Space Station on time at 8:56 a.m. EDT on May 16. The shuttle and its six-member crew are embarking on a mission to deliver the Alpha Magnetic Spectrometer-2 (AMS), Express Logistics Carrier-3, a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the space station. Endeavour's first launch attempt on April 29 was scrubbed because of an issue associated with a faulty power distribution box called the aft load control assembly-2 (ALCA-2). For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-05-16
CAPE CANAVERAL, Fla. - NASA Administrator Charlie Bolden congratulates the launch team in Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida following the successful launch of space shuttle Endeavour. The shuttle lifted off on its STS-134 mission to the International Space Station on time at 8:56 a.m. EDT on May 16. The shuttle and its six-member crew are embarking on a mission to deliver the Alpha Magnetic Spectrometer-2 (AMS), Express Logistics Carrier-3, a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the space station. Endeavour's first launch attempt on April 29 was scrubbed because of an issue associated with a faulty power distribution box called the aft load control assembly-2 (ALCA-2). For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-03-30
CAPE CANAVERAL, Fla. - Battalion Chief David Seymour provides supervision while space shuttle Endeavour's STS-134 crew members participate in M113 armored personnel carrier training at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the pad is needed and every shuttle crew is trained on driving the vehicle before launch. Space shuttle Endeavour's six crew members are at Kennedy for the launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Targeted to launch April 19 at 7:48 p.m. EDT, they will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the space station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-03-30
CAPE CANAVERAL, Fla. - Battalion Chief David Seymour provides supervision while space shuttle Endeavour's STS-134 crew members participate in M113 armored personnel carrier training at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the pad is needed and every shuttle crew is trained on driving the vehicle before launch. Space shuttle Endeavour's six crew members are at Kennedy for the launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Targeted to launch April 19 at 7:48 p.m. EDT, they will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the space station. This is the final scheduled spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
2011-03-30
CAPE CANAVERAL, Fla. - Battalion Chief David Seymour provides supervision while space shuttle Endeavour's STS-134 crew members participate in M113 armored personnel carrier training at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the pad is needed and every shuttle crew is trained on driving the vehicle before launch. Space shuttle Endeavour's six crew members are at Kennedy for the launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Targeted to launch April 19 at 7:48 p.m. EDT, they will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the space station. This is the final scheduled spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
STS-108 Pilot Kelly suits up for launch
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Pilot Kelly suits up for launch KSC-01PD-1776 KENNEDY SPACE CENTER, Fla. -- STs-108 Pilot Mark E. Kelly is helped with his launch and entry suit in preparation for the second launch attempt of Space Shuttle Endeavour. The first attempt Dec. 4 was scrubbed due to poor weather conditions at KSC. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST Dec. 5, 2001, from Launch Pad 39B.
2007-05-25
KENNEDY SPACE CENTER, FLA. -- Former astronauts take their seats in the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. In the front row are (left to right) John Young, Rick Searfoss, Charles Bolden and Norm Thagard. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
2000-09-12
KENNEDY SPACE CENTER, Fla. -- The morning sun spotlights Launch Pad 39A and Space Shuttle Discovery atop the Mobile Launcher Platform. To its left is the Rotating Service Structure in its open position, at the top of the ramp that the Shuttle must negotiate on the crawler-transporter. Above Discovery looms the 80-foot fiberglass lightning mast. At the far left is the Vehicle Assembly Building, where a Space Shuttle begins its voyage to the pad. Discovery is scheduled to launch on mission STS-92 Oct. 5 at 9:30 p.m. EDT. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date
2000-09-12
KENNEDY SPACE CENTER, Fla. -- The morning sun spotlights Launch Pad 39A and Space Shuttle Discovery atop the Mobile Launcher Platform. To its left is the Rotating Service Structure in its open position, at the top of the ramp that the Shuttle must negotiate on the crawler-transporter. Above Discovery looms the 80-foot fiberglass lightning mast. At the far left is the Vehicle Assembly Building, where a Space Shuttle begins its voyage to the pad. Discovery is scheduled to launch on mission STS-92 Oct. 5 at 9:30 p.m. EDT. Making the 100th Space Shuttle mission launched from Kennedy Space Center, Discovery will carry two pieces of hardware for the International Space Station, the Z1 truss, which is the cornerstone truss of the Station, and the third Pressurized Mating Adapter. Discovery also will be making its 28th flight into space, more than any of the other orbiters to date
2011-07-07
Warren Hinson, a NASA Emergency Response Team (ERT) member, keeps an eye out while flying near the Vehicle Assembly Building (VAB) prior to the launch of space shuttle Atlantis, STS-135, Friday, July 8, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The launch of Atlantis, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Launch of STS-66 Space Shuttle Atlantis
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 35mm camera was used to record the image, which includes much of the base of the launch site as well as the launch itself.
Launch of STS-66 Space Shuttle Atlantis
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 70mm camera was used to record the image. Note the vegetation and the reflection of the launch in the water across from the launch pad.
2010-05-12
Ron Woods, an equipment specialist, who has been a space suit designer from Mercury to now speaks to participants at the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080444 (14 May 2010) --- Flight director Richard Jones is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
2007-05-25
KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex the Shuttle Launch Experience. Former astronauts John Young (left) and Bob Crippen (right) share their impressions with the audience. Seated on stage are Lt. Governor of Florida Jeff Kottkamp and Center Director Bill Parsons. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
STS-95 Space Shuttle Discovery rollout to Launch Pad 39B
NASA Technical Reports Server (NTRS)
1998-01-01
Perched on the Mobile Launch Platform, in the early morning hours Space Shuttle Discovery approaches Launch Complex Pad 39B after a 6-hour, 4.2-mile trip from the Vehicle Assembly Building. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Launch of Space Shuttle Atlantis / STS-125 Mission
2009-05-11
STS125-S-050 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.
Launch of Space Shuttle Atlantis / STS-125 Mission
2009-05-11
STS125-S-057 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.
Risk Considerations of Bird Strikes to Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Hales, Christy; Ring, Robert
2016-01-01
Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the Shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a Shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. NASA is currently refining risk assessment estimates for the probability of bird strike to space launch vehicles. This paper presents an approach for analyzing the risks of bird strikes to space launch vehicles and presents an example. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts affect the risk due to bird strike. A summary of significant risk contributors is discussed.
Atmospheric constraint statistics for the Space Shuttle mission planning
NASA Technical Reports Server (NTRS)
Smith, O. E.; Batts, G. W.; Willett, J. A.
1982-01-01
The procedures used to establish statistics of atmospheric constraints of interest to the Space Shuttle mission planning are presented. The statistics considered are for the frequency of occurrence, runs, and time conditional probabilities of several atmospheric constrants for each of the Space Shuttle mission phases. The mission phases considered are (1) prelaunch, (2) launch, (3) return to launch site, (4) abort once around landing, and (5) end of mission landing.
Investigation of abort procedures for space shuttle-type vehicles
NASA Technical Reports Server (NTRS)
Powell, R. W.; Eide, D. G.
1974-01-01
An investigation has been made of abort procedures for space shuttle-type vehicles using a point mass trajectory optimization program known as POST. This study determined the minimum time gap between immediate and once-around safe return to the launch site from a baseline due-East launch trajectory for an alternate space shuttle concept which experiences an instantaneous loss of 25 percent of the total main engine thrust.
Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Calle, L. M.
2011-01-01
Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.
Forward Skirt Structural Testing on the Space Launch System (SLS) Program
NASA Technical Reports Server (NTRS)
Lohrer, Joe; Wright, R. D.
2016-01-01
Introduction: (a) Structural testing was performed to evaluate Space Shuttle heritage forward skirts for use on the Space Launch System (SLS) program, (b) Testing was required because SLS loads are approximately 35% greater than shuttle loads; and (c) Two forwards skirts were tested to failure.
2007-05-15
KENNEDY SPACE CENTER, FLA. -- In high bay No. 1 of the Vehicle Assembly Building, Space Shuttle Atlantis is ready for its return to Launch Pad 39A. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
2007-05-15
KENNEDY SPACE CENTER, FLA. -- In high bay No. 1 of the Vehicle Assembly Building, Space Shuttle Atlantis awaits its return to Launch Pad 39A. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
STS-125 Flight Controllers on Console - (Orbit Shift)
2009-05-11
JSC2009-E-118888 (11 May 2009) --- Flight director Bryan Lunney monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.
STS-125 Flight Controllers on Console - (Orbit Shift)
2009-05-11
JSC2009-E-118822 (11 May 2009) --- Flight director Norm Knight is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.
STS-125 Flight Controllers on Console - (Orbit Shift)
2009-05-11
JSC2009-E-118817 (11 May 2009) --- Flight controller Mark McDonald monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.
STS-125 Flight Controllers on Console - (Orbit Shift)
2009-05-11
JSC2009-E-118883 (11 May 2009) --- Flight director Tony Ceccacci is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.
STS-125 Flight Controllers on Console - (Orbit Shift)
2009-05-11
JSC2009-E-118882 (11 May 2009) --- Flight director Norm Knight is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis? scheduled STS-125 launch to service the Hubble Space Telescope. Liftoff was on time at 2:01 p.m. (EDT) on May 11, 2009 from launch pad 39A at NASA's Kennedy Space Center.
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Leach, Richard
2004-01-01
The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center (NASA/MSFC) monitors the winds aloft at Kennedy Space Center (KSC) during the countdown for all Space Shuttle launches. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution Jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. Data generated by the systems are used to assess spatial and temporal wind variability during launch countdown to ensure wind change observed does not violate wind change criteria constraints.
2011-07-08
CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. In the foreground, from left, are NASA Test Directors Charlie Blackwell-Thompson, Jeremy Graeber, and Jeff Spaulding; Orbiter Test Conductor Roberta Wyrick; and Assistant Orbiter Test Conductor Laurie Sally. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-02-18
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Public Affairs Officer Michael Curie, left, Associate Administrator for Space Operations Bill Gerstenmaier, Space Shuttle Program Launch Integration Manager Mike Moses and Shuttle Launch Director Mike Leinbach talk to media following a Flight Readiness Review that gave a unanimous "go" to launch space shuttle Discovery on the STS-133 mission to the International Space Station. This will be the second launch attempt for Discovery, following a scrub in November 2010 due to a hydrogen gas leak at the ground umbilical carrier plate (GUCP) as well as modifications to the external fuel tank's intertank support beams, called stringers. Scheduled to lift off Feb. 24 at 4:50 p.m. EST, Discovery and its six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker maneuvers a panel to build another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers line up the new equipment cabinets. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, cabinets are being erected to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2011-05-16
CAPE CANAVERAL, Fla. - Shuttle Launch Director Mike Leinbach watches space shuttle Endeavour soar into space from Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida. Endeavour lifted off on its STS-134 mission to the International Space Station on time at 8:56 a.m. EDT on May 16. The shuttle and its six-member crew are embarking on a mission to deliver the Alpha Magnetic Spectrometer-2 (AMS), Express Logistics Carrier-3, a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the space station. Endeavour's first launch attempt on April 29 was scrubbed because of an issue associated with a faulty power distribution box called the aft load control assembly-2 (ALCA-2). For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
Legal issues inherent in Space Shuttle operations
NASA Technical Reports Server (NTRS)
Mossinghoff, G. J.; Sloup, G. P.
1978-01-01
The National Aeronautics and Space Act of 1958 (NASAct) is discussed with reference to its relevance to the operation of the Space Shuttle. The law is interpreted as giving NASA authority to regulate specific Shuttle missions, as well as authority to decide how much space aboard the Shuttle gets rented to whom. The Shuttle will not, however, be considered a 'common carrier' either in terms of NASAct or FAA regulations, because it will not be held available to the public-at-large, as are the flag carriers of various national airlines, e.g., Lufthansa, Air France, Aeroflot, etc. It is noted that the Launch Policy of 1972, which ensures satellite launch assistance to other countries or international organizations, shall not be interpreted as conferring common carrier status on the Space Shuttle.
2007-05-25
KENNEDY SPACE CENTER, FLA. -- Former astronauts take their seats in the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. In the front row are (from left) Bob Crippen, John Young, Rick Searfoss, Charles Bolden and Norm Thagard. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
2006-07-04
KENNEDY SPACE CENTER, FLA. - Workers in Firing Room 4 of the Launch Control Center take advantage of the view as Space Shuttle Discovery lifts off on mission STS-121 -- the first ever Independence Day launch of a space shuttle. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2007-05-15
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis, mounted on a mobile launch platform, finally rests on the hard stand of Launch Pad 39A after an early morning rollout. This is the second rollout for the shuttle. Seen on either side of the main engine exhaust hole on the launcher platform are the tail service masts. Their function is to provide umbilical connections for liquid oxygen and liquid hydrogen lines to fuel the external tank from storage tanks adjacent to the launch pad. Other umbilical lines carry helium and nitrogen, as well as ground electrical power and connections for vehicle data and communications. First motion out of the Vehicle Assembly Building was at 5:02 a.m. EDT. In late February, while Atlantis was on the launch pad, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation, as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The shuttle was returned to the VAB for repairs. The launch of Space Shuttle Atlantis on mission STS-117 is now targeted for June 8. A flight readiness review will be held on May 30 and 31. Photo credit: NASA/Troy Cryder
2011-04-12
CAPE CANAVERAL, Fla. -- Shuttle Atlantis' three main engines take center stage to the banners commemorating the orbiters that served the Space Shuttle Program. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080432 (14 May 2010) --- Astronaut Charles Hobaugh, spacecraft communicator (CAPCOM) for the STS-132 mission, is pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080463 (14 May 2010) --- Brent Jett, director, flight crew operations, is pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis' scheduled STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080441 (14 May 2010) --- Flight director Richard Jones is pictured at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080454 (14 May 2010) --- Flight director Tony Ceccacci is pictured at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
2010-05-12
Kendal Van Dyke, a database professional that is followed on Twitter @twitter.com/sqldba, takes part in the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)
STS-108 Endeavour Launch from Pad 39-B
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1786 KENNEDY SPACE CENTER, Fla. -- Like a lighted taper, Space Shuttle Endeavour shines atop its twisted contrail as it soars into space on mission STS-108. Liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.
Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.
Space Shuttle. The microcapsules in space (MIS) equipment will replace two space shuttle middeck storage lockers. Design changes have been...Mission STS-53 pending final safety certification by NASA. STS-53 is scheduled for launch on October 15, 1992. RA 2; Microencapsulation ; Controlled-release; Space Shuttle; Antibiotics; Drug development.
A Summary of Meteorological Parameters During Space Shuttle Pad Exposure Periods
NASA Technical Reports Server (NTRS)
Overbey, Glenn; Roberts, Barry C.
2005-01-01
During the 113 missions of the Space Transportation System (STS), the Space Shuffle fleet has been exposed to the elements on the launch pad for a total of 4195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This paper provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Sources of the surface parameters, including temperature, dew point temperature, relative humidity, wind speed, wind direction, sea level pressure and precipitation are presented. Data is provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
Launch and Landing Effects Ground Operations (LLEGO) Model
NASA Technical Reports Server (NTRS)
2008-01-01
LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.
Control of NASA's Space Launch System
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.
2014-01-01
The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
1995-02-03
STS063-S-007 (3 Feb 1995) --- The race to catch up with the Russia's Mir gets underway as the Space Shuttle Discovery launches from Pad 39B, Kennedy Space Center (KSC) at 12:22:04 (EST), February 3, 1995. Discovery is the first in the current fleet of four Space Shuttle vehicles to make 20 launches. Onboard for the 67th (STS-63 is out of sequence) Shuttle flight are astronauts James D. Wetherbee, mission commander; Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; mission specialists Janice Voss and C. Michael Foale; along with Russian cosmonaut Vladimir G. Titov.
KSC ice/frost/debris assessment for space shuttle mission STS-29R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-29R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-29R and their effect on the Space Shuttle Program are documented.
Ice/frost/debris assessment for space shuttle mission STS-26R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1988-01-01
An Ice/Frost/Debris Assessment was conducted for Space Shuttle Mission STS-26R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions are assessed by use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission 26R and their effect on the Space Shuttle Program is documented.
Ice/frost/debris assessment for space shuttle mission STS-27R, December 2, 1988
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-27R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission STS-27R and their effect on the Space Shuttle Program are documented.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. From inside the viewing room of the Launch Control Center, KSC employees watch Space Shuttle Discovery as it creeps along the crawlerway toward the horizon, and Launch Pad 39B at NASAs Kennedy Space Center. First motion of the Shuttle out of the Vehicle Assembly Building (VAB) was at 2:04 p.m. EDT. The Mobile Launcher Platform is moved by the Crawler-Transporter underneath. The Crawler is 20 feet high, 131 feet long and 114 feet wide. It moves on eight tracks, each containing 57 shoes, or cleats, weighing one ton each. Loaded with the Space Shuttle, the Crawler can move at a maximum speed of approximately 1 mile an hour. A leveling system in the Crawler keeps the Shuttle vertical while negotiating the 5 percent grade leading to the top of the launch pad. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Discovery was moved on March 29 from the Orbiter Processing Facility to the VAB and attached to its propulsion elements, a redesigned ET and twin SRBs.
NASA Ames Hosts Viewing Party for Final Shuttle Launch (Reporter Package)
2011-07-12
The public was invited to NASA's Ames Research Center to observe a live televised broadcast of the final space shuttle launch on July 8, 2011. The STS-135 mission is the final flight of NASA's Space Shuttle Program. The orbiter Atlantis is carrying a system to investigate the potential for robotically refueling existing spacecraft and bring back a failed ammonia pump to help NASA better understand and improve pump designs for future systems. It also will deliver spare parts to sustain space station operations after the shuttles retire from service.
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Nguyen, Tri X.
2011-01-01
This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.
2009-02-03
CAPE CANAVERAL, Fla. – Mike Curie (left), with NASA Public Affairs, introduces NASA managers following their day-long Flight Readiness Review of space shuttle Discovery for the STS-119 mission. Next to Curie are (from left) William H. Gerstenmaier, associate administrator for Space Operations, John Shannon, Shuttle Program manager, Mike Suffredini, program manager for the International Space Station, and Mike Leinbach, shuttle launch director. NASA managers decided to plan a launch no earlier than Feb. 19, pending additional analysis and particle impact testing associated with a flow control valve in the shuttle's main engine system. Photo credit: NASA/Cory Huston
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, Patti; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Program manager Wayne Hale (far left), NASA Associate Administrator for Space Operations Mission Bill Gerstenmaier (third from left) and Center Director Jim Kennedy (far right) watch the historic ride of Space Shuttle Discovery as it rockets through the sky on mission STS-121 -- the first ever Independence Day launch of a space shuttle. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
Bird Strike Risk for Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Hales, Christy; Czech, Matthew
2017-01-01
Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. This presentation will outline an approach for estimating risk resulting from bird strikes to space launch vehicles. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts all affect the risk due to bird strike. Lessons learned, challenges over lack of data, and significant risk contributors will be discussed.
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Assistant Launch Orbiter Test Conductor Mark Taffet sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, STS-133 Assistant Launch Director Pete Nickolenko sits at his console in Firing Room 4 along with other launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Launch Orbiter Test Conductor John Kracsun sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2007-05-25
KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. At the dais is Dan LeBlanc, chief operating officer of the KSC Visitor Complex. Seated on stage are (from left) Lt. Governor of Florida Jeff Kottkamp, Center Director Bill Parsons, and former astronauts John Young and Bob Crippen. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
NASA Manned Launch Vehicle Lightning Protection Development
NASA Technical Reports Server (NTRS)
McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.
2009-01-01
Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle, which has resulted in lost launch opportunities and increased expenditures in manpower to assess Space Shuttle vehicle health and safety after lightning events at the launch pad. Because of high-percentage launch availability and long-term on-pad requirements, LCC constraints are no longer considered feasible. The Constellation vehicles must be designed to withstand direct and indirect effects of lightning. A review of the vehicle design and potential concerns will be presented as well as the new catenary lightning protection system for the launch pad. This system is required to protect the Constellation vehicles during launch processing when vehicle lightning effects protection might be compromised by such items as umbilical connections and open access hatches.
2011-04-12
In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2010-04-05
JSC2010-E-046777 (5 April 2010) --- Astronaut Rick Sturckow, spacecraft communicator (CAPCOM) for the STS-131 mission, is pictured at his console in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
2010-04-05
JSC2010-E-046733 (5 April 2010) --- An overall view of the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch. In the foreground are flight directors Tony Ceccacci (left) and Bryan Lunney.
NASA Technical Reports Server (NTRS)
Hueter, Uwe
1991-01-01
The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met.
NASA Technical Reports Server (NTRS)
Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.
1994-01-01
The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Space Shuttle Discovery lingers at the foot of Launch Pad 39B in the evening twilight. First motion from the Vehicle Assembly Building was at 2:04 p.m. EDT April 6, and the Shuttle was hard down on the pad at 1:16 a.m. EDT April 7. The Shuttle sits atop a Mobile Launcher Platform transported by a Crawler-Transporter underneath. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Photo courtesy of Scott Andrews.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080410 (14 May 2010) --- Astronauts Steve Frick (standing) and Charles Hobaugh, both spacecraft communicators (CAPCOM) for the STS-132 mission, are pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080409 (14 May 2010) --- Brent Jett (left), director, flight crew operations; and flight director Norm Knight are pictured in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis' scheduled STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080439 (14 May 2010) --- Flight directors Richard Jones and Tony Ceccacci (foreground) monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
STS-132/ULF4 WFCR Flight Controllers on Console
2010-05-14
JSC2010-E-080438 (14 May 2010) --- Flight directors Richard Jones and Tony Ceccacci (foreground) monitor data at their console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.
2011-01-07
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2003-08-18
KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transportation (CT) number 2 shows the new muffler system on the vehicle. The CT also recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building with a Mobile Launcher Platform (MLP) on top on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2 nears the launch pad with a Mobile Launcher Platform (MLP) on top. After recent modifications to the cab and muffler system, the CT was taken on a test run. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
2003-08-18
KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab, at left, that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
2003-08-18
KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab (left, above the tracks) that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.
Evolution of Space Shuttle Range Safety (RS) Ascent Flight Envelope Design
NASA Technical Reports Server (NTRS)
Brewer, Joan D.
2011-01-01
Ascent flight envelopes are trajectories that define the normal operating region of a space vehicle s position from liftoff until the end of powered flight. They fulfill part of the RS data requirements imposed by the Air Force s 45th Space Wing (45SW) on space vehicles launching from the Eastern Range (ER) in Florida. The 45SW is chartered to protect the public by minimizing risks associated with the inherent hazards of launching a vehicle into space. NASA s Space Shuttle program has launched 130+ manned missions over a 30 year period from the ER. Ascent envelopes were delivered for each of those missions. The 45SW envelope requirements have remained largely unchanged during this time. However, the methodology and design processes used to generate the envelopes have evolved over the years to support mission changes, maintain high data quality, and reduce costs. The evolution of the Shuttle envelope design has yielded lessons learned that can be applied to future endevours. There have been numerous Shuttle ascent design enhancements over the years that have caused the envelope methodology to evolve. One of these Shuttle improvements was the introduction of onboard flight software changes implemented to improve launch probability. This change impacted the preflight nominal ascent trajectory, which is a key element in the RS envelope design. While the early Shuttle nominal trajectories were designed preflight using a representative monthly mean wind, the new software changes involved designing a nominal ascent trajectory on launch day using real-time winds. Because the actual nominal trajectory position was not known until launch day, the envelope analysis had to be customized to account for this nominal trajectory variation in addition to the other envelope components.
2011-07-08
CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach, and Payloads Launch Manager and Deputy Director of ISS and Spacecraft Processing at Kennedy, Bill Dowdell along with the launch control members, watch intently as space shuttle Atlantis lifts off on its STS-135 mission to the International Space Station. Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Dougherty, Sam; West, Jeff; Droege, Alan; Wilson, Josh; Liever, Peter; Slaby, Matthew
2006-01-01
This paper discusses the Space Shuttle Lift-off CFD model developed for potential Lift-off Debris transport for return-to-flight. The Lift-off portion of the flight is defined as the time starting with tanking of propellants until tower clear, approximately T0+6 seconds, where interactions with the launch pad cease. A CFD model containing the Space Shuttle and launch Pad geometry has been constructed and executed. Simplifications required in the construction of the model are presented and discussed. A body-fitted overset grid of up to 170 million grid points was developed which allowed positioning of the Vehicle relative to the Launch Pad over the first six seconds of Climb-Out. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the interactions of the Space Shuttle plumes, the wind environment, and their interactions with each other and the Launch Pad and their ultimate effect on potential debris during Lift-off.
STS-91 Launch of Discovery from Launch Pad 39-A
NASA Technical Reports Server (NTRS)
1998-01-01
Searing the early evening sky with its near sun-like rocket exhaust, the Space Shuttle Discovery lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2 on its way to the Mir space station. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir.
Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7
NASA Technical Reports Server (NTRS)
2011-01-01
The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility to have a representative in Firing Room 2 at KSC in case of potential motor problems. However, the last time ATK was responsible for a space shuttle launch slip was 1989. During launch, engineers were also stationed in Promontory on teleconference with counterparts at KSC in the event their support was required.
2008-06-16
CAPE CANAVERAL, Fla. – Debris stretches along the perimeter of Launch Pad 39A at NASA's Kennedy Space Center. It is residue from the damage that occurred during the May 31 launch of space shuttle Discovery. Repairs are expected to be completed in time for space shuttle Atlantis' STS-125 mission to NASA's Hubble Space Telescope targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2008-06-16
CAPE CANAVERAL, Fla. – Workers test the stability of the wall of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center where damage occurred during the May 31 launch of space shuttle Discovery. Repairs are expected to be completed in time for space shuttle Atlantis' STS-125 mission to NASA's Hubble Space Telescope targeted for Oct. 8. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - Cameras are the accessory of the day at the Kennedy Space Center's Banana River viewing site. All eyes and lenses are focused on Launch Pad 39B and the successful launch of Space Shuttle Discovery on mission STS-121. It was the third launch attempt in four days; the others were scrubbed due to weather concerns. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Louie Roguevert
1995-02-03
STS063-S-003 (3 Feb. 1995) --- A 35mm camera was used to expose this image of the space shuttle Discovery as it began its race to catch up with the Russia's Mir Space Station. Liftoff from Launch Pad 39B, Kennedy Space Center (KSC) occurred at 12:22:04 (EST), Feb. 3, 1995. Discovery is the first in the current fleet of four space shuttle vehicles to make 20 launches. Onboard for the 67th (STS-63 is out of sequence) shuttle flight are astronauts James D. Wetherbee, commander; Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; and mission specialists Janice Voss and C. Michael Foale; along with Russian cosmonaut Vladimir G. Titov. Photo credit: NASA
2007-06-08
KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist John "Danny" Olivas signals go for launch as he completes suitup by donning his helmet. The launch of Space Shuttle Atlantis is scheduled for 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Roger Crouch (center), a payload specialist, talks to the media prior to the launch of Space Shuttle Discovery on the historic Return to Flight mission STS- 114. He has flown on two Shuttle missions, STS-83 and STS-94. STS-114 is the 114th Space Shuttle flight and the 31st for Discovery. More than a thousand media representatives from 36 states, the District of Columbia and 32 countries converged on the News Center for the historic launch.
2011-04-12
CAPE CANAVERAL, Fla. -- Mike Parrish, space shuttle Endeavour's vehicle manager with United Space Alliance addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians begin the work to secure a new engine and generator inside crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, new engines and generators have arrived for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians begin the work to secure a new engine and generator inside crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare an Apollo era diesel engine inside crawler-transporter 2 CT-2) for removal. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a new engine and generator have arrived for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, the number of new equipment cabinets increases as workers put the elements together. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- A near-empty Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center is ready for the installation of racks of equipment. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker holds on to a cabinet being put together to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2008-05-01
CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, panels stretch across the floor in preparation for erecting equipment racks. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
2006-06-28
KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, workers release an upper-level weather balloon while several newscasters watch. The release of the balloon was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
2006-06-28
KENNEDY SPACE CENTER, FLA. - At the Cape Canaveral weather station in Florida, workers carry an upper-level weather balloon outside for release. The release was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
2006-06-28
KENNEDY SPACE CENTER, FLA. - An upper-level weather balloon sails into the sky after release from the Cape Canaveral weather station in Florida. The release was planned as part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
2011-05-09
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, Space Shuttle Program Launch Integration Manager Mike Moses briefs media about the launch status of space shuttle Endeavour's STS-134 mission and announces a new launch date. Technicians replaced and tested the aft load control assembly-2 (ALCA-2) and wiring located in Endeavour's aft avionics bay 5. ALCA-2 distributes power to nine shuttle systems and is believed to have caused fuel line heaters for Endeavour's auxiliary power unit-1 (APU-1) to fail April 29 during the first launch attempt. Launch now is scheduled for May 16 at 8:56 a.m. EDT. Endeavour and its crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
STS-91 Launch of Discovery from Launch Pad 39-A
NASA Technical Reports Server (NTRS)
1998-01-01
Some of Florida's natural foliage stands silent sentinel to the lift off of the Space Shuttle Discovery from Launch Pad 39A at 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir.
2009-02-25
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians have removed space shuttle Discovery's three gaseous hydrogen flow control valves, two of which will undergo detailed inspection. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Approximately 4,000 images of each valve removed will be reviewed for evidence of cracks. Valves that have flown fewer times will be installed in Discovery. NASA's Space Shuttle Program has established a plan that could support shuttle Discovery's launch to the International Space Station, tentatively targeted for March 12. An exact target launch date will be determined as work on the valves progresses. Photo credit: NASA/Dimitri Gerondidakis
Shuttle Boosters stacked in the VAB
2007-01-04
Workers continue stacking the solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, NASA Administrator Mike Griffin congratulates the launch team on the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. Liftoff was on-time at 2:38 p.m. EDT. Others next to Griffin are (left to right) David R. Mould, assistant administrator for NASA Public Affairs ; Lisa Malone, director of External Relations at Kennedy; Bruce Buckingham, news chief at the NASA News Center at Kennedy; and Mike Leinbach, Shuttle Program director. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
STS129-S-054 (16 Nov. 2009) --- Michael Coats (left), director of NASA's Johnson Space Center in Houston; and Bob Cabana, director of NASA's Kennedy Space Center in Florida, monitor the progress of Space Shuttle Atlantis' countdown from consoles in the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) on Nov. 16, 2009.
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, Firing Room 3 inside the Launch Control Center at NASA's Kennedy Space Center was one of the four control rooms used by NASA and contractor launch teams to oversee a space shuttle countdown. This firing room is furnished in the classic style with the same metal computer cabinets and some of the same monitors in place when the first shuttle mission launched April 12, 1981. Specialized operators worked at consoles tailored to keep track of the status of shuttle systems while the spacecraft was processed in the Orbiter Processing Facility, being stacked inside the Vehicle Assembly Building and standing at the launch pad before liftoff. The firing rooms, including 3, were also used during NASA's Apollo Program. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, United Space Alliance Safety Engineer Dwayne Thompson, left, and NASA Safety Engineer Dallas McCarter rehearse procedures for the liftoff of space shuttle Discovery's final mission with other STS-133 launch team members in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, United Space Alliance Guidance and Navigation Engineer Jennifer Guida sits at her console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
A Dynamic Risk Model for Evaluation of Space Shuttle Abort Scenarios
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Maggio, Gaspare; Elrada, Hassan A.; Yazdpour, Sabrina J.
2003-01-01
The Space Shuttle is an advanced manned launch system with a respectable history of service and a demonstrated level of safety. Recent studies have shown that the Space Shuttle has a relatively low probability of having a failure that is instantaneously catastrophic during nominal flight as compared with many US and international launch systems. However, since the Space Shuttle is a manned. system, a number of mission abort contingencies exist to primarily ensure the safety of the crew during off-nominal situations and to attempt to maintain the integrity of the Orbiter. As the Space Shuttle ascends to orbit it transverses various intact abort regions evaluated and planned before the flight to ensure that the Space Shuttle Orbiter, along with its crew, may be returned intact either to the original launch site, a transoceanic landing site, or returned from a substandard orbit. An intact abort may be initiated due to a number of system failures but the highest likelihood and most challenging abort scenarios are initiated by a premature shutdown of a Space Shuttle Main Engine (SSME). The potential consequences of such a shutdown vary as a function of a number of mission parameters but all of them may be related to mission time for a specific mission profile. This paper focuses on the Dynamic Abort Risk Evaluation (DARE) model process, applications, and its capability to evaluate the risk of Loss Of Vehicle (LOV) due to the complex systems interactions that occur during Space Shuttle intact abort scenarios. In addition, the paper will examine which of the Space Shuttle subsystems are critical to ensuring a successful return of the Space Shuttle Orbiter and crew from such a situation.
STS-108 Endeavour Launch from Pad 39-B
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1785 KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour soars into a twilight sky on mission STS-108, the second attempt over two days. Liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.
Space-shuttle interfaces/utilization. Earth Observatory Satellite system definition study (EOS)
NASA Technical Reports Server (NTRS)
1974-01-01
The economic aspects of space shuttle application to a representative Earth Observatory Satellite (EOS) operational mission in the various candidate Shuttle modes of launch, retrieval, and resupply are discussed. System maintenance of the same mission capability using a conventional launch vehicle is also considered. The studies are based on application of sophisticated Monte Carlo mission simulation program developed originally for studies of in-space servicing of a military satellite system. The program has been modified to permit evaluation of space shuttle application to low altitude EOS missions in all three modes. The conclusions generated by the EOS system study are developed.
Launch Commit Criteria Monitoring Agent
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.
STS-71 Mission Highlights Resources Tape
NASA Technical Reports Server (NTRS)
1997-01-01
The flight crew of the STS-71 Space Shuttle Orbiter Atlantis Commander Robert L. Gibson, Pilot Charles J. Precourt, Mission Specialists, Ellen S. Baker, Bonnie J. Dunbar, Gregory J. Harbaugh, and Payload Specialists, Norman E. Thagard, Vladimir Dezhurov, and Gennadiy Strekalov present an overview of their mission. It's primary objective is the first Mir docking with a space shuttle and crew transfer. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; on orbit activities; rendezvous with Mir; Shuttle/Mir joint activities; undocking; and the shuttle landing.
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Kennedy Space Center Director Bob Cabana listen. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
2008-10-20
CAPE CANAVERAL, Fla. - Next to the waters of the Banana River, space shuttle Atlantis rolls away from the rotating and fixed service structures on Launch Pad 39A at NASA's Kennedy Space Center in Florida. At far right is Launch Pad 39B where space shuttle Endeavour is seen. First motion of Atlantis was at 6:48 a.m. EDT. Atlantis is rolling back to the Vehicle Assembly Building to await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. The space shuttle is mounted on a Mobile Launcher Platform and will be delivered to the Vehicle Assembly Building atop a crawler transporter. traveling slower than 1 mph during the 3.4-mile journey. The rollback is expected to take approximately six hours. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - Trying a third time for launch, and still smiling, the STS-121 crew gathers again for the traditional breakfast before suiting up. Seated left to right are Mission Specialists Piers Sellers and Michael Fossum, Pilot Mark Kelly, Commander Steven Lindsey, and Mission Specialists Lisa Nowak, Stephanie Wilson and Thomas Reiter, who represents the European Space Agency. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- A tugboat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. In the background, space shuttle Discovery is on Launch Pad 39A awaiting liftoff on the STS-133 mission to the International Space Station. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – In the Firing Room at NASA's Kennedy Space Center in Florida, Center Director Bob Cabana congratulates the mission team for the successful launch of space shuttle Endeavour on the STS-127 mission. Liftoff was on-time at 6:03 p.m. EDT. Looking on at left are Associate Administrator of Program Analysis & Evaluation at NASA Dr. Michael Hawes, Shuttle Launch Director Mike Leinbach and Endeavour Flow Director Dana Hutcherson , and at right, STS-127 Shuttle Launch Director Pete Nickolenko. Today was the sixth launch attempt for the STS-127 mission. The launch was scrubbed on June 13 and June 17 when a hydrogen gas leak occurred during tanking due to a misaligned Ground Umbilical Carrier Plate. The mission was postponed July 11, 12 and 13 due to weather conditions near the Shuttle Landing Facility at Kennedy that violated rules for launching, and lightning issues. Endeavour will deliver the Japanese Experiment Module's Exposed Facility and the Experiment Logistics Module-Exposed Section in the final of three flights dedicated to the assembly of the Japan Aerospace Exploration Agency's Kibo laboratory complex on the International Space Station. Photo credit: NASA/Kim Shiflett
2009-11-16
CAPE CANAVERAL, Fla. - A post-launch news conference is held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida after the successful launch of space shuttle Atlantis. From left are Public Affairs moderator Mike Curie; Bill Gerstenmaier, associate administrator for Space Operations; Mike Moses, chair, Mission Management Team; and Mike Leinbach, space shuttle launch director. Liftoff of Atlantis on its STS-129 mission came at 2:28 p.m. EST Nov. 16 from Launch Pad 39A. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett
2006-07-04
KENNEDY SPACE CENTER, FLA. - From Firing Room 4 of the Launch Control Center, NASA Administrator Mike Griffin uses binoculars to view of the launch of Space Shuttle Discovery (in the background) on mission STS-121. The launch made history as the first to occur on Independence Day. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Bill Ingalls
2006-07-04
KENNEDY SPACE CENTER, FLA. - All eyes, and lenses, focus on the perfect launch of Space Shuttle Discovery on its third attempt in four days. Kicking off the Fourth of July with its own fireworks, the launch made history as it was the first ever launch on Independence Day. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Carl Winebarger
NASA Technical Reports Server (NTRS)
Willams, M. C.
1985-01-01
Assuring personnel and equipment are fully protected during the Space Shuttle launch and landing operations has been a primary concern of NASA and its associated contractors since the inception of the program. A key factor in support of this policy has been the area access safety training requirements for badging of employees assigned to work on Space Shuttle Launch and Facilities. This requirement was targeted for possible cost savings and the transition of physical on-site walkdowns to the use of television tapes has realized program cost savings while continuing to fully satisfy the area access safety training requirements.
KSC ice/frost/debris assessment for Space Shuttle Mission STS-30R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-30R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-30R and their overall effect on the Space Shuttle Program is documented.
Liftoff of STS-62 Space Shuttle Columbia
1994-03-04
STS062-S-051 (4 March 1994) --- Five veteran astronauts and the United States Microgravity Payload (USMP) are ushered into space via the sixteenth launch of Space Shuttle Columbia. Launch occurred at 8:53 a.m. (EST), March 4, 1994. Onboard were astronauts John H. Casper, Andrew M. Allen, Marsha S. Ivins, Charles D. (Sam) Gemar and Pierre J. Thuot.
2001-04-19
KENNEDY SPACE CENTER, FLA. -- At a launch observation site, State Education Commissioner Charlie Crist (left) talks with astronaut Sam Durrance. Crist was commemorating the 20th anniversary of Space Shuttle program with his visit to KSC for the launch of Space Shuttle Endeavour on mission STS-100. He accompanied students from Ronald McNair Magnet School, Cocoa, Fla
2010-04-05
JSC2010-E-046772 (5 April 2010) --- Astronauts George Zamka (left) and Rick Sturckow, both spacecraft communicators (CAPCOM) for the STS-131 mission, are pictured at their consoles in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
2010-04-05
JSC2010-E-046808 (5 April 2010) --- Astronauts Rick Sturckow (foreground) and George Zamka, both spacecraft communicators (CAPCOM) for the STS-131 mission, watch the big screens in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
1999-05-27
A ceremony dedicated the KSC Press Site auditorium as the John Holliman Auditorium to honor the correspondent for his enthusiastic, dedicated coverage of America's space program. The auditorium was built in 1980 and has been the focal point for news coverage of Space Shuttle launches. The ceremony followed the 94th launch of a Space Shuttle, on mission STS-96, earlier this morning
2011-04-12
CAPE CANAVERAL, Fla. -- Kennedy Center Director Bob Cabana addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- Kennedy Center Director Bob Cabana appears pleased that Kennedy was awarded shuttle Atlantis to be displayed permanently in Florida. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2008-09-19
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center, the massive crawler-transporter carrying space shuttle Endeavour approaches the launch pad. First motion of Endeavour from the Vehicle Assembly Building was at 11:15 p.m. Sept. 18. The crawler travels on eight tracked tread belts, each containing 57 tread belt “shoes.” Each shoe is 7.5 feet long, 1.5 feet wide and weighs approximately 2,100 pounds. Endeavour completed the 4.2-mile journey to Launch Pad 39B on Sept. 19 at 6:59 a.m. EDT. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis' upcoming mission to repair NASA's Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for the STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Dimitri Gerondidakis
Simulations of SSLV Ascent and Debris Transport
NASA Technical Reports Server (NTRS)
Rogers, Stuart; Aftosmis, Michael; Murman, Scott; Chan, William; Gomez, Ray; Gomez, Ray; Vicker, Darby; Stuart, Phil
2006-01-01
A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications.
Shuttle Boosters stacked in the VAB
2007-01-04
Workers continue stacking the twin solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.
STS-111 crew breakfast before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The STS-111 crew gather for the traditional pre-launch meal before the second launch attempt aboard Space Shuttle Endeavour. Seated left to right are Mission Specialists Franklin Chang-Diaz and Philippe Perrin (CNES); the Expedition 5 crew cosmonauts Sergei Treschev (RSA) and Valeri Korzun (RSA) and astronaut Peggy Whitson; Pilot Paul Lockhart and Commander Kenneth Cockrell. In front of them is the traditional cake. This mission marks the 14th Shuttle flight to the International Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.
U.S. Secretary of State applauds Bob Sieck
NASA Technical Reports Server (NTRS)
1998-01-01
In a firing room in the Launch Control Center, KSC Director of Shuttle Operations Robert B. Sieck (left) is applauded by NASA Administrator Daniel Goldin (center) and U.S. Secretary of State Madeleine Albright for receiving the Distinguished Service Medal (seen around Sieck's neck). Goldin conferred the medal after the successful launch of STS-88, citing Sieck's distinguished service as the Kennedy Space Center launch director and director of Shuttle Processing, outstanding leadership and total dedication to the success of the Space Shuttle Program. The medal is the highest honor NASA gives a government employee.
Atmospheric constraint statistics for the Space Shuttle mission planning
NASA Technical Reports Server (NTRS)
Smith, O. E.
1983-01-01
The procedures used to establish statistics of atmospheric constraints of interest to the Space Shuttle mission planning are presented. The statistics considered are for the frequency of occurrence, runs, and time conditional probabilities of several atmospheric constraints for each of the Space Shuttle mission phases. The mission phases considered are (1) prelaunch, (2) launch operations, (3) return to launch site, (4) abort once around landing, and (5) end of mission landing. Previously announced in STAR as N82-33417
Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program
NASA Technical Reports Server (NTRS)
Decker, Ryan; Leach, Richard
2004-01-01
The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.
1997-01-12
KENNEDY SPACE CENTER, FLA. - STS-81 Mission Specialist Jeff Wisoff prepares to enter the Space Shuttle Atlantis at Launch Pad 39B with help from White Room closeout crew members Danny Wyatt (center) and Al Rochford.
2007-05-25
KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Breaking the ribbon are (left to right) Dan LeBlanc, chief operating officer of the KSC Visitor Complex; Lt. Governor of Florida Jeff Kottkamp; former astronauts John Young and Bob Crippen; Center Director Bill Parsons; KSC Director of External Relations Lisa Malone; and former astronaut Buzz Aldrin. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
2009-11-16
Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday with a 2:28 p.m. EST launch from NASA's Kennedy Space Center in Florida. The shuttle will transport spare hardware to the outpost and return a station crew member who spent more than two months in space. Atlantis is carrying about 30,000 pounds of replacement parts for systems that provide power to the station, keep it from overheating, and maintain a proper orientation in space. The large equipment can best be transported using the shuttle's unique capabilities
Telemetry Boards Interpret Rocket, Airplane Engine Data
NASA Technical Reports Server (NTRS)
2009-01-01
For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.
1998-06-02
KENNEDY SPACE CENTER, Fla. -- Startled by the thunderous roar of the Space Shuttle Discovery’s engines as it lifts off, birds hurriedly leave the Launch Pad 39A area for a more peaceful site. Liftoff time for the 91st Shuttle launch and last Shuttle-Mir mission was 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir
NASA Technical Reports Server (NTRS)
Schmalzer, P. A.; Hinkle, C. R.; Breininger, D.; Knott, W. M., III (Editor); Koller, A. M., Jr. (Editor)
1985-01-01
Space Shuttle launches produce a cloud containing hydrochloric acid (HCl), aluminum oxide (Al203), and other substances. Acidities of less than 0.5 pH have been measured routinely in association with the launch cloud. In an area of about 22 ha regularly exposed to the exhaust cloud during most Shuttle launches, acute vegetation damage has resulted from the first nine Shuttle launches. Changes include loss of sensitive species, loss of plant community structure, reduction in total cover, and replacement of some species by weedy invaders. Community level changes define a retrogressive sequence. One-time impacts to strand and dune vegetation occurred after launches of STS-8 and STS-9. Acute vegetation damage occurred especially to sensitive species. Within six months, however, recovery was nearly complete. Sensitivity of species to the launch cloud was partially predicted by previous laboratory studies. Far-field acidic and dry fallout from the cloud as it rises to stabilization and moves with the prevailing winds causes vegetation spotting. Damage from this deposition is minor; typically at most 1% to 5% of leaf surface area is affected. No plant mortality or community changes have occurred from far-field deposition.
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., speaks to members of the news media announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, center director Bob Cabana announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Gwynne Shotwell, president and chief operating officer of SpaceX, look on. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
Aeronautics and Space Report of the President: Fiscal Year 1996 Activities
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.
Liftoff of STS-62 Space Shuttle Columbia as seen from STA
1994-03-04
STS062-S-061 (4 March 1994) --- An aerial view of early stages of the sixteenth launch of Space Shuttle Columbia was provided by a 70mm camera aboard the Shuttle Training Aircraft (STA). Launch occurred at 8:53 a.m. (EST), March 4, 1994. Onboard were astronauts John H. Casper, Andrew M. Allen, Marsha S. Ivins, Charles D. (Sam) Gemar and Pierre J. Thuot.
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Pilot Alan Poindexter heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Mission Specialist Stanley Love heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Commander Steve Frick heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2007-12-09
KENNEDY SPACE CENTER, FLA. -- On the Shuttle Landing Facility at NASA's Kennedy Space Center, STS-122 Mission Specialist Leland Melvin heads for the plane for the return trip to Houston. The crew is flying back to Houston after launch of space shuttle Atlantis was delayed when a failure occurred in a fuel sensor system while the vehicle's external fuel tank was being filled. One of the four engine cutoff, or ECO, sensors inside the liquid hydrogen section of the tank gave a false reading and NASA's current Launch Commit Criteria require that all four sensors function properly. The sensor system is one of several that protect the shuttle's main engines by triggering their shut down if fuel runs unexpectedly low. Space shuttle Atlantis' STS-122 mission now is targeted to launch no earlier than Jan. 2. The liftoff date depends on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett
2009-05-28
CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann
2009-05-28
CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann
2009-05-28
CAPE CANAVERAL, Fla. – A view of the flame trench on Launch Pad 39A at NASA's Kennedy Space Center in Florida where repairs of the Fondue Fyre have been made. After launch of space shuttle Atlantis on the STS-125 mission on May 11, a 25-square-foot area of Fondue Fyre from the north side of the solid rocket booster flame deflector was damaged. Some pneumatic lines (gaseous nitrogen, pressurized air) in the area also were damaged and needed to be repaired. The flame trench channels the flames and smoke exhaust of the shuttle's solid rocket boosters away from the space shuttle during liftoff. Fondue Fyre is a fire-resistant concrete-like material that replaced the original flame trench bricks. It can be sprayed on the surface. Pad 39A will be used for the launch of space shuttle Endeavour on the STS-127 mission targeted for June 13. Photo credit: NASA/Jim Grossmann
2009-02-25
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, a technician holds one of space shuttle Discovery's gaseous hydrogen flow control valves after its removal. Two of the three valves being removed will undergo detailed inspection. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Approximately 4,000 images of each valve removed will be reviewed for evidence of cracks. Valves that have flown fewer times will be installed in Discovery. NASA's Space Shuttle Program has established a plan that could support shuttle Discovery's launch to the International Space Station, tentatively targeted for March 12. An exact target launch date will be determined as work on the valves progresses. Photo credit: NASA/Dimitri Gerondidakis
2009-02-25
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, a technician holds one of space shuttle Discovery's gaseous hydrogen flow control valves after its removal. Two of the three valves being removed will undergo detailed inspection. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Approximately 4,000 images of each valve removed will be reviewed for evidence of cracks. Valves that have flown fewer times will be installed in Discovery. NASA's Space Shuttle Program has established a plan that could support shuttle Discovery's launch to the International Space Station, tentatively targeted for March 12. An exact target launch date will be determined as work on the valves progresses. Photo credit: NASA/Dimitri Gerondidakis
2009-02-25
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, a technician bags one of space shuttle Discovery's gaseous hydrogen flow control valves after its removal. Two of the three valves being removed will undergo detailed inspection. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Approximately 4,000 images of each valve removed will be reviewed for evidence of cracks. Valves that have flown fewer times will be installed in Discovery. NASA's Space Shuttle Program has established a plan that could support shuttle Discovery's launch to the International Space Station, tentatively targeted for March 12. An exact target launch date will be determined as work on the valves progresses. Photo credit: NASA/Dimitri Gerondidakis
2006-07-01
KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Lisa Nowak shows she is happy and excited to be preparing for launch with the fitting of her launch and entry suit. Nowak is making her first space flight. The launch is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett
Assessment of candidate-expendable launch vehicles for large payloads
NASA Technical Reports Server (NTRS)
1984-01-01
In recent years the U.S. Air Force and NASA conducted design studies of 3 expendable launch vehicle configurations that could serve as a backup to the space shuttle--the Titan 34D7/Centaur, the Atlas II/Centaur, and the shuttle-derived SRB-X--as well as studies of advanced shuttle-derived launch vehicles with much larger payload capabilities than the shuttle. The 3 candidate complementary launch vehicles are judged to be roughly equivalent in cost, development time, reliability, and payload-to-orbit performance. Advanced shuttle-derived vehicles are considered viable candidates to meet future heavy lift launch requirements; however, they do not appear likely to result in significant reduction in cost-per-pound to orbit.
NASA Pocket Statistics: 1997 Edition
NASA Technical Reports Server (NTRS)
1997-01-01
POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, Aeronautics and Space Transportation and NASA Procurement, Financial and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. All Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.
STS-84 Commander Charles Precourt suits up
NASA Technical Reports Server (NTRS)
1997-01-01
STS-84 Commander Charles J. Precourt adjusts the helmet of his launch and entry suit during final prelaunch preparations in the Operations and Checkout Building. This is Precourts third space flight, but his first as commander. Precourt and six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff during an approximate 7-minute launch window which opens at about 4:08 a.m. This will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The exact liftoff time will be determined about 90 minutes prior to launch, based on the most current location of Mir.
1981-04-12
S81-30498 (12 April 1981) --- After six years of silence, the thunder of manned spaceflight is heard again, as the successful launch of the first space shuttle ushers in a new concept in utilization of space. The April 12, 1981 launch, at Pad 39A, just seconds past 7 a.m., carries astronaut John Young and Robert Crippen into an Earth-orbital mission scheduled to last for 54 hours, ending with unpowered landing at Edwards Air Force Base in California. STS-1, the first in a series of shuttle vehicles planned for the Space Transportation System, utilizes reusable launch and return components. Photo credit: NASA or National Aeronautics and Space Administration
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane lifts a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane lifts a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane is used to lift a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane lowers a new engine and generator for installation inside crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane begins to lift part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is lowered toward crawler-transporter 2 CT-2) so that the Apollo era diesel engine can be removed. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane begins to lift an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane operator lifts part of an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane begins to lift a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane begins to lift part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. ––Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a crane begins to lift an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-03-08
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane lifts a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann
2012-02-15
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is lowered toward crawler-transporter 2 CT-2) so that the Apollo era diesel engine can be removed. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a crane lifts an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare an Apollo era diesel engine to be lifted by crane from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane lifts part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane lifts an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Test Director Robert Holl sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Test Director Charlie Blackwell-Thompson sits at her console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Orbiter Project Engineer Todd Campbell sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Bart Pannullo, the vehicle processing engineer for space shuttle Discovery, sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, STS-133 NASA Test Director Stephen Payne sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, P.; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
STS-131 Launch from Firing Room 4
2010-04-05
STS131-S-055 (5 April 2010) --- Assistant Launch Director Mike Leinbach (right) speaks with NASA commentator Mike Curie in Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida prior to the launch of space shuttle Discovery's STS-131 mission. The seven-member STS-131 crew will deliver the multi-purpose logistics module Leonardo, filled with supplies, a new crew sleeping quarters and science racks that will be transferred to the International Space Station's laboratories. The crew also will switch out a gyroscope on the station’s truss structure, install a spare ammonia storage tank and retrieve a Japanese experiment from the station’s exterior. STS-131 is the 33rd shuttle mission to the station and the 131st shuttle mission overall.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.
This newsletter from the National Aeronautics and Space Administration (NASA) contains a description of the purposes and potentials of the Space Shuttle craft. The illustrated document explains some of the uses for which the shuttle is designed; how the shuttle will be launched from earth, carry out its mission, and land again on earth; and what a…
Natural environment support guidelines for Space Shuttle tests and operations
NASA Technical Reports Server (NTRS)
Carter, E. A.; Brown, S. C.
1974-01-01
The present work outlines the general concept as to how natural environment guidelines will be developed for Space Shuttle activities. The following six categories that might need natural environment support are single out: development tests; preliminary operations and prelaunch; launch to orbit; orbital mission and operations; deorbit, entry, and landing; ferry flights. An example of detailed event requirements for decisions to launch is given. Some artist's conceptions of proposed launch complexes at Kennedy Space Center and Vandenberg AFB are shown.
2011-04-12
CAPE CANAVERAL, Fla. -- STS-1 Pilot and former Kennedy Space Center Director Bob Crippen addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach adjusts controls at his console during the countdown to the launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
CAPE CANAVERAL, Fla. - Space shuttle Atlantis launches through the clouds from Launch Pad 39A on a balmy Florida afternoon at NASA's Kennedy Space Center. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann
2011-08-13
CAPE CANAVERAL, Fla. -- NASA’s Space Shuttle Program Launch Integration Manager Mike Moses speaks to current and former space shuttle workers and their families during the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to the agency’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
STS-66 Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1995-01-01
This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.
STS-66 mission highlights resource tape
NASA Astrophysics Data System (ADS)
1995-04-01
This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.
Press Site Auditorium dedicated to John Holliman
NASA Technical Reports Server (NTRS)
1999-01-01
A ceremony dedicated the KSC Press Site auditorium as the John Holliman Auditorium to honor the correspondent for his enthusiastic, dedicated coverage of America's space program. The auditorium was built in 1980 and has been the focal point for new coverage of Space Shuttle launches. The ceremony followed the 94th launch of a Space Shuttle, on mission STS-96, earlier this morning.
STS-114: Discovery Launch Readiness Press Conference
NASA Technical Reports Server (NTRS)
2005-01-01
Michael Griffin, NASA Administrator; Wayne Hale, Space Shuttle Deputy Program Manager; Mike Wetmore, Director of Shuttle Processing; and 1st Lieutenant Mindy Chavez, Launch Weather Officer-United States Air Force 45th Weather Squadron are in attendance for this STS-114 Discovery launch readiness press conference. The discussion begins with Wayne Hale bringing to the table a low level sensor device for everyone to view. He talks in detail about all of the extensive tests that were performed on these sensors and the completion of these ambient tests. Chavez presents her weather forecast for the launch day of July 26th 2005. Michael Griffin and Wayne Hale answer questions from the news media pertaining to the sensors and launch readiness. The video ends with footage of Pilot Jim Kelly and Commander Eileen Collins conducting test flights in a Shuttle Training Aircraft (STA) that simulates Space Shuttle landing.
STS-91 Commander Precourt talks to Cosmonauts Kondakova and Ryumin at SLF
NASA Technical Reports Server (NTRS)
1998-01-01
STS-91 Mission Commander Charles Precourt (left) talks to Elena V. Kondakova and her husband, Valery Ryumin, a cosmonaut with the Russian Space Agency (RSA) and STS-91 mission specialist, at Kennedy Space Center's Shuttle Landing Facility (SLF). The STS-91 crew had just arrived at the SLF aboard T-38 jets in preparation for launch. Kondakova, also a cosmonaut with the RSA, flew with Commander Precourt as a mission specialist on STS-84 which launched on May 15, 1997. STS-91 is scheduled to be launched on June 2 on Space Shuttle Discovery with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.- Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Pilot Dominic Gorie and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; and Janet Kavandi, Ph.D. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.
2014-04-14
CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, from the left, NASA Administrator Charlie Bolden, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX and Kennedy Space Center Director Bob Cabana pose in from the of the historic launch complex after announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper
Space Shuttle Discovery is Prepared for Launch
2011-02-23
The space shuttle Discovery is seen shortly after the Rotating Service Structure was rolled back at launch pad 39A, at the Kennedy Space Center in Cape Canaveral, Florida, on Wednesday, Feb. 23, 2011. Discovery, on its 39th and final flight, will carry the Italian-built Permanent Multipurpose Module (PMM), Express Logistics Carrier 4 (ELC4) and Robonaut 2, the first humanoid robot in space to the International Space Station. Photo Credit: (NASA/Bill Ingalls)
STS-108 Endeavour Launch from Pad 39-B
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1787 KENNEDY SPACE CENTER, Fla. -- Spewing flames and smoke, Space Shuttle Endeavour hurtles into the twilight sky on mission STS-108. The second attempt in two days, liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.
Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.
1981-04-12
KENNEDY SPACE CENTER, FLA. -- After six years of silence, the thunder of manned space flight is heard again as the successful launch of the first Space Shuttle ushers in a new concept in utilization of space. The April 12 launch at Pad 39A, just seconds past 7 a.m., carries astronauts John Young and Robert Crippen into an Earth orbital mission scheduled to last for 54 hours, ending with unpowered landing at Edwards Air Force Base in California. STS-1, the first in a series of shuttle vehicles planned for the Space Transportation sysstem, utilizes reusable launch and return components
STS-101 Space Shuttle Atlantis after RSS rollback at Launch Pad 39A
NASA Technical Reports Server (NTRS)
2000-01-01
The Rotating Service Structure (left) begins rolling back from Space Shuttle Atlantis on Launch Pad 39A. Atlantis is targeted for liftoff at 4:15 p.m. EDT April 24 on mission STS-101. The mission will take the crew of seven to the International Space Station to deliver logistics and supplies and prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station.
Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Cruzen, Craig; Chavers, Greg; Wittenstein, Jerry
2009-01-01
The United States (U.S.) space exploration policy has directed the National Aeronautics and Space Administration (NASA) to retire the Space Shuttle and to replace it with a new generation of space transportation systems for crew and cargo travel to the International Space Station, the Moon, Mars, and beyond. As part of the Constellation Program, engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama are working to design and build the Ares I, the first of two large launch vehicles to return humans to the Moon. A deliberate effort is being made to ensure a high level of operability in order to significantly increase safety and availability as well as reduce recurring costs of this new launch vehicle. It is the Ares Project's goal to instill operability as part of the requirements development, design and operations of the vehicle. This paper will identify important factors in launch vehicle design that affect the operability and availability of the system. Similarities and differences in operational constraints will also be compared between the Saturn V, Space Shuttle and current Ares I design. Finally, potential improvements in operations and operability for large launch vehicles will be addressed. From the examples presented, the paper will discuss potential improvements for operability for future launch vehicles.
2011-06-21
CAPE CANAVERAL, Fla. -- Battalion Chief David Seymour provides supervision while space shuttle Atlantis' STS-135 crew members participate in M113 armored personnel carrier training at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the launch pad is needed and every shuttle crew is trained on driving the vehicle before launch. The STS-135 crew is at Kennedy to participate in a launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Atlantis and its crew are targeted to lift off July 8, taking with them the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2000-05-18
KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service Structure, Space Shuttle Atlantis can be seen atop the mobile launcher platform (MLP) on Launch Pad 39A. Below the MLP is the flame trench, part of the flame deflector system that insulates pad structures from the intense heat of launch. Made of concrete and refractory brick, the trench is 490 feet long, 48 feet wide and 40 feet high. At the top of the orange external tank can be seen the Gaseous Oxygen Vent Hood, often called the "beanie cap." The hood helps vent gaseous oxygen vapors away from the Space Shuttle. The hood will be raised and retracted two and a half minutes before launch. Abutting the side of Atlantis is the orbiter access arm with the environmental chamber known as the White Room at the end. The White Room provides access to the crew compartment. This will be the third assembly flight to the International Space Station. Liftoff of Space Shuttle Atlantis for the 10-day STS-101 mission is scheduled for about 6:12 a.m. EDT from Launch Pad 39A. Landing is targeted for May 29 at 2:19 a.m. EDT. This is the 98th Shuttle flight and the 21st flight for Shuttle Atlantis
2000-05-18
KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service Structure, Space Shuttle Atlantis can be seen atop the mobile launcher platform (MLP) on Launch Pad 39A. Below the MLP is the flame trench, part of the flame deflector system that insulates pad structures from the intense heat of launch. Made of concrete and refractory brick, the trench is 490 feet long, 48 feet wide and 40 feet high. At the top of the orange external tank can be seen the Gaseous Oxygen Vent Hood, often called the "beanie cap." The hood helps vent gaseous oxygen vapors away from the Space Shuttle. The hood will be raised and retracted two and a half minutes before launch. Abutting the side of Atlantis is the orbiter access arm with the environmental chamber known as the White Room at the end. The White Room provides access to the crew compartment. This will be the third assembly flight to the International Space Station. Liftoff of Space Shuttle Atlantis for the 10-day STS-101 mission is scheduled for about 6:12 a.m. EDT from Launch Pad 39A. Landing is targeted for May 29 at 2:19 a.m. EDT. This is the 98th Shuttle flight and the 21st flight for Shuttle Atlantis
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. As Space Shuttle Discovery creeps along the crawlerway toward the horizon, and Launch Pad 39B at NASAs Kennedy Space Center, media and workers in the foreground appear as ants. First motion of the Shuttle out of the Vehicle Assembly Building (VAB) was at 2:04 p.m. EDT. The Mobile Launcher Platform is moved by the Crawler-Transporter underneath. The Crawler is 20 feet high, 131 feet long and 114 feet wide. It moves on eight tracks, each containing 57 shoes, or cleats, weighing one ton each. Loaded with the Space Shuttle, the Crawler can move at a maximum speed of approximately 1 mile an hour. A leveling system in the Crawler keeps the Shuttle vertical while negotiating the 5 percent grade leading to the top of the launch pad. Launch of Discovery on its Return to Flight mission, STS- 114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-person crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station. Discovery was moved on March 29 from the Orbiter Processing Facility to the VAB and attached to its propulsion elements, a redesigned ET and twin SRBs.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-102
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Kelly, J. David (Technical Monitor)
2001-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-102. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. This report documents the debris/ice /thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-102 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-106
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Kelley, J. David (Technical Monitor)
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-106. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-106 and the resulting effect on the Space Shuttle Program.
2011-03-30
CAPE CANAVERAL, Fla. - Roberto Vittori, European Space Agency astronaut listens intently to instruction during M113 armored personnel carrier training at NASA's Kennedy Space Center in Florida. An M113 is kept at the foot of the launch pad in case an emergency exit from the pad is needed and every shuttle crew is trained on driving the vehicle before launch. Space shuttle Endeavour's six crew members are at Kennedy for the launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Targeted to launch April 19 at 7:48 p.m. EDT, they will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the space station. This is the final scheduled spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
Launch Processing System. [for Space Shuttle
NASA Technical Reports Server (NTRS)
Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.
1976-01-01
This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.
2002-12-09
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, atop the Mobile Launcher Platform, approaches the top of Launch Pad 39A where it will undergo preparations for launch. The STS-107 research mission comprises experiments ranging from material sciences to life sciences, plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.
Environmental monitoring of Space Shuttle launches at Kennedy Space Center - The first ten years
NASA Technical Reports Server (NTRS)
Schmalzer, Paul A.; Hall, Carlton R.; Hinkle, C. R.; Duncan, Brean W.; Knott, William M., III; Summerfield, Burton R.
1993-01-01
Space Shuttle launches produce local environmental effects through the generation of a launcher exhaust plume that in turn produces acidic depositions and acute vegetation damage in the near-field environment; fish kills have also been noted in the lagoon or impoundment near each of the launch pads. Repeated launches lead to cumulative changes in plant community composition and structure, and temporary decreases in pH due to acidification increases metal availability in soil microcosms and surface waters. Direct effects on terrestrial fauna include the mortality of birds, mammals, amphibians, and reptiles in the near-field area.
Workers in the VAB test SRB cables on STS-98 solid rocket boosters
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- United Space Alliance SRB technician Richard Bruns attaches a cable end cover to a cable pulled from the solid rocket booster on Space Shuttle Atlantis. The Shuttle was rolled back from Launch Pad 39A in order to conduct tests on the SRB cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.
Launch Vehicle Demonstrator Using Shuttle Assets
NASA Technical Reports Server (NTRS)
Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.
2011-01-01
The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center undertook a study to define candidate early heavy lift demonstration launch vehicle concepts derived from existing space shuttle assets. The objective was to determine the performance capabilities of these vehicles and characterize potential early demonstration test flights. Given the anticipated budgetary constraints that may affect America's civil space program, and a lapse in U.S. heavy launch capability with the retirement of the space shuttle, an early heavy lift launch vehicle demonstration flight would not only demonstrate capabilities that could be utilized for future space exploration missions, but also serve as a building block for the development of our nation s next heavy lift launch system. An early heavy lift demonstration could be utilized as a test platform, demonstrating capabilities of future space exploration systems such as the Multi Purpose Crew Vehicle. By using existing shuttle assets, including the RS-25D engine inventory, the shuttle equipment manufacturing and tooling base, and the segmented solid rocket booster industry, a demonstrator concept could expedite the design-to-flight schedule while retaining critical human skills and capital. In this study two types of vehicle designs are examined. The first utilizes a high margin/safety factor battleship structural design in order to minimize development time as well as monetary investment. Structural design optimization is performed on the second, as if an operational vehicle. Results indicate low earth orbit payload capability is more than sufficient to support various vehicle and vehicle systems test programs including Multi-Purpose Crew Vehicle articles. Furthermore, a shuttle-derived, hydrogen core vehicle configuration offers performance benefits when trading evolutionary paths to maximum capability.
2011-02-24
CAPE CANAVERAL, Fla. -- Space shuttle Discovery soars toward space after liftoff from Launch Pad 39A at NASA's Kennedy Space Center in Florida beginning its final flight, the STS-133 mission, to the International Space Station. Launch was at 4:53 p.m. EST. Discovery and its six-member crew will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is flying on its 39th mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on the STS-133 mission, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Linda Perry
Space Shuttle Atlantis rolls back to Launch Pad 39A
NASA Technical Reports Server (NTRS)
2001-01-01
Photographed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis creeps along the crawlerway for the 3.4-mile trek to Launch Pad 39A (upper left). In the background is the Atlantic Ocean; on either side is water from the Banana Creek (left) and Banana River (right). The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA's SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. Launch of Atlantis on STS-98 has been rescheduled to Feb. 7 at 6:11 p.m. EST.
Shuttle Hitchhiker Experiment Launcher System (SHELS)
NASA Technical Reports Server (NTRS)
Daelemans, Gerry
1999-01-01
NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.
STS-113 Mission Specialist John Herrington at pad before launch
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist John Herrington pauses in front of Space Shuttle Endeavour at Launch Pad 39A during a tour of Kennedy Space Center prior to his launch. Upon launch, Herrington will become the first Native American in space. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.
2009-04-17
CAPE CANAVERAL, Fla. – Just before dawn, space shuttle Endeavour is bathed in xenon lights after being secured on Launch Pad 39B at NASA's Kennedy Space Center in Florida. First motion on rollout from the Vehicle Assembly Building was at 11:57 p.m. EDT April 16. Surrounding the pad are the new lightning towers erected for NASA's Constellation Program, which will use the pad for Ares rocket launches. Endeavour will be prepared on the pad for liftoff in the unlikely event that a rescue mission is necessary following space shuttle Atlantis' launch on the STS-125 mission to service NASA's Hubble Space Telescope. After Atlantis is cleared to land, Endeavour will move to Launch Pad 39A for its upcoming STS-127 mission to the International Space Station, targeted to launch June 13. Photo credit: NASA/Dimitri Gerondidakis
Kennedy Space Center: Apollo to Multi-User Spaceport
NASA Technical Reports Server (NTRS)
Weber, Philip J.; Kanner, Howard S.
2017-01-01
NASA Kennedy Space Center (KSC) was established as the gateway to exploring beyond earth. Since the establishment of KSC in December 1963, the Center has been critical in the execution of the United States of Americas bold mission to send astronauts beyond the grasp of the terra firma. On May 25, 1961, a few weeks after a Soviet cosmonaut became the first person to fly in space, President John F. Kennedy laid out the ambitious goal of landing a man on the moon and returning him safely to the Earth by the end of the decade. The resultant Apollo program was massive endeavor, driven by the Cold War Space Race, and supported with a robust budget. The Apollo program consisted of 18 launches from newly developed infrastructure, including 12 manned missions and six lunar landings, ending with Apollo 17 that launched on December 7, 1972. Continuing to use this infrastructure, the Skylab program launched four missions. During the Skylab program, KSC infrastructure was redesigned to meet the needs of the Space Shuttle program, which launched its first vehicle (STS-1) on April 12, 1981. The Space Shuttle required significant modifications to the Apollo launch pads and assembly facilities, as well as new infrastructure, such as Orbiter and Payload Processing Facilities, as well as the Shuttle Landing Facility. The Space Shuttle was a workhorse that supported many satellite deployments, but was key for the construction and maintenance of the International Space Station, which required additional facilities at KSC to support processing of the flight hardware. After reaching the new Millennium, United States policymakers searched for new ways to reduce the cost of space exploration. The Constellation Program was initiated in 2005 with a goal of providing a crewed lunar landing with a much smaller budget. The very successful Space Shuttle made its last launch on July 8, 2011, after 135 missions. In the subsequent years, KSC continues to evolve, and this paper will address past and future efforts of the transformation of the KSC Apollo and Space Shuttle heritage infrastructure into a more versatile, multi-user spaceport. The paper will also discuss the US Congressional and NASA initiatives for developing and supporting multiple commercial partners, while simultaneously supporting NASAs human exploration initiative, consisting of Space Launch System (SLS), Orion spacecraft and associated ground launch systems. In addition, the paper explains the approach with examples for NASA KSC to leverage new technologies and innovative capabilities developed to reduce the cost to individual users.
STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B
NASA Technical Reports Server (NTRS)
1999-01-01
Space Shuttle Discovery makes the climb to Launch Pad 39B aboard the mobile launcher platform and crawler transporter. The crawler is able to keep its cargo level during the move up the five percent grade, not varying from the vertical more than the diameter of a soccer ball. At right are the rotating and fixed service structures which will be used during prelaunch preparations at the pad. Earlier in the week, the Shuttle was rolled back to the VAB from the pad to repair hail damage on the external tank's foam insulation. Mission STS-96, the 94th launch in the Space Shuttle Program, is scheduled for liftoff May 27 at 6:48 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.
2008-02-23
KENNEDY SPACE CENTER, FLA. -- STS-123 Mission Specialist Takao Doi of the Japan Aerospace Exploration Agency, at left, is greeted by Shuttle Launch Director Mike Leinbach following his arrival at NASA Kennedy Space Center's Shuttle Landing Facility. The crew for space shuttle Endeavour's STS-123 mission is at Kennedy for a full launch dress rehearsal, known as the terminal countdown demonstration test or TCDT. Endeavour's seven astronauts arrived at Kennedy's Shuttle Landing Facility in their T-38 training aircraft between 10:45 and 10:58 a.m. EST. The terminal countdown demonstration test provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on a 16-day mission to the International Space Station. On the mission, Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett
2010-01-20
CAPE CANAVERAL, Fla. - At Launch Pad 39A at NASA's Kennedy Space Center in Florida, the crew members of space shuttle Endeavour's STS-130 mission take time out from their training to pose for a group portrait with space shuttle Endeavour as backdrop. From left are Mission Specialists Stephen Robinson and Nicholas Patrick, Commander George Zamka, Mission Specialist Kathryn Hire, Pilot Terry Virts and Mission Specialist Robert Behnken. The crew members of space shuttle Endeavour's upcoming mission are at Kennedy for training related to their launch dress rehearsal, the Terminal Countdown Demonstration Test. The primary payload on STS-130 is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. Endeavour's launch is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Kim Shiflett
2000-02-11
STS099-S-022 (11 February 2000) --- The Space Shuttle Endeavour lifts off from Kennedy Space Centers (KSC) Launch Pad 39A to officially begin the Shuttle Radar Topography Mission (SRTM). Launch occurred at 12:43:40 p.m. (EST), February 11, 2000. This low-angle view clearly shows the "diamond-shock" effect of the shuttle's engines. Onboard were astronauts Kevin R. Kregel, mission commander, and Dominic L. Gorie, pilot; along with Janice Voss, Janet L. Kavandi, Mamoru Mohri and Gerhard P. J. Thiele, all mission specialists. Mohri is with Japan's National Space Development Agency (NASDA) and Thiele represents the European Space Agency (ESA).
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Kennedy Space Center Director Jim Kennedy watches one of the computer screens as the countdown heads for launch of Space Shuttle Discovery on mission STS-121. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
2007-05-25
KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Holding the ribbon for the breaking are (left to right) Dan LeBlanc, chief operating officer of the KSC Visitor Complex; Lt. Governor of Florida Jeff Kottkamp; former astronauts John Young and Bob Crippen; Center Director Bill Parsons; KSC Director of External Relations Lisa Malone; and former astronaut Buzz Aldrin. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton
2006-06-28
KENNEDY SPACE CENTER, FLA. - Under the watchful eyes of the media, an upper-level weather balloon begins its lift into the sky. The release of the balloon at the Cape Canaveral weather station in Florida was part of a media tour prior to the launch of Space Shuttle Discovery on mission STS-121 July 1. The radar-tracked balloon detects wind shears that can affect a shuttle launch. At the facility, which is operated by the U.S. Air Force 45th Weather Squadron, media saw the tools used by the weather team to create the forecast for launch day. They received a briefing on how the launch weather forecast is developed by Shuttle Weather Officer Kathy Winters and met the forecasters for the space shuttle and the expendable launch vehicles. Also participating were members of the Applied Meteorology Unit who provide special expertise to the forecasters by analyzing and interpreting unusual or inconsistent weather data. The media were able to see the release of the Rawinsonde weather balloon carrying instruments aloft to be used as part of developing the forecast. Photo credit: NASA/George Shelton
Marshall Space Flight Center - Launching the Future of Science and Exploration
NASA Technical Reports Server (NTRS)
Shivers, Alisa; Shivers, Herbert
2010-01-01
Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field
NASA Technical Reports Server (NTRS)
Hagopian, Jeff
2002-01-01
With the successful implementation of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) enters a new era of opportunity for scientific research. The ISS provides a working laboratory in space, with tremendous capabilities for scientific research. Utilization of these capabilities requires a launch system capable of routinely transporting crew and logistics to/from the ISS, as well as supporting ISS assembly and maintenance tasks. The Space Shuttle serves as NASA's launch system for performing these functions. The Space Shuttle also serves as NASA's launch system for supporting other science and servicing missions that require a human presence in space. The Space Shuttle provides proof that reusable launch vehicles are technically and physically implementable. However, a couple of problems faced by NASA are the prohibitive cost of operating and maintaining the Space Shuttle and its relative inability to support high launch rates. The 2nd Generation Reusable Launch Vehicle (2nd Gen RLV) is NASA's solution to this problem. The 2nd Gen RLV will provide a robust launch system with increased safety, improved reliability and performance, and less cost. The improved performance and reduced costs of the 2nd Gen RLV will free up resources currently spent on launch services. These resource savings can then be applied to scientific research, which in turn can be supported by the higher launch rate capability of the 2nd Gen RLV. The result is a win - win situation for science and NASA. While meeting NASA's needs, the 2nd Gen RLV also provides the United States aerospace industry with a commercially viable launch capability. One of the keys to achieving the goals of the 2nd Gen RLV is to develop and implement new technologies and processes in the area of flight operations. NASA's experience in operating the Space Shuttle and the ISS has brought to light several areas where automation can be used to augment or eliminate functions performed by crew and ground controllers. This experience has also identified the need for new approaches to staffing and training for both crew and ground controllers. This paper provides a brief overview of the mission capabilities provided by the 2nd Gen RLV, a description of NASA's approach to developing the 2nd Gen RLV, a discussion of operations concepts, and a list of challenges to implementing those concepts.
2009-11-16
CAPE CANAVERAL, Fla. - Media representatives and Twitter followers participate in a post-launch news conference in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida after the successful launch of space shuttle Atlantis. On the dais, from left, are Public Affairs moderator Mike Curie; Bill Gerstenmaier, associate administrator for Space Operations; Mike Moses, chair, Mission Management Team; and Mike Leinbach, space shuttle launch director. Liftoff of Atlantis on its STS-129 mission came at 2:28 p.m. EST Nov. 16 from Launch Pad 39A. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett
Estimating the Cost of NASA's Space Launch Initiative: How SLI Cost Stack Up Against the Shuttle
NASA Technical Reports Server (NTRS)
Hamaker, Joseph H.; Roth, Axel (Technical Monitor)
2002-01-01
NASA is planning to replace the Space Shuttle with a new completely reusable Second Generation Launch System by approximately 2012. Numerous contracted and NASA in-house Space Transportation Architecture Studies and various technology maturation activities are proceeding and have resulted in scores of competing architecture configurations being proposed. Life cycle cost is a key discriminator between all these various concepts. However, the one obvious analogy for costing purposes remains the current Shuttle system. Are there credible reasons to believe that a second generation reusable launch system can be accomplished at less cost than the Shuttle? The need for a credible answer to this question is critical. This paper reviews the cost estimating approaches being used by the contractors and the government estimators to address this issue and explores the rationale behind the numbers.
2010-10-29
NASA Shuttle Weather Officer Kathy Winters participates in the space shuttle Discovery launch status briefing on Friday, Oct. 29, 2010 at the NASA Kennedy Space Center in Cape Canaveral, Fla. Discovery and it's STS-133 mission crew of six are currently targeted to launch at 4:17p.m. EDT on Tuesday, Nov. 2, 2010. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
1987-01-01
The use of orbital spacecraft consumables resupply system (OSCRS) at the Space Station is investigated, its use with the orbital maneuvering vehicle, and launch of the OSCRS on an expendable launch vehicles. A system requirements evaluation was performed initially to identify any unique requirements that would impact the design of OSCRS when used at the Space Station. Space Station documents were reviewed to establish requirements and to identify interfaces between the OSCRS, Shuttle, and Space Station, especially the Servicing Facility. The interfaces between OSCRS and the Shuttle consists of an avionics interface for command and control and a structural interface for launch support and for grappling with the Shuttle Remote Manipulator System. For use of the OSCRS at the Space Station, three configurations were evaluated using the results of the interface definition to increase the efficiency of OSCRS and to decrease the launch weight by Station-basing specific OSCRS subsystems. A modular OSCRS was developed in which the major subsystems were Station-based where possible. The configuration of an OSCRS was defined for transport of water to the Space Station.
2011-04-12
CAPE CANAVERAL, Fla. -- NASA officials, Florida representatives, Kennedy employees and media await the announcement that will reveal the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA officials, Florida representatives, Kennedy employees and media stand to applaud the news that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA officials, Florida representatives, Kennedy employees and media listen to the speakers after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA Astronaut and Director of Flight Crew Operations, Janet Kavandi addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA Administrator Charles Bolden and Kennedy Center Director Bob Cabana sit on the dias listening to other speakers prior to the announcement that will reveal the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- NASA Administrator Charles Bolden and Kennedy Center Director Bob Cabana sit on the dias listening to other speakers after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2008-10-20
CAPE CANAVERAL, Fla. - Despite the incline, space shuttle Atlantis remains on a level plane as it rolls off Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion was at 6:48 a.m. EDT. The crawler-transporter underneath the mobile launcher platform maintains the level plane through a leveling system designed to keep the top of the space shuttle vehicle vertical. This system also provides the leveling operations required to negotiate the 5-percent ramp leading to the launch pads. Atlantis is rolling back to the Vehicle Assembly Building to await launch on its STS-125 mission to repair NASA's Hubble Space Telescope. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. The space shuttle is mounted on a Mobile Launcher Platform and will be delivered to the Vehicle Assembly Building atop a crawler transporter. traveling slower than 1 mph during the 3.4-mile journey. The rollback is expected to take approximately six hours. Photo credit: NASA/Kim Shiflett
2009-03-24
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, space shuttle Atlantis is moved toward High Bay 3 where the top of its external fuel tank can be seen. In the bay, the shuttle will be lowered and mated with the external tank and solid rocket boosters on the mobile launcher platform. After additional preparations are made, the shuttle will be rolled out to Launch Pad 39A for a targeted launch on May 12 on the STS-125 mission to service NASA's Hubble Space Telescope. Photo credit: NASA/Kim Shiflett
NASA replanning efforts continue
NASA Astrophysics Data System (ADS)
Katzoff, Judith A.
A task force of the National Aeronautics and Space Administration (NASA) is producing new launch schedules for NASA's three remaining space shuttle orbiters, possibly supplemented by expendable launch vehicles. In the wake of the explosion of the space shuttle Challenger on January 28, 1986, the task force is assuming a delay of 12-18 months before resumption of shuttle flights.NASA's Headquarters Replanning Task Force, which meets daily, is separate from the agency's Data and Design Analysis Task Force, which collects and analyzes information about the accident for the use of the investigative commission appointed by President Ronald Reagan.
1998-12-18
Donald McMonagle (left), manager, Launch Integration, speaks to federal and state elected officials during the ground breaking ceremony for a multi-purpose hangar, phase one of the Reusable Launch Vehicle (RLV) Support Complex to be built near the Shuttle Landing Facility. At right are Center Director Roy Bridges and Executive Director of the Spaceport Florida Authority (SFA) Ed O'Connor. The new complex is jointly funded by SFA, NASA's Space Shuttle Program and Kennedy Space Center. It is intended to support the Space Shuttle and other RLV land X-vehicle systems. Completion is expected by the year 2000
A decade on board America's Space Shuttle
NASA Technical Reports Server (NTRS)
1991-01-01
Spectacular moments from a decade (1981-1991) of Space Shuttle missions, captured on film by the astronauts who flew the missions, are presented. First hand accounts of astronauts' experiences aboard the Shuttle are given. A Space Shuttle mission chronology featuring flight number, vehicle name, crew, launch and landing dates, and mission highlights is given in tabular form.
2010-04-05
JSC2010-E-046802 (5 April 2010) --- An overall view of the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch. Visible in the foreground (from the left) are flight directors Tony Ceccacci and Bryan Lunney; along with astronauts Rick Sturckow and George Zamka, both spacecraft communicators (CAPCOM).
CONSTELLATION Images from other centers - February 2010
2010-02-08
JSC2010-E-019040 (8 Feb. 2010) --- Brent Jett, director, flight crew operations, watches a monitor at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Endeavour's STS-130 launch. John McCullough (seated), chief of the flight director office, is at right.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During an End-to-End (ETE) Mission Management Team (MMT) launch simulation at KSC, Mike Rein, division chief of Media Services, and Lisa Malone, director of External Relations and Business Development at KSC, work the consoles. In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. The ETE MMT simulation included L-2 and L-1 day Prelaunch MMT meetings, an external tanking/weather briefing, and a launch countdown. The ETE transitioned to the Johnson Space Center for the flight portion of the simulation, with the STS-114 crew in a simulator at JSC. Such simulations are common before a launch to keep the Shuttle launch team sharp and ready for liftoff.
2001-12-05
KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Daniel M. Tani is happy to be suiting up for the second launch attempt of Space Shuttle Endeavour. The first attempt Dec. 4 was scrubbed due to poor weather conditions at KSC. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST (22:19 GMT) Dec. 5, 2001, from Launch Pad 39B
2011-12-11
CAPE CANAVERAL, Fla. – The high-fidelity space shuttle model which was on display at the NASA Kennedy Space Center Visitor Complex in Florida rolls through the parking lot leading to Kennedy's Launch Complex 39 turn basin. Behind it are the 525-foot-tall Vehicle Assembly Building and the Launch Control Center. The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Pilot Christopher Ferguson dons his launch and re-entry suit before heading to the launch pad. Ferguson is making his first shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Commander Brent Jett dons his launch and re-entry suit before heading to the launch pad. Jett is making his fourth shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2006-09-08
KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building at NASA Kennedy Space Center, STS-115 Mission Specialist Joseph Tanner dons his launch and re-entry suit before heading to the launch pad. Tanner is making his fourth shuttle flight on this mission to the International Space Station aboard Space Shuttle Atlantis. On its second attempt for launch, Atlantis is scheduled to lift off at 11:41 a.m. EDT today from Launch Pad 39B. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the ISS. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Kim Shiflett
2008-09-19
CAPE CANAVERAL, Fla. - During space shuttle Endeavour’s rollout to the launch pad at NASA's Kennedy Space Center, a worker checks equipment on the tracks of the massive crawler-transporter. The crawler travels on eight tracked tread belts, each containing 57 tread belt “shoes.” Each shoe is 7.5 feet long, 1.5 feet wide and weighs approximately 2,100 pounds. First motion of Endeavour from the Vehicle Assembly Building was at 11:15 p.m. Sept. 18. Endeavour completed the 4.2-mile journey to Launch Pad 39B on Sept. 19 at 6:59 a.m. EDT. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis' upcoming mission to repair NASA's Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for the STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Dimitri Gerondidakis
Launching a Dream. A Teachers Guide to a Simulated Space Shuttle Mission.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Cleveland, OH. Lewis Research Center.
This publication is about imagination, teamwork, creativity, and a host of other ingredients required to carry out a dream. It is about going into space--going into space as part of a simulated space shuttle mission. The publication highlights two simulated shuttle missions cosponsored by the National Aeronautics and Space Administration (NASA)…
1985-04-01
In this photograph the SYNCOM IV-3, also known as LEASAT 3, satellite moves away from the Space Shuttle Orbiter Discovery. SYNCOM (Hughes Geosynchronous Communication Satellite) provides communication services from geosynchronous orbit, principally to the U.S. Government. The satellite was launched on April 12, 1985, aboard the Space Shuttle Orbiter Discovery.
2010-10-31
The space shuttle Discovery is seen on launch pad 39a early in the morning of Sunday, Oct. 31, 2010 at the NASA Kennedy Space Center in Cape Canaveral, Fla. During Space Shuttle Discovery's final spaceflight, the STS-133 crew members will take important spare parts to the International Space Station along with the Express Logistics Carrier-4. Discovery is targeted for launch at 3:52 p.m. Wednesday, Nov. 3, 2010. Photo Credit: (NASA/Bill Ingalls)
2010-11-03
An faint profile outline of the space shuttle Discovery and launch pad 39a are seen projected in the sky as powerful xenon lights illuminate launch pad 39a on Wednesday, Nov. 3, 2010 at the NASA Kennedy Space Center in Cape Canaveral, Fla. During space shuttle Discovery's final spaceflight, the STS-133 crew members will take important spare parts to the International Space Station along with the Express Logistics Carrier-4. Photo Credit: (NASA/Bill Ingalls)
Forward Skirt Structural Testing on the Space Launch System (SLS) Program
NASA Technical Reports Server (NTRS)
Lohrer, J. D.; Wright, R. D.
2016-01-01
Structural testing was performed to evaluate heritage forward skirts from the Space Shuttle program for use on the NASA Space Launch System (SLS) program. Testing was needed because SLS ascent loads are 35% higher than Space Shuttle loads. Objectives of testing were to determine margins of safety, demonstrate reliability, and validate analytical models. Testing combined with analysis was able to show heritage forward skirts were acceptable to use on the SLS program.
2011-07-08
JSC2011-E-067589 (8 July 2011) --- The space shuttle Atlantis launches for the STS-135 mission to the International Space Station in the final mission of the Space Shuttle Program at NASA?s Kennedy Space Center in Florida. Liftoff was at 11:29 a.m. (EDT) on July 8, 2011. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2011-07-09
JSC2011-E-067644 (8 July 2011) --- The space shuttle Atlantis launches for the STS-135 mission to the International Space Station in the final mission of the Space Shuttle Program at NASA?s Kennedy Space Center in Florida. Liftoff was at 11:29 a.m. (EDT) on July 8, 2011. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2011-07-08
JSC2011-E-067612 (8 July 2011) --- The space shuttle Atlantis launches for the STS-135 mission to the International Space Station in the final mission of the Space Shuttle Program at NASA?s Kennedy Space Center in Florida. Liftoff was at 11:29 a.m. (EDT) on July 8, 2011. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2011-07-08
JSC2011-E-067590 (8 July 2011) --- The space shuttle Atlantis launches for the STS-135 mission to the International Space Station in the final mission of the Space Shuttle Program at NASA?s Kennedy Space Center in Florida. Liftoff was at 11:29 a.m. (EDT) on July 8, 2011. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2011-07-09
JSC2011-E-067640 (8 July 2011) --- The space shuttle Atlantis launches for the STS-135 mission to the International Space Station in the final mission of the Space Shuttle Program at NASA?s Kennedy Space Center in Florida. Liftoff was at 11:29 a.m. (EDT) on July 8, 2011. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2011-12-11
CAPE CANAVERAL, Fla. – Support personnel pose for a group portrait with the high-fidelity space shuttle model which was on display at the NASA Kennedy Space Center Visitor Complex in Florida. The shuttle lingered momentarily in the parking lot entrance to its destination, Kennedy's Launch Complex 39 turn basin. Behind them are the 525-foot-tall Vehicle Assembly Building and the Launch Control Center (at right). The shuttle was part of a display at the visitor complex that also included an external tank and two solid rocket boosters that were used to show visitors the size of actual space shuttle components. The full-scale shuttle model is being transferred from Kennedy to Space Center Houston, NASA Johnson Space Center's visitor center. The model will stay at the turn basin for a few months until it is ready to be transported to Texas via barge. The move also helps clear the way for the Kennedy Space Center Visitor Complex to begin construction of a new facility next year to display space shuttle Atlantis in 2013. For more information about Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Dimitri Gerondidakis
STS-84 Atlantis on Pad 39-A after RSS roll back
NASA Technical Reports Server (NTRS)
1997-01-01
News media representatives watch and record as the Space Shuttle Atlantis in full launch configuration is revealed after the Rotating Service Structure (RSS) is rotated back at Launch Pad 39A. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). Atlantis and its crew of seven are in final preparations for liftoff on Mission STS-84, the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Launch is scheduled at about 4:08 a.m. during an approximately 7-minute launch window. The exact liftoff time will be determined about 90 minutes prior to launch, based on the most current location of Mir.
Development of control systems for space shuttle vehicles. Volume 2: Appendixes
NASA Technical Reports Server (NTRS)
Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Ward, M. D.
1971-01-01
A launch phase random normal wind model is presented for delta wing, two-stage, space shuttle control system studies. Equations, data, and simulations for conventional launch studies are given as well as pitch and lateral equations and data for covariance analyses of the launch phase of MSFC vehicle B. Lateral equations and data for North American 130G and 134D are also included along with a high-altitude abort simulation.
2010-11-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, xenon lights illuminate space shuttle Discovery on Launch Pad 39A following the retraction of the rotating service structure. The structure provides weather protection and access to the shuttle while it awaits lift off on the pad. Launch of Discovery on the STS-133 mission to the International Space Station is set for 3:29 p.m. on Nov. 4. During the 11-day mission, Discovery and its six crew members will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Troy Cryder
2008-09-03
CAPE CANAVERAL, Fla. – Space shuttle Atlantis stands ready in the Vehicle Assembly Building at NASA’s Kennedy Space Center for the pending rollout to Launch Pad 39A. The Sept. 2 rollout date was postponed due to Tropical Storm Hanna’s shift to a northern track. Managers are closely following Hanna to determine when would be the best time this week to move space shuttle Atlantis to its launch pad. The tentative rollout time is 10 a.m. Sept. 4, depending on the track Hanna follows along the Florida coast. Atlantis is scheduled to launch on the STS-125 mission to service NASA’s Hubble Space Telescope. Launch is targeted for Oct. 8. Photo credit: NASA/Jack Pfaller
2012-02-15
CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, an Apollo era diesel engine is secured onto the flatbed of a truck after it was removed from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. ––– Outside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lower part of an Apollo era diesel engine from crawler-transporter 2 CT-2) onto the flatbed of a truck. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Outside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lower part of an Apollo era diesel engine from crawler-transporter 2 CT-2) onto the flatbed of a truck. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a worker helps guide a crane as it is lowered toward crawler-transporter 2 CT-2) so that the Apollo era diesel engine can be removed. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2012-02-15
CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians help secure an Apollo era diesel engine onto the flatbed of a truck after it was removed from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Seen on display overhead are the five orbiter tribute wall hangings. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett
Post-Shuttle EVA Operations on ISS
NASA Technical Reports Server (NTRS)
West, William; Witt, Vincent; Chullen, Cinda
2010-01-01
The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1
2011-08-13
CAPE CANAVERAL, Fla. -- Kennedy Space Center’s Launch Vehicle Processing Director Rita Willcoxon speaks to current and former space shuttle workers and their families during the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
2007-08-08
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, STS-118 Commander Scott Kelly dons his launch and entry suit for launch aboard Space Shuttle Endeavour. This is Kelly's second spaceflight. The STS-118 mission is the 22nd shuttle flight to the International Space Station. It will continue space station construction by delivering a third starboard truss segment, S5, and other payloads such as the SPACEHAB module and the external stowage platform 3. The 11-day mission may be extended to as many as 14 depending on the test of the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. NASA/Kim Shiflett
Space Shuttle Day-of-Launch Trajectory Design Operations
NASA Technical Reports Server (NTRS)
Harrington, Brian E.
2011-01-01
A top priority of any launch vehicle is to insert as much mass into the desired orbit as possible. This requirement must be traded against vehicle capability in terms of dynamic control, thermal constraints, and structural margins. The vehicle is certified to specific structural limits which will yield certain performance characteristics of mass to orbit. Some limits cannot be certified generically and must be checked with each mission design. The most sensitive limits require an assessment on the day-of-launch. To further minimize vehicle loads while maximizing vehicle performance, a day-of-launch trajectory can be designed. This design is optimized according to that day s wind and atmospheric conditions, which increase the probability of launch. The day-of-launch trajectory design and verification process is critical to the vehicle s safety. The Day-Of-Launch I-Load Update (DOLILU) is the process by which the National Aeronautics and Space Administration's (NASA) Space Shuttle Program tailors the vehicle steering commands to fit that day s environmental conditions and then rigorously verifies the integrated vehicle trajectory s loads, controls, and performance. This process has been successfully used for almost twenty years and shares many of the same elements with other launch vehicles that execute a day-of-launch trajectory design or day-of-launch trajectory verification. Weather balloon data is gathered at the launch site and transmitted to the Johnson Space Center s Mission Control. The vehicle s first stage trajectory is then adjusted to the measured wind and atmosphere data. The resultant trajectory must satisfy loads and controls constraints. Additionally, these assessments statistically protect for non-observed dispersions. One such dispersion is the change in the wind from the last measured balloon to launch time. This process is started in the hours before launch and is repeated several times as the launch count proceeds. Should the trajectory design not meet all constraint criteria, Shuttle would be No-Go for launch. This Shuttle methodology is very similar to other unmanned launch vehicles. By extension, this method would likely be employed for any future NASA launch vehicle. This paper will review the Shuttle s day-of-launch trajectory optimization and verification operations as an example of a more generic application of day-of-launch design and validation. With Shuttle s retirement, it is fitting to document the current state of this critical process and capture lessons learned to benefit current and future launch vehicle endeavors.
1998-08-19
KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprisING KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.
1998-08-20
KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprising KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Technicians photograph the exterior of Space Shuttle Discovery on its journey to Launch Pad 39B to support the Baseline Configuration Imaging (BCI) project. BCI will be collected on each orbiter prior to every mission, beginning with STS-114. The photos will be compiled into a database available for comparison, if the need arises, to photos taken on orbit from the Shuttle's Orbital Boom Sensor System (OBSS). The 50-foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. Discovery was hard down on the pad at 1:16 a.m. EDT April 7. Launch of Discovery on its Return to Flight mission, STS-114, is targeted for May 15 with a launch window that extends to June 3. During its 12-day mission, Discoverys seven-member crew will test new hardware and techniques to improve Shuttle safety, as well as deliver supplies to the International Space Station.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-103
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-103. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-103 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-91
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-91. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-91 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-93
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-93. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis findings of Space Shuttle mission STS-93 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-95
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-95. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-95 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-90
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-90. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system-conditions and integrated photographic analysis of Space Shuttle mission STS-90 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-80
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-80. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission Space Transportation System (STS-80) and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-89
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-89. Debris inspections of the flight element and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection systems conditions and integrated photographic analysis of Space Shuttle mission STS-89 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-112
NASA Technical Reports Server (NTRS)
Oliu, Armando
2002-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-112. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-112 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-87
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-87. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the-use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-87 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-96
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-96. Debris inspections of the flight elements and launch pad were performed before and after launch. icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-96 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-101
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-101. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-101 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-88
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-88. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-88 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-111
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-111. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-111 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-99
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-99. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-99 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-98
NASA Technical Reports Server (NTRS)
Speece, Robert F.
2004-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-98. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-98 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-97
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Kelly, J. David (Technical Monitor)
2001-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-97. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris /ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-97 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-86
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-86. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-86 and the resulting affect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-100
NASA Technical Reports Server (NTRS)
Oliu, Armando
2004-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-100. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-100 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-92
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-92. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-92 and the resulting effect, if any, on the Space Shuttle Program.
1998-06-02
KENNEDY SPACE CENTER, Fla. -- Startled by the thunderous roar of the Space Shuttle Discovery’s engines as it lifts off, a bird hurriedly leaves the Launch Pad 39A area for a more peaceful site. Liftoff time for the 91st Shuttle launch and last Shuttle-Mir mission was 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir
Space Shuttle orbiter modifications to support Space Station Freedom
NASA Technical Reports Server (NTRS)
Segert, Randall; Lichtenfels, Allyson
1992-01-01
The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.
Forecast of space shuttle flight requirements for launch of commercial communications satellites
NASA Technical Reports Server (NTRS)
1977-01-01
The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.
Shuttle Boosters stacked in the VAB
2007-01-04
Lighting inside Kennedy Space Center's Vehicle Assembly Building seems to bathe the highbay 1 area in a golden hue as workers continue stacking the twin solid rocket boosters. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.
Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis
NASA Technical Reports Server (NTRS)
Toelle, R. G.; Blackwell, D. L.; Lott, L. N.
1973-01-01
A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.
Proposed space shuttle cargo handling criteria at the operational site (preliminary)
NASA Technical Reports Server (NTRS)
Beck, P. E.
1972-01-01
The criteria for cargo handling at the operational site of space shuttles are presented, based on assumed program requirements. The concepts for the following functions are described: maintenance and checkout facility, transfer to launch pad, and launch pad. The requirements for the ground equipment are given along with the general sequences for cargo loading.
Coverage of STS-104 Launch Coverage of Flight Controllers in MCC.
2001-07-12
JSC2001-E-21333 (12 July 2001) --- From a familiar setting in the shuttle flight control room (WFCR)at Houston's Mission Control Center (MCC), Wayne Hale, ascent flight director for STS-104, pays close attention to new data related to the Space Shuttle Atlantis and its impending launch from the Kennedy Space Center (KSC) in Florida.
Coverage of STS-104 Launch Coverage of Flight Controllers in MCC.
2001-07-12
JSC2001-E-21333 (12 July 2001) --- From a familiar setting in the shuttle flight control room (WFCR) at Houston's Mission Control Center (MCC), Wayne Hale, ascent flight director for STS-104, pays close attention to new data related to the Space Shuttle Atlantis and its impending launch from the Kennedy Space Center (KSC) in Florida.
2002-12-09
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia sits on Launch Pad 39A, atop the Mobile Launcher Platform. The STS-107 research mission comprises experiments ranging from material sciences to life sciences, plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.
2009-03-25
CAPE CANAVERAL, Fla. – NASA's Kennedy Space Center management host a ceremony near Launch Pad 39B to mark the handover of Mobile Launcher Platform-1 (behind them) from NASA's Space Shuttle Program to the Constellation Program for the Ares I-X flight test targeted for this summer. Seated are (left) Shuttle Launch Director Mike Leinbach and (right) Pepper E. Phillips, director of the Constellation Project Office, and Brett Raulerson, manager of MLP Operations with United Space Alliance. At the podium is Rita Willcoxon, director of Launch Vehicle Processing at Kennedy. Constructed in 1964, the mobile launchers used in Apollo/Saturn operations were modified for use in shuttle operations. With cranes, umbilical towers and swing arms removed, the mobile launchers were renamed Mobile Launcher Platforms, or MLPs. Photo credit: NASA/Kim Shiflett
A perfect launch viewed across Banana Creek
NASA Technical Reports Server (NTRS)
2000-01-01
Billows of smoke and steam surround Space Shuttle Discovery as it lifts off from Launch Pad 39A on mission STS-92 to the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.
STS-131 Launch from Firing Room 4
2010-04-05
STS131-S-050 (5 April 2010) --- NASA commentator Mike Curie and astronaut Kathryn (Kay) Hire discuss the launch of space shuttle Discovery on the STS-131 mission in the Launch Control Center's Firing Room 4 at NASA's Kennedy Space Center in Florida. The seven-member STS-131 crew will deliver the multi-purpose logistics module Leonardo, filled with supplies, a new crew sleeping quarters and science racks that will be transferred to the International Space Station's laboratories. The crew also will switch out a gyroscope on the station’s truss structure, install a spare ammonia storage tank and retrieve a Japanese experiment from the station’s exterior. STS-131 is the 33rd shuttle mission to the station and the 131st shuttle mission overall.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-45
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center (KSC) Photo/Video Analysis, reports from Johnson Space Center, Marshall Space Flight Center, and Rockwell International-Downey are also included to provide an integrated assessment of each Shuttle mission.
2009-04-17
CAPE CANAVERAL, Fla. – Just before dawn, space shuttle Endeavour is bathed in xenon lights after being secured on Launch Pad 39B at NASA's Kennedy Space Center in Florida. First motion on rollout from the Vehicle Assembly Building was at 11:57 p.m. EDT April 16. On either side of the pad are two of the new lightning towers erected for NASA's Constellation Program, which will use the pad for Ares rocket launches. Endeavour will be prepared on the pad for liftoff in the unlikely event that a rescue mission is necessary following space shuttle Atlantis' launch on the STS-125 mission to service NASA's Hubble Space Telescope. After Atlantis is cleared to land, Endeavour will move to Launch Pad 39A for its upcoming STS-127 mission to the International Space Station, targeted to launch June 13. Photo credit: NASA/Dimitri Gerondidakis
2011-07-07
NASA Chief, Astronaut Office, Johnson Space Center Peggy Whitson deals cards during a traditional game that is played at the NASA Kennedy Space Center Operations and Checkout Building with the shuttle crew prior to them leaving for the launch pad, on Friday, July 8, 2011 in Cape Canaveral, Fla. The point of the game is that the commander must use up all his or her bad luck before launch, so the crew can only leave for the pad after the commander loses. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Jerry Ross)
2012-08-27
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett
2012-08-27
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett
2012-08-27
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett
2012-08-27
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett
2012-08-27
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett
2006-05-19
KENNEDY SPACE CENTER, FLA. -- Near Launch Pad 39B, wild pigs (at right) root for food near a stand of trees while Space Shuttle Discovery rolls out to the pad. The 4.2-mile journey from the Vehicle Assembly Building began at 12:45 p.m. EDT. The rollout is an important step before launch of Discovery on mission STS-121 to the International Space Station. Discovery's launch is targeted for July 1 in a launch window that extends to July 19. During the 12-day mission, Discovery's crew will test new hardware and techniques to improve shuttle safety, as well as deliver supplies and make repairs to the station. Photo credit: NASA/Ken Thornsley
2007-07-08
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, the payload canister is lifted up to the payload changeout room. Inside the canister are the S5 truss, SPACEHAB module and external stowage platform 3, the payload for mission STS-118. The red umbilical lines are still attached. The payloads will be transferred inside the changeout room to wait for Space Shuttle Endeavour to arrive at the pad. The changeout room is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Space Shuttle Endeavour is targeted for launch on Aug. 7 from Launch Pad 39A. Photo credit: NASA/Kim Shiflett
STS-79 Atlantis arrives at LC39A
NASA Technical Reports Server (NTRS)
1996-01-01
The Space Shuttle Atlantis arrives at Launch Pad 39A at twilight. The second rollout to the pad brings Atlantis one step closer to a launch scheduled around September 12. Mission STS-79 will be highlighted by the fourth docking between the U.S. Space Shuttle and the Russian Space Station Mir, and the return to Earth of U.S. astronaut Shannon Lucid after a record-setting stay aboard the station
2001-04-19
KENNEDY SPACE CENTER, FLA. -- State Education Commissioner Charlie Crist (left) and astronaut Sam Durrance (center) talk to a child and his mother who are waiting at an observation site to watch the launch of Space Shuttle Endeavour on mission STS-100. Crist was commemorating the 20th anniversary of Space Shuttle program with his visit to KSC for the launch. He accompanied students from Ronald McNair Magnet School, Cocoa, Fla
STS-95 Space Shuttle Discovery rollout to Launch Pad 39B
NASA Technical Reports Server (NTRS)
1998-01-01
As daylight creeps over the horizon, STS-95 Space Shuttle Discovery, on the Mobile Launch Platform, arrives at Launch Complex Pad 39B after a 4.2-mile trip taking approximately 6 hours. At the left is the 'white room,' attached to the orbiter access arm. The white room is an environmental chamber that mates with the orbiter and holds six persons. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
2011-06-21
CAPE CANAVERAL, Fla. -- Battalion Chief David Seymour provides supervision while space shuttle Atlantis' STS-135 crew members participate in M113 armored personnel carrier training at NASA's Kennedy Space Center in Florida. Driving the M113 is Mission Specialist Sandy Magnus while Pilot Doug Hurley looks on. An M113 is kept at the foot of the launch pad in case an emergency exit from the launch pad is needed and every shuttle crew is trained on driving the vehicle before launch. The STS-135 crew is at Kennedy to participate in a launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Atlantis and its crew are targeted to lift off July 8, taking with them the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-06-21
CAPE CANAVERAL, Fla. -- Battalion Chief David Seymour provides supervision while space shuttle Atlantis' STS-135 crew members participate in M113 armored personnel carrier training at NASA's Kennedy Space Center in Florida. Driving the M113 is Mission Specialist Sandy Magnus while Commander Chris Ferguson looks on. An M113 is kept at the foot of the launch pad in case an emergency exit from the launch pad is needed and every shuttle crew is trained on driving the vehicle before launch. The STS-135 crew is at Kennedy to participate in a launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Atlantis and its crew are targeted to lift off July 8, taking with them the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-06-21
CAPE CANAVERAL, Fla. -- Battalion Chief David Seymour provides supervision while space shuttle Atlantis' STS-135 crew members participate in M113 armored personnel carrier training at NASA's Kennedy Space Center in Florida. Driving the M113 is Mission Specialist Sandy Magnus while Pilot Doug Hurley looks on. An M113 is kept at the foot of the launch pad in case an emergency exit from the launch pad is needed and every shuttle crew is trained on driving the vehicle before launch. The STS-135 crew is at Kennedy to participate in a launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Atlantis and its crew are targeted to lift off July 8, taking with them the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-06-21
CAPE CANAVERAL, Fla. -- Battalion Chief David Seymour provides supervision while space shuttle Atlantis' STS-135 crew members participate in M113 armored personnel carrier training at NASA's Kennedy Space Center in Florida. Driving the M113 is Pilot Doug Hurley; seated are Mission Specialist Sandy Magnus (background right) and Commander Chris Ferguson. An M113 is kept at the foot of the launch pad in case an emergency exit from the launch pad is needed and every shuttle crew is trained on driving the vehicle before launch. The STS-135 crew is at Kennedy to participate in a launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training. Atlantis and its crew are targeted to lift off July 8, taking with them the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-03-29
CAPE CANAVERAL, Fla. -- Shuttle Launch Director Mike Leinbach, right, is on hand to greet STS-134 Mission Specialist Andrew Feustel who arrived on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida aboard a T-38 jet. While at Kennedy, space shuttle Endeavour's crew will participate in a launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training in preparation for the upcoming STS-134 mission. Endeavour and its six STS-134 crew members will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. This will be the final spaceflight for Endeavour. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
CAPE CANAVERAL, Fla. - Twitter followers and media representatives at the NASA Press Site have front-row seats as space shuttle Atlantis launches through the clouds from Launch Pad 39A on a balmy Florida afternoon at NASA's Kennedy Space Center. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Gianni Woods
1976-01-01
This is a cutaway illustration of the Space Shuttle external tank (ET) with callouts. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the ET also acts as a backbone for the orbiter and solid rocket boosters. Separate pressurized tank sections within the external tank hold the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts that branch off into smaller lines that feed directly into the main engines. The main engines consume 64,000 gallons (242,260 liters) of fuel each minute. Machined from aluminum alloys, the Space Shuttle's external tank is currently the only part of the launch vehicle that is not reused. After its 526,000-gallons (1,991,071 liters) of propellants are consumed during the first 8.5-minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET.
2011-06-23
CAPE CANAVERAL, Fla. -- NASA's silver Astrovan is parked below Launch Pad 39A at NASA's Kennedy Space Center in Florida after delivering space shuttle Atlantis' STS-135 crew members to the pad to participate in a launch countdown simulation exercise. The Astrovan will return the astronauts to the Operations and Checkout Building at the end of their training. As part of the Terminal Countdown Demonstration Test (TCDT), the crew members are strapped into their seats on Atlantis to practice the steps that will be taken on launch day. Shuttle Atlantis and its crew are targeted to lift off July 8, taking with them the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-06-23
CAPE CANAVERAL, Fla. -- NASA's silver Astrovan is parked below Launch Pad 39A at NASA's Kennedy Space Center in Florida after delivering space shuttle Atlantis' STS-135 crew members to the pad to participate in a launch countdown simulation exercise. The Astrovan will return the astronauts to the Operations and Checkout Building at the end of their training. As part of the Terminal Countdown Demonstration Test (TCDT), the crew members are strapped into their seats on Atlantis to practice the steps that will be taken on launch day. Shuttle Atlantis and its crew are targeted to lift off July 8, taking with them the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-06-23
CAPE CANAVERAL, Fla. -- The massive crawler-transporter that carried space shuttle Atlantis to Launch Pad 39A at NASA's Kennedy Space Center in Florida sits serenely on the crawlerway once its transport duties were completed. Meanwhile, Atlantis' crew members are at the pad to participate in a launch countdown simulation exercise. As part of the Terminal Countdown Demonstration Test (TCDT), the crew members are strapped into their seats on Atlantis to practice the steps that will be taken on launch day. Shuttle Atlantis and its crew are targeted to lift off July 8, taking with them the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann